

(12) UK Patent

(19) GB

(11) 2513364

(45) Date of B Publication

(13) B

19.06.2019

(54) Title of the Invention: Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate

(51) INT CL: **F01N 3/035** (2006.01) **B01D 53/94** (2006.01) **F01N 3/08** (2006.01) **F01N 3/20** (2006.01)

(21) Application No: **1307421.6**

(22) Date of Filing: **24.04.2013**

(43) Date of A Publication **29.10.2014**

(56) Documents Cited:

GB 2497659 A	GB 2497655 A
US 20120186229 A1	US 20110271664 A1
US 20110201493 A1	US 20110179777 A1
US 20100058746 A1	US 20060039843 A1

(58) Field of Search:

As for published application 2513364 A viz:
INT CL **B01D, F01N**
Other: **EPODOC, WPI, TXTE**
updated as appropriate

Additional Fields
INT CL **B01J**
Other: **None**

(72) Inventor(s):

Philip Gerald Blakeman
David Robert Greenwell

(73) Proprietor(s):

Johnson Matthey Public Limited Company
(Incorporated in the United Kingdom)
5th Floor, 25 Farringdon Street, LONDON, EC4A 4AB,
United Kingdom

(74) Agent and/or Address for Service:

Johnson Matthey Public Limited Company
Gate 20, Orchard Road, ROYSTON, Hertfordshire,
SG8 5HE, United Kingdom

GB 2513364 B

16 10 18

1/3

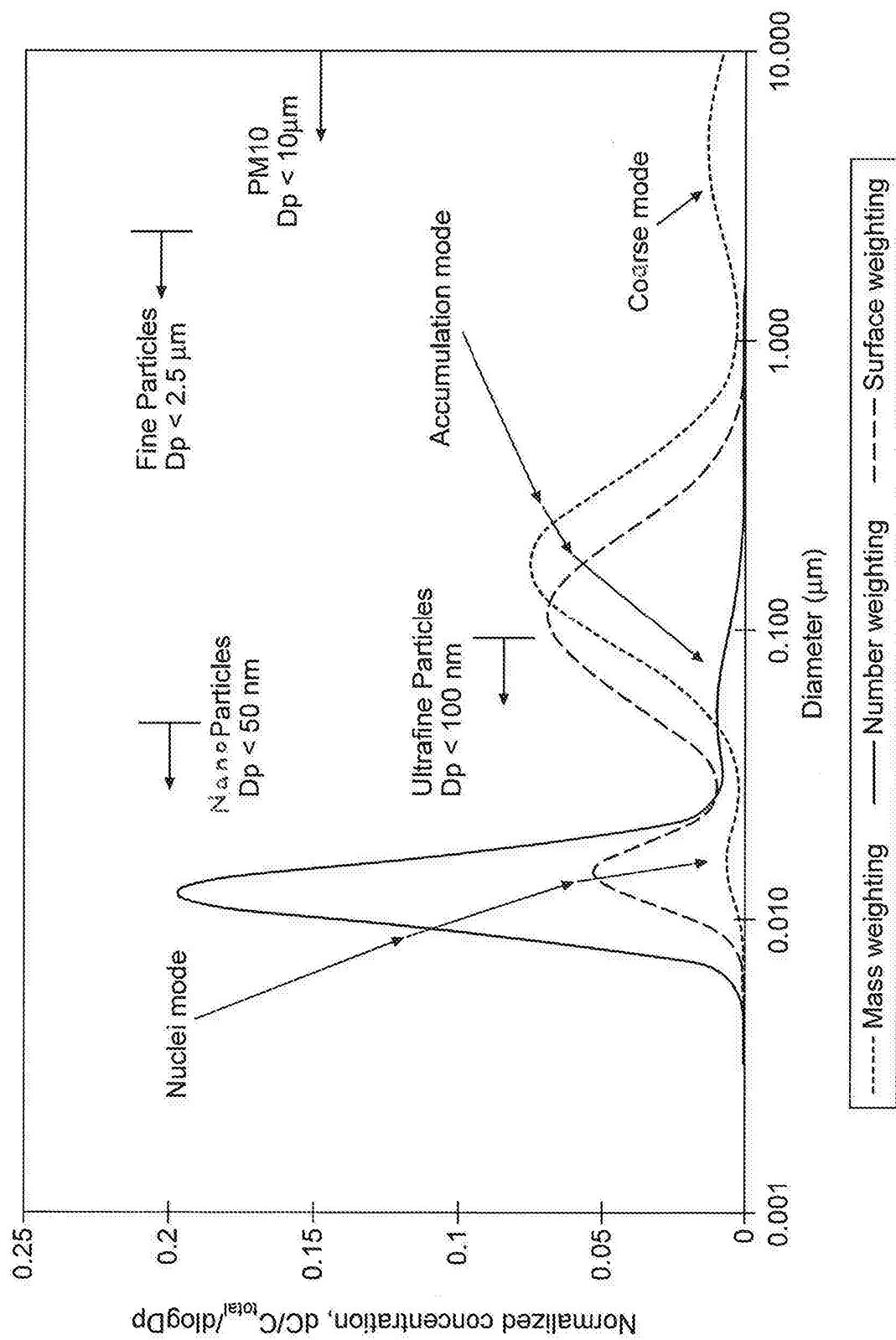


FIG. 1

2/3

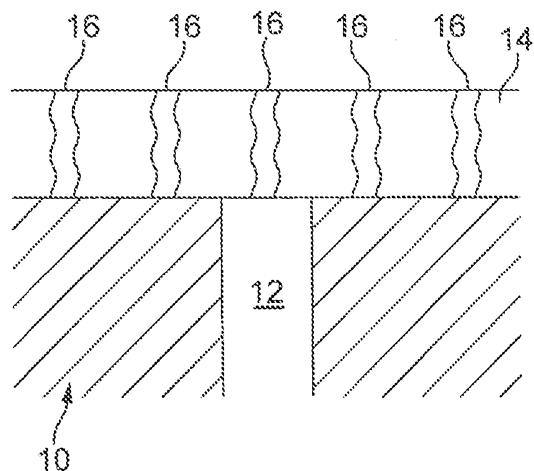


FIG. 2

3/2

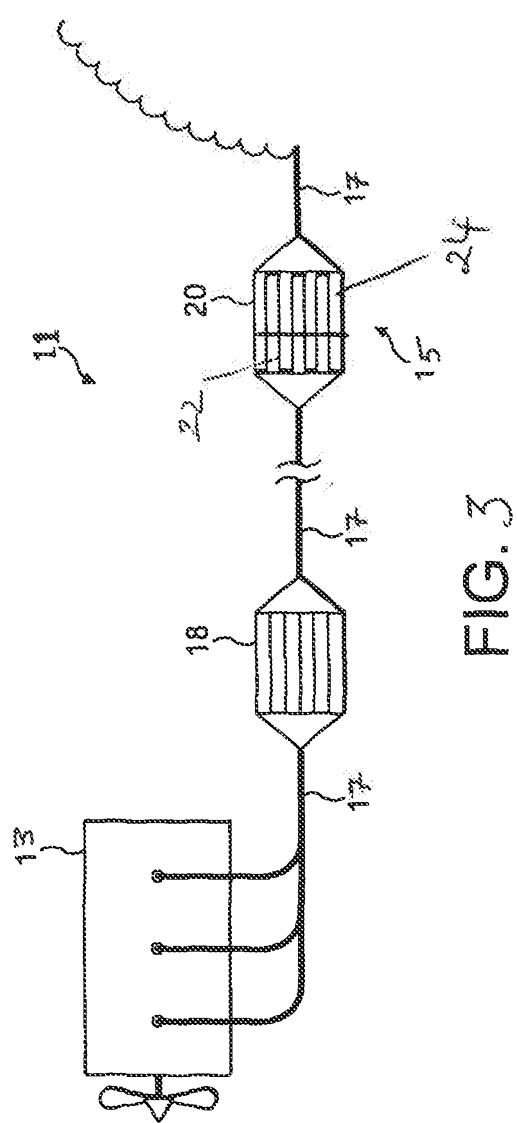


FIG. 3

POSITIVE IGNITION ENGINE AND EXHAUST SYSTEM COMPRISING
CATALYSED ZONE-COATED FILTER SUBSTRATE

The present invention relates to a catalysed filter for filtering particulate matter from
5 exhaust gas emitted from a positive ignition internal combustion engine.

