(54) 发明名称
流体分离系统和方法

(57) 摘要
本发明提供了从流体分离颗粒的系统和方法。系统包含至少两个流体进口和流体出口的容器，其中一个容器中一个流体进口定位比另一个流体进口高。流体进口可以连接到聚合反应器和可以配置各流体进口以从聚合反应器的不同区域将流体输送到该容器。在聚合反应器停车期间，反应混合物排出至分离系统，其中在该混合物释放进入大气中之前从该混合物除去聚合物颗粒。
1. 一种来源于反应器的流体分离颗粒的系统，其包含：
体积超过3.0m³或者生产能力超过250kta的反应器；和

围绕中心垂直轴限定的容器，该容器包含容器内表面，包括第一流体进口和第二流体进口的至少两个流体进口，流体出口，和储罐，配置该储罐以容纳料位可变的冷却剂；
其中第一流体进口在该容器中的位置比该第二流体进口高且该第二流体进口在容器中的位置比该储罐中容纳的冷却剂的料位高。

2. 权利要求1的系统，其中该流体进口限定在该容器内表面上。

3. 权利要求1或者2的系统，其中该第一流体进口直接位于该第二流体进口的上方。

4. 前述权利要求任一项的系统，其中该第一流体进口基本上围绕该中心垂直轴距该第二流体进口180度定位。

5. 前述权利要求任一项的系统，其中该流体出口定位在该容器的顶部与该中心垂直轴同心。

6. 前述权利要求任一项的系统，其中该容器基本上是圆柱体。

7. 前述权利要求任一项的系统，其中配置该流体进口以对该容器内表面基本上成切线将流体引入该容器之内。

8. 前述权利要求任一项的系统，其中配置该流体进口以环绕该中心垂直轴相同切线方向将流体引入该容器之内。

9. 前述权利要求任一项的系统，其中该流体进口具有内径Di，和第一和第二流体进口高度差是至少1.5+Di。

10. 前述权利要求任一项的系统，其中配置该第一流体进口以输送比该第二流体进口更高质量通量的流体至该容器。

11. 一种聚合系统，其包含：
管状聚合反应器；和
分离系统，该分离系统包含：
容器，该容器包含至少两个流体进口，流体出口和储罐，该至少两个流体进口包括第一流体进口和第二流体进口，配置该储罐以包含料位可变的冷却剂，其中第一流体进口在该容器中的位置比第二流体进口高和第二流体进口在容器中的位置比该储罐中容纳的冷却剂的料位高；
其中该流体进口连接至聚合反应器和配置各个流体进口以从聚合反应器的不同区域将流体输送到该容器。

12. 权利要求11的聚合系统，其中该管状聚合反应器具有超过3.0m³的体积或者超过250kta的生产能力和是可以在约120至约310MPa和约225至约375℃下操作。

13. 权利要求11或者12的聚合系统，其中该聚合反应器包含区域，该区域包括上游端、下游端和位于该上游端和下游端之间的中游区域；
其中配置第一流体进口以从中游区域输送流体到该容器和配置第二流体进口以从下游端输送流体到该容器。

14. 权利要求11-13中任一项的聚合系统，其中配置该第一流体进口以输送比该第二流体进口更高质量通量流体至该容器。

15. 在聚合反应器停车期间从反应混合物分离颗粒的方法，其中该聚合反应器具有超
过3.0m³的体积或者超过250kta的生产能力，该方法包括：

通过开启一个或多个阀使聚合反应器泄放；和

将至少一部分该反应混合物从聚合反应器排出至分离系统，其中该分离系统包含：

容器，该容器包含至少两个流体进口，流体出口和储罐，该至少两个流体进口包括第一流体进口和第二流体进口，配置该储罐以包含料位可变的冷却剂，其中第一流体进口在该容器中的位置比第二流体进口高和第二流体进口在容器中的位置比该储罐中容纳的冷却剂的料位高。

