wo 2017/039703 A1 I} J1F A1 000 0O O

(43) International Publication Date

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

9 March 2017 (09.03.2017)

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2017/039703 Al

(51

eay)

(22)

(25)
(26)
1

(72

74

31

International Patent Classification:
GO6F 17/30 (2006.01) GO6F 17/00 (2006.01)

International Application Number:
PCT/US2015/048728

International Filing Date:
4 September 2015 (04.09.2015)

English
Publication Language: English

Applicant: HEWLETT PACKARD ENTERPRISE DE-
VELOPMENT LP [US/US]; 11445 Compaq Center Drive
West, Houston, Texas 77070 (US).

Inventors: MARWAH, Manish; 1501 Page Mill Rd.,
Palo Alto, California 84304 (US). KIM, Mijung; 1501
Page Mill Rd., Palo Alto, California 94304 (US).

Agents: HARTMANN, Kenneth R. et al.; Hewlett Pack-
ard Enterprise, 3404 E. Harmony Road, Mail Stop 79, Fort
Collins, Colorado 80528 (US).

Filing Language:

Designated States (unless otherwise indicated, for every

(84)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

kind of national protection available): AE, AG, AL, AM, Published:

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

with international search report (Art. 21(3))

(54) Title: HYBRID GRAPH PROCESSING

/— 100

120 o~ 110

HYBRID
GRAPH
EXECUTOR

GRAPH
DATABASE

-,
h A

E Y

b4

USER
INTERFACE

FIG. 1

(57) Abstract: Examples herein involve identifying charac-
teristics associated with nodes of a graph, selecting a set of
nodes from the nodes to be processed based on hybrid graph
processing settings and the characteristics, and executing, via
a processor, the selected set of nodes in parallel to process the

graph.

WO 2017/039703 PCT/US2015/048728

HYBRID GRAPH PROCESSING

BACKGROUND

[0001] A graph is a representation of a set of data (e.g., Big Data). An
example graph may include a plurality of nodes (e.g., executables) and edges
connecting the plurality of edges. The graph may be processed by executing
nodes in accordance with characteristics of edges linked to the nodes and
related nodes linked by the edges.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] FIG. 1 is a block diagram of an example graph processing system
including a hybrid graph executor that may be implemented in accordance with
an aspect of this disclosure.

[0003] FIG. 2 is a block diagram of an example hybrid graph executor
that may be used to implement the hybrid graph executor of FIG. 1.

[0004] FIG. 3 is a flowchart representative of example machine readable
instructions that may be executed to implement the hybrid graph executor of
FIG. 2.

[0005] FIG. 4 is a flowchart representative of an example portion of the
example machine readable instructions of FIG. 3 to implement a node selector
of the hybrid graph executor of FIG. 2.

[0006] FIG. 5 is another flowchart representative of an example portion of
the example machine readable instructions of FIG. 3 to implement a node
selector of the hybrid graph executor of FIG. 2.

[0007]FIG. 6 is yet another flowchart representative of an example
portion of the example machine readable instructions of FIG. 3 to implement a
node selector of the hybrid graph executor of FIG. 2.

WO 2017/039703 PCT/US2015/048728

[0008] FIG. 7 is a block diagram of an example processor platform
capable of executing the instructions of FIGS. 3, 4, 5, and/or 6 to implement the
hybrid graph executor of FIG. 2.

[0009] Wherever possible, the same reference numbers will be used
throughout the drawing(s) and accompanying written description to refer to the
same or like parts.

DETAILED DESCRIPTION

[0010] Examples disclosed herein involve parallel graph processing that
combines a synchronous execution model and an asynchronous execution
model to process graphs. Example graphs herein are data representations of
large data sets (which may be referred to as “Big Data”). In examples herein,
adjustments may be made to a hybrid graph executor to control a degree of
synchronous execution versus asynchronous execution when processing
graphs. Accordingly, examples herein provide a hybrid
synchronous/asynchronous approach to processing graphs.

[0011] In synchronous graph processing, a plurality of nodes may be
processed in parallel in a plurality of iterations. Synchronous graph processing
may be relatively simple to implement and is advantageous in its ability to
process multiple nodes at the same time in a single iteration. However, some
issues may arise as processed nodes may not be properly updated for each
iteration as parallelization does not necessarily account for execution order of
the nodes. Accordingly, convergence of processing the graph may be slowed
due to processing outdated nodes, outdated messages of edges, or other
potential outdated characteristics. In asynchronous graph processing, there are
no iterations and nodes are processed based on priority. In such examples, the
nodes with highest priority may be the most up to date as they were the most
recently processed. However, locking mechanisms may need to be
implemented in asynchronous implementations as contention arises between
nodes sending and receiving messages to the order of execution of the nodes.
Examples herein, provide for parallel processing of sets of nodes selected

-2.