Positive ignition engines cause combustion of a hydrocarbon and air mixture using spark ignition. Contrastingly, compression ignition engines cause combustion of a hydrocarbon by injecting the hydrocarbon into compressed air. Positive ignition engines can be fuelled by
10 gasoline fuel, gasoline fuel blended with oxygenates including methanol and/or ethanol, liquid petroleum gas or compressed natural gas.

A three-way catalyst (TWC) typically contains one or more platinum group metals, particularly those selected from the group consisting of platinum, palladium and rhodium.

15
19
26 03 19
20

TWCs are intended to catalyse three simultaneous reactions: (i) oxidation of carbon monoxide to carbon dioxide, (ii) oxidation of unburned hydrocarbons to carbon dioxide and water; and (iii) reduction of nitrogen oxides to nitrogen and oxygen. These three reactions occur most efficiently when the TWC receives exhaust gas from an engine running at or about the stoichiometric point. As is well known in the art, the quantity of carbon monoxide (CO), unburned hydrocarbons (HC) and nitrogen oxides (NO_x) emitted when gasoline fuel is combusted in a positive ignition (e.g. spark-ignited) internal combustion engine is influenced predominantly by the air-to-fuel ratio in the combustion cylinder. An exhaust gas having a stoichiometrically balanced composition is one in which the concentrations of oxidising gases
25 (NO_x and O₂) and reducing gases (HC and CO) are substantially matched. The air-to-fuel ratio that produces this stoichiometrically balanced exhaust gas composition is typically given as 14.7:1.

Theoretically, it should be possible to achieve complete conversion of O₂, NO_x, CO and
30 HC in a stoichiometrically balanced exhaust gas composition to CO₂, H₂O and N₂ (and residual O₂) and this is the duty of the TWC. Ideally, therefore, the engine should be operated in such a way that the air-to-fuel ratio of the combustion mixture produces the stoichiometrically balanced exhaust gas composition.

A way of defining the compositional balance between oxidising gases and reducing gases of the exhaust gas is the lambda (λ) value of the exhaust gas, which can be defined according to equation (1) as:

5 Actual engine air-to-fuel ratio/Stoichiometric engine air-to-fuel ratio, (1)

wherein a lambda value of 1 represents a stoichiometrically balanced (or stoichiometric) exhaust gas composition, wherein a lambda value of >1 represents an excess of O_2 and NO_x and the composition is described as “lean” and wherein a lambda value of <1 represents an excess of HC and CO and the composition is described as “rich”. It is also common in the art to refer to the air-to-fuel ratio at which the engine operates as “stoichiometric”, “lean” or “rich”, depending on the exhaust gas composition which the air-to-fuel ratio generates: hence stoichiometrically-operated gasoline engine or lean-burn gasoline engine.

It should be appreciated that the reduction of NO_x to N_2 using a TWC is less efficient when the exhaust gas composition is lean of stoichiometric. Equally, the TWC is less able to oxidise CO and HC when the exhaust gas composition is rich. The challenge, therefore, is to maintain the composition of the exhaust gas flowing into the TWC at as close to the stoichiometric composition as possible.

20 Of course, when the engine is in steady state it is relatively easy to ensure that the air-to-fuel ratio is stoichiometric. However, when the engine is used to propel a vehicle, the quantity of fuel required changes transiently depending upon the load demand placed on the engine by the driver. This makes controlling the air-to-fuel ratio so that a stoichiometric exhaust gas is
25 generated for three-way conversion particularly difficult. In practice, the air-to-fuel ratio is controlled by an engine control unit, which receives information about the exhaust gas composition from an exhaust gas oxygen (EGO) (or lambda) sensor: a so-called closed loop feedback system. A feature of such a system is that the air-to-fuel ratio oscillates (or perturbates) between slightly rich of the stoichiometric (or control set) point and slightly lean, because there
30 is a time lag associated with adjusting air-to-fuel ratio. This perturbation is characterised by the amplitude of the air-to-fuel ratio and the response frequency (Hz).

26 03 19
15
20

5 10

The active components in a typical TWC comprise one or both of platinum and palladium in combination with rhodium, or even palladium only (no rhodium), supported on a high surface area oxide, and an oxygen storage component.

When the exhaust gas composition is slightly rich of the set point, there is a need for a small amount of oxygen to consume the unreacted CO and HC, i.e. to make the reaction more stoichiometric. Conversely, when the exhaust gas goes slightly lean, the excess oxygen needs to be consumed. This was achieved by the development of the oxygen storage component that liberates or absorbs oxygen during the perturbations. The most commonly used oxygen storage component (OSC) in modern TWCs is cerium oxide (CeO_2) or a mixed oxide containing cerium, e.g. a Ce/Zr mixed oxide.

Ambient PM is divided by most authors into the following categories based on their aerodynamic diameter (the aerodynamic diameter is defined as the diameter of a 1 g/cm^3 density sphere of the same settling velocity in air as the measured particle):

- (i) PM-10 - particles of an aerodynamic diameter of less than $10 \mu\text{m}$;
- (ii) Fine particles of diameters below $2.5 \mu\text{m}$ (PM-2.5);
- (iii) Ultrafine particles of diameters below $0.1 \mu\text{m}$ (or 100 nm); and
- (iv) Nanoparticles, characterised by diameters of less than 50 nm .

Since the mid-1990's, particle size distributions of particulates exhausted from internal combustion engines have received increasing attention due to possible adverse health effects of fine and ultrafine particles. Concentrations of PM-10 particulates in ambient air are regulated by law in the USA. A new, additional ambient air quality standard for PM-2.5 was introduced in the USA in 1997 as a result of health studies that indicated a strong correlation between human mortality and the concentration of fine particles below $2.5 \mu\text{m}$.

Interest has now shifted towards nanoparticles generated by diesel and gasoline engines because they are understood to penetrate more deeply into human lungs than particulates of greater size and consequently they are believed to be more harmful than larger particles, extrapolated from the findings of studies into particulates in the $2.5\text{--}10.0 \mu\text{m}$ range.

