US 20150256598A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2015/0256598 A1

Walker et al.

43) Pub. Date: Sep. 10, 2015

(54)

(71)
(72)

@
(22)

(60)

(1)

DISTRIBUTED RECORDING SERVER AND
RELATED METHODS FOR INTERACTIVE
MUSIC SYSTEMS

Applicant: JamKazam, Inc., Austin, TX (US)

Inventors: Peter A. Walker, Cedar Park, TX (US);

David J. Wilson, Austin, TX (US);
Michael Seth Call, Austin, TX (US)
Appl. No.: 14/641,514
Filed: Mar. 9, 2015

Related U.S. Application Data

Provisional application No. 61/950,377, filed on Mar.

10, 2014.
Publication Classification

Int. Cl1.

HO4L 29/08 (2006.01)

(52) US.CL

CPC HO4L 67/06 (2013.01); HO4L 67/1097

(2013.01)

57 ABSTRACT
Distributed recording server systems and related methods are
disclosed for interactive music systems. In certain embodi-
ments, an interactive music server system communicates net-
work packets with two or more interactive music client sys-
tems associated with an interactive music session, receives
recorded music tracks for the interactive music session
through the network packets, and stores audio data associated
with the music tracks in one or more data storage systems.
The interactive music server system can also mix the music
tracks to generate a session recording as the audio data. In
addition, timestamps or other techniques can be used to align
the music tracks. In addition, the interactive music server
system can receive high quality music tracks captured as
audio input at the interactive music client systems and gen-
erate a high quality master mix of the music session. Other
variations can also be implemented.

100
| :]
INTERACTIVE
MUSIC
SVSTEM o
104

e
112 !
[|
| | MUSIC NODE (MN) | | MUSIC NODE (MN) MUSIC NODE (MN) | |
|| CLIENT SYSTEM CLIENT SYSTEM CLIENT SYSTEM | |
| 122 132 |

> 00 I
| I
| |
| [wNpaTal 1% MN DATAL 134 !
R
| |
| I
| AUDIO AUDIO AUDIO AUDIO AUDIO AUDIO |
N ouT IN ouT IN ouT |
| |
| |
| |
| |

INTERACTIVE MUSIC SESSION(S)

Patent Application Publication Sep. 10, 2015 Sheet 1 of 56 US 2015/0256598 A1

e 100
C .
INTERACTIVE
MUSIC
SVSTEM L
104

| I
| |
| | MUSIC NODE (MN) | | MUSIC NODE (MN) MUSIC NODE (MN) | |
|| CLIENT SYSTEM CLIENT SYSTEM CLIENT SYSTEM | |

|
1| [MNaPP 122 MNAPPL-132 | 1 [MNaAPPL-142 |
| [} 1 [} I
| Y \ Y |
| [wnDaTal 1% MN DATAL 134 MN DATAL 44 !
| |
| I
BN
| AUDIO AUDIO AUDIO AUDIO AUDIO AUDIO |
N ouT IN ouT IN outT |
| |

I
| INTERACTIVE MUSIC SESSION(S) |

Patent Application Publication Sep. 10, 2015 Sheet 2 of 56 US 2015/0256598 A1

112

MUSIC NODE (MN)
122

_______________________________ e
:r MN APP |
| 261 264 266 |
| |
|| REGISTRATION RECORDING TUNES | |

|
| 262 } 1 ’s |
|
' SESSION 260 !
|| CONTROL [! CON‘%ROL | | OTHER i
ey e e
| JTTER | I B 1_21 ________
| QUEUE | MNDATA |

FIG. 24

US 2015/0256598 A1

Sep. 10, 2015 Sheet 3 of 56

Patent Application Publication

e 914
NES
Vee~| |(9)108INOO | | OdNI [}
w NEI) Noiss3s [
YHOMLAN oll L~
W3LSASENS

WO¥S/0L mw_.;o TOMLNOD ANV AV1dSI o RIISATES —

9z¢” |)
JOVANALNI — we’” o

- - = ¥3ITIOHLNOD
xmo\,vmz ~ OIS FAILOVHALNI = NaLsAsans —
0ee | 06z e 03aIA
VLVQ 43HLO
8le olany
91z1.¥Lva 01Ny ¥3q003a | VU9Id _\,_#m%m_osm
W3LSASENS oldnv AY1d 0IanY 10
3OVOLS T o , olany
p0z
o
¥3Q0ON3 [, W3LSASENS LNdNI
oiany [* JANLYD Olany N

" 902 202 olanv

US 2015/0256598 A1

Sep. 10,2015 Sheet 4 of 56

Patent Application Publication

Jé OIA

442N Ve~
AN AN

ddv | [viva
NI NI
SBVHOLS
TLYIOANON (shHoss300ud | | SN
e | oz |
Y \ Y
SNE WILSAS
A 097 \ A A A
\ Y \ \
JovaINl | [swalsasans| [swarsissns| [swalsasans
MHOMLIN 030IA oiany ol
sz ooz 802I80ziv0zizoe oz

US 2015/0256598 A1

Sep. 10, 2015 Sheet 5 of 56

Patent Application Publication

de 914

13IMOVd 3TdINVX3

—

Vivd LvHO

V1vad JAVy4 oldnv

daH
olany dan/di

N6z

\z62

o6z

€DId | ¢id

L IMd

NOISSINSNVHL YHOMLAN

US 2015/0256598 A1

Sep. 10, 2015 Sheet 6 of 56

Patent Application Publication

Ve o914

BJoWEY 08PIA

syied [ou0d

pajelbajy| m

§

Buiweans pue apoous

108JIp WgYSAS; — == m ==

‘a1njden oapIA ADUSIE[-MOT & >
— ™\ g0e
o Ae|d ‘epoosp v vOe

JOAI803] Weal)s Aousjel-moT

_
QoBMBIU| (04U pue _| 7

O9pIA

bulweans pue apoous ol
‘ainyded olpny >oc$m_->>o._ oipny
..!i..!i..!i..!«lwl snjels I9)ISE

MHOMLIN T I i ——————— B M B
I — _ [I
| smels] |
_ SuonealynoN |
_ mw._.m — I
oov> jeyo I
_.mc I mmwmm w Jeq (d0d L) foued jouo) Aeid yoel] Ayeng euuey | yend jeuvey) |
' — — |
vosses | Ty T | T3] [T [Tl

> : : : : : | |oJUod

o_‘mL_\ ¢ 0 [floe] - o] - 14| | < pue

A : I X H1 T3] | 1 Aedsia
c0e- 1 ‘S % e s - e I
| IRsBNE IRseNB JojseN@ JojseNE e I
sxoel] _ Py 0B YOI OB el |
S ® _
P Buipjooay | ool _
0z¢ nuay “
|
|

fedsiquoissegoilsnyf LTt oo oM T e
Sjuawd[@ (NI ©PON 1SN OAl}dEIa]

US 2015/0256598 A1

Sep. 10, 2015 Sheet 7 of 56

Patent Application Publication

qa& ‘91Ad

0Ll

eIawWE?) 08p!
90¢ Ny 9 %P OSpPIA /
N Bulweaus pue apodus (asn '6-e) [euwseixg
- ‘ainydeo ospia Aous)e-mon J0 ul-jing
syjed jo5u09
1021p _mﬁﬁw
pajeloail| N0 Aejd ‘apo2ap
> ‘JaAlg8l weal)s Aousje|-mon Ammmo._m.% Mmﬁxm
Buiweaus pue apoous " nojy 10 Ul ing
b0E /| ‘ainydes oipny Aousie-mo olpny S
\
snjels la)sel
yoeys ———— 2 A
wajsAg [~ ! Jeq_r—— 1] 1 A_
; | snjeig 7 |
vES |
I SUCHEOUNON _
loapin Yo _
__mc ibessaw Jeq {d0dlL) [aUed [00D Aeld ¥0BIL Allent lauey) | Ayeng puueyD |
| UoISSag | _sé.n e g | |0Ju0d
—— : : <1 pue
oFmL_\\ | - | - ¢ _ feidsig
A ; : . 148)ndwio)
Nom _ cuu I owoo ouo " cmo " Now _
| hm_mwmm Laﬁmmm Emwmm s_mwxm _ﬁ%mm |
[Yol yoerlL el el Yoell
SYoRIL | = X1 |
Buipicosy _ Toqoa] |
_ nuspy| _
_ a0Ba)U| [0)U09 pue _# ¥oes Jndui opne _
/ | Aejdsiq uoisseg dISn 9Al| S1ash ajolay | \
S S -

payeIBaI] - NI

US 2015/0256598 A1

Sep. 10, 2015 Sheet 8 of 56

Patent Application Publication

A& OIA
ove 1no Aed ‘epodep M\
. ‘JoNI908) Weans Aous)e-moT mmmo_m% mmﬁxm
BunLesis olpny ainydes oipny Aousje|-mo olpny o
\ elswe’) 09pIA ™\
| 09pIA
- . mcn_usmgm v=>m apooua W a (gsn 6-9) [eussixg
syjed jo1u09 ‘ainjdes oapIA Aous)e|-moT Jo ur|in
J08.|p Fmﬁw\a &> e
¥
xomum coumw |£|:_ ||||| vlom ||||||||||||||| SMEls _ _ JoISel
MIOMLAN T waishs | | Jeg_— -t
\ “ snjels i _
o e e e SUOEOYION | |
omu> 1eyo _
I‘Buibessawu 160 {ddlL) U j01u0d Aeid YoeiL Ayenp jouveyd | Aenp pudey) _ 04UO
| uogseg [[l [o] | [| | pue Aot
— : : . : : mcocatme
ae—" | =] [l CE (N E L g
A ” : 3 ” : | “jelndwo)
20e-"| el -] dk) _
2ve| | ot | | L) La® | [®)]
syoel| — ¥ _
mc_Eoomm_ e |
\ _ nuspy _
ove aoeLa)u| |ou0d pue Aejdsiq uolssas o_wss_\\ 304} Jndu ojpne _
/] OAI| S1asn ajoluay | \

US 2015/0256598 A1

Sep. 10,2015 Sheet 9 of 56

Patent Application Publication

ag 9Id
SUOIeOURON
Jojeoipul aWN|oA
sniejs Jojsey
Jeq
sness [
BaJe 08pIA
“Jeys buibessaw —=
uoIsseg
1eq (ddd L) [aued [05u0d Aeld Yoel] Aureny jouuey) | Aend [euueyg
INNo MWD NN D MWD INNo
__ow. - __ow. - __ow. - __ow. - __ow- -
0g-] - 0| - 0g - 0g- - 0e-| -
B - - - - 1, [| $0ex papiroid
95¢ 0 : ozl 0z : 0zl : el | | 485N PeRSIRS
B0 O O O pidem|
JsISBNE Jo)SeN @ Je)seN @ JeIsepNd Jo)seN B
¥oel| yoel| yoel| yor| yoel|
Soel] [~
BuipJod8y A |4 !
Jeqjoo| / \
NUSW \/ 7
1 /
e ¥9€—" yoenndy V9E ¢ae

Olpne aAl| SI3sn 8j0WaYy

SHOBI] [8007

Patent Application Publication Sep. 10, 2015 Sheet 10 of 56 US 2015/0256598 A1

35mm
XLR XLR mono HP
402\ Conn Conn Jack Conn
ey Butin® "~
Mic
Ly RF
p

am

Power & amp [+ +15V
Pream{)

Circui

48V

Circuit || Circuit]« 15y

A

i i
Mic1 Mic2 Mic3 Mic4 HP
Audio Codec

)
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
: |
| |
| |
| 128 CTFL I?S I2ﬁ3 Clocks) |
| Crystals |
| SPl | Y Y |
| | EEPROM (1S GPIO 12§ 12¢) |
N G — SPI CLK[= l
|

| SR &ad L S UART|<—(UART 1) |
| ——— 533MHz IMX6 g |
| (DDR23 | [T |PRAM Usley ~CITAG HOR)
| D1%AEI;VI USB OTG) |
=22 ~2C MDIO RGMII USB, |
| Various § ¥]

| Power ! | USB HOST) |
| 5V Power | Rails |
| Mgmt ICs PHY |
| A |
: ~ DC-DC |— 5V |
i ~{DC-DC— +15v i
|

| ~ DC-DC -15V i
| = DC-DC '—»48V |
| 10/100/ :
12V 1000Mbs y J
S O——-0——0———————— -

Power RJ45 MultiColor Sync
Conn Conn LED Button

FIG. 44

Patent Application Publication Sep. 10, 2015 Sheet 11 of 56 US 2015/0256598 A1

— /420
48V~ udio Preamp |
48/ Digital Controller
1 Differential
% 20+ —wW— T L <
= GO > Vin1
< 30 |—w—p 1 1 P -
/77 Ll L .
" [@> s+ & |
W SO i 430
SROT Y N
4247 48V Audio Preamp |«
Digital Controller
426 | Differential
% 20 —w— T . \ 5
o GO | T > Vin2
| 3@ i A M M -
. 77 s = /}/
Z TO —37 7
= i i 12S
=50 | I—-'"Sti'wr}}g”‘bae“tﬁ'e“e'?‘“i" v v Automatic CAgg(Ie% -
—RO /77 ||_|_'_. Gain Control Single
LED TO I—w Ended .
&SRO
2 o
Built-in
4224 Mic
3 I Vout1-
Lo L
%gg Gain ; Vout1+
£ 37—\ Controlt——+ vouto-
I Vout2+
12C and J
Control

FIG. 1B

Patent Application Publication Sep. 10, 2015 Sheet 12 of 56 US 2015/0256598 A1

Q Back
o = = O ©

Ethernet USB USB OTG SYNC Pwr

PCB Level

© |eex|[Bin| |UsBOTG| |USB HOST] | °
Cutout ES:, RJ45 Cutout
o} o}

PMIC Sry

DDR3 .
RAM iMX6 TSR
RS232
5573 RS232
RAM PCB
T M [HDMI
SD Conn - RX
g [g
i__'l
HP XLR I
Jack Combo Combo | ™!
o |LED|| | ©

—— ——

Q Q Front
PGB level @) @ O

FIG. 4C

US 2015/0256598 A1

Sep. 10,2015 Sheet 13 of 56

Patent Application Publication

ar 914

u| & AEO
opny opny

- ve9Lenod
FL/OQ

!
oIpNy 57!
vy
Jg|pueH wajsAsgn JaauQ
weishsans || gy f ?_<wmv momth%o__oé IvS3
OdlJleaualvsa] | jelies peoueyu3 SN ;
ALWAvIY o4idt €jeq olpny jnduj
Janig (OIVNQ
v89/EN0d o iyhas)
[ousay
ddy
Juswabeuep
V891 EWDd ﬁ o e
S _
20| wopeonday || Ao’ | 52 I @ieq Opny ndu |
opnepod | 5 2 5N
leieg ony indng)
T
adedg Jasn
oor—"

Patent Application Publication Sep. 10, 2015 Sheet 14 of 56 US 2015/0256598 A1

102
INTERACTIVE MUSIC £15
SERVER SYSTEM N Tunes
02 Pl 514~
UsER L PRE-JOIN
REGISTRATION |~ SESSION OTHER
A
506~ f
} Y
SEssioN | 216y ;
MANAGEMENT [~ CONTROL |2
508\) A | | 512
LIVE BROADCAST
MANAGEMENT GLOBAL SESSION
CONTROL INTERFACE
510+ AND MANAGEMENT
RECORDING |-
MANAGEMENT
520
\
DATABASE SYSTEM
522 526
SESSION | [REGISTRATION
RECORDINGS SCORING
S \-528
524 oTHER 150

FIG. 54

US 2015/0256598 A1

Sep. 10, 2015 Sheet 15 of 56

Patent Application Publication

9 914
s
ILVIOA-NON (s)40SS300Ud AONIN
os” | gos | 995" |
Y Y Y
SNE WILSAS
A 095 \ A
Y \
30VINALNI SINALSAS
SIOMLIN Oi
vas 295"

US 2015/0256598 A1

Sep. 10,2015 Sheet 16 of 56

Patent Application Publication

V9 914
g NI JENVEYS VNI
V NI Jo})nsai Jse) Aousje| pusg |
@ NI Jo} ynsauss} fousje| pusg |
) Buid o
[junog Buid] /7doo| |

“V NW M 1sa] kousje op o} em%_n_

uoubig

' g NI Ynm 1s8] Aousie op o) emaen_

JETVETS

Bunoag Aouaje Jual)

uoubig

VNA

Patent Application Publication Sep. 10, 2015 Sheet 17 of 56 US 2015/0256598 A1

Channel Packet Rate Scoring
MN SignOn S(irlver
Downlink packet rate Bl

loop) [Until MN report packet rate <95% of server send rate]
.. Prepare to do downlink test

loop /[send ;duration]

packet send

compute downlink packet ratej

l Send packet rate result

Uplink packet rate |}|

loop / [Until Server report packet rate <85% of MN send rate]
| Prepare to do downlink test

loop J[send :auration]

packet send

-

compute uplink packet rate |5|

Send packet rate result

Concurrent packet rate '1
. Prepare to do concurrent test
loop / [send duration
| 100p /|] packet send |
packet send

'Send Uplink concurrent packet rate result]
'Send Downlink concurrent packet rate resulzti

MN SeNer

FIG. 6B

Patent Application Publication Sep. 10, 2015 Sheet 18 of 56

Channel Bandwidth Scoring

SignOn Server

Downlink bandwidth 'j

MN

US 2015/0256598 A1

620

loop / [Until MN report bandwidth <95% of server send rate]
- Prepare to do downlink test

loop J[send ;duration]

large packet send

compute downlink packet rateb|
Send bandwidth result

Uplink bandwidth)

| loop / [Until Server report bandwidth <95% of MN send rate]
\ __ Prepare to do downlink test !

loop /[send :auration]

large packet send

-

compute uplink bandwidth I3|

large packet send
large packet send

- Send bandwidth result
Concurrent bandwidth '1
. Prepare to do concurrent test |
loop / [send duration]

LSend Uplink concurrent bandwidth result
 Send Downlink concurrent bandwidth resulii

MN Serlver

FIG. 6C

US 2015/0256598 A1

Sep. 10,2015 Sheet 19 of 56

Patent Application Publication

as 914

pabueyo jou
azIsalel

SOA

J1 0} puas pinoys Aay) (x) 8jel
19)0ed mouy sisad 197 YNIN
djel Joyoed x| 19S YNIN
UOISSas Ojul NN Mau Jdadoy

Jseopeo.g pue NI mau ydasoy

ON

S8\

pabueyd Jou

Aioedes ajel joxoed
d|qe|ieAe Yum pajuoddns aq ueo
9zisawel; Jajjews Ji sindwon)

az|ssllel

pabueyo

az|saluely paonpal 1o} }23Y7)

az|solWwel

Sp|oYsaly} 81e|oIA
[I1M Jordw Adude|
J endwon

SOA

o
ON ajey

ON 9zisaluel] asealou]

97ZISaWRY) JUSLIND JB

NI Ile poddns 0} papasN
» 9jel1ayoed a)ndwon

pabueyd szisawel

uoIssas-ul
VNI

i

ajey Jooed

UoISSSS oju|
NI mau jdadoe jou oQ

uoisses paulof
Jones| NI MeN

NIN MaN Jo8fey

US 2015/0256598 A1

Sep. 10, 2015 Sheet 20 of 56

Patent Application Publication

Ad9 91A

Mg peAledal Jaad=\\g

Jable) Japoous }88
Mg puag Jepodu3 8joly) dn

sobejuaoiad Y Ag pg puss apoayidn
syodai | 1se| Joj g paAIaoal
o|qe)s podal NI J9ad ||e Y

ajpoay} dn Joj ¥o8y9

SOA

0
9|qelS N

Mg puas apodus ul mm:mso ON

3oy}
umo(

Mg Wweans bulpuas N
uey) sse| \\g weal)s

M8 paAgoal 1sad=p\g
Joble) Japooua Jog

Mg puss
Japoou3 apjoJy] umoq

NI

OA19031 Joad Jl sulweleq |,
sisAjeuy poday Mg 199d

Wweasns Jo Mg
paAiaoal Jodal Jead

Patent Application Publication Sep. 10, 2015 Sheet 21 of 56 US 2015/0256598 A1

PACKETS

Jitter Queue Depth 700
A -

Packet Discarded end
of Window

Jitter Queue

|
|
|
: | a -
L R 7 ~ TIME
" Ideal window -
(minimal starve, or discard)
FIG. 74
INPUT 0
AUDIO FRAMES
754\1 (752 (770
FRAME BUFFER JITTER QUEUE
FRAME CONTROLLER
f760 f726 f764 _ _
F1j [F2[* * *|FN DISCARD /772
SELECTOR
756~ | 758~ DISCARDED !
— AUDIO Ve 1774
FRAMES WINDOW
OUTPUT -
AUDIO !
FRAMES TIME (776
WINDOW
ADJUSTER

FIG. 7B

US 2015/0256598 A1

Sep. 10, 2015 Sheet 22 of 56

Patent Application Publication

| (433N 3], [1noAVId olany
+§300930 oiany 1ndLN0
¥3ZILIOVd | [90LVIOdaINI
+¥3G00NT_[*]_AIOLVWIOZa
¥3ZI3M0vd | [¥0LvI0dwaIN]_ | [oiany
+¥3G00N3[*]_AOLvNIO3a 1NN
¥3ZILIOVd | [90LVIOdALNI
+¥3G00NT [*] AOLYWIOZa aNW
yil
¥3ng¥aLr], [LNOAVId olany
+ 4300930 oiany 1ndLN0
¥3ZII0Vd | [90LVIOdEaINI
-1 _+43000N3 || AIOLYWIOZA
¥3ZIDM0vd | [H0LvI0duaIN].) [oiany
+¥3G00NT [*] AOLvWIOZa 1NN
¥3ZII0Vd | [90LVIOdEaINI
+¥3G00NT ™| AIOLYWIOZA VW

DL IIH
oiany |._ [Inoavid |.[¥34ang daLlr]. -
1nd1N0 oiany +4300330 “
HOLVIOdaINI|, [H3ZILBN0vd |
MOIVNISIA [+33G0ONT |
olany |_J, [HOLVIOQINI]|, [¥3ZIIIN0vd m
1NN MMOIVAIOIA [+33G00NT |
HOLVIOdYaLNI], [¥3ZIL3H0vd |
ONW MOLYNIOIA [T +33G00NT |
8ll 0Ll
0anY | [1noAvid |.[833dnguaLlr] | (HOMLAN,
1nd1N0 olany +¥300030 [* T _A
OLVIOdEaINI], [¥3ZI3N0vd |
MOLYWIOEA |7 +43G0ON3
olany | _J, [9OIVIOQMINI|, [¥3ZIIINOVd
1ndNI MMOLYWIOFA [T +¥3G0ONT
HOLVIOdYaINI], [¥3ZIi0vd
3NN MMOLYWIOFA [T +¥3G0N3
9Ll

¢l

Patent Application Publication Sep. 10, 2015 Sheet 23 of 56 US 2015/0256598 A1

Session Recording Service 800

NA Server MNB MN C
SignOn , SignOn
SlgnOn

Create Session

Jom Session
Jom Session

Stream Audio !

Stream Audio

opt / [Audio Stream]

EStream Audio.
i

Any user initiate start recordmg°|

Start recording
Start recording

opt J [Audio Stream] ,
| Stream Audio |

Stream Audio

'Stream Audio |

| | Any user initiate stop recordingj
' Stop recordlng

Stop recording

|I MNs |n|t|ate recording upload I’|
pt /) [MNs Upload Recordlng] upload C recordlng

| upload A recording ! : i
. > upload B recording ! !

| MNs initiate recording downoad '1

[opt) [MNS Download Recording] download A, B recording

| upload C,B recording;
! upIoad CA recordlng ;

| MN's users notified high- quallty recording is avallable for pIayback"|

MN A Server MN B MN C

FIG. 84

US 2015/0256598 A1

Sep. 10, 2015 Sheet 24 of 56

Patent Application Publication

4) *
Eesta |k g8 91A
joyduesay]! 19p0oaq | |]-628 ey
o iy wmw%m%_wﬁé €es gm_»_ﬁmxs o
¥ _ J315eU [220
Wmmm_%um_v _ [Toeousg Jn0 JOYIUO N0 Jayesdg u* i Xiew jnofed
| lejuawag oneoay |HOdRY A9BY [T g ; N
i —
s \ | TR pue Joxiw .
(sl Ul) S |- 1podug . .
[ioduesay |« 1oposeg N m%_wﬁxmv .-.._|_A; o | e ﬁ_ﬁ__w: Hounydeo|44 ”
i sunpoA ¥ ol 1085390)
W%w_%um [TowRuEn 828 R _%__ﬁmow e _wﬁcmﬂw An_o_v%ew d
| Aeouwsg janosy | Hodey 0y [ouow [*YY Iy [ouLeyD Indu] -
— PBUBN Lol A [A%!] yoen A
—= sy 6
f es3a | b W e | mw___&c%m,__
 1ojdwesoy || 19pooaq |ssag spepa) 4 £¢8 e (] 1 pue ssep)
| JWeY8Q PUg JOJuop - ndu|
(0198 | ke S|P |[emdeo} WU
(e ey LH00eN Aty [TY "] 068 | —{Hausipitepuldbii :
- ! J Sjoyoed SN 250 ™ ndy
{ ™\ |
e Joxnuaq le~y——4 (OPNEX] Justunsu|
| ojduiesoy [15poaaq [« mm@m H%%g A-r_:|Q_A., _w%ﬂw An_o_vn_%om_w%en_
JAlELR Uyoday
|_§_ aisni) L|+ - J3NRORY [BUUEYY) Ly \-] [pueyQ induj |
10858301 JOJEIUSS) gouey ¢ \}_mm_\ 128’ spodey Ul el OIpny
Kieowap lonpasy LHOUBY AB03Y = 1 1oN309Y Ryjeng 4oy
\)98 0eqdoo
P01 <79 joULRY) €8
peg ozs” Ay

US 2015/0256598 A1

\ Buipiooay uoisseg v Buipioosy uoissag v

) sbuipiooas Ayjenb - ~— —— 7 —
S -MO| JusiSuel) Buiplooay uoisseg Buipiooey uoissag
g pue sbuipiooal ~——~ 7
< UoISSas AjIleny) Buipiooay uoisses buipsodsy uoisseg
2 YBIH sells NI INN o NN
[
']
m L
s
& - ~(YYOML3IN
wn

BuipJoosy uoISSeS

N’ S
Buipioosy uoissag ‘ . ‘
N’ N
bulpI0day UoISSeS /v

Buipioday uoisseg
ENIN —
\ buipioday uoisseg
S—
co_wmmw,%h\ﬂwro A Buppioosy Uoisseg
ovs—" ybIH salo)s Jonag 1OMoS

Patent Application Publication

Patent Application Publication Sep. 10, 2015 Sheet 26 of 56 US 2015/0256598 A1

Metronome Pulse

-
tref TIME
FIG. 94
A
b
-
o
[<}]
&
[«]
S
Y
=
-

Patent Application Publication

Sep. 10, 2015 Sheet 27 of 56 US 2015/0256598 A1

VIRTUAL @
FIG. 104 MICROPHONE _@
O
FIG. 10B
1020~
1024
1022
Transmission
or
\ ' Storage
Dummy Head Listener
FIG. 10C
1030~
1034 Head
1032 _ I Tracker 1038
) \SSSEE. I 1036
_______ Transmission | » ;
or > . 1040
Storage | ——
| Interpolator
Microphone Array Listener
FIG. 10D

US 2015/0256598 A1

Sep. 10, 2015 Sheet 28 of 56

Patent Application Publication

VI "9Id
—
19pIodDY [+
A
[—
(Jouoo Jajsew Jo ®
1no suoyd 199d/fenpiapul) _| sjpuueyo ©
pesH ~ JaXI sjpuuey) (=—¢ | "N 498d S
1ey? 3 Jojluop o 19)Seopeoq
o~ | W_Hm o se Bunoe N\
layeadg — M Pa=
SWslD Japuooug || S[ouueyod 5
1SEOPEOIg NEND | (josu00 Ja)seW)|, -0 Jaad K

15e0pEOIg 1BXIA J1Sniy Indy
. W_H opny

y |ea07
nouc) jauuey?)
~linduj Juswinsuy| O

|

19|j03u0)
Janeg (Axoid/1ebeuew) [
1seope0Ig uoISsag

US 2015/0256598 A1

Sep. 10, 2015 Sheet 29 of 56

Patent Application Publication

g1 1

sjuall)
1Se0pE0Ig

J1a]seopeolq pue
Japoou]
Ajenp) jseopeoig

jt—]

19XIUI OIpNE paJapio

padie)s awi) puy |«

Japodap aweld

JaAlag Jseapeolg Ayenp ybiH

IR
_mz_EmcmL IR _%mocm_
olpny Ajllenp) oI
[ouuey”) Jndy #mmssﬁc_ \Au
ENIW Jndu
¥ olpny
Ez_Ew:mL 1% h%mocm_
olpny Ajlleny) Yol
: [euuey) indu moesﬁc_ \mu
AYOMLAN ¢NIN Indu
\ [olpny
[
(o0
ﬁce&mm_
Ez_Ew:\mm IR _ocmocm_
olpny Ajlleny) yoiH O
salwel} [SUUBYD JNduU| Juswnisu
padwejs awn INW jndul
Upm weauis) olpny

pI098l 8|qelley

Patent Application Publication Sep. 10, 2015 Sheet 30 of 56 US 2015/0256598 A1

1212

GROUP
B

FIG. 124

Patent Application Publication Sep. 10, 2015 Sheet 31 of 56 US 2015/0256598 A1

12B

1250
~

()

wj

FIG

GROUP
C

O

(
.

\

QME{/
T
qap/

GROUP
D
GROUP
B

()
&
-

(

\

GROUP
TR

IMN

[
\-

US 2015/0256598 A1

Sep. 10, 2015 Sheet 32 of 56

Patent Application Publication

V&L TOIA

voed] |
ENN

Yoel|

¢NN
188

MoBI|

INW
Iasd

zze, -~ Aeidsipg NI

siepad
SOIASD JUIH

vmm_‘w P
@) @) @)

ENIA Je Leraisny

0Ll

seped
S0IASP JUIH

vOEL
4 W NI Je UelIsny

riel yoel] [[oel]]
(NI Ie UBRISNN =1 1eNIN || ZNIN | PoeIL
1934 ||498d || INW

—1 poeiL

ENW
1934

@) @) @)

yoeu | |Hoed)]

AN
1984

216, Kedsipg NI

s|epad @ @ e

S0IABD JUIH

7001 eidsip g NW

Patent Application Publication Sep. 10, 2015 Sheet 33 of 56 US 2015/0256598 A1

FIG. 13B

US 2015/0256598 A1

Sep. 10, 2015 Sheet 34 of 56

Patent Application Publication

4V

\\\\\

paseyaind
saun) $a10)s NI

BEE)

z aun| L aun|
g aun| ~ can
¢NIN d INWN
/{‘:\\\\\\\
»(YHOML3N

zaun|

®EE)

| sun|

ENI

| aun|

S

\ zauny

sauny/sbuipiodal ~—
uoissas Aljenp gounL

YBIH selo}s Joalag 8I0)S JBAIBS S8uUN |

Patent Application Publication Sep. 10, 2015 Sheet 35 of 56 US 2015/0256598 A1

1500
> w
FIG. 154
INTERNET 1510
A /
Y \
DALLAS MINNEAPOLIS
TIME
FIG. 158
1602 1600
NAAS
TIME
FIG., 16
1700
/
0'0
CCO

FIG. 17

Patent Application Publication Sep. 10, 2015 Sheet 36 of 56 US 2015/0256598 A1

1800
/1602

NAAS

FIG. 184

A 1602 B

FIG. 18B

A 1602 B

Patent Application Publication Sep. 10, 2015 Sheet 37 of 56 US 2015/0256598 A1

e 2010
A SERVER
No Naas Start]
start session (Aid, A) B
J ' ok(S) i
A join session (S, Bid, B)
| ' ok j

3 ! joined session (S, Bid, B)

) ok | %
 startaudio (A B) | ; i
' joined session (S, Aid, A)

: ok o
| start audio (B, A) | o L
I 1 . join session (S, Cid, Cl 5
I | : ok - .