16. 权利要求15的方法，其中该聚合反应器是高压聚合反应器。

17. 权利要求15或者16的方法，还包含；

通过第一流体进口从聚合反应器上游端和下游端之间的位置排出至少一部分该反应混合物到分离系统；和

通过第二流体进口从聚合反应器的下游端排出至少一部分该反应混合物到分离系统。

18. 权利要求15-17中任一项的方法，其中通过第一流体进口比通过第二流体进口排出更高质量的反应混合物进入该容器之内。

19. 从来源于高压釜反应器的流体分离颗粒的系统，其包含；

围绕中心垂直轴限定的容器，该容器包含容器内表面，包括第一流体进口和第二流体进口在内的至少两个流体进口，流体出口和储罐，配置该储罐以包含料位可变的冷却剂。

其中第一流体进口在该容器中的位置比第二流体进口高和第二流体进口在容器中的位置比该储罐中容纳的冷却剂的料位高。

20. 权利要求19的系统，其中该第一流体进口直接位于该第二流体进口的上方。

21. 权利要求19或者20的系统，其中该第一流体进口基本上围绕该中心垂直轴距该第二流体进口180度定位。

22. 权利要求19-21中任一项的系统，其中该流体出口定位在该容器的顶部与该中心垂直轴同心。

23. 权利要求19-22中任一项的系统，其中该容器基本上是圆柱体和配置该流体进口以围绕该中心垂直轴相同切线方向对该容器内表面基本上成切线将流体引入该容器之内。

24. 权利要求19-23中任一项的系统，还包含阀门和自动压力释放装置，其中该阀门控制通过一个流体进口的流体流和该自动压力释放装置控制通过不同流体进口的流体流。

25. 权利要求19-24中任一项的系统，其中该流体进口具有内径Di，和第一和第二流体进口高度差至少是1.5×Di。
流体分离系统和方法

[0001] 相关申请的交叉引用
[0002] 本申请要求2014年1月31日提交的序号61/934,075的美国专利申请权益，其公开内容全部引用作为参考。

技术领域
[0003] 本说明书涉及流体分离系统和方法。更具体而言，发明涉及用于在聚合工艺中从反应混合物分离聚合物颗粒的系统和方法。

背景技术
[0004] 聚合反应器将相对低成本烯烃单体（例如乙烯，任选结合一种或多种共聚单体）转化成为有价值的聚烯烃产物（例如聚乙烯）。
[0005] 众所周知聚合物生产的经济因素，包括聚乙烯生产在内，强烈地有利于大规模操作和因此，长时间存在的维持不变的要求是开发大生产能力的反应器。然而，操作包括管式反应器在内的大型聚合反应器要求特别考虑。该反应器通常在高压（例如，200-310MPa）和高温（例如150-450°C）下操作。该聚合反应是高度放热的。如果该反应混合物过热，该烯烃就会分解成碳，氢气，和甲烷。而且，过高的温度和/或压力存在安全隐患。为此，重要的是以受控方式实施该聚合和，如果必要的，实施该反应器的紧急停车。
[0006] 紧急停车一般要求通过排出该反应器内物料（例如未反应的组分和聚合物颗粒的混合物）进入大气之中快速释放在该反应器之内的温度和压力条件。分离系统，有时称为紧急排放分离器（“EVS”），例如公开号为2012/0275961的美国专利所公开的，可以用于在反应器停车期间减少排放进入大气中的聚合物颗粒。
[0007] 另外的EVS是本领域已知的，由BASF所设计，引入容器，该容器包含液体，具有多个切线进口连接到反应器的各个区域。参见，例如，专利号为4,115,638和4,804,725的美国专利。然而，大型反应器，包括当今制造超过3.0m³体积或者超过250kta生产能力的管式反应器呈现与反应器流出物的大质量通量有关的问题，必须将该反应器流出物快速从该反应器排放。EVS比如上所述的那些可能并不非常适于容纳与上述反应器尺寸有关的大规模能力和振动。
[0008] 其它背景参考文献包括：EP1142916A。
[0009] 在紧急停车期间，用于大型反应器的EV必须经受大规模力和振动同时安全和清洁地管理灼热，潜在易燃的反应器流出物的大质量通量流体流动。随着操作规模的增大，对EVS设备的要求也增加。因此，合乎需要的是具有系统和方法以安全和有效地在反应器停车期间从高质量通量流体流中分离颗粒。