19
26 03 19
20

Size distributions of diesel particulates have a well-established bimodal character that correspond to the particle nucleation and agglomeration mechanisms, with the corresponding particle types referred to as the nuclei mode and the accumulation mode respectively (see Figure 1). As can be seen from Figure 1, in the nuclei mode, diesel PM is composed of numerous small particles holding very little mass. Nearly all diesel particulates have sizes of significantly less than 1 μm , i.e. they comprise a mixture of fine, i.e. falling under the 1997 US law, ultrafine and nanoparticles.

Nuclei mode particles are believed to be composed mostly of volatile condensates (hydrocarbons, sulfuric acid, nitric acid etc.) and contain little solid material, such as ash and carbon. Accumulation mode particles are understood to comprise solids (carbon, metallic ash etc.) intermixed with condensates and adsorbed material (heavy hydrocarbons, sulfur species, nitrogen oxide derivatives etc.) Coarse mode particles are not believed to be generated in the diesel combustion process and may be formed through mechanisms such as deposition and subsequent re-entrainment of particulate material from the walls of an engine cylinder, exhaust system, or the particulate sampling system. The relationship between these modes is shown in Figure 1.

The composition of nucleating particles may change with engine operating conditions, environmental condition (particularly temperature and humidity), dilution and sampling system conditions. Laboratory work and theory have shown that most of the nuclei mode formation and growth occur in the low dilution ratio range. In this range, gas to particle conversion of volatile particle precursors, like heavy hydrocarbons and sulfuric acid, leads to simultaneous nucleation and growth of the nuclei mode and adsorption onto existing particles in the accumulation mode. Laboratory tests (see e.g. SAE 980525 and SAE 2001-01-0201) have shown that nuclei mode formation increases strongly with decreasing air dilution temperature but there is conflicting evidence on whether humidity has an influence.

Generally, low temperature, low dilution ratios, high humidity and long residence times favour nanoparticles formation and growth. Studies have shown that nanoparticles consist mainly of volatile material like heavy hydrocarbons and sulfuric acid with evidence of solid fraction only at very high loads.

19
15
20
26 03 19
20

Contrastingly, engine-out size distributions of gasoline particulates in steady state operation show a unimodal distribution with a peak of about 60-80nm (see e.g. Figure 4 in SAE 1999-01-3530). By comparison with diesel size distribution, gasoline PM is predominantly ultrafine with negligible accumulation and coarse mode.

5
10
15
20
25
30

Particulate collection of diesel particulates in a diesel particulate filter is based on the principle of separating gas-borne particulates from the gas phase using a porous barrier. Diesel filters can be defined as deep-bed filters and/or surface-type filters. In deep-bed filters, the mean pore size of filter media is bigger than the mean diameter of collected particles. The particles are deposited on the media through a combination of depth filtration mechanisms, including diffusional deposition (Brownian motion), inertial deposition (impaction) and flow-line interception (Brownian motion or inertia).

In surface-type filters, the pore diameter of the filter media is less than the diameter of the PM, so PM is separated by sieving. Separation is done by a build-up of collected diesel PM itself, which build-up is commonly referred to as “filtration cake” and the process as “cake filtration”.

It is understood that diesel particulate filters, such as ceramic wallflow monoliths, may work through a combination of depth and surface filtration: a filtration cake develops at higher soot loads when the depth filtration capacity is saturated and a particulate layer starts covering the filtration surface. Depth filtration is characterized by somewhat lower filtration efficiency and lower pressure drop than the cake filtration.

25
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
901

the beginning of 2014 being set at 6.0×10^{12} per km (Euro 6) and the standard set from the beginning of 2017 being 6.0×10^{11} per km (Euro 6+).

It is understood that the US Federal LEV III standards have been set at 3mg/mile mass
 5 limit (currently 10mg/mile) over US FTP cycle from 2017-2021. The limit is then yet further tightened to 1mg/mile from 2025, although implementation of this lower standard may be brought forward to 2022.

The new Euro 6 (Euro 6 and Euro 6+) emission standard presents a number of
 10 challenging design problems for meeting gasoline emission standards. In particular, how to design a filter, or an exhaust system including a filter, for reducing the number of PM gasoline (positive ignition) emissions, yet at the same time meeting the emission standards for non-PM pollutants such as one or more of oxides of nitrogen (NO_x), carbon monoxide (CO) and unburned hydrocarbons (HC), all at an acceptable back pressure, e.g. as measured by maximum on-cycle backpressure on the EU drive cycle.

15
 19
 20
 26 03 19
 20

It is envisaged that a minimum of particle reduction for a three-way catalysed particulate filter to meet the Euro 6 PM number standard relative to an equivalent flowthrough catalyst is $\geq 50\%$. Additionally, while some backpressure increase for a three-way catalysed wallflow filter relative to an equivalent flowthrough catalyst is inevitable, in our experience peak backpressure over the MVEG-B drive cycle (average over three tests from “fresh”) for a majority of passenger vehicles should be limited to <200 mbar (<20,000 Pa), such as <180 mbar (<18,000 Pa), <150 mbar (<15,000 Pa) and preferably <120 mbar (<12,000 Pa) e.g. <100 mbar (<10,000 Pa).

25 WO 2011/077139 discloses a NOx trap comprising components comprising at least one platinum group metal, at least one NOx storage material and bulk ceria or a bulk cerium-containing mixed oxide deposited uniformly in a first layer on a honeycombed substrate monolith, the uniformly deposited components in the first layer having a first, upstream, zone having increased activity relative to a second, downstream zone for oxidising hydrocarbons and
 30 carbon monoxide, and a second, downstream, zone having increased activity to generate heat during a desulphation event, relative to the first, upstream, zone, wherein the second, downstream, zone comprises a dispersion of rare earth oxide, wherein the rare earth oxide loading in g/m³ in the second, downstream zone is greater than the rare earth oxide loading in the first, upstream zone.

15
19
26 03 19
20

WO 2011/110919 discloses a diesel engine aftertreatment system comprising a diesel engine having an exhaust manifold and a filter substrate in direct connection with the exhaust manifold without any intervening catalyst, wherein the filter substrate comprises on its inlet side 5 an SCR catalyst incorporating a non-coking molecular sieve.

The new emission standards will force the use of filters for filtering particulate matter from exhaust gas emitted from positive ignition internal combustion engines. However, because the size of such particulate matter is much finer than particulate matter emitted from diesel 10 engines, the design challenge is to filter particulate matter from positive ignition exhaust gas but at acceptable back pressure.

We have now discovered a way of catalysing a filter for use in the exhaust system of a vehicular positive ignition engine, thereby reducing the total volume of exhaust system components compared with separate filter and catalyst substrate components – which is important particularly on passenger vehicles where space can be restricted – but which has lower back pressure relative to a homogeneously coated catalysed filter, i.e. having coatings applied via inlet and outlet ends both at the same washcoat loading.

According to one aspect, the invention provides a positive ignition engine comprising an exhaust system, which exhaust system comprises a catalysed filter for filtering particulate matter from exhaust gas emitted from a positive ignition internal combustion engine, which filter comprising a ceramic porous filter substrate, which is a wall-flow filter having a total substrate length and having a plurality of inlet channels having inlet surfaces and a plurality of outlet 25 channels having outlet surfaces, wherein the inlet surfaces of each inlet channel are separated from the outlet surfaces of each outlet channel by a ceramic wall of porous structure containing pores of a first mean pore size, wherein the wall-flow filter is coated with a washcoat composition which is a NO_x absorber catalyst washcoat composition comprising at least one precious metal, wherein the porous structure of the washcoated ceramic wall of the wall-flow 30 filter contains pores of a second mean pore size, wherein the second mean pore size is less than the first mean pore size, which NO_x absorber catalyst washcoat being axially arranged on the wall-flow filter as a first zone comprising the inlet surfaces of a first substrate length less than the total substrate length and a second zone comprising the outlet surfaces of a second substrate

length less than the total substrate length, wherein the sum of the substrate length in the first zone and the substrate length in the second zone is >110%, wherein:

- (i) a washcoat loading in the first zone > second zone and the total precious metal loading is substantially the same in both the first zone and the second zone; or
- 5 (ii) both a washcoat loading and a total precious metal loading in the first zone > second zone,

and wherein the first zone is disposed upstream of the second zone.