B joined session (S, Cid, C)

i i ok |
e sartaudo (A.C) i
| | . joined session (S, Aid, A)
| Tk
: start audio (C, A) ! i
_____________ _ S]cfiﬁéd_gession (S, Cid, C)
| | ok Rk
start audio (B, C) '
o ™! joined session (S, Bid, B) |
| [ok
: . Startaudio (C,B)__ |

Happy playing n|

A SEF\’IVER

FIG. 204

Patent Application Publication Sep. 10, 2015 Sheet 38 of 56 US 2015/0256598 A1

200

A B C SERVER

No Naas Start

happy playing

leave session (S, Cid, C)
| ok

stop aud|o (C,A) ‘

, Ieft session (S, Cid, C):
! ok |

A

| stop audio (A,C) |

left sessmn (S, Cid, C)
| ok
. stop audio (B, C) i

Eok

; left session (S, Bid, B)E
| ok |

stop audio (A, B)

stop session (A, Aid, A)
ok

all done | :n|

A B C SERVER

FIG. 20B

Patent Application Publication Sep. 10, 2015 Sheet 39 of 56 US 2015/0256598 A1

Vs 2110A

SERVER NAAS
| Naas Start :"I
:Start session (Aid, A) ! setup fest (A)

T ok (T1,T2.13,T4) ||

| test(T1, T2, T3, T4)

Atests each of 1,72, | :
T3, T4 for which has the |
best round frip time, then| :
repeats the start session| ;

QeS8 SO0 | | -t session (A, A, (STH, ST2, ST3, ST

asinadtes (5 A, 57,572,873, S4)
Ok (M) Jl

It
. join session (3, Bid, B)

setup test (B)
kMRBH |

lest (T4, T2 T3, T4

| i -
| _join session (S, Bid, B, (ST1, ST2, T3, ST4)) 1 !
, . assin aderess (S, B, (871,512, 873, 5T4)):
i i i J ok (NB) ;
i | | ~ adnkSANABNG

start audio (NA, A) - ;
T O SO 71 - | DO
! ' : ok :
B : | Jonedsession (S, B NA)
[i i ok i ;
I N _sta_rtaudp((é,NA N .
; P | Jomedsession (5, Aid, NB) ;
! (| : ok : :
start audio (B, NB)

1 1 1
1 1 1 1
A
1 1 | 1 1
1 1 1 1 1
1 1 1 1 1

TOFIG. 21B
FIG. 2714

Patent Application Publication Sep. 10, 2015 Sheet

From FIG. 21A

join session (S, Cid, C)

400f 56 US 2015/0256598 A1

2108

test (T1, T2, T3, T4)

setup test (C)
ok(T1, 12,713,714 ||

¢ test

| join session (s Cid, C, (ST1, ST2, ST3, sm))

assgn addres (S, C, (ST, T2, 873,874

K
add rule {S,A NA, CNC) ¢
§ L omneadophy) || C il
A S S] [|
| | | e S BNECNG
! ok
| o Coteado®BB) ||
| 5 __ onteaudoNG.C)) B
T |
L joined session (S Cid, NA)
I E ! - a
L c@tljuea@(sj e .
” ﬁ ﬁ_ joined session (S, Ad,NC) — |
Y .
i | oined session (S, Cid, NB)
i (I | ok !
| i _confnecudo®NB) .
! joned session (S, Bid, NC) !
a AR N = a
! ! ! continue audio (C, NC) ! !
: T T -
L . . happy playing]
SERVER NAAS

FIG. 21B

Patent Application Publication

Sep. 10, 2015 Sheet 41 of 56

US 2015/0256598 A1

220
SERVER NAAS
L Naas Stop :'1
L happy playing]
leave session (S, Cid, C) | drop rule (S, A, NA, C, NC)
o j ok 1l
i |,____continueaudio(NC,C) |~ i
L drop rule (S, B, NB, C, NC)|
IR TS|
0 ____Sopaudo(©NC) |
release address (S, C, NCli
IR ok ok
. stop audio (C, NC)
1 1 ———————_—————— e ———— T ——————————— bl
D left session (S, Cid, NA) ;
i ok | ;
I A N continue audio (A NA) | ___________ "
| - i left session (S, Cid, NB) i i
| ok | |
i _______continueaudioB,NB) . ___________ .
leave session (S, Bid, B) !
drop rule(S, A, NA, B, NB) |
. ok 1]
e _ i _____stopaudio(NAA)]l _
. ______stpaudio(NB,B) [~~~ "~
L release address (S, B, NB) |
_ ok
L ok B —”
i __4______stpaudo®BNB) I ____________ -
| left session (S, Bid, NA) '
” ok
I S N stopaudio (ALNA) | N
stop session (A, Aid, A) . release address (S, A, NA):
ok - ok 1
I all done)
SERVER NAAS

FIG. 21C

Patent Application Publication

SERVER

Sep. 10, 2015 Sheet 42 of 56 US 2015/0256598 A1

- 2210A

NAAS

No Naas Start Add Naaé

+ Start session (Aid, A)
| o)

| join session (S, Bid, B)

ok

.

ijoined session (S, Bid, B)

ok

| jined session (S, Aid A)
’ ok

C s a NAAS user, joining
will provoke NAAS testing
for everyone

join session (S, Cid, C)

(T2

setup test (C)

KT T2T3T)

[Ces

ijoin session {3, Cid, C, (ST1, ST2, 873, ST4))§

B ok

assign address (S, C, (ST, ST2, ST, ST4)

L lest(T1,72,73,T4)

| ok(ST1, 872, 8T3,ST4)

e]

™ assign address (S, A, (ST1, ST2, ST3, ST4)}

ok (NA)

adneSANLCNG |

ok

TO FIG. 22B

FIG. 224

Patent Application Publication Sep. 10, 2015 Sheet 43 of 56 US 2015/0256598 A1

2.

FROM FIG. 22A
joined session (S, Cid, NA)
b satadoA .
E ! _ saadoped) o i
| joined session (S, AiNC) | |
o |
L SatadoCNO) G .
el SeadoMAN i

lost(T1, 72,3, T4)

| ok(ST1, ST, ST3, T4 | ;
: | + assign adress (S, B, (ST1, ST2, ST3, ST4)):

k(\B) il
. addule (S, B NB,C,NC) !
joined session {3, Cid, NB) - ok ”
| ok |
. twwioBN) i
| _ setawdoNCO) i
 joned session (3, Bid,NC) |
i ok .
i | _SatwdoCNCG)_ ¢ .
o Swtad@Bl .
L | | happy playing]

s

FIG. 22B

Patent Application Publication Sep. 10, 2015 Sheet 44 of 56
/2220
SERVER NAAS
| . No Naas Stop Remove Naas .hl
L _ happy playing]
\ 1 leavesession (S, Cid, C) ! grop rule (S, A, NA, C, NC)!
i . ok 1
e _i___stpaudioNAA |
i | L _oontinueaudioNC.C) || ____
drop rule (S, B, NB, C, NCl;
i o . ok 1
i ._i___Stopaudo(NBB) Y '
| i, __SpauwdoNCC) || _______
i i i release address (S, Cid, NC)
S O RS N
i 1 ___stopaudio(CNC) N
' . left session (S, Cid, NA) i i
“— ok ~ release address (S, Aid, NA)
3 ok —||
 ____i__i____sSopaudo(ANN) | N
| | left session (S, Cid, NB) ! i
I ok =:release address (S, Bid NBl
| ok 1
_____ stopaudoBNB) i
. leave session (S, Bid, B) |
' ok i
stop ﬂldl_o (EA) . '” !
| | | left session (S. Bid, B) | |
r_ ok |
i) | |
i . ¢ stop session (A, Aid, A) i
- : Ok —” i
| all done]
SERVER NAAS

FIG. 22C

US 2015/0256598 A1

US 2015/0256598 A1

Sep. 10, 2015 Sheet 45 of 56

Patent Application Publication

V&e OIA
e N
oju|
UOOBULIO7)
oomm/ > ed] co_ﬁwﬂ_oo
i
Jodsuel| sabeuely awwm__%o
_ uoissag [~ | uoisseg [_mc&\bo
f) \pl)
ol
IoULY?)
30T
i\)l
e —— din| | ——
(dn/ddL ! i (Y)
oAl -0 DU _ Pl uopeuue)| | ohios
1o5d 198 femg]l) T[] e ey
) / Uojssag)
dwon 1as0dwo)
yodsuel) | | sobeueyy | ') yodsuey] | | soBeueyy
uoissag [~ | uoisseg [_m%_w\,,_o foheg " OUdLLH | | Uossag [T uorsseg _mﬁoo
QH__ _ 201" pnop) e*c _
IBULRY?) IBULEY)
2307 oy 0Ll 2| 307
\. \. J/

US 2015/0256598 A1

Sep. 10, 2015 Sheet 46 of 56

Patent Application Publication

8¢ 914
S} [04UC0 g BUIODU| g
Bsyy |o5u09 ggd buiob ing
| — “ ¥
_ 9lg0id 10j09/88 _ 1BY4 30107
| fougje] Wel{ | | _w
| ! . joULEL) . || MEI)
| ¥ . | .
| A _ (ypuor) sprosy. | e
spodaspuss | *
O J S A T QA__W_Q $ mmm_ae |
~ g | N ,wta_ug_mw_wemc ~ JBUEL 10 | {80l
| [1pogisag| JSKEd (] UoIssag el AP
| c T _
_ 900id - Jr 3 |
| fouse] | Sodoy Ry |
_ _ suoday
_ T ISied 19X0Ed Joday _
| | Mdhosg [wEA IMpUE: _ Aoy
| mw_wm;\mm NIV HA.__%@%BMW 0] 108se | Sjouley
_ a m. L 13NB03Y |jpuuey) [e07] _ | ooy
| TIOS% ¥ spwedopny | | BEQOPNY AXRY
_ _
| (dzd _
_ dan Jo fxoid 4o swaps)| cmum _
_ Jabeueyy uogoauuon 1984 _
Y | 198d _
05€2 - ___ ﬂ |||||||| J
wa)sAsqng wealg pue uofIauu0Y Jodd 18]j04U07) U0ISSES

US 2015/0256598 A1

Sep. 10, 2015 Sheet 47 of 56

Patent Application Publication

e TOIAd

1nofeld

8dl 10540

A

19X} JOJUO

A

S|oULBYY
> SN\ = Jnofeiq
193
SjpULBY) |
qeny” [+ 810540l
SjauURyY?
> OUIJBYY |e—s- JOXI JOJUO}
193
SjouLRYY
ol Jey)
N 147 -
S|auuey?) SjauLIRY)
SN e SN\ Jnofeld
198d 133
S[auuey? SjouLR
o s] 801080
Sjauuey? Sjeuuey?)
Ol JBY) | O JBYY) fa—n-] JBXI JONUOW
139 199
S|auey? SjauueyY?
ey Jwieyd
J 2"

US 2015/0256598 A1

Gs9al | hgze S O1d
JoY0LUES DY = APOOA(] |50 SJOBINE) |4 forsel
Jaweysq €es LouLLY) 1no
% _%ME (B30T Xijew ynoke|d

“luoday asoay [Ty 7 MOLOHUON . - [
" f & T
& - e TN wﬁwm__ DU JoXI :
= _ _] .
® —Ho|dWesay |- 18p003(H={sseg S8ie) [0U0) | PR i1 H_J_wﬁ_._. ._23“_8_AT -
= TOJEIRR o 228 dnoig
@» QH 9 - joyeads | | loutey?) Indu
w \ podsy 1208y [] lojuow [u r} J
> | PUBUBHN e \A ces v_um_%__w_z
a "= Jejino 03
< \ =) | s e
5 L H iojduresay|{ 13p03aq [1ssag sioeixa) {428 e [J pue Apissep)
A JAURYRq pUE JojuoN qoned | (—— nduy

¥ uaLInASU

_[Toelwg || opne x| e [P _m___ﬁwx_@ “ .“ |
g GEg | Woday aeody [T 0¢8 T puueyn =< P e yuysue | (<t .
K S < 0 o H_o_%_\,_H | ndy
S 4) sjoyoed ;
2 BEs 3 q .1__9358_51 JuaLnAsu|
w 1|dwesoy || japoaag $35 mﬁscé - 0Ipne Xy _w__ﬂ_ﬂ_w“_—__._o An_u_%w_m%oem
~ JOUWBYR((uppoday L I jpuUey) jndu
= (] 13N803Y [ouLeY) ~
= REEEETED) gjouisy \\)_\ 187 suods
S Joday Ag09Y - 10 poced
= 145 928 JETTEALN
= yoeqdoo jouLeY?)
g 528 ajoway
- sjulod Buipioasy
g
=
[~ ™

US 2015/0256598 A1

Sep. 10, 2015 Sheet 49 of 56

Patent Application Publication

9¢ 914
R TETIEY §108532014 [ouuey? Jnduj Jaaq

2 N\
mo L \ |
_2%__& ! (e g |
sjowsy L— S8 e Jojdesey || JOPOXRQ |—(] $59G SIOBIXD) | [

“ J3uleliaq “

_ Y _

| ey “

| Jlodsy Aeasy T (Wuoday I

_ 10558004 JoNGIY PULRY) |

_ L Alejuswalq Janasey) Bj0UaY m

_

m ¥09¢ -— e m
it | | m || L
TN “ S8 e Joiduessy [« JOP00SQ |«—(| 559G SIOBLXE) [1092 _8_3&

| Jaulelisq “

| _

! . yoday “

_ 10Je1auUs9) F

_ > JoNg09Y [puUeyy |

! 10858001 Hoday Aeody _m_w_e_mm_ w !

“ Kuepuawarg Joniaoay —

AN J |

o00z—" \ o _

US 2015/0256598 A1

Sep. 10, 2015 Sheet 50 of 56

Patent Application Publication

00.2 A

09
Il ey
Jejinb m
Sele/aLLeu pue Alisse|)

ndul

Vie OIA
nQ passaiduon no IO Mey
loUUBYY spalg | ouueyy 1
\ IIIIIIII N
seulel{se0peoig |]
e 7y v
(oedug) | — .
Sowejpmoy | JENTIN, SOUESU| 3
= _ Y jeuueyy [sepoouq weasg pmoq [~
| A]
(loedug) | JETT]
SolWel4 MO | S[joJy [QUUELD
N f L/ f\l_ *
(skad () | JENIN, SOUEY JENTITON,
SEULEL DPeN | L] jouueyy 1 sapooug weang o payy [S0%H3 = pamden
_ A A
| e
(seadug) | aoly . auLeYy
MouLDpN | ¥
asodr | [[o |
aUUE sepooug weang iy [
St 1 ki [*]_ gt i
| . Yy
(odug) | N Appouy | [BuLeyD (da)
Mo DI N 1055330.d [auuey) Sam_. P

(| SWel [BULBY) UOISSAS

et

aIn}y [auuBy?

By a210p
10 JUsunAsy|

US 2015/0256598 A1

Sep. 10, 2015 Sheet 51 of 56

Patent Application Publication

¢ O1A
8
A xEmE i
. ¥oRL} ‘DIl
S ... N - T E
[N, Selejaweu pue Aysse)
_
_ _
- Indu|
_ andey = || uswnasul
_
m Y _
(ssoad U 0} Juas) | Joweld | ougsy |, | | .
aYoe BIp3 T Bpoougasny [sy [.
s || : * _
_ _ ndu|
| SOl [PULBY) ondey =] peunisy
_ \J/ * / _
_ (d9)) Jossaa0iq _
\ dnous) jauuey?) Jndu))
I 8| [auLe
cmhm.\\ (] SWel [BuUBY?) UOISSBS MV RUEELD

US 2015/0256598 A1

Sep. 10, 2015 Sheet 52 of 56

Patent Application Publication

ALc I9IA
no InQ Mey
InQ passaiduios - SPel [oULeY)
_mccw—_o I A L
\\ ||||||||||||||||||||||||||||||| .lllllllll//
SaEL- |SEPEO) S0UEIS| _
4 Seapealy _ _%__W__M& - _%mocm_ WealSp | |
Ui Jseapeaig
(sized up) _ — _
SSWelI M7 | JETTIN,] B | .
= _ 1 euueys [*] sepoouz weang pmot [_ e
B o
dug) | QY P
w%__% J m%ﬁw._ _ 3oy jouLEY) | Seljefauieu pue fysser)
7 — - spewoy | |1 [pay
(sead uq) _ ey || S0UEJSU| RO 1 gamdey [T Juswnsul
moEeG8|_>__|"|<. puteyy [~ Jepooug weang o pop _ .
| I] T _ .
Aw._ooa =..ov _ Ry %Eo _ _ _ .
301y [SULIRYY Japeuwo4 ndu
WoLomEn | ¥ 943 (< yamdey T wounsy
wiv) |V mepl soouson | _
SUBSON | I e |
_ Ty |
(sieadug) | YT L_monL puuey (da) _
MULDH N ssoogpueopdy _
oz (]| SWEJ4 [3UUEL) UOISSAS ANy [PULEY)

Patent Application Publication Sep. 10, 2015 Sheet 53 of 56
Ve 2800
Decoder Encoder
@ 48khz @ 48Kz
' }
Mixer @ 48khz
Y ' } }
Resampler | [Resampler Resampler | [Resampler
} ' } }
Channel 1| [Channel N Channel 1| | ChannelN
Playout Playout Capture Capture
! Y t t
FIG. 284
Decoder Encoder 2850
@ 48Kz @48 ~
1 }
Resampler Resampler
¥ }
Mixer @ 48Kkhz or 44.1Kz
} Y } }
Optional Optional Optional Optional
Resampler Resampler Resampler Resampler
44.1/48Khz 44.1/48Khz 44.1/48Khz 44.1/48Khz
(If audio out (If audio out (I audio in (If audioin
sample rate sample rate sample rate sample rate
different difterent different different
from mixer from mixer from mixer from mixer
sample rate) sample rate) sample rate) sample rate)
' 1 } A
Channel 1 ChannelN Channel 1 Channel N
Playout Playout Capture Caplure
! 1 } !

FIG. 28B

US 2015/0256598 A1

US 2015/0256598 A1

Sep. 10, 2015 Sheet 54 of 56

Patent Application Publication

6c OIA
ouus)y
Y {
(sJeamaq (s)eamag
g3 opny Jnding [emi g3 0PNy Jndu| [EniA
—
- Myd -
> Jusld
80edg uoneayddy

US 2015/0256598 A1

Sep. 10, 2015 Sheet 55 of 56

Patent Application Publication

—

Vvo& 914
{101u02 .
110 auoydpesy Jojseu Jo uww_ﬂ_m=v_>_nc_v -
110 Jayead SIBULY?) JeY) 9 JOYUOH

—
1opodu 0400 Jajsewl)
Jo]SEOPROIG AN |« a__%_o mw_,_._ - (_wx_s_ o_wf_\,_) e

A
000¢ A

\

Bpioosy |

.
ot

—

SjoUUBYD - N Jaod

UH&

.~

SjaUUeYD - 0 Jeeq

|

dnous) auueyy
Induf juswnasuy|

_ﬁ_gco
(Axo1gj1abeuew

wco_mmmw

US 2015/0256598 A1

Sep. 10, 2015 Sheet 56 of 56

Patent Application Publication

—

19pI03Y

d

—

SjoLUBYD - N Joad

=

|

SjouLey? - (Jaag

|

dnous) auuey?
Induj Justwnsu|

'

q0& 914
(auoydpesy ‘69) {joguoo
T — “Mw_ﬁ__x__gv_\,_g_v |
110 J2Ye00S Ujepy ~——— LoPUUEND 1EUD B JOUUO
—
58P0 01)U00 Jojsel
JOISEOPEOIq O] |« a__mﬂc mw_,_._ B :Lx_s_ o_w“___zv
I
18poou3
e Ao [~
<—! Japeojdn
SOIIGS YT
os0e "

._mw_o._uco

(Axoidpo _N%Ew__o_wwmw

o————

US 2015/0256598 Al

DISTRIBUTED RECORDING SERVER AND
RELATED METHODS FOR INTERACTIVE
MUSIC SYSTEMS

RELATED APPLICATIONS

[0001] This application claims priority to the following
co-pending provisional application: U.S. Provisional Patent
Application Ser. No. 61/950,377, filed Mar. 10, 2014, and
entitled “SYSTEMS AND METHODS FOR INTERAC-
TIVE MUSIC,” which is hereby incorporated by reference in
its entirety.

[0002] This application is also related in subject matter to
the following concurrently filed applications: U.S. patent
application Ser. No. ,entitled “DISTRIBUTED MET-
RONOME FOR INTERACTIVE MUSIC SYSTEMS;” U.S.
patent application Ser. No. , entitled “CAPABILITY
SCORING SERVER AND RELATED METHODS FOR
INTERACTIVE MUSIC SYSTEMS;” U.S. patent applica-
tion Ser. No. , entitled “PACKET RATE CONTROL
AND RELATED SYSTEMS FOR INTERACTIVE MUSIC
SYSTEMS;” U.S. patent application Ser. No.
entitled “TRACK BASED MUSIC MANAGEMENT
SERVER AND RELATED METHODS FOR INTERAC-
TIVE MUSIC SYSTEMS;” and U.S. patent application Ser.
No. , entitled “NETWORK CONNECTION SERV-
ERS AND RELATED METHODS FOR INTERACTIVE
MUSIC SYSTEMS;” each of which is hereby incorporated
by reference in its entirety.

TECHNICAL FIELD

[0003] Thedisclosed embodiments relate to network-based
systems for music sessions and associated audio transmis-
sions among network connected systems.

BACKGROUND

[0004] Musicians often collaborate in music sessions
where each musician is present within a recording studio and
a session recording is made. Musicians also collaborate to
create session recordings where sub-groups of musicians
separately record their portion or tracks of the music record-
ing at the recording studio, and the studio then combines the
recordings for form a master recording. Musicians also col-
laborate in music sessions in less formal environments, such
as home studios and garages. With the growth of network
connected systems, efforts have been made to provide col-
laborative music sessions through network connections and
the internet. However, these efforts suffer from latency and
other network connectivity issues that degrade the experience
of the users to an extent that interactive collaboration or a
group session cannot effectively be achieved.

SUMMARY

[0005] Distributed recording server systems and related
methods are disclosed for interactive music systems. In cer-
tain embodiments, an interactive music server system com-
municates network packets with two or more interactive
music client systems associated with an interactive music
session, receives recorded music tracks for the interactive
music session through the network packets, and stores audio
data associated with the music tracks in one or more data
storage systems. The interactive music server system can also
mix the music tracks to generate a session recording as the
audio data. In addition, timestamps or other techniques can be

Sep. 10, 2015

used to align the music tracks. In addition, the interactive
music server system can receive high quality music tracks
captured as audio input at the interactive music client systems
and generate a high quality master mix of the music session.
Different features and variations can also be implemented, as
desired, and related systems and methods can be utilized, as
well.

[0006] For one embodiment, an interactive music server
system is disclosed that includes a network interface, one or
more processing devices configured to communicate network
packets through the network interface with two or more inter-
active music client systems associated with an interactive
music session, and one or more data storage systems coupled
to the one or more processing devices. The one or more
processing devices are further configured to receive recorded
music tracks for the interactive music session through the
network packets and to store audio data associated with the
music tracks using the one or more data storage systems.

[0007] Infurther embodiments, the one or more processing
devices are further configured to mix the music tracks to
generate a session recording as the audio data. In still further
embodiments, the one or more processing devices are further
configured to use one or more of a plurality of different
mixing algorithms to mix the music tracks for the session
recording.

[0008] In other embodiments, the one or more processing
devices are further configured to use timestamps associated
with each music track to align the music tracks for the session
recording. In further embodiments, the timestamps are asso-
ciated with a recording start time for each music track. In still
further embodiments, the timestamps are synchronized to a
common reference clock.

[0009] In additional embodiments, the one or more pro-
cessing devices are further configured to determine a time
skew between at least two of the interactive music client
systems and to use the time skew to align the music tracks for
the session recording. In further embodiments, the time skew
is based upon a network delay between the at least two inter-
active music client systems.

[0010] In further embodiments, the music tracks include
high quality music tracks recorded at each of the interactive
music client systems, and the one or more processing devices
are further configured to mix the high quality music tracks to
form a high quality master mix associated with the interactive
music session. In additional embodiments, the high quality
music tracks include audio input data captured at each inter-
active music client system. In further embodiments, the one
or more processing devices are further configured to down-
load the high quality master mix to one or more of the inter-
active music client systems. In still further embodiments, the
one or more processing devices are further configured to
download to each of the interactive music client systems the
high quality music tracks from the other interactive music
client systems. In addition, the high quality music tracks can
be configured to replace low quality music tracks stored by
each of the interactive music client systems associated with
audio data received from other interactive music client sys-
tems.

[0011] For another embodiment, a method to record audio
data for an interactive music session is disclosed that includes
communicating network packets with two or more interactive
music client systems associated with an interactive music
session, receiving recorded music tracks for the interactive

US 2015/0256598 Al

music session through the network packets, and storing audio
data associated with the music tracks in one or more data
storage systems.

[0012] In further embodiments, the method includes mix-
ing the music tracks to generate a session recording as the
audio data. In still further embodiments, the method includes
using one or more of a plurality of different mixing algo-
rithms to mix the music tracks for the session recording.
[0013] In other embodiments, the method includes using
timestamps associated with each music track to align the
music tracks for the session recording. In further embodi-
ments, the timestamps are associated with a recording start
time for each music track. In still further embodiments, the
timestamps are synchronized to a common reference clock.
[0014] In additional embodiments, the method includes
determining a time skew between at least two of the interac-
tive music client systems and using the time skew to align the
music tracks for the session recording. In further embodi-
ments, the time skew is based upon a network delay between
the at least two interactive music client systems.

[0015] In further embodiments, the music tracks include
high quality music tracks recorded at each of the interactive
music client systems, and the method further includes mixing
the high quality music tracks to form a high quality master
mix associated with the interactive music session. In addi-
tional embodiments, the high quality music tracks include
audio input data captured at each interactive music client
system. In further embodiments, the method includes down-
loading the high quality master mix to one or more of the
interactive music client systems. In still further embodiments,
the method includes downloading to each of the interactive
music client systems the high quality music tracks from the
other interactive music client systems. In addition, the high
quality music tracks can be configured to replace low quality
music tracks stored by each of the interactive music client
systems associated with audio data received from other inter-
active music client systems.

[0016] Network-based distributed interactive music sys-
tems and related methods are also disclosed. The disclosed
embodiments achieve reduced network latency and other
advantageous features that provide a positive user experience
for music sessions using a network-based distributed interac-
tive music system. In part, the disclosed embodiments pro-
vide real-time platforms and related methods for interactive
and collaborative music performance and production. The
interactive music systems allow individuals at different
physical locations that are as simple as different rooms in one
location to locations potentially hundreds miles apart, in real-
time to play, produce and share music by doing so across the
internet, local area network, and/or other network connec-
tions. The disclosed systems and methods further provide a
number of different components that can be used individually
or in combination to provide the disclosed aspects and fea-
tures for the interactive music systems and methods described
herein. Different features and variations can be implemented,
as desired, and related systems and methods can be utilized,
as well.

[0017] For one additional embodiment, an interactive
music client system is disclosed that includes an audio cap-
ture subsystem coupled to one or more audio inputs and to
output captured audio data, one or more processing devices
coupled to receive the captured audio data and to process the
captured audio data to generate audio output packets includ-
ing audio output data associated with one or more interactive

Sep. 10, 2015

music sessions, and a network interface coupled to receive the
audio output packets and to send the audio output packets to
one or more peer interactive music client systems through a
network.

[0018] Infurther embodiments, the interactive music client
system further includes one or more storage systems coupled
to the one or more processing devices to store data associated
with one or more interactive music sessions. In additional
embodiments, the network interface is further coupled to
receive audio input packets containing audio input data from
one or more peer interactive music client systems through a
network, and the one or more processing devices are further
coupled to receive the audio input packets and to process the
audio input packets to generate audio input data. In other
embodiments, the interactive music client system further
includes an audio output subsystem to output audio output
signals associated with the audio input data. In still further
embodiments, the one or more processing devices are further
configured to perform at least one of following: to commu-
nicate with one or more server systems and one or more peer
interactive music client systems to determine a session link
score for the interactive music client system, to register with
one or more server systems for a music session, to record one
or more tracks associated with a music session, to adjust an
input packet rate or an output packet rate for audio packets, to
store input audio frames in a jitter buffer and discard one or
more frames based upon periodic time windows, to send one
or more music cues to one or more other interactive music
client systems within a music session, to adjust audio pro-
cessing based upon virtual location placement within a music
session, to communicate with one or more other interactive
music client systems within a music session to provide a
distributed metronome, or to provide an output queue for one
or more other interactive music client systems within a music
session and adjust a rate for the audio output data for each
output queue.

[0019] For one further embodiment, an interactive music
server system is disclosed that includes a network interface
coupled to receive network packets through a network from
one or more interactive music client systems associated with
one or more interactive music sessions and one or more pro-
cessing devices coupled to receive the network packets, to
process the network packets, and to output network packets to
the interactive music client systems through the network
using the network interface.

[0020] In additional embodiments, the interactive music
server system includes one or more storage systems coupled
to the one or more processing devices to store data associated
with one or more interactive music sessions. In still further
embodiments, the one or more processing devices are further
configured to perform at least one of the following: to com-
municate with interactive music client systems to determine
session link scores for the interactive music client systems, to
register interactive music client systems for music sessions, to
provide a registry for music sessions or interactive music
client systems or both, to receive and store recorded tracks
associated with a music session and allow these recorded
tracks to be downloaded to interactive music client systems
participating in the music session, to stream live broadcasts
for music sessions, or to provide access to and download of
previously recorded music sessions including different
recorded tracks within the recorded music sessions.

US 2015/0256598 Al

[0021] Different or additional features, variations, and
embodiments can be implemented, if desired, and related
systems and methods can be utilized, as well.

DESCRIPTION OF THE DRAWINGS

[0022] Itis noted that the appended drawings illustrate only
example embodiments and are, therefore, not to be consid-
ered as limiting of the scope of the inventions, for the inven-
tions may admit to other equally effective embodiments.
[0023] FIG. 1 is a block diagram of an example embodi-
ment for a network-based distributed interactive music sys-
tem.

[0024] FIG. 2A is a block diagram of an example embodi-
ment for a music node (MN).

[0025] FIG. 2B is a block diagram of an example embodi-
ment for audio/video/network/data subsystems within a
music node.

[0026] FIG.2C is a block diagram of an example hardware
embodiment for a music node.

[0027] FIG. 2D is a block diagram of an example embodi-
ment for network packets that can be transmitted within the
interactive music system.

[0028] FIG. 3A is a block diagram of an integrated music
node embodiment that includes components within one or
more electronic devices with one or more connections to the
network.

[0029] FIG. 3B is a block diagram of an integrated music
node embodiment that includes components within one
physical electronic device connected to the network.

[0030] FIG. 3C is a block diagram of an example embodi-
ment of a music node embodiment where audio components
are separated into a dedicated audio processing appliance
device.

[0031] FIG. 3D is a block diagram of an example embodi-
ment for a session information and control window to provide
interactive control for the music session by the user.

[0032] FIG. 4A is a block diagram of a example embodi-
ment for a dedicated audio processing appliance device.
[0033] FIG. 4B is a circuit and component diagram of an
example embodiment for connections to an audio input/out-
put processor for a dedicated audio processing appliance
device.

[0034] FIG.4C is a hardware layout diagram of an example
embodiment for a dedicated processing appliance device.
[0035] FIG. 4D is a block diagram of an example embodi-
ment for a audio software stack including a user space and a
kernel coupled to an audio interface.