WO 2017/039703 PCT/US2015/048728

based on characteristics of the nodes of the graph. Accordingly, examples
herein provide a hybrid synchronous/asynchronous graph processing technique
that may be adjustable based on user input, graph type, processing type, etc.
that enables parallel processing of sets of nodes selected in each iteration
based on priorities (or updated priorities) of the nodes of the graph.

[0012] Examples herein take advantage of the benefits of both
synchronous execution and asynchronous execution by combining the models
into a hybrid graph process execution. Further, the disadvantages
corresponding to synchronous execution and asynchronous may be mitigated
by adjusting settings to control the degree of synchronous execution versus
asynchronous execution in accordance with the teachings of this disclosure.

[0013] An example method includes identifying characteristics associated
with nodes of a graph; selecting a set of nodes from the nodes to be processed
based on hybrid graph processing settings and the characteristics; and
executing, via a processor, the selected set of nodes in parallel to process the
graph.

[0014] As used herein, graph processing (or processing a graph) involves
processing nodes of a graph until all nodes (or a threshold percentage of the
nodes) have been processed, which is known as convergence of the graph
processing. Convergence occurs when all nodes (or a threshold percentage of
the nodes) have been processed such that a particular characteristic of the
nodes has reached a fixed point (or value), and, thus, does not change with
subsequent iterations. In examples herein, parallel graph processing or
processing graphs in parallel may involve several iterations of processing a set
of nodes in parallel (at a same time or within a same time period). For example,
in a first iteration, a first set of nodes may be processed and in a second
iteration a second set of nodes may be processed. In examples herein, the
second set of nodes may or may not include nodes related or linked to the first
set of nodes.

[0015] As used herein, priority or priority of (or associated with) a node
refers to an importance that the node be processed sooner rather than later.
For example, it is desirable to have that a node having a higher priority is

-3-

WO 2017/039703 PCT/US2015/048728

processed before a node having a lower priority. Priority may be ranked or
rated on any suitable scale, (e.g., from 1 to 10, 10 being highest priority, 1 being
lowest priority (or vice versa).

[0016] FIG. 1 is a block diagram of an example graph processing system
100 including a hybrid graph executor 110 constructed in accordance with an
aspect of this disclosure. The example graph processing system 100 includes
the hybrid graph executor 110, a graph database 120, and a user interface 130.
In the example of FIG. 1, the hybrid graph executor 110 processes graphs
received from the graph database 120 and provides results of the processed
graph to the user interface 130.

[0017] The example graph database 120 of FIG. 1 stores graphs and
may provide graphs to the hybrid graph executor 110 for processing. In some
examples, the graph database 120 of FIG. 1 may include a controller of the
database that provides the graphs to the hybrid graph executor 110. For
example, the graph database 120 may be a local storage device, a network
storage device (e.g., a server), etc. that stores large data sets (e.g., which may
be referred to as “Big Data”) represented by graphs and/or the graphs
themselves. The example graph database 120 may include a storage device
(e.g., a non-volatile storage, a flash memory) and/or a memory device (e.g., a
dynamic random access memory (DRAM), a non-volatile random access
memory (NVRAM)). Additionally, or alternatively, the hybrid graph executor 110
may retrieve graphs from the graph database 120.

[0018] The example user interface 130 facilitates user interaction with the
hybrid graph executor 110 and/or the graph database 120. For example, the
user interface may include user input(s) (e.g., a keyboard, a mouse, a trackball,
a touchscreen, etc.) and/or user output(s) (e.g., a display, a touchscreen,
speakers, indicators, etc.). In examples herein, the user input 130 enables a
user to access and control settings of the hybrid graph executor 110. For
example, the user interface 130 may request processing of a particular graph to
be provided by the graph database 120. Furthermore, the user interface 130
enables a user to indicate or set hybrid graph processing settings to process the
selected graph in accordance with examples herein.

-4-

WO 2017/039703 PCT/US2015/048728

[0019] The example hybrid graph executor 110 processes graphs in
accordance with aspects of this disclosure. The hybrid graph executor 110
processes a number of nodes of a graph (e.g., in parallel) in accordance with
aspects of this disclosure. For example, the hybrid graph executor 110 may
determine a number of the nodes of the graph to be processed based on user
settings and/or characteristics of the graph data (or the graph processing
system 100 of FIG. 1).

[0020] FIG. 2 is a block diagram of an example hybrid graph executor
110 that may be used to implement the hybrid graph executor 110 of FIG. 1.
The example hybrid graph executor 110 of FIG. 2 includes a graph receiver 210,
a settings manager 220, a node selector 230, and a hybrid execution engine
240. In examples herein, the graph receiver 210 receives a graph (or a plurality
of graphs) and the node selector 230 selects nodes of the graph for execution
by the hybrid execution engine 240 based on settings of the settings manager
220 and characteristics of the nodes. The example hybrid execution engine 240
iteratively processes sets of nodes of the graphs in parallel and may adjust
characteristics of the nodes (e.g., priorities) based on the execution.
Accordingly, after each parallel processing of a set of nodes (which may be
referred to herein as an iteration), the hybrid execution engine 240 may provide
feedback to the node selector 230 by adjusting characteristics of the nodes for
consideration by node selector 230 when selecting nodes for a subsequent
iteration.