发明内容
[0010] 本发明提供用于从来源于高压反应器的流体分离颗粒的系统和方法，该高压反应器包括体积超过3.0m³或者生产能力超过250kta的反应器。本发明容许将流体快速引入容
器之内，其中在流体离开系统之前从该流体分离固态聚合物颗粒，尤其是本发明限制和承受通过作为系统一部分的多个流体进口分离大量通量的流体所产生的巨大压力和振动，其避免超音速流动之间的相互作用和促进在容器之内和经由流体出口的更少漏流。
【0011】一方面，本说明书涉及用于从流体分离颗粒的系统，该流体来自体积超过3.0m³或者生产能力超过250kta的管状聚合反应器。该反应器及系统，系统包含分离容器，该分离容器具有内表面，至少两个流体进口，包括第一流体进口和第二流体进口，流体出口和储罐，配置其以包含物料变化的液体。第一流体进口在容器中位置比第二流体进口更高，而第二流体进口在该容器中位置比储罐中包含的液体的料位更高。
【0012】另一方面，本说明书涉及聚合系统。该系统可以包含管状聚合反应器，其体积超过3.0m³或者生产能力超过250kta可在约120度至约310MPa和约225度至约375℃下操作；和分离系统。除该反应器之外，该分离系统包含容器，该容器具有至少两个流体进口，包括第一流体进口和第二流体进口，流体出口和储罐，配置其以包含物料变化的液体。第一流体进口在容器中位置比第二流体进口更高，而第二流体进口在该容器中位置比储罐中包含的液体的料位更高。该流体进口连接至聚合反应器和可以配置各流体进口以从聚合反应器的不同区域将流体输送到该容器。
【0013】可替换的是聚合系统可以包含高压釜反应器和分离系统。从该高压釜反应器至分离系统的流体流可以通过作为冗余安全系统的阀门，自动压力释放装置或者两者的组合来控制。
【0014】另一方面，本说明书涉及用于在超过3.0m³或者生产能力超过250kta聚合反应器停车期间从反应混合物分离颗粒体积的方法。该方法包括(i)通过开启一个或多个阀使聚合反应器泄放；和(ii)将至少一部分该反应混合物从聚合反应器排出至分离系统。该分离系统包含容器，该容器具有至少两个流体进口，包括第一流体进口和第二流体进口，流体出口和储罐，配置其以包含物料变化的液体。第一流体进口在容器中位置比第二流体进口更高，而第二流体进口在该容器中位置比储罐中包含的液体的料位更高。
【0015】参照以下描述和附加权利要求书，本说明书的这些及其它特征、状况、和优势会变得更好理解。

附图说明
【0016】附图1A-1B说明分离系统。
【0017】附图1C说明根据分离系统一方面在通过流体进口的垂直平面上的流体流动特征。
【0018】附图1D说明根据分离系统一方面在通过流体进口的水平平面上的流体流动特征。
【0019】附图2A说明分离系统，其中流体进口相对中心垂直轴反向放射状定位。
【0020】附图2B说明附图2A的横截面BB的俯视图。
【0021】附图3示意图说明包含管式反应器和分离系统的聚合系统。
【0022】附图4示意图说明包含高压釜反应器和分离系统的聚合系统。
【0023】发明详述
【0024】本申请公开从流体分离颗粒（例如固体聚合物）的系统和方法，尤其在聚合反应器的停车期间。现在公开发明各个具体方面，包括本申请为了理解所请求发明而采用的定义。尽管以下详细说明阐明具体方面，然而本领域技术人员会理解本发明可以采用其它方式
实施。为了确定侵权，本发明范围会涉及附加权利要求的任何一项或更多项，包括它们的等同物，和等同于所列举那些的部件或者限制。任何“本发明”所涉及物可能涉及一项或多项，但不必是本发明权利要求书所定义的全部。