[0036] FIG.5A is a block diagram of an example embodi-
ment for an interactive music server system.

[0037] FIG. 5B is a block diagram of an example hardware
embodiment for server system.

[0038] FIG. 6A is a swim lane diagram of an embodiment
for latency scoring for two music node (MN) client systems
(MNA and MNB) and a server.

[0039] FIG. 6B is a swim lane diagram of an example
embodiment for MN packet rate scoring.

[0040] FIG. 6C is a swim lane diagram of an example
embodiment for MN bandwidth scoring.

[0041] FIG. 6D is a process flow diagram of an example
embodiment for adaptive throttling of packet frame size.
[0042] FIG. 6E is a process flow diagram of an example
embodiment for adaptive throttling of bandwidth.

[0043] FIG. 7A is a representative timing diagram of an
example embodiment for a jitter queue.

Sep. 10, 2015

[0044] FIG. 7B is a block diagram of an example embodi-
ment for a jitter queue.

[0045] FIG. 7C is block diagram of an example embodi-
ment for sending MNs having sending queues including deci-
mator/interpolator blocks and encoder/packetizer blocks to
adjust send rates for receiving MNs.

[0046] FIG. 8A is a swim lane diagram of an example
embodiment for session recording service including one or
more server system(s).

[0047] FIG. 8B is a block diagram of an example embodi-
ment for a recording system.

[0048] FIG. 8C is a block diagram of an example embodi-
ment for a recording system and related recording service
where session recordings are stored by a server and by MNs.
[0049] FIG. 9A is a signal diagram showing metronome
pulses associated with three different local metronomes that
are based upon a single metronome pulse.

[0050] FIG. 9B is a signal diagram showing metronome
pulses associated with three different local metronomes that
have been synchronized.

[0051] FIG. 10A is a diagram of sound location perception
by a person hearing sounds from two sources.

[0052] FIG. 10B is a diagram of an example locations or
positions for music session elements within a virtual space.
[0053] FIG. 10C is a diagram of an example dummy head
that is depicted to a user and can be adjusted by the user to
place and orient the user within the virtual environment for
the music session.

[0054] FIG. 10D is a diagram of an example dummy head
that includes a virtual microphone array of two or more
microphones.

[0055] FIG. 11A is ablock diagram of an example embodi-
ment for a low latency live broadcast.

[0056] FIG. 11B is a block diagram of an example embodi-
ment for a high fidelity live broadcast.

[0057] FIG. 12A is ablock diagram of an example embodi-
ment for MNs within two groups selected as bridges for
inter-group communication.

[0058] FIG. 12B is a block diagram of an example embodi-
ment for inter-group communications for a larger intercon-
nected group.

[0059] FIG. 13A is ablock diagram of an example embodi-
ment for a music hinting system that allows non-verbal cues
to be communicated among MNs within a music session.
[0060] FIG. 13B is a diagram of an example embodiment
for a foot-controlled hinting device.

[0061] FIG. 14 is a block diagram of an example embodi-
ment for a songs service environment that allows users to
access and download songs/tracks/tunes for use with a MN or
within a music session.

[0062] FIG. 15A is a block diagram of an embodiment
including two music nodes (A, B) communicating with each
other through an ISP.

[0063] FIG.15Bis ablock diagram of such an embodiment
including two music nodes (A, B) communicating with each
other through different ISPs.

[0064] FIG. 16 is a block diagram of an embodiment
including NAAS (network as a service) server systems con-
necting two independent ISPs.

[0065] FIG. 17 is a block diagram of an embodiment
including three music nodes (A, B, C) communicating with
each and the server systems to set up a non-NAAS music
session.

US 2015/0256598 Al

[0066] FIG. 18A is a block diagram of an embodiment
including NAAS server systems providing communications
among four of music nodes for a music session.

[0067] FIG. 18B is a block diagram of an embodiment
including three music nodes (A, B, C) communicating with
each other through two different ISPs.

[0068] FIG. 19 is a block diagram of an embodiment
including three music nodes (A, B, C) where only A is a
NAAS participant.

[0069] FIG. 20A is a swim lane diagram of an example
embodiment for a music session start by music node A where
music nodes B and C then join the session.

[0070] FIG. 20B is a swim lane diagram of an example
embodiment for a music session stop where music nodes B
and C leave the session.

[0071] FIGS. 21A-B provide a swim lane diagram of an
example embodiment for a music session start by music node
A where music nodes B and C then join the session and where
all three nodes (A, B, C) are NAAS participants.

[0072] FIG. 21C is a swim lane diagram of an example
embodiment for a music session stop where music nodes B
and C leave the session and where all three nodes (A, B, C) are
NAAS participants.

[0073] FIGS. 22A-B provide a swim lane diagram of an
example embodiment for a music session start by music node
A where music nodes B and C then join the session and where
only music node C is a NAAS participants.

[0074] FIG. 22C is a swim lane diagram of an example
embodiment for a music session stop where music nodes B
and C leave the session and where only music node C is a
NAAS participants.

[0075] FIG.23A isablock diagram of an example embodi-
ment for internode session managers and data flow for an
interactive music system including peer connections and ses-
sions transport communications.

[0076] FIG.23B is ablock diagram of an example embodi-
ment for peer connections.

[0077] FIG. 24 is a block diagram of an example embodi-
ment for music and chat communications from an MN to
other MNs within a music session.

[0078] FIG. 25 is a block diagram of an example embodi-
ment for a MN system embodiment including local ICPs
(input channel processors) and peer ICPs (input channel pro-
cessors).

[0079] FIG. 26 is a block diagram of an example embodi-
ment for a peer input channel processor.

[0080] FIG.27A isablock diagram of an example embodi-
ment for a local input channel processor that captures audio
inputs from an instrument (e.g., guitar, keyboard, voice, etc.),
voice chat, or another audio input.

[0081] FIG.27B is ablock diagram of an example embodi-
ment for a local input channel processor that captures audio
inputs for a group of instruments.

[0082] FIG.27C is ablock diagram of an example embodi-
ment for a local input channel processor that captures audio
inputs for a group of instruments and aggregates or bonds
these inputs using a group mixer.

[0083] FIGS. 28A-B are block diagrams of example
embodiments for mixers that can be utilized.

[0084] FIG. 29 is a block diagram of an example embodi-
ment for virtual device bridge software that includes an appli-
cation space having a client module and a DAW (digital audio
workstation) module and a kernel having virtual audio inputs
and outputs.

Sep. 10, 2015

[0085] FIGS. 30A-B are block diagrams of example
embodiments for DAW data flow.

DETAILED DESCRIPTION

[0086] Network-based interactive music systems and
related methods are disclosed. The disclosed embodiments
achieve reduced network latency and other advantageous fea-
tures that provide a positive user experience for music ses-
sions using a network-based interactive music system. In part,
the disclosed embodiments provide real-time platforms and
related methods for interactive and collaborative music per-
formance and production. The interactive music systems
allow individuals at different physical locations that are as
simple as different rooms in one location to locations poten-
tially hundreds miles apart, in real-time to play, produce and
share music by doing so across the internet, local area net-
work, and/or other network connections. The disclosed sys-
tems and methods further provide a number of different com-
ponents that can be used individually or in combination to
provide disclosed aspects and features for the interactive
music systems and methods described herein. Different fea-
tures and variations can be implemented, as desired, and
related systems and methods can be utilized, as well.

[0087] FIG. 1 is a block diagram of an example embodi-
ment for a network-based interactive music system 100.
Music nodes (MN) 112,114 . . . 116 are client systems for the
interactive music system 100 that have one or more network
connections to a network 110. These music nodes (MN) 112,
114 . . . 116 are part of one or more interactive music session
(s) 150. The music nodes (MN) 112, 114 . . . 116 in part run
music node applications (MN APP) 122, 132 . . . 142, respec-
tively, that implement the various functional features
described herein. The music nodes (MN) 112, 114 . . . 116
also in part use storage systems 124,134 . . . 144 to store MN
related data, such as audio recordings and other data as
described below. The music nodes (MN) 112,114 ... 116 also
receive one or more audio inputs (AUDIO IN) and produce
one or more audio outputs (AUDIO OUT), as described in
more detail herein. The interactive music server system(s)
102,104, 106 . . . provide server-based services and manage-
ment for the interactive music system 100 and/or the interac-
tive music session(s) 150, as described herein. In part, for
example, the interactive music server system(s) 102,104, 106
... manage session setup and tear down for music sessions for
the music nodes (MN) 112, 114 . . . 116 participating in
interactive music sessions. The server system(s) 102, 104,
106 . . . also in part use storage systems to store MN, session,
and service related data such as audio recordings and other
data as described below.

[0088] Itis noted that the music node applications 122, 132
... 142 can be downloaded from the interactive music server
system(s)102,104,106 . . . through network 110 and installed
on the music nodes (MN) 112, 114 . . . 116. The music node
applications 112, 132 . . . 142 can also be loaded onto the
music nodes (MN) 112, 114 . . . 116 separate from the net-
work 110, if desired. Further, The music nodes (MN) 112,114
... 116 can be any of a wide variety of information handling
systems including one or more electronic devices or systems
that participate in the interactive music system 100 and/or the
interactive music session(s) 150. Each server system 102,
104, 106 . . . can also be any of a wide variety of information
handling systems including one or more electronic devices or
systems that provide the server-based services for the inter-
active music system 100 and/or interactive music session(s)

US 2015/0256598 Al

150. The data storage systems can also be a wide variety of
devices or components that are configured to store data within
a non-transitory data storage medium.

[0089] It is also noted that the network 110 can be any
variety of wired or wireless network connections and devices
through which network communications occur among the
music nodes (MN) 112,114 .. . 116; the server system(s) 102,
104, 106 . . . ; and/or other network connected systems,
devices, or components. The network 110 can include the
internet, internal intranets, local area networks (LANs), wide
area network (WANSs), personal area networks (PANs), wire-
less networks, wired networks, home networks, routers,
switches, firewalls, network interface cards, network inter-
face controllers, and/or any other network communication
system, device, or component that provides wired and/or
wireless communication connections between electronic sys-
tems. Further, these network communication elements can be
internal to and/or external from the music nodes (MN) 112,
114 . . . 116; the server system(s) 102, 104, 106 . . . ; and/or
other network connected systems, as desired.

[0090] Example embodiments for music nodes (MNs) and
the server system(s) are further described with respect to
FIGS. 2A-2D, FIGS. 3A-D, FIGS. 4A-D and FIGS. 5A-B.
Operational features and embodiments are further described
below with respect to FIGS. 6A-E, 7A-C, 8A-C, 9A-B, 10A-
D, 11A-B, 12A-B, 13A-B, and 14. Further, APPENDIX A
below and FIGS. 15A-B, 16, 17, 18A-B, 19, 20A-B, 21A-C,
and 22A-C describe additional embodiments and example
details including MN registration, network communications,
control messages, and other aspects for the interactive music
system and for the NAAS (Network as a Service) server
systems that provide lower latency network communications
for music sessions. APPENDIX B below and FIGS. 23A-B,
24, 25, 26, 27A-C, 28A-B, 29, and 30A-B provide further
example embodiments for the interactive music system
including further example embodiments related to music
nodes (MNs) and the server system(s). APPENDIX C below
provides example APIs (application program interfaces) that
can be utilized.

[0091] Itis noted that the networks described herein can be
wired and/or wireless networks that include one or more
devices (e.g., routers, switches, firewalls, gateways, interface
devices, network servers, etc.) that provide for network com-
munications between network-connected computing devices,
including internet communications. As such, it is understood
that the network data transfer of frames and packets as
described can be implemented using any of a wide variety of
techniques, including wired and/or wireless communications
between one or more computing systems or devices. It is
further noted that the data or file storage systems described
herein can be any desired non-transitory tangible medium
that stores data, such as data storage devices, FLASH
memory, random access memory, read only memory, pro-
grammable memory devices, reprogrammable storage
devices, hard drives, floppy disks, DVDs, CD-ROMs, and/or
any other non-transitory data storage mediums.

[0092] Itis also noted that the functional blocks, modules,
operations, features, and processes described herein for the
disclosed embodiments can be implemented using hardware,
software, or a combination of hardware and software, as
desired. In addition, one or more processing devices running
software and/or firmware can also be used to implement the
disclosed embodiments. It is further understood that one or
more of the operations, tasks, functions, features, or method-

Sep. 10, 2015

ologies described herein (e.g., including those performed by
the MNs 112, 114 . . . 116; the server system(s) 102,104, 106

. ; and the NAAS server systems 1602) may be imple-
mented, for example, as hardware, software, or acombination
of hardware and software, including program instructions
that are embodied in one or more non-transitory tangible
computer readable mediums (e.g., memory) and that are
executed by one or more processors, controllers, microcon-
trollers, microprocessors, hardware accelerators, and/or other
processing devices to perform the operations and functions
described herein.

[0093] Itisalso noted that the processing devices described
herein can include hardware, software, firmware, or a com-
bination thereof. In one embodiment, the components of the
processing devices may form in part a program product with
instructions that are accessible to and executable by process-
ing circuitry to perform the functions of the processing
devices described herein. The instructions for the program
product may be stored in any suitable storage media that is
readable by the processing devices, and the storage media
may be internal and/or external to the processing devices.

[0094] Inaddition, integrated circuits, discrete circuits, or a
combination of discrete and integrated circuits can be used, as
desired, to perform the functionality described herein. Fur-
ther, programmable integrated circuits can also be used, such
as FPGAs (field programmable gate arrays), ASICs (applica-
tion specific integrated circuits), and/or other programmable
integrated circuits. In addition, one or more processing
devices running software or firmware can also be used, as
desired. For example, computer readable instructions embod-
ied in a tangible medium (e.g., data storage devices, FLASH
memory, random access memory, read only memory, pro-
grammable memory devices, reprogrammable storage
devices, hard drives, floppy disks, DVDs, CD-ROMs, and/or
any other tangible storage medium) could be utilized to store
instructions that cause computer systems, programmable cir-
cuitry (e.g., FPGAs), processors, and/or other processing
devices to perform the processes, functions, and capabilities
described herein.

[0095] Itis further noted that the MNs 112,114 .. . 116; the
server system(s) 102, 104, 106 . . . ; NAAS server systems
1602 described below; and/or other electronic computing
devices described herein can be implemented using one or
more information handling systems that include one or more
processing devices (e.g., processor, controller, microcontrol-
ler, microprocessor, digital signal processor, and/or other pro-
cessing device) for executing and otherwise processing
instructions, and for performing additional operations (e.g.,
communicating information) in response thereto. Each such
electronic computing device is formed in part by various
electronic circuitry components that are configured to per-
form the device operations. Further, an information handling
system may include any instrumentality or aggregate of
instrumentalities operable to decode, encode, compute, deter-
mine, process, transmit, receive, store, display, communicate,
detect, record, reproduce, or utilize any form of information
or data for business, scientific, control, or other purposes. For
example, an information handling system may be a personal
computer (e.g., desktop or laptop), tablet computer, mobile
device (e.g., personal digital assistant (PDA) or smart phone),
server computer (e.g., blade server or rack server), a network
storage device, or any other suitable electronic device and
may vary in size, shape, performance, and functionality. The
information handling system may include random access

US 2015/0256598 Al

memory (RAM), one or more processing resources such as a
central processing unit (CPU), hardware or software control
logic, read only memory (ROM), and/or other types of non-
volatile memory. Additional components of the information
handling system may include one or more disk drives, one or
more network ports for communicating with external devices
as well as various input and output (IO) devices, such as a
keyboard, a mouse, a touch screen video display, a non-touch
screen video display, and/or other devices or components.
The information handling system may also include one or
more buses operable to transmit communications between the
various hardware components and/or to external devices or
systems.

Music Node (MN)—Client System

[0096] A music node (MN) is one or more electronic
devices or systems that in part provide audio input/output and
related processing for one or more users of the interactive
music system. The music node (MN) operates in part as a
client system with respect to the server system described
below. For one embodiment, the music node includes one or
more of the following components: audio capture input sub-
system, audio play output subsystem, audio encoder, audio
decoder, video input system, user interface and control sub-
system, file storage system, and a network interface. Different
and/or additional components could also be included, if
desired, and variations could be implemented while still pro-
viding a music node for the interactive music system embodi-
ments described herein. It is also noted that operation at low
latency is desired for the overall user experience, and low
latency is preferably less than 15 milliseconds delay between
audio packets captured and sent from on MN and received and
processed by another MN.

[0097] FIG. 2A is a block diagram of an example embodi-
ment for music node (MN) 112. The music node (MN) appli-
cation 122 includes one or more different functional modules
260, 261, 262, 263, 264, 265, and/or 266 to provide the
features of the music nodes as described in more detail below.
For example, a registration module 261 is configured to com-
municate with the server system(s) to provide registration
features for the MN 112. A session control module 262 is
configured to provide session control options to allow users to
control their session experience. A jitter queue module 263 is
configured to provide control of the audio frame queue used
to communicate with other MNs within a created session
through the network 110. A recording module 264 is config-
ured to store recordings of audio inputs received by the MN
112 both locally and through the network 110. A tunes mod-
ule 266 is configured to provide features associated with the
packaged tunes service described below. Other modules 265
can also be provided, as desired. The control module 270
provides overall control for the MN 112 and coordinates the
operations of the other functional blocks. As also described
herein, the MN application 122 also uses and stores MN data
124, as needed, for its operations. It is further noted that the
other music nodes (MN) 114 . . . 116 can be configured
similarly to music node (MN) 112 or could be implemented
differently, as desired. As such, a wide variety of music node
(MN) implementations could be used together within the
interactive music systems 100 and as part of one or more
music sessions 150.

[0098] FIG. 2B is a block diagram of an example embodi-
ment for audio/video/network/data subsystems within a
music node 112. One or more audio inputs (AUDIO IN) are

Sep. 10, 2015

received by an audio capture input subsystem 202, and digital
audio is provided to an audio encoder 206. It is noted that the
audio inputs can be analog signals or digital signals. [f analog
signals are input, then the audio capture input subsystem 202
samples these analog input signals to produce the digital
audio. If digital signals, then the audio capture input sub-
system 202 can send this digital audio to the audio encoder
206 or resample the digital audio inputs and then provide the
digital audio to the audio encoder 206. The audio encoder 206
provides encoded audio data to the interactive music control-
ler 250. This encoded audio data can then be stored as audio
data 216 within the file storage subsystem 214, which can also
store other data 218 associated with the operations of the
music node 112. The encoded audio data can also be output
through the network interface 230 to the network 110. The
encoded audio and/or audio data received from the network
110 through the network interface 230 can be provided by the
interactive music controller 250 to an audio decoder 208. The
audio decoder 208 decodes the encoded audio data and out-
puts digital audio to the audio play output subsystem 204. The
audio play output subsystem 204 then outputs audio output
signals (AUDIO OUT) from the music node 112. The audio
play output subsystem 204 can include one or more digital-
to-analog converters to convert the digital audio from the
audio decoder 208 to analog output signals, or the audio play
output subsystem 204 can output the digital audio itself or
re-sampled versions of the digital audio as the audio output
signals (AUDIO OUT). The music node 112 can also include
a display and control subsystem 220 that displays session
information 222 and/or one or more graphical user controls
224. A user is thereby allowed to interact with and control the
operations of the music node 112 through the display and
control subsystem 220. Other input/output (IO) interfaces
226 can also be provided to allow other user 10 interfaces or
10 interfaces to other electronic systems. It is understood that
that the interactive music controller 250 communicates with
the different blocks within FIG. 2B using one or more control
signals or commands to those blocks. Other variations could
also be implemented.

[0099] FIG. 2C is a block diagram of an example hardware
embodiment for music node 112. A system bus 260 provides
communications between the different subsystems and com-
ponents of the music node 112. One or more processor(s) 272
communicate with the audio subsystems 202/204/206/208
using one or more communication paths, with video sub-
systems 210/212/220 using one or more communication
paths, network interface 230 using one or more communica-
tion paths, and IO subsystems 226 using one or more com-
munication paths. The processor(s) 272 also communicate
with non-volatile storage system 274 that stores music node
(MN) data 124, such as the audio data 216 and/or other data
218 indicated above. The non-volatile storage system 274
also stores the music node application (MN APP) 122, which
can include program instructions that are executed by one or
more processor(s) 272 to implement the functions described
herein for the music node 112. The non-volatile storage sys-
tem 274 can be, for example, hard drives, optical discs,
FLASH drives, and/or any other desired non-transitory stor-
age medium that is configured to store information. Further,
the one or more processor(s) 272 communicates with volatile
memory 270 during operations to facilitate their operations.
The volatile memory 270 can be, for example, DRAM (dy-
namic random access memory), SDRAM (synchronous ran-

US 2015/0256598 Al

dom access memory), and/or any other desired volatile
memory that is configured to store information while pow-
ered.

[0100] FIG. 2D is a block diagram of an example embodi-
ment 280 for network packets that can be transmitted within
the interactive music system 100. A network transmission
282 of network packets is shown for N packets (PKT1, PKT2,
PKT3 PKT(N)). As shown with respect to the example packet
284, each of the transmitted packets can be configured to
include audio frame data 294, and audio header (HDR) 292,
and a protocol header such as IP/UDP (internet protocol/user
datagram protocol) header 290. Each packet can also include
optional chat data 298 and a chat header (HDR) 296. It is also
noted that the audio header 292 can include session control
information, such as for example, track volume levels, master
volume levels, recording start commands, recording stop
commands, hinting selections, and/or other session related
information. It is also noted that control packets can also be
communicated separately from audio related packets among
the MNs and between server system(s) and the MNs.
Example values for byte sizes and data rates are described
with respect to example embodiments below in APPENDIX
A. For example, as one embodiment, the audio can be cap-
tured and encoded at 256 kilobits per second, and 2.5 milli-
second data frames can be used to generate 400 packets-per-
second that are the wrapped with header information and
transmitted through the network 110. It is further noted that
embodiment 280 provides one example packet structure that
can be used for network communications for the interactive
music system embodiments described herein, and other
packet structures could also be utilized. For example, for
communications where audio data is not communicated, a
network packet can be used that includes header information
and a payload having control information, MN related infor-
mation, and/or other music session information communi-
cated among the music nodes and server system(s). Other
packet structures could also be used.

[0101] Functional blocks within FIG. 2B are now further
described, although it is again noted that variations could be
implemented for these functional blocks.

[0102] Audio Capture Input Subsystem (202). The audio
capture input subsystem converts audio inputs to digital
frames of audio information, preferably with low latency. For
example, the audio input subsystem can sample analog audio
inputs at a selected and/or fixed sampling rate, preferably of at
least 44.1 KHz, and can output digital audio frames contain-
ing digital audio information, preferably 10 milliseconds
(ms) or less of audio information. If the audio input from the
audio source is already digital, a digital transfer from the
audio source to the audio input subsystem can be utilized,
preferably again having low latency. Digital audio frames
containing digital information can again be output by thee
audio input subsystem. Resampling can also be used, as
needed, by the audio input subsystem to match digital sample
rates between a digital audio source and the audio output
frames for the audio input subsystem.

[0103] Audio Play Output Subsystem (204). The audio play
output subsystem produces analog output signals and/or by
converting digital audio information to analog output signals.
For example, digital audio frames from other MNs can be
received and converted to analog output signals. As indicated
above, these digital audio frames can include a selected
amount of audio information, such as about 10 ms or less of
audio information. Resampling can also be used, as needed,

Sep. 10, 2015

to match the digital sample rates between the audio play
output subsystem and the audio output destination, such as an
external receiver or sound system.

[0104] Audio Encoder (206). The audio encoder encodes or
compresses digital audio information to provide compressed
audio information. The audio encoder is also preferably low
latency. The audio encoder operates to process the digital
audio frames of digital audio information captured at the
audio input subsystem and produces a compressed audio
stream. The audio encoder can also use error correction to
embed error correction information that can be used by a
decoderto detect and where possible correct and recover from
errors induced on the audio stream during transmission or
storage. The output encoded audio data from the encoder can
also be packetized within network packets for transmission
over a network.

[0105] Audio Decoder (208). The audio decoder decodes or
decompresses incoming audio packets from other MNs or
sources to provide uncompressed digital audio outputs. The
audio decoder also uses error correction information with the
packets to detect errors and apply error recovery to improve
the quality of the decoded audio. As such, high quality audio
with low SNR (signal-to-noise ratio) is achieved. Preferably,
the audio decoder operates with low latency, and the audio
decoder is configured to output audio frames containing 10
ms or less worth of digital audio.

[0106] Display and Control Subsystem (220). The input
and a display subsystem allows a user to interact with the MN
for management, configuration, diagnostics and general use
and/or control. Video of other users in the music session may
also be shown on this display.

[0107] Video Input Subsystem (210). If video input is
desired, a video input subsystem is used to capture video and
preferably operates with low latency. The video input sub-
system can be used to allow live video of users playing in a
music session to be shared. It is noted that the latency of the
video capture subsystem can be allowed to be higher than the
latency of the audio input subsystem while not significantly
degrading the user’s session experience. However, it is still
preferable that MN provide at least 30 frames-per-second of
video to ensure a real-time user experience.

[0108] File Storage System (214). A file storage system can
also be included to store digital audio information. The MN
uses a recording process, which is described further below, to
store multiple audio streams concurrently.

[0109] Network Interface (230). An input/output network
interface is provided that preferably operates with low
latency. The audio processing application input network path
of'the MN includes a jitter queue buffer management system,
which is described in more detail below. The MN also uses the
network for interaction with a server that manages the music
session, as also described in more detail below. The MN also
uses the network for communication with peers in the music
session. In general, the following classes of data flows occur
in the MN: (1) peer-to-peer music data, (2) peer-to-peer state
and session control data, (3) peer-to-peer video data, and (4)
server session management and control data. It is also noted
that peer-to-peer data may also be sent via a proxy server that
may process the data before relaying it to another MN (e.g.,
aggregate packets, process and mix audio into a single audio
stream, and/or perform other desired data processing).
[0110] Itisalso noted that although the components in FIG.
2B above are described with respect to an embodiment for a
music node (MN) 112, different and/or additional compo-

US 2015/0256598 Al

nents could be utilized in other embodiments. As such, the
components can be varied, as desired. Further, the operation
of each component could also be varied, if desired.

[0111] FIGS. 3A-D provide further different implementa-
tion embodiments for the music node (MN) 112. FIG. 3A is a
block diagram where components are implemented in one or
more electronic devices or systems having independent con-
nections to the network 110. FIG. 3B is a block diagram
where components are implemented within a single elec-
tronic device or system having at least one connection to the
network 110. FIG. 3C is a block diagram where components
are implemented using an audio streaming appliance having a
separate connection to the network 110. FIG. 3D provides an
example embodiment of a graphical user interface providing
session management and control for MNs.

[0112] Looking now to FIG. 3A, a block diagram of an
integrated music node embodiment 320 that includes the
components described above within one or more electronic
devices with one or more connections to the network 110.
Components 302 provide the display and control interface for
the music session along with low latency video decode. A
session information and control window 310 is displayed to a
user that provides session information and control. Compo-
nents 304 provide the audio input/output including audio
input capture, encode, and streaming to the network 110, as
well as audio stream receiver, decoder and local output player.
Components 306 provide the video capture, encode, and
streaming for local video through a video capture device,
such as a video camera. The embodiment 320 can also include
direct control paths between the components that are inte-
grated portions of the system.

[0113] FIG. 3B is a block diagram of an integrated music
node embodiment 330 that includes the components 302/304/
306 described above within one physical electronic device
332 connected to the network 110. It is noted that for the
embodiment 330 no external network is needed to communi-
cate between the internal components. It is further noted that
the audio in/out connections to the embodiment 330 can be
through built-in or external connections, such as internal or
external USB (universal serial bus) ports connected to one or
more audio input sources or output devices. Further, the video
capture can use built-in or external video connections, such as
internal or external USB ports. A system software stack 334
provides control of the internal operations for the device 332,
and the system software stack 334 can be implemented using
one or more processor(s) running instructions stored in a
non-transitory storage medium, as described herein.

[0114] FIG. 3C is a block diagram of an example embodi-
ment 340 of a music node (MN) where audio components
302/304/306 are separated into a dedicated audio processing
appliance device 346. As depicted, the dedicated audio pro-
cessing appliance 346 includes components 306 providing
the audio capture, audio input processing, audio encode/de-
code, and peer-to-peer (P2P) network audio interface. The
separate device 342 includes components 302 and 304 pro-
viding the video, display, and user input mechanism (e.g.,
keyboard, mouse, touch-screen, etc.) and any additional
remaining parts of the separate device 342. A system software
stack 344 also provides control of the internal operations for
the device 342, and the system software stack 344 can be
implemented using one or more processor(s) running instruc-
tions stored in a non-transitory storage medium, as described

Sep. 10, 2015

herein. The separate device 342 can be, for example, desktop
computer, laptop, tablet, smart phone, and/or another com-
puting device.

[0115] FIG. 3D is a block diagram of an example embodi-
ment for a session information and control window 310 that is
displayedto auser (e.g., through an application graphical user
interface (GUI)) to provide in part the interactive control for
the music session by the user. As depicted, the window 310
includes a section 352 that shows audio inputs for tracks
being recorded by the local music node, such as a guitar input
and microphone (voice) input. Related controls are also pro-
vided within section 352, such as for example volume con-
trols for each of these tracks, and these controls allow a user
to make adjustments to his/her own tracks in the session. A
master volume control can also be provided. The window 310
also includes a section 354 that shows live tracks associated
with other MNs within the session, such as a microphone
(voice) and keyboard inputs for one or more additional MNs
in the session. Related controls are also depicted within sec-
tion 354, such as for example volume controls for each of
these tracks, and these controls allow a user to make adjust-
ments to other non-local tracks in the music session. Selection
buttons can also be provided to initiate a recording of tracks
within the music session. The window 310 also includes a
section 356 that shows recordings that have been made for
tracks within the music session, such as for example guitar
recordings, microphone (voice) recordings, and/or keyboard
track recordings. Related controls are also depicted within
section 356, such as for example volume controls for each of
these recorded tracks, and these controls allow a user to make
adjustments to all of the recorded tracks for the music session.
Controls can also be provided for play back control of the
recordings, such as for example a play button and a position
slider for the recordings. It is further noted that additional or
different session information and/or controls can also be pro-
vided as part of the window 310. Further, it is noted that
additional windows could also be used, and information and
controls can be organized, as desired, among these windows
while still providing session information and control to a user
through a graphical user interface displayed by the music
node (MN).

[0116] FIGS. 4A-D are block diagrams of a further
example embodiment for the audio streaming appliance 346.
FIG. 4A is a block diagram of an example embodiment for a
dedicated audio processing appliance device 346. FIG. 4B is
a circuit and component diagram of an example embodiment
for connections to an audio input/output processor for a dedi-
cated audio processing appliance device. FIG. 4C is a hard-
ware layout diagram of an example embodiment for a dedi-
cated processing appliance device. FIG. 4D is an example
embodiment for an audio software stack that can be used with
the dedicated audio processing appliance device or with other
MN embodiments if a separate audio processing appliance
device is not being used to implement the MN.

[0117] FIG. 4A is a block diagram of an example embodi-
ment 400 for a dedicated audio processing appliance device
346. For the embodiment depicted, a device body 402
includes one or more external connections and input/output
components, such as for example USB (universal serial bus)
connections, SD (secure digital) card reader, a power connec-
tor, an RJ45 Ethernet connector, a status LED, a synchroni-
zation (sync) button, XLLR connectors, a mono connector, a
HP (headphone) connector, and/or other desired connections
or components. The device body also includes one or more

US 2015/0256598 Al

printed circuit boards on which are mounted one or more
integrated circuits, discrete components, and electronic com-
munication traces. For example, an audio codec integrated
circuit (e.g., PCM3061A from Texas Instruments) can be
used that outputs audio such as through the headphone (HP)
connector and captures audio inputs (e.g., sampling fre-
quency of 8-96 kHz) such as from the XILR connectors and
the mono connector as well as an internal microphone if
included. Also, a processor integrated circuit (e.g., iIMX6
from Freescale Semiconductor) can be coupled to the audio
codec and other components to process the audio input/out-
puts as well as other MN and music session related input/
outputs. Other components could also be included such as
EEPROMs (electrically erasable programmable read only
memories), DRAMs (dynamic random access memories),
clock circuits, crystal circuits, power management integrated
circuits, DC-to-DC converters, Ethernet physical (PHY)
layer integrated circuits, and/or other desired components.