[0021] The example graph receiver 210 receives (or retrieves) graph data
of a graph from the graph database 120 of FIG. 1. The example graph data
includes node data corresponding to nodes of the graph and edge data
corresponding to edges of the graph. In some examples, the graph receiver
210 may include or serve as a buffer (or other short term memory device/data
structure) and the hybrid graph executor 110 may load the graph data into the
graph receiver 210 for processing. Accordingly, the graph receiver 210 may
store the graph data for a graph while the node selector 230 and/or the hybrid
execution engine process the graph data. In some examples, the graph data
may be separated by the graph receiver into node data and edge data.

-5-

WO 2017/039703 PCT/US2015/048728

Accordingly, the graph receiver 210 may include a data structure that allows the
node selector 230 to identify or access the node data for nodes of the graph in
accordance with examples herein.

[0022] The example settings manager 220 manages hybrid graph
processing settings for the hybrid graph executor 110 to determine how a
particular graph is to be processed. In examples herein, the hybrid graph
processing settings may be adjusted or tuned to adjust the degree of
synchronous processing versus asynchronous processing when performing a
hybrid graph processing in accordance with examples herein. The settings
manager 220 may include default settings or settings established in response to
user input (e.g., received via the user interface 130). The hybrid graph
processing settings may include a selection type and sub-settings for that
particular selection type. For example, selection types may include a selection
of nodes having a minimum priority (or certain set of characteristics), selection
of a threshold number of nodes for processing, or selection of bins of nodes
based on the priority of the nodes. Based on the settings of the graph executor
110, the settings manager 220 may provide instructions to the node selector
230 for selecting nodes. In some examples, based on a selection type, the
settings manager 220 may instruct the node selector 230 to use a particular
data structure (e.g., a priority queue, bins, randomizer, etc.) to select nodes.
Furthermore, the sub-settings may include settings specific to the selection type,
such as a setting for selecting (or establishing) a threshold minimum priority, a
setting for selecting (or establishing) a minimum number of nodes to select (e.g.,
based on priority), or settings for numbers of bins, a minimum priority of nodes
in the bins to be selected, and/or a range of priorities for each bin. Accordingly,
the settings manager 220 may provide settings or instruct the node selector 230
to select nodes from the graph data based on the settings (e.g., default settings,
settings received via user input, etc.). In some examples, the settings manager
220 may include or may communicate with a graphical user interface to facilitate
interaction with a user via the user interface 130.

[0023] The example node selector 230 analyzes node data and selects
nodes from the node data for processing/execution by the hybrid execution

-6-

WO 2017/039703 PCT/US2015/048728

engine 240 based on the settings of the settings manager 220. The example
node selector 230 may include any suitable data structure for selecting nodes to
be processed for each iteration of processing a graph. For example, the node
selector 230 may include or implement a priority queue that sorts
retrieved/received nodes from the graph receiver 210 and/or from the hybrid
execution engine 240. The node selector 230 may then select a number of
nodes from the priority queue based on the graph processing settings. In some
examples, the node selector 130 may select all nodes from the priority queue
with a priority that satisfies a threshold priority. For example, the graph
processing settings from the settings manager 220 may indicate that all nodes
having a priority of ‘5’ or higher be selected or that all nodes having a priority of
3 or lower be selected, etc. In such examples, the node selector 230 may easily
identify the threshold priority from the priority queue and select the nodes from
either side (e.g., a side having higher priority nodes and a side having lower
priority nodes) of the priority queue. In some examples, for an initial iteration of
processing a graph, the node selector 230 may randomly select nodes or
randomly assign a priority (or a same priority) to the nodes. The example
random priority may be adjusted during processing by the hybrid execution
engine 240 as discussed below.

[0024] In some examples, the node selector 230 may select a threshold
number of nodes from an end of the priority queue based on the graph
processing settings. For example, the graph processing settings may indicate
that the “top 10” nodes are to be selected for each iteration of processing or that
the “bottom 5” nodes are to be selected for each iteration of processing.
Accordingly, for a selected set of nodes, the threshold number may correspond
to a magnitude of the selected set of nodes (i.e., the amount or number of
nodes in the selected set). Using this selection type, the settings manager 220
and/or node selector 230 may adjust a degree of synchronous versus
asynchronous processing. For example, for a graph having X nodes, and N
being equal to a threshold number nodes to be executed in an iteration of the
processing, then when N = X, the hybrid graph executor 110 may synchronously
process the graph and when N = 1 the hybrid graph executor 110 may

-7-

WO 2017/039703 PCT/US2015/048728

asynchronously process the graph. Accordingly, the hybrid graph processing
settings may allow for adjusting a degree of synchronous versus asynchronous
processing of the graph from fully synchronous to fully asynchronous.