【0025】附图1A-1D图解分离系统的各个方面。分离系统100包括容器105，其可以是足够在其内包含流体的任何结构。如所示，容器105是圆柱形。然而，容器105可以是任何形式。例如，容器105可以是任何形状的，例如矩形，环形和/或类似形状。而且，容器105可以是任何尺寸，其在停车期间足以容纳反应器系统排出的流体流。例如，该容器体积可以是10-15m³。在附图1A-1B中，容器105基本上垂直取向和由中心垂直轴Z确定。在其它的实施方案中，容器105可以是不同水平取向或者另外的取向。容器105可以是由任何适合的材料，例如钢制成。

【0026】容器105包括流体进口110,112。显示两个流体进口;然而分离系统100可以包括多个和任何数量和足以将流体输送进入容器105之内的流体。流体进口110,112穿透容器105的表面102。流体进口110,112优选限定在表面102之上，但是也可以设置为容器105之内延伸。流体进口110,112可以按照需要用于流动轨迹将流体引入容器105。优选，容器进口110,112对容器105的表面102基本沿切线将流体引入容器105。另外，流体进口110,112优选配置使得没有一个流体进口各自的流动与其它流体进方向相反。例如，在附图1A-1D中，流体进口110,112在中心垂直轴Z周围以相同切线方向将流体引入容器105。然而，可替换的是，流体进口110,112可以配置以按照其它的要求的配置，包括垂直背离或者朝向表面102引入流体。

【0027】一旦该反应器触发紧急停车，流体进口110,112可以配置以将来源于聚合反应器的流体进入容器105之内，该聚合反应器例子如是，体积超过3m³或者生产能力超过250kta的管式反应器。在紧急停车开始，来自该反应器的流体流穿过流体进口110,112。该流动在，例如，5秒，如更尤其在1秒之间快速增加至最高质量通量，取决于该反应器的尺寸和操作条件，该质量通量变化极大，例如在0kg/s和1000kg/s之间和更具体地说直到最高约900kg/s。

【0028】总流体质量通量在流体进口110,112之间分配。穿过流体进口的流体质量通量可以相等或者不同。在本发明的一个方面中，穿过上部流体进口110的流体质量通量大于穿过下部流体进口112的质量通量。

【0029】所有流体进口定位在容器105之内的不同高度。例如，上部流体进口110位于容器105较高处，相比下部流体进口112。上部流体进口110可以直接在下部流体进口112上，如附图1A-1D所示。可替换的是，上部流体进口110可以位于下部流体进口112为围绕中心垂直轴Z的放射状位置定位。例如，一个流体进口可以位于围绕中心垂直轴Z和另外流体进口180度，如附图2A-2B所示。

【0030】在附图2A-2B所示分离系统200中，上部流体进口210位于下部流体进口212之上和围绕容器205。下部流体入口212呈180度。引导上部流体料流211穿过上部流体进口210同时引导下部流体料流213穿过下部流体进口212。料流211和213二者都围绕中心垂直轴Z以相同切线方向230°导向。