[0118] FIG. 4B is a circuit and component diagram of an
example embodiment 420 for connections to an audio codec
430 for a dedicated audio processing appliance device.
Example audio connections 422, 424, 426, and 428 are shown
as well as example circuits that can be coupled to one or more
printed circuit boards between these audio connections and
the audio codec 430. As described above, these components
can all be located within a device body for an audio process-
ing appliance device. Audio connection 422 is a headphone
connector this is coupled to receive left (L) and right (R) audio
outputs for the audio codec 430. Audio connection 428 is a
chat microphone connector that is coupled to provide audio
input voltages to the audio codec 420. Audio connection 424
is a combined XI.R microphone connector and audio line-in
connector that is coupled to provide audio input voltages to
the audio codec 430. A switch is also provided to switch
between the XLLR microphone input and the line-in input.
Audio connection 426 is similar to audio connection 424. The
audio codec 430 captures audio inputs and provides audio
outputs and communicates audio data and control informa-
tion to and from other electronic devices using a digital inter-
face, such as a digital serial interface (e.g., 12S interface).
Variations could be implemented as desired.

[0119] FIG.4C is a hardware layout diagram of an example
embodiment 450 for a dedicated processing appliance device.
The front 402A of the device body includes connectors such
as the headphone (HP) jack and the XILR combo connectors.
The back 402B of the device body includes connectors such
as an Ethernet connector, USB connectors, sync button, and a
power connector. The printed circuit board 452 includes one
or more integrated circuits and/or other discrete circuits or
electrical components, as well as interconnecting electrical
traces. While an example layout of components is shown, it is
understood that this layout is just one example, and other
implementations and layouts could be used.

[0120] FIG. 4D is a block diagram of an example embodi-
ment for an audio software stack 460 including a user space
462 and a kernel 464 coupled to an audio interface for the
audio codec 430. The software stack 460 can be implemented,
for example, as one or more processing devices executing
program instructions stored in a non-transitory storage
medium. As indicated above, one processing device that can
be used is an iMX6 processor from Freescale Semiconductor.
The software stack provides low-latency audio input/output.
In part, the embodiment depicted captures audio at the codec
input and sends chunks (e.g., 2.5 ms chunks) of captured

Sep. 10, 2015

audio to the audio application where it is processed. This
processed audio is sent back to the codec to have it played as
an audio output and is also sent through network communi-
cations to peers within a music session. The internal audio
input/output latency is preferably less than 3 ms and has a
variance 0f 0.001 or less. An Enhanced Serial Audio Interface
(ESAI) subsystem and driver can also be used to transmit and
receive digital audio from the audio codec. Further, parallel
and/or serial digital interfaces (e.g., 12S, 12C) can be used
between the audio codec and the processing device imple-
menting the software stack 460. An open source audio plat-
form, such as PortAudio, can also be implemented within the
software stack 460 to provide audio processing within the
user space 462. Further, continuous memory allocators
(CMEMs) can also be used as well as SDMA (smart direct
memory access) controllers. Other variations can also be
implemented.

Interactive Music Server System—Server Services

[0121] Where the MN embodiments described above pro-
vide the input/output of music for the user and other user
input/control, the server provides one or more of the follow-
ing server services: user registration, music session creation,
pre-join session scoring, recording management, live broad-
casting management, global session interface, and/or other
server services. Different and/or additional server services
can also be used or provide, and variations can also be imple-
mented.

[0122] FIG. 5A is a block diagram of an example embodi-
ment for an interactive music server system 102. As described
herein, the server system 102 can provide one or more server
services for the interactive music system 100 and the music
sessions 150 for the music nodes 112, 114 . . . 116 as shown
in FIG. 1. Looking to the example embodiment of FIG. 5A,
the server system 102 includes a user registration module 502
that operates to provider user registration services, pre-join
session scoring module 504 that manages MN scoring for
maintaining session quality, a session management module
506 that facilitates the creation and joining/leaving for music
sessions, live broadcast management module 508 that man-
ages live broadcasts for the music sessions, a recording man-
agement module 510 that manages the movement of record-
ings among the session MNs, a global session control
interface and management module 512 that manages the in-
session controls selected by the various MN users, a tunes
module 515 that provides features associated with the pack-
aged tunes service described below, and/or other modules
514. For the example embodiment depicted, the server system
102 also includes a database system 520 that is used by the
control module 516 and the other modules to store data asso-
ciated with the operation of the interactive music system 100,
including the server systems and the music nodes. For
example, the database system 520 stores session information
522, recordings 524 for the sessions, registration information
526, scoring information 528, and/or other information 530.
The operation of example modules for the server services is
described in more detail below.

[0123] It is noted that one or more server systems (e.g.,
server systems 104, 106 . . . in FIG. 1) can also be used to
implement the functional modules for server system 102 in
FIG. 5 and described herein. These functional modules can
also be distributed among the server systems being used, as
desired. Further, multiple server systems can perform similar
functions, and load balancing can be used to distribute work-

US 2015/0256598 Al

loads for the interactive music system 100 among the difter-
ent server systems. Similarly, the database system 520 can be
implemented using one or more data storage devices, and
these data storage devices can be internal to or external from
the server system(s), as desired. For example, the data storage
system 520 can be implemented using internal hard drives,
external hard drives, a RAID (redundant array of independent
drives) system, network attached storage, and/or any other
desired data storage device(s) that provide non-transitory data
storage mediums. Other variations could also be imple-
mented while still utilizing one or more server systems and
related database systems to provide the server services
described herein.

[0124] FIG. 5B is a block diagram of an example hardware
embodiment for server system 102. A system bus 560 pro-
vides communications between the different subsystems and
components of the server system 102. One or more processor
(s) 568 communicate with network interface 564 using one or
more communication paths, 1O subsystems 562 using one or
more communication paths, with non-volatile storage system
(s) 570, and with volatile memory 566 using one or more
communication paths. In addition to storing server services
data, as described above, the non-volatile storage system(s)
570 can also store program instructions that are executed by
one or more processor(s) 568 to implement the functions
described herein for the server system 102. The non-volatile
storage system 570 can be, for example, hard drives, optical
discs, FLASH drives, and/or any other desired non-volatile
storage medium that is configured to store information. Fur-
ther, the volatile memory 566 can be, for example, DRAM
(dynamic random access memory), SDRAM (synchronous
random access memory), and/or any other desired volatile
memory that is configured to store information while pow-
ered.

[0125] Functional blocks within FIG. 5A are now further
described, although it is again noted that variations could be
implemented for these functional blocks. It is further noted
that APPENDIX A below describes additional embodiments
and example details including MN registration, network com-
munications, control messages, and other aspects for the
interactive music system and for NAAS (Network as a Ser-
vice) server systems that provide network communications
for music sessions.

[0126] User Registration (502). Each user registers with the
server and creates an account. As part of this registration,
users also provide certain meta-data such as the kind of instru-
ment(s) they play, the location that they live, and/or other user
data information. After registering, a user can access the
server system, such as through a web browser and internet
connection, and the user can sign in to the server services.
[0127] Music Session Creation and Management (506).
Once a user is signed in from a MN, the user is able to create
music sessions. A music session is a server resource that a
user may share with other users, inviting them to join and play
music together or listen to music occurring in the session. A
session can be a private session such that only the creator or
members of the session may invite others to join or listen. A
session can also be a public session such that it is listed on the
server so that any user with a MN can discover and request to
joinor listen. The user creating the session can select whether
or not to create the session as a public or private session, and
this selection can also be changed once the session is created.
[0128] Pre-join Session Scoring (504). To help ensure that
users have a positive experience when in a music session, the

Sep. 10, 2015

server can direct the MNs associated with requests to join
sessions to perform one or more qualifying tests to provide
scoring for the MNs requesting to join. The scoring results of
these qualifying tests are sent by the MNs to the server. These
qualifying tests can include, for example, reporting network
latency information associated with the network latency
between the MNs that would be involved in the session. The
server then uses the result data passed back to allow the user
to join the session, disallow the user from joining the session,
provide a warning to the current session participants concern-
ing the new user requesting to join the session, and/or other
actions based upon the results of the scoring process. For
example, if the latency between the joining MN and one or
more of the MNs that are already in the session is beyond a
predefined threshold, the server may disallow the user from
joining the session or warn the current session MNs but allow
the MN to join. The current session MNs can also be given
control of allowing or disallowing the new MN to join based
upon the scoring results.

[0129] Recording (510). The server can also store and sub-
sequently manage access to recordings made by users in a
session. This recording management can also include mecha-
nisms for merchandising the content, sharing or editing of the
session recordings.

[0130] Live Broadcasting (508). The creator of a music
session may also elect to live broadcast the session. The server
manages access to the live broadcast stream according to the
terms requested and/or selected by the user controlling the
session. For example, the user can choose to have access to
the live broadcast be paid access or free access, to set a limit
for the number of listeners, or to allow only invited users to
listen, and/or to provide other terms associated with the live
broadcast. The server also directs the MN to start/stop the
broadcast, for example, to start the broadcast when there is at
least one listener and to stop the broadcast when there is none.

[0131] Global Session Interface (512). One particularly
advantageous aspect to this interactive music system embodi-
ments described herein is that the server provides MN users in
a session with a common audio mixer view of all the live input
and played-back music sources (tracks) at the MNs in the
session, such as for example the embodiment for window 310
shown in FIG. 3D. The track controls (volume, mute, etc.) for
any track within the session affect the track at the MN from
which it originates. As such, a user at one MN can adjust
tracks for the entire session, even though tracks may originate
at one or more other MNs within the session, and these
adjustments are sent as network communications to the other
MNs. The other MNs receive these control messages and
adjust their settings accordingly. This global session interface
enables any user in the session to configure the track mix
setting for the session. By providing a session global track
control, the interactive music system simplifies the user expe-
rience. For example, even if only one user in the session has
basic knowledge of audio mixing, a high quality final mix of
the overall session can still be produced that is good enough
for immediate broadcast, recording, and/or for the session
musicians to appreciate the result of the in-session effort.

[0132] Example operational features and embodiments for
the interactive music system will now be further described
with respect to FIGS. 6A-C (session scoring), FIGS. 6D-E
(adaptive throttling), FIGS. 7A-C (jitter queue), 8A-C (re-
cording), 9A-B (distributed metronome), 10A-D (virtual

US 2015/0256598 Al

positioning), 11A-B (concert broadcast), 12A-B (large group
session), 13A-B (musician hinting), and 14 (songs/tracks/
tunes service).

Session Scoring

[0133] Before a MN is allowed into a session, it is first
qualified using a session scoring. This pre join session scoring
helps to ensure that all users in the session have a good
experience. The following discussion provides more detailed
examples for the scoring process.

[0134] Latency Scoring and Thresholds. Depending upon
the beats-per-minute (BPM) used in a musical performance,
the performing musicians can accommodate various amounts
of'audio latency and still have a qualitatively good interactive
music experience. Latency here refers to the time it takes for
sound to reach the participating musician after leaving the
sound source. In free space, sound travels at approximately
0.34 meters per millisecond (m/ms). It is observed that gen-
erally the distance on stage that musicians can participate at
high BPM (e.g., about 160 BPM) without a director/conduc-
tor is about 8 meters. This distance represents a latency of
about 24 ms (e.g., 8 m/0.34 m/ms=23.5 ms. [fthe BPM of the
performance is lower (e.g., about 100 BPM), it has been
shown that latency of up to about 50 ms (e.g., representing
about 17 meters separation) can be accommodated by musi-
cians performing together on stage.

[0135] Latency between MNs within the interactive music
system embodiments described herein includes: (1) transmit
latency (T) including time to capture, encode, and transmit
audio packets, (2) receive latency (R) including time to buffer
(e.g., the jitter queue described below), decode, and play
received audio packets, and (3) network latency (N) including
time for audio packets to travel within a network between two
MNs. If the capture, encode, and transmit latency for the
sending MN is represented by T; the receiver jitter queue,
decode and play latency for the receiving MN is represented
by R; and the one-way network latency from the sending MN
to the receiving MN is represented by N; the total audio path
latency or delay (D) for audio originating at the sender and
arriving at the receiver can be represented as D=N+T+R.
[0136] As between one music node (MN,) sending to
another music node (MN)), the delay (D,) between these two
nodes can is represented using the following equations:

Dij:NiJ-+Ti+Rj

where N, ; is the network delay from MN, to MN,, T, is the
transmit delay for MN,, and R; is the receive delay for MN,.
The maximum latency in the session (S,,,,,) can be repre-
sented by the following equation:

Saetay=V iy max(D;, Dj,i)

wherein all music nodes (MN) in the session as well as audio
paths to and from each pair of MNs are considered to find the
maximum session latency.

[0137] Ata MN within the session, rather than treating the
transmit latency different from the receive latency, the latency
can also be approximated by considering an average of the
two. Thus, the latency (M,) for a given music node (MN,)
within the session can be represented as M, =(T,+R,)/2. Simi-
larly, it can be approximated that different MNs (MN,, MN,,
...) have similar characteristics (e.g., M,=M,) so that the
latency (M) can be approximated for the MNs within a ses-
sion such that M, =M =M.

Sep. 10, 2015

[0138] IfD,,,.is a maximum allowed music delay thresh-
old for a session, then the latency between any two music
nodes (MN,, MN,) should be less than D,,,,, to maintain a
good user experience within the session. As such, it is desir-
able that the following equation be satisfied: (N, +2M)
=D,,... This expression can be rewritten as 2N_ <(2D,, .-
4M). The network ping between the two music nodes can be
represented as PING, =2N, assuming the network delay
time is about the same in both directions (e.g., N, =N,).
Substituting into the previous expression, the following equa-
tion can be used to assess whether or not to allow a new MN
into a session:

PING, ,=2(D,,,,—2M) or
PING, ,=2(D,,,,~NodeLatency) or

Y2(PING,,,)+NodeLatency=D,,

where it is assumed that 2M=(T+R)=NodeLatency. Thus, a
determination of whether a MN should be allowed to join a
session can be based upon a predetermined node latency (e.g.,
transmit latency (T)+receive latency (R)) and a predeter-
mined maximum delay (D, .) along with a network ping test
result between the two nodes (PING,). The condition, there-
fore, can be used to filter the music nodes that are allowed into
session.

[0139] FIG. 6A is a swim lane diagram of an embodiment
600 for latency scoring for two music node (MN) client
systems (MNA and MNB) and a server. First, both MNA and
MNB sign on to the server. Next, the server communicates
with MNB to prepare MNB to do a latency test with MNA.
The server also communicates with MNA to prepare MNA to
do a latency test with MNB. The server then initiates a ping
count loop for both MNA and MNB. MNA then sends the
results of its latency test for MNB to the server, and MNB
similarly sends the results of its latency test for MNA to the
server. As described herein, the server can use these scoring
results to determine whether or not MNA and MNB will be
ableto interact in a music session with latency below a thresh-
old selected as a latency threshold that provides for positive
user experience. If the latency test results indicate latency
scoring that does not meet the selected thresholds, then appro-
priate actions can be taken as described herein, such as not
allowing MNB to enter a session created by MNA, issuing a
warning to MNA that allowing MNB may degrade perfor-
mance beyond acceptable levels, and/or any other desired
action. Variations can be implemented as desired, and
example variations are described below.

[0140] Latency Scoring Optimization. To improve the
speed at which latency between a given set of MNs is calcu-
lated, one or more of the following optimizations can also be
utilized: caching, distance filter, network correlation, updat-
ing, and/or other optimization determinations. In part, these
techniques include estimating expect latency without requir-
ing the MNss to initiate and respond to ping tests, as this ping
testing can itself significantly slow down the MN as numbers
of MNss within the system increases.

[0141] Caching. If latency scoring between a given pair of
MNs (A, B) were recently calculated, use that number result
instead of asking the nodes to perform new latency probes.
[0142] Distance Filter. A distance filter can be applied using
a geographic IP (Internet Protocol) address database. For
consumer class internet network services, the observed net-
work latency generally approximates to one way delay of 30
miles per millisecond or 15 miles per network ping millisec-

US 2015/0256598 Al

ond, as the network ping includes transmit and return paths.
By using the IP address of the MNs and a GEO IP database,
the longitude and latitude of the MNs can be determined. The
terrestrial distance between MNs can then be computed, and
internet latency can be approximated. For example, if a net-
work ping time o 30 ms is used as threshold network latency,
then this translates to about 450 miles of allowed geographic
separation (e.g., 15 miles per ping ms*30 ms=450 miles). The
current approximate geographic limit, therefore, is under
about 500 miles assuming 30 ms of network latency is allow-
able for a good user experience by the MNs. Thus, it is
expected that users that have distances of more than 500 miles
between them are unlikely to have a good interactive music
experience, as the latency will be too great to allow for a good
interactive music experience.

[0143] Network Correlation. If the IP address of a first MN
(A) corresponds to the that of a second MN (B) and the two
MNss are served by the same ISP (internet service provider)
and are in the same local geographic area (e.g. same city
and/or zip code), then if the latency of the first MN (A) to a
third MN (C) is known, the system infers that latency from the
second MN (B) to the third MN (C) will be similar and uses
that scoring data.

[0144] Updating Latency Cache with Actual Latency. The
above guesses or proxies for latency are updated when the
nodes actually join a session. Once joined, the actual latency
between the MNs is observed and passed to the server. The
server then uses this data to refine the accuracy of its latency
estimation optimization. If a user is invited explicitly to a
session, then the latency of the user is not used to filter them.
However, the server system can warn the new user or the
current session members of high network latency if the dis-
tance or latency between the new user and any MN in the
session is large. The server system also warns users periodi-
cally during session that the network condition is unfavorable
if the latency between one MN and its peers goes and stays
beyond a threshold.

[0145] As indicated above, as a MN comes online or
requests to join sessions, the server directs them to perform
latency probes with other MNs. The MN may be dormant
(e.g., not in a music session) or active (e.g., in a music ses-
sion). If the MN is in a session, the server is careful to control
the rate at which it asks the MN to do probes as the latency
probe process may negatively affect the user network capac-
ity thereby degrading the interactive audio experience. New
latency probe data that is acquired by the server is then used
to refresh the server latency cache.

[0146] Latency Probe with Proxy Server. In some cases, a
MN will communicate to the network through a proxy server.
Inthis case the overall network latency is the network latency
for a MN wanting to join the session to the server plus the
maximum latency from the proxy server to MNs that the
joining MN wants to communicate with as part of a music
session.

[0147] Client Decoding Capability in Scoring. In addition
to network latency, the decoding capability of the MN that is
joining the session plays a role in impacting the session expe-
rience of all users. The compute capability of MN directly
correlates to how many audio streams it can concurrently
decode and then process the resulting audio such that the
real-time requirements of the system is maintained. A MN is
said to be “K” stream capable if K is the maximum number of
audio streams it can concurrently decode and process in real-
time. If a user with a MN having decode capability of K

Sep. 10, 2015

streams tries to join a session with more than K streams in it,
the user will not be allowed and/or a warning will be issued.
Similarly, it is noted that the MN with lowest K stream capa-
bility within a session in effect limits the session to no more
than K participant streams without degrading the session.

[0148] Edge Network Scoring. Currently, for lowest audio
latency, a MN will preferably need to send audio packets to its
peers every 2.5 ms or 400 times per second. In a session that
has X participants and that is fully peer-to-peer (P2P), every
MN will transmit (X-1)*400 packets per second. Similarly, it
will receive (X-1)*400 packets per second. This implies that
the users network (e.g., home network router or other network
interface) must be able to support a full duplex packet rate of
800*(X-1) packets per second. In a session with five (5)
MNss, therefore, this produces 3200 packet per second. Cur-
rent technology in some home routers and wireless network
access points (e.g., Wi-Fi) are unable to support this kind of
throughput.

[0149] Similarly, as the number of MNs in a P2P session
grows, the uplink bandwidth grows linearly with number
participant. For many users on broadband networks provided
by internet service providers (e.g., cable companies, phone
companies, etc.), the downlink bandwidth is significantly
higher than the uplink bandwidth. For a MN to send a 256
kilobits per second (kb/s) audio stream at 400 packets per
second with UDP (User Datagram Protocol) formatting
requires 380 kb/s of bandwidth. If a user has an uplink band-
width of 1 megabits per second (1 mb/s), this uplink band-
width clearly limits the number of P2P connections to other
MNs the user MN can have to at most two MNs at this audio
bit rate. By using a lower audio bit rate of about 96 kb/s, the
per stream uplink bandwidth falls to 220 kb/s. With this lower
bit rate, therefore, the same user can potentially accommo-
date four P2P MNss in a session.

[0150] The packet rate limit or bound for a user is often is
reached before the bandwidth limit or bound for the user.
Either way, however, by pre-scoring the user’s network
latency, the interactive music system is able to filter whether
a MN may join a session without adversely affecting the user
experience within the session. For example, the creator of the
session may set a criterion that only MNs that can support
stream audio at a bitrate of X or greater and packet rate of 400
packets per second to all peers within the session may join the
session. The server uses these filters in conjunction with the
MN packet and bandwidth scores to determine session admis-
sion.

[0151] MN Packet Rate Scoring. As one example, the MN
packetrate scoring is performed as follows. The MN connects
to a scoring server hosted by one or more server system(s)
through the network 110. The scoring server sends UDP test
packets athigh rate of K packets per second for some duration
T, where K is multiple of 400 or some other selected number.
The payload of the test packets represents that of a session
music payload, for example, a session music payload at 128
kb/s aggregated with that of chat stream of 40 kb/s. At the end
of the interval T, the MN reports to the server how many
packets it received. If the MN reports receiving 95% or more
of the packets (or some other selected threshold), it then
requests another scoring session with the server but with
twice as many packets per second as was sent previously. This
continues until the MN reports to the server receiving less
than 95% of the packets sent by the server (or some other
selected threshold).

US 2015/0256598 Al

[0152] The downlink channel packet rate (D7) is then
determined by multiplying the final server packet rate with
the percentage of packets received by the MN in the last cycle.
Next the uplink capacity of the client is determined. The
server directs the MN to send packets to it a rate of K for T
seconds. At the end of the T, the server reports to MN how
many packets it received. If the server reports receiving 95%
or more of the packets sent by the MN (or some other selected
threshold), the MN will double its send packet rate to the
server on the next cycle. When the uplink receive rate by the
server is less than 95% (or some other selected threshold), the
uplink channel rate (U,) is computed by multiplying the
final packet send rate of the MN with the percentage of
packets received at the server in the last cycle.

[0153] Next, the concurrent channel packet rate is com-
puted. The server and the MN each sends packets concur-
rently for T seconds. The server sends at Dy, and the MN
sends at Uy, .. If the server receives U percentage of the
packets the then MN and the MN receives S percentage of the
packets from the server, the effective channel packet rate
capacity (C) of the MN network connection in a music session
can be given as two times the minimum of S times Dy, ;- or U
times Uy, which can be represented by the equation:
C=2*min(S*Dy ;7. U*Ug 7). The channel packet rate
capacity (C), for example, can be used as the MN packet rate
score.

[0154] FIG. 6B is a swim lane diagram of an example
embodiment 610 for MN packet rate scoring. The MN signs
on to the server. First, the downlink packet rate communica-
tions then occur between the MN and the server. The down-
link packet rate result is then sent from the MN to the server.
Next, the uplink packet rate communications occur between
the MN and the server. The uplink packet rate result is then
sent from the server to the MN. Finally, the concurrent packet
rate communications occur between the MN and the server.
The concurrent downlink packet rate result is then sent from
the MN to the server, and the concurrent uplink packet rate
result is then sent from the server to the MN. The final packet
rate scoring result is then determined by the server and/or the
MN.

[0155] MN Bandwidth Scoring. Similarly, to determine the
MN channel bandwidth score, the sequence described above
is repeated, but this time large payload test packets are used to
determine an effective downlink throughput (B, ,5;,,) and
uplink throughput (B,), for example, in terms of megabits
per second (mb/s). These rates are determined by the largest
bandwidth needed at a MN to support the largest expected
number of concurrent users in a session with all features of the
service in play (e.g., video, music, messaging, etc. enabled).
At end of the bandwidth scoring, the MN downlink band-
width (Dg,;,) is computed, and the uplink bandwidth (Ugy;,) is
computed.

[0156] FIG. 6C is a swim lane diagram of an example
embodiment 620 for MN bandwidth scoring. The MN signs
on to the server. First, the downlink bandwidth communica-
tions then occur between the MN and the server. The down-
link bandwidth result is then sent from the MN to the server.
Next, the uplink bandwidth communications occur between
the MN and the server. The uplink bandwidth result is then
sent from the server to the MN. Finally, the concurrent band-
width communications occur between the MN and the server.
The concurrent downlink bandwidth result is then sent from
the MN to the server, and the concurrent uplink bandwidth

Sep. 10, 2015

result is then sent from the server to the MN. The final band-
width scoring result is then determined by the server and/or
the MN.

[0157] Adaptive Packet Rate Throttling. Ifa MN’s network
environment score (e.g., packet rate scoring, bandwidth scor-
ing) indicates that it can support only P packets-per-second
and the number of MNs is K in the session, the MN can send
audio packets at a first packet rate as long as the MN can
support a packet rate (P) above a selected threshold, such as
for example 400 times per second, such that the following
threshold condition remains true: P=2*400(K-1). When the
threshold condition becomes false, the MN switches to a
lower packet rate, such as for example to 200 packets per
second by aggregating two audio frames (e.g., two 2.5 ms
audio frames) within in a single packet. The MN can also
inform it peers to send packets to it at a lower rate, although it
may throttle the send and receive rates independently. In the
case where both send and receive rates are throttled back to
200 packets per second, such as when P=2%*200(K-1), the
system may further throttle the packet rate by aggregating in
single packet, such as four audio frames (e.g., four 2.5 ms
audio frames) in a single packet. Further aggregations and
packet rate reductions could also be used.

[0158] While process of aggregating packets adds latency,
the packet rate and overall bandwidth are reduced. At 200
packets per second, for example, the MN has 2.5 ms more
latency relative to 400 packets per second. At 100 packets per
second, the MN has 7.5 ms more latency relative to 400
packets per second. If the end-to-end latency is still within the
desired limits, packet rate throttling is an effective mecha-
nism for extending the possible set of MNs that may partici-
pate in a session. If T, .. is the maximum allowed latency in
the session and T is the latency of the session before packet
rate down throttle, then down throttle is allowed if (T,,,,.~T)
is greater than the additional latency cause by packet rate
down throttle.

[0159] It is further noted that as the number of MNs grow,
the MN can adaptively down throttle the send or receive
packet rates. Conversely, as the number of MNs in the session
decline, the MN can adaptively up throttle the packet send or
receive rates as well. It is further noted that if the server
system is used as proxy, as described below with respect to the
NAAS (Network as a Service) embodiments, the uplink and
downlink packet rate from a MN can become invariant to the
number of MNSs in the session.

[0160] FIG. 6D is a process flow diagram of an example
embodiment 630 for adaptive throttling of frame size when an
MN leaves or joins a music session. When an MN leaves or
joins, a new packet rate is determined for the remaining MNs.
If'the rate meets latency requirements, then a determination is
made whether the framesize can be reduced. If the framesize
is changed, then the rate is again checked. If the rate is not
satisfactory, then a determination is made whether to increase
the framesize. If the framesize is changed, then a new packet
rate is again determined. If not, then the new MN is rejected
for the session. Once a new framesize is selected and
approved, the new framesize is communicated to all MNs in
the music session, and the new MN is accepted into the
session.

[0161] FIG. 6E is a process flow diagram of an example
embodiment 640 for adaptive throttling of bandwidth (BW).
If a difference in receive BW and send BW is detected, then a
determination is made whether the communications are
stable. If not stable, then bandwidth is down-throttled. If

US 2015/0256598 Al

stable, then a check is made to determine if BW can be
up-throttled. If a change is made, the communications are
sent to adjust the MN bandwidth.

Jitter Queue

[0162] As audio packets traverse the network, jitter (vari-
ability in the inter-arrival time at the receiver) is introduced.
As the audio play out preferably happens at a constant rate,
packets are buffered through a jitter queue within the MN and
then dequeued and played at constant rate.

[0163] Classically, a jitter queue preferably buffers enough
packets to account for the longest expected inter-arrival delay
or jitter, thereby ensuring that the play out (e.g., audio output
information ultimately heard by the user) does not starve once
it has begun. When a play out does starve, the typical results
are sound artifacts in the play out. The ideal low-latency audio
jitter queue is considered herein as one where the buffer for
the jitter queue always drains to zero at least once, but does
not starve, in a predefined window of time. Satisfying this
condition helps to guarantee that audio latency is not built up
on the jitter queue, and this condition can be represented by
the expression: JQ, =0, during time T, where JQ, ;, repre-
sents the minimum number of packets in the jitter queue
during a time duration represented by T.

[0164] Itisnotedthatatime duration T of one secondorless
is a preferable threshold to be achieved for the jitter queue
reaching zero in order to preserve a low-latency and high-
quality audio experience. Other values for the time duration T
could also be selected, if desired.

[0165] Ifthejitter queue does notreach zero during the time
duration T (e.g., JQ, =0, during time T), then a buildup of
latency can be deemed to be occurring as some packets will
not be processed within the time period T. To avoid this
condition, the MN can discard packets from the jitter queue in
one or more of the modes described in more detail below.
[0166] Further, if packets are discarded from the jitter
queue in one interval T, and then starves in a subsequent
interval T, ,, this subsequent starving can be used to indicate
that the monitor time window T is not aligned with packet
variances that are occurring in the interactive music system.
[0167] FIG. 7A is a representative diagram of an embodi-
ment 700 for a jitter queue that buffers audio frames for play
output. The x-axis represents time, and the y-axis represents
packets within the jitter queue. The first time window (T1)
included a spike in the number of packets that is potentially
limited by the jitter queue depth (e.g., the total number of
packets that can be stored in the jitter queue). As described
below, any remaining packets within the jitter queue at the
end of the time period (T1) can be discarded. During the
second time window (T2), the portion of the diagram where
low numbers of packets are within the jitter queue indicates
where the jitter queue is close to being starved. At the end of
time period (12), the packets remaining in the jitter queue can
again be discarded. As described herein, an ideal time win-
dow is the one where the jitter queue reaches zero at least once
with minimal starve and discard at the end of the time period.
An example ideal window is indicated for embodiment 700.

Sep. 10, 2015

[0168] As the bursty nature of jitter is considered to be
statistically random, one can only strictly avoid this situation
by increasing the window of time T to a large value. Hover,
this is not desirable because of the following reason. If at the
beginning of the window K packets were delayed within the
network and had not yet been received, the jitter queue may
starve. The play out buffer for the MN can be configured to
play filler audio frames during the starved mode until the late
packets arrive. If the late packets later arrive along with the
rest of subsequent packets in a timely manner, the jitter queue
will always have K worth of extra packets on it and the user
will perceive this latency. To avoid this situation, the time
duration T can be bound and frames remaining within the
jitter queue at the end of the time window T can be discarded,
if the jitter queue did not reach zero within the time window
T. The smaller the value of T initially, the more accurately this
indicates of low-latency playout. However, if the network is
highly bursty, the system adaptively expands the window up
to some threshold. If the network stabilizes after some time
(indicated by low starves and high empty buffer counts), the
system throttles down the window duration. If the queue did
not reach empty during the interval, then remaining frames
are discarded.