[0025] In some examples, the node selector 230 may utilize a data
structure that includes a plurality of bins. The bins may store a predetermined
or unlimited number of nodes to be selected for processing. The node selector
230 may select nodes to be processed based on bin assignments. In examples
herein, the nodes may be assigned to the bins based on the characteristics of
the nodes (e.g., node type, execution type, priority, etc.). In some examples,
the node selector 230 may assign the bins using hashing, such that the
characteristic(s) of the nodes may be used as a hash key. For example, the
bins may be arranged to temporarily store the nodes based on priority, such that
the bins temporarily store the nodes from a lowest priority to a highest priority
(or vice versa). In such examples, the node selector 230 may select nodes by
selecting the nodes from a number of the bins based on the graph processing
settings. For example, the graph processing settings may indicate that a
threshold number of bins (e.g., 2 bins, 4 bins, etc.) including nodes with a higher
priority (or nodes with a lower priority) are to be selected. In some examples,
the graph processing settings may indicate that nodes from bins including a
node that satisfies a threshold priority (e.g., “5 or higher”, “3 or lower”, etc.) are
to be selected. Accordingly, in such an example, all nodes from the bin may be
selected regardless of whether that particular node has a priority that satisfies
the bin threshold priority.

[0026] Accordingly, in examples herein, for each iteration of processing
the graph, the node selector 230 selects nodes for execution by the hybrid
execution engine 240 based on characteristics of the nodes (e.g., node type,
priority, execution time, etc.). The example hybrid execution engine 240
processes/executes the selected nodes in parallel with one another (e.g., similar
to a synchronous processing model). For example, for each iteration the hybrid
execution engine 240 may process the nodes in a series of corresponding
threads by processing data/messages of edges of the respective nodes of that
iteration. After/while processing the nodes, the hybrid execution engine 240

-8-

WO 2017/039703 PCT/US2015/048728

may assign priorities to (or update priorities of) the selected nodes after they are
processed. In some examples, the hybrid execution engine 240 may assign
priorities to (or update priorities of) nodes linked or connected to the selected
nodes by edges of the graph based on execution status that indicates execution
time (length of execution or remaining execution time until convergence), node
type, distance from convergence of node, etc. For example, the hybrid
execution engine 240 may lower a priority of a node that has been processed,
has a lower processing demand (or execution time), is not to be processed
again, and the hybrid execution engine 240 may increase a priority of a node if
the node is to be processed next (e.g., has a greater execution urgency, such
as a node that is linked to a selected node), a node that requires a relatively
long execution time (e.g., a relatively large change has occurred in a
characteristic of the node during an iteration, a node linked to a relatively large
number of other nodes), etc. The hybrid execution engine 240 may then feed
the processed nodes with updated priorities and priority data corresponding to
linked nodes back to the node selector 230. The example node selector 230
may then update a data structure (e.g., the priority queue, bins, etc.) by
rearranging, reorganizing, or re-sorting the nodes for a subsequent
selection/iteration to process the graph.

[0027] The example hybrid execution engine 240 may check for
convergence of the processed graph by tracking that all nodes of the graph (or
a threshold percentage of the nodes) have been processed. Accordingly, once
all iterations are complete, the hybrid execution engine 240 may output the
results of the graph processing (e.g., to the user interface 130 or back to the
graph database 120).

[0028] Accordingly, the example hybrid graph executor 110 of FIG. 2 may
process graphs using both synchronous (using the hybrid graph execution
engine to process selected nodes in parallel) and asynchronous models (using
the settings manager 220 and node selector 230 to select sets of nodes for
iterations based on characteristics of the nodes).

[0029] While an example manner of implementing the hybrid graph
executor 110 of FIG. 1 is illustrated in FIG. 2, at least one of the elements,

-9-

WO 2017/039703 PCT/US2015/048728

processes and/or devices illustrated in FIG. 2 may be combined, divided, re-
arranged, omitted, eliminated and/or implemented in any other way. Further,
the graph receiver 210, the settings manager 220, the node selector 230, the
hybrid graph execution engine 240, and/or, more generally, the hybrid graph
executor 110 of FIG. 2 may be implemented by hardware and/or any
combination of hardware and executable instructions (e.g., software and/or
firmware). Thus, for example, any of the graph receiver 210, the settings
manager 220, the node selector 230, the hybrid graph execution engine 240,
and/or, more generally, the hybrid graph executor 110 could be implemented by
at least one of an analog or digital circuit, a logic circuit, a programmable
processor, an application specific integrated circuit (ASIC), a programmable
logic device (PLD) and/or a field programmable logic device (FPLD). When
reading any of the apparatus or system claims of this patent to cover a purely
software and/or firmware implementation, at least one of the graph receiver 210,
the settings manager 220, the node selector 230, and/or the hybrid graph
execution engine 240 is/are hereby expressly defined to include a tangible
machine readable storage device or storage disk such as a memory, a digital
versatile disk (DVD), a compact disk (CD), a Blu-ray disk, etc. storing the
executable instructions. Further still, the example hybrid graph executor 110 of
FIG. 2 may include at least one element, process, and/or device in addition to,
or instead of, those illustrated in FIG. 2, and/or may include more than one of
any or all of the illustrated elements, processes and devices.

