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(57) ABSTRACT 

Distributed recording server systems and related methods are 
disclosed for interactive music systems. In certain embodi 
ments, an interactive music server system communicates net 
work packets with two or more interactive music client sys 
tems associated with an interactive music session, receives 
recorded music tracks for the interactive music session 
through the networkpackets, and stores audio data associated 
with the music tracks in one or more data storage systems. 
The interactive music server system can also mix the music 
tracks to generate a session recording as the audio data. In 
addition, timestamps or other techniques can be used to align 
the music tracks. In addition, the interactive music server 
system can receive high quality music tracks captured as 
audio input at the interactive music client systems and gen 
erate a high quality master mix of the music session. Other 
variations can also be implemented. 
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DISTRIBUTED RECORDING SERVER AND 
RELATED METHODS FOR INTERACTIVE 

MUSC SYSTEMIS 

RELATED APPLICATIONS 

0001. This application claims priority to the following 
co-pending provisional application: U.S. Provisional Patent 
Application Ser. No. 61/950,377, filed Mar. 10, 2014, and 
entitled “SYSTEMS AND METHODS FOR INTERAC 
TIVE MUSIC” which is hereby incorporated by reference in 
its entirety. 
0002 This application is also related in subject matter to 
the following concurrently filed applications: U.S. patent 
application Ser. No. entitled “DISTRIBUTEDMET 
RONOME FOR INTERACTIVE MUSIC SYSTEMS; U.S. 
patent application Ser. No. entitled “CAPABILITY 
SCORING SERVER AND RELATED METHODS FOR 
INTERACTIVE MUSIC SYSTEMS; U.S. patent applica 
tion Ser. No. entitled “PACKETRATE CONTROL 
AND RELATED SYSTEMS FOR INTERACTIVE MUSIC 
SYSTEMS:” U.S. patent application Ser. No. s 
entitled “TRACK BASED MUSIC MANAGEMENT 
SERVER AND RELATED METHODS FOR INTERAC 
TIVE MUSIC SYSTEMS;” and U.S. patent application Ser. 
No. entitled “NETWORK CONNECTION SERV 
ERS AND RELATED METHODS FOR INTERACTIVE 
MUSIC SYSTEMS:” each of which is hereby incorporated 
by reference in its entirety. 

TECHNICAL FIELD 

0003. The disclosed embodiments relate to network-based 
systems for music sessions and associated audio transmis 
sions among network connected systems. 

BACKGROUND 

0004 Musicians often collaborate in music sessions 
where each musician is present within a recording studio and 
a session recording is made. Musicians also collaborate to 
create session recordings where sub-groups of musicians 
separately record their portion or tracks of the music record 
ing at the recording studio, and the studio then combines the 
recordings for form a master recording. Musicians also col 
laborate in music sessions in less formal environments, such 
as home studios and garages. With the growth of network 
connected systems, efforts have been made to provide col 
laborative music sessions through network connections and 
the internet. However, these efforts suffer from latency and 
other network connectivity issues that degrade the experience 
of the users to an extent that interactive collaboration or a 
group session cannot effectively be achieved. 

SUMMARY 

0005 Distributed recording server systems and related 
methods are disclosed for interactive music systems. In cer 
tain embodiments, an interactive music server system com 
municates network packets with two or more interactive 
music client systems associated with an interactive music 
session, receives recorded music tracks for the interactive 
music session through the network packets, and stores audio 
data associated with the music tracks in one or more data 
storage systems. The interactive music server system can also 
mix the music tracks to generate a session recording as the 
audio data. In addition, timestamps or other techniques can be 

Sep. 10, 2015 

used to align the music tracks. In addition, the interactive 
music server system can receive high quality music tracks 
captured as audio input at the interactive music client systems 
and generate a high quality master mix of the music session. 
Different features and variations can also be implemented, as 
desired, and related systems and methods can be utilized, as 
well. 

0006 For one embodiment, an interactive music server 
system is disclosed that includes a network interface, one or 
more processing devices configured to communicate network 
packets through the network interface with two or more inter 
active music client systems associated with an interactive 
music session, and one or more data storage systems coupled 
to the one or more processing devices. The one or more 
processing devices are further configured to receive recorded 
music tracks for the interactive music session through the 
network packets and to store audio data associated with the 
music tracks using the one or more data storage systems. 
0007. In further embodiments, the one or more processing 
devices are further configured to mix the music tracks to 
generate a session recording as the audio data. In still further 
embodiments, the one or more processing devices are further 
configured to use one or more of a plurality of different 
mixing algorithms to mix the music tracks for the session 
recording. 
0008. In other embodiments, the one or more processing 
devices are further configured to use timestamps associated 
with each music track to align the music tracks for the session 
recording. In further embodiments, the timestamps are asso 
ciated with a recording start time for each music track. In still 
further embodiments, the timestamps are synchronized to a 
common reference clock. 

0009. In additional embodiments, the one or more pro 
cessing devices are further configured to determine a time 
skew between at least two of the interactive music client 
systems and to use the time skew to align the music tracks for 
the session recording. In further embodiments, the time skew 
is based upon a network delay between the at least two inter 
active music client systems. 
0010. In further embodiments, the music tracks include 
high quality music tracks recorded at each of the interactive 
music client systems, and the one or more processing devices 
are further configured to mix the high quality music tracks to 
form a high quality master mix associated with the interactive 
music session. In additional embodiments, the high quality 
music tracks include audio input data captured at each inter 
active music client system. In further embodiments, the one 
or more processing devices are further configured to down 
load the high quality master mix to one or more of the inter 
active music client systems. In still further embodiments, the 
one or more processing devices are further configured to 
download to each of the interactive music client systems the 
high quality music tracks from the other interactive music 
client systems. In addition, the high quality music tracks can 
be configured to replace low quality music tracks stored by 
each of the interactive music client systems associated with 
audio data received from other interactive music client sys 
temS. 

0011 For another embodiment, a method to record audio 
data for an interactive music session is disclosed that includes 
communicating network packets with two or more interactive 
music client systems associated with an interactive music 
session, receiving recorded music tracks for the interactive 
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music session through the network packets, and storing audio 
data associated with the music tracks in one or more data 
storage systems. 
0012. In further embodiments, the method includes mix 
ing the music tracks to generate a session recording as the 
audio data. In still further embodiments, the method includes 
using one or more of a plurality of different mixing algo 
rithms to mix the music tracks for the session recording. 
0013. In other embodiments, the method includes using 
timestamps associated with each music track to align the 
music tracks for the session recording. In further embodi 
ments, the timestamps are associated with a recording start 
time for each music track. In still further embodiments, the 
timestamps are synchronized to a common reference clock. 
0014. In additional embodiments, the method includes 
determining a time skew between at least two of the interac 
tive music client systems and using the time skew to align the 
music tracks for the session recording. In further embodi 
ments, the time skew is based upon a network delay between 
the at least two interactive music client systems. 
0.015. In further embodiments, the music tracks include 
high quality music tracks recorded at each of the interactive 
music client systems, and the method further includes mixing 
the high quality music tracks to form a high quality master 
mix associated with the interactive music session. In addi 
tional embodiments, the high quality music tracks include 
audio input data captured at each interactive music client 
system. In further embodiments, the method includes down 
loading the high quality master mix to one or more of the 
interactive music client systems. In still further embodiments, 
the method includes downloading to each of the interactive 
music client systems the high quality music tracks from the 
other interactive music client systems. In addition, the high 
quality music tracks can be configured to replace low quality 
music tracks stored by each of the interactive music client 
systems associated with audio data received from other inter 
active music client systems. 
0016 Network-based distributed interactive music sys 
tems and related methods are also disclosed. The disclosed 
embodiments achieve reduced network latency and other 
advantageous features that provide a positive user experience 
for music sessions using a network-based distributed interac 
tive music system. In part, the disclosed embodiments pro 
vide real-time platforms and related methods for interactive 
and collaborative music performance and production. The 
interactive music systems allow individuals at different 
physical locations that are as simple as different rooms in one 
location to locations potentially hundreds miles apart, in real 
time to play, produce and share music by doing so across the 
internet, local area network, and/or other network connec 
tions. The disclosed systems and methods further provide a 
number of different components that can be used individually 
or in combination to provide the disclosed aspects and fea 
tures for the interactive music systems and methods described 
herein. Different features and variations can be implemented, 
as desired, and related systems and methods can be utilized, 
as well. 
0017 For one additional embodiment, an interactive 
music client system is disclosed that includes an audio cap 
ture Subsystem coupled to one or more audio inputs and to 
output captured audio data, one or more processing devices 
coupled to receive the captured audio data and to process the 
captured audio data to generate audio output packets includ 
ing audio output data associated with one or more interactive 
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music sessions, and a network interface coupled to receive the 
audio output packets and to send the audio output packets to 
one or more peer interactive music client systems through a 
network. 

0018. In further embodiments, the interactive music client 
system further includes one or more storage systems coupled 
to the one or more processing devices to store data associated 
with one or more interactive music sessions. In additional 
embodiments, the network interface is further coupled to 
receive audio input packets containing audio input data from 
one or more peer interactive music client systems through a 
network, and the one or more processing devices are further 
coupled to receive the audio input packets and to process the 
audio input packets to generate audio input data. In other 
embodiments, the interactive music client system further 
includes an audio output Subsystem to output audio output 
signals associated with the audio input data. In still further 
embodiments, the one or more processing devices are further 
configured to perform at least one of following: to commu 
nicate with one or more server systems and one or more peer 
interactive music client systems to determine a session link 
score for the interactive music client system, to register with 
one or more server systems for a music session, to record one 
or more tracks associated with a music session, to adjust an 
input packet rate oran output packet rate for audio packets, to 
store input audio frames in a jitter buffer and discard one or 
more frames based upon periodic time windows, to send one 
or more music cues to one or more other interactive music 
client systems within a music session, to adjust audio pro 
cessing based upon virtual location placement within a music 
session, to communicate with one or more other interactive 
music client systems within a music session to provide a 
distributed metronome, or to provide an output queue for one 
or more other interactive music client systems within a music 
session and adjust a rate for the audio output data for each 
output queue. 

0019 For one further embodiment, an interactive music 
server system is disclosed that includes a network interface 
coupled to receive network packets through a network from 
one or more interactive music client systems associated with 
one or more interactive music sessions and one or more pro 
cessing devices coupled to receive the network packets, to 
process the networkpackets, and to output network packets to 
the interactive music client systems through the network 
using the network interface. 
0020. In additional embodiments, the interactive music 
server system includes one or more storage systems coupled 
to the one or more processing devices to store data associated 
with one or more interactive music sessions. In still further 
embodiments, the one or more processing devices are further 
configured to perform at least one of the following: to com 
municate with interactive music client systems to determine 
session link scores for the interactive music client systems, to 
registerinteractive music client systems for music sessions, to 
provide a registry for music sessions or interactive music 
client systems or both, to receive and store recorded tracks 
associated with a music session and allow these recorded 
tracks to be downloaded to interactive music client systems 
participating in the music session, to stream live broadcasts 
for music sessions, or to provide access to and download of 
previously recorded music sessions including different 
recorded tracks within the recorded music sessions. 
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0021. Different or additional features, variations, and 
embodiments can be implemented, if desired, and related 
systems and methods can be utilized, as well. 

DESCRIPTION OF THE DRAWINGS 

0022. It is noted that the appended drawings illustrate only 
example embodiments and are, therefore, not to be consid 
ered as limiting of the scope of the inventions, for the inven 
tions may admit to other equally effective embodiments. 
0023 FIG. 1 is a block diagram of an example embodi 
ment for a network-based distributed interactive music sys 
tem. 

0024 FIG. 2A is a block diagram of an example embodi 
ment for a music node (MN). 
0025 FIG. 2B is a block diagram of an example embodi 
ment for audio/video/network/data subsystems within a 
music node. 
0026 FIG. 2C is a block diagram of an example hardware 
embodiment for a music node. 
0027 FIG. 2D is a block diagram of an example embodi 
ment for network packets that can be transmitted within the 
interactive music system. 
0028 FIG. 3A is a block diagram of an integrated music 
node embodiment that includes components within one or 
more electronic devices with one or more connections to the 
network. 
0029 FIG. 3B is a block diagram of an integrated music 
node embodiment that includes components within one 
physical electronic device connected to the network. 
0030 FIG. 3C is a block diagram of an example embodi 
ment of a music node embodiment where audio components 
are separated into a dedicated audio processing appliance 
device. 
0031 FIG. 3D is a block diagram of an example embodi 
ment for a session information and control window to provide 
interactive control for the music session by the user. 
0032 FIG. 4A is a block diagram of a example embodi 
ment for a dedicated audio processing appliance device. 
0033 FIG. 4B is a circuit and component diagram of an 
example embodiment for connections to an audio input/out 
put processor for a dedicated audio processing appliance 
device. 
0034 FIG.4C is a hardware layout diagram of an example 
embodiment for a dedicated processing appliance device. 
0035 FIG. 4D is a block diagram of an example embodi 
ment for a audio Software stack including a user space and a 
kernel coupled to an audio interface. 
0036 FIG. 5A is a block diagram of an example embodi 
ment for an interactive music server system. 
0037 FIG. 5B is a block diagram of an example hardware 
embodiment for server system. 
0038 FIG. 6A is a Swim lane diagram of an embodiment 
for latency scoring for two music node (MN) client systems 
(MNA and MNB) and a server. 
0039 FIG. 6B is a swim lane diagram of an example 
embodiment for MN packet rate scoring. 
0040 FIG. 6C is a swim lane diagram of an example 
embodiment for MN bandwidth scoring. 
0041 FIG. 6D is a process flow diagram of an example 
embodiment for adaptive throttling of packet frame size. 
0042 FIG. 6E is a process flow diagram of an example 
embodiment for adaptive throttling of bandwidth. 
0043 FIG. 7A is a representative timing diagram of an 
example embodiment for a jitter queue. 
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0044 FIG. 7B is a block diagram of an example embodi 
ment for a jitter queue. 
0045 FIG. 7C is block diagram of an example embodi 
ment for sending MNS having sending queues including deci 
mator/interpolator blocks and encoder/packetizer blocks to 
adjust send rates for receiving MNs. 
0046 FIG. 8A is a swim lane diagram of an example 
embodiment for session recording service including one or 
more server system(s). 
0047 FIG. 8B is a block diagram of an example embodi 
ment for a recording system. 
0048 FIG. 8C is a block diagram of an example embodi 
ment for a recording system and related recording service 
where session recordings are stored by a server and by MNs. 
0049 FIG. 9A is a signal diagram showing metronome 
pulses associated with three different local metronomes that 
are based upon a single metronome pulse. 
0050 FIG. 9B is a signal diagram showing metronome 
pulses associated with three different local metronomes that 
have been synchronized. 
0051 FIG. 10A is a diagram of sound location perception 
by a person hearing Sounds from two sources. 
0.052 FIG. 10B is a diagram of an example locations or 
positions for music session elements within a virtual space. 
0053 FIG. 10C is a diagram of an example dummy head 
that is depicted to a user and can be adjusted by the user to 
place and orient the user within the virtual environment for 
the music session. 
0054 FIG. 10D is a diagram of an example dummy head 
that includes a virtual microphone array of two or more 
microphones. 
0055 FIG. 11A is a block diagram of an example embodi 
ment for a low latency live broadcast. 
0056 FIG. 11B is a block diagram of an example embodi 
ment for a high fidelity live broadcast. 
0057 FIG. 12A is a block diagram of an example embodi 
ment for MNs within two groups selected as bridges for 
inter-group communication. 
0.058 FIG.12B is a block diagram of an example embodi 
ment for inter-group communications for a larger intercon 
nected group. 
0059 FIG. 13A is a block diagram of an example embodi 
ment for a music hinting system that allows non-verbal cues 
to be communicated among MNS within a music session. 
0060 FIG. 13B is a diagram of an example embodiment 
for a foot-controlled hinting device. 
0061 FIG. 14 is a block diagram of an example embodi 
ment for a songs service environment that allows users to 
access and download songs/trackS/tunes for use with a MN or 
within a music session. 
0062 FIG. 15A is a block diagram of an embodiment 
including two music nodes (A, B) communicating with each 
other through an ISP. 
0063 FIG.15B is a block diagram of such an embodiment 
including two music nodes (A, B) communicating with each 
other through different ISPs. 
0064 FIG. 16 is a block diagram of an embodiment 
including NAAS (network as a service) server systems con 
necting two independent ISPs. 
0065 FIG. 17 is a block diagram of an embodiment 
including three music nodes (A, B, C) communicating with 
each and the server systems to set up a non-NAAS music 
session. 
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0066 FIG. 18A is a block diagram of an embodiment 
including NAAS server systems providing communications 
among four of music nodes for a music session. 
0067 FIG. 18B is a block diagram of an embodiment 
including three music nodes (A, B, C) communicating with 
each other through two different ISPs. 
0068 FIG. 19 is a block diagram of an embodiment 
including three music nodes (A, B, C) where only A is a 
NAAS participant. 
0069 FIG. 20A is a swim lane diagram of an example 
embodiment for a music session start by music node A where 
music nodes B and C then join the session. 
0070 FIG. 20B is a swim lane diagram of an example 
embodiment for a music session stop where music nodes B 
and Cleave the session. 
0071 FIGS. 21A-B provide a swim lane diagram of an 
example embodiment for a music session start by music node 
A where music nodes Band C then join the session and where 
all three nodes (A, B, C) are NAAS participants. 
0072 FIG. 21C is a swim lane diagram of an example 
embodiment for a music session stop where music nodes B 
and Cleave the session and where all three nodes (A, B, C) are 
NAAS participants. 
0073 FIGS. 22A-B provide a swim lane diagram of an 
example embodiment for a music session start by music node 
A where music nodes Band C then join the session and where 
only music node C is a NAAS participants. 
0074 FIG. 22C is a swim lane diagram of an example 
embodiment for a music session stop where music nodes B 
and C leave the session and where only music node C is a 
NAAS participants. 
0075 FIG. 23A is a block diagram of an example embodi 
ment for internode session managers and data flow for an 
interactive music system including peer connections and ses 
sions transport communications. 
0076 FIG. 23B is a block diagram of an example embodi 
ment for peer connections. 
0077 FIG. 24 is a block diagram of an example embodi 
ment for music and chat communications from an MN to 
other MNs within a music session. 
0078 FIG. 25 is a block diagram of an example embodi 
ment for a MN system embodiment including local ICPs 
(input channel processors) and peer ICPs (input channel pro 
cessors). 
007.9 FIG. 26 is a block diagram of an example embodi 
ment for a peer input channel processor. 
0080 FIG. 27A is a block diagram of an example embodi 
ment for a local input channel processor that captures audio 
inputs from an instrument (e.g., guitar, keyboard, Voice, etc.), 
Voice chat, or another audio input. 
0081 FIG. 27B is a block diagram of an example embodi 
ment for a local input channel processor that captures audio 
inputs for a group of instruments. 
0082 FIG. 27C is a block diagram of an example embodi 
ment for a local input channel processor that captures audio 
inputs for a group of instruments and aggregates or bonds 
these inputs using a group mixer. 
I0083 FIGS. 28A-B are block diagrams of example 
embodiments for mixers that can be utilized. 
0084 FIG. 29 is a block diagram of an example embodi 
ment for virtual device bridge software that includes an appli 
cation space having a client module and a DAW (digital audio 
workstation) module and a kernel having virtual audio inputs 
and outputs. 
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I0085 FIGS. 30A-B are block diagrams of example 
embodiments for DAW data flow. 

DETAILED DESCRIPTION 

I0086 Network-based interactive music systems and 
related methods are disclosed. The disclosed embodiments 
achieve reduced network latency and other advantageous fea 
tures that provide a positive user experience for music ses 
sions using a network-based interactive music system. In part, 
the disclosed embodiments provide real-time platforms and 
related methods for interactive and collaborative music per 
formance and production. The interactive music systems 
allow individuals at different physical locations that are as 
simple as different rooms in one location to locations poten 
tially hundreds miles apart, in real-time to play, produce and 
share music by doing so across the internet, local area net 
work, and/or other network connections. The disclosed sys 
tems and methods further provide a number of different com 
ponents that can be used individually or in combination to 
provide disclosed aspects and features for the interactive 
music systems and methods described herein. Different fea 
tures and variations can be implemented, as desired, and 
related systems and methods can be utilized, as well. 
I0087 FIG. 1 is a block diagram of an example embodi 
ment for a network-based interactive music system 100. 
Music nodes (MN) 112,114... 116 are client systems for the 
interactive music system 100 that have one or more network 
connections to a network 110. These music nodes (MN) 112, 
114. ... 116 are part of one or more interactive music session 
(s) 150. The music nodes (MN) 112, 114 ... 116 in part run 
music node applications (MNAPP) 122, 132 ... 142, respec 
tively, that implement the various functional features 
described herein. The music nodes (MN) 112, 114 ... 116 
also in part use storage systems 124, 134... 144 to store MN 
related data, Such as audio recordings and other data as 
described below. The music nodes (MN) 112,114... 116 also 
receive one or more audio inputs (AUDIO IN) and produce 
one or more audio outputs (AUDIO OUT), as described in 
more detail herein. The interactive music server system(s) 
102,104,106... provide server-based services and manage 
ment for the interactive music system 100 and/or the interac 
tive music session(s) 150, as described herein. In part, for 
example, the interactive music server system(s) 102,104,106 
... manage session setup and tear down for music sessions for 
the music nodes (MN) 112, 114 . . . 116 participating in 
interactive music sessions. The server system(s) 102, 104, 
106 ... also in part use storage systems to store MN, session, 
and service related data Such as audio recordings and other 
data as described below. 
I0088. It is noted that the music node applications 122,132 
... 142 can be downloaded from the interactive music server 
system(s) 102,104,106... through network 110 and installed 
on the music nodes (MN) 112, 114. . . 116. The music node 
applications 112, 132 . . . 142 can also be loaded onto the 
music nodes (MN) 112, 114 ... 116 separate from the net 
work 110, ifdesired. Further. The music nodes (MN) 112,114 
... 116 can be any of a wide variety of information handling 
systems including one or more electronic devices or systems 
that participate in the interactive music system 100 and/or the 
interactive music session(s) 150. Each server system 102, 
104,106... can also be any of a wide variety of information 
handling systems including one or more electronic devices or 
systems that provide the server-based services for the inter 
active music system 100 and/or interactive music session(s) 
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150. The data storage systems can also be a wide variety of 
devices or components that are configured to store data within 
a non-transitory data storage medium. 
0089. It is also noted that the network 110 can be any 
variety of wired or wireless network connections and devices 
through which network communications occur among the 
music nodes (MN) 112,114... 116; the server system(s) 102. 
104, 106 . . . ; and/or other network connected systems, 
devices, or components. The network 110 can include the 
internet, internal intranets, local area networks (LANs), wide 
area network (WANs), personal area networks (PANs), wire 
less networks, wired networks, home networks, routers, 
switches, firewalls, network interface cards, network inter 
face controllers, and/or any other network communication 
system, device, or component that provides wired and/or 
wireless communication connections between electronic sys 
tems. Further, these network communication elements can be 
internal to and/or external from the music nodes (MN) 112, 
114. . . 116; the server system(s) 102, 104,106 . . . ; and/or 
other network connected systems, as desired. 
0090. Example embodiments for music nodes (MNs) and 
the server system(s) are further described with respect to 
FIGS. 2A-2D, FIGS. 3A-D, FIGS. 4A-D and FIGS. 5A-B. 
Operational features and embodiments are further described 
below with respect to FIGS. 6A-E, 7A-C, 8A-C,9A-B, 10A 
D, 11A-B, 12A-B, 13 A-B, and 14. Further, APPENDIX A 
below and FIGS. 15A-B, 16, 17, 18A-B, 19, 20A-B, 21A-C, 
and 22A-C describe additional embodiments and example 
details including MN registration, network communications, 
control messages, and other aspects for the interactive music 
system and for the NAAS (Network as a Service) server 
systems that provide lower latency network communications 
for music sessions. APPENDIX B below and FIGS. 23A-B, 
24, 25, 26, 27A-C, 28A-B, 29, and 30A-B provide further 
example embodiments for the interactive music system 
including further example embodiments related to music 
nodes (MNs) and the server system(s). APPENDIX C below 
provides example APIs (application program interfaces) that 
can be utilized. 

0091. It is noted that the networks described herein can be 
wired and/or wireless networks that include one or more 
devices (e.g., routers, Switches, firewalls, gateways, interface 
devices, network servers, etc.) that provide for network com 
munications between network-connected computing devices, 
including internet communications. As such, it is understood 
that the network data transfer of frames and packets as 
described can be implemented using any of a wide variety of 
techniques, including wired and/or wireless communications 
between one or more computing systems or devices. It is 
further noted that the data or file storage systems described 
herein can be any desired non-transitory tangible medium 
that stores data, Such as data storage devices, FLASH 
memory, random access memory, read only memory, pro 
grammable memory devices, reprogrammable storage 
devices, hard drives, floppy disks, DVDs, CD-ROMs, and/or 
any other non-transitory data storage mediums. 
0092. It is also noted that the functional blocks, modules, 
operations, features, and processes described herein for the 
disclosed embodiments can be implemented using hardware, 
Software, or a combination of hardware and Software, as 
desired. In addition, one or more processing devices running 
software and/or firmware can also be used to implement the 
disclosed embodiments. It is further understood that one or 
more of the operations, tasks, functions, features, or method 
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ologies described herein (e.g., including those performed by 
the MNs 112,114... 116; the server system(s) 102,104,106 

. . and the NAAS server systems 1602) may be imple 
mented, for example, as hardware, Software, or a combination 
of hardware and Software, including program instructions 
that are embodied in one or more non-transitory tangible 
computer readable mediums (e.g., memory) and that are 
executed by one or more processors, controllers, microcon 
trollers, microprocessors, hardware accelerators, and/or other 
processing devices to perform the operations and functions 
described herein. 