[0169] FIG. 7B is a block diagram of an example embodi-
ment 750 for a jitter queue. A frame buffer 752 receives input
audio frames 754 and stores these input frames. The stored
frames (F1,F2 ... FN) 760, 762 . . . 764 are then output in a
FIFO (first-in-first-out) order as audio frames 756 unless
discarded as discarded audio frames 758. The jitter queue
frame controller 770 communicates with the frame buffer 752
to analyze the stored frames (F1, F2...FN) 760,762 . ..764
and to provide control information to the frame buffer 752
including discard instructions. As described herein, the time
window (T) can be used to determine when discard determi-
nations are made for the stored frames (F1, F2 . . . FN) 760,
762 . .. 764, and this time window (T) can be dynamically
adjusted by the time window adjuster 776 based upon the
conditions of the stored frames (F1, F2 ... FN) 760, 762 . . .
764. The time window (T) is provided to the discard selector
772, and the discard selector 772 generates discard instruc-
tions at the end of each time window (T). The discard instruc-
tions are provided from the jitter queue frame controller 770
to the frame buffer 752. Based upon the discard instructions,
zero or one or more than one of the stored frames (F1, F2 . . .
FN) 760,762 ... 764 are discarded as discarded audio frames
758 and not provided as output audio frames 756. As
described herein, the dynamic control of the jitter queue using
the time window (T) and audio frame discards provides for
reduced latency and improved user experience.

[0170] One embodiment for a low-latency adaptive jitter
queue algorithm is shown below. The adaptive algorithm runs
when there are no lost packets within the network transmis-
sion, as by definition if packets are being lost, the jitter queue
will likely starve.

void jitter__end_ of window_ process(jq_ window t)

if(jq[t]-had__starve() && jq[t-1].had__discard()){

jqQ-EARLY_ DISCARD_ CNT.icrement();
if(jqg. EARLY_ DISCARD_ CNT > DISCARD_ THRESHOLD &&

US 2015/0256598 Al
15

-continued

Sep. 10, 2015

jq.window__duration < MAX_ JITTER_ WINDOW) {
jq.-window__duration = jq.window__duration.increase();

telse if(jq[t].had_starve() == false){
if(jq[t].had__no_packet_loss() == true && jq[t].min == 0){
jQ.-WINDOW__IS_ BALANCED.icrement();

if(jqg. WINDOW _IS_ BALANCED.count()/jq.number_of windows() >

BALANCE_IS_ GOOD_ THRESHOLD){
if(jq.window__duration < MIN_JITTER_ WINDOW) {
jq.-window__duration = jq.window__duration.decrease();

}

¥
if(jq[t].had_no__packet_loss() == true && jq[t].min != 0){
if(jq[t].discard__policy == CLAMP_TO_ZERO){
jq[t+1].schedule_ discards = jq[t].current_ length();

else if (jq[t].discard__policy == CLAMP__TO_MIN){
jq[t+1].schedule_ discards = jq[t].min;

}

void packet_ discard(jq_ window t, audioPacket p)

if(jq.schedule_ discards > 0){
if(can__discard_ packet(t,p)){
jq[t].discard.increment();
jq.schedule_ discards.decrement();

bool can_ discard(jq_ window t, audioPacket p)

if(p.audioEnergy <= QUIET && jq[t].playoutSequencelsQuiet())
return true;

if(p.audioEnergy >= LOUD && jq[t].playoutSequencelsLoud())
return true;

if(jq[t].packetsTobeRecievedInWindow() <= jq[t].schedule_ discardsi)
return true;

return false;

[0171] Low-Latency lJitter Queue Discard Policy. The
example algorithm above dynamically expands and shortens
the jitter queue monitoring window (T) to find a window
where the count of the number of times the jitter queue
reaches a minimum of zero with the time window T (e.g.,
JQ,;»~0, during time T) occurs at high rate, such as for
example preferably at least 50% or greater of the play out
input/output rate. The can_discard() function within the algo-
rithm applies heuristics to decide if an audio packet is a good
candidate for discarding. The can_discard() functionis called
when the algorithm determines that audio latency is building
up on the queue and packets must be discarded. The example
heuristics used are described below with respect to different
discard heuristics: energy based discard, random distribution
discard, linear discard, lump discard, and hybrid discard.
Different and/or additional heuristics could also be utilized.

[0172] Energy Based Discard. The sender of the audio
frame also includes additional data indicating the power level,
such a VU (volume unit) level, of the energy of the audio
encoded in the frame. The receiver then can use this energy
level to decide before decoding the frame, if this is arelatively
silent or loud frame. If the frame is in a sequence of quiet or
loud frames, it is a candidate for discard and the system can
either discard the frame without decoding (treating it as lost
packet) or decode the frame and discard the data. The latter
approach is preferred as the audio decoder is stateful and this
leads to the best preservation of sound. However, it may be

more efficient to the receiver computational capability to
simply discard the packet and let the decoder recover its state
by treating the discard packet as lost.

[0173] Random Distribution Discard. If K packets are
expected to be received within the time window T and D
packets are to be discarded within the time window, a random
number generator of range K can be used, and packets can be
discarded when the random number generator produces a
number “i”” such that i/K is less than or equal to D/K. As such,
for the K packets received within the time window T, D of
these K packets will be randomly discarded based upon the
output of the random number generator.

[0174] Linear Discard. If K packets are expected to be
received within the time window T and D packets are to be
discarded within the time window, a linear discard can be
used such that packets are discarded using a ratio of D/K
packets. As such, for the K packets received within the time
window T, a packet is discarded every D/K packets rounded
down to the nearest integer.

[0175] Lump Discard. If K packets are expected to be
received within the time window T and D packets are to be
discarded within the time window, a lump discard can be used
such that D consecutive packets are discarded at once. As
such, for the K packets received within the time window T, a
consecutive group of D packets within the time window T are
discarded together.

US 2015/0256598 Al

[0176] Hybrid Discard. If K packets are expected to be
received within the time window T and D packets are to be
discarded within the time window, one or more of the above
discard techniques, as well as other discard techniques, could
be used in combination. For example, the energy based dis-
card can be used in conjunction with one of the other discard
methods. If the energy based discard and the lump discard
methods were utilized, for example, the energy based discard
could first be applied and if it has not found candidate packets
at the appropriate relative levels to discard and the time win-
dow is coming to a close, then the lump discard could be used
to discard D packets in a lump discard.

[0177] Mismatch Sender/Receiver Packet Rates. Let C be
the audio capture rate at a MN input and P be audio output
play out rate. If two nodes MN; and MN, are in a session and
C;#Pj or C;=P,, then the jitter queue at the receiver portions of
these MNs will buildup latency or starve, respectively. If it is
assumed that C,>Pj and because the input/output (10) rate for
aparticular MN can be assumed to generally be matched, then
it can also be assumed that P, >Cj. These assumptions mean
that MN, will be sending more frames to MN; than it can play
out thereby causing latency buildup in the receiver portion of
MN;. These assumptions also mean that MN; will not send
enough frames to M, causing the receive portion of MN,; to
starve.

[0178] This situation is likely to occur because the 10 sub-
system of the MNs involved in session may not all be
matched. To gracefully handle this IO mismatch, the MNs
share their IO rate information with other MNs within the
session, thereby enabling them to understand whether, and
how many, frame discard/insert operations they may need to
execute per second in the audio path from each sending MN
to each receiving MN. By knowing that frame insert is needed
with respect to an audio path, the sending and/or receiving
MN can intelligently choose the point to insert one or more
audio frames, such as during quiet or loud audio sequences as
described above. Similarly, by knowing that frame discard is
needed with respect to an audio path, the sending MN or
receiving MN can intelligently choose the point to discard
one or more audio frames, such as during quiet or loud audio
sequences as described above. It is further noted that the MN
in an audio path that has the faster IO rate is preferably the
MN to execute the discard/insert operations, as this MN
would likely have greater processing capacity. However,
either MN or both MNs within the audio path can execute
discard/insert operations, if desired.

[0179] Sender Queues and Rate Adjustments for Receivers.
It is desirable not to have the receiving MN starve of input
audio packets or discard audio packets. For example, if the
encoded audio stream process is stateful, these starve condi-
tions and/or discard conditions can cause the MN to loose
state and produce undesirable audio artifacts. To help ensure
these starve and/or discard conditions do not occur at the
receiving MNs, each receiving MN can be configured to
inform each of the sending peer MNs what its 1O rate is for
processing received audio packets. For each receiving MN to
which it is sending audio packets, the sending MN can then
implements different send queues having different send rates,
each queue being tuned to the receiving MN expected 1O rate
for processing input audio packets. Input audio captured at
the sending MN is then queued within respective send queues,
and these send queues are set to have 1O rates associated with
the receiving MNs. The send queues can be implemented, for
example, using decimator/interpolator blocks within the

Sep. 10, 2015

audio output paths for the sending MN to produce audio
content that matches receiver 1O rates. For example, decima-
tors can decimate the audio content to reduce the output audio
rate, and interpolators can extend the audio content to
increase the output audio rate. The decimated/interpolated
audio is encoded, packetized, and sent by the sending MN to
the respective receiving MNs.

[0180] FIG. 7C is block diagram of an example embodi-
ment 770 for sending MNs having sending queues including
decimator/interpolator blocks and encoder/packetizer blocks
to adjust send rates for receiving MNs. As depicted, MNA 112
is sending input audio captured at MNA 112 to MNB 114,
MNC 116, and MND 118 through network 110. MNA
includes a decimator/interpolator for each MN to which it is
sending audio packets. Each decimator/interpolator deci-
mates the audio content or extends the audio content based
upon IO rate information received from each of the other
MNs. For example, MNB 114 communicates with MNA to
provide information about the IO rate associated with its
processing of received audio packets through its decoder/
jitter buffer. Similarly, MNC 116 and MND 118 communi-
cate with MNA to provide information about the respective
10 rates associated with their processing of received audio
packets through their decoders/jitter buffers. Using this 10
rate information, MNA adjusts the decimator/interpolator for
the receiving MN to account for the expected 1O rate for that
receiving MN. The output from the each decimator/interpo-
lator is then provided to an encoder/packetizer that encodes
the audio data and packetizes it for transmission as audio
packets through the network 110. The send rates to each of the
peer MNs are therefore tuned for each of the receiving MNss,
asrepresented by the dashed line 114 to MNB 114, the dashed
and dotted line to MNC 116, and the solid line to MND 118.
Each of the other MNs 114, 116, and 118 can operate in a
similar way as MNA 112 to provide tuned send rates to each
of the other peer MNs within the music session. Further, the
MNs can periodically send updated 1O rate information to the
other MNs during the music session so that the respective
send rates from the other MNs to that MN can be updated
during the music session. As such, the user experience is
improved, as discard and/or starve conditions at the jitter
buffers can be reduced and potentially eliminated through the
use of sender queues and rate adjustments.

Recording

[0181] Writing the digital content of an audio stream to a
file is referred to herein as recording. In a music session, any
user may initiate a recording from a participating MN control
interface, such as for example through the control window
310 depicted in FIG. 3D.

[0182] The record start command is sent to all the MNs in
the session, and each MN records the following: (1) audio
input at each MN (R), (2) incoming audio stream from each
peer MN (R,,,), and (3) master output. The audio input(s) at
each MN (R,,,) is typically the highest fidelity audio source as
it has no encode/decode compression or transmission related
artifacts such as packet loss, errors, and/or other degrada-
tions. The incoming audio stream from each peer MN (R ,,) is
a recording of what each user is hearing at their respective
MN. The incoming audio stream from other MNss is received
as the decoded version of the encoded stream sent by the
original peer MN and includes all the artifacts from packet
loss, errors, jitter queue discards/inserts, and/or other degra-
dations. The master output is the mix (R,,) of audio input at a

US 2015/0256598 Al

MN and the remote input streams, this mix is played out at the
MN such that R, =2R, +ZR ;.

[0183] Fast Record Playback. Each MN produces a set of
recordings (R,,, R, R,,) including the local recordings, the
peer MN input recordings, and the master recording from a
record command. At the record stop command, this set of files
is available for immediate playback. These files represent the
fast playback assets from recordings at an MN.

[0184] High Fidelity Playback. Each MN inthe session also
uploads the high fidelity local input recording (R,,) to the
server. The server stores and distributes these high fidelity
recordings to each of the MNs in the session. As the high
fidelity recording (R ,,) corresponding each peer input record-
ing (R,,) is downloaded to a MN, the MN replaces the content
of'the lower fidelity file with the high fidelity source recording
file (e.g., each R ,, replaces its respective R ,; at each MN once
received). At such time, the user at the MN may playback the
session high fidelity audio either locally or from the server
that mixes the audio of the high quality recordings. These
high fidelity files represent the slow playback assets from the
recordings at the MNs in the session owing to the delay in
getting audio pushed to the server and then downloaded to the
MNs within the session. It is also noted that the MNs can also
keep the low fidelity recordings (M), if desired, even though
the corresponding high fidelity recordings (M,,;) have been
downloaded to the MN. Further, it is noted that each MN can
send its local high fidelity recording (M) directly to the other
MNss in the session rather than going through the server.
[0185] FIG. 8A is a swim lane diagram of an example
embodiment 800 for session audio communications for three
MNs (MNA, MNB, MNC) and recording service including
one or more server system(s). Once MNA, MNB, and MNC
have signed on to a music session, they stream audio for their
music tracks to each other as part of the music session. Any
one ofthe MN users can then initiate a start for arecording. As
depicted, MNA initiates a start for a recording. Each MN then
records its local tracks and the other MN tracks as described
herein. Any user can then initiate a stop of the recording. The
high fidelity recordings made at each MN are then uploaded
to the server. The MNs can then download the high fidelity
recordings for the other MNs in the session from server. Once
these are downloaded to each MN, the MN notifies the user
that high-quality or high-fidelity playback is available for the
session recording. Itis also noted that the high-fidelity record-
ings could be directly communicated between the MNs in the
session, if desired.

[0186] FIG. 8B is a block diagram of an example embodi-
ment 820 for a recording system. The embodiment 820
includes one or more input channel processors (ICP) that
process local audio inputs or loopback/peer audio inputs from
network connections 825. The group ICP 821 captures audio
inputs from one or more instrument inputs (e.g., guitar, key-
board, voice, etc.) and outputs transmit audio packets associ-
ated with this audio input. Group ICP 821 also provides high
quality audio outputs 831 and 832 associated with the cap-
tured audio inputs for the music session. The group chat ICP
822 captures one or more chat audio inputs and outputs trans-
mit audio packets associated with this audio input. The peer
ICPs 826 and 827 receive de-multiplexed music session audio
input packets from peer MNs and process those packets to
produce low quality recording user audio streams 834 and
835. The ICPs 828 and 829 receive de-multiplexed chat audio
information and can output chat audio. The audio controller
830 provides speaker output 833 and provides a monitor and

Sep. 10, 2015

master mixer controls, as well as main and monitor speaker
control and volume control. It is noted that each of the outputs
831, 832, 833, 834 and 835 are example audio output streams
that can be selected for recording individually and/or in com-
bination with each other.

[0187] FIG. 8C is a block diagram of an example embodi-
ment 840 for a recording system and related recording service
where sessions are stored by a server and by MNs. Each MN
initially stores high quality recordings for its local tracks and
low quality recordings for the tracks from the other MNs in
the music session. The high quality recordings are then
uploaded by the MNs to the server and stored by the server.
These high quality recordings can then be downloaded to the
MNss to replace the initial low quality recordings made for the
tracks from the other MNs. Once these high quality record-
ings are downloaded to an MN, the MN will have high quality
recordings for each track in the music session. The high
quality and/or low quality recordings can be played back by
an MN individually or in combination by a user of the MN.
Until the high quality recordings are downloaded, playback
uses the high quality recordings from the local MN tracks and
the low quality recordings from the peer MN tracks. Once the
high quality recording are downloaded, the entire session
recording can be played back at the MN using the high quality
recordings.

[0188] Auto Mixing of Recording via Latency Compensa-
tion. When the command to start a recording is initiated, there
is a delay of at least the network delay between the sender and
receiver before the recording command is actually started.
Assume the initiating MNA is sending the record start com-
mand to MN; and MN_, there are record start time delays
(e.g., network delay plus processing delay) between MN , and
MNj; represented as t,; and between MN ;, and MN_. repre-
sented as t,.. Whereas the set of recordings (R,,. R, R,)
started at MN , are synchronized with each other, the start
time of the high fidelity recording at MN and MN ., namely
RA,; and RB,, will have different start times of at least the
delays t,; and t -, respectively. Without accounting for this
delay, a final cut recording (e.g., Ry ,=2RA_+ZRB_,+
2RC,;) will produce music that is time skewed.

[0189] Itis noted that mixing of audio is represented herein
using the summation symbol: “2”. As one example, this audio
mixing can be an average of the sum of the audio signals that
have been normalized to given range, for example, +1.0 float-
ing point values, or 16-bit integer, or 32-bit integer, or some
other selected range. Audio mixing could also be imple-
mented using additional and/or different techniques, as
desired.

[0190] Recording the network delay between MN, (e.g.,
the record start initiator) and its peers MNz and MN .is a good
first order approximation of the amount of time skew that is
needed to bring the recording in synchronization. However,
the processing delay is not accounted for in this model.

[0191] Reference Clock Synchronization. An accurate ref-
erence clock common to all MNs in the session and times-
tamps made at each MN at recording stars can be utilized to
help provide this synchronization. Each MN uses the com-
mon reference clock to timestamp each recording start with
that clock time. With this reference clock timestamp, the
following example algorithm can then be used to produce
final mix:

[0192] 1. Sort the high fidelity recordings (RA,
RC,,) by timestamp

RBais

at’

US 2015/0256598 Al

[0193] 2. The oldest timestamp represent the recording
that started latest (t,;)

[0194] 3. For each recording R ;, the delay (t,,) relative
to the latest start time is represented as t,, =t ,; p~toryrz
where tg;,» 5 1s the record start time for R ,.

[0195] 4. The delay (t,,) is the time offset in recording
R, that must be skipped to bring the recording in align-
ment with that of the recording having the latest start.

[0196] 5. Rypyy, is then produced by discarding the
delay (t,) worth of data associated with each recording
with the set of recordings (RA ,;, RB_,, RC,,) that does
not have the latest start time, and then reading and mix-
ing audio from the files from a time that will now match
the latest start time tom. When the first end-of-file is
reached, the mixing process stops.

[0197] This common clock synchronization process
enables auto generation of the final cut (Rz;,;). The MNs
can also be allowed to manually calibrate the time offset, if
desired.

[0198] As indicated above, the clock synchronization algo-
rithm depends on the presence of a reference clock common
to the MNs in the session. One method for implementing this
is to use a distributed clock algorithm augmented with an
algorithm to select a master node in the session. As such, each
MN then runs a local reference clock that is calibrated to the
elected master clock. The elected master clock then effec-
tively serves as a time server. The music server can also
provide a master clock and be used as the master node by the
MNs for clock synchronization.

[0199] Onetechniquethatcan be used to provide acommon
distributed reference clock for the MNs is through the use of
the well known Cristian’s Algorithm described in the article:
Cristian, F., Probalistic Clock Synchronization, Distributed
Computing, (3):146-158 (1989). As one example, this tech-
nique works between a process (P) and a time server (S), such
as a time server available through the internet. The process
requests the time from the time server. After receiving the
request from process, the server prepares a response and
appends the time (T) from its own clock. The process then sets
its time to be the server time (T) plus half if the round-trip-
time (RTT) for the communication. This technique assumes
that RTT is split equally between the request time and the
response time. Multiple requests can also be made by the
process to the server to gain more accuracy, for example, by
using the response with the shortest RTT. The process can
determine RTT, for example, by the difference inits local time
between when it sends its request to the time server and when
it receives the response from the server. Other variations and
techniques could also be utilized.

Distributed Metronome

[0200] A metronome helps musicians keep playing in time,
or in sync. In a distributed music session, the delay incurred if
a single metronome were used makes such an option range
from undesirable to impractical. Even if multiple metro-
nomes are used, the skew in start times will cause them to be
naturally out of sync as illustrated in FIG. 9A.

[0201] FIG. 9A is a signal diagram showing metronome
pulses associated with three different local metronomes that
are based upon a single metronome pulse. Without the dis-
tributed metronome techniques described herein, each local
metronome pulse will be offset based upon a different delay
(d0, d1, d2) associated with that local music node.

18

Sep. 10, 2015

[0202] A distributed metronome is therefore implemented
to provide a local metronome at each respective location for
the MNs in a session that is synchronized to a common
reference clock in the session and that plays in synchroniza-
tion with this common reference clock irrespective of the
delay between the MNs. As such, the MN user hears only the
output of the metronome from his/her own MN and not from
any other metronome at the other MNs. Using the distributed
metronome described herein, the start times are aligned as
shown in FIG. 9B.

[0203] FIG. 9B is a signal diagram showing metronome
pulses associated with three different local metronomes that
have been synchronized. With the distributed metronome
techniques described herein, the delay offsets (d0, d1, d2)
associated with the local music nodes are aligned in time
based upon a start time (T,,,,,).

[0204] For the purposes of recording timestamp as
described above, the MNs in a session already have a refer-
ence clock system that can be used for the distributed metro-
nome. While creating a metronome using a processing device
running software instructions has been done previously, the
problem associated with the interactive music systems
described herein is how to ensure that when one MN user
within a session starts or changes the setting of their metro-
nome, all other metronomes for the MNs in the sessions will
also start or be changed in synchronization. Once a local
metronome is started at an MN, it is assumed that the clocks
at the MN are accurate enough such that the MN plays the
correct BPM (beats per minute) requested by the user. Fur-
ther, each MN can be set at different BPM, if desired. The
following describes an example process that can be used for
the distributed metronome:

[0205] 1. Each MN knows the network latency between
it and every MN in the session, as described above, and
the maximum latency (t,,,) for its peer-to-peer connec-
tions can be determined from these latencies.

[0206] 2. Let the reference clock time for the MN at
which the metronome start is initiated be represented by
trz7 The initiating MN broadcasts a “metronome start”
command to all peer MN's within the session indicating
that the start time for the metronome is to be tg r 7 ~trzr
2t,,4x Twice the maximum latency (2t,,,+) is used as a
conservative approach, although a lower start time
bound of tor, r 7 trzrttasx could also be used, as well
as other later start times.

[0207] 3. A MN receiving the metronome start command
waits until its reference clock time (t) is about the des-
ignated start time (e.g., t=ts,,»,). The accuracy of local
clocks are typically on the order of 1 ms. If the desig-
nated start time (tg,, 7 is earlier than the current refer-
ence clock time (t) for the MN receiving the start com-
mend (e.g., to7,z7<t), then the command is late and the
receiving MN re-broadcasts a new start time with an
increase to the 2x multiplier for its maximum latency
(tyz4x) to compensate for unexpected lateness of the
command.

[0208] 4. Every minute each MN rolls over and starts a
new count off of metronome ticks. As such, the start time
is important for the MNs to remain in sync.

[0209] 5. If a user changes the BPM at his’her MN, a
restart of the distributed metronome is broadcasted
through a new “metronome start” command. This restart
helps to ensure synchronization between the MNs in the
session after BPM changes.

US 2015/0256598 Al

[0210] It is noted that audio from the metronome is prefer-
ably played only to the local MN output. Further control is
also provided at each MN to allow a user to determine
whether the local metronome output is heard in one or both
ears, for example, if headphones are being used. Further,
metronome audio is also not recorded by default, although the
MN can be set to record the metronome audio as well, if
desired.

Interactive Virtual Positioning Within Music Session

[0211] Musicians performing at given location (e.g., stage)
receive sound in a fully immersive sense. Their sense of
presence comes from the direction of the sound, based on
their relative position to each other and the acoustic properties
of the location. The interactive virtual positioning embodi-
ments described herein enable a reproduction of this immer-
sive and presence experience by utilizing a number of existing
technologies that are augmented as part of the interactive
music system.

[0212] FIG. 10A is a diagram 1000 of sound location per-
ception by a person hearing sounds from two sources (S1,
S2). A first source (S1) is received at different times at two
points (Y1,Y2)on aperson’s head based upon different travel
distances (H11, H21) for the sound. Similarly, a second
source (S2) is received at different times at the two points (Y1,
Y2) on the person’s head based upon different travel dis-
tances (H12, H22). Sound location perception of a person is
based upon differences between sound paths striking the head
and being sensed by the person.

[0213] Using this sound location perception, a three dimen-
sion definition of a virtual environment is generated for the
session. Each MN, sound source, or other element within the
session can be placed at specific positions within this virtual
space. Based on the instrument type selected by a user, the
user is provided with a set of pre-defined configurations, such
sitting violinist, or standing violinist If the MN has multiple
inputs, the system allows the user to indicate how those inputs
are positioned within the virtual space. For example, a key-
boardist could use one input for positioning the keyboard
instrument within the virtual space and one input for posi-
tioning the keyboardist’s voice within the virtual space.
[0214] FIG.10B is adiagram 1010 of an example locations
or positions (P) for music session elements within a virtual
space. Each of the hexagons represent the position (P1, P2,
P3, P4, P5, P6, P7) of an element, such as an MN, within the
session. Each position will have a unique sound experience.
For example, the perception at position P2 of sound generated
from position P1 and position P3, as indicated by the arrows,
will be different from the perception other positions, such as
position P6, for this same sound. A virtual microphone array
associated with each position, such as position P2, can be
used to determine sound received at that position.

[0215] For each location or position, a head-related-trans-
fer function (HRTF) is assigned by the user virtual position.
Because the geometry of the virtual room is known and rela-
tive position of the sound sources have well defined three-
dimensional (3D) coordinates, the HRTF can be used to com-
pute the perception of sound presence that a user in that
position would hear. Each position P represents a MN input
and any other physical attribute of the source that is helpful to
characterize the directionality of the sound that input pro-
duces (e.g., its sound field).

[0216] FIG. 10C is a diagram 1020 of an example dummy
head 1022 that is depicted to a user and can be adjusted by the

Sep. 10, 2015

user to place and orient the user within the virtual environ-
ment for the music session. Based upon the position of the
dummy head 1022, the dummy head 1022 will receive audio
signals from other elements within the music session. These
audio signals are then packetized for transmission or storage,
as indicated by block 1024 and as described herein. The
resulting audio can then be output to a listener as represented
by head 1026.

[0217] The user at a MN is allowed to select their desired
virtual position through manipulation of a dummy head rep-
resentation in the virtual space or setting for the music ses-
sion. This positional data is also sent to and shared with other
MNss within the session. The user may also choose to upload
their HRTF specific data or to select from a set of generic
pre-configured profiles to upload.

[0218] MTB (motion tracked binaural) System. By emulat-
ing a virtual microphone array and using a head-tracker, a
motion tracked binaural (MTB) system can be provided to
each virtual musician/listener in a session. A MTB system can
be used to produce the most natural and immersive sense of
presence for the musician/listener.

[0219] FIG. 10D is a diagram 1030 of an example dummy
head 1032 that includes a virtual microphone array of two or
more microphones. This dummy head 1032 can also be
depicted to a user and can be adjusted by the user to place and
orient the user within the virtual environment for the music
session. Based upon the position of the dummy head 1032, the
microphone array related to the dummy head 1032 will
receive audio signals from other elements within the music
session. These audio signals are then packetized for transmis-
sion or storage, as indicated by block 1034 and as described
herein. The resulting audio is output to an interpolator 1040,
which then outputs to a listener as represented by head 1036.
However, the listener can also have a head tracker 1038 worn,
mounted or otherwise attached to the listener’s head 1036 that
tracks movements of the head 1036. The tracked movements
are provided back to the interpolator 1040. The interpolator
1040 uses these tracked movements to adjust the output sound
so that the listener’s perception is that the listener is moving
his/her head position within the virtual environment for the
music session. As such, a virtual reality experience is pro-
vided for the listener within the virtual sound field for the
performance within the music session.

[0220] The MTB system depicted in FIG. 10D, therefore,
correlates the users head position with the head-position in
the virtual space. Whereas a physical microphone array is
used in typical physical setting, an actual microphone array is
not needed for the embodiments described herein as the each
user directly controls the movement of his/her virtual head in
the virtual space defined for the music session.

[0221] The MTB system can provide a variety of features.
For example, a virtual space definition can provided that
models the acoustic properties of a virtual environment
within which the music session is to virtually take place. A
two-dimensional (2D) and/or three-dimensional (3D) graphi-
cal virtual position selection and placement mechanism of
musician avatars can also be provided through each MN in the
session. The user can also be allowed to adjust attributes of an
avatar representing the user, including adjustments to height,
number of microphones (e.g., sound sources), relative posi-
tion of each microphone, and/or other desired attributes. A set
of preconfigured musician attributes is also provided (e.g.,
drummer, pianist, guitarist, and/or other musician) and can be
selected by the user. Further, once a performer/listener is

US 2015/0256598 Al

positioned and assigned within the virtual space, the per-
former/listener may elect to listen to the session from another
virtual position (e.g., out-of-body experience) within the vir-
tual space. This virtual positioning is useful to understand the
sound a virtual user at that location in the virtual environment
will receive. The system also remembers and uses the HRTF
data set or selected by a user, and this HTRF data is used in
whatever virtual location the user selects.

[0222] The performer/listener position also provides a
positional information for the source for the audio in the
virtual space. An acoustic processor for each MN can then use
this data along with the VU (volume unit) level information to
compute a direction and volume received at another position
within the virtual space. The acoustic processor can also
compute reflections and any emulated ambient noise (e.g.
crowd noise) as well as other sound effects, as desired, and
mix these effects into the audio heard by the user at the MN.
[0223] As part of the user interface, a user is allowed to
select the HRTF that best approximates their physical and
auditory characteristics and/or any other desired HRTF. This
user selection can be provided through a graphical menu
selection or by asking the user for some basic measurement
information of his/her physical features (e.g., head size, ear
positioning, etc.). Alternatively, the user can be given instruc-
tions on how to determine physical measurements (e.g., tak-
ing and processing pictures of themselves) so that their physi-
cal dimensions can be obtained. Also, if a user has his/her
HRTF measurements taken professionally or these HRTF
measurements are otherwise determined, these HRTF data
can be uploaded to MN or to the session server described
herein. The server can be store this data and send it to the
acoustic processor for the user when the user is listening in 3D
mode.

Concert Broadcast Modes

[0224] The live music produced in a music session may be
broadcasted. The following modes of broadcast can be uti-
lized within the interactive music system embodiments: low
latency live broadcast, high fidelity live broadcast, 3D virtual
reality broadcast, 3D concert podcast, and/or other broadcast
modes.

[0225] Low Latency Live Broadcast. In this broadcast
mode, the server system operates as a broadcast server and
assigns one of the MNs in the session to serve as a broadcast
stream provider. The assigned MN encodes the output audio
for the broadcast and sends it to the broadcast server. The
output audio encoded at the MN selected as the stream pro-
vider is a mix of the incoming peer streams from the other
MNss in the session and its local audio input. As the peer audio
streams are transmitted and processed with low-latency as
described above, the audio recovered from those streams may
have the effects of packet loss, jitter queue starve/overflow
artifacts, and/or other artifacts. As such, the low latency
broadcast stream will also carry these artifacts, but will also
be arelatively “instantaneous” representation of the live event
being performed within the music session.

[0226] FIG.11Aisablock diagram of an example embodi-
ment 1100 for a low latency live broadcast (e.g., low-latency
concert broadcast mode). At an MN, the local audio inputs
captured by an instrument ICP and the peer audio packets
received through the network are mixed together using a
music mixer. The mixer output is provided as a speaker output
for the MN and is also provided to an encoder for output to the
network as a live broadcast. The server operates as a broadcast

Sep. 10, 2015

server and makes the live broadcast available for streaming
through the network to one or more broadcast clients.

[0227] High Fidelity Live Broadcast. In this broadcast
mode, the input audio at each MN is encoded, packetized and
transmitted via a reliable network protocol, such as TCP
(transmission control protocol) to the broadcast server. Each
audio packet is also configured to carry a timestamp of the
session reference/master clock. In the server, the audio
frames are recovered, and the timestamps are used to syn-
chronize the audio frames. The synchronized audio are then
processed through a server audio mixer, and the resulting
audio is encoded and broadcasted. The server audio mixer
could be a full function digital audio workstation (DAW),
which can process the streams in a variety of ways, such as by
adding audio effects, adding other audio tracks, and/or oth-
erwise processing the streams. This cloud-based DAW can
also be provided as a paid service that users may lease. The
high fidelity streams can also be sent to a separate user-
specified server that controls the mixing process and pro-
duces the audio stream to be broadcasted.