[0030] Flowcharts representative of example machine readable
instructions for implementing the hybrid graph executor 110 of FIG. 2 are shown
in FIGS. 3, 4, 5,6 and 7. In this example, the machine readable instructions
comprise program(s)/process(es) for execution by a processor such as the
processor 812 shown in the example processor platform 800 discussed below in
connection with FIG. 8. The program(s)/process(es) may be embodied in
executable instructions (e.g., software) stored on a tangible machine readable
storage medium such as a CD-ROM, a floppy disk, a hard drive, a digital
versatile disk (DVD), a Blu-ray disk, or a memory associated with the processor
812, but the entire program/process and/or parts thereof could alternatively be

-10 -

WO 2017/039703 PCT/US2015/048728

executed by a device other than the processor 812 and/or embodied in firmware
or dedicated hardware. Further, although the example program(s) is/are
described with reference to the flowchart illustrated in FIGS. 3, 4, 5, 6, and/or 7,
many other methods of implementing the example hybrid graph executor 110
may alternatively be used. For example, the order of execution of the blocks
may be changed, and/or some of the blocks described may be changed,
eliminated, or combined.

[0031] The example process 300 of FIG. 3 begins with an initiation of the
hybrid graph executor 110 (e.g., upon startup, upon instructions from a user,
upon startup of a device implementing the hybrid graph executor 110 (e.g., the
graph processing system 100), etc.). The example process 300 may be
executed to process a graph in a hybrid synchronous/asynchronous manner.
Furthermore, the example process 300 may be iteratively executed to process
the graph. At block 310, the node selector 230 identifies characteristics
associated with nodes of a graph. For example, at block 310, the node selector
230 may identify priorities, node types, etc. of the nodes of the graph.

[0032] At block 320, the node selector 230 selects a set of nodes to be
processed based on graph processing settings and the characteristics of the
nodes. For example, the node selector 230 may use a selection type and sub-
settings from a settings manager to select nodes for execution (in the iteration of
FIG. 3). Examples processes to select the nodes are further discussed below in
connection with FIGS. 4, 5, and 6. At block 330, the hybrid execution engine
executes the set of nodes in parallel to process the graph. After block 330, the
example process 300 ends. In some examples, after block 330, the hybrid
execution engine 240 may determine whether graph processing is complete. If
graph processing isn’t complete (e.g., all nodes, or a threshold percentage of
the nodes, have not converged), then control may return to block 310. If the
graph processing has completed (the processed nodes have converged), then
the example process 300 ends.

[0033] The example process 400 of FIG. 4 begins with an initiation of the
node selector 230 (e.g., in response to receiving a graph data, in response to
receiving updated node data from the hybrid execution engine, in response to

-11 -

WO 2017/039703 PCT/US2015/048728

instructions from the settings manager and/or user interface 130, etc.). The
example process 400 of FIG. 4 may be executed to implement the example
block 320 of FIG. 3 to select nodes that satisfy a threshold priority based on the
hybrid graph settings of the settings manager 220.

[0034] At block 410 of FIG. 4, the node selector 230 sorts nodes of the
graph by priority. For example, the node selector 230 may use a priority queue
to sort the nodes from lowest priority to highest priority (or vice versa). At block
420, the node selector 230 identifies a threshold priority indicated or maintained
by the settings manager 220 (e.g., in response to a user input). At block 430,
the node selector 230 selects nodes from a priority queue of the node selector
230 based on the threshold priority. The example priority queue of the node
selector 230 may sort the nodes based on priority level. For example, at block
430, the node selector 230 may scan the priority queue for a node that has the
identified priority, select that node and any other nodes on either side of the
priority queue (based on whether the threshold is a greater than or less than
threshold). At block 440, the node selector 230 provides the selected nodes to
the hybrid execution engine 240 to be processed. After block 440, the example
process 400 ends. In some examples, after the example process 400, control
may advance to block 330 of FIG. 3.

[0035] The example process 500 of FIG. 5 begins with an initiation of the
node selector 230. The example process 500 of FIG. 5 may be executed to
implement the example block 320 of FIG. 3 to select a threshold number of
nodes based on the hybrid graph settings of the settings manager 220.