0093. It is also noted that the processing devices described 
herein can include hardware, Software, firmware, or a com 
bination thereof. In one embodiment, the components of the 
processing devices may form in part a program product with 
instructions that are accessible to and executable by process 
ing circuitry to perform the functions of the processing 
devices described herein. The instructions for the program 
product may be stored in any Suitable storage media that is 
readable by the processing devices, and the storage media 
may be internal and/or external to the processing devices. 
0094. In addition, integrated circuits, discrete circuits, or a 
combination of discrete and integrated circuits can be used, as 
desired, to perform the functionality described herein. Fur 
ther, programmable integrated circuits can also be used. Such 
as FPGAs (field programmable gate arrays), ASICs (applica 
tion specific integrated circuits), and/or other programmable 
integrated circuits. In addition, one or more processing 
devices running software or firmware can also be used, as 
desired. For example, computer readable instructions embod 
ied in a tangible medium (e.g., data storage devices, FLASH 
memory, random access memory, read only memory, pro 
grammable memory devices, reprogrammable storage 
devices, hard drives, floppy disks, DVDs, CD-ROMs, and/or 
any other tangible storage medium) could be utilized to store 
instructions that cause computer systems, programmable cir 
cuitry (e.g., FPGAs), processors, and/or other processing 
devices to perform the processes, functions, and capabilities 
described herein. 

0095. It is further noted that the MNs 112, 114... 116; the 
server system(s) 102, 104, 106 . . . ; NAAS server systems 
1602 described below; and/or other electronic computing 
devices described herein can be implemented using one or 
more information handling systems that include one or more 
processing devices (e.g., processor, controller, microcontrol 
ler, microprocessor, digital signal processor, and/or other pro 
cessing device) for executing and otherwise processing 
instructions, and for performing additional operations (e.g., 
communicating information) in response thereto. Each Such 
electronic computing device is formed in part by various 
electronic circuitry components that are configured to per 
form the device operations. Further, an information handling 
system may include any instrumentality or aggregate of 
instrumentalities operable to decode, encode, compute, deter 
mine, process, transmit, receive, store, display, communicate, 
detect, record, reproduce, or utilize any form of information 
or data for business, Scientific, control, or other purposes. For 
example, an information handling system may be a personal 
computer (e.g., desktop or laptop), tablet computer, mobile 
device (e.g., personal digital assistant (PDA) or Smartphone), 
server computer (e.g., blade server or rack server), a network 
storage device, or any other suitable electronic device and 
may vary in size, shape, performance, and functionality. The 
information handling system may include random access 
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memory (RAM), one or more processing resources such as a 
central processing unit (CPU), hardware or software control 
logic, read only memory (ROM), and/or other types of non 
volatile memory. Additional components of the information 
handling system may include one or more disk drives, one or 
more network ports for communicating with external devices 
as well as various input and output (IO) devices, such as a 
keyboard, a mouse, a touch screen video display, a non-touch 
screen video display, and/or other devices or components. 
The information handling system may also include one or 
more buses operable to transmit communications between the 
various hardware components and/or to external devices or 
systems. 

Music Node (MN) Client System 
0096. A music node (MN) is one or more electronic 
devices or systems that in part provide audio input/output and 
related processing for one or more users of the interactive 
music system. The music node (MN) operates in part as a 
client system with respect to the server system described 
below. For one embodiment, the music node includes one or 
more of the following components: audio capture input Sub 
system, audio play output subsystem, audio encoder, audio 
decoder, video input system, user interface and control Sub 
system, file storage system, and a network interface. Different 
and/or additional components could also be included, if 
desired, and variations could be implemented while still pro 
viding a music node for the interactive music system embodi 
ments described herein. It is also noted that operation at low 
latency is desired for the overall user experience, and low 
latency is preferably less than 15 milliseconds delay between 
audio packets captured and sent from on MN and received and 
processed by another MN. 
0097 FIG. 2A is a block diagram of an example embodi 
ment for music node (MN) 112. The music node (MN) appli 
cation 122 includes one or more different functional modules 
260, 261, 262, 263, 264, 265, and/or 266 to provide the 
features of the music nodes as described in more detail below. 
For example, a registration module 261 is configured to com 
municate with the server system(s) to provide registration 
features for the MN 112. A session control module 262 is 
configured to provide session control options to allow users to 
control their session experience. Ajitter queue module 263 is 
configured to provide control of the audio frame queue used 
to communicate with other MNs within a created session 
through the network 110. A recording module 264 is config 
ured to store recordings of audio inputs received by the MN 
112 both locally and through the network 110. A tunes mod 
ule 266 is configured to provide features associated with the 
packaged tunes service described below. Other modules 265 
can also be provided, as desired. The control module 270 
provides overall control for the MN 112 and coordinates the 
operations of the other functional blocks. As also described 
herein, the MN application 122 also uses and stores MN data 
124, as needed, for its operations. It is further noted that the 
other music nodes (MN) 114 . . . 116 can be configured 
similarly to music node (MN) 112 or could be implemented 
differently, as desired. As such, a wide variety of music node 
(MN) implementations could be used together within the 
interactive music systems 100 and as part of one or more 
music sessions 150. 
0098 FIG. 2B is a block diagram of an example embodi 
ment for audio/video/network/data subsystems within a 
music node 112. One or more audio inputs (AUDIO IN) are 
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received by an audio capture input subsystem 202, and digital 
audio is provided to an audio encoder 206. It is noted that the 
audio inputs can be analog signals or digital signals. If analog 
signals are input, then the audio capture input subsystem 202 
samples these analog input signals to produce the digital 
audio. If digital signals, then the audio capture input Sub 
system 202 can send this digital audio to the audio encoder 
206 or resample the digital audio inputs and then provide the 
digital audio to the audio encoder 206. The audio encoder 206 
provides encoded audio data to the interactive music control 
ler 250. This encoded audio data can then be stored as audio 
data 216 within the file storage subsystem 214, which can also 
store other data 218 associated with the operations of the 
music node 112. The encoded audio data can also be output 
through the network interface 230 to the network 110. The 
encoded audio and/or audio data received from the network 
110 through the network interface 230 can be provided by the 
interactive music controller 250 to an audio decoder 208. The 
audio decoder 208 decodes the encoded audio data and out 
puts digital audio to the audio play output subsystem 204. The 
audio play output subsystem 204 then outputs audio output 
signals (AUDIO OUT) from the music node 112. The audio 
play output subsystem 204 can include one or more digital 
to-analog converters to convert the digital audio from the 
audio decoder 208 to analog output signals, or the audio play 
output subsystem 204 can output the digital audio itself or 
re-sampled versions of the digital audio as the audio output 
signals (AUDIO OUT). The music node 112 can also include 
a display and control subsystem 220 that displays session 
information 222 and/or one or more graphical user controls 
224. A user is thereby allowed to interact with and control the 
operations of the music node 112 through the display and 
control subsystem 220. Other input/output (IO) interfaces 
226 can also be provided to allow other user IO interfaces or 
IO interfaces to other electronic systems. It is understood that 
that the interactive music controller 250 communicates with 
the different blocks within FIG. 2B using one or more control 
signals or commands to those blocks. Other variations could 
also be implemented. 
0099 FIG. 2C is a block diagram of an example hardware 
embodiment for music node 112. A system bus 260 provides 
communications between the different subsystems and com 
ponents of the music node 112. One or more processor(s) 272 
communicate with the audio subsystems 202/204/206/208 
using one or more communication paths, with video Sub 
systems 210/212/220 using one or more communication 
paths, network interface 230 using one or more communica 
tion paths, and IO subsystems 226 using one or more com 
munication paths. The processor(s) 272 also communicate 
with non-volatile storage system 274 that stores music node 
(MN) data 124, such as the audio data 216 and/or other data 
218 indicated above. The non-volatile storage system 274 
also stores the music node application (MN APP) 122, which 
can include program instructions that are executed by one or 
more processor(s) 272 to implement the functions described 
herein for the music node 112. The non-volatile storage sys 
tem 274 can be, for example, hard drives, optical discs. 
FLASH drives, and/or any other desired non-transitory stor 
age medium that is configured to store information. Further, 
the one or more processor(s) 272 communicates with volatile 
memory 270 during operations to facilitate their operations. 
The volatile memory 270 can be, for example, DRAM (dy 
namic random access memory). SDRAM (synchronous ran 
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dom access memory), and/or any other desired Volatile 
memory that is configured to store information while pow 
ered. 

0100 FIG. 2D is a block diagram of an example embodi 
ment 280 for network packets that can be transmitted within 
the interactive music system 100. A network transmission 
282 of network packets is shown for N packets (PKT1, PKT2, 
PKT3 PKT(N)). As shown with respect to the example packet 
284, each of the transmitted packets can be configured to 
include audio frame data 294, and audio header (HDR) 292, 
and a protocol header such as IP/UDP (internet protocol/user 
datagram protocol) header 290. Each packet can also include 
optional chat data 298 and a chat header (HDR) 296. It is also 
noted that the audio header 292 can include session control 
information, Such as for example, track Volume levels, master 
Volume levels, recording start commands, recording stop 
commands, hinting selections, and/or other session related 
information. It is also noted that control packets can also be 
communicated separately from audio related packets among 
the MNs and between server system(s) and the MNs. 
Example values for byte sizes and data rates are described 
with respect to example embodiments below in APPENDIX 
A. For example, as one embodiment, the audio can be cap 
tured and encoded at 256 kilobits per second, and 2.5 milli 
second data frames can be used to generate 400 packets-per 
second that are the wrapped with header information and 
transmitted through the network 110. It is further noted that 
embodiment 280 provides one example packet structure that 
can be used for network communications for the interactive 
music system embodiments described herein, and other 
packet structures could also be utilized. For example, for 
communications where audio data is not communicated, a 
network packet can be used that includes header information 
and a payload having control information, MN related infor 
mation, and/or other music session information communi 
cated among the music nodes and server system(s). Other 
packet structures could also be used. 
0101 Functional blocks within FIG. 2B are now further 
described, although it is again noted that variations could be 
implemented for these functional blocks. 
0102) Audio Capture Input Subsystem (202). The audio 
capture input Subsystem converts audio inputs to digital 
frames of audio information, preferably with low latency. For 
example, the audio input Subsystem can sample analog audio 
inputs at a selected and/or fixed sampling rate, preferably of at 
least 44.1 KHZ, and can output digital audio frames contain 
ing digital audio information, preferably 10 milliseconds 
(ms) or less of audio information. If the audio input from the 
audio source is already digital, a digital transfer from the 
audio source to the audio input Subsystem can be utilized, 
preferably again having low latency. Digital audio frames 
containing digital information can again be output by thee 
audio input Subsystem. Resampling can also be used, as 
needed, by the audio input Subsystem to match digital sample 
rates between a digital audio Source and the audio output 
frames for the audio input Subsystem. 
0103) Audio Play Output Subsystem (204). The audio play 
output Subsystem produces analog output signals and/or by 
converting digital audio information to analog output signals. 
For example, digital audio frames from other MNs can be 
received and converted to analog output signals. As indicated 
above, these digital audio frames can include a selected 
amount of audio information, such as about 10 ms or less of 
audio information. Resampling can also be used, as needed, 
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to match the digital sample rates between the audio play 
output Subsystem and the audio output destination, Such as an 
external receiver or sound system. 
0104 Audio Encoder (206). The audio encoder encodes or 
compresses digital audio information to provide compressed 
audio information. The audio encoder is also preferably low 
latency. The audio encoder operates to process the digital 
audio frames of digital audio information captured at the 
audio input Subsystem and produces a compressed audio 
stream. The audio encoder can also use error correction to 
embed error correction information that can be used by a 
decoder to detect and where possible correct and recover from 
errors induced on the audio stream during transmission or 
storage. The output encoded audio data from the encoder can 
also be packetized within network packets for transmission 
over a network. 
0105 Audio Decoder (208). The audio decoderdecodes or 
decompresses incoming audio packets from other MNS or 
Sources to provide uncompressed digital audio outputs. The 
audio decoderalso uses error correction information with the 
packets to detect errors and apply error recovery to improve 
the quality of the decoded audio. As such, high quality audio 
with low SNR (signal-to-noise ratio) is achieved. Preferably, 
the audio decoder operates with low latency, and the audio 
decoder is configured to output audio frames containing 10 
ms or less worth of digital audio. 
0106 Display and Control Subsystem (220). The input 
and a display subsystem allows a user to interact with the MN 
for management, configuration, diagnostics and general use 
and/or control. Video of other users in the music session may 
also be shown on this display. 
0107 Video Input Subsystem (210). If video input is 
desired, a video input Subsystem is used to capture video and 
preferably operates with low latency. The video input sub 
system can be used to allow live video of users playing in a 
music session to be shared. It is noted that the latency of the 
video capture subsystem can be allowed to be higher than the 
latency of the audio input Subsystem while not significantly 
degrading the user's session experience. However, it is still 
preferable that MN provide at least 30 frames-per-second of 
Video to ensure a real-time user experience. 
0.108 File Storage System (214). A file storage system can 
also be included to store digital audio information. The MN 
uses a recording process, which is described further below, to 
store multiple audio streams concurrently. 
0109 Network Interface (230). An input/output network 
interface is provided that preferably operates with low 
latency. The audio processing application input network path 
of the MN includes a jitter queue buffer management system, 
which is described in more detail below. The MN also uses the 
network for interaction with a server that manages the music 
session, as also described in more detail below. The MN also 
uses the network for communication with peers in the music 
session. In general, the following classes of data flows occur 
in the MN: (1) peer-to-peer music data, (2) peer-to-peer state 
and session control data, (3) peer-to-peer video data, and (4) 
server session management and control data. It is also noted 
that peer-to-peer data may also be sent via a proxy server that 
may process the data before relaying it to another MN (e.g., 
aggregate packets, process and mix audio into a single audio 
stream, and/or perform other desired data processing). 
0110. It is also noted that although the components in FIG. 
2B above are described with respect to an embodiment for a 
music node (MN) 112, different and/or additional compo 
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nents could be utilized in other embodiments. As such, the 
components can be varied, as desired. Further, the operation 
of each component could also be varied, if desired. 
0111 FIGS. 3A-D provide further different implementa 
tion embodiments for the music node (MN) 112. FIG. 3A is a 
block diagram where components are implemented in one or 
more electronic devices or systems having independent con 
nections to the network 110. FIG. 3B is a block diagram 
where components are implemented within a single elec 
tronic device or system having at least one connection to the 
network 110. FIG. 3C is a block diagram where components 
are implemented using an audio streaming appliance having a 
separate connection to the network 110. FIG. 3D provides an 
example embodiment of a graphical user interface providing 
session management and control for MNS. 
0112 Looking now to FIG. 3A, a block diagram of an 
integrated music node embodiment 320 that includes the 
components described above within one or more electronic 
devices with one or more connections to the network 110. 
Components 302 provide the display and control interface for 
the music session along with low latency video decode. A 
session information and control window 310 is displayed to a 
user that provides session information and control. Compo 
nents 304 provide the audio input/output including audio 
input capture, encode, and streaming to the network 110, as 
well as audio stream receiver, decoder and local output player. 
Components 306 provide the video capture, encode, and 
streaming for local video through a video capture device, 
such as a video camera. The embodiment 320 can also include 
direct control paths between the components that are inte 
grated portions of the system. 
0113 FIG. 3B is a block diagram of an integrated music 
node embodiment 330 that includes the components 302/304/ 
306 described above within one physical electronic device 
332 connected to the network 110. It is noted that for the 
embodiment 330 no external network is needed to communi 
cate between the internal components. It is further noted that 
the audio in/out connections to the embodiment 330 can be 
through built-in or external connections, such as internal or 
external USB (universal serial bus) ports connected to one or 
more audio inputsources or output devices. Further, the video 
capture can use built-in or external video connections, such as 
internal or external USB ports. A system software stack 334 
provides control of the internal operations for the device 332, 
and the system Software stack 334 can be implemented using 
one or more processor(s) running instructions stored in a 
non-transitory storage medium, as described herein. 
0114 FIG. 3C is a block diagram of an example embodi 
ment 340 of a music node (MN) where audio components 
302/304/306 are separated into a dedicated audio processing 
appliance device 346. As depicted, the dedicated audio pro 
cessing appliance 346 includes components 306 providing 
the audio capture, audio input processing, audio encode/de 
code, and peer-to-peer (P2P) network audio interface. The 
separate device 342 includes components 302 and 304 pro 
viding the video, display, and user input mechanism (e.g., 
keyboard, mouse, touch-screen, etc.) and any additional 
remaining parts of the separate device 342. A system Software 
stack 344 also provides control of the internal operations for 
the device 342, and the system software stack 344 can be 
implemented using one or more processor(s) running instruc 
tions stored in a non-transitory storage medium, as described 
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herein. The separate device 342 can be, for example, desktop 
computer, laptop, tablet, Smartphone, and/or another com 
puting device. 
0115 FIG. 3D is a block diagram of an example embodi 
ment for a session information and control window 310 that is 
displayed to a user (e.g., through an application graphical user 
interface (GUI)) to provide in part the interactive control for 
the music session by the user. As depicted, the window 310 
includes a section 352 that shows audio inputs for tracks 
being recorded by the local music node, Such as a guitar input 
and microphone (voice) input. Related controls are also pro 
vided within section 352, such as for example volume con 
trols for each of these tracks, and these controls allow a user 
to make adjustments to his/her own tracks in the session. A 
master volume control can also be provided. The window 310 
also includes a section 354 that shows live tracks associated 
with other MNs within the session, such as a microphone 
(voice) and keyboard inputs for one or more additional MNs 
in the session. Related controls are also depicted within sec 
tion 354, such as for example volume controls for each of 
these tracks, and these controls allow a user to make adjust 
ments to other non-local tracks in the music session. Selection 
buttons can also be provided to initiate a recording of tracks 
within the music session. The window 310 also includes a 
section 356 that shows recordings that have been made for 
tracks within the music session, such as for example guitar 
recordings, microphone (voice) recordings, and/or keyboard 
track recordings. Related controls are also depicted within 
section 356, such as for example volume controls for each of 
these recorded tracks, and these controls allow a user to make 
adjustments to all of the recorded tracks for the music session. 
Controls can also be provided for play back control of the 
recordings, such as for example a play button and a position 
slider for the recordings. It is further noted that additional or 
different session information and/or controls can also be pro 
vided as part of the window 310. Further, it is noted that 
additional windows could also be used, and information and 
controls can be organized, as desired, among these windows 
while still providing session information and control to a user 
through a graphical user interface displayed by the music 
node (MN). 
0116 FIGS. 4A-D are block diagrams of a further 
example embodiment for the audio streaming appliance 346. 
FIG. 4A is a block diagram of an example embodiment for a 
dedicated audio processing appliance device 346. FIG. 4B is 
a circuit and component diagram of an example embodiment 
for connections to an audio input/output processor for a dedi 
cated audio processing appliance device. FIG. 4C is a hard 
ware layout diagram of an example embodiment for a dedi 
cated processing appliance device. FIG. 4D is an example 
embodiment for an audio software stack that can be used with 
the dedicated audio processing appliance device or with other 
MN embodiments if a separate audio processing appliance 
device is not being used to implement the MN. 
0117 FIG. 4A is a block diagram of an example embodi 
ment 400 for a dedicated audio processing appliance device 
346. For the embodiment depicted, a device body 402 
includes one or more external connections and input/output 
components, such as for example USB (universal serial bus) 
connections, SD (secure digital) card reader, a power connec 
tor, an RJ45 Ethernet connector, a status LED, a synchroni 
Zation (sync) button, XLR connectors, a mono connector, a 
HP (headphone) connector, and/or other desired connections 
or components. The device body also includes one or more 
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printed circuit boards on which are mounted one or more 
integrated circuits, discrete components, and electronic com 
munication traces. For example, an audio codec integrated 
circuit (e.g., PCM3061.A from Texas Instruments) can be 
used that outputs audio such as through the headphone (HP) 
connector and captures audio inputs (e.g., sampling fre 
quency of 8-96 kHz) such as from the XLR connectors and 
the mono connector as well as an internal microphone if 
included. Also, a processor integrated circuit (e.g., iMX6 
from Freescale Semiconductor) can be coupled to the audio 
codec and other components to process the audio input/out 
puts as well as other MN and music session related input/ 
outputs. Other components could also be included such as 
EEPROMs (electrically erasable programmable read only 
memories), DRAMs (dynamic random access memories), 
clock circuits, crystal circuits, power management integrated 
circuits, DC-to-DC converters, Ethernet physical (PHY) 
layer integrated circuits, and/or other desired components. 
0118 FIG. 4B is a circuit and component diagram of an 
example embodiment 420 for connections to an audio codec 
430 for a dedicated audio processing appliance device. 
Example audio connections 422,424, 426, and 428 are shown 
as well as example circuits that can be coupled to one or more 
printed circuit boards between these audio connections and 
the audio codec 430. As described above, these components 
can all be located within a device body for an audio process 
ing appliance device. Audio connection 422 is a headphone 
connector this is coupled to receive left (L)and right (R) audio 
outputs for the audio codec 430. Audio connection 428 is a 
chat microphone connector that is coupled to provide audio 
input Voltages to the audio codec 420. Audio connection 424 
is a combined XLR microphone connector and audio line-in 
connector that is coupled to provide audio input Voltages to 
the audio codec 430. A switch is also provided to switch 
between the XLR microphone input and the line-in input. 
Audio connection 426 is similar to audio connection 424. The 
audio codec 430 captures audio inputs and provides audio 
outputs and communicates audio data and control informa 
tion to and from other electronic devices using a digital inter 
face, such as a digital serial interface (e.g., I2S interface). 
Variations could be implemented as desired. 
0119 FIG.4C is a hardware layout diagram of an example 
embodiment 450 for a dedicated processing appliance device. 
The front 402A of the device body includes connectors such 
as the headphone (HP) jack and the XLR combo connectors. 
The back 402B of the device body includes connectors such 
as an Ethernet connector, USB connectors, sync button, and a 
power connector. The printed circuit board 452 includes one 
or more integrated circuits and/or other discrete circuits or 
electrical components, as well as interconnecting electrical 
traces. While an example layout of components is shown, it is 
understood that this layout is just one example, and other 
implementations and layouts could be used. 
0120 FIG. 4D is a block diagram of an example embodi 
ment for an audio Software stack 460 including a user space 
462 and a kernel 464 coupled to an audio interface for the 
audio codec 430. The software stack 460 can be implemented, 
for example, as one or more processing devices executing 
program instructions stored in a non-transitory storage 
medium. As indicated above, one processing device that can 
be used is an iMX6 processor from Freescale Semiconductor. 
The Software stack provides low-latency audio input/output. 
In part, the embodiment depicted captures audio at the codec 
input and sends chunks (e.g., 2.5 ms chunks) of captured 
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audio to the audio application where it is processed. This 
processed audio is sent back to the codec to have it played as 
an audio output and is also sent through network communi 
cations to peers within a music session. The internal audio 
input/output latency is preferably less than 3 ms and has a 
variance of 0.001 or less. An Enhanced Serial Audio Interface 
(ESAI) subsystem and driver can also be used to transmit and 
receive digital audio from the audio codec. Further, parallel 
and/or serial digital interfaces (e.g., I2S, I2C) can be used 
between the audio codec and the processing device imple 
menting the software stack 460. An open source audio plat 
form, such as PortAudio, can also be implemented within the 
software stack 460 to provide audio processing within the 
user space 462. Further, continuous memory allocators 
(CMEMs) can also be used as well as SDMA (smart direct 
memory access) controllers. Other variations can also be 
implemented. 