For the total precious metal loading in feature (i), such feature is homogeneously applied 10 between the inlet and outlet surfaces. So, since feature (i) defines only the washcoat loading, the total precious metal loading in the NO_x absorber catalyst is substantially the same (homogeneous) in both the first zone and the second zone.

Mean pore size can be determined by mercury porosimetry.

15
19
03
26
20

NO_x absorber catalysts (NACs) are known e.g. from US patent no. 5,473,887 and are 25 designed to adsorb nitrogen oxides (NO_x) from lean exhaust gas ($\lambda > 1$) and to desorb the NO_x when the oxygen concentration in the exhaust gas is decreased. Desorbed NO_x may be reduced to N₂ with a suitable reductant, e.g. gasoline fuel, promoted by a catalyst component, such as rhodium, of the NAC itself or located downstream of the NAC. In practice, control of oxygen concentration can be adjusted to a desired redox composition intermittently in response to a calculated remaining NO_x adsorption capacity of the NAC, e.g. richer than normal engine running operation (but still lean of stoichiometric or $\lambda = 1$ composition), stoichiometric or rich of stoichiometric ($\lambda < 1$). The oxygen concentration can be adjusted by a number of means, e.g. throttling, injection of additional hydrocarbon fuel into an engine cylinder such as during the exhaust stroke or injecting hydrocarbon fuel directly into exhaust gas downstream of an engine manifold.


30 A typical NAC formulation includes a catalytic oxidation component, such as platinum, a significant quantity, i.e. substantially more than is required for use as a promoter such as a promoter in a TWC, of a NO_x-storage component, such as barium or ceria (CeO₂), and a reduction catalyst, e.g. rhodium. One mechanism commonly given for NO_x-storage from a lean exhaust gas for this formulation is:

19
15
03
26
20

5 wherein in reaction (2), the nitric oxide reacts with oxygen on active oxidation sites on the platinum to form NO_2 . Reaction (3) involves adsorption of the NO_2 by the storage material in the form of an inorganic nitrate.

10 At lower oxygen concentrations and/or at elevated temperatures, the nitrate species become thermodynamically unstable and decompose, producing NO or NO_2 according to reaction (4) below. In the presence of a suitable reductant, these nitrogen oxides are subsequently reduced by carbon monoxide, hydrogen and hydrocarbons to N_2 , which can take place over the reduction catalyst (see reaction (5)).

(Other reactions include $\text{Ba}(\text{NO}_3)_2 + 8\text{H}_2 \rightarrow \text{BaO} + 2\text{NH}_3 + 5\text{H}_2\text{O}$ followed by $\text{NH}_3 + \text{NO}_x \rightarrow \text{N}_2 + y\text{H}_2\text{O}$ or $2\text{NH}_3 + 2\text{O}_2 + \text{CO} \rightarrow \text{N}_2 + 3\text{H}_2\text{O} + \text{CO}_2$ etc.).

25 In the reactions of (2)-(5) above, the reactive barium species is given as the oxide. However, it is understood that in the presence of air most of the barium is in the form of the carbonate or possibly the hydroxide. The skilled person can adapt the above reaction schemes accordingly for species of barium other than the oxide and sequence of catalytic coatings in the exhaust stream and any other alkaline earth metals, alkali metals or lanthanides included for NO_x absorption.

30 Modern NO_x absorber catalysts coated on honeycomb flowthrough monolith substrates are typically arranged in layered arrangements. However, multiple layers applied on a filter substrate can create backpressure problems. It is highly preferable, therefore, if the NO_x absorber catalyst for use in the present invention is a “single layer” NO_x absorber catalyst. Particularly preferred “single layer” NO_x absorber catalysts comprise a first component of rhodium supported on a ceria-zirconia mixed oxide or an optionally stabilised alumina (e.g.

19
15
03
26
20

stabilised with silica or lanthana or another rare earth element) in combination with second components which support platinum and/or palladium. The second components comprise platinum and/or palladium supported on an alumina-based high surface area support and a particulate “bulk” ceria (CeO_2) component, i.e. not a soluble ceria supported on a particulate support, but “bulk” ceria capable of supporting the Pt and/or Pd as such. The particulate ceria comprises a NO_x absorber component and supports a lanthanide, an alkaline earth metal and/or an alkali metal, preferably barium, in addition to the platinum and/or palladium. The alumina-based high surface area support can be magnesium aluminate e.g. MgAl_2O_4 , for example.

10 The preferred “single layer” NAC composition comprises a mixture of the rhodium and platinum and/or palladium support components. These components can be prepared separately, i.e. pre-formed prior to combining them in a mixture, or rhodium, platinum and palladium salts and the supports and other components can be combined and the rhodium, platinum and palladium components hydrolysed preferentially to deposit onto the desired support.

15 The filter is a wallflow filter comprising a ceramic porous filter substrate having a plurality of inlet channels and a plurality of outlet channels, wherein each inlet channel and each outlet channel is defined in part by a ceramic wall of porous structure, wherein each inlet channel is separated from an outlet channel by a ceramic wall of porous structure. This filter arrangement is also disclosed in SAE 810114, and reference can be made to this document for further details. Alternatively, the filter can be a foam, or a so-called partial filter, such as those disclosed in EP 1057519 or WO 01/080978. The ceramic porous filter substrate can be made from, e.g. silicon carbide, cordierite, aluminium nitride, silicon nitride, aluminium titanate, alumina, mullite e.g., acicular mullite (see e.g. WO 01/16050), pollucite, a thermet such as 20 $\text{Al}_2\text{O}_3/\text{Fe}$, $\text{Al}_2\text{O}_3/\text{Ni}$ or $\text{B}_4\text{C}/\text{Fe}$, or composites comprising segments of any two or more thereof.

25 It is a particular feature of the present invention that washcoat loadings used in the first, upstream zone can be higher than the previously regarded highest washcoat loadings, e.g. those disclosed in the Examples in WO 2010/097634. In a particular embodiment, the washcoat loading in the first zone is $>1.60 \text{ g in}^{-3}$ ($>97.64 \text{ g/l}$), and in preferred embodiments the washcoat loading in the first zone is $>2.4 \text{ g in}^{-3}$ ($>146.5 \text{ g/l}$). Preferably, however, the washcoat loading in the first zone is $\leq 3.0 \text{ g/in}^{-3}$ ($\leq 183.1 \text{ g/l}$).

26 03 19
15
20

In the catalysed filter according to the invention, the sum of the substrate length in the first zone and the substrate length in the second zone $>110\%$, i.e. there is axial overlap, between the first zone on the inlet surface and the second zone on the outlet surface.