[0036] At block 510 of FIG. 6, the node selector 230 sorts nodes of the
graph by priority. For example, the node selector 230 may use a priority queue
to sort the nodes from lowest priority to highest priority (or vice versa). At block
520, the node selector 230 selects a threshold number (e.g., a magnitude of a
selected set of nodes) of nodes from the sorted nodes (e.g., from a higher
priority end of the priority queue, or from a lower priority end of the priority
queue). For example, the node selector 230, at block 520, may retrieve or
receive hybrid graph processing settings indicating that the threshold number
(e.g., 10, 15, etc.) of nodes are to be processed for each iteration. At block 530,

-12-

WO 2017/039703 PCT/US2015/048728

the node selector 230 provides the selected nodes to the hybrid execution
engine 240 to be processed. After block 530, the example process 400 ends.
In some examples, after the example process 400, control may advance to
block 330 of FIG. 3.

[0037] The example process 600 of FIG. 6 begins with an initiation of the
node selector 230. The example process 600 of FIG. 6 may be executed to
implement the example block 320 of FIG. 3 to select a threshold number of
nodes based on the hybrid graph settings of the settings manager 220.

[0038] At block 610 of FIG. 6, the node selector 230 designates a plurality
of bins to be used in a data structure of the node selector 230 based on the
hybrid graph settings. At block 620, the node selector 230 assigns the nodes to
the bins based on characteristics of the nodes (e.g., based on priorities of the
nodes, using a hashing technique, etc.). In some examples, the node selector
230 may evenly divide the nodes among the plurality of bins or assign threshold
priorities to the plurality of bins. At block 630, the node selector 230 selects the
nodes from a threshold number (e.g., 3, 5, etc.) of bins based on the hybrid
graph processing settings. For example, the hybrid graph processing settings
may indicate that nodes from the top 3 (or bottom 3) bins are to be selected. At
block 640, the node selector 230 provides the selected nodes to the hybrid
execution engine 240 to be processed. After block 640, the example process
400 ends. In some examples, after the example process 400, control may
advance to block 330 of FIG. 3.

[0039] The example process 700 of FIG. 7 begins with an initiation of the
hybrid execution engine 240 (e.g., in response to receiving nodes from the node
selector 230). The example process 700 of FIG. 7 may be executed to
implement the example block 330 of FIG. 3 to execute selected nodes in parallel
and provide updated priorities to the node selector 230 based on the execution
of the nodes.

[0040] At block 710 of FIG. 7, the hybrid graph execution engine 240
executes the selected nodes in parallel (e.g., in a synchronous manner). At
block 720, the hybrid execution engine 240 determines/calculates updated
priorities of the selected nodes and/or nodes linked to the selected nodes (e.g.,

-13-

WO 2017/039703 PCT/US2015/048728

which may be identified in processed edges of the selected nodes). The
example hybrid execution engine 240 provides the updated priorities to the
node selector 230 to be used for subsequent iterations of the graph processing.
Accordingly, after block 730, the node selector 230 may reorganize or re-sort
the nodes (e.g., in a priority queue, in bins, etc.) for a subsequent iteration.
After block 730, the example process 700 ends.

[0041] As mentioned above, the example processes of FIGS. 3, 4, 5, 6,
and/or 7 may be implemented using coded instructions (e.g., computer and/or
machine readable instructions) stored on a tangible machine readable storage
medium such as a hard disk drive, a flash memory, a read-only memory (ROM),
a compact disk (CD), a digital versatile disk (DVD), a cache, a random-access
memory (RAM) and/or any other storage device or storage disk in which
information is stored for any duration (e.g., for extended time periods,
permanently, for brief instances, for temporarily buffering, and/or for caching of
the information). As used herein, the term tangible machine readable storage
medium is expressly defined to include any type of machine readable storage
device and/or storage disk and to exclude propagating signals and to exclude
transmission media. As used herein, "computer readable storage medium" and
"machine readable storage medium" are used interchangeably. Additionally or
alternatively, the example processes of FIGS. 3, 4, 5, 6, and/or 7 may be
implemented using coded instructions (e.g., computer and/or machine readable
instructions) stored on a non-transitory computer and/or machine readable
medium such as a hard disk drive, a flash memory, a read-only memory, a
compact disk, a digital versatile disk, a cache, a random-access memory and/or
any other storage device or storage disk in which information is stored for any
duration (e.g., for extended time periods, permanently, for brief instances, for
temporarily buffering, and/or for caching of the information).

[0042] As used herein, the term non-transitory machine readable medium
is expressly defined to include any type of machine readable storage device
and/or storage disk and to exclude propagating signals and to exclude
transmission media. As used herein, when the phrase "at least" is used as the

transition term in a preamble of a claim, it is open-ended in the same manner as

-14 -

WO 2017/039703 PCT/US2015/048728

the term "comprising” is open ended. As used herein the term “a” or “an” may
mean “at least one,” and therefore, “a” or “an” do not necessarily limit a
particular element to a single element when used to describe the element. As
used herein, when the term “or” is used in a series, it is not, unless otherwise
indicated, considered an “exclusive or.”