Interactive Music Server System—Server Services 
I0121 Where the MN embodiments described above pro 
vide the input/output of music for the user and other user 
input/control, the server provides one or more of the follow 
ing server Services: user registration, music session creation, 
pre-join Session scoring, recording management, live broad 
casting management, global session interface, and/or other 
server services. Different and/or additional server services 
can also be used or provide, and variations can also be imple 
mented. 
I0122 FIG. 5A is a block diagram of an example embodi 
ment for an interactive music server system 102. As described 
herein, the server system 102 can provide one or more server 
services for the interactive music system 100 and the music 
sessions 150 for the music nodes 112, 114 ... 116 as shown 
in FIG. 1. Looking to the example embodiment of FIG. 5A, 
the server system 102 includes a user registration module 502 
that operates to provider user registration services, pre-join 
session scoring module 504 that manages MN scoring for 
maintaining session quality, a session management module 
506 that facilitates the creation and joining/leaving for music 
sessions, live broadcast management module 508 that man 
ages live broadcasts for the music sessions, a recording man 
agement module 510 that manages the movement of record 
ings among the session MNS, a global session control 
interface and management module 512 that manages the in 
session controls selected by the various MN users, a tunes 
module 515 that provides features associated with the pack 
aged tunes service described below, and/or other modules 
514. For the example embodiment depicted, the server system 
102 also includes a database system 520 that is used by the 
control module 516 and the other modules to store data asso 
ciated with the operation of the interactive music system 100, 
including the server systems and the music nodes. For 
example, the database system 520 stores session information 
522, recordings 524 for the sessions, registration information 
526, scoring information 528, and/or other information 530. 
The operation of example modules for the server services is 
described in more detail below. 
I0123. It is noted that one or more server systems (e.g., 
server systems 104,106 . . . in FIG. 1) can also be used to 
implement the functional modules for server system 102 in 
FIG. 5 and described herein. These functional modules can 
also be distributed among the server systems being used, as 
desired. Further, multiple server systems can perform similar 
functions, and load balancing can be used to distribute work 
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loads for the interactive music system 100 among the differ 
ent server systems. Similarly, the database system 520 can be 
implemented using one or more data storage devices, and 
these data storage devices can be internal to or external from 
the server system(s), as desired. For example, the data storage 
system 520 can be implemented using internal hard drives, 
external hard drives, a RAID (redundant array of independent 
drives) system, network attached storage, and/or any other 
desired data storage device(s) that provide non-transitory data 
storage mediums. Other variations could also be imple 
mented while still utilizing one or more server systems and 
related database systems to provide the server services 
described herein. 
0.124 FIG. 5B is a block diagram of an example hardware 
embodiment for server system 102. A system bus 560 pro 
vides communications between the different subsystems and 
components of the server system 102. One or more processor 
(s) 568 communicate with network interface 564 using one or 
more communication paths, IO Subsystems 562 using one or 
more communication paths, with non-volatile storage system 
(s) 570, and with volatile memory 566 using one or more 
communication paths. In addition to storing server services 
data, as described above, the non-volatile storage system(s) 
570 can also store program instructions that are executed by 
one or more processor(s) 568 to implement the functions 
described herein for the server system 102. The non-volatile 
storage system 570 can be, for example, hard drives, optical 
discs, FLASH drives, and/or any other desired non-volatile 
storage medium that is configured to store information. Fur 
ther, the volatile memory 566 can be, for example, DRAM 
(dynamic random access memory), SDRAM (Synchronous 
random access memory), and/or any other desired volatile 
memory that is configured to store information while pow 
ered. 
0.125 Functional blocks within FIG. 5A are now further 
described, although it is again noted that variations could be 
implemented for these functional blocks. It is further noted 
that APPENDIX A below describes additional embodiments 
and example details including MN registration, network com 
munications, control messages, and other aspects for the 
interactive music system and for NAAS (Network as a Ser 
vice) server systems that provide network communications 
for music sessions. 
0126 User Registration (502). Each user registers with the 
server and creates an account. As part of this registration, 
users also provide certain meta-data Such as the kind of instru 
ment(s) they play, the location that they live, and/or other user 
data information. After registering, a user can access the 
server System, Such as through a web browser and internet 
connection, and the user can sign in to the server services. 
0127. Music Session Creation and Management (506). 
Once a user is signed in from a MN, the user is able to create 
music sessions. A music session is a server resource that a 
user may share with other users, inviting them to join and play 
music together or listen to music occurring in the session. A 
session can be a private session Such that only the creator or 
members of the session may invite others to join or listen. A 
session can also be a public session Such that it is listed on the 
server so that any user with a MN can discover and request to 
join or listen. The user creating the session can select whether 
or not to create the session as a public or private session, and 
this selection can also be changed once the session is created. 
0128 Pre-join Session Scoring (504). To help ensure that 
users have a positive experience when in a music session, the 
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server can direct the MNs associated with requests to join 
sessions to perform one or more qualifying tests to provide 
scoring for the MNS requesting to join. The scoring results of 
these qualifying tests are sent by the MNs to the server. These 
qualifying tests can include, for example, reporting network 
latency information associated with the network latency 
between the MNs that would be involved in the session. The 
server then uses the result data passed back to allow the user 
to join the session, disallow the user from joining the session, 
provide a warning to the current session participants concern 
ing the new user requesting to join the session, and/or other 
actions based upon the results of the scoring process. For 
example, if the latency between the joining MN and one or 
more of the MNs that are already in the session is beyond a 
predefined threshold, the server may disallow the user from 
joining the session or warn the current session MNs but allow 
the MN to join. The current session MNs can also be given 
control of allowing or disallowing the new MN to join based 
upon the scoring results. 
I0129 Recording (510). The server can also store and sub 
sequently manage access to recordings made by users in a 
session. This recording management can also include mecha 
nisms for merchandising the content, sharing or editing of the 
session recordings. 
0.130 Live Broadcasting (508). The creator of a music 
session may also elect to live broadcast the session. The server 
manages access to the live broadcast stream according to the 
terms requested and/or selected by the user controlling the 
session. For example, the user can choose to have access to 
the live broadcast be paid access or free access, to set a limit 
for the number of listeners, or to allow only invited users to 
listen, and/or to provide other terms associated with the live 
broadcast. The server also directs the MN to start/stop the 
broadcast, for example, to start the broadcast when there is at 
least one listenerand to stop the broadcast when there is none. 
I0131 Global Session Interface (512). One particularly 
advantageous aspect to this interactive music system embodi 
ments described herein is that the server provides MN users in 
a session with a common audio mixer view of all the live input 
and played-back music sources (tracks) at the MNs in the 
session, such as for example the embodiment for window 310 
shown in FIG. 3D. The track controls (volume, mute, etc.) for 
any track within the session affect the track at the MN from 
which it originates. As such, a user at one MN can adjust 
tracks for the entire session, even though tracks may originate 
at one or more other MNs within the session, and these 
adjustments are sent as network communications to the other 
MNs. The other MNs receive these control messages and 
adjust their settings accordingly. This global session interface 
enables any user in the session to configure the track mix 
setting for the session. By providing a session global track 
control, the interactive music system simplifies the user expe 
rience. For example, even if only one user in the session has 
basic knowledge of audio mixing, a high quality final mix of 
the overall session can still be produced that is good enough 
for immediate broadcast, recording, and/or for the session 
musicians to appreciate the result of the in-session effort. 
I0132) Example operational features and embodiments for 
the interactive music system will now be further described 
with respect to FIGS. 6A-C (session scoring), FIGS. 6D-E 
(adaptive throttling), FIGS. 7A-C (jitter queue), 8A-C (re 
cording), 9A-B (distributed metronome), 10A-D (virtual 
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positioning), 11 A-B (concert broadcast), 12A-B (large group 
session), 13 A-B (musician hinting), and 14 (Songs/trackS/ 
tunes service). 

Session Scoring 

0133. Before a MN is allowed into a session, it is first 
qualified using a session scoring. This prejoin session scoring 
helps to ensure that all users in the session have a good 
experience. The following discussion provides more detailed 
examples for the scoring process. 
0134. Latency Scoring and Thresholds. Depending upon 
the beats-per-minute (BPM) used in a musical performance, 
the performing musicians can accommodate various amounts 
of audio latency and still have a qualitatively good interactive 
music experience. Latency here refers to the time it takes for 
Sound to reach the participating musician after leaving the 
Sound Source. In free space, Sound travels at approximately 
0.34 meters per millisecond (m/ms). It is observed that gen 
erally the distance on stage that musicians can participate at 
high BPM (e.g., about 160 BPM) without a director/conduc 
tor is about 8 meters. This distance represents a latency of 
about 24 ms (e.g., 8 m/0.34 m/mss23.5 ms. If the BPM of the 
performance is lower (e.g., about 100 BPM), it has been 
shown that latency of up to about 50 ms (e.g., representing 
about 17 meters separation) can be accommodated by musi 
cians performing together on stage. 
0135 Latency between MNs within the interactive music 
system embodiments described herein includes: (1) transmit 
latency (T) including time to capture, encode, and transmit 
audio packets, (2) receive latency (R) including time to buffer 
(e.g., the jitter queue described below), decode, and play 
received audio packets, and (3) network latency (N) including 
time for audio packets to travel within a network between two 
MNs. If the capture, encode, and transmit latency for the 
sending MN is represented by T; the receiver jitter queue, 
decode and play latency for the receiving MN is represented 
by R; and the one-way network latency from the sending MN 
to the receiving MN is represented by N; the total audio path 
latency or delay (D) for audio originating at the Sender and 
arriving at the receiver can be represented as D-N+T+R. 
0136. As between one music node (MN) sending to 
another music node (MN), the delay (D) between these two 
nodes can is represented using the following equations: 

where N, is the network delay from MN, to MNT, is the 
transmit delay for MN, and R, is the receive delay for MN, 
The maximum latency in the session (S) can be repre 
sented by the following equation: 

S-W max(D., Dji) 

wherein all music nodes (MN) in the session as well as audio 
paths to and from each pair of MNs are considered to find the 
maximum session latency. 
0.137. At a MN within the session, rather than treating the 
transmit latency different from the receive latency, the latency 
can also be approximated by considering an average of the 
two. Thus, the latency (M) for a given music node (MN) 
within the session can be represented as M=(T+R)/2. Simi 
larly, it can be approximated that different MNs (MN, MN, 
. . . ) have similar characteristics (e.g., Ms.M.) So that the 
latency (M) can be approximated for the MNs within a ses 
sion such that Ms.Ms.M. 
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0.138 If D is a maximum allowed music delay thresh 
old for a session, then the latency between any two music 
nodes (MN, MN,) should be less than D, to maintain a 
good user experience within the session. As such, it is desir 
able that the following equation be satisfied: (N, +2M) 
sD,. This expression can be rewritten as 2N, s(2D 
4M). The network ping between the two music nodes can be 
represented as PING, 2N, assuming the network delay 
time is about the same in both directions (e.g., N. N.). 
Substituting into the previous expression, the following equa 
tion can be used to assess whether or not to allow a new MN 
into a session: 

PING, s2(D-2M) or 

PING, s2(D-NodeLatency) or 

/2(PING...)+NodeLatencysD. 

where it is assumed that 2M=(T+R)-NodeI atency. Thus, a 
determination of whether a MN should be allowed to join a 
session can be based upon a predetermined node latency (e.g., 
transmit latency (T)+receive latency (R)) and a predeter 
mined maximum delay (D) along with a network ping test 
result between the two nodes (PING, ). The condition, there 
fore, can be used to filter the music nodes that are allowed into 
session. 
0.139 FIG. 6A is a Swim lane diagram of an embodiment 
600 for latency scoring for two music node (MN) client 
systems (MNA and MNB) and a server. First, both MNA and 
MNB sign on to the server. Next, the server communicates 
with MNB to prepare MNB to do a latency test with MNA. 
The server also communicates with MNA to prepare MNA to 
do a latency test with MNB. The server then initiates a ping 
count loop for both MNA and MNB. MNA then sends the 
results of its latency test for MNB to the server, and MNB 
similarly sends the results of its latency test for MNA to the 
server. As described herein, the server can use these scoring 
results to determine whether or not MNA and MNB will be 
able to interact in a music session with latency below a thresh 
old selected as a latency threshold that provides for positive 
user experience. If the latency test results indicate latency 
scoring that does not meet the selected thresholds, then appro 
priate actions can be taken as described herein, Such as not 
allowing MNB to enter a session created by MNA, issuing a 
warning to MNA that allowing MNB may degrade perfor 
mance beyond acceptable levels, and/or any other desired 
action. Variations can be implemented as desired, and 
example variations are described below. 
0140 Latency Scoring Optimization. To improve the 
speed at which latency between a given set of MNs is calcu 
lated, one or more of the following optimizations can also be 
utilized: caching, distance filter, network correlation, updat 
ing, and/or other optimization determinations. In part, these 
techniques include estimating expect latency without requir 
ing the MNS to initiate and respond to ping tests, as this ping 
testing can itself significantly slow down the MN as numbers 
of MNs within the system increases. 
0141 Caching. If latency scoring between a given pair of 
MNs (A, B) were recently calculated, use that number result 
instead of asking the nodes to perform new latency probes. 
0.142 Distance Filter. A distance filter can be applied using 
a geographic IP (Internet Protocol) address database. For 
consumer class internet network services, the observed net 
work latency generally approximates to one way delay of 30 
miles per millisecond or 15 miles per network ping millisec 
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ond, as the network ping includes transmit and return paths. 
By using the IP address of the MNs and a GEOIP database, 
the longitude and latitude of the MNs can be determined. The 
terrestrial distance between MNs can then be computed, and 
internet latency can be approximated. For example, if a net 
work ping time of 30 ms is used as threshold network latency, 
then this translates to about 450 miles of allowed geographic 
separation (e.g., 15 miles perping ms'30 ms=450 miles). The 
current approximate geographic limit, therefore, is under 
about 500 miles assuming 30 ms of network latency is allow 
able for a good user experience by the MNs. Thus, it is 
expected that users that have distances of more than 500 miles 
between them are unlikely to have a good interactive music 
experience, as the latency will be too great to allow for a good 
interactive music experience. 
0143 Network Correlation. If the IP address of a first MN 
(A) corresponds to the that of a second MN (B) and the two 
MNs are served by the same ISP (internet service provider) 
and are in the same local geographic area (e.g. same city 
and/or zip code), then if the latency of the first MN (A) to a 
third MN (C) is known, the system infers that latency from the 
second MN (B) to the third MN (C) will be similar and uses 
that scoring data. 
0144 Updating Latency Cache with Actual Latency. The 
above guesses or proxies for latency are updated when the 
nodes actually join a session. Once joined, the actual latency 
between the MNs is observed and passed to the server. The 
server then uses this data to refine the accuracy of its latency 
estimation optimization. If a user is invited explicitly to a 
session, then the latency of the user is not used to filter them. 
However, the server system can warn the new user or the 
current session members of high network latency if the dis 
tance or latency between the new user and any MN in the 
session is large. The server system also warns users periodi 
cally during session that the network condition is unfavorable 
if the latency between one MN and its peers goes and stays 
beyond a threshold. 
0145 As indicated above, as a MN comes online or 
requests to join sessions, the server directs them to perform 
latency probes with other MNs. The MN may be dormant 
(e.g., not in a music session) or active (e.g., in a music ses 
sion). If the MN is in a session, the server is careful to control 
the rate at which it asks the MN to do probes as the latency 
probe process may negatively affect the user network capac 
ity thereby degrading the interactive audio experience. New 
latency probe data that is acquired by the server is then used 
to refresh the server latency cache. 
0146 Latency Probe with Proxy Server. In some cases, a 
MN will communicate to the network through a proxy server. 
In this case the overall network latency is the network latency 
for a MN wanting to join the session to the server plus the 
maximum latency from the proxy server to MNs that the 
joining MN wants to communicate with as part of a music 
session. 
0147 Client Decoding Capability in Scoring. In addition 

to network latency, the decoding capability of the MN that is 
joining the session plays a role in impacting the session expe 
rience of all users. The compute capability of MN directly 
correlates to how many audio streams it can concurrently 
decode and then process the resulting audio Such that the 
real-time requirements of the system is maintained. A MN is 
said to be “K” stream capable if K is the maximum number of 
audio streams it can concurrently decode and process in real 
time. If a user with a MN having decode capability of K 
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streams tries to join a session with more than K streams in it, 
the user will not be allowed and/or a warning will be issued. 
Similarly, it is noted that the MN with lowest K stream capa 
bility within a session in effect limits the session to no more 
than K participant streams without degrading the session. 
0148 Edge Network Scoring. Currently, for lowest audio 
latency, a MN will preferably need to send audio packets to its 
peers every 2.5 ms or 400 times per second. In a session that 
has X participants and that is fully peer-to-peer (P2P), every 
MN will transmit (X-1)*400 packets per second. Similarly, it 
will receive (X-1)*400 packets per second. This implies that 
the users network (e.g., home network router or other network 
interface) must be able to support a full duplex packet rate of 
800*(X-1) packets per second. In a session with five (5) 
MNs, therefore, this produces 3200 packet per second. Cur 
rent technology in some home routers and wireless network 
access points (e.g., Wi-Fi) are unable to Support this kind of 
throughput. 
0149 Similarly, as the number of MNs in a P2P session 
grows, the uplink bandwidth grows linearly with number 
participant. For many users on broadband networks provided 
by internet service providers (e.g., cable companies, phone 
companies, etc.), the downlink bandwidth is significantly 
higher than the uplink bandwidth. For a MN to send a 256 
kilobits per second (kb/s) audio stream at 400 packets per 
second with UDP (User Datagram Protocol) formatting 
requires 380 kb/s of bandwidth. If a user has an uplink band 
width of 1 megabits per second (1 mb/s), this uplink band 
width clearly limits the number of P2P connections to other 
MNs the user MN can have to at most two MNs at this audio 
bit rate. By using a lower audio bit rate of about 96 kb/s, the 
per stream uplink bandwidth falls to 220 kb/s. With this lower 
bit rate, therefore, the same user can potentially accommo 
date four P2P MNS in a session. 

0150. The packet rate limit or bound for a user is often is 
reached before the bandwidth limit or bound for the user. 
Either way, however, by pre-scoring the user's network 
latency, the interactive music system is able to filter whether 
a MN may join a session without adversely affecting the user 
experience within the session. For example, the creator of the 
session may set a criterion that only MNS that can Support 
stream audio at a bit rate of X or greater and packet rate of 400 
packets per second to all peers within the session may join the 
session. The server uses these filters in conjunction with the 
MN packet and bandwidth scores to determine session admis 
S1O. 

0151 MN Packet Rate Scoring. As one example, the MN 
packet rate scoring is performed as follows. The MN connects 
to a scoring server hosted by one or more server system(s) 
through the network 110. The scoring server sends UDP test 
packets at high rate of K packets per second for some duration 
T, where K is multiple of 400 or some other selected number. 
The payload of the test packets represents that of a session 
music payload, for example, a session music payload at 128 
kb/s aggregated with that of chat stream of 40 kb/s. At the end 
of the interval T, the MN reports to the server how many 
packets it received. If the MN reports receiving 95% or more 
of the packets (or some other selected threshold), it then 
requests another scoring session with the server but with 
twice as many packets per second as was sent previously. This 
continues until the MN reports to the server receiving less 
than 95% of the packets sent by the server (or some other 
selected threshold). 
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0152 The downlink channel packet rate (Dr) is then 
determined by multiplying the final server packet rate with 
the percentage of packets received by the MN in the last cycle. 
Next the uplink capacity of the client is determined. The 
server directs the MN to send packets to it a rate of K for T 
seconds. At the end of the T, the server reports to MN how 
many packets it received. If the server reports receiving 95% 
or more of the packets sent by the MN (or some other selected 
threshold), the MN will double its send packet rate to the 
server on the next cycle. When the uplink receive rate by the 
server is less than 95% (or some other selected threshold), the 
uplink channel rate (U) is computed by multiplying the 
final packet send rate of the MN with the percentage of 
packets received at the server in the last cycle. 
0153. Next, the concurrent channel packet rate is com 
puted. The server and the MN each sends packets concur 
rently for T seconds. The server sends at D and the MN 
sends at U. If the server receives U percentage of the 
packets the then MN and the MN receives Spercentage of the 
packets from the server, the effective channel packet rate 
capacity (C) of the MN network connection in a music session 
can be given as two times the minimum of S times D or U 
times U, which can be represented by the equation: 
C-2*min(SD, UU). The channel packet rate 
capacity (C), for example, can be used as the MN packet rate 
SCO. 

0154 FIG. 6B is a swim lane diagram of an example 
embodiment 610 for MN packet rate scoring. The MN signs 
on to the server. First, the downlink packet rate communica 
tions then occur between the MN and the server. The down 
link packet rate result is then sent from the MN to the server. 
Next, the uplink packet rate communications occur between 
the MN and the server. The uplink packet rate result is then 
sent from the server to the MN. Finally, the concurrent packet 
rate communications occur between the MN and the server. 
The concurrent downlink packet rate result is then sent from 
the MN to the server, and the concurrent uplink packet rate 
result is then sent from the server to the MN. The final packet 
rate scoring result is then determined by the server and/or the 
MN. 

(O155 MN Bandwidth. Scoring. Similarly, to determine the 
MN channel bandwidth score, the sequence described above 
is repeated, but this time large payload test packets are used to 
determine an effective downlink throughput (B) and 
uplink throughput (B), for example, in terms of megabits 
per second (mb/s). These rates are determined by the largest 
bandwidth needed at a MN to support the largest expected 
number of concurrent users inasession with all features of the 
service in play (e.g., video, music, messaging, etc. enabled). 
At end of the bandwidth scoring, the MN downlink band 
width (D) is computed, and the uplink bandwidth (U) is 
computed. 
0156 FIG. 6C is a swim lane diagram of an example 
embodiment 620 for MN bandwidth scoring. The MN signs 
on to the server. First, the downlink bandwidth communica 
tions then occur between the MN and the server. The down 
link bandwidth result is then sent from the MN to the server. 
Next, the uplink bandwidth communications occur between 
the MN and the server. The uplink bandwidth result is then 
sent from the server to the MN. Finally, the concurrent band 
width communications occur between the MN and the server. 
The concurrent downlink bandwidth result is then sent from 
the MN to the server, and the concurrent uplink bandwidth 
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result is then sent from the server to the MN. The final band 
width scoring result is then determined by the server and/or 
the MN. 
(O157 Adaptive Packet Rate Throttling. If a MN's network 
environment score (e.g., packet rate scoring, bandwidth scor 
ing) indicates that it can Support only P packets-per-second 
and the number of MNs is Kin the session, the MN can send 
audio packets at a first packet rate as long as the MN can 
Support a packet rate (P) above a selected threshold. Such as 
for example 400 times per second, such that the following 
threshold condition remains true: P-2*400(K-1). When the 
threshold condition becomes false, the MN switches to a 
lower packet rate, such as for example to 200 packets per 
second by aggregating two audio frames (e.g., two 2.5 ms 
audio frames) within in a single packet. The MN can also 
inform it peers to send packets to it at a lower rate, although it 
may throttle the send and receive rates independently. In the 
case where both send and receive rates are throttled back to 
200 packets per second, such as when P-2*200(K-1), the 
system may further throttle the packet rate by aggregating in 
single packet, such as four audio frames (e.g., four 2.5 ms 
audio frames) in a single packet. Further aggregations and 
packet rate reductions could also be used. 
0158 While process of aggregating packets adds latency, 
the packet rate and overall bandwidth are reduced. At 200 
packets per second, for example, the MN has 2.5 ms more 
latency relative to 400 packets per second. At 100 packets per 
second, the MN has 7.5 ms more latency relative to 400 
packets per second. If the end-to-end latency is still within the 
desired limits, packet rate throttling is an effective mecha 
nism for extending the possible set of MNs that may partici 
pate in a session. If T is the maximum allowed latency in 
the session and T is the latency of the session before packet 
rate down throttle, then down throttle is allowed if (T-T) 
is greater than the additional latency cause by packet rate 
down throttle. 

0159. It is further noted that as the number of MNs grow, 
the MN can adaptively down throttle the send or receive 
packet rates. Conversely, as the number of MNs in the session 
decline, the MN can adaptively up throttle the packet send or 
receive rates as well. It is further noted that if the server 
system is used as proxy, as described below with respect to the 
NAAS (Network as a Service) embodiments, the uplink and 
downlink packet rate from a MN can become invariant to the 
number of MNs in the session. 
0160 FIG. 6D is a process flow diagram of an example 
embodiment 630 for adaptive throttling of frame size when an 
MN leaves or joins a music session. When an MN leaves or 
joins, a new packet rate is determined for the remaining MNS. 
If the rate meets latency requirements, then a determination is 
made whether the framesize can be reduced. If the framesize 
is changed, then the rate is again checked. If the rate is not 
satisfactory, then a determination is made whether to increase 
the framesize. If the framesize is changed, then a new packet 
rate is again determined. If not, then the new MN is rejected 
for the session. Once a new framesize is selected and 
approved, the new framesize is communicated to all MNs in 
the music session, and the new MN is accepted into the 
session. 
0.161 FIG. 6E is a process flow diagram of an example 
embodiment 640 for adaptive throttling of bandwidth (BW). 
If a difference in receive BW and send BW is detected, then a 
determination is made whether the communications are 
stable. If not stable, then bandwidth is down-throttled. If 
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stable, then a check is made to determine if BW can be 
up-throttled. If a change is made, the communications are 
sent to adjust the MN bandwidth. 

Jitter Queue 
0162. As audio packets traverse the network, jitter (vari 
ability in the inter-arrival time at the receiver) is introduced. 
As the audio play out preferably happens at a constant rate, 
packets are buffered throughajitter queue within the MN and 
then dequeued and played at constant rate. 
0163 Classically, a jitter queue preferably buffers enough 
packets to account for the longest expected inter-arrival delay 
or jitter, thereby ensuring that the play out (e.g., audio output 
information ultimately heard by the user) does not starve once 
it has begun. When a play out does starve, the typical results 
are sound artifacts in the play out. The ideal low-latency audio 
jitter queue is considered herein as one where the buffer for 
the jitter queue always drains to Zero at least once, but does 
not starve, in a predefined window of time. Satisfying this 
condition helps to guarantee that audio latency is not built up 
on the jitter queue, and this condition can be represented by 
the expression: JO-0, during time T, where JQ repre 
sents the minimum number of packets in the jitter queue 
during a time duration represented by T. 
0164. It is noted that a time duration Tofone second or less 

is a preferable threshold to be achieved for the jitter queue 
reaching Zero in order to preserve a low-latency and high 
quality audio experience. Other values for the time duration T 
could also be selected, if desired. 
0.165 If the jitter queue does not reach Zero during the time 
duration T (e.g., JOz0, during time T), then a buildup of 
latency can be deemed to be occurring as some packets will 
not be processed within the time period T. To avoid this 
condition, the MN can discard packets from the jitter queue in 
one or more of the modes described in more detail below. 
0166 Further, if packets are discarded from the jitter 
queue in one interval T, and then starves in a Subsequent 
interval T, this subsequent starving can be used to indicate 
that the monitor time window T is not aligned with packet 
variances that are occurring in the interactive music system. 
0167 FIG. 7A is a representative diagram of an embodi 
ment 700 for a jitter queue that buffers audio frames for play 
output. The X-axis represents time, and the y-axis represents 
packets within the jitter queue. The first time window (T1) 
included a spike in the number of packets that is potentially 
limited by the jitter queue depth (e.g., the total number of 
packets that can be stored in the jitter queue). As described 
below, any remaining packets within the jitter queue at the 
end of the time period (T1) can be discarded. During the 
second time window (T2), the portion of the diagram where 
low numbers of packets are within the jitter queue indicates 
where the jitter queue is close to being starved. At the end of 
time period (T2), the packets remaining in the jitter queue can 
again be discarded. As described herein, an ideal time win 
dow is the one where the jitter queue reaches Zero at least once 
with minimal starve and discard at the end of the time period. 
An example ideal window is indicated for embodiment 700. 

Sep. 10, 2015 

0.168. As the bursty nature of jitter is considered to be 
statistically random, one can only strictly avoid this situation 
by increasing the window of time T to a large value. Hover, 
this is not desirable because of the following reason. If at the 
beginning of the window K packets were delayed within the 
network and had not yet been received, the jitter queue may 
starve. The play out buffer for the MN can be configured to 
play filler audio frames during the starved mode until the late 
packets arrive. If the late packets later arrive along with the 
rest of Subsequent packets in a timely manner, the jitter queue 
will always have K worth of extra packets on it and the user 
will perceive this latency. To avoid this situation, the time 
duration T can be bound and frames remaining within the 
jitter queue at the end of the time window T can be discarded, 
if the jitter queue did not reach Zero within the time window 
T. The smaller the value ofT initially, the more accurately this 
indicates of low-latency playout. However, if the network is 
highly bursty, the system adaptively expands the window up 
to some threshold. If the network stabilizes after some time 
(indicated by low starves and high empty buffer counts), the 
system throttles down the window duration. If the queue did 
not reach empty during the interval, then remaining frames 
are discarded. 