【0031】附图1C和1D图解在峰值或者接近峰值质量通量条件期间流体流动穿过流体进口110,112的特征。根据该流体流量向峰值质量通量增大，流体料流111,113可以在达到流体进口110,112之前经历音速状态和在表面102进入容器105时膨胀。膨胀流体射流可以在这些区域中形成，标记为超音速流动120的区域，其中W(马赫数)远大于1，超音速流动121，其
中M大于1，和音速流122，其中M≈1。随着该流体料流111，113与表面102相互作用，可以形成斜流124，如附图10所示。流体进口110和112之间的距离足够，使得来自各自流体进口的扩散流体射流未彼此妨碍，如附图1C所示。例如，如果流体进口110，112具有相同的内径D1，在流体进口110和112之间垂直距离可以是至少1.54D1距离以避免射流相互作用。对于另外的实施例而言，如果流体进口110，112分别具有不同的内径D1和D2，则在流体进口110和112之间垂直距离可以是至少1.5*(D1+D2)/2距离以避免射流相互作用。

[0032] 该流体可以是包含颗粒的任何组合物，不论是固体、气体或者含水形式。例如，该流体可以包含，任何已知的或者在下文公开的气相聚合反应成组（例如一种或多种烯烃单体例如乙烯-衍生单元或者丙烯-衍生单元，共聚单元例如α-烯烃，溶剂，引发剂，催化剂，添加剂，氢气，和/或类似物）结合一种或多种颗粒（例如聚合物例如包含乙烯-衍生单元或者丙烯-衍生单元的那些），这些颗粒悬浮在其中（例如聚烯烃，例如聚乙烯或者聚丙烯）。

[0033] 分离系统100进一步包括在容器105之内的储罐，其包含冷却剂185。如附图1B所示，容器105底部可以包含开口104或一个或多个喷口，其可以位于容器的侧面以允许冷却剂185进入或者离开。冷却剂185是液体，优选水，并且与该流体相比相对较冷（例如约5℃至约40℃）。冷却剂185提供多种有用的用途。第一，在该流体引入容器105之后，冷却剂185用来刚一接触就骤冷该流体引起固态聚合物颗粒从该流体沉淀析出。第二，流体高动量射流进入容器105雾化一部分冷却剂185形成微滴，随着它在容器105中旋动其与该流体混合。这些冷却剂185微滴抑制在脱离的流体/冷却剂混合物103中静电积累，当流体/冷却剂混合物103经过流体出口115脱离容器105时，因此有助于防止火灾。冷却剂185可以装设至所要求料位，只要该料位保持低于下述流体出口112。该冷却剂的料位可以使用合适的料位装置经由容器105内部喷口保持和监视。冷却剂185可以该容器排出和/或可以进行进一步处理以除去该颗粒。该储罐可以用另外的冷却剂再充填。

[0034] 容器105包括足以从该容器排出流体/冷却剂混合物的流体出口115。流体出口115优选位于容器104顶部与中心垂直轴同轴以促进大部分垂直方向的流体排出。流体出口115也可包含水平组，其导向所排出的流体/冷却剂进入大气之中。

[0035] 流体进口110，112和流体出口115的内径可以定尺寸以控制流体进入和/或脱离的速度和/或压力。例如，流体进口的内径可以是相对小的（例如，约0.04至约0.3m）和/或流体出口的内径可以是相对大的（例如，约0.5至约1.5m）。流体出口内径增大，在容器之内平均压力依照下面的关系按比例降低：

\[P_v = \frac{M_o - (1 + \xi) s e^{-\tau} c}{(0.73 A_{115})} \]

[0036] 其中Pv是平均容器压力；M0是初始质量流量；ξ是水蒸汽质量分数；t是时间；τ是进口质量流量衰减时间；s是该流体/冷却剂混合物的速率；和A115是流体出口115的面积。按π*D0²/4计算，其中D0是流体出口115内径，在该流体出口是圆周的情况下。

[0037] 例如，通过将流体进口115内径从0.91m³提高至1.1m³，在容器105中经历的平均最高壁压从约6.4巴减小到4.5巴，在所有其它变量的保持不变的情况下。