5 The length of axial overlap between inlet and outlet surface coatings ~~can be~~ ^{is} $>10\%$, e.g. 10 $<30\%$, i.e. the sum of the substrate length in the first zone and the substrate length in the second zone $>110\%$, e.g. 110 $<130\%$.

10 The substrate length in the first zone can be the same as or different from that of the second zone. So, where the first zone length is the same as the second zone length the porous substrate is coated in a ratio of 1:1 between the inlet surface and the outlet surface. However, in one embodiment, the substrate length in the first zone $<$ the substrate length in the second zone.

15 In embodiments, the substrate length in the first zone $<$ the substrate length in the second zone, e.g. $<45\%$. In preferred embodiments, the substrate zone length in the first zone is $<40\%$, e.g. $<35\%$ of the total substrate length.

20 In the catalysed filter of feature (ii), the total precious metal loading in the first zone $>$ the total precious metal loading in the second zone. In particularly preferred embodiments, the total precious metal loading in the first zone is $>50\text{gft}^{-3}$ ($>1.77\text{ g/l}$), but is preferably between 60-250 gft^{-3} (2.1-8.8 g/l), and is typically from 70-150 gft^{-3} (2.5-5.3 g/l). Total precious metal loadings in the second zone can be e.g. $<50\text{gft}^{-3}$ ($<1.77\text{ g/l}$), e.g. $<30\text{gft}^{-3}$ ($<1.1\text{ g/l}$) such as $<20\text{gft}^{-3}$ (0.7 g/l).

25 In preferred embodiments, the first and second zones comprise a surface washcoat, wherein a washcoat layer substantially covers surface pores of the porous structure and the pores of the washcoated porous substrate are defined in part by spaces between the particles (interparticle pores) in the washcoat. Methods of making surface coated porous filter substrates include introducing a polymer, e.g. poly vinyl alcohol (PVA), into the porous structure, applying 30 a washcoat to the porous filter substrate including the polymer and drying, then calcining the coated substrate to burn out the polymer. A schematic representation of the first embodiment is shown in Figure 2.

19
26 03 19
20

Methods of coating porous filter substrates are known to the skilled person and include, without limitation, the method disclosed in WO 99/47260, i.e. a method of coating a monolithic support, comprising the steps of (a) locating a containment means on top of a support, (b) dosing a pre-determined quantity of a liquid component into said containment means, either in the order 5 (a) then (b) or (b) then (a), and (c) by applying pressure or vacuum, drawing said liquid component into at least a portion of the support, and retaining substantially all of said quantity within the support. Such process steps can be repeated from another end of the monolithic support following drying of the first coating with optional firing/calcination.

10 Alternatively, the method disclosed in WO 2011/080525 can be used, i.e. comprising the steps of: (i) holding a honeycomb monolith substrate substantially vertically; (ii) introducing a pre-determined volume of the liquid into the substrate via open ends of the channels at a lower end of the substrate; (iii) sealingly retaining the introduced liquid within the substrate; (iv) inverting the substrate containing the retained liquid; and (v) applying a vacuum to open ends of the channels of the substrate at the inverted, lower end of the substrate to draw the liquid along the channels of the substrate.

15 In this preferred embodiment, a mean interparticle pore size of the porous washcoat is 5.0nm to 5.0 μ m, such as 0.1-1.0 μ m.

20 As explained hereinabove, the NO_x absorber catalyst washcoat composition for use in the first aspect of the present invention generally comprises solid particles. In embodiments, the mean size (D₅₀) of the solid washcoat particles is in the range 1 to 40 μ m.

25 In further embodiments, the D₉₀ of solid washcoat particles is in the range of from 0.1 to 20 μ m.

30 D₅₀ and D₉₀ measurements were obtained by Laser Diffraction Particle Size Analysis using a Malvern Mastersizer 2000 (RTM), which is a volume-based technique (i.e. D₅₀ and D₉₀ may also be referred to as D_{v50} and D_{v90} (or D_(v,0.50) and D_(v,0.90)) and applies a mathematical Mie theory model to determine a particle size distribution. Diluted washcoat samples were prepared by sonication in distilled water without surfactant for 30 seconds at 35 watts.

19
15
26 03 19
20

The porous substrate for use in the present invention is a ceramic wall flow filter made from e.g. cordierite, or silicon carbide or any of the other materials described hereinabove.

The cell density of diesel wallflow filters in practical use can be different from wallflow filters for use in the present invention in that the cell density of diesel wallflow filters is 5 generally 300 cells per square inch (cpsi) (46.5 cells cm^{-2}) or less, e.g. 100 or 200 cpsi (15.5 to 31.0 g/l), so that the relatively larger diesel PM components can enter inlet channels of the filter without becoming impacted on the solid frontal area of the diesel particulate filter, thereby caking and fouling access to the open channels, whereas wallflow filters for use in the present invention can be up to 300 cpsi (46.5 cells cm^{-2}) or greater, such as 350 cpsi (54.3 cells cm^{-2}), 10 400 cpsi (62.0 cells cm^{-2}), 600 cpsi (93.0 cells cm^{-2}), 900 cpsi (139.5 cells cm^{-2}) or even 1200 cpsi (186.0 cells cm^{-2}).

An advantage of using higher cell densities is that the filter can have a reduced cross-section, e.g. diameter, than diesel particulate filters, which is a useful practical advantage that increases design options for locating exhaust systems on a vehicle.

It will be understood that the benefit of filters for use in the invention is substantially independent of the porosity of the uncoated porous substrate. Porosity is a measure of the percentage of void space in a porous substrate and is related to backpressure in an exhaust system: generally, the lower the porosity, the higher the backpressure. However, the porosity of filters for use in the present invention are typically >40% or >50% and porosities of 45-75% such as 50-65% or 55-60% can be used with advantage. The mean pore size of the washcoated porous substrate is important for filtration. So, it is possible to have a porous substrate of relatively high porosity that is a poor filter because the mean pore size is also relatively high.

25
In embodiments, the first mean pore size e.g. of surface pores of the porous structure of the porous filter substrate is from 8 to 45 μm , for example 8 to 25 μm , 10 to 20 μm or 10 to 15 μm . In particular embodiments, the first mean pore size is >18 μm such as from 15 to 45 μm , 20 to 45 μm e.g. 20 to 30 μm , or 25 to 45 μm .

30
In a preferred embodiment, the exhaust system of the positive ignition engine comprises a flow through monolith substrate comprising a three-way catalyst composition disposed upstream of the catalysed filter. The engine is configured intermittently to run rich, e.g. to regenerate the NO_x absorption capacity of the NO_x absorber catalyst, and rich exhaust gas

19
15
20
26 03 19
20

contacting the TWC and/or NO_x absorber can generate ammonia *in situ* for use in reducing NO_x on a downstream honeycomb substrate comprising a SCR catalyst, preferably any of the following SCR catalysts. Ammonia can be generated *in situ* e.g. during rich regeneration of a NAC disposed upstream of the filter or by contacting a TWC with engine-derived rich exhaust

5 gas (see the alternatives to reactions (4) and (5) hereinabove).

SCR catalysts can be selected from the group consisting of at least one of Cu, Hf, La, Au, In, V, lanthanides and Group VIII transition metals, such as Fe, supported on a refractory oxide or molecular sieve. Suitable refractory oxides include Al₂O₃, TiO₂, CeO₂, SiO₂, ZrO₂ and mixed 10 oxides containing two or more thereof. The non-zeolite catalyst can also include tungsten oxide, e.g. V₂O₅/WO₃/TiO₂, WO_x/CeZrO₂, WO_x/ZrO₂ or Fe/WO_x/ZrO₂.