0169 FIG. 7B is a block diagram of an example embodi 
ment 750 forajitter queue. A frame buffer 752 receives input 
audio frames 754 and stores these input frames. The stored 
frames (F1, F2 ... FN) 760, 762 ... 764 are then output in a 
FIFO (first-in-first-out) order as audio frames 756 unless 
discarded as discarded audio frames 758. The jitter queue 
frame controller 770 communicates with the frame buffer 752 
to analyze the stored frames (F1, F2 ... FN) 760, 762 ... 764 
and to provide control information to the frame buffer 752 
including discard instructions. As described herein, the time 
window (T) can be used to determine when discard determi 
nations are made for the stored frames (F1, F2 . . . FN) 760, 
762 . . . 764, and this time window (T) can be dynamically 
adjusted by the time window adjuster 776 based upon the 
conditions of the stored frames (F1, F2 ... FN) 760, 762... 
764. The time window (T) is provided to the discard selector 
772, and the discard selector 772 generates discard instruc 
tions at the end of each time window (T). The discard instruc 
tions are provided from the jitter queue frame controller 770 
to the frame buffer 752. Based upon the discard instructions, 
Zero or one or more than one of the stored frames (F1, F2 . . . 
FN) 760, 762 ... 764 are discarded as discarded audio frames 
758 and not provided as output audio frames 756. As 
described herein, the dynamic control of the jitter queue using 
the time window (T) and audio frame discards provides for 
reduced latency and improved user experience. 
0170. One embodiment for a low-latency adaptive jitter 
queue algorithm is shown below. The adaptive algorithm runs 
when there are no lost packets within the network transmis 
Sion, as by definition if packets are being lost, the jitter queue 
will likely starve. 

voidjitter end of window process(q window t) 

if(jqt).had starve() && jqt-1.had discard()) { 
jq.EARLY DISCARD CNTicrement(); 
ifiq.EARLY DISCARD CNT > DISCARD THRESHOLD && 
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-continued 

jq.window duration < MAX JITTER WINDOW) { 
jq.window duration = q.window duration.increase(); 

else if(jqt.had starve() == false) { 
if jqt.had no packet loss() == true && jqt).min == 0) { 

jq.WINDOW. IS BALANCED.icrement(); 

15 
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ifiq.WINDOW. IS BALANCED.count()iqnumber of windows( ) > 
BALANCE IS GOOD THRESHOLD){ 

ifiq.window duration < MIN JITTER WINDOW) { 
jq.window duration = q.window duration.decrease(); 

ifiqt.had no packet loss() == true && jqt).min = 0) { 
ifiqt).discard policy == CLAMP TO ZERO){ 

jqt+1.schedule discards = q.t.current length(); 

else if (jq(t).discard policy == CLAMP TO MIN){ 
jqt+1.schedule discards = qt.min; 

void packet discard(jq window t, audioPacketp) 
{ 

ifiq. Schedule discards > 0) { 
if can discard packet(tip)) { 

jqt.discardincrement(); 
jq.schedule discards.decrement(); 

bool can discard(jq window t, audioPacketp) 
{ 

if(p.audioEnergy <= QUIET &&.jqtplayoutSequenceIsQuiet()) 
return true: 

if(p.audioEnergy >= LOUD &&.jqt-playoutSequenceIsLoud()) 
return true: 

ifiqtpacketsTobeRecievedInWindow() <= jqt.schedule discardsii) 
return true: 

return false: 

0171 Low-Latency Jitter Queue Discard Policy. The 
example algorithm above dynamically expands and shortens 
the jitter queue monitoring window (T) to find a window 
where the count of the number of times the jitter queue 
reaches a minimum of Zero with the time window T (e.g., 
JQ 0, during time T) occurs at high rate. Such as for 
example preferably at least 50% or greater of the play out 
input/output rate. The can discard() function within the algo 
rithm applies heuristics to decide if an audio packet is a good 
candidate for discarding. The can discard() function is called 
when the algorithm determines that audio latency is building 
up on the queue and packets must be discarded. The example 
heuristics used are described below with respect to different 
discard heuristics: energy based discard, random distribution 
discard, linear discard, lump discard, and hybrid discard. 
Different and/or additional heuristics could also be utilized. 

0172 Energy Based Discard. The sender of the audio 
frame also includes additional data indicating the power level. 
such a VU (volume unit) level, of the energy of the audio 
encoded in the frame. The receiver then can use this energy 
level to decide before decoding the frame, if this is a relatively 
silent or loud frame. If the frame is in a sequence of quiet or 
loud frames, it is a candidate for discard and the system can 
either discard the frame without decoding (treating it as lost 
packet) or decode the frame and discard the data. The latter 
approach is preferred as the audio decoder is stateful and this 
leads to the best preservation of sound. However, it may be 

more efficient to the receiver computational capability to 
simply discard the packet and let the decoder recover its state 
by treating the discard packet as lost. 
0173 Random Distribution Discard. If K packets are 
expected to be received within the time window T and D 
packets are to be discarded within the time window, a random 
number generator of range K can be used, and packets can be 
discarded when the random number generator produces a 
number 'i' such that i?K is less than or equal to D/K. As such, 
for the K packets received within the time window T. D of 
these K packets will be randomly discarded based upon the 
output of the random number generator. 
0.174 Linear Discard. If K packets are expected to be 
received within the time window T and D packets are to be 
discarded within the time window, a linear discard can be 
used Such that packets are discarded using a ratio of D/K 
packets. As such, for the K packets received within the time 
window T. a packet is discarded every D/K packets rounded 
down to the nearest integer. 
0.175 Lump Discard. If K packets are expected to be 
received within the time window T and D packets are to be 
discarded within the time window, a lump discard can be used 
Such that D consecutive packets are discarded at once. As 
such, for the K packets received within the time window T. a 
consecutive group of D packets within the time window Tare 
discarded together. 
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0176 Hybrid Discard. If K packets are expected to be 
received within the time window T and D packets are to be 
discarded within the time window, one or more of the above 
discard techniques, as well as other discard techniques, could 
be used in combination. For example, the energy based dis 
card can be used in conjunction with one of the other discard 
methods. If the energy based discard and the lump discard 
methods were utilized, for example, the energy based discard 
could first be applied and if it has not found candidate packets 
at the appropriate relative levels to discard and the time win 
dow is coming to a close, then the lump discard could be used 
to discard D packets in a lump discard. 
0177 Mismatch Sender/Receiver Packet Rates. Let C be 
the audio capture rate at a MN input and P be audio output 
play out rate. If two nodes MN, and MN, are in a session and 
Cz Pior CzP, then the jitter queue at the receiverportions of 
these MNs will buildup latency or starve, respectively. If it is 
assumed that C-P and because the input/output (IO) rate for 
aparticular MN can be assumed to generally be matched, then 
it can also be assumed that P, DC. These assumptions mean 
that MN, will be sending more frames to MN, than it can play 
out thereby causing latency buildup in the receiverportion of 
MN. These assumptions also mean that MN, will not send 
enough frames to M, causing the receive portion of MN, to 
StarVe. 

0178. This situation is likely to occur because the IO sub 
system of the MNs involved in session may not all be 
matched. To gracefully handle this IO mismatch, the MNs 
share their IO rate information with other MNs within the 
session, thereby enabling them to understand whether, and 
how many, frame discard/insert operations they may need to 
execute per second in the audio path from each sending MN 
to each receiving MN. By knowing that frame insert is needed 
with respect to an audio path, the sending and/or receiving 
MN can intelligently choose the point to insert one or more 
audio frames, such as during quiet or loud audio sequences as 
described above. Similarly, by knowing that frame discard is 
needed with respect to an audio path, the sending MN or 
receiving MN can intelligently choose the point to discard 
one or more audio frames, such as during quiet or loud audio 
sequences as described above. It is further noted that the MN 
in an audio path that has the faster IO rate is preferably the 
MN to execute the discard/insert operations, as this MN 
would likely have greater processing capacity. However, 
either MN or both MNs within the audio path can execute 
discard/insert operations, if desired. 
0179 Sender Queues and Rate Adjustments for Receivers. 

It is desirable not to have the receiving MN starve of input 
audio packets or discard audio packets. For example, if the 
encoded audio stream process is stateful, these starve condi 
tions and/or discard conditions can cause the MN to loose 
state and produce undesirable audio artifacts. To help ensure 
these starve and/or discard conditions do not occur at the 
receiving MNs, each receiving MN can be configured to 
inform each of the sending peer MNs what its IO rate is for 
processing received audio packets. For each receiving MN to 
which it is sending audio packets, the sending MN can then 
implements different send queues having different send rates, 
each queue being tuned to the receiving MN expected IO rate 
for processing input audio packets. Input audio captured at 
the sending MN is then queued within respective send queues, 
and these send queues are set to have IO rates associated with 
the receiving MNS. The send queues can be implemented, for 
example, using decimator/interpolator blocks within the 
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audio output paths for the sending MN to produce audio 
content that matches receiver IO rates. For example, decima 
tors can decimate the audio content to reduce the output audio 
rate, and interpolators can extend the audio content to 
increase the output audio rate. The decimated/interpolated 
audio is encoded, packetized, and sent by the sending MN to 
the respective receiving MNs. 
0180 FIG. 7C is block diagram of an example embodi 
ment 770 for sending MNs having sending queues including 
decimator/interpolator blocks and encoder/packetizer blocks 
to adjust send rates for receiving MNs. As depicted, MNA 112 
is sending input audio captured at MNA 112 to MNB 114, 
MNC 116, and MND 118 through network 110. MNA 
includes a decimator/interpolator for each MN to which it is 
sending audio packets. Each decimator/interpolator deci 
mates the audio content or extends the audio content based 
upon IO rate information received from each of the other 
MNs. For example, MNB 114 communicates with MNA to 
provide information about the IO rate associated with its 
processing of received audio packets through its decoder/ 
jitter buffer. Similarly, MNC 116 and MND 118 communi 
cate with MNA to provide information about the respective 
IO rates associated with their processing of received audio 
packets through their decoders/jitter buffers. Using this IO 
rate information, MNA adjusts the decimator/interpolator for 
the receiving MN to account for the expected IO rate for that 
receiving MN. The output from the each decimator/interpo 
lator is then provided to an encoder/packetizer that encodes 
the audio data and packetizes it for transmission as audio 
packets through the network 110. The send rates to each of the 
peer MNs are therefore tuned for each of the receiving MNs, 
as represented by the dashed line 114 to MNB 114, the dashed 
and dotted line to MNC 116, and the solid line to MND 118. 
Each of the other MNs 114, 116, and 118 can operate in a 
similar way as MNA 112 to provide tuned send rates to each 
of the other peer MNs within the music session. Further, the 
MNs can periodically send updated IO rate information to the 
other MNs during the music session so that the respective 
send rates from the other MNs to that MN can be updated 
during the music session. As such, the user experience is 
improved, as discard and/or starve conditions at the jitter 
buffers can be reduced and potentially eliminated through the 
use of sender queues and rate adjustments. 

Recording 

0181 Writing the digital content of an audio stream to a 
file is referred to herein as recording. In a music session, any 
user may initiate a recording from a participating MN control 
interface, such as for example through the control window 
310 depicted in FIG. 3D. 
0182. The record start command is sent to all the MNs in 
the session, and each MN records the following: (1) audio 
input at each MN (R), (2) incoming audio stream from each 
peer MN (R), and (3) master output. The audio input(s) at 
each MN (R) is typically the highest fidelity audio source as 
it has no encode/decode compression or transmission related 
artifacts such as packet loss, errors, and/or other degrada 
tions. The incoming audio stream from each peer MN (R) is 
a recording of what each user is hearing at their respective 
MN. The incoming audio stream from other MNs is received 
as the decoded version of the encoded stream sent by the 
original peer MN and includes all the artifacts from packet 
loss, errors, jitter queue discards/inserts, and/or other degra 
dations. The master output is the mix (R) of audio input at a 
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MN and the remote input streams, this mix is played out at the 
MN such that RXR+XR. 
0183 Fast Record Playback. Each MN produces a set of 
recordings (R. R. R.) including the local recordings, the 
peer MN input recordings, and the master recording from a 
record command. At the record stop command, this set of files 
is available for immediate playback. These files represent the 
fast playback assets from recordings at an MN. 
0184 High Fidelity Playback. Each MN in the session also 
uploads the high fidelity local input recording (R) to the 
server. The server stores and distributes these high fidelity 
recordings to each of the MNs in the session. As the high 
fidelity recording (R) corresponding each peer input record 
ing (R) is downloaded to a MN, the MN replaces the content 
of the lower fidelity file with the high fidelity source recording 
file (e.g., each R, replaces its respective Rat each MN once 
received). At such time, the user at the MN may playback the 
session high fidelity audio either locally or from the server 
that mixes the audio of the high quality recordings. These 
high fidelity files represent the slow playback assets from the 
recordings at the MNs in the session owing to the delay in 
getting audio pushed to the server and then downloaded to the 
MNs within the session. It is also noted that the MNs can also 
keep the low fidelity recordings (M), if desired, even though 
the corresponding high fidelity recordings (M) have been 
downloaded to the MN. Further, it is noted that each MN can 
send its local high fidelity recording (M) directly to the other 
MNS in the session rather than going through the server. 
0185 FIG. 8A is a swim lane diagram of an example 
embodiment 800 for session audio communications for three 
MNs (MNA, MNB, MNC) and recording service including 
one or more server system(s). Once MNA, MNB, and MNC 
have signed on to a music session, they stream audio for their 
music tracks to each other as part of the music session. Any 
one of the MN users can then initiate a start for a recording. As 
depicted, MNA initiates a start for a recording. Each MN then 
records its local tracks and the other MN tracks as described 
herein. Any user can then initiate a stop of the recording. The 
high fidelity recordings made at each MN are then uploaded 
to the server. The MNs can then download the high fidelity 
recordings for the other MNs in the session from server. Once 
these are downloaded to each MN, the MN notifies the user 
that high-quality or high-fidelity playback is available for the 
session recording. It is also noted that the high-fidelity record 
ings could be directly communicated between the MNs in the 
session, if desired. 
0186 FIG. 8B is a block diagram of an example embodi 
ment 820 for a recording system. The embodiment 820 
includes one or more input channel processors (ICP) that 
process local audio inputs or loopback/peer audio inputs from 
network connections 825. The group ICP821 captures audio 
inputs from one or more instrument inputs (e.g., guitar, key 
board, Voice, etc.) and outputs transmit audio packets associ 
ated with this audio input. Group ICP821 also provides high 
quality audio outputs 831 and 832 associated with the cap 
tured audio inputs for the music session. The group chat ICP 
822 captures one or more chat audio inputs and outputs trans 
mit audio packets associated with this audio input. The peer 
ICPs 826 and 827 receive de-multiplexed music session audio 
input packets from peer MNS and process those packets to 
produce low quality recording user audio streams 834 and 
835. The ICPs 828 and 829 receive de-multiplexed chat audio 
information and can output chat audio. The audio controller 
830 provides speaker output 833 and provides a monitor and 
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master mixer controls, as well as main and monitor speaker 
control and volume control. It is noted that each of the outputs 
831,832,833,834 and 835 are example audio output streams 
that can be selected for recording individually and/or in com 
bination with each other. 

0187 FIG. 8C is a block diagram of an example embodi 
ment 840 for a recording system and related recording service 
where sessions are stored by a server and by MNs. Each MN 
initially stores high quality recordings for its local tracks and 
low quality recordings for the tracks from the other MNs in 
the music session. The high quality recordings are then 
uploaded by the MNs to the server and stored by the server. 
These high quality recordings can then be downloaded to the 
MNs to replace the initial low quality recordings made for the 
tracks from the other MNs. Once these high quality record 
ings are downloaded to an MN, the MN will have high quality 
recordings for each track in the music session. The high 
quality and/or low quality recordings can be played back by 
an MN individually or in combination by a user of the MN. 
Until the high quality recordings are downloaded, playback 
uses the high quality recordings from the local MN tracks and 
the low quality recordings from the peer MN tracks. Once the 
high quality recording are downloaded, the entire session 
recording can be played back at the MN using the high quality 
recordings. 
0188 Auto Mixing of Recording via Latency Compensa 
tion. When the command to start a recording is initiated, there 
is a delay of at least the network delay between the sender and 
receiver before the recording command is actually started. 
Assume the initiating MNA is sending the record start com 
mand to MN and MN, there are record start time delays 
(e.g., network delay plus processing delay) between MN and 
MN represented as t and between MN and MN, repre 
sented as t. Whereas the set of recordings (R. R. R.) 
started at MN are synchronized with each other, the start 
time of the high fidelity recording at MN and MN, namely 
RA, and RB will have different start times of at least the 
delays to and t, respectively. Without accounting for this 
delay, a final cut recording (e.g., RXRA+XRB+ 
XRC) will produce music that is time skewed. 
0189 It is noted that mixing of audio is represented herein 
using the Summation symbol: 'X'. As one example, this audio 
mixing can be an average of the Sum of the audio signals that 
have been normalized to given range, for example, it 1.0 float 
ing point values, or 16-bit integer, or 32-bit integer, or some 
other selected range. Audio mixing could also be imple 
mented using additional and/or different techniques, as 
desired. 

0190. Recording the network delay between MN (e.g., 
the record startinitiator) and its peers MN and MN, is a good 
first order approximation of the amount of time skew that is 
needed to bring the recording in synchronization. However, 
the processing delay is not accounted for in this model. 
0191 Reference Clock Synchronization. An accurate ref 
erence clock common to all MNS in the session and times 
tamps made at each MN at recording stars can be utilized to 
help provide this synchronization. Each MN uses the com 
mon reference clock to timestamp each recording start with 
that clock time. With this reference clock timestamp, the 
following example algorithm can then be used to produce 
final mix: 

0.192 1. Sort the high fidelity recordings (RA 
RC) by timestamp 

RB, i 
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0193 2. The oldest timestamp represent the recording 
that started latest (to) 

0194 3. For each recording R, the delay (t) relative 
to the latest start time is represented as to too-tsar, 
where ts, is the record start time for R. 

0.195 4. The delay (t) is the time offset in recording 
R. that must be skipped to bring the recording in align 
ment with that of the recording having the latest start. 

0.196 5. R is then produced by discarding the 
delay (t) worth of data associated with each recording 
with the set of recordings (RA, RB, RC) that does 
not have the latest start time, and then reading and mix 
ing audio from the files from a time that will now match 
the latest start time tom. When the first end-of-file is 
reached, the mixing process stops. 

0197) This common clock synchronization process 
enables auto generation of the final cut (R). The MNs 
can also be allowed to manually calibrate the time offset, if 
desired. 
0198 As indicated above, the clock synchronization algo 
rithm depends on the presence of a reference clock common 
to the MNs in the session. One method for implementing this 
is to use a distributed clock algorithm augmented with an 
algorithm to select a master node in the session. As such, each 
MN then runs a local reference clock that is calibrated to the 
elected master clock. The elected master clock then effec 
tively serves as a time server. The music server can also 
provide a master clock and be used as the master node by the 
MNs for clock synchronization. 
0199. One technique that can be used to provide a common 
distributed reference clock for the MNs is through the use of 
the well known Cristian's Algorithm described in the article: 
Cristian, F. Probalistic Clock Synchronization, Distributed 
Computing, (3):146-158 (1989). As one example, this tech 
nique works between a process (P) and a time server(S). Such 
as a time server available through the internet. The process 
requests the time from the time server. After receiving the 
request from process, the server prepares a response and 
appends the time (T) from its own clock. The process then sets 
its time to be the server time (T) plus half if the round-trip 
time (RTT) for the communication. This technique assumes 
that RTT is split equally between the request time and the 
response time. Multiple requests can also be made by the 
process to the server to gain more accuracy, for example, by 
using the response with the shortest RTT. The process can 
determine RTT. for example, by the difference in its local time 
between when it sends its request to the time server and when 
it receives the response from the server. Other variations and 
techniques could also be utilized. 

Distributed Metronome 

0200. A metronome helps musicians keep playing in time, 
or in Sync. In a distributed music session, the delay incurred if 
a single metronome were used makes such an option range 
from undesirable to impractical. Even if multiple metro 
nomes are used, the skew in start times will cause them to be 
naturally out of sync as illustrated in FIG.9A. 
0201 FIG. 9A is a signal diagram showing metronome 
pulses associated with three different local metronomes that 
are based upon a single metronome pulse. Without the dis 
tributed metronome techniques described herein, each local 
metronome pulse will be offset based upon a different delay 
(d0, d1 d2) associated with that local music node. 
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0202) A distributed metronome is therefore implemented 
to provide a local metronome at each respective location for 
the MNS in a session that is synchronized to a common 
reference clock in the session and that plays in Synchroniza 
tion with this common reference clock irrespective of the 
delay between the MNs. As such, the MN user hears only the 
output of the metronome from his/her own MN and not from 
any other metronome at the other MNs. Using the distributed 
metronome described herein, the start times are aligned as 
shown in FIG.9B. 
0203 FIG. 9B is a signal diagram showing metronome 
pulses associated with three different local metronomes that 
have been synchronized. With the distributed metronome 
techniques described herein, the delay offsets (d0, d1 d2) 
associated with the local music nodes are aligned in time 
based upon a start time (T). 
0204 For the purposes of recording timestamp as 
described above, the MNs in a session already have a refer 
ence clock system that can be used for the distributed metro 
nome. While creating a metronome using a processing device 
running software instructions has been done previously, the 
problem associated with the interactive music systems 
described herein is how to ensure that when one MN user 
within a session starts or changes the setting of their metro 
nome, all other metronomes for the MNs in the sessions will 
also start or be changed in Synchronization. Once a local 
metronome is started at an MN, it is assumed that the clocks 
at the MN are accurate enough such that the MN plays the 
correct BPM (beats per minute) requested by the user. Fur 
ther, each MN can be set at different BPM, if desired. The 
following describes an example process that can be used for 
the distributed metronome: 

0205 1. Each MN knows the network latency between 
it and every MN in the session, as described above, and 
the maximum latency (t) for its peer-to-peer connec 
tions can be determined from these latencies. 

0206. 2. Let the reference clock time for the MN at 
which the metronome start is initiated be represented by 
t. The initiating MN broadcasts a “metronome start 
command to all peer MNs within the session indicating 
that the start time for the metronome is to be tsuit 
2t. Twice the maximum latency (2t) is used as a 
conservative approach, although a lower start time 
bound oftstarr tre+ttax could also be used, as Well 
as other later start times. 

0207 3. AMN receiving the metronome start command 
waits until its reference clock time (t) is about the des 
ignated Start time (e.g., tasts). The accuracy of local 
clocks are typically on the order of +1 ms. If the desig 
nated start time (ts) is earlier than the current refer 
ence clock time (t) for the MN receiving the start com 
mend (e.g., tsarist), then the command is late and the 
receiving MN re-broadcasts a new start time with an 
increase to the 2x multiplier for its maximum latency 
(t) to compensate for unexpected lateness of the 
command. 

0208 4. Every minute each MN rolls over and starts a 
new count off of metronome ticks. As such, the start time 
is important for the MNs to remain in sync. 

0209) 5. If a user changes the BPM at his/her MN, a 
restart of the distributed metronome is broadcasted 
through a new “metronome start command. This restart 
helps to ensure synchronization between the MNs in the 
session after BPM changes. 
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0210. It is noted that audio from the metronome is prefer 
ably played only to the local MN output. Further control is 
also provided at each MN to allow a user to determine 
whether the local metronome output is heard in one or both 
ears, for example, if headphones are being used. Further, 
metronome audio is also not recorded by default, although the 
MN can be set to record the metronome audio as well, if 
desired. 