[0038] 而且，在容器之内的平均内表面压力与在该容器之内的平均压力依照下面关系相关联：

\[P_{VS} = P_v + 1/2 S_p \rho \sigma c^2 \]

[0040] 其中Pvs是在该容器中的平均内表面压力；S_p是旋动因数；和ρ是在该容器之内流体
说明书

第0042条 因此流体出口115内径对内表面压力具有复杂影响，其确定作用于容器105的动力和动量。因此，在本发明的一个方面中，流体出口115直径最小值可以基于该容器最高内表面压力限制范围确定，其可以基于其它设计要求。

第0043条 分离系统100可以进一步包括隔离物180以防止流体过早脱离系统。随着流体在容器105中旋转和向流体出口115上升，隔离物180迫使该流体向下以防止流体过早脱离和进一步促进颗粒分离。

第0044条 在操作中，和根据附图1B，流体料流111和113分别以基本上与容器105器壁102相切角度经由流体进口110和112进入分离系统100。在容器105内部该流体料流立即开始旋转，产生涡流。高能量流体流动与冷却剂185相互作用，雾化一部分冷却剂成为微滴和引起该液体本体旋转。该雾化冷却剂抑制静电荷的积累，使该流体/冷却剂混合物降温，鸟类防止流体的潜在点燃。在该流体/冷却剂混合物经由流体出口115脱离之前，存在于该流体中的颗粒由于惯性，即，“离心力”而分离出该旋紧流体混合物。随着该反应器的液放完成，该颗粒和任何残存流体/冷却剂混合物一起沉降到容器105的底部。随后从容器105经由出口104或可用其它清除或者另外的加工方式除去这些混合物。

第0045条 依照本发明公开的配置通过经由多个流体进口引入流体进入分离系统之内，在若干方面限制过度的内表面压力和动量，包括但不限于以下：第一，经由一个流体进口相反的多个流体进口引入反应容器流体，直接在流体进口110、112下游在表面102上该流体膨胀射流的直接冲击，在多个区域间伸展，由此使在各位置经受的局部压力减小，第二，通过流体进口110、112沿Z轴相互足够远离，与流体进口有关膨胀射流没有直接相互作用，导致在容器105之内主要是次音速的旋流，与超声波旋流相反，由此贯穿容器105和流体出口115的内表面压力低下。第三，通过传递比经由下部流体进口112更高质量通量的流体经由上部流体进口110，可以限制影响储罐液体185的高能量流体的数量，由此，在大量的颗粒已经通过旋紧除去之前，经由流体出口115的流体和液体损失数量减少。

第0046条 一个或多个分离系统可以并联或者串联采用以进一步地控制和降低释放进入大气之中的聚合物数量。

第0047条 本发明还涉及包括反应器和分离系统的聚合系统。该反应器可以是高压聚合反应器，例如管状、高压釜或者淤浆环管反应器，或者其组合。

第0048条 例如，如附图3所示，聚合系统300包括分离系统301和反应器1350。反应器350可以是具有多个区域的管式反应器，其包括上游端352，下游端354在上游端和下游端之间的中游区域353。聚合系统300可以进一步包括许多附加组件以促进该聚合过程（例如，压缩机382，分离器390，和干燥机392）。

第0049条 在操作中，和继续参考附图3，包含烯烃单体连同聚合物需要组分，例如，引发剂、催化剂和/或类似物，和所选可与之聚合的一种或多种组分，例如聚合单体的进料料流378，直接或者经由任选的压缩机382提供至反应器350的上游端352。该烯烃单体可以是例如乙烯或者丙烯。可允许的引发剂包括丁是不局限于过氧化物。合适的催化剂包括，但是不局限于齐格勒/纳塔催化剂或者其它单位点催化剂，进料料流378进入反应器350以形成聚合物395（例如聚乙烯或者聚丙烯），其在下游端354脱离反应器350。反应器350可以具有超过3.0m³
的体积或者超过250kta的生产能力和在约120至约310MPa，或者约200至250MPa的压力下和在约225至约315℃，或者约250至350℃的温度下操作。