In particular embodiments, an SCR catalyst washcoat comprises at least one molecular sieve, such as an aluminosilicate zeolite or a SAPO. The at least one molecular sieve can be a small, a medium or a large pore molecular sieve, for example. By “small pore molecular sieve” herein we mean molecular sieves containing a maximum ring size of 8, such as CHA; by “medium pore molecular sieve” herein we mean a molecular sieve containing a maximum ring size of 10, such as ZSM-5; and by “large pore molecular sieve” herein we mean a molecular sieve having a maximum ring size of 12, such as beta. Small pore molecular sieves are potentially advantageous for use in SCR catalysts – see for example WO 2008/132452.

Particular molecular sieves with application as SCR catalysts in the present invention are synthetic aluminosilicate zeolite molecular sieves selected from the group consisting of AEI, ZSM-5, ZSM-20, ERI including ZSM-34, mordenite, ferrierite, BEA including Beta, Y, CHA, 25 LEV including Nu-3, MCM-22 and EU-1, preferably AEI or CHA, and having a silica-to-alumina ratio of about 10 to about 50, such as about 15 to about 40.

Where the reductant is a nitrogenous reductant (so-called “NH₃-SCR”), metals of particular interest are selected from the group consisting of Ce, Fe and Cu.

30

Suitable nitrogenous reductants include ammonia. Alternatively, the nitrogenous reductant or a precursor thereof can be injected directly into the exhaust gas. Suitable precursors include ammonium formate, urea and ammonium carbamate. Decomposition of the precursor to ammonia and other by-products can be by hydrothermal or catalytic hydrolysis.

In a further preferred embodiment, a honeycomb substrate comprising a SCR catalyst (preferably any of the preferred SCR catalysts disclosed hereinabove) is disposed downstream of the filter. Intermittent rich running of the engine, e.g. to regenerate the NO_x absorption capacity 5 of the NO_x absorber catalyst, can generate ammonia *in situ* on the TWC or NO_x absorber for use in reducing NO_x on a downstream SCR catalyst.

That is, the exhaust system of the positive ignition engine according to the invention can comprise a series of monolith substrates disposed in a flow direction from upstream to 10 downstream as follows: (i) NO_x absorber catalyst on a filter substrate according to the first aspect of the invention followed by a honeycomb substrate comprising a SCR catalyst, wherein the engine is configured intermittently to run rich, thereby to generate ammonia *in situ* on the NO_x absorber catalyst component; and (ii) as (i) except in that a TWC on a flow through monolith substrate is disposed upstream of the NO_x absorber catalyst on the filter according to 15 the first aspect of the invention, wherein ammonia may be generated *in situ* on both the TWC component and the NO_x absorber catalyst component.

Exhaust systems comprising SCR catalyst require nitrogenous reductant to promote the NO_x reduction reaction, i.e. to be effective, nitrogenous reductant should be present in exhaust 20 gas flowing into the SCR catalyst. As mentioned in the preceding paragraphs, in certain preferred embodiments, such nitrogenous reductant e.g. ammonia, is generated *in situ* by contacting a TWC and/or a NO_x absorber catalyst component with a rich exhaust gas. However, alternatively or in addition to *in situ* ammonia generation, in further preferred embodiments, the exhaust system comprises an injector for injecting a nitrogenous reductant precursor such as urea 25 into exhaust gas upstream of the SCR catalyst component. Such injector is fluidly linked to a source of such nitrogenous reductant precursor, e.g. a tank thereof, and valve-controlled dosing of the precursor into the exhaust stream is regulated by suitably programmed engine management means and closed loop or open loop feedback provided by sensors monitoring relevant exhaust gas composition.

Positive ignition internal combustion engines, such as spark ignition internal combustion engines, for use in this aspect of the invention can be fuelled by gasoline fuel, gasoline fuel blended with oxygenates including methanol and/or ethanol, liquid petroleum gas or compressed natural gas.

19
26 03 19
20

According to a second aspect, the invention provides a method of simultaneously converting oxides of nitrogen and particulate matter in the exhaust gas of a positive ignition internal combustion engine, which method comprising the step of contacting the gas with a 5 catalysed filter comprising a ceramic porous filter substrate, which is a wall-flow filter having a total substrate length and having a plurality of inlet channels having inlet surfaces and a plurality of outlet channels having outlet surfaces, wherein the inlet surfaces of each inlet channel are separated from the outlet surfaces of each outlet channel by a ceramic wall of porous structure containing pores of a first mean pore size, wherein the wall-flow filter is coated with a washcoat 10 composition which is a NO_x absorber catalyst washcoat composition comprising at least one precious metal, wherein the porous structure of the washcoated ceramic wall of the wall-flow filter contains pores of a second mean pore size, wherein the second mean pore size is less than the first mean pore size, which NO_x absorber catalyst washcoat being axially arranged on the wall-flow filter as a first zone comprising the inlet surfaces of a first substrate length less than the total substrate length and a second zone comprising the outlet surfaces of a second substrate length less than the total substrate length, wherein the sum of the substrate length in the first zone and the substrate length in the second zone is >110%, wherein:

- (i) a washcoat loading in the first zone > second zone and the total precious metal loading is substantially the same in both the first zone and the second zone; or
- (ii) both a washcoat loading and a total precious metal loading in the first zone > second zone,

wherein the gas contacts the first zone prior to contacting the second zone.

25 In order that the invention may be more fully understood, reference is made to the accompanying drawings wherein:

Figure 1 is a graph showing the size distributions of PM in the exhaust gas of a diesel engine. For comparison, a gasoline size distribution is shown at Figure 4 of SAE 1999-01-3530;

30 Figure 2 is a schematic drawing of an embodiment of a washcoated porous filter substrate according to the invention; and

Figure 3 is a schematic drawing of an embodiment of an exhaust system for the purposes of comparative illustration only.

19
26 03 19
20

Figure 2 shows a cross-section through a porous filter substrate 10 comprising a surface pore 12. Figure 2 shows an embodiment, featuring a porous surface washcoat layer 14 comprised of solid washcoat particles, the spaces between which particles define pores 5 (interparticle pores). It can be seen that the washcoat layer 14 substantially covers the pore 12 of the porous structure and that a mean pore size of the interparticle pores 16 is less than the mean pore size 12 of the porous filter substrate 10.

Figure 3 shows an apparatus 11 for the purposes of comparative illustration only and 10 comprising a vehicular positive ignition engine 13 and an exhaust system 15 therefor. Exhaust system 15 comprises a conduit 17 linking catalytic aftertreatment components, namely a Pd-Rh-based TWC coated onto an inert cordierite flowthrough substrate 18 disposed close to the exhaust manifold of the engine (the so-called close coupled position). Downstream of the close-coupled catalyst 18 in turn is a zoned CuCHA SCR catalyst coated onto a cordierite wall-flow filter 20 having a total length and comprising inlet channels coated to a length of one third of the 15 total length measured from an upstream or inlet end of the wall-flow filter with a washcoat loading of 2.8 g in^{-3} (170.1 g/l), which coating defining a first zone 22. The outlet channels are coated with a CuCHA SCR catalyst coated on two thirds of the total length of the wall-flow filter measured from the downstream or outlet end of the wall-flow filter with a washcoat loading of 20 1.0 g in^{-3} (61.0 g/l), which coating defining a second zone 24. Engine management means (not shown) is run intermittently rich, i.e. in “rich spike”-type mode, thereby to contact the upstream TWC with enriched exhaust gas and to generate ammonia and other reformed nitrogenous reductant species *in situ* and to promote NOx conversion on the downstream SCR catalyst.