Interactive Virtual Positioning Within Music Session 
0211 Musicians performing at given location (e.g., stage) 
receive sound in a fully immersive sense. Their sense of 
presence comes from the direction of the Sound, based on 
their relative position to each other and the acoustic properties 
of the location. The interactive virtual positioning embodi 
ments described herein enable a reproduction of this immer 
sive and presence experience by utilizing a number of existing 
technologies that are augmented as part of the interactive 
music system. 
0212 FIG. 10A is a diagram 1000 of sound location per 
ception by a person hearing Sounds from two sources (S1, 
S2). A first source (S1) is received at different times at two 
points (Y1, Y2) on a person's head based upon different travel 
distances (H11, H21) for the sound. Similarly, a second 
source (S2) is received at different times at the two points (Y1. 
Y2) on the person's head based upon different travel dis 
tances (H12, H22). Sound location perception of a person is 
based upon differences between Sound paths striking the head 
and being sensed by the person. 
0213. Using this sound location perception, a three dimen 
sion definition of a virtual environment is generated for the 
session. Each MN, sound source, or other element within the 
session can be placed at specific positions within this virtual 
space. Based on the instrument type selected by a user, the 
user is provided with a set of pre-defined configurations. Such 
sitting violinist, or standing violinist If the MN has multiple 
inputs, the system allows the user to indicate how those inputs 
are positioned within the virtual space. For example, a key 
boardist could use one input for positioning the keyboard 
instrument within the virtual space and one input for posi 
tioning the keyboardist’s voice within the virtual space. 
0214 FIG. 10B is a diagram 1010 of an example locations 
or positions (P) for music session elements within a virtual 
space. Each of the hexagons represent the position (P1, P2, 
P3, P4, P5, P6, P7) of an element, such as an MN, within the 
session. Each position will have a unique sound experience. 
For example, the perception at position P2 of sound generated 
from position P1 and position P3, as indicated by the arrows, 
will be different from the perception other positions, such as 
position P6, for this same sound. A virtual microphone array 
associated with each position, Such as position P2, can be 
used to determine sound received at that position. 
0215 For each location or position, a head-related-trans 
fer function (HRTF) is assigned by the user virtual position. 
Because the geometry of the virtual room is known and rela 
tive position of the sound sources have well defined three 
dimensional (3D) coordinates, the HRTF can be used to com 
pute the perception of Sound presence that a user in that 
position would hear. Each position P represents a MN input 
and any other physical attribute of the source that is helpful to 
characterize the directionality of the sound that input pro 
duces (e.g., its Sound field). 
0216 FIG. 10C is a diagram 1020 of an example dummy 
head 1022 that is depicted to a user and can be adjusted by the 
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user to place and orient the user within the virtual environ 
ment for the music session. Based upon the position of the 
dummy head 1022, the dummy head 1022 will receive audio 
signals from other elements within the music session. These 
audio signals are then packetized for transmission or storage, 
as indicated by block 1024 and as described herein. The 
resulting audio can then be output to a listeneras represented 
by head 1026. 
0217. The user at a MN is allowed to select their desired 
virtual position through manipulation of a dummy head rep 
resentation in the virtual space or setting for the music ses 
Sion. This positional data is also sent to and shared with other 
MNs within the session. The user may also choose to upload 
their HRTF specific data or to select from a set of generic 
pre-configured profiles to upload. 
0218 MTB (motion tracked binaural) System. By emulat 
ing a virtual microphone array and using a head-tracker, a 
motion tracked binaural (MTB) system can be provided to 
each virtual musician/listenerinasession. AMTB system can 
be used to produce the most natural and immersive sense of 
presence for the musician/listener. 
0219 FIG. 10D is a diagram 1030 of an example dummy 
head 1032 that includes a virtual microphone array of two or 
more microphones. This dummy head 1032 can also be 
depicted to a user and can be adjusted by the user to place and 
orient the user within the virtual environment for the music 
session. Based upon the position of the dummy head 1032, the 
microphone array related to the dummy head 1032 will 
receive audio signals from other elements within the music 
session. These audio signals are then packetized for transmis 
sion or storage, as indicated by block 1034 and as described 
herein. The resulting audio is output to an interpolator 1040. 
which then outputs to a listeneras represented by head 1036. 
However, the listener can also have ahead tracker 1038 worn, 
mounted or otherwise attached to the listener's head 1036 that 
tracks movements of the head 1036. The tracked movements 
are provided back to the interpolator 1040. The interpolator 
1040 uses these tracked movements to adjust the output sound 
so that the listener's perception is that the listener is moving 
his/her head position within the virtual environment for the 
music session. As such, a virtual reality experience is pro 
vided for the listener within the virtual sound field for the 
performance within the music session. 
0220. The MTB system depicted in FIG. 10D, therefore, 
correlates the users head position with the head-position in 
the virtual space. Whereas a physical microphone array is 
used in typical physical setting, an actual microphone array is 
not needed for the embodiments described herein as the each 
user directly controls the movement of his/her virtual head in 
the virtual space defined for the music session. 
0221) The MTB system can provide a variety of features. 
For example, a virtual space definition can provided that 
models the acoustic properties of a virtual environment 
within which the music session is to virtually take place. A 
two-dimensional (2D) and/or three-dimensional (3D) graphi 
cal virtual position selection and placement mechanism of 
musician avatars can also be provided through each MN in the 
session. The user can also be allowed to adjust attributes of an 
avatar representing the user, including adjustments to height, 
number of microphones (e.g., Sound sources), relative posi 
tion of each microphone, and/or other desired attributes. A set 
of preconfigured musician attributes is also provided (e.g., 
drummer, pianist, guitarist, and/or other musician) and can be 
selected by the user. Further, once a performer/listener is 
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positioned and assigned within the virtual space, the per 
former/listener may elect to listen to the session from another 
virtual position (e.g., out-of-body experience) within the Vir 
tual space. This virtual positioning is useful to understand the 
Sound a virtual user at that location in the virtual environment 
will receive. The system also remembers and uses the HRTF 
data set or selected by a user, and this HTRF data is used in 
whatever virtual location the user selects. 
0222. The performer/listener position also provides a 
positional information for the source for the audio in the 
virtual space. An acoustic processor for each MN can then use 
this data along with the VU (volume unit) level information to 
compute a direction and Volume received at another position 
within the virtual space. The acoustic processor can also 
compute reflections and any emulated ambient noise (e.g. 
crowd noise) as well as other Sound effects, as desired, and 
mix these effects into the audio heard by the user at the MN. 
0223) As part of the user interface, a user is allowed to 
select the HRTF that best approximates their physical and 
auditory characteristics and/or any other desired HRTF. This 
user selection can be provided through a graphical menu 
selection or by asking the user for Some basic measurement 
information of his/her physical features (e.g., head size, ear 
positioning, etc.). Alternatively, the user can be given instruc 
tions on how to determine physical measurements (e.g., tak 
ing and processing pictures of themselves) so that their physi 
cal dimensions can be obtained. Also, if a user has his/her 
HRTF measurements taken professionally or these HRTF 
measurements are otherwise determined, these HRTF data 
can be uploaded to MN or to the session server described 
herein. The server can be store this data and send it to the 
acoustic processor for the user when the user is listening in 3D 
mode. 

Concert Broadcast Modes 

0224. The live music produced in a music session may be 
broadcasted. The following modes of broadcast can be uti 
lized within the interactive music system embodiments: low 
latency live broadcast, high fidelity live broadcast, 3D virtual 
reality broadcast, 3D concert podcast, and/or other broadcast 
modes. 
0225 Low Latency Live Broadcast. In this broadcast 
mode, the server system operates as a broadcast server and 
assigns one of the MNS in the session to serve as a broadcast 
stream provider. The assigned MN encodes the output audio 
for the broadcast and sends it to the broadcast server. The 
output audio encoded at the MN selected as the stream pro 
vider is a mix of the incoming peer streams from the other 
MNs in the session and its local audio input. As the peer audio 
streams are transmitted and processed with low-latency as 
described above, the audio recovered from those streams may 
have the effects of packet loss, jitter queue starve? overflow 
artifacts, and/or other artifacts. As such, the low latency 
broadcast stream will also carry these artifacts, but will also 
be a relatively “instantaneous” representation of the live event 
being performed within the music session. 
0226 FIG. 11A is a block diagram of an example embodi 
ment 1100 for a low latency live broadcast (e.g., low-latency 
concert broadcast mode). At an MN, the local audio inputs 
captured by an instrument ICP and the peer audio packets 
received through the network are mixed together using a 
music mixer. The mixer output is provided as a speaker output 
for the MN and is also provided to an encoder for output to the 
network as a live broadcast. The server operates as abroadcast 
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server and makes the live broadcast available for streaming 
through the network to one or more broadcast clients. 
0227 High Fidelity Live Broadcast. In this broadcast 
mode, the input audio at each MN is encoded, packetized and 
transmitted via a reliable network protocol, such as TCP 
(transmission control protocol) to the broadcast server. Each 
audio packet is also configured to carry a timestamp of the 
session reference/master clock. In the server, the audio 
frames are recovered, and the timestamps are used to Syn 
chronize the audio frames. The synchronized audio are then 
processed through a server audio mixer, and the resulting 
audio is encoded and broadcasted. The server audio mixer 
could be a full function digital audio workstation (DAW), 
which can process the streams in a variety of ways. Such as by 
adding audio effects, adding other audio tracks, and/or oth 
erwise processing the streams. This cloud-based DAW can 
also be provided as a paid service that users may lease. The 
high fidelity streams can also be sent to a separate user 
specified server that controls the mixing process and pro 
duces the audio stream to be broadcasted. 

0228 FIG. 11B is a block diagram of an example embodi 
ment 1120 for a high fidelity live broadcast mode (e.g., high 
quality concert broadcast mode). The high quality audio 
inputs captured at each MN are uploaded through the network 
to the server. The server decodes the audio frames from each 
MN with a frame decoder and mixes the audio frames 
together. Timestamps are added to the audio frames at each 
MN using a reference clock, and the server uses these times 
tamps to align the audio frames from each MN for purposes of 
mixing the audio frame together. An encoder receives the 
mixed output and generates an audio stream output that is 
high quality. The server then operates as a broadcast server to 
make this high quality live broadcast available for streaming 
through the network to one or more broadcast clients. 
0229 3D Virtual Reality Broadcast. As described earlier, 
the system provides an interface where a virtual space is 
defined and the musicians are assigned or select positions 
within the virtual space. This virtual positioning can also be 
provided to users to allow the “purchase' of specific seats or 
locations in the virtual space for the performance. For 
example, a user can be allowed to selecta position from which 
he/she would like to listen to the event. As describe above, a 
binaural processor is embedded in the listen application and 
the user provides or selects their HRTF data. Additionally, the 
user may use a MTB system that provides head tracking and 
therefore provides the ability to have an even more realistic 
experience. The high fidelity tracks may be relayed directly to 
the listener device for acoustic processing, or the acoustic 
processor instance may be a service on a server. The acoustic 
processor uses the HRTF and motion tracking data to produce 
a final Stereo mix that this specific to that user. 
0230. It is noted that the performers default position is 
what the session creator defines when the session is created. 
However, a listener is allowed the ability to “move them in 
the virtual space. This movement provides a more personal 
experience to the user. A listener can also be assigned a fixed 
seat in the audience or can be free to “move’ around. For 
example, a user who hears better from one ear than another 
may elect to be on a particular side of the virtual space for the 
performance. The concert environment may also be fixed by 
session creator, or the user may be allowed to change the 
concert locale or environment (e.g., change from Carnegie 
Hall to Madison Square Gardens). 
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0231 3D Concert Replay or Podcast. The high fidelity 
tracks generated through the processes described above can 
be stored and replayed. As such, a user may have a 3D concert 
experience at any time through the stored audio tracks. For 
example, the stored 3D concert can be made available as a 
podcast that can be downloaded to a device, such as a tablet or 
phone, and replayed. 
0232 Large Group Music Session 
0233. In a purely P2P music session, the number of audio 
streams grows linearly with number of participating MNs. In 
part, this linear growth has three effects: (1) the bandwidth 
requirement grows linearly as the number of peer-to-peer 
MNs grow within the session, (2) at each MN the number of 
audio decoder instances and the compute power requirement 
grows linearly, and (3) the user interface can become cluttered 
with large numbers of MNs. 
0234. To enable large groups (e.g., choirs, bands, orches 

tras, big bands, and other large musical groups) to interact in 
a music session with good user experience, this following 
process can be used to enhance the user experience: 

0235 1. Each MN in the session determines a latency 
score with all other MNs in the session. 

0236 2. Each MN is tagged with a color representing 
the role the node will play in the session (e.g., red for 
violins, blue for trumpets, etc.) 

0237 3. The system sorts MNs in the session into 
groups based upon common parameters (e.g., color, 
latency, etc.). Let G, represent the i' group. 

0238 4. Intra-group audio, which is audio for MNs in 
the same group, flow as normal such that each MN peer 
sends audio packets to every other MN peer in the group, 
directly or via a proxy server. 

0239 5. Inter-group audio, however, is configured to 
flow in Such a manner that cycles are not created. This 
cycle free flow is controlled by using a spanning tree 
algorithm to create a cycle free communication tree 
between the groups. 

0240 6. One MN in each group is used to communicate 
with another group. The pair of MNs that serves the role 
of connecting adjacent group A with group B in the 
spanning tree are preferably selected based on the mini 
mum latency between nodes in the groups. FIG. 12A 
described below illustrates this wherein MN2 in Group 
A and MN4 in Group B have been determined to have 
the lowest latency of all node-to-node connections 
between MNs in Group A and MNs in Group B after 
those connections have been probed. 

0241 7. The system max latency (S) is the highest audio 
latency. The system max latency (S) can be determined, 
for example, by performing an exhaustive breath first 
search from the MNS in the group session, and Summing 
the inter-group link latency. If the maximum allowed 
latency in the interactive music system is T, then 
grouping of nodes is considered non-optimal if ST. 
If Ss.T. the grouping of nodes is accepted and can 
further be considered a final solution. 

0242 8. When S-T then the system attempts to 
reduce latency by adjusting the groupings. For example, 
the color grouping constraint can be removed, and the 
system can place MNS in groups until the system finds a 
grouping that meets the desired latency threshold (e.g., 
SsT). Many algorithms can be employed for achiev 
ing this type of graph analysis to determine if solutions 
is possible. Because the number of nodes in the group 
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session will typically be relatively small (e.g., tens of 
MNS), the computation processing needed to search for 
and/or solve for a grouping solution is not prohibitively 
expensive to obtain or provide. 

0243 FIG. 12A is a diagram of an example embodiment 
1200 for MNs within two groups selected as bridges for 
inter-group communication. For the embodiment 1200, a first 
group (GROUPA) 1202 includes two music nodes (MN1, 
MN2) 1204/1206, and a second group (GROUP B) 1212 
includes two additional music nodes (MN3, MN4) 1214/ 
1216. MN1 1204 and MN2 1206 communicate with each 
other as part of GROUPA 1202, and MN4124 and MN31216 
communicate with each other as part of GROUP B 1212. 
MN2 1206 is the bridge for GROUP A and communicates 
with MN41214, which is the bridge for GROUP B. 
0244 FIG. 12B is a diagram of an example embodiment 
1250 for inter-group communications within a larger inter 
connected group (e.g., IMN clusters for a large group). For 
the embodiment depicted, four groups (GROUPA, GROUP 
B, GROUPC, GROUPD) are interconnected through clouds. 
Further, within each group, the interactive music nodes 
(IMNs) are also interconnected through clouds. It is also 
noted that the clouds represent one or more networks, such as 
network 110, through which network communications can 
OCCU. 

0245. The MNs that serve as bridge between groups are 
configured to perform additional functions. The incoming 
audio stream from peer MNs in the group (R) are decoded 
and mixed together by the bridge MN to form a group audio 
stream (R) such that R. X.R. The bridge MN is then 
responsible for sending this mix to the other group with 
respect to which it is acting as a bridge. The bridge MN must 
also send its own input audio IXR, to two paths, namely to 
its intra-group MNs and to the bridge MN with the other 
group for which it is acting as a bridge. 
0246 MN2 in Group A and MN4 in Group B are described 
above as bridge MNs. The streams leaving MN2 from Group 
A to Group B through MN4 in Group B is represented as St. 
B4)-L2+R. Similarly, MN4 in Group B sends audio to 
Group A through MN2 in Group A, and this audio is repre 
sented as Sca, 42) Ia+R. 
0247. If the bridge node sends the audio input and intra 
group audio as distinct audio frames (e.g., frames containing 
I2, and frames containing R.), the receiving bridge MN can 
differentiate what is from the bridge MN and what is from the 
other MNs in the group. If the bridge node produces a final 
mix so that it sends only that mix audio (e.g., frames contain 
ing Sea), the receiver bridge MN is unable to distinguish 
and therefore control mix of bridge node audio separately 
from its intra-group audio. 
0248 Abridge node also performs the role of receiving the 
audio from its peer bridge node and relaying that audio to its 
intra-group peers. So the audio output by bridge MN2 in 
Group A to its peers in Group A can be represented as 
G1 XR+Sea, 12 where XR1, is the set of inputs at A2. 
Similarly, bridge MN4 in Group relays audio from its peer 
bridge node along with its inputs to the peers in Group B as 
represented by G, XR,+S42, a where XR, is the set of 
inputs at B4. 
0249 High Latency Inter-Group Bridge. If A2 decodes 
Sea, 12 and then mixes it with its inputs, it will process these 
packets through a jitter queue. The involvement of the jitter 
queue implicitly connotes a higher latency than if the packets 
were not decoded and mixed. However, doing this mixing will 
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result in single stream of audio packets coming from A2 to its 
intra-group peers. This results in a lower bandwidth than 
sending distinct packets. The peers also will not be able to 
distinguish A2 input audio from that which came from the 
other group for which A2 is a bridge. 
0250 Inter-Group Cut-Through Mode. Rather than 
decode and mix the audio from the group stream, A2 may 
simply relay the packets to its group members. It may also 
aggregate its sending payload with payload of packets 
received in the inter-group stream. This operation does not 
require the Sea, 12 packets to the processed through a jitter 
queue and is therefore a lower latency operation. In this mode, 
the audio frames for inputs to A2 remain distinct from those of 
the relayed group for which A2 is a bridge. As such, the 
intra-group peer MNS can represent and control the mix of 
these streams distinctly. This mode is a higher bandwidth than 
the high-latency relay mode. 
0251 A similar analysis may be done for group B and 
node B4. The following can be concluded: 

0252 1. The outgoing inter-group peer stream mix, 
namely Sc42, 4 and Sea, 42 from a bridge nodes A2 and 
B4 respectively, is produced from mixing the intra 
group streams received at those nodes. Because these 
streams are processed through jitter queues, the output 
streams experience latency. It is also noted that there is 
no point in doing cut-through of these frames because 
cut-through would simply collapse the notion of groups. 

0253 2. The relay of inter-group audio to peers intra 
group may incur no delay at the bridge node, if cut 
through mode is use. If not, the stream incurs jitter queue 
processing delay. 

0254. If K groups are along a communication path, then if 
the average jitter processing delay at the bridge nodes is 
JQ, then the added delay introduced in session if cut 
through mode is used at bridge nodes is (K-1)/Q. If high 
latency mode is used, then added latency is 2(K-1)/Q at 
the added benefit of lower bandwidth. 
0255 Large Group Director. Generally, in a large musical 
performance, a director/conductor leads the large group. In 
this large group implementation, one NM is marked or des 
ignated as the session director. As described below, a MN 
performer may provide hinting status that is shown at MNs in 
the session. Hinting status allows a performer to send non 
auditory queues to MNs in the session. Whereas only the 
intra-group members hint status is shown in session view at a 
MN, the director MN status is shown at all MNs in the session. 
Although inter-group hint status could also be shown, intra 
group hints are typically what are of interest to musicians 
within a large group. 

Musician Hinting within Music Session 
0256 When musicians are physically in the same space, 
they pass many non-verbal cues to each other. When 
immersed in a virtual environment as created by the interac 
tive music system embodiments described herein, musicians 
will likely be unable to convey such cues effectively even if 
Video of themselves are streamed among them. As such, a 
hinting system and related hinting device can be used to so 
that musicians can broadcast status/cues to their peers in the 
music session. 
0257 FIG. 13A is a block diagram of an example embodi 
ment 1300 for a music hinting system that allows non-verbal 
cues to be communicated among MNS within a music session. 
For embodiment 1300, each MN includes a display 1302, 
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1312, and 1322, respectively, that displays information for its 
own music tracks and the peer music tracks within the music 
session. A visual hint element is also displayed for each MN 
within the music session. Looking to display 1302, for 
example, information for the MN1 track, the peer MN2 track, 
and the peer MN3 track are shown. In addition, a visual hint 
element is displayed for each of these tracks. Each visual hint 
element can be, for example, a circle or button image that 
Visually changes (e.g., changes color, changes texture, 
changes brightness, etc.) based upon hint cues selected by the 
user. The other displays 1312 and 1322 can be similar to 
display 1302. Further, hinting devices 1304, 1314, and 1324 
are coupled to each of the MNs, respectively, to provide 
hinting control for a user. As shown with respect to FIG. 13B, 
the hint devices 1304, 1314, and 1324 can be, for example, a 
hinting device with pedals or buttons that are engaged or 
selected by a user, such as through the action of the user’ s 
foot. The hinting devices 1304, 1314, and 1324 communicate 
user hinting selections to the MNS, and these hinting selec 
tions cause changes in the visual hint elements. Each MN also 
communicates its hinting selections to the other MNs in the 
music session, and these hinting selections are used at each 
MN to adjust the visual hint elements associated with each 
MN, respectively. 
0258 FIG. 13B is a diagram of an example embodiment 
1350 for a foot-controlled hinting device. This embodiment 
1350 has two pressure sensitive pads as well as ten different 
selector buttons and control buttons (e.g., power, etc.). The 
hinting device electronically communicates with the MN 
using one or more wired or wireless communication connec 
tions (e.g., USB connections, Bluetooth connection, etc.). 
(0259. The example embodiment 1350 for this hinting 
solution preferable has the following properties and capabili 
ties: 

0260) 1. It is operated by a person’s foot. This is ideal 
because generally musicians have at least one foot not 
engaged for the vast majority of instruments played. 

0261) 2. It communicates and works with the MN dis 
play, showing status sent by a musician on the display in 
low-latency. 

0262. 3. The input/output from the device is processed 
through the MN with low-latency (e.g., response time of 
less than 10 ms). 

0263 4. It is simple to use. 
0264. For the embodiment depicted, a footpad control 
with 2 pressure sensitive pads is used, although 4 pads or 
other numbers of pads could also be used. Each pad can also 
include a light by or around it that indicates whether the pad 
is pressed and by its brightness representing how hard it is 
being pressed. The system has a foot rest pad, which has a 
rumble motor in/under it. Other haptic feedback mechanisms 
may also be used. An attention light is also present. The 
rumble motor or attention light is used to convey events 
specific to this user. The rumble/attention notifies the user that 
a peer has updated their status by pressing a pad. A micro 
controller circuit in the pad converts the pressures sensor 
information and sends it over USB (or similar) IO interface to 
the MN host system communicating with the pad. The MN 
also sends down control commands to the pad, such as rumble 
on (and how hard)/off, attention on/off, and/or other com 
mands. The user, for example, may choose to disable rumble 
and only rely on the attention light. 
0265. When a user presses one or more of the pads, the 
pressure and the pad number is sent through the IO interface 
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to the MN. The MN broadcasts this information to the peers 
in the session. The status display of the user is updated in the 
display and if the recipient has a hint-System attached, the 
attention/rumble command is sent to it. 
0266 The system throttles the frequency at which rumbles 
are sent to the users foot to rate calibrated by the user, but 
activates the attention indicator for each event. The musician 
then looks at the status of the peer, and based on a previously 
agreed interpretation among them, the peer acts accordingly. 

Packaged Tunes Service (MAAS Tunes Sessions) 
0267 Music as a Service (MAAS). Overview. When 
considering a distributed, real-time music service of this kind 
for interactive music sessions, the needs of different classes of 
musicians can be considered. Musicians who are members of 
a band can easily use and benefit from this kind of music 
service by simply joining and participating in freeform ses 
sions because they already play regularly with their band 
mates, and because they have a shared repertoire of the band's 
music that they all know how to play together. Likewise, 
independent professional and/or highly accomplished musi 
cians can benefit from this kind of music service because they 
have a strong network of other musicians to connect with, and 
because they can either jam in freeform mode, or they have a 
deep set of common music on which to draw while playing in 
sessions. 
0268. In contrast, amateur musicians, who far outnumber 
the more accomplished and professional musicians above, are 
not well suited to participate in a freeform, unstructured 
music service of this nature. They do not have well-estab 
lished musical relationships with others, and they do not share 
a common repertoire of music pieces, nor do they have the 
confidence or the ability to just get online and start trying to 
play with others in a freeform environment. 
0269. The “music as a service' (MAAS) embodiments 
described herein in part address the needs of the amateur 
musician by providing a packaged tunes service with a num 
ber of features including Packaged Tunes, Packaged Tune 
Sourcing, Packaged Tune Library, Local Play, Online Match 
making, and Online Play, which are described further below. 
Professional musicians, accomplished musicians, and band 
members can also take advantage of these innovations. 
0270 FIG. 14 is a block diagram of an example embodi 
ment 1400 for a packaged tunes service environment that 
allows users to access and download packaged tunes for use 
with a MN or within a music session. The server stores one or 
more packaged tunes with each packaged tune including one 
or more tracks recorded from music sessions or obtained from 
other sources. The server operates as a tunes session server to 
allow MNs to download a tune including its respective track 
recordings. For the embodiment depicted, MN1 has down 
loaded the tracks for TUNE1 and TUNE3; MN2 has down 
loaded the tracks for TUNE2 and TUNE3; and MN3 has 
downloaded the tracks for TUNE1 and TUNE2. The server 
can also provide these downloads only after a purchase trans 
action has occurred, such that an MN is required to purchase 
a tune prior to being allowed by the server to download the 
tune and its track recordings. Further, the user interface at 
each MN is used to display information related to the various 
features of the tunes sessions service described below. 
0271 In part, the tunes session service allows users to 
produce and share or sell Songs. The tunessession service also 
allows a user that has acquired a song to playback the Song 
(e.g., tracks played back in Sync, concurrently and mixed) 
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while Suppressing (e.g., muting) one or more tracks within the 
Song. The playback may occurat a MN or any device capable 
of playing audio. The user(s) may also practice playing the 
tracks that are Suppressed. 
0272 Packaged Tunes (Songs and Tracks). Packaged 
tunes (e.g. recorded tracks associated with Songs or musical 
performances with one or more recorded tracks being asso 
ciated with each song or musical performance) represent a 
structured form of content for a given piece of music. The 
content and data associated with each packaged tune may 
include: 

0273 Recorded Tracks—These are the track-level 
recordings of each instrumental and/or Vocal component 
that together make up the master mix of the complete 
musical performance. 

0274 Master Mix This is the master mix recording of 
the complete musical performance. It is optional and 
may or may not be included in the content. 

0275 Music Notation. This is the music notation asso 
ciated with each individual track (i.e., the musical notes 
to be played and lyrics for any parts to be Sung). This 
may be displayed in sheet music form, or via an ani 
mated presentation of notes that are displayed on a musi 
cal staff in industry-standard form, with the display of 
the notes timed to correspond to the moment at which 
they should be played, or one or more other presentation 
styles. 

0276 Meta Data This content includes data such as 
the name of the piece of music, a description of the piece 
of music, the genre of the piece of music, the date the 
original recording was released, the artists and instru 
ments played on the original recording, and other pieces 
of data as well. 

0277 Unique ID (normalized)—Each packaged tune 
can be associated with a unique identifier (ID) to nor 
malize the music library for the purpose of both com 
merce and royalty tracking, and for online matchmak 
ing. The unique ID can be used to identify each packaged 
tune within the system. 

0278 Packaged Tune Sourcing. Packaged tunes may be 
Sourced in different ways, depending on the varying desires of 
the parties involved. For example, the following are examples 
for how the content can be sourced: 

0279 Original Performer. In one implementation, the 
packaged tune is licensed from the copyright holder in 
its original mastered and commercialized/distributed 
form. For example, a packaged tune could be licensed 
for “Freebird” by the band Lynyrd Skynyrd. In this 
instance, a custom license would be negotiated, and the 
musician would have access to the track-level masters of 
each instrumental and Vocal performance that together 
make up this piece of music. The music notation for this 
piece of music may or may not be included in the content 
licensed from and delivered by the copyright owner. 