[0228] FIG. 11B is a block diagram of an example embodi-
ment 1120 for a high fidelity live broadcast mode (e.g., high-
quality concert broadcast mode). The high quality audio
inputs captured at each MN are uploaded through the network
to the server. The server decodes the audio frames from each
MN with a frame decoder and mixes the audio frames
together. Timestamps are added to the audio frames at each
MN using a reference clock, and the server uses these times-
tamps to align the audio frames from each MN for purposes of
mixing the audio frame together. An encoder receives the
mixed output and generates an audio stream output that is
high quality. The server then operates as a broadcast server to
make this high quality live broadcast available for streaming
through the network to one or more broadcast clients.

[0229] 3D Virtual Reality Broadcast. As described earlier,
the system provides an interface where a virtual space is
defined and the musicians are assigned or select positions
within the virtual space. This virtual positioning can also be
provided to users to allow the “purchase” of specific seats or
locations in the virtual space for the performance. For
example, a user can be allowed to select a position from which
he/she would like to listen to the event. As describe above, a
binaural processor is embedded in the listen application and
the user provides or selects their HRTF data. Additionally, the
user may use a MTB system that provides head tracking and
therefore provides the ability to have an even more realistic
experience. The high fidelity tracks may be relayed directly to
the listener device for acoustic processing, or the acoustic
processor instance may be a service on a server. The acoustic
processor uses the HRTF and motion tracking data to produce
a final stereo mix that this specific to that user.

[0230] It is noted that the performers default position is
what the session creator defines when the session is created.
However, a listener is allowed the ability to “move” them in
the virtual space. This movement provides a more personal
experience to the user. A listener can also be assigned a fixed
seat in the audience or can be free to “move” around. For
example, a user who hears better from one ear than another
may elect to be on a particular side of the virtual space for the
performance. The concert environment may also be fixed by
session creator, or the user may be allowed to change the
concert locale or environment (e.g., change from Carnegie
Hall to Madison Square Gardens).

US 2015/0256598 Al

[0231] 3D Concert Replay or Podcast. The high fidelity
tracks generated through the processes described above can
be stored and replayed. As such, a user may have a 3D concert
experience at any time through the stored audio tracks. For
example, the stored 3D concert can be made available as a
podcast that can be downloaded to a device, such as a tablet or
phone, and replayed.

[0232] Large Group Music Session

[0233] Inapurely P2P music session, the number of audio
streams grows linearly with number of participating MNs. In
part, this linear growth has three effects: (1) the bandwidth
requirement grows linearly as the number of peer-to-peer
MNs grow within the session, (2) at each MN the number of
audio decoder instances and the compute power requirement
grows linearly, and (3) the user interface can become cluttered
with large numbers of MNs.

[0234] To enable large groups (e.g., choirs, bands, orches-
tras, big bands, and other large musical groups) to interact in
a music session with good user experience, this following
process can be used to enhance the user experience:

[0235] 1. Each MN in the session determines a latency
score with all other MNs in the session.

[0236] 2. Each MN is tagged with a color representing
the role the node will play in the session (e.g., red for
violins, blue for trumpets, etc.)

[0237] 3. The system sorts MNs in the session into
groups based upon common parameters (e.g., color,
latency, etc.). Let G, represent the i* group.

[0238] 4. Intra-group audio, which is audio for MNs in
the same group, flow as normal such that each MN peer
sends audio packets to every other MN peer in the group,
directly or via a proxy server.

[0239] 5. Inter-group audio, however, is configured to
flow in such a manner that cycles are not created. This
cycle free flow is controlled by using a spanning tree
algorithm to create a cycle free communication tree
between the groups.

[0240] 6. One MN in each group is used to communicate
with another group. The pair of MNs that serves the role
of connecting adjacent group A with group B in the
spanning tree are preferably selected based on the mini-
mum latency between nodes in the groups. FIG. 12A
described below illustrates this wherein MN2 in Group
A and MN4 in Group B have been determined to have
the lowest latency of all node-to-node connections
between MNs in Group A and MNs in Group B after
those connections have been probed.

[0241] 7. Thesystem max latency (S)is the highest audio
latency. The system max latency (S) can be determined,
for example, by performing an exhaustive breath first
search from the MNs in the group session, and summing
the inter-group link latency. If the maximum allowed
latency in the interactive music system is T,,,, then
grouping of nodes is considered non-optimal if S>T, ., +.
If S<T,,,, the grouping of nodes is accepted and can
further be considered a final solution.

[0242] 8. When S>T,,,, then the system attempts to
reduce latency by adjusting the groupings. For example,
the color grouping constraint can be removed, and the
system can place MNs in groups until the system finds a
grouping that meets the desired latency threshold (e.g.,
S<T,,,x). Many algorithms can be employed for achiev-
ing this type of graph analysis to determine if solutions
is possible. Because the number of nodes in the group

Sep. 10, 2015

session will typically be relatively small (e.g., tens of
MNss), the computation processing needed to search for
and/or solve for a grouping solution is not prohibitively
expensive to obtain or provide.
[0243] FIG. 12A is a diagram of an example embodiment
1200 for MNs within two groups selected as bridges for
inter-group communication. For the embodiment 1200, a first
group (GROUP A) 1202 includes two music nodes (MN1,
MN2) 1204/1206, and a second group (GROUP B) 1212
includes two additional music nodes (MN3, MN4) 1214/
1216. MN1 1204 and MN2 1206 communicate with each
other as part of GROUP A 1202, and MN4 124 and MN3 1216
communicate with each other as part of GROUP B 1212.
MN2 1206 is the bridge for GROUP A and communicates
with MN4 1214, which is the bridge for GROUP B.
[0244] FIG. 12B is a diagram of an example embodiment
1250 for inter-group communications within a larger inter-
connected group (e.g., IMN clusters for a large group). For
the embodiment depicted, four groups (GROUP A, GROUP
B, GROUP C, GROUP D) are interconnected through clouds.
Further, within each group, the interactive music nodes
(IMN5s) are also interconnected through clouds. It is also
noted that the clouds represent one or more networks, such as
network 110, through which network communications can
occur.
[0245] The MNs that serve as bridge between groups are
configured to perform additional functions. The incoming
audio stream from peer MNs in the group (R,,) are decoded
and mixed together by the bridge MN to form a group audio
stream (R,) such that R,=ZR,. The bridge MN is then
responsible for sending this mix to the other group with
respect to which it is acting as a bridge. The bridge MN must
also send its own input audio I=2R ,, to two paths, namely to
its intra-group MNs and to the bridge MN with the other
group for which it is acting as a bridge.
[0246] MN2 inGroup A and MN4 in Group B are described
above as bridge MNs. The streams leaving MN2 from Group
Ato Group B through MN4 in Group B is representedas S,
9= ,4+R,,. Similarly, MN4 in Group B sends audio to
Group A through MN2 in Group A, and this audio is repre-
sented as Sz, 42 =L5a+R 5.
[0247] If the bridge node sends the audio input and intra-
group audio as distinct audio frames (e.g., frames containing
L5, and frames containing R, ,), the receiving bridge MN can
differentiate what is from the bridge MN and what is from the
other MNss in the group. If the bridge node produces a final
mix so that it sends only that mix audio (e.g., frames contain-
ing S 5 5.4y, the receiver bridge MN is unable to distinguish
and therefore control mix of bridge node audio separately
from its intra-group audio.
[0248] A bridgenode also performs the role of receiving the
audio from its peer bridge node and relaying that audio to its
intra-group peers. So the audio output by bridge MN2 in
Group A to its peers in Group A can be represented as
G57ZR +S 54, 42 Where ZR , is the set of inputs at A2.
Similarly, bridge MN4 in Group relays audio from its peer
bridge node along with its inputs to the peers in Group B as
represented by Gz, =ER;+S 5. 54y Where ZRy, is the set of
inputs at B4.
[0249] High Latency Inter-Group Bridge. If A2 decodes
S 54, 42 and then mixes it with its inputs, it will process these
packets through a jitter queue. The involvement of the jitter
queue implicitly connotes a higher latency than if the packets
were not decoded and mixed. However, doing this mixing will

US 2015/0256598 Al

result in single stream of audio packets coming from A2 to its
intra-group peers. This results in a lower bandwidth than
sending distinct packets. The peers also will not be able to
distinguish A2 input audio from that which came from the
other group for which A2 is a bridge.
[0250] Inter-Group Cut-Through Mode. Rather than
decode and mix the audio from the group stream, A2 may
simply relay the packets to its group members. It may also
aggregate its sending payload with payload of packets
received in the inter-group stream. This operation does not
require the S 5, ., packets to the processed through a jitter
queue and is therefore a lower latency operation. In this mode,
the audio frames for inputs to A2 remain distinct from those of
the relayed group for which A2 is a bridge. As such, the
intra-group peer MNs can represent and control the mix of
these streams distinctly. This mode is a higher bandwidth than
the high-latency relay mode.
[0251] A similar analysis may be done for group B and
node B4. The following can be concluded:
[0252] 1. The outgoing inter-group peer stream miXx,
namely S 5 g4y andS g, 4o, fromabridge nodes A2and
B4 respectively, is produced from mixing the intra-
group streams received at those nodes. Because these
streams are processed through jitter queues, the output
streams experience latency. It is also noted that there is
no point in doing cut-through of these frames because
cut-through would simply collapse the notion of groups.
[0253] 2. The relay of inter-group audio to peers intra-
group may incur no delay at the bridge node, if cut-
through mode is use. If not, the stream incurs jitter queue
processing delay.
[0254] IfK groups are along a communication path, then if
the average jitter processing delay at the bridge nodes is
JQ,.4 then the added delay introduced in session if cut-
through mode is used at bridge nodes is (K-1)/Q,,,. If high
latency mode is used, then added latency is 2(K-1)/Q,,,, at
the added benefit of lower bandwidth.
[0255] Large Group Director. Generally, in a large musical
performance, a director/conductor leads the large group. In
this large group implementation, one NM is marked or des-
ignated as the session director. As described below, a MN
performer may provide hinting status that is shown at MNs in
the session. Hinting status allows a performer to send non-
auditory queues to MNs in the session. Whereas only the
intra-group members hint status is shown in session view at a
MN, the director MN status is shown at all MN's in the session.
Although inter-group hint status could also be shown, intra-
group hints are typically what are of interest to musicians
within a large group.

Musician Hinting within Music Session

[0256] When musicians are physically in the same space,
they pass many non-verbal cues to each other. When
immersed in a virtual environment as created by the interac-
tive music system embodiments described herein, musicians
will likely be unable to convey such cues effectively even if
video of themselves are streamed among them. As such, a
hinting system and related hinting device can be used to so
that musicians can broadcast status/cues to their peers in the
music session.

[0257] FIG.13Aisablock diagram of an example embodi-
ment 1300 for a music hinting system that allows non-verbal
cues to be communicated among MNs within a music session.
For embodiment 1300, each MN includes a display 1302,

Sep. 10, 2015

1312, and 1322, respectively, that displays information for its
own music tracks and the peer music tracks within the music
session. A visual hint element is also displayed for each MN
within the music session. Looking to display 1302, for
example, information for the MN1 track, the peer MN2 track,
and the peer MN3 track are shown. In addition, a visual hint
element is displayed for each of these tracks. Each visual hint
element can be, for example, a circle or button image that
visually changes (e.g., changes color, changes texture,
changes brightness, etc.) based upon hint cues selected by the
user. The other displays 1312 and 1322 can be similar to
display 1302. Further, hinting devices 1304, 1314, and 1324
are coupled to each of the MNs, respectively, to provide
hinting control for a user. As shown with respect to FIG. 13B,
the hint devices 1304, 1314, and 1324 can be, for example, a
hinting device with pedals or buttons that are engaged or
selected by a user, such as through the action of the user’ s
foot. The hinting devices 1304, 1314, and 1324 communicate
user hinting selections to the MNs, and these hinting selec-
tions cause changes in the visual hint elements. Each MN also
communicates its hinting selections to the other MNs in the
music session, and these hinting selections are used at each
MN to adjust the visual hint elements associated with each
MN, respectively.

[0258] FIG. 13B is a diagram of an example embodiment
1350 for a foot-controlled hinting device. This embodiment
1350 has two pressure sensitive pads as well as ten different
selector buttons and control buttons (e.g., power, etc.). The
hinting device electronically communicates with the MN
using one or more wired or wireless communication connec-
tions (e.g., USB connections, Bluetooth connection, etc.).
[0259] The example embodiment 1350 for this hinting
solution preferable has the following properties and capabili-
ties:

[0260] 1. It is operated by a person’s foot. This is ideal
because generally musicians have at least one foot not
engaged for the vast majority of instruments played.

[0261] 2. It communicates and works with the MN dis-
play, showing status sent by a musician on the display in
low-latency.

[0262] 3. The input/output from the device is processed
through the MN with low-latency (e.g., response time of
less than 10 ms).

[0263] 4. It is simple to use.

[0264] For the embodiment depicted, a footpad control
with 2 pressure sensitive pads is used, although 4 pads or
other numbers of pads could also be used. Each pad can also
include a light by or around it that indicates whether the pad
is pressed and by its brightness representing how hard it is
being pressed. The system has a foot rest pad, which has a
rumble motor in/under it. Other haptic feedback mechanisms
may also be used. An attention light is also present. The
rumble motor or attention light is used to convey events
specific to this user. The rumble/attention notifies the user that
a peer has updated their status by pressing a pad. A micro-
controller circuit in the pad converts the pressures sensor
information and sends it over USB (or similar) IO interface to
the MN host system communicating with the pad. The MN
also sends down control commands to the pad, such as rumble
on (and how hard)/off, attention on/oft, and/or other com-
mands. The user, for example, may choose to disable rumble
and only rely on the attention light.

[0265] When a user presses one or more of the pads, the
pressure and the pad number is sent through the 1O interface

US 2015/0256598 Al

to the MN. The MN broadcasts this information to the peers
in the session. The status display of the user is updated in the
display and if the recipient has a hint-system attached, the
attention/rumble command is sent to it.

[0266] The system throttles the frequency at which rumbles
are sent to the users foot to rate calibrated by the user, but
activates the attention indicator for each event. The musician
then looks at the status of the peer, and based on a previously
agreed interpretation among them, the peer acts accordingly.

Packaged Tunes Service (MAAS—Tunes Sessions)

[0267] Music as a Service (MAAS)—Overview. When
considering a distributed, real-time music service of this kind
for interactive music sessions, the needs of different classes of
musicians can be considered. Musicians who are members of
a band can easily use and benefit from this kind of music
service by simply joining and participating in freeform ses-
sions because they already play regularly with their band
mates, and because they have a shared repertoire of the band’s
music that they all know how to play together. Likewise,
independent professional and/or highly accomplished musi-
cians can benefit from this kind of music service because they
have a strong network of other musicians to connect with, and
because they can either jam in freeform mode, or they have a
deep set of common music on which to draw while playing in
sessions.

[0268] In contrast, amateur musicians, who far outnumber
the more accomplished and professional musicians above, are
not well suited to participate in a freeform, unstructured
music service of this nature. They do not have well-estab-
lished musical relationships with others, and they do not share
a common repertoire of music pieces, nor do they have the
confidence or the ability to just get online and start trying to
play with others in a freeform environment.

[0269] The “music as a service” (MAAS) embodiments
described herein in part address the needs of the amateur
musician by providing a packaged tunes service with a num-
ber of features including Packaged Tunes, Packaged Tune
Sourcing, Packaged Tune Library, Local Play, Online Match-
making, and Online Play, which are described further below.
Professional musicians, accomplished musicians, and band
members can also take advantage of these innovations.
[0270] FIG. 14 is a block diagram of an example embodi-
ment 1400 for a packaged tunes service environment that
allows users to access and download packaged tunes for use
with a MN or within a music session. The server stores one or
more packaged tunes with each packaged tune including one
ormore tracks recorded from music sessions or obtained from
other sources. The server operates as a tunes session server to
allow MNs to download a tune including its respective track
recordings. For the embodiment depicted, MN1 has down-
loaded the tracks for TUNE1 and TUNE3; MN2 has down-
loaded the tracks for TUNE2 and TUNE3; and MN3 has
downloaded the tracks for TUNE1 and TUNE2. The server
can also provide these downloads only after a purchase trans-
action has occurred, such that an MN is required to purchase
a tune prior to being allowed by the server to download the
tune and its track recordings. Further, the user interface at
each MN is used to display information related to the various
features of the tunes sessions service described below.
[0271] In part, the tunes session service allows users to
produce and share or sell songs. The tunes session service also
allows a user that has acquired a song to playback the song
(e.g., tracks played back in sync, concurrently and mixed)

Sep. 10, 2015

while suppressing (e.g., muting) one or more tracks within the
song. The playback may occur at a MN or any device capable
of playing audio. The user(s) may also practice playing the
tracks that are suppressed.

[0272] Packaged Tunes (Songs and Tracks). Packaged
tunes (e.g. recorded tracks associated with songs or musical
performances with one or more recorded tracks being asso-
ciated with each song or musical performance) represent a
structured form of content for a given piece of music. The
content and data associated with each packaged tune may
include:

[0273] Recorded Tracks—These are the track-level
recordings of each instrumental and/or vocal component
that together make up the master mix of the complete
musical performance.

[0274] Master Mix—This is the master mix recording of
the complete musical performance. It is optional and
may or may not be included in the content.

[0275] Music Notation— This is the music notation asso-
ciated with each individual track (i.e., the musical notes
to be played and lyrics for any parts to be sung). This
may be displayed in sheet music form, or via an ani-
mated presentation of notes that are displayed on a musi-
cal staff in industry-standard form, with the display of
the notes timed to correspond to the moment at which
they should be played, or one or more other presentation
styles.

[0276] Meta Data—This content includes data such as
the name of'the piece of music, a description of the piece
of music, the genre of the piece of music, the date the
original recording was released, the artists and instru-
ments played on the original recording, and other pieces
of data as well.

[0277] Unique ID (normalized)—Each packaged tune
can be associated with a unique identifier (ID) to nor-
malize the music library for the purpose of both com-
merce and royalty tracking, and for online matchmak-
ing. The unique ID can be used to identify each packaged
tune within the system.

[0278] Packaged Tune Sourcing. Packaged tunes may be
sourced in different ways, depending on the varying desires of
the parties involved. For example, the following are examples
for how the content can be sourced:

[0279] Original Performer. In one implementation, the
packaged tune is licensed from the copyright holder in
its original mastered and commercialized/distributed
form. For example, a packaged tune could be licensed
for “Freebird” by the band Lynyrd Skynyrd. In this
instance, a custom license would be negotiated, and the
musician would have access to the track-level masters of
each instrumental and vocal performance that together
make up this piece of music. The music notation for this
piece of music may or may not be included in the content
licensed from and delivered by the copyright owner.

[0280] Cover Bands. In another implementation, if the
music service operator prefers, or if the copyright holder
does not wish to grant such a license, the music service
operator may source packaged tunes from cover bands
using a crowd-sourcing content model to aggregate a
packaged tune music library. These cover bands may use
the distributed music service to generate recordings for
the packaged tunes, or may record in any manner they
choose, and the music service operator may then upload
the tracks that make up a packaged tune into the server

US 2015/0256598 Al

systems for the service, regardless of the recording
source. Music notation for the piece of music may or
may not be included in the content provided by the cover
band. In this case, the music service operator would pay
a mechanical royalty to the copyright owner, and may or
may not also pay a royalty of some kind (up-front, per
unit sold, a combination of up-front and per-unit, or no
royalty and instead the provision of greater exposure on
the service) to the cover bands that generate the recorded
tracks for the packaged tune.
[0281] Packaged Tune Library. As a user of the music ser-
vice downloads each packaged tune (either with or without a
purchase of a license to such packaged tune), that packaged
tune is added to the personal packaged tune library ofthat user
in the music service. As such, the tunes service is aware of
which packaged tunes each user has downloaded.
[0282] Local Play. Once a packaged tune has been down-
loaded by a user, that user can enter a local session alone, and
can play along with the recorded tracks that make up the
packaged tune. Unlike some other aspects of the interactive
music service described herein, the user MN is playing alone
within the local play and is not communicating with other
user MNs across the network. The local play can include one
or more of the following features through the MN used by the
user:

[0283] Automatic Substitution—Depending on which
instrumental tracks a user has configured and specified
in the music service that he/she will play, when the user
enters a local session, the music service will mute the
appropriate recorded tracks automatically. For example,
if a packaged tune has recorded tracks for electric guitar,
bass guitar, and drums, and the user has a track config-
ured to play his electric guitar, then the service will
automatically mute the electric guitar recorded track so
that the user can play live in place of this recorded track.
The user may also choose to unmute the recorded track,
or half-mute the recorded track to have an audible guide
for the track that they are playing, optionally if desired.

[0284] Music Notation Display—The user may choose
to have the music notation displayed for any track they
are performing optionally, in any of the presentation
styles noted earlier, or if they prefer to play by memory,
they may opt not to display any music notation while
playing.

[0285] Play Scoring—The music service may also
optionally offer a play scoring service that measures
how well the user plays his track or tracks, by monitoring
which notes are played, when the attack for each note
takes place in time, and how long each note is held. The
play scoring service can then produce an aggregate play
score that indicates how well the user can play each
track. This play score can be used by the user to under-
stand how they are doing as they improve through prac-
tice, and can also be used by the music service in the
online matchmaking feature.

[0286] Online Matchmaking. Once a user has confidence in
his ability to play certain tracks in a packaged tune alone or
otherwise chooses to do so, the user can participate in online
tunes sessions to play packaged tunes with other users of the
interactive music service, combining the interactive music
session service and the packaged tunes service. Online
matchmaking is used to facilitate online music performances
with packaged tunes by allowing users to find tunes sessions
within which to participate. For example, online matchmak-

Sep. 10, 2015

ing suggests tunes sessions that a user may join through one or
more of the following features:

[0287] Packaged Tune Sessions—When a user goes
online, the user may create a special kind of session, a
session specific to a particular, unique packaged tune.
For example, a user could create a tunes session for the
performance of the packaged tune “Freebird” by Lynyrd
Skynyrd. In this case, the tunes session would be a
packaged tune session that carries the unique ID for that
specific packaged tune. Only users who have down-
loaded this specific packaged tune into their packaged
tune library would be able to join this specific packaged
tune session.

[0288] Packaged Tune Library—A user interested in
joining a packaged tune session can then scan or search
available packaged tune sessions. This search feature
would automatically determine what packaged tunes are
in the user’s packaged tune library and would look for
existing packaged tune sessions that are configured with
the unique IDs of packaged tunes that are in the user’s
packaged tune library. A listing of the packaged tune
sessions that match the packaged tunes in the user’s
packaged tune library can then be presented in an user
interface as prospective packaged tune sessions to join.

[0289] Packaged Tune Lobby—As an alternative to one
user creating a packaged tune session for one specific
packaged tune, users interested in playing in packaged
tune sessions may join a lobby area. The packaged tunes
in each user’s packaged tunes library within the lobby
area are analyzed to determine their packaged tune IDs,
and these packaged tune IDs are then compared to the
packaged tune IDs for the packaged tunes within pack-
aged tunes libraries for the other users in the lobby, as
well as all the existing packaged tune sessions that have
been set up for a specific packaged tune. The user can
then scan a listing of all existing and prospective ses-
sions, and can either join an existing packaged tune
session, or can join one or more users who have not yet
created/instantiated a packaged tune session. Joining
other users will create/instantiate a packaged tune ses-
sion with these multiple users around a specified pack-
aged tune that all of these users have in their packaged
tune library.

[0290] Automated Track Analysis—In suggesting and
displaying tunes sessions, the online matchmaking also
considers the instrumental and/or vocal tracks that a user
has selected to play within any packaged tune session.
For example, if a packaged tune session has tracks for
electric guitar, rhythm guitar, bass guitar, lead vocal,
backup vocal, and drums, and if an existing packaged
tune session already has live tracks from other users who
are playing drums and electric guitar, then a user inter-
ested in joining who wants to play the bass guitar track
will see this track within the packaged tune session as a
viable option for joining the session. However, if the
user instead wants to play the drums track that is already
being played, this packaged tune session will not been
seen by the user as a viable option for joining the session.
Similarly, if in the lobby area, two users who both want
to play the electric guitar track for a packaged tune that
both share in common in their packaged tune library
would not be matched as potential users for a common
tunes session.

US 2015/0256598 Al

[0291] Network Scoring—The network scoring
described above is can also be used as a filter in the
selection and ordering of packaged tune sessions avail-
able for a given user, as it will favor the presentation
order of packaged tune sessions that are expected to
provide a higher level of user experience, such as pack-
aged tune sessions having low latency, low jitter, etc.

[0292] Play Scoring—Users may also see through the
user interface the play scores of other users for the pack-
aged tunes in each packaged tune session, enabling users
to better select packaged tune sessions to join. For
example, sessions having other users of comparable skill
levels are likely good selections for a user to join in order
to avoid either frustration or embarrassment for the user
within the session. In addition to seeing the displayed
play scores, the user may also select to filter out pack-
aged tune sessions with users based upon specified play
scores. For example, only users having play scores
above or below a selected play score will be shown.
Other play score parameters may also be selected such
as ranges of play scores within which a user must fall in
order to be shown.

[0293] Online Play. When a user enters a packaged tune
session with other users, the automatic substitution and music
notation display features described above with respect to the
local play feature are also used and available for online play.
Also, during or after a packaged tune session ends, each user
in the packaged tune session is allowed to rate the perfor-
mance capabilities of the other users in the session. AS such,
impartial third party ratings of a user’s skill level can be
generated and stored with respect to the specific packaged
tune that was part of the tunes session. These user ratings may
then be used in the online matchmaking feature described
above in addition to machine-based play scores that may be
generated for a user.

[0294] Track Recordings and Skew. As described with
respect to high fidelity recording above, during a session,
each MN produces one or more high fidelity tracks (R ;) that
are uploaded to the server. As described above, these tracks
are skewed in time relative to each other, based on the time
delay in starting the recording at each location. To produce a
final cut of each track, it is preferable to correct or adjust the
start time skew in the high fidelity audio files. As also
described above, an accurate reference clock, common to all
MNss in the session is used to timestamp each recording start
with that reference clock time. Similar to the example above,
with this reference clock timestamp, the algorithm below can
be used to produce final tracks that are synchronized:

[0295] 1. Sort the high fidelity recordings (R ;) by times-
tamp
[0296] 2. The oldest timestamp represents the recording

that started latest (t,;)

[0297] 3.Foreachrecording (R), the delay (t,,,) relative
to the latest start time is represented as t,, =t o; p~tsryrz
where tg,,» 5 18 the record start time for R.

[0298] 4. The delay (t,,) is the time offset in recording
R, that must be skipped to bring the recording in align-
ment with that of the recording having the latest start.

[0299] 5. The final track recording (TR,,) for each
recording is produced by discarding t,,, worth of data
from the recording and then writing the result to the final
track file. Automated or manual calibration can also be
used to tune this process.

25

Sep. 10, 2015

Each final track represents one or more instrument or voice
that together as a set represents a song or performance.
Assume N tracks are in a song. Then the final song track
(TR,,,,s) can be represented as a set of the individual tracks
within the song such that TR, ,~(TR1,,, TR2,,, ... TRN,,}.

Tunes Service with Music Session. Further, using

ai’ ai

[0300]

the tunes service with respect to a music session, a set of
tracks may be played back for instruments that that are not
available in the session while muting another set of tracks for
instruments that are available in the session. Two examples
for modes of doing song track playback are now described for
the set of tracks (TR,,,,.) that are played back to users in a
music session.

[0301] Single Source Track Playback. The single source
track playback mode is where one MN is the source of the
song tracks being played back for all users in the session. This
MN plays and streams the song tracks to other nodes in the
session in low-latency and mixed with other input tracks at the
MN. In this mode, the song playback tracks will experience
all the effects of jitter and packet loss in the network being
experienced by the MN.

[0302] Distributed High Fidelity Track Playback. In this
distributed high fidelity track playback mode, the content of
the tracks of the song are securely distributed to a prescribed
set of MNs in the session. The set of MNs receiving the tracks
can be determined by a number factors such as DRM (digital
rights management) policies, MN capability, users’ prefer-
ence, other factors, and/or a combination of these factors. As
with the live track recordings (R,,), the interface for the
session shows a common and session global track control for
each song track at each MN location, enabling any user in the
session to control the track volume, effects, mute, etc. for the
whole session.

[0303] In this high fidelity mode, the song tracks at each
MN are played back only to as outputs for that MN. Because
the tracks are played back locally, the following benefits are
provided: (1) no artifacts are introduced due to processing
through a jitter queue and/or due to network artifacts, (2) high
fidelity is provided because the tracks are not compressed for
streaming, and (3) no latency is introduced.

[0304] This high fidelity mode requires that playback of
tracks be started and played synchronized if synchronization
is desired, for example, in a music session. The process
described above for the distributed metronome can also be
used for this synchronization. When a user presses the “play”
button, a “play start” command is sent to the MNs in the
session directing them to start playing. The following
describes an example embodiment for this process:

[0305] 1. Each MN knows the network latency between
it and every MN in the session, as described above, and
the maximum latency (t,,,) for its peer-to-peer connec-
tions can be determined from these latencies.

[0306] 2. Let the reference clock time for the MN at
which the play start is initiated be represented by tz .
The initiating MN broadcasts a “play start” command to
all peer MNs within the session indicating that the start
time for the “play” is to be tg;yrrtrrr+2tiay TWice
the maximum latency (2t,,,+) is used as a conservative
approach, although a lower start time bound of
toryrrtrEF ey cOUld also be used, as well as other
later start times.

[0307] 3. A MN receiving the play start command waits
until its reference clock time (1) is about the designated
start time (e.g., t=to,, ~). The accuracy of local clocks

US 2015/0256598 Al

are typically on the order of 1 ms. Ifthe designated start
time (tg;,z7) is earlier than the current reference clock
time (t) for the MN receiving the start commend (e.g.,
torarr<t), then the command is late and the receiving
MN re-broadcasts a new start time with an increase to
the 2x multiplier for its maximum latency (t,,,;) to
compensate for unexpected lateness of the command.

[0308] 4. Clocks atthe MNs are assumed to be relatively
matched in drift. Thus, the starting time is important for
them to remain in synchronization.

[0309] 5. Audio from the high fidelity tracks are played
only to that MN output. Thus the track playback is with
no latency and is synchronized across the session.

[0310] Match Making and Socialization Using Tunes Ses-
sions. As described herein, after practice playing tracks in
songs, a user may desire to play the track in a session with
other musicians. Similarly, a session creator may desire to
find users capable of playing particularly tracks of a songs in
a session. The online matchmaking service allows discovery
and matching of capability and need for song and track play-
back in music sessions. The following are further examples of
how this service can be utilized:

[0311] 1. Musicians list song tracks that they are capable
of playing. They also indicate their competency level.

[0312] 2. Session organizer list songs that they plan to
play in a session and tracks they are seeking musicians to
play. Session organizer also indicates the time/date of
the session.

[0313] 3. A musician can search for sessions matching
his/her capability/interest within a geographic zone.
He/she is also allowed to subscribe to the session.

[0314] 4. Session organizer can search for musicians
matching the session need. The session creator may
invite, accept/reject subscriptions. Once the need of the
session is met, the creator may close the session from
accepting further subscriptions.

[0315] 5. The system can rank the subscriptions to the
listed session by a variety of one or more factors, which
can include:

[0316] Friendship—the subscriber is a friend of the
session creator.

[0317] History—the subscriber has played the track
for the song in previous sessions.
[0318] Competency—the user indicated competency
compared with the requested session competency.
[0319] Latency—The expected or actual latency
between the session creator designated MN and sub-
scriber MN.