25 In order that the invention may be more fully understood the following Examples are provided by way of illustration only. The Examples are not according to the invention. However, all three Examples illustrate the principle of loading a filter with a similar quantity of catalyst compared to reference catalysts at reduced backpressure. Example 2 is relevant to a 30 NOx absorber catalyst embodiment, wherein the first upstream zone has a higher platinum group metal loading than the second downstream zone with improvements in both hydrocarbon light off temperature, which is also an important aspect of NOx absorber catalyst activity, and backpressure. The washcoat loadings quoted in the Examples were obtained using the method disclosed in WO 2011/080525.

19
15
26 03 19
20

Example 1 (not according to the invention)

Two cordierite wall-flow filters of dimensions 4.66 x 5.5 inches (11.8 x 14.0 cm), 300 cells per square inch (46.5 cells cm^{-2}), wall thickness 12 thousandths of an inch (0.305 mm) and 5 having a mean pore size of 20 μm and a porosity of 65% were each coated with a TWC composition in a different configuration from the other. In each case, the TWC composition was milled to a $d90 < 17 \mu\text{m}$) so that the coating when applied would be expected preferentially to locate more at the surface of a wallflow filter wall (“on-wall”).

10 A first filter (referred to in Table 1 as having a “Homogeneous” washcoat loading) was coated in channels intended for the inlet side of the filter with a TWC washcoat zone extending for a targeted 33.3% of the total length of the filter substrate measured from the open channel ends with a washcoat comprising a precious metal loading of 85 g/ft^3 (3.0 g/l) (80Pd:5Rh) and at a washcoat loading of 2.4 g/in^3 (146.5 g/l). The outlet channels were coated to a length of 66.6% of the total length of the filter substrate measured from the open channel ends with a washcoat comprising a precious metal loading of 18 g/ft^3 (0.64 g/l) (16Pd:2Rh) at a washcoat loading also of 2.4 g/in^3 (146.5 g/l). X-ray imaging was used to ensure that an overlap occurred in the longitudinal plane between the inlet channel zone and the outlet channel zone. So, the washcoat loading was homogeneous between the first and second zones, but the platinum group metal loading in the first zone > second zone.

25 A second filter (referred to in Table 1 as having a “Zoned” washcoat loading) was coated in the inlet channels with a TWC washcoat zone extending for a targeted 33.33% of the total length of the filter substrate measured from the open channel ends with a washcoat comprising a precious metal loading of 85 g/ft^3 (3.0 g/l) (80Pd:5Rh) and at a washcoat loading of 2.8 g/in^3 (170.9 g/l). The outlet channels were coated to a length of 66.66% of the total length of the filter substrate measured from the open channel ends with a washcoat comprising a precious metal loading of 18 g/ft^3 (0.64 g/l) (16Pd:2Rh) at a washcoat loading of 1.0 g/in^3 (61.0 g/l). X-ray imaging was used to ensure that an overlap occurred in the longitudinal plane between the inlet channel zone and the outlet channel zone. So, both the washcoat loading and the platinum group metal loading in the first zone > second zone.

30 The total precious metal content of the first and second filters was identical.

19
26 03 19
20

Each filter was hydrothermally oven-aged at 1100°C for 4 hours and installed in a close-coupled position on a Euro 5 passenger car with a 2.0L direct injection gasoline engine. Each filter was evaluated over a minimum of three MVEG-B drive cycles, measuring the reduction in particle number emissions relative to a reference catalyst. The reference catalyst was a TWC 5 coated homogeneously onto a 600 cells per square inch (93.0 cells cm⁻²) cordierite flowthrough substrate monolith having the same dimensions as the first and second filters and at a washcoat loading of 3g in⁻³ (183.1 g/l) and a precious metal loading of 33g ft⁻³ (1.17 g/l) (30Pd:3Rh). The backpressure differential was determined between sensors mounted upstream and downstream of the filter (or reference catalyst).

10

In Europe, since the year 2000 (Euro 3 emission standard) emissions are tested over the New European Driving Cycle (NEDC). This consists of four repeats of the previous ECE 15 driving cycle plus one Extra Urban Driving Cycle (EUDC) with no 40 second warm-up period before beginning emission sampling. This modified cold start test is also referred to as the “MVEG-B” drive cycle. All emissions are expressed in g/km.

The Euro 5/6 implementing legislation introduces a new PM mass emission measurement method developed by the UN/ECE Particulate Measurement Programme (PMP) which adjusts the PM mass emission limits to account for differences in results using old and the new methods. 20 The Euro 5/6 legislation also introduces a particle number emission limit (PMP method), in addition to the mass-based limits.

The results of the tests are shown in Table 1, from which it can be seen that the filter washcoated in the zoned configuration shows improved back pressure and has good (though 25 moderately lower) levels of particle number reduction relative to the homogeneously washcoated filter. Despite the moderate reduction in lower particle number reduction, the second filter would still meet the full Euro 6+ (2017) standard limit.

Sample filter properties	Washcoat type	% PN reduction vs. flow through reference	Average BP (mbar) (kPa) on 70 kph cruise of MVEG-B drive cycle	Peak BP (mbar) (kPa) during any one MVEG-B drive cycle
20 μm , 65%	Homogeneous	85	17.6 (1.76 kPa)	82.1 (8.21 kPa)
20 μm , 65%	Zoned	81	12.2 (1.22 kPa)	59.5 (5.95 kPa)

Table 1. Effect of washcoat zoning on particle number reduction and backpressure (BP)

5

Example 2 (not according to the invention)

260319
10
15

Two cordierite wall-flow filters of dimensions 4.66 x 4.5 inches (11.8 x 11.4 cm), 300 cells per square inch (46.5 cells cm^{-2}), wall thickness 12 thousandths of an inch (0.305 mm), mean pore size of 20 μm and a porosity of 65% were each coated with a TWC composition in a different configuration from the other. In each case, the TWC composition was milled to a d90 <17 μm) so that the coating when applied would be expected preferentially to locate more at the surface of a wallflow filter wall (“on-wall”).

15 A third filter (referred to in Table 2 as having a “Homogeneous” platinum group metal loading (Comparative Example)) was coated in channels intended for the inlet side of the filter and outlet side of the filter with a TWC washcoat zone extending for a targeted 50% of the total length of the filter substrate measured from the open channel ends with a washcoat comprising a precious metal loading of 60 gft^{-3} (2.1 g/l) (57Pd:3Rh) and at a washcoat loading of 2.4 g/in^3 (146.5 g/l).