0280 Cover Bands. In another implementation, if the 
music service operator prefers, or if the copyright holder 
does not wish to grant such a license, the music service 
operator may source packaged tunes from cover bands 
using a crowd-sourcing content model to aggregate a 
packaged tune music library. These cover bands may use 
the distributed music service to generate recordings for 
the packaged tunes, or may record in any manner they 
choose, and the music service operator may then upload 
the tracks that make up a packaged tune into the server 
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systems for the service, regardless of the recording 
Source. Music notation for the piece of music may or 
may not be included in the content provided by the cover 
band. In this case, the music service operator would pay 
a mechanical royalty to the copyright owner, and may or 
may not also pay a royalty of Some kind (up-front, per 
unit sold, a combination of up-front and per-unit, or no 
royalty and instead the provision of greater exposure on 
the service) to the cover bands that generate the recorded 
tracks for the packaged tune. 

0281 Packaged Tune Library. As a user of the music ser 
Vice downloads each packaged tune (either with or without a 
purchase of a license to such packaged tune), that packaged 
tune is added to the personal packaged tune library of that user 
in the music service. As such, the tunes service is aware of 
which packaged tunes each user has downloaded. 
0282 Local Play. Once a packaged tune has been down 
loaded by a user, that user can enter a local session alone, and 
can play along with the recorded tracks that make up the 
packaged tune. Unlike some other aspects of the interactive 
music service described herein, the user MN is playing alone 
within the local play and is not communicating with other 
user MNs across the network. The local play can include one 
or more of the following features through the MN used by the 
USC 

0283 Automatic Substitution Depending on which 
instrumental tracks a user has configured and specified 
in the music service that he/she will play, when the user 
enters a local session, the music service will mute the 
appropriate recorded tracks automatically. For example, 
ifa packaged tune has recorded tracks for electric guitar, 
bass guitar, and drums, and the user has a track config 
ured to play his electric guitar, then the service will 
automatically mute the electric guitar recorded track so 
that the user can play live in place of this recorded track. 
The user may also choose to unmute the recorded track, 
or half-mute the recorded track to have an audible guide 
for the track that they are playing, optionally if desired. 

0284. Music Notation Display The user may choose 
to have the music notation displayed for any track they 
are performing optionally, in any of the presentation 
styles noted earlier, or if they prefer to play by memory, 
they may opt not to display any music notation while 
playing. 

0285 Play Scoring The music service may also 
optionally offer a play scoring service that measures 
how well the user plays his track or tracks, by monitoring 
which notes are played, when the attack for each note 
takes place in time, and how long each note is held. The 
play scoring Service can then produce an aggregate play 
score that indicates how well the user can play each 
track. This play score can be used by the user to under 
stand how they are doing as they improve through prac 
tice, and can also be used by the music service in the 
online matchmaking feature. 

0286 Online Matchmaking. Once a user has confidence in 
his ability to play certain tracks in a packaged tune alone or 
otherwise chooses to do so, the user can participate in online 
tunes sessions to play packaged tunes with other users of the 
interactive music service, combining the interactive music 
session service and the packaged tunes service. Online 
matchmaking is used to facilitate online music performances 
with packaged tunes by allowing users to find tunes sessions 
within which to participate. For example, online matchmak 
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ing Suggests tunes sessions that a user may join through one or 
more of the following features: 

0287 Packaged Tune Sessions. When a user goes 
online, the user may create a special kind of session, a 
session specific to a particular, unique packaged tune. 
For example, a user could create a tunes session for the 
performance of the packaged tune “Freebird” by Lynyrd 
Skynyrd. In this case, the tunes session would be a 
packaged tune session that carries the unique ID for that 
specific packaged tune. Only users who have down 
loaded this specific packaged tune into their packaged 
tune library would be able to join this specific packaged 
tune session. 

0288 Packaged Tune Library—A user interested in 
joining a packaged tune session can then scan or search 
available packaged tune sessions. This search feature 
would automatically determine what packaged tunes are 
in the user's packaged tune library and would look for 
existing packaged tune sessions that are configured with 
the unique IDs of packaged tunes that are in the user's 
packaged tune library. A listing of the packaged tune 
sessions that match the packaged tunes in the users 
packaged tune library can then be presented in an user 
interface as prospective packaged tune sessions to join. 

0289 Packaged Tune Lobby—As an alternative to one 
user creating a packaged tune session for one specific 
packaged tune, users interested in playing in packaged 
tune sessions may join a lobby area. The packaged tunes 
in each user's packaged tunes library within the lobby 
area are analyzed to determine their packaged tune IDs, 
and these packaged tune IDs are then compared to the 
packaged tune IDs for the packaged tunes within pack 
aged tunes libraries for the other users in the lobby, as 
well as all the existing packaged tune sessions that have 
been set up for a specific packaged tune. The user can 
then scan a listing of all existing and prospective ses 
sions, and can either join an existing packaged tune 
session, or can join one or more users who have not yet 
created/instantiated a packaged tune session. Joining 
other users will create/instantiate a packaged tune ses 
sion with these multiple users around a specified pack 
aged tune that all of these users have in their packaged 
tune library. 

0290 Automated Track Analysis—In Suggesting and 
displaying tunes sessions, the online matchmaking also 
considers the instrumental and/or Vocal tracks that a user 
has selected to play within any packaged tune session. 
For example, if a packaged tune session has tracks for 
electric guitar, rhythm guitar, bass guitar, lead vocal, 
backup Vocal, and drums, and if an existing packaged 
tune session already has live tracks from other users who 
are playing drums and electric guitar, then a user inter 
ested in joining who wants to play the bass guitar track 
will see this track within the packaged tune session as a 
viable option for joining the session. However, if the 
user instead wants to play the drums track that is already 
being played, this packaged tune session will not been 
seen by the user as a viable option for joining the session. 
Similarly, if in the lobby area, two users who both want 
to play the electric guitar track for a packaged tune that 
both share in common in their packaged tune library 
would not be matched as potential users for a common 
tunes session. 
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0291 Network Scoring The network scoring 
described above is can also be used as a filter in the 
Selection and ordering of packaged tune sessions avail 
able for a given user, as it will favor the presentation 
order of packaged tune sessions that are expected to 
provide a higher level of user experience, Such as pack 
aged tune sessions having low latency, low jitter, etc. 

0292 Play Scoring Users may also see through the 
user interface the play scores of other users for the pack 
aged tunes in each packaged tune session, enabling users 
to better select packaged tune sessions to join. For 
example, sessions having other users of comparable skill 
levels are likely good selections for a user to join in order 
to avoid either frustration or embarrassment for the user 
within the session. In addition to seeing the displayed 
play scores, the user may also select to filter out pack 
aged tune sessions with users based upon specified play 
scores. For example, only users having play scores 
above or below a selected play score will be shown. 
Other play score parameters may also be selected Such 
as ranges of play scores within which a user must fall in 
order to be shown. 

0293. Online Play. When a user enters a packaged tune 
session with other users, the automatic Substitution and music 
notation display features described above with respect to the 
local play feature are also used and available for online play. 
Also, during or after a packaged tune session ends, each user 
in the packaged tune session is allowed to rate the perfor 
mance capabilities of the other users in the session. AS such, 
impartial third party ratings of a user's skill level can be 
generated and stored with respect to the specific packaged 
tune that was part of the tunes session. These user ratings may 
then be used in the online matchmaking feature described 
above in addition to machine-based play scores that may be 
generated for a user. 
0294 Track Recordings and Skew. As described with 
respect to high fidelity recording above, during a session, 
each MN produces one or more high fidelity tracks (R) that 
are uploaded to the server. As described above, these tracks 
are skewed in time relative to each other, based on the time 
delay in starting the recording at each location. To produce a 
final cut of each track, it is preferable to correct or adjust the 
start time skew in the high fidelity audio files. As also 
described above, an accurate reference clock, common to all 
MNS in the session is used to timestamp each recording start 
with that reference clock time. Similar to the example above, 
with this reference clock timestamp, the algorithm below can 
be used to produce final tracks that are synchronized: 

0295) 1. Sort the high fidelity recordings (R) by times 
tamp 

0296 2. The oldest timestamp represents the recording 
that started latest (t) 

0297 3. For each recording (R), the delay (t) relative 
to the latest start time is represented as to too-tszar, 
where ts, is the record start time for R. 

0298 4. The delay (t) is the time offset in recording 
R. that must be skipped to bring the recording in align 
ment with that of the recording having the latest start. 

0299 5. The final track recording (TR) for each 
recording is produced by discarding to worth of data 
from the recording and then writing the result to the final 
track file. Automated or manual calibration can also be 
used to tune this process. 
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Each final track represents one or more instrument or Voice 
that together as a set represents a song or performance. 
Assume N tracks are in a song. Then the final song track 
(TR) can be represented as a set of the individual tracks 
within the song such that TR (TR1, TR2, ... TRN}. 

Tunes Service with Music Session. Further, using 
i i 

0300 3. 
the tunes service with respect to a music session, a set of 
tracks may be played back for instruments that that are not 
available in the session while muting another set of tracks for 
instruments that are available in the session. Two examples 
for modes of doing song track playback are now described for 
the set of tracks (TR) that are played back to users in a 
US1C SSS1O. 

0301 Single Source Track Playback. The single source 
track playback mode is where one MN is the source of the 
Song tracks being played back for all users in the session. This 
MN plays and streams the song tracks to other nodes in the 
session in low-latency and mixed with other input tracks at the 
MN. In this mode, the song playback tracks will experience 
all the effects of jitter and packet loss in the network being 
experienced by the MN. 
(0302 Distributed High Fidelity Track Playback. In this 
distributed high fidelity track playback mode, the content of 
the tracks of the song are securely distributed to a prescribed 
set of MNs in the session. The set of MNs receiving the tracks 
can be determined by a number factors such as DRM (digital 
rights management) policies, MN capability, users prefer 
ence, other factors, and/or a combination of these factors. As 
with the live track recordings (R), the interface for the 
session shows a common and session global track control for 
each Song track at each MN location, enabling any user in the 
session to control the track Volume, effects, mute, etc. for the 
whole session. 
0303. In this high fidelity mode, the song tracks at each 
MN are played back only to as outputs for that MN. Because 
the tracks are played back locally, the following benefits are 
provided: (1) no artifacts are introduced due to processing 
through a jitter queue and/or due to network artifacts, (2) high 
fidelity is provided because the tracks are not compressed for 
streaming, and (3) no latency is introduced. 
0304. This high fidelity mode requires that playback of 
tracks be started and played synchronized if synchronization 
is desired, for example, in a music session. The process 
described above for the distributed metronome can also be 
used for this synchronization. When a user presses the “play” 
button, a “play start command is sent to the MNs in the 
session directing them to start playing. The following 
describes an example embodiment for this process: 

0305 1. Each MN knows the network latency between 
it and every MN in the session, as described above, and 
the maximum latency (t) for its peer-to-peer connec 
tions can be determined from these latencies. 

0306 2. Let the reference clock time for the MN at 
which the play start is initiated be represented by t. 
The initiating MN broadcasts a “play start” command to 
all peer MNs within the session indicating that the start 
time for the play is to be tstarr tre+2ttax. Twice 
the maximum latency (2t) is used as a conservative 
approach, although a lower start time bound of 
tsar, tre+t could also be used, as Well as other 
later start times. 

0307 3. A MN receiving the play start command waits 
until its reference clock time (t) is about the designated 
start time (e.g., tastst). The accuracy of local clocks 
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are typically on the order of +1 ms. If the designated start 
time (ts) is earlier than the current reference clock 
time (t) for the MN receiving the start commend (e.g., 
ts,<t), then the command is late and the receiving 
MN re-broadcasts a new start time with an increase to 
the 2x multiplier for its maximum latency (t) to 
compensate for unexpected lateness of the command. 

0308 4. Clocks at the MNs areassumed to be relatively 
matched in drift. Thus, the starting time is important for 
them to remain in Synchronization. 

0309) 5. Audio from the high fidelity tracks are played 
only to that MN output. Thus the track playback is with 
no latency and is synchronized across the session. 

0310 Match Making and Socialization Using Tunes Ses 
sions. As described herein, after practice playing tracks in 
Songs, a user may desire to play the track in a session with 
other musicians. Similarly, a session creator may desire to 
find users capable of playing particularly tracks of a songs in 
a session. The online matchmaking service allows discovery 
and matching of capability and need for song and track play 
back in music sessions. The following are further examples of 
how this service can be utilized: 

0311 1. Musicians list song tracks that they are capable 
of playing. They also indicate their competency level. 

0312 2. Session organizer list songs that they plan to 
play in a session and tracks they are seeking musicians to 
play. Session organizer also indicates the time/date of 
the session. 

0313 3. A musician can search for sessions matching 
his/her capability/interest within a geographic Zone. 
He/she is also allowed to subscribe to the session. 

0314. 4. Session organizer can search for musicians 
matching the session need. The session creator may 
invite, accept/reject subscriptions. Once the need of the 
session is met, the creator may close the session from 
accepting further Subscriptions. 

0315 5. The system can rank the subscriptions to the 
listed session by a variety of one or more factors, which 
can include: 
0316 Friendship—the subscriber is a friend of the 
session creator. 

0317. History—the subscriber has played the track 
for the song in previous sessions. 

0318 Competency—the user indicated competency 
compared with the requested session competency. 

0319. Latency. The expected or actual latency 
between the session creator designated MN and sub 
scriber MN. 

0320 User scoring/ranking based on the score of 
the subscriber on this track as well overall score. 
Users are enabled to score each other. 

0321 
0322 Embodiments will now be further described with 
respect to APPENDIXA, APPENDIX B, and APPENDIX C 
below. APPENDIX A includes further details of MN regis 
tration and control with respect to network-connected 
devices, with respect to a network connection service (Net 
work as a Service NAAS) to provide lower latency network 
communications for music sessions. APPENDIX B below 
provides further functional block diagram examples for the 
interactive music system and related music nodes (MNS) and 
the server system(s). APPENDIXC below provides example 
APIs (application program interfaces) that can be utilized. 

Other—one or more other selected factors. 
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Appendix A Network Data Streams and NAAS 
(Network as a Service) 

0323. The MN application works by sending and receiv 
ing audio stream data from one or more other MN application 
instances located in the network. Audio data is encoded and 
sent to multiple recipients and audio data is received from the 
same recipients, decoded, and mixed before being played. 
Because latency is important, care is taken to minimize 
latency perhaps at the expense of increased network band 
width. One aspect of that is sending Smaller chunks of audio 
data more frequently. 
0324. There are two sources of audio, one being music 
from an instrument or microphone, and the second perhaps 
being a chat sent from a microphone/headset. The chat audio 
is optional. 
0325 In one embodiment, the music stream includes up to 
256 kilobits/second of captured and encoded audio data, 
chopped up into frames as small as 2.5 milliseconds (400 
frames/second). This frame size provides for about 82 bytes 
per frame (assuming a byte is 8-bits). An optional chat stream 
an also be included with an additional maximum of 64 kilo 
bits/second of audio data, or 21 bytes per frame. Headers or 
other wrappers are used around these two frames to distin 
guish their purposes (e.g., type, Seq (sequence number), uid 
(user identifier)) for 9 bytes. So, as one example, 82+9 bytes 
are used for music, and 21+9 bytes are used for chat, leading 
to a total of 91 bytes for music and 30 bytes for chat or 
altogether 121 bytes. An IP/UDP (internet protocol/user data 
gram protocol) header wrapped around that is an additional 
28 bytes, for a total packet payload of 149 bytes per frame, 
400 frames per second. The total resulting bit rate is 477 
kilobits/second (from a combined input of 320 kilobits/sec 
ond) for an increase in bandwidth of 49% due to overhead. It 
is noted that this is one example packet structure that can be 
used for network communications for the interactive music 
system embodiments described herein, and other packet 
structures could also be utilized. 
0326. The overhead matters as it increases our transmis 
sion time and load on network equipment. Many home users 
have asymmetric network connections which have a smaller 
upload capability than download. Often a home user is lim 
ited to only 1-3 megabits/second for upload. Corresponding 
download capabilities range from 5-30 megabits/second. If a 
jam music session is being carried on with 5 users, four of 
them remotely located, that means our total data upload 
requirement is 4974=1,908 kilobits/second. This is very 
close to the limit of many a home user's upload capability, and 
out of reach for a significant fraction. 
0327. Also, for this five piece band and using the maxi 
mum frame rate, sending 1,600 frames per second are being 
sent up to the internet from each member. Experiments have 
shown that this frame rate can Swamp most home networking 
equipment. When frames come too fast, frame processing 
gets bogged down. This can cause delays in passing the 
frames through to the internet from the local network. Tem 
porary bursts can often be absorbed by buffering the excess 
frames and sending them as-Soon-as-possible, but when 
frame rates are persistently higher than can be handled by 
buffering, another solution is employed: drop the excess. 
Example embodiments are described above for buffering 
using a jitter queue and dropping packets at the end of time 
windows. 
0328. While frames are being sent, the same 1,600 frames 
per second are being received, and likewise at 1,908 kilobits/ 
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second. This load will further degrade the performance of the 
home networking equipment. Often the result of this degra 
dation is that frames are delayed or dropped outright. This can 
cause the audio streams to lose synchronization or Sound 
fuzzy or even choppy. Late frames are the same as dropped 
frames, further degrading audio quality. 
0329. Finally, once frames are on the internet they can take 
complicated and variable paths to their destinations. Two 
users both on Time Warner's network in Austin will have a 
different path (and perhaps shorter) between them than two 
users where one is on one ISP (e.g., Time Warner) and the 
other is on another ISP (e.g., AT&T). And if the users are in 
different cities then that adds additional path variability. 
Finally, equipment congestion, failures, and maintenance 
might introduce even more path variability. Different paths 
have different capabilities and loads as well. Path variability 
matters because each path induces delay. For a given path, the 
delay may vary minute to minute, even second to second. 
0330. Thus, items to be concerned with for the network 
communications for the participants within the interactive 
music system include: (1) bandwidth, (2) delay, and (3) reli 
ability. 
0331 So, NAAS (network as a service) embodiments 
described herein are used to improve upon the server services 
described above by reducing latency for communications 
within the interactive music system. While some latency still 
exists for audio encoding and decoding, the upload and down 
loadbandwidth requirements can be better managed using the 
NAAS embodiments, and the network path variability can be 
better managed for a large class of users. 

Bandwidth 

0332. As indicated above, bandwidth is increased by 49% 
due to encoding of the audio, breaking it up into frames, and 
then wrapping it to form network communication packets. 
Bandwidth is also multiplied it by a factor that corresponds to 
the number of other participants in the session. Let's look at 
each step: 

0333 1. Encode—Audio encoding likely can not be 
significantly adjusted. Any attempt to compress audio 
more than it is already compressed will likely add delay 
(e.g., once the audio is presented to the networking 
layer). 

0334 2. Wrap (e.g., type, sequid)—Wrapping is useful 
to separate audio streams from different sources and 
manage missing and out of sequence frames. 

0335 3. Wrap with UDP A protocol, such as UDP is 
used to transmit the data across the internet. It is pos 
sible, however, to carry more data in a single UDP frame 
to eliminate 28 bytes per frame of excess wrapper. This 
variation is described in more detail below. 

0336 4. Upload to each participant This has a large 
effect as it is not just a percentages bigger, it is integral 
factors bigger. When there are more than two partici 
pants in a session, the same exact data is being sent more 
than once to the different participants. If this data can be 
sent once and have it be resent or multicast to the other 
participants, bandwidth needs and latency could be 
greatly reduced. 

0337 Upload performs these steps in the order specified. 
The obvious thing to pick on, the biggest, is step 4. So if step 
4 can be optimized by utilizing some sort of multicast capa 
bility, as many MNs as desired can be supported within a 
music session and only require 400 frames per second upload 
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at a rate of 477 kilobits/second. This is well within the capa 
bility of most home internet users. This is a dramatic savings 
in both uploadbandwidth and frame count. Also, more home 
routers can handle this lowerframerate, and so the number of 
potential users increases. 
0338 
0339 Download performs these steps (more or less) in the 
reverse order. Multiple participants across the internet 
uploads and sends audio data to, and the local MN subse 
quently downloads this data, unwraps it, and decodes the 
audio streams. The MN then combines the various audio 
streams into a single audio stream which is played out at the 
MN, Such as through a speaker. As indicated above, the user 
has the option of controlling the volume of each individual 
participants contributions to what is being heard. 
0340. The obvious best case would be to download a 
single audio stream and play it out of a speaker. This would 
require significant processing in the internet at server systems 
to completely unwrap and decode the audio streams from 
each participant, combine them into a single stream, taking 
into account Volume settings for each stream, then encode and 
rewrap it before downloading to aparticipant. As with upload, 
this would support (assuming infinite computational ability in 
the internet) as many participants as would be liked in a 
session and only require 400 frames per second download at 
a rate of less than the 477 kilobits/second upload requirement. 
0341 The computational ability in the internet server sys 
tems is called into question, of course, as it adds additional 
delay and expense, plus difficulty accounting for each partici 
pants Volume settings and mechanisms for manipulating 
those, etc. Also it requires code in the internet server systems 
to decode and encode audio, mix it, wrap and unwrap, etc. 
This is not an easy capability to deploy and maintain, debug, 
etc. 

0342. For one embodiment, during each 2.5 millisecond 
slice of active session time, one frame from each participant 
will be received on average. These frames are combined 
together in the internet NAAS server systems, and these com 
bined frames are downloaded from the server systems by the 
MNs as a single UDP packet. This combining of frames 
reduces download frame count from the server systems, and 
also reduces bandwidth requirements. 
0343. The audio data from frames (e.g., audio data from 
audio data frames or audio plus video data frames) in packets 
received from multiple MNs can also be combined together 
by the NAAS server systems, and this combined audio data 
can be downloaded from the NAAS server systems to the 
MNs as a single UDP packet. This combining of audio data 
from communicated frames reduces the packet rate that is 
used to for processing by the MN router and also reduces 
bandwidth requirements on the receiving MN Internet service 
provider (ISP). 
0344) To quantify these savings, assume four remote par 
ticipants generating 121 bytes of UDP payload perframe (see 
above). That’s a total of 484 bytes of payload if these frames 
are mashed together. Adding a UDP wrapper, this becomes 
512 bytes total size, or 1,638 kilobits/second. This is not a big 
improvement over 1908 kilobits/second for normal non-op 
timized download (14%). But, only download 400 frames/ 
second are downloaded instead of 1,600, which is of course a 
quite dramatic improvement. Home routers will be happier. 
0345 So, rather than sending payloads immediately to the 
intended recipient, the server waits to see if it can gather up a 

This is called upload scattering. 
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few more to group together. However long it waits, it is 
delaying the earliest packet by that much. 
0346. This is called download aggregation. 

Delay 
0347 Another factor affecting our audio quality is delay. 
The total delay of a frame is the total of all the delays along the 
path from one participant (A) to another(B). This includes the 
following at least: 

0348 Encoding delay (2.5 ms) 
0349 Processing to wrap and transmit (small delay) 
0350 Transmit to home network equipment (4 ms) 
0351. Transmit from A to A's ISP (variable delay) 
0352 Wander from A's ISP to B's ISP (variable delay) 
0353 Transmit from B’s ISP to B (variable delay) 
0354 Transmit from home network equipment (4 ms) 
0355 Processing to receive and unwrap (small delay) 
0356 Decoding delay (jitter buffer delay) 

0357 The big delays here have to do with the ISP delays 
and internet delays. If A and B are both in the same locale and 
use the same ISP, this is as good as it can get (except if they are 
in the same house). 
0358 FIG.15A is a block diagram of an embodiment 1500 
including two music nodes (A, B) communicating with each 
other through an ISP. 
0359 Likely the data moves from A to B on equipment 
located on private high speed networks operated by the ISP. 
Still the delay could be 5-10 ms if located in the same locale. 
0360. When A and B are one the same ISP in different 
locales, then the fun begins. Topology and style varies greatly 
among different ISP, but it is likely that some of the data will 
traverse some public networks. Some ISP might tie each 
locale to the internet directly, while another may tie all their 
private networks together and then tie them to the internet at 
a few key points. 
0361. When A and B are on different ISP it looks a lot like 
the above case, but perhaps even more complicated. Suppose 
A is on Time Warner in Austin and trying to route data to B on 
Comcast in Austin. What if A's data first hits the Internet in 
Dallas and then has to get to Minneapolis to get into Comcast? 
Data moving across town goes from Austin to Dallas to Min 
neapolis and then back to Austin. And who's to say that data 
moving across the internet from Dallas to Minneapolis is a 
single hop? 
0362 FIG. 15B is a block diagram of such an embodiment 
1510 including two music nodes (A, B) communicating with 
each other through different ISPs. For the embodiment 
depicted, A is located in Austin and uses Time Warner as its 
ISP, which has its direct internet backbone connection sys 
tems in Dallas. B is located in Austin and uses Comcast as its 
ISP, which has its direct internet backbone connection sys 
tems in Minneapolis. 
0363 To address these delays, NAAS server systems can 
be located at strategic points on both Time Warner's and 
Comcasts networks in Dallas. Data trying to move between 
the two in Austin might merely need to utilize the NAAS 
server in Dallas to jump directly from Time Warner's network 
to Comcast's network. Customers in Dallas would benefit the 
most, perhaps, but users within a few hundred miles of Dallas 
might certainly be better off than otherwise. 
0364 FIG. 16 is a block diagram of an embodiment 1600 
including NAAS server systems 1602 connecting two inde 
pendent ISPs. For the embodiment depicted, A is located in 
Austin and uses Time Warner as its ISP, B is located in Austin 
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and uses Comcast as its ISP. However, unlike FIG. 15B, the 
NAAS server systems 1602 provide network connection ser 
vices between the two different ISPs and thereby reduces 
latency of communication between the music nodes (A, B). 
0365. This is called path optimization. 
0366. A more advanced system might allow user A to hit 
one of our servers near his locale, the data flows across a 
backbone network to another of our servers near B's locale, 
and is then delivered to B. 
0367 This can be called advanced path optimization. 