【0050】如果反应器350需要停车，例如，它超过预定压力或者温度，进料料流378可以停止和在反应器350之内压力通过开启两个或者更多个阀388, 389而泄放，该阀在流体料流311和313中转移反应混合物至分离系统301，该反应混合物包含气体和聚合物颗粒的混合物。如本文所用，开启阀包括手动开启和自动开启等。

【0051】流体料流311可以来源于反应器350特定区域，例如，中游区域。与流体料流311相比较，流体料流313可以来源于反应器350的不同区域，例如下游端354。通过具有多个阀和离开该反应器不同区域的流体料流，该反应器可以更快速地泄放和安全地完成紧急停车。反应器350，尤其作为管式反应器，可以具有从上游端352到下游端354的压力递降梯度。中游区域可以因此比下游端354压力更高，导致通过流体料流311的质量通量比通过流体料流313的更高。

【0052】流体料流311可以通过上部流体进口输送至分离系统301而流体料流313可以通过下部流体进口输送至分离系统301。基于流体料流311和313的的起始反应器区域，通过上部流体进口的质量通量可以比通过下部流体进口的质量通量更高。在引入分离系统301之内时，该反应混合物在分离系统容器中旋动，从而与包含在该容器中的分离系统液体组合，这样在释放流体303进入大气之前将聚合物颗粒分离出。然后残留聚合物394可以从分离系统301除去。

【0053】对于另外的实施例而言，如附图4所示，聚合系统400包括分离系统401和反应器450。具体说，反应器450可以是高压釜反应器。反应器450的生产能力可以超过100kta。聚合系统400可以进一步包括许多附加组件分以有助于该聚合过程，如上述关于聚合系统300公开的那样。

【0054】可以通过开启一个或多个阀489使反应器450泄放，其在流体料流413中转移反应混合物至分离系统401，该反应混合物包含气体和聚合物颗粒的混合物。聚合系统也包括一个或者多个自动压力释放装置486、487、488。压力释放装置486, 487, 488可以是任何可再关闭的或者非可再关闭的装置，其容许流体在预定压力流动，包括但不限于安全膜、爆破封头和自动泄压阀。一个或者多个压力释放装置487, 488可以在流体料流411, 412中将反应混合物转移至分离系统401。分离系统401如同如上关于分离系统301所述起作用，及通过上部及下部流体进口输送至分离系统401的流体料流411和413，所分离的流体403释至大气，和残余聚合物494随段除去。当两种以上流体料流411, 412, 413输送至分离系统401时，比如在图4中图解，所有流体料流经由在不同高度的流体进口输送，足够使得来自各流体进口的扩展的流体射流不彼此妨碍，如以上根据附图1C解释的那样。例如，在流体进口之间的垂直距离可以是至少1.5m,0的距离以避免射流相互作用。用于流体料流411, 412, 413的流体进口可以全部垂直排列，或者可以围绕分离系统401的中心垂直轴Z任何旋转组合来定位。

【0055】聚合系统400也可包含一个或者多个附加压力释放装置486，其直接将流体释放至大气。压力释放装置486, 487, 489可以设定在不同压力下起动。例如，相比向大气泄放的压力释放装置486, 向分离系统401泄放的压力释放装置487, 488可以设定在更低的释放压力。由此，压力释放装置486, 487和488可以提供冗余的安全系统以使反应器450降低压力。可替换的是，压力释放装置487, 488可以设定为在与开启阀489的事件的相同触发就起动，由此容
本发明还涉及使聚合系统停车的方法（例如，由于过高压和/或温度的紧急停车）。该方法可以包括通过开放两个或更多个阅388、389而使聚合反应器350泄放。该方法还包括从聚合反应器350排出该反应混合物至分离系统301，该聚合反应器可以是例如，高压聚合反应器，其中分离系统301包括容器，该容器具有至少两个流体进口，包括第一流体进口和第二流体进口，流体出口和储罐，及配置其以包含含量位变化的液体。第一流体进口在该容器中的位置比第二流体进口高，其依次在该容器中的位置比液体料位更高。该方法还包括通过第一流体进口从在聚合反应器上游端和下游端之间的位置排出一部分该反应混合物至分离系统和通过第二流体进口从聚合反应器下游端排出一部分反应混合物至分离系统。该方法还包括通过第一流体进口排出比通过第二流体进口更高质通量的反应混合物进入该容器之内。