[0043]FIG. 8 is a block diagram of an example processor platform 800
capable of executing the instructions of FIGS. 3, 4, 5, 6, and/or 7 to implement
the hybrid graph executor of FIG. 2. The example processor platform 800 may
be or may be included in any type of apparatus, such as a server, a personal
computer, a mobile device (e.g., a cell phone, a smart phone, a tablet, etc.), a
personal digital assistant (PDA), an Internet appliance, any other type of
computing device.

[0044] The processor platform 800 of the illustrated example of FIG. 8
includes a processor 812. The processor 812 of the illustrated example is
hardware. For example, the processor 812 can be implemented by at least one
integrated circuit, logic circuit, microprocessor or controller from any desired
family or manufacturer.

[0045] The processor 812 of the illustrated example includes a local
memory 813 (e.g., a cache). The processor 812 of the illustrated example is in
communication with a main memory including a volatile memory 814 and a non-
volatile memory 816 via a bus 818. The volatile memory 814 may be
implemented by Synchronous Dynamic Random Access Memory (SDRAM),
Dynamic Random Access Memory (DRAM), RAMBUS Dynamic Random
Access Memory (RDRAM) and/or any other type of random access memory
device. The non-volatile memory 816 may be implemented by flash memory
and/or any other desired type of memory device. Access to the main memory
814, 816 is controlled by a memory controller.

[0046] The processor platform 800 of the illustrated example also
includes an interface circuit 820. The interface circuit 820 may be implemented
by any type of interface standard, such as an Ethernet interface, a universal
serial bus (USB), and/or a peripheral component interconnect (PCI) express

interface.

-15-

WO 2017/039703 PCT/US2015/048728

[0047] In the illustrated example, at least one input device 822 is
connected to the interface circuit 820. The input device(s) 822 permit(s) a user
to enter data and commands into the processor 812. The input device(s) can be
implemented by, for example, an audio sensor, a microphone, a camera (still or
video), a keyboard, a button, a mouse, a touchscreen, a track-pad, a trackball,
and/or a voice recognition system.

[0048] At least one output device 824 is also connectied to the interface
circuit 820 of the illustrated example. The output device(s) 824 can be
implemented, for example, by display devices (e.g., a light emitting diode (LED),
an organic light emitting diode (OLED), a liquid crystal display, a cathode ray
tube display (CRT), a touchscreen, a tactile output device, a light emitting diode
(LED), a printer and/or speakers). The interface circuit 820 of the illustrated
example, thus, may include a graphics driver card, a graphics driver chip or a
graphics driver processor.

[0049] The interface circuit 820 of the illustrated example also includes a
communication device such as a transmitter, a receiver, a transceiver, a modem
and/or network interface card to facilitate exchange of data with external
machines (e.g., computing devices of any kind) via a network 826 (e.g., an
Ethernet connection, a digital subscriber line (DSL), a telephone line, coaxial
cable, a cellular telephone system, etc.).

[0050] The processor platform 800 of the illustrated example also
includes at least one mass storage device 828 for storing executable
instructions (e.g., software) and/or data. Examples of such mass storage
device(s) 828 include floppy disk drives, hard drive disks, compact disk drives,
Blu-ray disk drives, RAID systems, and digital versatile disk (DVD) drives.

[0051] The coded instructions 832 of FIGS. 3, 4, 5, 6, and/or 7 may be
stored in the mass storage device 828, in the local memory 813 in the volatile
memory 814, in the non-volatile memory 816, and/or on a removable tangible
machine readable storage medium such as a CD or DVD.

[0052] From the foregoing, it will be appreciated that the above disclosed
methods, apparatus and articles of manufacture provide for adjustable hybrid of
synchronous graph processing and asynchronous processing. In examples

-16 -

WO 2017/039703 PCT/US2015/048728

herein, a set of nodes of a graph may be selected using adjustable (via a user
interface) hybrid graph processing settings (e.g., using characteristics of nodes
or priorities similar to asynchronous graph processing) and the selected set of
nodes is processed in parallel (similar to synchronous graph processing).
Accordingly, examples herein provide for the advantages of synchronous
processing (the ability to process nodes in parallel) as well the advantages of
asynchronous processing (the ability to process nodes in order of importance).

[0053] Although certain example methods, apparatus and articles of
manufacture have been disclosed herein, the scope of coverage of this patent is
not limited thereto. On the contrary, this patent covers all methods, apparatus
and articles of manufacture fairly falling within the scope of the claims of this
patent.