Setting Up a Session Without NAAS 
0368 Just to put it all in context, let's look at how a 
non-NAAS session is setup. The first participant creates a 
session and then invites the other two to join. In the end, they 
are each sending audio streams to the other two: 
0369 FIG. 17 is a block diagram of an embodiment 1700 
including three music nodes (A, B, C) communicating with 
each other and the server systems to set up a non-NAAS 
music session. 
0370 A is the name of a participant, as are B and C. The 
Solid line between each pair of participants indicates the 
bi-directional flow of data. To accomplish this setup, here are 
the necessary steps: 

0371 1. A starts the session 
0372 2. Bjoins the session 
0373. 3. B is told about A 
0374. 4. A is told about B 
0375 5. Cjoins the session 
0376 6. Cis told about A 
0377 7. Cis told about B 
0378 8. A is told about C 
0379 9. B is told about C 

As each participant is “told about another, the told partici 
pant begins to send data to the participant it was told about. 
0380. In a like manner, the session is torn down in a similar 
set of steps: 

0381 1. C leaves the session 
0382 2. A is told that C left 
0383 3. B is told that C left 
0384. 4. B leaves the session 
0385) 5. A is told that B left 
0386 6. A stops the session 

There are fewer steps because when Cleaves, C doesn’t need 
to be told anything about A or B, etc. It is noted that example 
message sequences for starting and stopping a non-NAAS 
session are described below. 
0387 FIG. 20A is a swim lane diagram of an example 
embodiment 2010 for a music session start by music node A 
where music nodes B and C then join the session. The swim 
lane diagram includes the interactive music system server and 
music nodes A, B, and C. 
0388 FIG. 20B is a swim lane diagram of an example 
embodiment 2020 for a music session stop where music 
nodes B and C leave the session. The Swim lane diagram 
includes the interactive music system server and music nodes 
A, B, and C. 

How NAAS Works 

(0389. To be effective, NAAS server systems are preferably 
directly connected to as many ISP networks as are important 
in a given locale. This means one interface for each ISP 
network (e.g., ISPs for MNs 1-4 in FIG. 18A discussed 
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below) and thus one address per ISP network as well. In order 
to determine which address of a NAAS server a participant 
should use, it is useful to know the ISP network for the 
participant and match that to the ISP's network address on a 
NAAS server. If the participants ISP is not represented (e.g., 
ISP for 5 in FIG. 18A below), then one way to determine 
which address is best is to test them all. Given the difficultly 
of “knowing and “matching, it seems better to just have the 
participant test each address of a representative sample of 
nearby NAAS server systems to determine the proper address 
to use. It is further noted that the network interfaces for the 
NAAS server systems include both physical interface imple 
mentations or virtual interface implementations or combina 
tions thereof. 
0390 FIG. 18A is a block diagram of an embodiment 1800 
including NAAS server systems 1602 providing communica 
tions among four of music nodes for a music session. The 
NAAS server systems 1602 have direct connections to the 
ISPs for music nodes 1, 2, 3 and 4, but does not have a direct 
connection to the ISP for music node 5. 

0391 The participant will send data to the best address of 
the NAAS, and the NAAS will forward the data to the other 
participants in the session using the address for each of them. 
Data coming from the NAAS to a participant will be “from 
the best address at the NAAS for that participant. 
0392 Let's suppose there are three participants, A, B, and 
Cinasession. A and Bare on ISP network 1, while C is on ISP 
network 2. A and B will use the NAAS address for ISP 
network 1, while C will use that for ISP network 2: 
0393 FIG. 18B is a block diagram of such an embodiment 
1820 including three music nodes (A, B, C) communicating 
with each other through two different ISPs. Because A and B 
are on the same ISP, the NAAS server systems 1602 use one 
direct connection (N1) for communications to/from A and B. 
For C which is on a different ISP, the NAAS server systems 
1602 use another direct connection (N2) for communications 
to/from C. 

0394. When A sends data to N1, NAAS sends it to Band C. 
Data sent by B to N1 will go to A and C, and data sent by C to 
N2 will go to A and B. Data sent to A from NAAS will be from 
N1, likewise N1 for B, and N2 for C. This is the situation 
when all three of A, B, and C are authorized to use NAAS. 
Here it is in tabular form: 

If Received Using Then Send Using 
From Interface To Interface 

A. N1 B N1 
A. N1 C N2 
B N1 A. N1 
B N1 C N2 
C N2 A. N1 
C N2 B N1 

0395. The first row is read as “if data is received from A 
using interface N1, then NAAS should send it to B using 
interface N1. The information in row 3 is a mirror image of 
the information in row 1. This fact can be used to compress the 
tables (not shown above). 
0396 Note also that the received data is matched against 
only the first two columns of each row. Where multiple rows 
are matched, all are triggered. In the table above, “received 
from A/N1 matches two rows, one “then send to B/N1 and 
one “then send to C/N2. 
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0397 As the play session is started and participants join it, 
the NAAS server system is updated with these rules. As 
participants leave, the rules corresponding to the participant 
are removed. Any data arriving from a source not in the table 
is ignored. 
0398. Note that A only sends one copy of the data to 
NAAS. NAAS forwards two copies, one to B and one to C. 
0399. The NAAS server can be implemented with or with 
out download aggregation, if desired. For example, download 
aggregation cannot be provided, and upload Scattering and 
path optimization can be provided by the NAAS server sys 
tems. As such, when not all the participants in a session are 
enabled to use NAAS, then those participants do not get to use 
the features of NAAS directly. They will continue to send 
packets individually to each other participant. But instead of 
sending to NAAS participants directly, they will send to the 
appropriate NAAS address for Such participants instead. 
0400 For traffic that goes through the NAAS server sys 
tem, single stream up packet communications and multicast 
out packet communications to other MNS in the music session 
can be used. This multicasting saves bandwidth and packet 
rate on the sending MN, and can also enable delivery of 
bandwidth hungry payload like video, which could otherwise 
require too much bandwidth to send to other MNs in the 
music session, for example, due to typically asymmetric 
bandwidth (e.g., constrained uplinks) 
04.01. It is further noted that to connect MNs over greater 
distances via latency optimized links, MNS may connect to 
different NAAS server systems, and the different NAAS 
server systems can be connected with a high-speedbackbone, 
or direct communication links can be provided between Such 
NAAS server servers. It is also noted that if all MNs in a 
session are connected (e.g., proxied) through a NAAS server 
system, the MNs can have the NAAS server capture and 
process audio or video plus audio recordings, download them 
after the session to the MNs, and/or upload them automati 
cally to another network destination (e.g., YouTube, etc.). It is 
further noted that if MNs in a session are connected(e.g., 
proxied) through a NAAS server system, the MNs can have 
the NAAS server mix the audio data from the MNs at the 
NAAS server system and send back the fully processed and 
mixed audio data (e.g., audio mix) to each MN in the music 
session. This avoids each MN from processing and mixing the 
streams of all MNs to form mixed audio. In addition, it is 
noted that the NAAS server system can be configured to store 
a recording of the audio mix within one or more data stored 
systems, and the NAAS server system can then broadcast the 
audio mix recording to one or more network destinations. It is 
still further noted that the NAAS server systems are prefer 
ably placed at IXPs (Internet Exchange Points) and directly 
connected to these IXPs. An IXP is the network infrastructure 
device or devices where the ISPs physically cross connect 
with each other and communicate peer traffic across their 
networks. As such, if a NAAS server system is physically 
co-located at an IXP, this NAAS server system will effec 
tively be cross connected to the major ISPs that service a 
region through this IXP, and NAAS proxied latency will be 
minimized for MNs communicating through the NAAS 
server system. 

(0402 FIG. 19 is a block diagram of an embodiment 1900 
including three music nodes (A, B, C) where only A is a 
NAAS participant. 
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0403 Supposing that B and C are not NAAS participants, 
and only A is a NAAS participant. The above table is modified 
as follows: 

If Received Using Then Send Using 
From Interface To Interface 

A. N1 B N1 
A. N1 C N2 
B N1 A. N1 
C N2 A. N1 

04.04 The rules relating to B sending to C and C sending to 
B are absent. Band C must continue to send directly to each 
other: 

0405. In this way A sees a reduction in his uploadband 
width utilization, while Band C don't. As data sent to Band 
C also enjoys path optimization, as does B and C's data sent 
to A. But B and C's data sent to each other is not path 
optimized, and neither B nor C sees any reduction in upload 
bandwidth utilization. 

0406 Note that if B is a NAAS user as well as A, then C 
will reap full benefits of being a NAAS member without 
having to pay. In general this is true whenever N-1 partici 
pants are NAAS users. 
0407 As described in the session setups below, automated 
discovery of lowest latency path from an end user MN to one 
interface on a NAAS server system can be determined, for 
example, by ping testing againstall the interfaces/ISPs across 
some subset of the NAAS server systems in different regions. 
This automated discovery can also be repeated over time that 
the interface used by the MN is dynamically adjusted over 
time based upon the latency determination. Further, NAAS 
server systems pinged as part of this latency testing can be 
limited by parameters such as geographic location and related 
distances in order to avoid NAAS servers where geographic 
distances makes them an unlikely low latency candidate. Dif 
ferent NAAS server systems can also communicate with each 
other as part of this latency testing. 
0408. There is a possibility that, since A and B are on the 
same ISP network, that A and B would be better off sending 
directly to each other. A is now faced with a tradeoff enjoy the 
benefit of upload scattering, or use the better path to B. In 
order to make that choice. A would need to test whether 
sending to B via N1 was better than sending directly to B. If 
the choice was made to use the direct path, NAAS would have 
to be told to remove any entries from the configuration table 
involving A to and from B. A would also want to test B’s 
address first to see if it was indeed the best path to use. 
04.09 Thus, each MN in a music session can make an 
automated determination of latency for peer-to-peer commu 
nications and latency for NAAS server communications (e.g., 
proxied latency) to see which latency is better with respect to 
communications to each other MN in the music session. The 
lowest latency communications can then be used for the 
music session. It is noted that the NAAS server latency can be 
determined for two MNS (e.g., MN1, MN2), for example, by 
adding MN1-to-NAAS latency plus NAAS-to-MN2 latency 
(e.g., equals NAAS proxied latency MN1 to MN2). This 
NAAS server latency can then be compared with latency for 
simple peer-to-peer (MN1-to-MN2) latency. The lower 
latency path can then be selected and used for communica 
tions for the music session. 
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0410. It is further noted that if possible, this session traffic 
can be routed based on lowest latency connection determina 
tions (e.g., peer-to-peer path or NAAS proxied path), and this 
can then be adjusted if packet rate or bandwidth constraints 
cause the lower latency path to be unsatisfactory for session 
communications. For example, if packet rate and/or band 
width constraints present communication problems, an intel 
ligent tradeoff can be made between the different connection 
paths (e.g., between the peer-to-peer path and the NAAS 
proxied path) so that communications stay within bandwidth 
and/or packet rate constraints while reducing average or 
median latency across the connections in the session. Further, 
MNs may continuously check the latency to NAAS/peers and 
may elect, or be directed by the NAAS server, to dynamically 
migrate connections to another NAAS or from NAAS mode 
to peer-to-peer mode (or Vice-versa) if network conditions or 
NAAS load parameters or other parameters indicate these 
adjustments are to be made. For example, a ping test can be 
followed by a decision to migrate that causes an MN to leave 
and re-join a music session with the new parameters in effect. 
Other variations could also be implemented while still taking 
advantage of this session migration, and a variety of Session 
migrate protocols can be used to make a determination of 
when an MN migrates and/or is instructed to migrate by the 
SeVe. 

Session Setup with NAAS 
0411 Setting up a session with NAAS (everyone enabled) 
looks like this: 

0412 1. A starts the session 
0413 2. A told to test NAAS addresses (N1, N2, N3, 
N4) 

0414 3. A determines that N1 has the lowest latency 
0415 4. Bjoins the session 
0416) 5. B told to test NAAS addresses (N1, N2, N3, 
N4) 

0417 6. B determines that N1 has the lowest latency 
0418 7. NAAS is told to add a rule (A, N1, B, N1)* 
0419 8. Bis told about A (N1)** 
0420 9. A is told about B (N1) 
0421 10. Cjoins the session 
0422 11. C told to test NAAS addresses (N1, N2, N3, 
N4) 

0423) 12. C determines that N2 has the lowest latency 
0424 13. NAAS is told to add a rule (A, N1, C, N2) 
0425 14. NAAS is told to add a rule (B, N1, C, N2) 
0426) 15. C is told about A (N2) 
0427. 16. C is told about B (N2) 
0428 17. A is told about C (N1)*** 
0429. 18. B is told about C (N1) 
0430 * The notation “add a rule (A, X, B, Y)” means 
“add a rule that when data shows up from A using X it is 
sent to B using Y and vice versa.” 

0431 * The notation “told about A (X) means “told 
that A has joined the session and audio data should be 
sent to address X.” 

0432 *** When A is told about B (N) and later C (N), A 
only needs to send to N once. NAAS will then send the 
data to both Band C. The jam software should only send 
to whatever unique collection of addresses it has. 
(NAAS users will only have the one address they picked, 
but for non-NAAS users not all the addresses will be 
unique.) 
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0433 FIGS. 21A-B provides a swim lane diagram of an 
example embodiment for a music session start by music node 
A where music nodes Band C then join the session and where 
all three nodes (A, B, C) are NAAS participants. The swim 
lane diagram includes the NAAS server, the interactive music 
system server, and music nodes A, B, and C. Also, it is noted 
that embodiment 2110A in FIG. 21A is connects at the bot 
tom to the top of embodiment 2210B in FIG. 21B. 
0434 FIG. 21C is a swim lane diagram of an example 
embodiment 2120 for a music session stop where music 
nodes Band Cleave the session and where all three nodes (A, 
B, C) are NAAS participants. The swim lane diagram 
includes the NAAS server, the interactive music system 
server, and music nodes A, B, and C. 

Session Setup with Mixed NAAS and non-NAAS 
0435 Setting up a session with A enabled for NAAS while 
B and C are not (changes are bracketed and italicized): 

0436 1. A starts the session 
0437 2. A told to test NAAS addresses (N1, N2, N3, 
N4 
o: 3. A determines that N1 has the lowest latency 
0439 4. Bjoins the session 
0440 5. B told to test NAAS addresses (N1, N2, N3, 
N4) 

0441 6. B determines that N1 has the lowest latency 
0442 7. NAAS is told to add a rule (A, N1, B, N1) 
0443 8. B is told about A (N1) 
0444. 9. A is told about B (N1) 
0445 10. Cjoins the session 
0446 11. C told to test NAAS addresses (N1, N2, N3, 
N4) 

0447 12. C determines that N2 has the lowest latency 
0448 13. NAAS is told to add a rule (A, N1, C, N2) 
0449) 14. NAAS is told to add a rule (B, N1, C, N2) 
0450 * because B and C are not members 

0451 15. C is told about A (N2) 
0452) 16. C is told about B (N2) 
0453. 17. A is told about C (N1) 
0454) 18. B is told about C (N1) 

0455. Note that NAAS was not told about B to/from C, and 
B was told to send to C instead of C (N1), and vice versa for 
C sending to B instead of B (N2). 
0456 FIGS. 22A-B provide a swim lane diagram of an 
example embodiment for a music session start by music node 
A where music nodes Band C then join the session and where 
only music node C is a NAAS participants. The swim lane 
diagram includes the NAAS server, the interactive music 
system server, and music nodes A, B, and C. Also, it is noted 
that embodiment 2110A in FIG. 21A is connects at the bot 
tom to the top of embodiment 2210B in FIG. 21B. 
0457 FIG. 22C is a swim lane diagram of an example 
embodiment 2120 for a music session stop where music 
nodes B and C leave the session and where only music node 
C is a NAAS participants. The Swim lane diagram includes 
the NAAS server, the interactive music system server, and 
music nodes A, B, and C. L. 

Message Sequence Diagrams 
04.58 Example control messages and sequences for setup 
and tear down are provided with respect to FIGS. 20A-B, 
21A-C, and 22A-C as indicated above. It is noted that for 
these Swim lane diagrams testing is shown once, and then left 
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it out of the main diagrams for simplicity. Start and stop are 
similar and are also shown once then omitted for simplicity. 
Further, it is noted that these Swim lane diagrams provide 
example embodiments, and variations could be implemented. 
0459 Looking to the message sequence diagrams, FIG. 
20A shows the session management messages that flow 
between music nodes when no NAAS is involved. In this flow, 
there are three music nodes A, B and C. Each MN have a 
unique session id respectfully Aid, Bid, Cid. When a MN 
sends a message, the message includes its IP (Internet Proto 
col) address/name, session id and the id of the peer that it 
wants the message to be delivered. The server uses this infor 
mation to validate the source and destination before relaying 
the message to the destination music node. In FIG. 20A, A 
sends a 'start session (Aid, A) message to server. The server 
uses the information in the message to instantiate a session 
object with id S, with the properties that A requested. The 
server returns S to A. Properties of the session can include the 
genre of music, the skill level of musicians that may join the 
session, whether the session is public or private, etc. A session 
object in the server is searchable by users looking for music 
sessions to join. 
0460. After the creation of session S, by A, user at music 
node B discovers the session by one of several methods. The 
server may sends a notification message (e.g., email or instant 
message) to user at B, inviting the user to join the session. The 
user at B may also search the server and discover the existence 
of session S. After the user at B discovers the existence of 
session S, the server provides a join session link for S that user 
at B clicks to request to join the session. Thus, a user at music 
node B sends a join Session message from B to the server as 
join session (S. Bid, B). The server validates the existence 

of S and that user at music node B has the rights to join it, and 
if true, adds music node B to the session and returns OK. IfB 
is not allowed join the session, no further communication 
occurs to B with respect to the session. 
0461. At this point, the server notifies music node A that 
music node B has joined the session with the message to A, 
join session (S. Bid, B). Concurrently a message is sent to 

music node B with the message join session (S. Aid, A). 
When these messages are received at A and B respectfully, 
they now have each other's sessionid and music node name/ 
IP address. This information is used by music node B to send 
a message via the sever to music node A as “start audio (A, 
B). Similarly music node A sends a message to B with 
request “start audio (B., A). Both A and B use the server to 
negotiating the message flow needed to allow them to send 
audio to each other. 
0462 Similarly to the user at music node B, a user at music 
node C discovers session S and requests to join with a mes 
sage to the server, join session (S. Cid, C). If C is allowed to 
join S, then the server notifies A and B that C has joined the 
session with message join session (S. Cid, C). Concur 
rently, C is notified to join sessions with B and A with join 
session (S. Aid, A) and join session (S. Bid, B). The 
Successful execution of the join session messages is followed 
by messages “start audio (A, C)”, “start audio (B, C) initi 
ated by C to A and B respectively. Similarly A sends message 
“start audio (C., A) to C, and B sends “start audio (B, C) to 
C 

0463 Music nodes A, B and C are now in session S. 
0464 FIG. 20B shows the graceful process of leaving a 
session when no NAAS is involved. A graceful departure 
from a session implies that the user at the music node (MN) 
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requested to leave. An ungraceful departure happens when 
the music node (MN) is no longer able to communicate with 
the music node (MN) peers or with the server. In this case, the 
heart-beat messages that flow from the music node to the 
server stops and the server proceeds to remove the music node 
from the session by sending messages to nodes that are still in 
the session that carry the same message as if the unresponsive 
node had requested to leave the session. 
0465. The user at music node C requests to leave the 
session S. Music node C sends a message to the server “leave 
session (S. Cid, C). The server then sends messages to A and 
B respectfully, “left session (S. Cid, C). Concurrently, C 
sends messages to A and B to stop audio messages. C sends 
“stop audio (C, A) to A and to Bit sends “stop audio (C, B). 
The server removes C from session and nodes A and B 
removes C as a peer that they will communicate with in the 
session. 
0466 Similarly, when music node B leaves the session, it 
sends to server “leave session (S. Bid, B). The server then 
sends message “left session (S. Bid, B) to A. Music node B 
also concurrently sends “stop audio (B., A) to music node A. 
Music node A removes B from the set of peers it will com 
municate with. The server removes B from the music nodes in 
the session S. 
0467 Finally, music node A leaves the session and being 
the creator of the session, it may choose to terminate the 
session with a message “stop session (S. Aid, A). Otherwise 
it sends message “leave session (S. Aid, A) to the server. 
Typically, the stop session is implicit, when the last node in 
the session leaves the session. When the server receives this 
message, it deletes the session object and by definition, the 
session ceases to exist. 
0468 FIG. 21A shows the message flow for a music ses 
sion setup where a NAAS server is involved. Here the NAAS 
server has four ISP (Internet Service Provider) terminations 
T1, T2, T3 and T4 respectively. The NAAS server is hosted at 
an Internet exchange point, where it can have direct connec 
tion into networks of various ISP vendors, represented by 
connections T1, T2, T3 and T4. The number of ISP termina 
tions can be more or less. Logically, the NAAS may be 
viewed as being a Super music node, that is has access rights 
to all music sessions. The service uses business logic to filter 
user music nodes that may participate in a session with the 
NAAS. 

0469. In this flow, music node A starts a session by sending 
a “start session (Aid, A) message to the server. If music node 
A is not allowed to use the NAAS, the logic described before 
in FIG. 20A is followed. IfA is allowed to use the NAAS, then 
the server sends a message to the NAAS informing it that A is 
joining the session. This message is called a setup (A). The 
semantics of a setup message is that A should invoke algo 
rithm that test which ISP termination (T1-T4) on the NAAS 
gives the lowest latency of communication between the 
NAAS and music node A. 

0470. If the NAAS is able to accommodate more clients, it 
replies to the setup message to the server with “ok (T1,..., 
T4). The NAAS registers music node name A as a node that 
it is authorized to communicate. The server forwards a mes 
sage to music node A to test which interface on the NAAS it 
has the lowest latency communication, “test (T1.T2.T3.T4). 
Music node A invokes a network latency-testing algorithm, 
and the NAAS generates start session update message to 
server with latency information from the NAAS, “start ses 
sion (Aid, A, (ST1, ST2, ST3, ST4))”. The server instantiates 
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the session S and replies OK to A. The server relays this 
information to the NAAS as “assign address (S, A, (ST1, ST2, 
ST3, ST4))” which caches this information by associating the 
interface with the lowest music node A and session S. If two 
or more interfaces have the same delay, an algorithm is used 
to select one (e.g., load balancing, lower mac address, etc.). It 
also binds the interface address with the lowest latency to A, 
as the preferred address that it will use to send messages to 
music node A. This interface is referred to as NA. The NAAS 
replies OK to Successfully caching and binding from a 
'assign address' message. 
0471 Later, the user at music node B discovers session S 
and initiates a request to the server with join session (S. Bid, 
B). Similar to A, the process described for a “test (T1, T2, 
T3, T4) is invoked with music node B to find the lowest 
latency to the NAAS. Music node B ultimately replies to the 
server with join session (S. Bid, B, (ST1, ST2, ST3, ST4))” 
which results in message “assign address (S, B, (ST1, ST2, 
ST3, ST4))” sent to NAAS. The NAAS determines which 
ISP/network interface is the lowest latency path for commu 
nicating with Band binds that interface with Band session S. 
This interface is referred to as NB. It also uses the sessionid 
S. to recognize that music nodes A and B need to communi 
cate and add a forwarding rule “add rule (S, A, NA, B, NB). 
This rule authorizes messages to flow between node A and B 
in session S via interface NA and NB. The NAAS replies OK 
to the “assign address' message and the server then relays OK 
to B's join session” request. The reply to B carries the NAAS 
network interface for A that B should use to communicate 
with music node A. 
0472. Concurrently, the server sends message join ses 
sion (S. Bid, NA) to music node A and join session (S. Aid, 
NB) to music node B. Music nodes A and B do not send 
messages directly to the network address of each other. 
Rather, they send messages to each other via the NAAS. 
which serves as a packet relay. As such, at this point the 
NAAS instructs both A and B to start sending audio with 
command “start audio (NA, A) and “start audio (NB, B). 
Music node A sends audio messages to B by sending to the 
NAAS interface IP address NA. The NAAS receives the mes 
sage from A, determines the message destination is music 
node B, and relays the message to B by sending it out interface 
NB to music node B IP address. Similarly, messages from B 
to Aare sent to the NAAS address NB. The NAAS determines 
the destination of the message is music node A and sends the 
packet out network interface NA to music node A. Thus, 
audio flows between A and B relayed via the lowest latency 
path they have to the NAAS. 
0473 FIG. 21B illustrates the message flow that occur 
when music node C requests to join a session that includes 
music nodes A and B which are already in a session with a 
NAAS as shown in FIG. 21A. As before, the server instructs 
C to perform a latency test against the NAAS with test (T1, 
T2.T3, T4)". Music node C then reports the result to the server 
which then sends “assign address (S, C, (ST1, ST2, ST3, 
ST4))” to the NAAS server. The NAAS binds the correspond 
ing lowest latency interface NC to node C. The NAAS uses 
the session id S, to determine that C is joining the session 
involving music nodes A and B, and adds forwarding rules 
“add rule (S, A, NA, C, NC)' and “add rule (S, B, BA, C, 
NC)’. This authorizes the flow of packets between music 
nodes A, B and C. 
0474 The server then notifies A and B that Chasjoined the 
session with join session (S. Cid, NA)' and join session (S, 
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Cid, NB) sent to A and B respectively. Similarly, messages 
join session (S. Aid, NC)' and join session (S. Bid, NC)' 

are sent to music node C. Thus C send messages to NAAS 
address NC to communicate with A and B. 
0475 With these rules in place, “continue audio' mes 
sages are sent to nodes A and B to “start audio' messages to 
node C. It is noted that because the NAAS handles packet 
relay to music node C, music nodes A and B do not need to do 
anything further to send audio to music node C. Any audio 
packet by any music node in session S will be broadcasted by 
the NAAS to the member music nodes using the bounded 
interface for communicating with the destination music node. 
Music node C is also told to start sending audio to A and B by 
sending to NAAS address NC. The server command to music 
node C is “start audio (NC, C). 
0476 A hybrid mode of operation is where the server may 
direct music nodes to use peer-to-peer latency test. If the 
latency between peers is lower than the path via a NAAS 
server, the server may direct the peers to use the non-NAAS 
mode of communication, described in FIGS. 20A and 20B. 
0477 FIG. 21C shows the message flow when music node 
C leaves a session involving a NAAS. Music node C sends 
message “leave session (S. Cid, C). The message is relayed 
to the NAAS, which translates this as an action to drop the 
rules that allow communication with music node C in session 
S. Thus, the NAAS executes commands “drop rule (S, A, NA. 
C, NC) and “drop rule (S, B, NB, C, NC)' and finally 
releases the binding of node C to interface NC with command 
“release address (S, C, NC). 
0478 After each drop rule command, messages are sent to 
the corresponding music node to “stop audio (C, NC)'. 
Finally, the server notifies the music nodes that C has left the 
session with “left session (S. Cid, NA) and “left session (S, 
Cid, NB) sent to music nodes A and B respectively. 
0479. Similarly, when music node B leaves the session, 
messages to remove the rules in NAAS that allow communi 
cation with B are issued, and the bindings interface binding 
for B is dropped. Finally, music node A leaves the session by 
requesting a "session stop (A, Aid, A). This causes all 
resources (e.g., forwarding rules and interface bindings) asso 
ciated with session S at the NAAS to be released. The server 
also destroys the session object S. 
0480 FIGS. 22A-B illustrate the message flows when a 
mix of NAAS authorized and non-authorized music nodes are 
in a session. If all clients in a session are not authorized to use 
the NAAS service, then they will use the peer-to-peer mes 
sage flow described earlier for FIGS. 20A and 20B. If all 
music nodes are NAAS authorized, the communication setup/ 
tear down flow is described in FIGS. 21A and 21 B. When a 
mixed authorization of music nodes access to a NAAS exist, 
it may cause the automatic elevation of the privileges of 
non-authorized nodes, so that a QoS/SLA (Quality of Ser 
vice/Service Level Agreement) guarantee to the authorized 
music node can be met. 
0481 Looking back to FIGS. 22A-B, an initial case is 
shown where music nodes A and B are in a session that does 
not involve a NAAS. This result may be because they are not 
authorized, because the direct path latency between them is 
better than via a NAAS, or because of other sets of business 
logic or operational conditions (e.g., NAAS server is down 
for maintenance). The flow used for A and B to enter the 
session is as described earlier for FIG.20A. When music node 
Cattempts to join the session, the server determines that the 
NAAS should be used. Music node C is directed to perform 
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latency against the NAAS interfaces T1, T2, T3 and T4. 
Ultimately an “assign address (S, C, (ST1, ST2, ST3, ST4))” 
is executed at the NAAS and music node C address is bound 
to lowest latency interface to the NAAS as NC. 
0482. The server recognizes that music node C is joining a 
session involving music nodes A and B that are in a non 
NAAS session. As music node C is now bound to the NAAS, 
the server directs music nodes A and B to perform network 
test against the NAAS. This results in music node A and B. 
The message sequence shows the flow for music node A first 
joining C in the session (FIG. 22A), followed by a similar 
sequence to music node B (FIG.22B). The message sequence 
is as described earlier in FIG. 21A for music node B and C 
joining music node A in a NAAS session. FIG.22B shows the 
latter part of the session join sequence. 
0483 FIG. 22C shows the leave session sequence, which 

is similar to the case described in FIG. 21B. The last music 
node to leave the NAAS session destroys the session. 
0484. One further implementation is that the last NAAS 
authorized music node to leave the session causes the session 
to destroyed and rebuilt as non-NAAS music session. 