[0320] User scoring/ranking—based on the score of
the subscriber on this track as well overall score.
Users are enabled to score each other.

[0321]

[0322] Embodiments will now be further described with
respect to APPENDIX A, APPENDIX B, and APPENDIX C
below. APPENDIX A includes further details of MN regis-
tration and control with respect to network-connected
devices, with respect to a network connection service (Net-
work as a Service—NAAS) to provide lower latency network
communications for music sessions. APPENDIX B below
provides further functional block diagram examples for the
interactive music system and related music nodes (MNs) and
the server system(s). APPENDIX C below provides example
APIs (application program interfaces) that can be utilized.

Other—one or more other selected factors.

26

Sep. 10, 2015

Appendix A—Network Data Streams and NAAS
(Network as a Service)

[0323] The MN application works by sending and receiv-
ing audio stream data from one or more other MN application
instances located in the network. Audio data is encoded and
sent to multiple recipients and audio data is received from the
same recipients, decoded, and mixed before being played.
Because latency is important, care is taken to minimize
latency perhaps at the expense of increased network band-
width. One aspect of that is sending smaller chunks of audio
data more frequently.

[0324] There are two sources of audio, one being music
from an instrument or microphone, and the second perhaps
being a chat sent from a microphone/headset. The chat audio
is optional.

[0325] Inone embodiment, the music stream includes up to
256 kilobits/second of captured and encoded audio data,
chopped up into frames as small as 2.5 milliseconds (400
frames/second). This frame size provides for about 82 bytes
per frame (assuming a byte is 8-bits). An optional chat stream
an also be included with an additional maximum of 64 kilo-
bits/second of audio data, or 21 bytes per frame. Headers or
other wrappers are used around these two frames to distin-
guish their purposes (e.g., type, seq (sequence number), uid
(user identifier)) for 9 bytes. So, as one example, 82+9 bytes
are used for music, and 21+9 bytes are used for chat, leading
to a total of 91 bytes for music and 30 bytes for chat or
altogether 121 bytes. An IP/UDP (internet protocol/user data-
gram protocol) header wrapped around that is an additional
28 bytes, for a total packet payload of 149 bytes per frame,
400 frames per second. The total resulting bit rate is 477
kilobits/second (from a combined input of 320 kilobits/sec-
ond) for an increase in bandwidth of 49% due to overhead. It
is noted that this is one example packet structure that can be
used for network communications for the interactive music
system embodiments described herein, and other packet
structures could also be utilized.

[0326] The overhead matters as it increases our transmis-
sion time and load on network equipment. Many home users
have asymmetric network connections which have a smaller
upload capability than download. Often a home user is lim-
ited to only 1-3 megabits/second for upload. Corresponding
download capabilities range from 5-30 megabits/second. If a
jam music session is being carried on with 5 users, four of
them remotely located, that means our total data upload
requirement is 497*4=1,908 kilobits/second. This is very
close to the limit of many a home user’s upload capability, and
out of reach for a significant fraction.

[0327] Also, for this five piece band and using the maxi-
mum frame rate, sending 1,600 frames per second are being
sent up to the internet from each member. Experiments have
shown that this frame rate can swamp most home networking
equipment. When frames come too fast, frame processing
gets bogged down. This can cause delays in passing the
frames through to the internet from the local network. Tem-
porary bursts can often be absorbed by buffering the excess
frames and sending them as-soon-as-possible, but when
frame rates are persistently higher than can be handled by
buffering, another solution is employed: drop the excess.
Example embodiments are described above for buffering
using a jitter queue and dropping packets at the end of time
windows.

[0328] While frames are being sent, the same 1,600 frames
per second are being received, and likewise at 1,908 kilobits/

US 2015/0256598 Al

second. This load will further degrade the performance of the
home networking equipment. Often the result of this degra-
dation is that frames are delayed or dropped outright. This can
cause the audio streams to lose synchronization or sound
fuzzy or even choppy. Late frames are the same as dropped
frames, further degrading audio quality.

[0329] Finally, once frames are on the internet they can take
complicated and variable paths to their destinations. Two
users both on Time Warner’s network in Austin will have a
different path (and perhaps shorter) between them than two
users where one is on one ISP (e.g., Time Warner) and the
other is on another ISP (e.g., AT&T). And if the users are in
different cities then that adds additional path variability.
Finally, equipment congestion, failures, and maintenance
might introduce even more path variability. Different paths
have different capabilities and loads as well. Path variability
matters because each path induces delay. For a given path, the
delay may vary minute to minute, even second to second.
[0330] Thus, items to be concerned with for the network
communications for the participants within the interactive
music system include: (1) bandwidth, (2) delay, and (3) reli-
ability.

[0331] So, NAAS (network as a service) embodiments
described herein are used to improve upon the server services
described above by reducing latency for communications
within the interactive music system. While some latency still
exists for audio encoding and decoding, the upload and down-
load bandwidth requirements can be better managed using the
NAAS embodiments, and the network path variability can be
better managed for a large class of users.

Bandwidth

[0332] As indicated above, bandwidth is increased by 49%
due to encoding of the audio, breaking it up into frames, and
then wrapping it to form network communication packets.
Bandwidth is also multiplied it by a factor that corresponds to
the number of other participants in the session. Let’s look at
each step:

[0333] 1. Encode—Audio encoding likely can not be
significantly adjusted. Any attempt to compress audio
more than it is already compressed will likely add delay
(e.g., once the audio is presented to the networking
layer).

[0334] 2. Wrap (e.g., type, seq, uid)}—Wrapping is useful
to separate audio streams from different sources and
manage missing and out of sequence frames.

[0335] 3. Wrap with UDP—A protocol, such as UDP, is
used to transmit the data across the internet. It is pos-
sible, however, to carry more data in a single UDP frame
to eliminate 28 bytes per frame of excess wrapper. This
variation is described in more detail below.

[0336] 4. Upload to each participant—This has a large
effect as it is not just a percentages bigger, it is integral
factors bigger. When there are more than two partici-
pants in a session, the same exact data is being sent more
than once to the different participants. If this data can be
sent once and have it be resent or multicast to the other
participants, bandwidth needs and latency could be
greatly reduced.

[0337] Upload performs these steps in the order specified.
The obvious thing to pick on, the biggest, is step 4. So if step
4 can be optimized by utilizing some sort of multicast capa-
bility, as many MNs as desired can be supported within a
music session and only require 400 frames per second upload

Sep. 10, 2015

at a rate of 477 kilobits/second. This is well within the capa-
bility of most home internet users. This is a dramatic savings
in both upload bandwidth and frame count. Also, more home
routers can handle this lower frame rate, and so the number of
potential users increases.

[0338]

[0339] Download performs these steps (more or less) in the
reverse order. Multiple participants across the internet
uploads and sends audio data to, and the local MN subse-
quently downloads this data, unwraps it, and decodes the
audio streams. The MN then combines the various audio
streams into a single audio stream which is played out at the
MN, such as through a speaker. As indicated above, the user
has the option of controlling the volume of each individual
participant’s contributions to what is being heard.

[0340] The obvious best case would be to download a
single audio stream and play it out of a speaker. This would
require significant processing in the internet at server systems
to completely unwrap and decode the audio streams from
each participant, combine them into a single stream, taking
into account volume settings for each stream, then encode and
rewrap it before downloading to a participant. As with upload,
this would support (assuming infinite computational ability in
the internet) as many participants as would be liked in a
session and only require 400 frames per second download at
arate of less than the 477 kilobits/second upload requirement.

[0341] The computational ability in the internet server sys-
tems is called into question, of course, as it adds additional
delay and expense, plus difficulty accounting for each partici-
pant’s volume settings and mechanisms for manipulating
those, etc. Also it requires code in the internet server systems
to decode and encode audio, mix it, wrap and unwrap, etc.
This is not an easy capability to deploy and maintain, debug,
etc.

[0342] For one embodiment, during each 2.5 millisecond
slice of active session time, one frame from each participant
will be received on average. These frames are combined
together in the internet NAAS server systems, and these com-
bined frames are downloaded from the server systems by the
MNs as a single UDP packet. This combining of frames
reduces download frame count from the server systems, and
also reduces bandwidth requirements.

[0343] The audio data from frames (e.g., audio data from
audio data frames or audio plus video data frames) in packets
received from multiple MNs can also be combined together
by the NAAS server systems, and this combined audio data
can be downloaded from the NAAS server systems to the
MNss as a single UDP packet. This combining of audio data
from communicated frames reduces the packet rate that is
used to for processing by the MN router and also reduces
bandwidth requirements on the receiving MN Internet service
provider (ISP).

[0344] To quantify these savings, assume four remote par-
ticipants generating 121 bytes of UDP payload per frame (see
above). That’s a total of 484 bytes of payload if these frames
are mashed together. Adding a UDP wrapper, this becomes
512 bytes total size, or 1,638 kilobits/second. This is not a big
improvement over 1,908 kilobits/second for normal non-op-
timized download (14%). But, only download 400 frames/
second are downloaded instead of 1,600, which is of course a
quite dramatic improvement. Home routers will be happier.

[0345] So, rather than sending payloads immediately to the
intended recipient, the server waits to see if it can gatherup a

This is called upload scattering.

US 2015/0256598 Al

few more to group together. However long it waits, it is
delaying the earliest packet by that much.

[0346] This is called download aggregation.
Delay
[0347] Another factor affecting our audio quality is delay.

Thetotal delay of a frame is the total of all the delays along the
path from one participant (A) to another (B). This includes the
following at least:

[0348] Encoding delay (2.5 ms)
[0349] Processing to wrap and transmit (small delay)
[0350] Transmit to home network equipment (4 ms)
[0351] Transmit from A to A’s ISP (variable delay)
[0352] Wander from A’s ISP to B’s ISP (variable delay)
[0353] Transmit from B’s ISP to B (variable delay)
[0354] Transmit from home network equipment (4 ms)
[0355] Processing to receive and unwrap (small delay)
[0356] Decoding delay (jitter buffer delay)

[0357] The big delays here have to do with the ISP delays

and internet delays. If A and B are both in the same locale and
use the same ISP, this is as good as it can get (except if they are
in the same house).

[0358] FIG.15A isablock diagram of an embodiment 1500
including two music nodes (A, B) communicating with each
other through an ISP.

[0359] Likely the data moves from A to B on equipment
located on private high speed networks operated by the ISP.
Still the delay could be 5-10 ms if located in the same locale.
[0360] When A and B are one the same ISP in different
locales, then the fun begins. Topology and style varies greatly
among different ISP, but it is likely that some of the data will
traverse some public networks. Some ISP might tie each
locale to the internet directly, while another may tie all their
private networks together and then tie them to the internet at
a few key points.

[0361] When A and B are on different ISP it looks a lot like
the above case, but perhaps even more complicated. Suppose
A is on Time Warner in Austin and trying to route data to B on
Comcast in Austin. What if A’s data first hits the Internet in
Dallas and then has to get to Minneapolis to get into Comcast?
Data moving across town goes from Austin to Dallas to Min-
neapolis and then back to Austin. And who’s to say that data
moving across the internet from Dallas to Minneapolis is a
single hop?

[0362] FIG.15Bisablock diagram of such an embodiment
1510 including two music nodes (A, B) communicating with
each other through different ISPs. For the embodiment
depicted, A is located in Austin and uses Time Warner as its
ISP, which has its direct internet backbone connection sys-
tems in Dallas. B is located in Austin and uses Comcast as its
ISP, which has its direct internet backbone connection sys-
tems in Minneapolis.

[0363] To address these delays, NAAS server systems can
be located at strategic points on both Time Warner’s and
Comcast’s networks in Dallas. Data trying to move between
the two in Austin might merely need to utilize the NAAS
server in Dallas to jump directly from Time Warner’s network
to Comcast’s network. Customers in Dallas would benefit the
most, perhaps, but users within a few hundred miles of Dallas
might certainly be better off than otherwise.

[0364] FIG. 16 is a block diagram of an embodiment 1600
including NAAS server systems 1602 connecting two inde-
pendent ISPs. For the embodiment depicted, A is located in
Austin and uses Time Warner as its ISP, B is located in Austin

Sep. 10, 2015

and uses Comcast as its ISP. However, unlike FIG. 15B, the
NAAS server systems 1602 provide network connection ser-
vices between the two different ISPs and thereby reduces
latency of communication between the music nodes (A, B).
[0365] This is called path optimization.

[0366] A more advanced system might allow user A to hit
one of our servers near his locale, the data flows across a
backbone network to another of our servers near B’s locale,
and is then delivered to B.

[0367] This can be called advanced path optimization.
Setting Up a Session Without NAAS
[0368] Just to put it all in context, let’s look at how a

non-NAAS session is setup. The first participant creates a
session and then invites the other two to join. In the end, they
are each sending audio streams to the other two:

[0369] FIG. 17 is a block diagram of an embodiment 1700
including three music nodes (A, B, C) communicating with
each other and the server systems to set up a non-NAAS
music session.

[0370] A is the name of a participant, as are B and C. The
solid line between each pair of participants indicates the
bi-directional flow of data. To accomplish this setup, here are
the necessary steps:

[0371] 1. A starts the session
[0372] 2. B joins the session
[0373] 3. Bistold about A
[0374] 4. Aistold about B
[0375] 5. Cjoins the session
[0376] 6. Cis told about A
[0377] 7. Cis told about B
[0378] 8. A s told about C
[0379] 9. Bis told about C

As each participant is “told” about another, the told partici-
pant begins to send data to the participant it was told about.

[0380] Inalike manner, the session is torn downin a similar
set of steps:

[0381] 1. C leaves the session

[0382] 2. A s told that C left

[0383] 3. Bis told that C left

[0384] 4. B leaves the session

[0385] 5. A istold that B left

[0386] 6. A stops the session

There are fewer steps because when C leaves, C doesn’t need
to be told anything about A or B, etc. It is noted that example
message sequences for starting and stopping a non-NAAS
session are described below.

[0387] FIG. 20A is a swim lane diagram of an example
embodiment 2010 for a music session start by music node A
where music nodes B and C then join the session. The swim
lane diagram includes the interactive music system server and
music nodes A, B, and C.

[0388] FIG. 20B is a swim lane diagram of an example
embodiment 2020 for a music session stop where music
nodes B and C leave the session. The swim lane diagram
includes the interactive music system server and music nodes
A, B,and C.

How NAAS Works

[0389] Tobeeffective, NAAS server systems are preferably
directly connected to as many ISP networks as are important
in a given locale. This means one interface for each ISP
network (e.g., ISPs for MNs 1-4 in FIG. 18A discussed

US 2015/0256598 Al

below) and thus one address per ISP network as well. In order
to determine which address of a NAAS server a participant
should use, it is useful to know the ISP network for the
participant and match that to the ISP’ s network address on a
NAAS server. If the participant’s ISP is not represented (e.g.,
ISP for 5 in FIG. 18A below), then one way to determine
which address is best is to test them all. Given the difficultly
of “knowing” and “matching,” it seems better to just have the
participant test each address of a representative sample of
nearby NAAS server systems to determine the proper address
to use. It is further noted that the network interfaces for the
NAAS server systems include both physical interface imple-
mentations or virtual interface implementations or combina-
tions thereof.

[0390] FIG.18A isablock diagram of an embodiment 1800
including NAAS server systems 1602 providing communica-
tions among four of music nodes for a music session. The
NAAS server systems 1602 have direct connections to the
ISPs for music nodes 1, 2, 3 and 4, but does not have a direct
connection to the ISP for music node 5.

[0391] The participant will send data to the best address of
the NAAS, and the NAAS will forward the data to the other
participants in the session using the address for each of them.
Data coming from the NAAS to a participant will be “from”
the best address at the NAAS for that participant.

[0392] Let’s suppose there are three participants, A, B, and
Cinasession. A and B are on ISP network 1, while C is on ISP
network 2. A and B will use the NAAS address for ISP
network 1, while C will use that for ISP network 2:

[0393] FIG.18B is ablock diagram of such an embodiment
1820 including three music nodes (A, B, C) communicating
with each other through two different ISPs. Because A and B
are on the same ISP, the NAAS server systems 1602 use one
direct connection (N1) for communications to/from A and B.
For C which is on a different ISP, the NAAS server systems
1602 use another direct connection (N2) for communications
to/from C.

[0394] WhenA sends datato N1, NAAS sendsittoBandC.
Data sent by B to N1 will go to A and C, and data sent by C to
N2 will goto A and B. Data sent to A from NAAS will be from
N1, likewise N1 for B, and N2 for C. This is the situation
when all three of A, B, and C are authorized to use NAAS.
Here it is in tabular form:

If Received Using Then Send Using
From Interface To Interface
A N1 B N1
A N1 C N2
B N1 A N1
B N1 C N2
C N2 A N1
C N2 B N1
[0395] The first row is read as “if data is received from A

using interface N1, then NAAS should send it to B using
interface N1.” The information in row 3 is a mirror image of
the information in row 1. This fact can be used to compress the
tables (not shown above).

[0396] Note also that the received data is matched against
only the first two columns of each row. Where multiple rows
are matched, all are triggered. In the table above, “received
from A/N1” matches two rows, one “then send to B/N1” and
one “then send to C/N2.”

Sep. 10, 2015

[0397] Asthe play session s started and participants join it,
the NAAS server system is updated with these rules. As
participants leave, the rules corresponding to the participant
are removed. Any data arriving from a source not in the table
is ignored.

[0398] Note that A only sends one copy of the data to
NAAS. NAAS forwards two copies, one to B and one to C.

[0399] The NAAS server can be implemented with or with-
out download aggregation, if desired. For example, download
aggregation cannot be provided, and upload scattering and
path optimization can be provided by the NAAS server sys-
tems. As such, when not all the participants in a session are
enabled touse NAAS, then those participants do not getto use
the features of NAAS directly. They will continue to send
packets individually to each other participant. But instead of
sending to NAAS participants directly, they will send to the
appropriate NAAS address for such participants instead.

[0400] For traffic that goes through the NAAS server sys-
tem, single stream up packet communications and multicast
out packet communications to other MNs in the music session
can be used. This multicasting saves bandwidth and packet
rate on the sending MN, and can also enable delivery of
bandwidth hungry payload like video, which could otherwise
require too much bandwidth to send to other MNs in the
music session, for example, due to typically asymmetric
bandwidth (e.g., constrained uplinks)

[0401] It is further noted that to connect MNs over greater
distances via latency optimized links, MNs may connect to
different NAAS server systems, and the different NAAS
server systems can be connected with a high-speed backbone,
or direct communication links can be provided between such
NAAS server servers. It is also noted that if all MNs in a
session are connected (e.g., proxied) through a NAAS server
system, the MNs can have the NAAS server capture and
process audio or video plus audio recordings, download them
after the session to the MNs, and/or upload them automati-
cally to another network destination (e.g., YouTube, etc.). It is
further noted that if MNs in a session are connected(e.g.,
proxied) through a NAAS server system, the MNs can have
the NAAS server mix the audio data from the MNs at the
NAAS server system and send back the fully processed and
mixed audio data (e.g., audio mix) to each MN in the music
session. This avoids each MN from processing and mixing the
streams of all MNs to form mixed audio. In addition, it is
noted that the NAAS server system can be configured to store
a recording of the audio mix within one or more data stored
systems, and the NAAS server system can then broadcast the
audio mix recording to one or more network destinations. It is
still further noted that the NAAS server systems are prefer-
ably placed at IXPs (Internet Exchange Points) and directly
connected to these IXPs. An IXP is the network infrastructure
device or devices where the ISPs physically cross connect
with each other and communicate peer traffic across their
networks. As such, if a NAAS server system is physically
co-located at an IXP, this NAAS server system will effec-
tively be cross connected to the major ISPs that service a
region through this IXP, and NAAS proxied latency will be
minimized for MNs communicating through the NAAS
server system.

[0402] FIG. 19 is a block diagram of an embodiment 1900
including three music nodes (A, B, C) where only A is a
NAAS participant.

US 2015/0256598 Al

[0403] Supposing that B and C are not NAAS participants,
and only A is a NAAS participant. The above table is modified
as follows:

If Received Using Then Send Using
From Interface To Interface
A N1 B N1
A N1 C N2
B N1 A N1
C N2 A N1
[0404] The rules relating to B sending to C and C sending to

B are absent. B and C must continue to send directly to each
other:

[0405] In this way A sees a reduction in his upload band-
width utilization, while B and C don’t. A’s data sent to B and
C also enjoys path optimization, as does B and C’s data sent
to A. But B and C’s data sent to each other is not path
optimized, and neither B nor C sees any reduction in upload
bandwidth utilization.

[0406] Note that if B is a NAAS user as well as A, then C
will reap full benefits of being a NAAS member without
having to pay. In general this is true whenever N-1 partici-
pants are NAAS users.

[0407] Asdescribed in the session setups below, automated
discovery of lowest latency path from an end user MN to one
interface on a NAAS server system can be determined, for
example, by ping testing against all the interfaces/ISPs across
some subset of the NAAS server systems in different regions.
This automated discovery can also be repeated over time that
the interface used by the MN is dynamically adjusted over
time based upon the latency determination. Further, NAAS
server systems pinged as part of this latency testing can be
limited by parameters such as geographic location and related
distances in order to avoid NAAS servers where geographic
distances makes them an unlikely low latency candidate. Dif-
ferent NAAS server systems can also communicate with each
other as part of this latency testing.

[0408] There is a possibility that, since A and B are on the
same ISP network, that A and B would be better off sending
directly to each other. A is now faced with a tradeoff: enjoy the
benefit of upload scattering, or use the better path to B. In
order to make that choice, A would need to test whether
sending to B via N1 was better than sending directly to B. If
the choice was made to use the direct path, NAAS would have
to be told to remove any entries from the configuration table
involving A to and from B. A would also want to test B’s
address first to see if it was indeed the best path to use.

[0409] Thus, each MN in a music session can make an
automated determination of latency for peer-to-peer commu-
nications and latency for NAAS server communications (e.g.,
proxied latency) to see which latency is better with respect to
communications to each other MN in the music session. The
lowest latency communications can then be used for the
music session. [tis noted that the NAAS server latency can be
determined for two MNs (e.g., MN1, MN2), for example, by
adding MN1-to-NAAS latency plus NAAS-to-MN2 latency
(e.g., equals NAAS proxied latency MN1 to MN2). This
NAAS server latency can then be compared with latency for
simple peer-to-peer (MN1-to-MN2) latency. The lower
latency path can then be selected and used for communica-
tions for the music session.

Sep. 10, 2015

[0410] Itis further noted that if possible, this session traffic
can be routed based on lowest latency connection determina-
tions (e.g., peer-to-peer path or NAAS proxied path), and this
can then be adjusted if packet rate or bandwidth constraints
cause the lower latency path to be unsatisfactory for session
communications. For example, if packet rate and/or band-
width constraints present communication problems, an intel-
ligent tradeoff can be made between the different connection
paths (e.g., between the peer-to-peer path and the NAAS
proxied path) so that communications stay within bandwidth
and/or packet rate constraints while reducing average or
median latency across the connections in the session. Further,
MNs may continuously check the latency to NAAS/peers and
may elect, or be directed by the NAAS server, to dynamically
migrate connections to another NAAS or from NAAS mode
to peer-to-peer mode (or vice-versa) if network conditions or
NAAS load parameters or other parameters indicate these
adjustments are to be made. For example, a ping test can be
followed by a decision to migrate that causes an MN to leave
and re-join a music session with the new parameters in effect.
Other variations could also be implemented while still taking
advantage of this session migration, and a variety of session
migrate protocols can be used to make a determination of
when an MN migrates and/or is instructed to migrate by the
server.

Session Setup with NAAS
[0411] Setting up a session with NAAS (everyone enabled)
looks like this:
[0412] 1. A starts the session
[0413] 2. A told to test NAAS addresses (N1, N2, N3,
N4)
[0414] 3. A determines that N1 has the lowest latency
[0415] 4. B joins the session
[0416] 5. B told to test NAAS addresses (N1, N2, N3,
N4)
[0417] 6. B determines that N1 has the lowest latency
[0418] 7.NAAS is told to add a rule (A, N1, B, N1)*
[0419] 8. Bis told about A (N1)**
[0420] 9. A is told about B (N1)

[0421] 10. C joins the session

[0422] 11.C told to test NAAS addresses (N1, N2, N3,
N4)

[0423] 12. C determines that N2 has the lowest latency

[0424] 13. NAAS is told to add a rule (A, N1, C, N2)

[0425] 14. NAAS is told to add a rule (B, N1, C, N2)

[0426] 15.C is told about A (N2)

[0427] 16. C is told about B (N2)

[0428] 17. A is told about C (N1)***

[0429] 18. B is told about C (N1)

[0430] * The notation “add a rule (A, X, B, Y)” means
“add a rule that when data shows up from A using X it is
sent to B using Y and vice versa.”

[0431] ** The notation “told about A (X)” means “told
that A has joined the session and audio data should be
sent to address X.”

[0432] *** When A is told about B (N) and later C (N), A
only needs to send to N once. NAAS will then send the
datato both B and C. The jam software should only send
to whatever unique collection of addresses it has.
(NAAS users will only have the one address they picked,
but for non-NAAS users not all the addresses will be
unique.)

US 2015/0256598 Al

[0433] FIGS. 21A-B provides a swim lane diagram of an
example embodiment for a music session start by music node
A where music nodes B and C then join the session and where
all three nodes (A, B, C) are NAAS participants. The swim
lane diagram includes the NAAS server, the interactive music
system server, and music nodes A, B, and C. Also, it is noted
that embodiment 2110A in FIG. 21A is connects at the bot-
tom to the top of embodiment 2210B in FIG. 21B.

[0434] FIG. 21C is a swim lane diagram of an example
embodiment 2120 for a music session stop where music
nodes B and C leave the session and where all three nodes (A,
B, C) are NAAS participants. The swim lane diagram
includes the NAAS server, the interactive music system
server, and music nodes A, B, and C.

Session Setup with Mixed NAAS and non-NAAS

[0435] Setting up a session with A enabled for NAAS while
B and C are not (changes are bracketed and italicized):

[0436] 1. A starts the session

[0437] 2. A told to test NAAS addresses (N1, N2, N3,
N4

[0438)] 3. A determines that N1 has the lowest latency

[0439] 4. B joins the session

[0440] 5. B told to test NAAS addresses (N1, N2, N3,
N4)

[0441] 6. B determines that N1 has the lowest latency

[0442] 7. NAAS is told to add a rule (A, N1, B, N1)

[0443] 8. Bis told about A (N1)

[0444] 9. A is told about B (N1)

[0445] 10. C joins the session

[0446] 11.C told to test NAAS addresses (N1, N2, N3,
N4)

[0447] 12. C determines that N2 has the lowest latency

[0448] 13. NAAS is told to add a rule (A, N1, C, N2)

[0449] 14. [NAAS is told to add a rule (B, N1, C, N2)]
[0450] * because B and C are not members

[0451] 15. Cis told about A (N2)

[0452] 16. Cis told about B [(N2)]

[0453] 17. A is told about C (N1)

[0454] 18. B is told about C [(N1)]

[0455] Notethat NAAS was not told about B to/from C, and

B was told to send to C instead of C (N1), and vice versa for
C sending to B instead of B (N2).

[0456] FIGS. 22A-B provide a swim lane diagram of an
example embodiment for a music session start by music node
A where music nodes B and C then join the session and where
only music node C is a NAAS participants. The swim lane
diagram includes the NAAS server, the interactive music
system server, and music nodes A, B, and C. Also, it is noted
that embodiment 2110A in FIG. 21A is connects at the bot-
tom to the top of embodiment 2210B in FIG. 21B.

[0457] FIG. 22C is a swim lane diagram of an example
embodiment 2120 for a music session stop where music
nodes B and C leave the session and where only music node
C is a NAAS participants. The swim lane diagram includes
the NAAS server, the interactive music system server, and
music nodes A, B, and C. L

Message Sequence Diagrams

[0458] Example control messages and sequences for setup
and tear down are provided with respect to FIGS. 20A-B,
21A-C, and 22A-C as indicated above. It is noted that for
these swim lane diagrams testing is shown once, and then left

Sep. 10, 2015

it out of the main diagrams for simplicity. Start and stop are
similar and are also shown once then omitted for simplicity.
Further, it is noted that these swim lane diagrams provide
example embodiments, and variations could be implemented.
[0459] Looking to the message sequence diagrams, FIG.
20A shows the session management messages that flow
between music nodes whenno NAAS is involved. In this flow,
there are three music nodes A, B and C. Each MN have a
unique session id respectfully Aid, Bid, Cid. When a MN
sends a message, the message includes its IP (Internet Proto-
col) address/name, session id and the id of the peer that it
wants the message to be delivered. The server uses this infor-
mation to validate the source and destination before relaying
the message to the destination music node. In FIG. 20A, A
sends a “start session (Aid, A)” message to server. The server
uses the information in the message to instantiate a session
object with id S, with the properties that A requested. The
server returns S to A. Properties of the session can include the
genre of music, the skill level of musicians that may join the
session, whether the session is public or private, etc. A session
object in the server is searchable by users looking for music
sessions to join.

[0460] After the creation of session S, by A, user at music
node B discovers the session by one of several methods. The
server may sends a notification message (e.g., email or instant
message) to user at B, inviting the user to join the session. The
user at B may also search the server and discover the existence
of session S. After the user at B discovers the existence of
session S, the server provides ajoin session link for S that user
at B clicks to request to join the session. Thus, a user at music
node B sends a join session message from B to the server as
“join session (S, Bid, B)”. The server validates the existence
of'S and that user at music node B has the rights to join it, and
if true, adds music node B to the session and returns OK. If B
is not allowed join the session, no further communication
occurs to B with respect to the session.

[0461] At this point, the server notifies music node A that
music node B has joined the session with the message to A,
“join session (S, Bid, B)”. Concurrently a message is sent to
music node B with the message “join session (S, Aid, A)”.
When these messages are received at A and B respectfully,
they now have each other’s session id and music node name/
IP address. This information is used by music node B to send
a message via the sever to music node A as “start audio (A,
B)”. Similarly music node A sends a message to B with
request “start audio (B, A)”. Both A and B use the server to
negotiating the message flow needed to allow them to send
audio to each other.

[0462] Similarly to the user at music node B, a user at music
node C discovers session S and requests to join with a mes-
sage to the server, “join session (S, Cid, C)”. If C is allowed to
join S, then the server notifies A and B that C has joined the
session with message “join session (S, Cid, C)”. Concur-
rently, C is notified to join sessions with B and A with “join
session (S, Aid, A)” and “join session (S, Bid, B)”. The
successful execution of the join session messages is followed
by messages “start audio (A, C)”, “start audio (B, C)” initi-
ated by C to A and B respectively. Similarly A sends message
“start audio (C, A)” to C, and B sends “start audio (B, C)” to
C.

[0463] Music nodes A, B and C are now in session S.
[0464] FIG. 20B shows the graceful process of leaving a
session when no NAAS is involved. A graceful departure
from a session implies that the user at the music node (MN)

US 2015/0256598 Al

requested to leave. An ungraceful departure happens when
the music node (MN) is no longer able to communicate with
the music node (MN) peers or with the server. In this case, the
heart-beat messages that flow from the music node to the
server stops and the server proceeds to remove the music node
from the session by sending messages to nodes that are still in
the session that carry the same message as if the unresponsive
node had requested to leave the session.

[0465] The user at music node C requests to leave the
session S. Music node C sends a message to the server “leave
session (S, Cid, C)”. The server then sends messages to A and
B respectfully, “left session (S, Cid, C)”. Concurrently, C
sends messages to A and B to stop audio messages. C sends
“stop audio (C, A)” to A and to B it sends “stop audio (C, B)”.
The server removes C from session and nodes A and B
removes C as a peer that they will communicate with in the
session.

[0466] Similarly, when music node B leaves the session, it
sends to server “leave session (S, Bid, B)”. The server then
sends message “left session (S, Bid, B)” to A. Music node B
also concurrently sends “stop audio (B, A)” to music node A.
Music node A removes B from the set of peers it will com-
municate with. The server removes B from the music nodes in
the session S.