实施例（模拟）

现在进一步参考以下非限制性实施例说明本申请所公开系统和方法优势。

实施例1

开发计算流体动力学（"CFD"）模型以模拟在反应器停车状态下的实施例分离系统。该模型化系统是12.08m³，其包括内径2040mm的圆柱形容器和直径95.25mm的垂直管体出口。分离系统包括在该容器内圆柱表面中限定的两个流体进口，设置一个流体进口直接在另一个的上方，配置以导向流体沿内表面切线反时针方向流动。容器中的液体料位是在该下部流体进口以下200毫米。

该模型是该模型基于分离系统的输入与输出二者的一定初始条件和流量。流体进口而言，使用理论进口储罐为矩形长方体的形状为初始条件建模。将第二流体进口的上游面设置为进口面，初始边界条件由此设置，而储罐的其它面作为滑动器壁建模。边界条件表示流体进口上游的停滞条件。具体说，该初期的流量压力设定为2750巴和通过流体进口的质量流速被定为下述以下函数：

\[\dot{m} = 880 \text{e}^{-\frac{t}{8}} \]

其中 \(\dot{m} \) 是质量流量，t是时间（按秒计）和时时间常数5.866秒，换言之，初始质量流量是880kg/s，各流体进口输送440kg/s。

用于流体出口的边界条件使用理论出口储罐建模。该出口储罐表示大气和建模为非常巨大的矩形长方体。该出口储罐的面设定在环境条件，但是足够远离该流体出口以免影响该流动特性。

为了计算效率，仅将气相流体和冷却剂表面建模。该冷却剂表面仅容许作为固体、不变形的本体移动，这是由于在其上的湍流流体剪切。实际上该冷却剂表面变形是不按照CFD模型的事实导致压力估计过高，由此提供安全的估计。对于乙烯气体模型，流体的比热比是1.24。

在这些条件下，通常次音速环流在容器之内逐步显现，在该流体出口是稳态流和膨胀射流。分离系统在流体出口经受量级为4巴，该容器内表面16巴，和流体进口附近高达30巴的局部化壁压。

实施例2

实施例2具有与实施例1相同条件，除几项例外；流体进口围绕容器的中心垂直轴
相互180度定位。设置该下部流体进口输送360kg/s同时设置该上部流体进口输送520kg/s。该流体出口直径增至大约1016mm。在这些条件下，一般次音速环流在容器之內逐步显现，在该流体出口是稳态流和膨胀射流。分离系统在流体出口经受量级为4巴，该容器内表面22巴，和流体进口附近高达40巴的局部化壁压。

【0069】 实施例3(对比)

【0070】 实施例3具有和实施例2相同的条件，除流体进口位于相同垂直斜位之外。在这些条件下，一般超声波环流在容器之內逐步显现，非稳流通过该流体出口。分离系统在流体出口经受量级为5巴，该容器内表面37巴，和流体进口附近高达50巴的局部化壁压。

【0071】 提供本申请所列举实施方案和实例以充分解释本发明和它的实际应用和由此能够使本领域技术人员完成和使用本发明。所列举的公开内容不是意在穷举或者至限制本发明拘泥于公开的形式。按照上述教导许多改变和变化是可行的，只要没有背离权利要求书的精神和范围。
图2B
图3
图4