Appendix B Further Example Embodiments 
0485 This appendix provides further functional block dia 
gram examples for the interactive music system and related 
music nodes (MNs) and server system(s). 
0486 FIG. 23A is a block diagram of an example embodi 
ment 2300 for internode session managers and data flow for 
the interactive music system including peer connections and 
session path transport communications. The MNs 112, 114, 
and 116 each include a music session manager that receives 
local channel (e.g., music track) information and uses peer 
connection information and peer connection block to com 
municate with the other MNs. These communications can be, 
for example, implemented using UDP packets, using TCP/ 
UDP packets communicated through a session bridge asso 
ciated with the server 102, and/or through some other net 
work communication technique. Each MN 112, 114, and 116 
also includes a session transport module that communicates 
with the server and each otherthrough HTTP/TCP (hypertext 
transport protocol/transmission control protocol) packets. 
The session manager communicates with the session trans 
port module and uses a channel view composer to display 
channel (e.g., music track) information to the user. The server 
102 is connected to the MNs 112, 114, and 116 as a cloud 
based service through the network 110. 
0487 FIG. 23B is a block diagram of an example embodi 
ment 2350 for a peer connection block. A peer socket pro 
vides a communication interface for network communica 
tions with other MNS. A peer connection manager uses peer 
connection information to determine the communication pro 
tocol to use. For example, TCP can be used for communica 
tions through the server as a proxy, and UDP can be used for 
direct peer-to-peer communications. Input audio and chat 
data is received from ICPs and is formatted with additional 
session information for transport to the other MNs. Received 
audio packets from the other MNs are parsed and output to the 
receive audio data processor. Encryption of outgoing packets 
and decryption of incoming packets can also be used. A 
latency probe module generates probe and response packets 
for the latency probe operations for the MN. 
0488 FIG. 24 is a block diagram of an example embodi 
ment 2400 for music and chat communications from an MN 
to other MNs within a music session. Each of the MNs 112, 
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114, and 116 include a monitor mixer for chat channels, ICPs 
or a bonding ICP (ICPB), and a playout module. Chat chan 
nels and music channels are output by each MN. Peer chat 
channels are processed by the monitor mixer, and peer music 
channels are processed by the playout module. For the 
embodiment depicted, MN 112 is shown as communicating 
its chat microphone channel and its music channels to MNS 
114 and 116. The uplink bandwidth can be represented by the 
sum of the chat microphone bandwidth (BW) plus the music 
channel bandwidth (BW) times the number of peers (e.g., 
Uplink Bandwith=(Chat Mic BW+Music Channel 
BW)*Peers). Fewer music channels help reduce bandwidth 
requirements hence the need for ICP bonding (e.g., at the loss 
of individual instrument channel control at the peer receiver). 
For example, if the chat microphone bandwidth is 32 Kb/s, 
the music channel bandwidth is 64 Kbfs, and a session 
includes 5 people, each person will need an uplink bandwidth 
of (32+64)*4–384. Kb/s. 
0489 FIG. 25 is a block diagram of an example embodi 
ment 2500 for a MN system embodiment including local 
ICPs (input channel processors) and peer ICPs (input channel 
processors). Embodiment 2500 is similar to embodiment 820 
of FIG. 8B with an additional recording point 2501 being 
shown. It is noted that other recording points could also be 
used. 
0490 FIG. 26 is a block diagram of an example embodi 
ment 2600 for a peer input channel processor. Audio packets 
from peer MNs are received and de-multiplexed by a de 
multiplexer (demuxer) 2601. The demuxed audio packets for 
a first peer MN are provided to receive processor 2602. This 
continues for each peer MN with the demuxed audio packets 
for an Nth peer MN being provided to receive processor 2604. 
Each of the receive processors 2602 . . . 2604 include a 
deframer (e.g., extracts session identifier, session statistics, 
etc.), a receive report generator, a decoder, a resampler, and an 
effects module. Each of the receive processors 2602. . . 2604 
provides a remote channel out for peer MN it is handling and 
also provides a raw remote audio output for that peer MN, as 
well. 

0491 FIG. 27A is a block diagram of an example embodi 
ment 2700 for a local input channel processor that captures 
audio inputs an instrument (e.g., guitar, keyboard, Voice, etc.), 
Voice chat, or another audio input. Instrument or Voice input 
is captured by a capture and formatter block and then pro 
vided to an effects block. Raw captured audio and effects 
audio are both output. A channel throttle arbiter, a stream 
encoder, and a channel framer are provided for high quality 
stream processing, medium quality stream processing, and 
low quality stream processing of the captured audio. A high 
quality broadcast encoder also receives the captured audio, 
and a channel framer receives the output of the high quality 
broadcast encoder. High quality, medium quality, and low 
quality throttle control signals associated with the peer MNs 
(e.g., from 0 to n peer MNs) are received by the channel 
throttle arbiters, respectively. The ICP outputs high quality 
audio frames, medium quality audio frames, and low quality 
audio frames to the peer MNs based upon these control sig 
nals. Broadcast frames are also output by the ICP. Other 
inputs and outputs are also provided. 
0492 FIG. 27B is a block diagram of an example embodi 
ment 2750 for a local input channel processor that captures 
audio inputs and bonds them together for a group of instru 
ments. Multiple instrument or Voice inputs are captured by 
capture blocks and the captured audio inputs are mixed 
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together by a music mixer to generate a group audio output. 
The output of the mixer is received by an encoder, and the 
encoded audio is provided to a channel framer. The channel 
framer outputs the group media packets to the peer MNS (e.g., 
from 0 to n peer MNs). A channel throttle receives controls 
from the peer MNs and provides controls to the music 
encoder. Other inputs and outputs are also provided. 
0493 FIG. 27C is a block diagram of an example embodi 
ment 2770 for a local input channel processor that captures 
audio inputs for a group of instruments and bonds these inputs 
together using a group mixer (e.g., input channel processor 
bonding). Embodiment 2770 captures multiple inputs and 
bonds them with the group mixer as provided by embodiment 
2750 in FIG. 27B and also provides raw outputs and effects 
outputs as provided by embodiment 2700 of FIG. 2A. 
Embodiment 2770 also provides the high quality, medium 
quality, low quality, and broadcast level processing of 
embodiment 2700 of FIG. 2A. 
0494 FIGS. 28A-B are block diagrams of example 
embodiments for mixer architectures that can be utilized. 
Embodiment 2800 of FIG. 28A includes 1 to Naudio channel 
capture blocks that provide captured audio to a mixer at 48 
kHZ sample rate. Embodiment 2800 also includes 1 to N 
audio channel playout blocks that receive outputs from the 
mixer. A decoder and an encoder operating at 48 kHZ are also 
provided. Resamplers are also used as needed to resample the 
captured audio or the output audio. A recorder also receives 
mixed audio from the mixer and makes recordings. Embodi 
ment 2850 of FIG.28B is similar to embodiment 2800 except 
that a 48 kHz or a 44.1 kHz, sample rate is used. Optional 
resamplers are again provided if needed to resample the cap 
tured audio or output audio. Also, resamplers can be used with 
respect to the decoder and encoder if operating at a different 
sample rate than the mixer. 
0495 FIG. 29 is a block diagram of an example embodi 
ment 3000 for virtual device bridge software that includes an 
application space having client module and DAW (digital 
audio workstation) module and a kernel having virtual audio 
inputs and outputs. The application client in a application 
space for a software stack communicates with a virtual audio 
input device in the kernel. A DAW within the application 
space receives an output from the virtual audio input device 
and provides audio outputs to a virtual output audio device in 
the kernel. The virtual output audio device provides audio 
outputs to the client application. The client application also 
communicates audio packets with the network or cloud. 
0496 FIGS. 30A-B are block diagrams of example 
embodiments for DAW data flow. Embodiment 3000 of FIG. 
30A is similar to embodiment 1110 of FIG. 11A where the 
MN includes a live quality encoder and operates as a live 
broadcaster. Embodiment 3050 of FIG. 30B is also similar to 
embodiment 1110 of FIG. 11A where the MN can operate as 
live broadcaster but also includes a recorder and an uploader 
to send the live broadcast to a server system where the server 
provides a broadcast service. 

Appendix C Example API Descriptions and Details 

Example API Descriptions 

0497 Here are the calls that the Client may make to the 
Server: 

0498) {Ok, Sid, AddrPort I startSession(Uid uid, 
AddrPort addr. AddrPortScore scores) 
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0499 {Ok. AddrPort joinSession(Sid sid, Uiduid, 
AddrPort addr. AddrPortScore scores) 

(0500 OkleaveSession(Sid sid, Uiduid, AddrPort addr) 
(0501. Ok stopSession(Sid sid, Uiduid, AddrPort addr) 

0502. Here are the calls that the Server may make to the 
Client: 
(0503 Ok joinedSession(Sid sid, Uid uid, AddrPort 

addr) 
(0504) Ok leftSession(Sid sid, Uiduid, AddrPort addr) 
(0505 AddrPortScore test(AddrPort addrs) 

0506. Here are the calls that the Server may make to 
NAAS: 
(0507 AddrPort setupTest(AddrPort client) 
(0508 Ok cancelTest(AddrPort client) 
(0509 AddrPort assign Address(Sid sid. AddrPort client, 
AddrPortScore scores) 

0510 Ok releaseAddress(Sid sid, AddrPort client, 
AddrPort assigned) 

0511 OkaddRule(Sid sid, AddrPort client1, AddrPort 
assigned1, AddrPort client2. AddrPort assigned2) 

0512 OkdropRule(Sid sid, AddrPort client1, AddrPort 
assigned1, AddrPort client2. AddrPort assigned2) 

0513. Here are the calls that the NAAS may make to the 
Server: 
0514 None. 

0515 Clients may not contact NAAS directly and vice 
WSa. 

Example API Details 
0516 (Ok, Sid. AddrPort I startSession(Uid uid, 
AddrPort addr. AddrPortScore scores) 
0517. The client requests a new session be created. Uid 

is the unique id of the user making the request, and addr 
is the publicly visible address and port number of the 
clients UDP socket. Scores is initially passed as null. 

0518. The user generally won't know their own publicly 
visible address or uid, but the user does know the port 
number of their socket. This is all the user need supply. 
The web server, upon receiving the request, fills in the 
uid and the publicly visible address before acting on the 
request. 

0519 If this user is enabled to use NAAS and if NAAS 
is available, the initial request with null scores will be 
failed with Okindicating “Test', sid returned as null, and 
an array of AddrPort to test. The client will test each 
AddrPort in the prescribed manner and resubmit the 
startSession request with the resulting scores. 

0520 Status is returned in Ok as well as the newly 
minted Sid if the request succeeded. The sid is used to 
manipulate the session including inviting others to join. 
If NAAS is not enabled for this user, NAAS is not 
available, or if scores are submitted, the returned 
AddrPort array will be null. 

0521. Note that testing is required of every client who 
joins a session which includes NAAS. This includes 
clients in sessions which did not acquire NAAS capabil 
ity until a NAAS enabled user joined. See Server to 
Client call test. 

0522 Ok, AddrPort joinSession(Sid sid, Uid uid, 
AddrPort addr. AddrPortScore scores) 
0523 The client requests to join an existing session. Sid 

is the unique id of the session, uid is the unique id of the 
user making the request, and addr is the publicly visible 
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address and port number of the client's UDP socket. 
Scores is initially passed as null. 

0524. The user generally won’t know their own publicly 
visible address or uid, but the user does know the port 
number of their socket. This is all the user need supply. 
The web server, upon receiving the request, fills in the 
uid and the publicly visible address before acting on the 
request. 

0525. If this user is enabled to use NAAS and if NAAS 
is available, the initial request with null scores will be 
failed with Ok indicating “Test' and an array of 
AddrPort to test. The client will test each AddrPort in the 
prescribed manner and resubmit the joinSession request 
with the resulting scores. 

0526 Status is returned in Ok. If NAAS is not enabled 
for this user, NAAS is not available, or if scores are 
submitted, the returned AddrPort array will be null. 

0527 Note that testing is required of every client who 
joins a session which includes NAAS. This includes 
clients in sessions which did not acquire NAAS capabil 
ity until a NAAS enabled user joined. See Server to 
Client call test. 

0528 Ok leaveSession(Sid sid, Uiduid, AddrPort addr) 
0529. The client requests to be removed from the ses 
sion. Sid is the unique id of the session, uid is the unique 
id of the user making the request, and addris the publicly 
visible address and port number of the client's UDP 
Socket. 

0530. The user generally won't know their own publicly 
visible address or uid, but the user does know the port 
number of their socket. This is all the user need supply. 
The web server, upon receiving the request, fills in the 
uid and the publicly visible address before acting on the 
request. 

0531. If NAAS resources are allocated to this user, the 
resources are freed (cancelTest, dropRule, releaseAd 
dress). 

0532. If this is the last participant in the session, the 
session is also removed (stopSession). If other partici 
pants remain in the session, they are informed that this 
user has left (leftSession). 

0533 Status is returned in Ok. 
0534. Ok stopSession(Sid sid, Uiduid, AddrPort addr) 

0535 The client requests that the session be destroyed. 
Sid is the unique id of the session, uid is the unique id of 
the user making the request, and addr is the publicly 
visible address and port number of the client's UDP 
Socket. 

0536 The user generally won’t know their own publicly 
visible address or uid, but the user does know the port 
number of their socket. This is all the user need supply. 
The web server, upon receiving the request, fills in the 
uid and the publicly visible address before acting on the 
request. 

0537. The session is marked for destruction (nobody 
may join). 

0538 Remaining users are notified that the other users 
have left the session (leftSession). 

0539. If NAAS resources are allocated to this session, 
the resources are freed (cancelTest, dropRule, 
releaseAddress). 

0540. The session is removed. 
0541 Status is returned in Ok. 
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0542. OkjoinedSession(Sid sid, Uiduid, AddrPort addr) 
0543. The server notifies that the specified user has 
joined the session. Sid is the unique id of the session, uid 
is the unique id of the user that joined, and addr is the 
publicly visible address and port number of the clients 
UDP socket (or the assigned NAAS address of the 
receiving user if NAAS is involved). 

0544 The receiving client should begin sending to the 
specified address/port if it isn't already. 

(0545. If the uid had previously joined with a different 
address, the new address replaces the old and operation 
continues. 

0546 Status is returned in Ok. 
(0547. Ok leftSession(Sid sid, Uiduid, AddrPort addr) 

0548. The server notifies that the specified user has left 
the session. Sid is the unique id of the session, uid is the 
unique id of the user that left, and addr is the publicly 
visible address and port number of the client's UDP 
socket (or the assigned NAAS address of the receiving 
user if NAAS is involved). 

0549. The receiving client should stop sending to the 
specified address/port unless any other participants also 
have that same address (eh, if NAAS is involved). 

0550 Status is returned in Ok. 
0551 AddrPortScore test(AddrPort addrs) 

0552. The server notifies the client that a test of 
addresses is required to determine which address is the 
best for this client. This test is required when NAAS has 
become involved in the session. The user should execute 
a ping test on each address and return the scores to the 
server. See startSession and joinSession for implicit test 
operations using this same technique. 

0553 AUDP packet sent to the specifiedaddress will be 
returned (echoed) as it was received. The client should 
construct a packet of some moderate size (135 bytes will 
do) with an embedded high precision timestamp and 
sequence number, then send it to the address and receive 
the response. Enough packets should be sent to ensure a 
good sample. The first packet (sent and received) often 
takes Substantially longer than the rest, and so should be 
excluded from the stats. 

0554 Min/max/average of the rest should be returned in 
the scoring structure, in millisecond units, as well as the 
count sent/received. The client should send a packet, 
wait up to 50 ms for the response, and send the next one 
as soon as the response is received or deemed missing, 
perhaps sending a total of 10-20 packets. Late packets 
should be ignored if they finally arrive (by using the 
sequence number). Stats should be calculated Starting 
with the second packet received, and only include 
received packets. 

0555. AddrPort setupTest(AddrPort client) 
0556. The server requests that NAAS setup a test envi 
ronment for the specified client address and return all 
appropriate addresses for the test. 

0557. If NAAS fails somehow to setup the test, null is 
returned. 

0558 Ok cancelTest(AddrPort client) 
0559 The server requests that NAAS remove a previ 
ously setup test environment for the specified client. 

0560 Status is returned in Ok. 
0561 AddrPort assign Address(Sid sid, AddrPort client, 
AddrPortScore scores) 
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0562. The server requests that NAAS use the scores to 
assign an address appropriate for the specified client 
address. Sid is the unique id of the session, and client is 
the publicly visible address and port number of the cli 
ents UDP socket. 

0563 Any previously test setup is cancelled. 
0564. The assigned address is returned, or if there was a 
problem assigning an address, null is returned. 

0565 Ok releaseAddress(Sid sid, AddrPort client, 
AddrPort assigned) 
0566. The server requests that NAAS remove any pre 
vious assigned address. Sid is the unique id of the ses 
sion, client is the publicly visible address and port num 
ber of the client's UDP socket, and assigned is the 
previously assigned address. 

0567 Any rules involving the client and assigned 
addresses will be dropped (see addRule, dropRule). 

0568 Status is returned in Ok. 
0569. Ok addRule(Sid sid, AddrPort client1, AddrPort 
assigned1, AddrPort client2. AddrPort assigned2) 
0570. The server requests that NAAS add a rule map 
ping one client to another. Sid is the unique id of the 
session, client1 is the public address of the first client, 
assigned 1 is the assigned address of the first client (per 
assign Address), client2 is the public address of the sec 
ond client, and assigned2 is the corresponding assigned 
address. 

0571 Any packet arriving at NAAS from client1 to 
assigned1 will be sent from assigned2 to client2, and 
vice versa. 

0572 Assigned 1 and assigned2 must be addresses 
assigned and not yet released by this NAAS instance. 

0573 Status is returned in Ok. 
(0574) Ok dropRule(Sid sid, AddrPort client1, AddrPort 

assigned1, AddrPort client2. AddrPort assigned2) 
0575. The server requests that NAAS drop a rule map 
ping one client to another. Sid is the unique id of the 
session, client1 is the public address of the first client, 
assigned 1 is the assigned address of the first client (per 
assign Address), client2 is the public address of the sec 
ond client, and assigned2 is the corresponding assigned 
address. 

0576 Any packet arriving at NAAS from client1 to 
assigned1 will no longer be sent from assigned2 to cli 
ent2, and vice versa. 

0577 Assigned 1 and assigned2 must be addresses 
assigned and not yet released by this NAAS instance. 

0578 Status is returned in Ok. 
0579. Further modifications and alternative embodiments 
of the embodiments described herein will be apparent to those 
skilled in the art in view of this description. It will be recog 
nized, therefore, that the inventions described herein are not 
limited by these example arrangements. Accordingly, this 
description is to be construed as illustrative only, and it is to be 
understood that the embodiments shown and described herein 
are to be taken as example embodiments. Various changes 
may be made in the implementations and architectures and 
different embodiments can be implemented. For example, 
equivalent elements may be substituted for those illustrated 
and described herein, and features can be utilized indepen 
dently of other features, all as would be apparent to one 
skilled in the art after having the benefit of this description. 
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What is claimed is: 
1. An interactive music server system, comprising: 
a network interface; 
one or more processing devices configured to communi 

cate network packets through the network interface with 
two or more interactive music client systems associated 
with an interactive music session; and 

one or more data storage systems coupled to the one or 
more processing devices; 

wherein the one or more processing devices are further 
configured to receive recorded music tracks for the inter 
active music session through the network packets and to 
store audio data associated with the music tracks using 
the one or more data storage systems. 

2. The interactive music server system of claim 1, wherein 
the one or more processing devices are further configured to 
mix the music tracks to generate a session recording as the 
audio data. 

3. The interactive music server system of claim 2, wherein 
the one or more processing devices are further configured to 
use timestamps associated with each music track to align the 
music tracks for the session recording. 

4. The interactive music server system of claim3, wherein 
the timestamps are associated with a recording start time for 
each music track. 

5. The interactive music server system of claim3, wherein 
the timestamps are synchronized to a common reference 
clock. 

6. The interactive music server system of claim 2, wherein 
the one or more processing devices are further configured to 
determine a time skew between at least two of the interactive 
music client systems and to use the time skew to align the 
music tracks for the session recording. 

7. The interactive music server system of claim 6, wherein 
the time skew is based upon a network delay between the at 
least two interactive music client systems. 

8. The interactive music server system of claim 2, wherein 
the music tracks comprise high quality music tracks recorded 
at each of the interactive music client systems, and wherein 
the one or more processing devices are further configured to 
mix the high quality music tracks to form a high quality 
master mix associated with the interactive music session. 

9. The interactive music server system of claim 8, wherein 
the high quality music tracks comprise audio input data cap 
tured at each interactive music client system. 

10. The interactive music server system of claim8, wherein 
the one or more processing devices are further configured to 
download the high quality master mix to one or more of the 
interactive music client systems. 

11. The interactive music server system of claim8, wherein 
the one or more processing devices are further configured to 
download to each of the interactive music client systems the 
high quality music tracks from the other interactive music 
client systems. 

12. The interactive music server system of claim 11, 
wherein the high quality music tracks are configured to 
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replace low quality music tracks stored by each of the inter 
active music client systems associated with audio data 
received from other interactive music client systems. 

13. The interactive music server system of claim 2, wherein 
the one or more processing devices are further configured to 
use one or more of a plurality of different mixing algorithms 
to mix the music tracks for the session recording. 

14. A method to record audio data for an interactive music 
Session, comprising: 

communicating network packets with two or more interac 
tive music client systems associated with an interactive 
music session; 

receiving recorded music tracks for the interactive music 
session through the network packets; and 

storing audio data associated with the music tracks in one 
or more data storage systems. 

15. The method of claim 14, further comprising mixing the 
music tracks to generate a session recording as the audio data. 

16. The method of claim 15, further comprising using 
timestamps associated with each music track to align the 
music tracks for the session recording. 

17. The method of claim 16, wherein the timestamps are 
associated with a recording start time for each music track. 

18. The method of claim 16, wherein the timestamps are 
synchronized to a common reference clock. 

19. The method of claim 15, further comprising determin 
ing a time skew between at least two of the interactive music 
client systems and using the time skew to align the music 
tracks for the session recording. 

20. The method of claim 19, wherein the time skew is based 
upon a network delay between the at least two interactive 
music client systems. 

21. The method of claim 15, wherein the music tracks 
comprise high quality music tracks recorded at each of the 
interactive music client systems, and further comprising mix 
ing the high quality music tracks to form a high quality master 
mix associated with the interactive music session. 

22. The method of claim 21, wherein the high quality music 
tracks comprise audio input data captured at each interactive 
music client system. 

23. The method of claim 21, further comprising download 
ing the high quality master mix to one or more of the inter 
active music client systems. 

24. The method of claim 21, further comprising download 
ing to each of the interactive music client systems the high 
quality music tracks from the other interactive music client 
systems. 

25. The method of claim 24, wherein the high quality music 
tracks are configured to replace low quality music tracks 
stored by each of the interactive music client systems associ 
ated with audio data received from other interactive music 
client systems. 

26. The method of claim 15, further comprising using one 
or more of a plurality of different mixing algorithms to mix 
the music tracks for the session recording. 
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