[0467] Finally, music node A leaves the session and being
the creator of the session, it may choose to terminate the
session with a message “stop session (S, Aid, A)”. Otherwise
it sends message “leave session (S, Aid, A)” to the server.
Typically, the stop session is implicit, when the last node in
the session leaves the session. When the server receives this
message, it deletes the session object and by definition, the
session ceases to exist.

[0468] FIG. 21A shows the message flow for a music ses-
sion setup where a NAAS server is involved. Here the NAAS
server has four ISP (Internet Service Provider) terminations
T1,T2,T3 and T4 respectively. The NAAS server is hosted at
an Internet exchange point, where it can have direct connec-
tion into networks of various ISP vendors, represented by
connections T1, T2, T3 and T4. The number of ISP termina-
tions can be more or less. Logically, the NAAS may be
viewed as being a super music node, that is has access rights
to all music sessions. The service uses business logic to filter
user music nodes that may participate in a session with the
NAAS.

[0469] Inthis flow, music node A starts a session by sending
a “‘start session (Aid, A)” message to the server. I[f music node
A is not allowed to use the NAAS, the logic described before
in FIG. 20A is followed. If A is allowed to use the NAAS, then
the server sends a message to the NAAS informing it that A is
joining the session. This message is called a setup (A). The
semantics of a setup message is that A should invoke algo-
rithm that test which ISP termination (T1-T4) on the NAAS
gives the lowest latency of communication between the
NAAS and music node A.

[0470] Ifthe NAAS is able to accommodate more clients, it
replies to the setup message to the server with “ok (T1, .. .,
T4)”. The NAAS registers music node name A as a node that
it is authorized to communicate. The server forwards a mes-
sage to music node A to test which interface on the NAAS it
has the lowest latency communication, “test (11,12,T73,T4)”.
Music node A invokes a network latency-testing algorithm,
and the NAAS generates start session update message to
server with latency information from the NAAS, “start ses-
sion (Aid, A, (ST1,ST2,ST3, ST4))”. The server instantiates

Sep. 10, 2015

the session S and replies OK to A. The server relays this
information to the NAAS as “assign address (S, A, (ST1, ST2,
ST3, ST4))” which caches this information by associating the
interface with the lowest music node A and session S. If two
or more interfaces have the same delay, an algorithm is used
to select one (e.g., load balancing, lower mac address, etc.). It
also binds the interface address with the lowest latency to A,
as the preferred address that it will use to send messages to
music node A. This interface is referred to as NA. The NAAS
replies OK to successfully caching and binding from a
“assign address” message.

[0471] Later, the user at music node B discovers session S
and initiates a request to the server with “join session (S, Bid,
B)”. Similar to A, the process described for a “test (T1,T2,
T3,T4)” is invoked with music node B to find the lowest
latency to the NAAS. Music node B ultimately replies to the
server with “join session (S, Bid, B, (ST1, ST2, ST3, ST4))”
which results in message “assign address (S, B, (ST1, ST2,
ST3, ST4))” sent to NAAS. The NAAS determines which
ISP/network interface is the lowest latency path for commu-
nicating with B and binds that interface with B and session S.
This interface is referred to as NB. It also uses the session id
S, to recognize that music nodes A and B need to communi-
cate and add a forwarding rule “add rule (S, A, NA, B, NB)”.
This rule authorizes messages to flow between node A and B
in session S via interface NA and NB. The NAAS replies OK
to the “assign address” message and the server then relays OK
to B’s “join session” request. The reply to B carries the NAAS
network interface for A that B should use to communicate
with music node A.

[0472] Concurrently, the server sends message “join ses-
sion (S, Bid, NA)” to music node A and “join session (S, Aid,
NB)” to music node B. Music nodes A and B do not send
messages directly to the network address of each other.
Rather, they send messages to each other via the NAAS,
which serves as a packet relay. As such, at this point the
NAAS instructs both A and B to start sending audio with
command “start audio (NA, A)” and “start audio (NB, B)”.
Music node A sends audio messages to B by sending to the
NAAS interface IP address NA. The NAAS receives the mes-
sage from A, determines the message destination is music
node B, and relays the message to B by sending it out interface
NB to music node B IP address. Similarly, messages from B
to A are sent to the NAAS address NB. The NAAS determines
the destination of the message is music node A and sends the
packet out network interface NA to music node A. Thus,
audio flows between A and B relayed via the lowest latency
path they have to the NAAS.

[0473] FIG. 21B illustrates the message flow that occur
when music node C requests to join a session that includes
music nodes A and B which are already in a session with a
NAAS as shown in FIG. 21A. As before, the server instructs
C to perform a latency test against the NAAS with test (T1,
T2,T3,T4)*. Music node C then reports the result to the server
which then sends “assign address (S, C, (ST1, ST2, ST3,
ST4))” to the NAAS server. The NAAS binds the correspond-
ing lowest latency interface NC to node C. The NAAS uses
the session id S, to determine that C is joining the session
involving music nodes A and B, and adds forwarding rules
“add rule (S, A, NA, C, NC)” and “add rule (S, B, BA, C,
NC)”. This authorizes the flow of packets between music
nodes A, B and C.

[0474] The server then notifies A and B that C has joined the
session with “join session (S, Cid, NA)” and “join session (S,

US 2015/0256598 Al

Cid, NB)” sent to A and B respectively. Similarly, messages
“join session (S, Aid, NC)” and “join session (S, Bid, NC)”
are sent to music node C. Thus C send messages to NAAS
address NC to communicate with A and B.

[0475] With these rules in place, “continue audio” mes-
sages are sent to nodes A and B to “start audio” messages to
node C. It is noted that because the NAAS handles packet
relay to music node C, music nodes A and B do not need to do
anything further to send audio to music node C. Any audio
packet by any music node in session S will be broadcasted by
the NAAS to the member music nodes using the bounded
interface for communicating with the destination music node.
Music node C is also told to start sending audio to A and B by
sending to NAAS address NC. The server command to music
node C is “start audio (NC, C)”.

[0476] A hybrid mode of operation is where the server may
direct music nodes to use peer-to-peer latency test. If the
latency between peers is lower than the path via a NAAS
server, the server may direct the peers to use the non-NAAS
mode of communication, described in FIGS. 20A and 20B.
[0477] FIG. 21C shows the message flow when music node
C leaves a session involving a NAAS. Music node C sends
message “leave session (S, Cid, C)”. The message is relayed
to the NAAS, which translates this as an action to drop the
rules that allow communication with music node C in session
S. Thus, the NAAS executes commands “drop rule (S, A, NA,
C, NC)” and “drop rule (S, B, NB, C, NC)” and finally
releases the binding of node C to interface NC with command
“release address (S, C, NC)”.

[0478] After each drop rule command, messages are sent to
the corresponding music node to “stop audio (C, NC)”.
Finally, the server notifies the music nodes that C has left the
session with “left session (S, Cid, NA)” and “left session (S,
Cid, NB)” sent to music nodes A and B respectively.

[0479] Similarly, when music node B leaves the session,
messages to remove the rules in NAAS that allow communi-
cation with B are issued, and the bindings interface binding
for B is dropped. Finally, music node A leaves the session by
requesting a “session stop (A, Aid, A)”. This causes all
resources (e.g., forwarding rules and interface bindings) asso-
ciated with session S at the NAAS to be released. The server
also destroys the session object S.

[0480] FIGS. 22A-B illustrate the message flows when a
mix of NAAS authorized and non-authorized music nodes are
in a session. If all clients in a session are not authorized to use
the NAAS service, then they will use the peer-to-peer mes-
sage flow described earlier for FIGS. 20A and 20B. If all
music nodes are NAAS authorized, the communication setup/
tear down flow is described in FIGS. 21A and 21B. When a
mixed authorization of music nodes access to a NAAS exist,
it may cause the automatic elevation of the privileges of
non-authorized nodes, so that a QoS/SLA (Quality of Ser-
vice/Service Level Agreement) guarantee to the authorized
music node can be met.

[0481] Looking back to FIGS. 22A-B, an initial case is
shown where music nodes A and B are in a session that does
not involve a NAAS. This result may be because they are not
authorized, because the direct path latency between them is
better than via a NAAS, or because of other sets of business
logic or operational conditions (e.g., NAAS server is down
for maintenance). The flow used for A and B to enter the
session is as described earlier for FIG. 20A. When music node
C attempts to join the session, the server determines that the
NAAS should be used. Music node C is directed to perform

Sep. 10, 2015

latency against the NAAS interfaces T1, T2, T3 and T4.
Ultimately an “assign address (S, C, (ST1, ST2, ST3,ST4))”
is executed at the NAAS and music node C address is bound
to lowest latency interface to the NAAS as NC.

[0482] The server recognizes that music node C is joining a
session involving music nodes A and B that are in a non-
NAAS session. As music node C is now bound to the NAAS,
the server directs music nodes A and B to perform network
test against the NAAS. This results in music node A and B.
The message sequence shows the flow for music node A first
joining C in the session (FIG. 22A), followed by a similar
sequence to music node B (FIG. 22B). The message sequence
is as described earlier in FIG. 21A for music node B and C
joining music node A in a NAAS session. FIG. 22B shows the
latter part of the session join sequence.

[0483] FIG. 22C shows the leave session sequence, which
is similar to the case described in FIG. 21B. The last music
node to leave the NAAS session destroys the session.

[0484] One further implementation is that the last NAAS
authorized music node to leave the session causes the session
to destroyed and rebuilt as non-NAAS music session.

Appendix B—Further Example Embodiments

[0485] This appendix provides further functional block dia-
gram examples for the interactive music system and related
music nodes (MN5s) and server system(s).

[0486] FIG. 23A is ablock diagram of an example embodi-
ment 2300 for internode session managers and data flow for
the interactive music system including peer connections and
session path transport communications. The MNs 112, 114,
and 116 each include a music session manager that receives
local channel (e.g., music track) information and uses peer
connection information and peer connection block to com-
municate with the other MNs. These communications can be,
for example, implemented using UDP packets, using TCP/
UDP packets communicated through a session bridge asso-
ciated with the server 102, and/or through some other net-
work communication technique. Each MN 112, 114, and 116
also includes a session transport module that communicates
with the server and each other through HTTP/TCP (hyper text
transport protocol/transmission control protocol) packets.
The session manager communicates with the session trans-
port module and uses a channel view composer to display
channel (e.g., music track) information to the user. The server
102 is connected to the MNs 112, 114, and 116 as a cloud-
based service through the network 110.

[0487] FIG. 23B is a block diagram of an example embodi-
ment 2350 for a peer connection block. A peer socket pro-
vides a communication interface for network communica-
tions with other MNs. A peer connection manager uses peer
connection information to determine the communication pro-
tocol to use. For example, TCP can be used for communica-
tions through the server as a proxy, and UDP can be used for
direct peer-to-peer communications. Input audio and chat
data is received from ICPs and is formatted with additional
session information for transport to the other MNs. Received
audio packets from the other MNs are parsed and output to the
receive audio data processor. Encryption of outgoing packets
and decryption of incoming packets can also be used. A
latency probe module generates probe and response packets
for the latency probe operations for the MN.

[0488] FIG. 24 is a block diagram of an example embodi-
ment 2400 for music and chat communications from an MN
to other MNs within a music session. Each of the MNs 112,

US 2015/0256598 Al

114, and 116 include a monitor mixer for chat channels, ICPs
or a bonding ICP (ICPB), and a playout module. Chat chan-
nels and music channels are output by each MN. Peer chat
channels are processed by the monitor mixer, and peer music
channels are processed by the playout module. For the
embodiment depicted, MN 112 is shown as communicating
its chat microphone channel and its music channels to MNs
114 and 116. The uplink bandwidth can be represented by the
sum of the chat microphone bandwidth (BW) plus the music
channel bandwidth (BW) times the number of peers (e.g.,
Uplink Bandwith=(Chat Mic BW+Music Channel
BW)*Peers). Fewer music channels help reduce bandwidth
requirements hence the need for ICP bonding (e.g., at the loss
of'individual instrument channel control at the peer receiver).
For example, if the chat microphone bandwidth is 32 Kb/s,
the music channel bandwidth is 64 Kb/s, and a session
includes 5 people, each person will need an uplink bandwidth
of (32+64)*4=384 Kb/s.

[0489] FIG. 25 is a block diagram of an example embodi-
ment 2500 for a MN system embodiment including local
ICPs (input channel processors) and peer ICPs (input channel
processors). Embodiment 2500 is similar to embodiment 820
of FIG. 8B with an additional recording point 2501 being
shown. It is noted that other recording points could also be
used.

[0490] FIG. 26 is a block diagram of an example embodi-
ment 2600 for a peer input channel processor. Audio packets
from peer MNs are received and de-multiplexed by a de-
multiplexer (demuxer) 2601. The demuxed audio packets for
a first peer MN are provided to receive processor 2602. This
continues for each peer MN with the demuxed audio packets
for an Nth peer MN being provided to receive processor 2604.
Each of the receive processors 2602 . . . 2604 include a
deframer (e.g., extracts session identifier, session statistics,
etc.), areceive report generator, a decoder, aresampler, and an
effects module. Each of the receive processors 2602 . . . 2604
provides a remote channel out for peer MN it is handling and
also provides a raw remote audio output for that peer MN, as
well.

[0491] FIG.27A isablock diagram of an example embodi-
ment 2700 for a local input channel processor that captures
audio inputs an instrument (e.g., guitar, keyboard, voice, etc.),
voice chat, or another audio input. Instrument or voice input
is captured by a capture and formatter block and then pro-
vided to an effects block. Raw captured audio and effects
audio are both output. A channel throttle arbiter, a stream
encoder, and a channel framer are provided for high quality
stream processing, medium quality stream processing, and
low quality stream processing of the captured audio. A high
quality broadcast encoder also receives the captured audio,
and a channel framer receives the output of the high quality
broadcast encoder. High quality, medium quality, and low
quality throttle control signals associated with the peer MNs
(e.g., from O to n peer MNs) are received by the channel
throttle arbiters, respectively. The ICP outputs high quality
audio frames, medium quality audio frames, and low quality
audio frames to the peer MNs based upon these control sig-
nals. Broadcast frames are also output by the ICP. Other
inputs and outputs are also provided.

[0492] FIG.27B is ablock diagram of an example embodi-
ment 2750 for a local input channel processor that captures
audio inputs and bonds them together for a group of instru-
ments. Multiple instrument or voice inputs are captured by
capture blocks and the captured audio inputs are mixed

Sep. 10, 2015

together by a music mixer to generate a group audio output.
The output of the mixer is received by an encoder, and the
encoded audio is provided to a channel framer. The channel
framer outputs the group media packets to the peer MNs (e.g.,
from 0 to n peer MNs). A channel throttle receives controls
from the peer MNs and provides controls to the music
encoder. Other inputs and outputs are also provided.

[0493] FIG. 27C is a block diagram of an example embodi-
ment 2770 for a local input channel processor that captures
audio inputs for a group of instruments and bonds these inputs
together using a group mixer (e.g., input channel processor
bonding). Embodiment 2770 captures multiple inputs and
bonds them with the group mixer as provided by embodiment
2750 in FIG. 27B and also provides raw outputs and effects
outputs as provided by embodiment 2700 of FIG. 2A.
Embodiment 2770 also provides the high quality, medium
quality, low quality, and broadcast level processing of
embodiment 2700 of FIG. 2A.

[0494] FIGS. 28A-B are block diagrams of example
embodiments for mixer architectures that can be utilized.
Embodiment 2800 of FIG. 28 A includes 1 to N audio channel
capture blocks that provide captured audio to a mixer at 48
kHz sample rate. Embodiment 2800 also includes 1 to N
audio channel playout blocks that receive outputs from the
mixer. A decoder and an encoder operating at 48 kHz are also
provided. Resamplers are also used as needed to resample the
captured audio or the output audio. A recorder also receives
mixed audio from the mixer and makes recordings. Embodi-
ment 2850 of FIG. 28B is similar to embodiment 2800 except
that a 48 kHz or a 44.1 kHz sample rate is used. Optional
resamplers are again provided if needed to resample the cap-
tured audio or output audio. Also, resamplers can be used with
respect to the decoder and encoder if operating at a different
sample rate than the mixer.

[0495] FIG. 29 is a block diagram of an example embodi-
ment 3000 for virtual device bridge software that includes an
application space having client module and DAW (digital
audio workstation) module and a kernel having virtual audio
inputs and outputs. The application client in a application
space for a software stack communicates with a virtual audio
input device in the kernel. A DAW within the application
space receives an output from the virtual audio input device
and provides audio outputs to a virtual output audio device in
the kernel. The virtual output audio device provides audio
outputs to the client application. The client application also
communicates audio packets with the network or cloud.
[0496] FIGS. 30A-B are block diagrams of example
embodiments for DAW data flow. Embodiment 3000 of FIG.
30A is similar to embodiment 1110 of FIG. 11A where the
MN includes a live quality encoder and operates as a live
broadcaster. Embodiment 3050 of FIG. 30B is also similar to
embodiment 1110 of FIG. 11A where the MN can operate as
live broadcaster but also includes a recorder and an uploader
to send the live broadcast to a server system where the server
provides a broadcast service.

Appendix C—Example API Descriptions and Details

Example API Descriptions

[0497] Here are the calls that the Client may make to the
Server:
[0498] {Ok, Sid, AddrPort[]} startSession(Uid uid,

AddrPort addr, AddrPortScore| | scores)

US 2015/0256598 Al

[0499] {Ok, AddrPort[]} joinSession(Sid sid, Uid uid,
AddrPort addr, AddrPortScore| | scores)

[0500] Ok leaveSession(Sid sid, Uid uid, AddrPort addr)
[0501] Ok stopSession(Sid sid, Uid uid, AddrPort addr)
[0502] Here are the calls that the Server may make to the
Client:
[0503] Ok joinedSession(Sid sid, Uid uid, AddrPort
addr)
[0504] Ok leftSession(Sid sid, Uid uid, AddrPort addr)
[0505] AddrPortScore| | test(AddrPort| | addrs)
[0506] Here are the calls that the Server may make to
NAAS:
[0507] AddrPort| | setupTest(AddrPort client)
[0508] Ok cancelTest(AddrPort client)
[0509] AddrPortassignAddress(Sid sid, AddrPort client,

AddrPortScore|]| scores)

[0510] Ok releaseAddress(Sid sid, AddrPort client,
AddrPort assigned)

[0511] Ok addRule(Sid sid, AddrPort clientl, AddrPort
assigned1, AddrPort client2, AddrPort assigned2)

[0512] Ok dropRule(Sid sid, AddrPort client1, AddrPort
assigned1, AddrPort client2, AddrPort assigned2)

[0513] Here are the calls that the NAAS may make to the
Server:
[0514] None.
[0515] Clients may not contact NAAS directly and vice
versa.
Example API Details
[0516] {Ok, Sid, AddrPort]]} startSession(Uid uid,

AddrPort addr, AddrPortScore| | scores)

[0517] The client requests a new session be created. Uid
is the unique id of the user making the request, and addr
is the publicly visible address and port number of the
client’s UDP socket. Scores is initially passed as null.

[0518] The user generally won’t know their own publicly
visible address or uid, but the user does know the port
number of their socket. This is all the user need supply.
The web server, upon receiving the request, fills in the
uid and the publicly visible address before acting on the
request.

[0519] If this user is enabled to use NAAS and if NAAS
is available, the initial request with null scores will be
failed with Ok indicating “Test™, sid returned as null, and
an array of AddrPort to test. The client will test each
AddrPort in the prescribed manner and resubmit the
startSession request with the resulting scores.

[0520] Status is returned in Ok as well as the newly
minted Sid if the request succeeded. The sid is used to
manipulate the session including inviting others to join.
If NAAS is not enabled for this user, NAAS is not
available, or if scores are submitted, the returned
AddrPort array will be null.

[0521] Note that testing is required of every client who
joins a session which includes NAAS. This includes
clients in sessions which did not acquire NAAS capabil-
ity until a NAAS enabled user joined. See Server to
Client call test.

[0522] {Ok, AddrPort[]} joinSession(Sid sid, Uid uid,

AddrPort addr, AddrPortScore| | scores)

[0523] The client requests to join an existing session. Sid
is the unique id of the session, uid is the unique id of the
user making the request, and addr is the publicly visible

Sep. 10, 2015

address and port number of the client’s UDP socket.
Scores is initially passed as null.

[0524] Theuser generally won’t know their own publicly
visible address or uid, but the user does know the port
number of their socket. This is all the user need supply.
The web server, upon receiving the request, fills in the
uid and the publicly visible address before acting on the
request.

[0525] Ifthis user is enabled to use NAAS and if NAAS
is available, the initial request with null scores will be
failed with Ok indicating “Test” and an array of
AddrPort to test. The client will test each AddrPort in the
prescribed manner and resubmit the joinSession request
with the resulting scores.

[0526] Status is returned in Ok. If NAAS is not enabled
for this user, NAAS is not available, or if scores are
submitted, the returned AddrPort array will be null.

[0527] Note that testing is required of every client who
joins a session which includes NAAS. This includes
clients in sessions which did not acquire NAAS capabil-
ity until a NAAS enabled user joined. See Server to
Client call test.

[0528] Ok leaveSession(Sid sid, Uid uid, AddrPort addr)

[0529] 'The client requests to be removed from the ses-
sion. Sid is the unique id of the session, uid is the unique
id of'the user making the request, and addr is the publicly
visible address and port number of the client’s UDP
socket.

[0530] Theuser generally won’t know their own publicly
visible address or uid, but the user does know the port
number of their socket. This is all the user need supply.
The web server, upon receiving the request, fills in the
uid and the publicly visible address before acting on the
request.

[0531] If NAAS resources are allocated to this user, the
resources are freed (cancelTest, dropRule, releaseAd-
dress).

[0532] If this is the last participant in the session, the
session is also removed (stopSession). If other partici-
pants remain in the session, they are informed that this
user has left (leftSession).

[0533] Status is returned in Ok.

[0534] Ok stopSession(Sid sid, Uid uid, AddrPort addr)

[0535] The client requests that the session be destroyed.
Sid is the unique id of the session, uid is the unique id of
the user making the request, and addr is the publicly
visible address and port number of the client’s UDP
socket.

[0536] Theuser generally won’t know their own publicly
visible address or uid, but the user does know the port
number of their socket. This is all the user need supply.
The web server, upon receiving the request, fills in the
uid and the publicly visible address before acting on the
request.

[0537] The session is marked for destruction (nobody
may join).

[0538] Remaining users are notified that the other users
have left the session (leftSession).

[0539] If NAAS resources are allocated to this session,
the resources are freed (cancellest, dropRule,
releaseAddress).

[0540] The session is removed.

[0541] Status is returned in Ok.

US 2015/0256598 Al

[0542] Ok joinedSession(Sid sid, Uid uid, AddrPort addr)

[0543] The server notifies that the specified user has

joined the session. Sid is the unique id of the session, uid

is the unique id of the user that joined, and addr is the

publicly visible address and port number of the client’s

UDP socket (or the assigned NAAS address of the
receiving user if NAAS is involved).

[0544] The receiving client should begin sending to the
specified address/port if it isn’t already.

[0545] Ifthe uid had previously “joined” with a different
address, the new address replaces the old and operation
continues.

[0546] Status is returned in Ok.

[0547] Ok leftSession(Sid sid, Uid uid, AddrPort addr)

[0548] The server notifies that the specified user has left
the session. Sid is the unique id of the session, uid is the
unique id of the user that left, and addr is the publicly
visible address and port number of the client’s UDP
socket (or the assigned NAAS address of the receiving
user if NAAS is involved).

[0549] The receiving client should stop sending to the
specified address/port unless any other participants also
have that same address (eh, if NAAS is involved).

[0550] Status is returned in Ok.

[0551] AddrPortScore[| test(AddrPort| | addrs)

[0552] The server notifies the client that a test of
addresses is required to determine which address is the
best for this client. This test is required when NAAS has
become involved in the session. The user should execute
a ping test on each address and return the scores to the
server. See startSession and joinSession for implicit test
operations using this same technique.

[0553] A UDP packet sent to the specified address will be
returned (echoed) as it was received. The client should
construct a packet of some moderate size (135 bytes will
do) with an embedded high precision timestamp and
sequence number, then send it to the address and receive
the response. Enough packets should be sent to ensure a
good sample. The first packet (sent and received) often
takes substantially longer than the rest, and so should be
excluded from the stats.

[0554] Min/max/average ofthe rest should be returned in
the scoring structure, in millisecond units, as well as the
count sent/received. The client should send a packet,
wait up to 50 ms for the response, and send the next one
as soon as the response is received or deemed missing,
perhaps sending a total of 10-20 packets. Late packets
should be ignored if they finally arrive (by using the
sequence number). Stats should be calculated starting
with the second packet received, and only include
received packets.

[0555] AddrPort| | setupTest(AddrPort client)

[0556] The server requests that NAAS setup a test envi-
ronment for the specified client address and return all
appropriate addresses for the test.

[0557] If NAAS fails somehow to setup the test, null is
returned.

[0558] Ok cancelTest(AddrPort client)

[0559] The server requests that NAAS remove a previ-
ously setup test environment for the specified client.

[0560] Status is returned in Ok.

[0561] AddrPort assignAddress(Sid sid, AddrPort client,

AddrPortScore|] scores)

Sep. 10, 2015

[0562] The server requests that NAAS use the scores to
assign an address appropriate for the specified client
address. Sid is the unique id of the session, and client is
the publicly visible address and port number of the cli-
ent’s UDP socket.

[0563] Any previously test setup is cancelled.
[0564] The assigned address is returned, or if there was a
problem assigning an address, null is returned.
[0565] Ok releaseAddress(Sid sid, AddrPort client,
AddrPort assigned)

[0566] The server requests that NAAS remove any pre-
vious assigned address. Sid is the unique id of the ses-
sion, client is the publicly visible address and port num-
ber of the client’s UDP socket, and assigned is the
previously assigned address.

[0567] Any rules involving the client and assigned
addresses will be dropped (see addRule, dropRule).

[0568] Status is returned in Ok.

[0569] Ok addRule(Sid sid, AddrPort clientl, AddrPort
assignedl, AddrPort client2, AddrPort assigned2)

[0570] The server requests that NAAS add a rule map-
ping one client to another. Sid is the unique id of the
session, clientl is the public address of the first client,
assigned] is the assigned address of the first client (per
assignAddress), client2 is the public address of the sec-
ond client, and assigned? is the corresponding assigned
address.

[0571] Any packet arriving at NAAS from clientl to
assigned]l will be sent from assigned2 to client2, and
vice versa.

[0572] Assignedl and assigned2 must be addresses
assigned and not yet released by this NAAS instance.

[0573] Status is returned in Ok.

[0574] Ok dropRule(Sid sid, AddrPort clientl, AddrPort
assignedl, AddrPort client2, AddrPort assigned2)

[0575] The server requests that NAAS drop a rule map-
ping one client to another. Sid is the unique id of the
session, clientl is the public address of the first client,
assigned] is the assigned address of the first client (per
assignAddress), client2 is the public address of the sec-
ond client, and assigned? is the corresponding assigned
address.

[0576] Any packet arriving at NAAS from clientl to
assigned] will no longer be sent from assigned2 to cli-
ent2, and vice versa.

[0577] Assignedl and assigned2 must be addresses
assigned and not yet released by this NAAS instance.

[0578] Status is returned in Ok.

[0579] Further modifications and alternative embodiments
of'the embodiments described herein will be apparent to those
skilled in the art in view of this description. It will be recog-
nized, therefore, that the inventions described herein are not
limited by these example arrangements. Accordingly, this
description is to be construed as illustrative only, and it is to be
understood that the embodiments shown and described herein
are to be taken as example embodiments. Various changes
may be made in the implementations and architectures and
different embodiments can be implemented. For example,
equivalent elements may be substituted for those illustrated
and described herein, and features can be utilized indepen-
dently of other features, all as would be apparent to one
skilled in the art after having the benefit of this description.

US 2015/0256598 Al

What is claimed is:

1. An interactive music server system, comprising:

a network interface;

one or more processing devices configured to communi-

cate network packets through the network interface with
two or more interactive music client systems associated
with an interactive music session; and

one or more data storage systems coupled to the one or

more processing devices;

wherein the one or more processing devices are further

configured to receive recorded music tracks for the inter-
active music session through the network packets and to
store audio data associated with the music tracks using
the one or more data storage systems.

2. The interactive music server system of claim 1, wherein
the one or more processing devices are further configured to
mix the music tracks to generate a session recording as the
audio data.

3. The interactive music server system of claim 2, wherein
the one or more processing devices are further configured to
use timestamps associated with each music track to align the
music tracks for the session recording.

4. The interactive music server system of claim 3, wherein
the timestamps are associated with a recording start time for
each music track.

5. The interactive music server system of claim 3, wherein
the timestamps are synchronized to a common reference
clock.

6. The interactive music server system of claim 2, wherein
the one or more processing devices are further configured to
determine a time skew between at least two of the interactive
music client systems and to use the time skew to align the
music tracks for the session recording.

7. The interactive music server system of claim 6, wherein
the time skew is based upon a network delay between the at
least two interactive music client systems.

8. The interactive music server system of claim 2, wherein
the music tracks comprise high quality music tracks recorded
at each of the interactive music client systems, and wherein
the one or more processing devices are further configured to
mix the high quality music tracks to form a high quality
master mix associated with the interactive music session.

9. The interactive music server system of claim 8, wherein
the high quality music tracks comprise audio input data cap-
tured at each interactive music client system.

10. The interactive music server system of claim 8, wherein
the one or more processing devices are further configured to
download the high quality master mix to one or more of the
interactive music client systems.

11. The interactive music server system of claim 8, wherein
the one or more processing devices are further configured to
download to each of the interactive music client systems the
high quality music tracks from the other interactive music
client systems.

12. The interactive music server system of claim 11,
wherein the high quality music tracks are configured to

37

Sep. 10, 2015

replace low quality music tracks stored by each of the inter-
active music client systems associated with audio data
received from other interactive music client systems.

13. The interactive music server system of claim 2, wherein
the one or more processing devices are further configured to
use one or more of a plurality of different mixing algorithms
to mix the music tracks for the session recording.

14. A method to record audio data for an interactive music
session, comprising:

communicating network packets with two or more interac-

tive music client systems associated with an interactive
music session;

receiving recorded music tracks for the interactive music

session through the network packets; and

storing audio data associated with the music tracks in one

or more data storage systems.

15. The method of claim 14, further comprising mixing the
music tracks to generate a session recording as the audio data.

16. The method of claim 15, further comprising using
timestamps associated with each music track to align the
music tracks for the session recording.

17. The method of claim 16, wherein the timestamps are
associated with a recording start time for each music track.

18. The method of claim 16, wherein the timestamps are
synchronized to a common reference clock.

19. The method of claim 15, further comprising determin-
ing a time skew between at least two of the interactive music
client systems and using the time skew to align the music
tracks for the session recording.

20. The method of claim 19, wherein the time skew is based
upon a network delay between the at least two interactive
music client systems.

21. The method of claim 15, wherein the music tracks
comprise high quality music tracks recorded at each of the
interactive music client systems, and further comprising mix-
ing the high quality music tracks to form a high quality master
mix associated with the interactive music session.

22. The method of claim 21, wherein the high quality music
tracks comprise audio input data captured at each interactive
music client system.

23. The method of claim 21, further comprising download-
ing the high quality master mix to one or more of the inter-
active music client systems.

24. The method of claim 21, further comprising download-
ing to each of the interactive music client systems the high
quality music tracks from the other interactive music client
systems.

25. The method of claim 24, wherein the high quality music
tracks are configured to replace low quality music tracks
stored by each of the interactive music client systems associ-
ated with audio data received from other interactive music
client systems.

26. The method of claim 15, further comprising using one
or more of a plurality of different mixing algorithms to mix
the music tracks for the session recording.

#* #* #* #* #*