20

25 A fourth filter (referred to in Table 2 as having a “Zoned” PGM loading) was coated in channels intended for the inlet side of the filter with a TWC washcoat zone extending for a targeted 50% of the total length of the filter substrate measured from the open channel ends with a washcoat comprising 100 gft^{-3} (3.5 g/l) precious metal (97Pd:3Rh) at a washcoat loading of 2.4 g/in^3 (146.5 g/l); and the outlet channels were coated with a TWC washcoat zone extending for a targeted 50% of the total length of the filter substrate measured from the open channel ends with

19
26 03 19
20

a washcoat comprising 20 g/ft⁻³ (0.71 g/l) precious metal (17Pd:3Rh), also at a washcoat loading of 2.4 g/in³ (146.5 g/l). .

The total precious metal content of the third and fourth filters was identical.

5
10 Each filter was hydrothermally oven-aged at 1100°C for 4 hours and installed in a close-coupled position on a Euro 5 passenger car with a 1.4L direct injection gasoline engine. Each filter was evaluated over a minimum of three MVEG-B drive cycles, measuring the reduction in particle number emissions relative to a reference catalyst. Peak backpressure (BP) was also evaluated in the same way as described in Example 1.

Hydrocarbon light-off temperature (the temperature at which the catalyst catalyses the conversion of hydrocarbons in the feed gas at 50% efficiency or greater) was evaluated on a separate engine mounted in a laboratory test cell. This engine was a 2.0 litre turbo charged direct injection gasoline engine. The exhaust gas temperature was carefully regulated and increased from 250-450°C over a given period of time through the use of a combination of a temperature heat sink and increasing throttle position, during which time the conversion efficiency of the catalyst was measured and reported.

25 The results of zone coating the precious metal in the filter substrate are shown in Table 2, from which it can be seen that – as could be expected with identical washcoat loadings between the two filters – the % particle number reduction vs. the flow through reference catalyst (homogeneous 60gft⁻³ (2.1 g/l) precious metal content (57Pd:3Rh) at 3 gin⁻³ (183.1 g/l) homogeneous washcoat loading on a 600 cells per square inch (93.0 cells cm⁻²) cordierite monolith substrate having the same dimensions as the third and fourth filters) are identical. However, the hydrocarbon light-off is higher for the Homogenous PGM configuration relative to the Zoned configuration. This can be attributed to the higher concentration of PGM on the inlet side.

Sample filter properties	PGM zoning	HC light-off temperature (°C)	% PN reduction vs. flow through reference	Peak BP (mbar) (kPa) during any one MVEG-B drive cycle
20 µm, 65%	Homogeneous	391	73	37.5 (3.75 kPa)
20 µm, 65%	Zoned	379	73	35.8 (3.58 kPa)

Table 2. Effect of PGM zoning on light-off temperature

19
26 03 19
20

CLAIMS:

1. A positive ignition engine comprising an exhaust system, which exhaust system comprises a catalysed filter for filtering particulate matter from exhaust gas emitted from a positive ignition internal combustion engine, which filter comprising a ceramic porous filter substrate, which is a wall-flow filter having a total substrate length and having a plurality of inlet channels having inlet surfaces and a plurality of outlet channels having outlet surfaces, wherein the inlet surfaces of each inlet channel are separated from the outlet surfaces of each outlet channel by a ceramic wall of porous structure containing pores of a first mean pore size, wherein the wall-flow filter is coated with a washcoat composition which is a NO_x absorber catalyst washcoat composition comprising at least one precious metal, wherein the porous structure of the washcoated ceramic wall of the wall-flow filter contains pores of a second mean pore size, wherein the second mean pore size is less than the first mean pore size, which NO_x absorber catalyst washcoat being axially arranged on the wall-flow filter as a first zone comprising the inlet surfaces of a first substrate length less than the total substrate length and a second zone comprising the outlet surfaces of a second substrate length less than the total substrate length, wherein the sum of the substrate length in the first zone and the substrate length in the second zone is > 110%, wherein:

- (i) a washcoat loading in the first zone > second zone and the total precious metal loading is substantially the same in both the first zone and the second zone; or
- (ii) both a washcoat loading and a total precious metal loading in the first zone > second zone

and wherein the first zone is disposed upstream of the second zone.

25 2. A positive ignition engine according to claim 1, wherein the NO_x absorber catalyst comprises a mixture of (i) rhodium supported on a ceria-zirconia mixed oxide or an optionally stabilised alumina; and (ii) platinum and/or palladium supported on an alumina-based high surface area support and ceria, wherein an alkaline earth metal, an alkali metal or a lanthanide is supported on the ceria.

30 3. A positive ignition engine according to claim 1 or 2, wherein the washcoat loading in the first zone is >1.60 g in⁻³ (>97.6 g/l).

19
26 03 19
20

24

4. A positive ignition engine according to any preceding claim, wherein a substrate length in the first zone is different from that of the second zone.

5. A positive ignition engine according to claim 4, wherein the substrate length in the first zone is < the substrate length in the second zone.

6. A positive ignition engine according to claim 5, wherein the substrate zone length in the first zone is <45% of the total substrate length.

10 7. A positive ignition engine according to feature (ii) in any preceding claim, wherein the total precious metal loading in the first zone of the NO_x absorber catalyst is >50 g ft⁻³ (>1.77 g/l).

8. A positive ignition engine according to any preceding claim, comprising a surface washcoat, wherein a washcoat layer substantially covers surface pores of the porous structure and the pores of the washcoated porous substrate are defined in part by spaces between the particles (interparticle pores) in the washcoat.

9. A positive ignition engine according to any preceding claim, wherein the mean size of the solid washcoat particles is in the range 1 to 40 μ m.

10. A positive ignition engine according to claim 8 or 9, wherein a D90 of solid washcoat particles is in the range 0.1 to 20 μ m.

25 11. A positive ignition engine according to any preceding claim, wherein the uncoated porous substrate has a porosity of >40%.

12. A positive ignition engine according to any preceding claim, wherein a first mean pore size of the porous structure of the porous substrate is from 8 to 45 μ m.

30 13. A positive ignition engine according to any preceding claim, wherein the exhaust system comprises a flow through monolith substrate comprising a three-way catalyst composition disposed upstream of the catalysed filter.

26 03 19
15

14. A method of simultaneously converting oxides of nitrogen and particulate matter in the exhaust gas of a positive ignition internal combustion engine, which method comprising the step of contacting the gas with a catalysed filter comprising a ceramic porous filter substrate, which is a wall-flow filter having a total substrate length and having a plurality of inlet channels having 5 inlet surfaces and a plurality of outlet channels having outlet surfaces, wherein the inlet surfaces of each inlet channel are separated from the outlet surfaces of each outlet channel by a ceramic wall of porous structure containing pores of a first mean pore size, wherein the wall-flow filter is coated with a washcoat composition which is a NO_x absorber catalyst washcoat composition comprising at least one precious metal, wherein the porous structure of the washcoated ceramic 10 wall of the wall-flow filter contains pores of a second mean pore size, wherein the second mean pore size is less than the first mean pore size, which NO_x absorber catalyst washcoat being axially arranged on the wall-flow filter as a first zone comprising the inlet surfaces of a first substrate length less than the total substrate length and a second zone comprising the outlet surfaces of a second substrate length less than the total substrate length, wherein the sum of the substrate length in the first zone and the substrate length in the second zone is > 110%, wherein:
15
(i) a washcoat loading in the first zone > second zone and the total precious metal loading is substantially the same in both the first zone and the second zone; or
(ii) both a washcoat loading and a total precious metal loading in the first zone > second zone,
20 wherein the gas contacts the first zone prior to contacting the second zone.