-17 -

WO 2017/039703 PCT/US2015/048728

CLAIMS

What is claimed is:
1. A method comprising:

identifying characteristics associated with nodes of a graph;

selecting a set of nodes from the nodes to be processed based on hybrid
graph processing settings and the characteristics; and

executing, via a processor, the selected set of nodes in parallel to

process the graph.

2. The method as defined in claim 1, further comprising:
identifying priorities of the nodes from the characteristics;
identifying a threshold priority from the hybrid graph processing settings;
determining that the priorities of the nodes in the set of the nodes satisfy
the threshold priority; and
selecting the set of nodes based on the priorities of the nodes in the set

of nodes satisfying the threshold priority.

3. The method as defined in claim 1, further comprising:
sorting the nodes based on priorities in the characteristics of the nodes;
determining a threshold number of nodes to be selected, the threshold
number corresponding to a magnitude of the set of nodes; and
selecting the threshold number of nodes from the sorted nodes with the

highest priorities.

-18 -

WO 2017/039703 PCT/US2015/048728

4. The method as defined in claim 1, further comprising:

assigning each of the nodes of the graph to a bin of a plurality of bins
based on priorities associated with the nodes, the characteristics comprising the
priorities;

selecting the set of nodes from a number of bins based on the hybrid

graph processing settings.

5. The method as defined in claim 4, determining the number of bins from

the hybrid graph processing settings.

6. The method as defined in claim 4, wherein the number of bins
corresponds to a number of bins including nodes having a priority that satisfies

a threshold priority.

7. The method as defined in claim 1, further comprising updating the
characteristics of the selected set of nodes after executing the selected set of

nodes.

8. The method as defined in claim 7, further comprising updating the

characteristics of the nodes by adjusting a priority for each of the selected

nodes based on at least one of execution time, execution urgency, or node type.

-19-

WO 2017/039703 PCT/US2015/048728

9. An apparatus for processing a graph:

a graph receiver to buffer a graph for processing, the graph comprising a
plurality of nodes;

a node selector to select a set of nodes from the plurality of nodes based
on priorities of the nodes and hybrid graph processing settings;

a settings manager to provide the graph processing settings to the node
selector to select the nodes; and

a hybrid execution engine to execute the set of nodes in parallel in a first
iteration to process the graph and update the priorities of the nodes based on
the execution, the updated priorities to be used for a second subsequent

iteration of processing the graph.

10. The apparatus of claim 9, wherein the node selector is to sort the plurality

of nodes based on the priority for the first iteration.

11. The apparatus of claim 10, wherein the node selector is to re-sort the

nodes after the hybrid execution engine executes the set of nodes in parallel in

the first iteration.

-20-

WO 2017/039703 PCT/US2015/048728

12. A non-transitory machine readable medium comprising instructions that,
when executed, cause a machine to at least:

process a first set of nodes of a graph in parallel in a first iteration of
processing a graph, the first set of nodes selected from nodes of the graph
based on priorities of the nodes; and

determine updated priorities for each of the first set of nodes based on
the processed first set of nodes; and

provide the updated priorities for each of the first set of nodes for a

second iteration subsequent to the first iteration.

13. The non-transitory machine readable medium of claim 12, wherein the
instructions further cause the machine to:

sort the nodes of the graph prior to the processing the first set of nodes in
the first iteration; and

re-sort the nodes of the graph after the first iteration and before the

second iteration.

14. The non-transitory machine readable medium of claim 12, wherein the
instructions further cause the machine to:

determine the updated priorities for each of the first set of nodes by
determining an execution status of the nodes indicating execution time

remaining until convergence of the node.

-9 -

WO 2017/039703 PCT/US2015/048728

15. The non-transitory machine readable medium of claim 12, wherein the
instructions further cause the machine to:
select a second set of nodes based on the updated priorities, and

process the second set of nodes in the second iteration.

99

WO 2017/039703

1/8

PCT/US2015/048728

/— 100

120 110
HYBRID
GRAPH
DATABASE [€* _ GRAPH
EXECUTOR
USER [130
INTERFACE

FIG. 1

WO 2017/039703

2/8

PCT/US2015/048728

f110

HYBRID GRAPH EXECUTOR

L

210 230 ‘
GRAPH A L20
DATA GRAPH NODE HYBRID
«———t-»! RECEIVER | (NOUS ls] EXECUTION
(BUFFER) ENGINE
220
SETTINGS
MANAGER
¥ 3
L 4
TOFROM

USER INTERFACE 130

FIG. 2

WO 2017/039703 PCT/US2015/048728

3/8

/- 300

(START)
I

IDENTIEY CHARACTERISTICS ASSOCIATED 110
WITH NODES OF A GRAPH =

SELECTING A SET OF NODES TO BE
PROCESSED BASED ON GRAPH — 320

PROCESSING SETTINGS AND THE
CHARACTERISTICS

EXECUTING THE SET OF NODES IN 330
PARALLEL TO PROCESS THE GRAPH

FIG. 3

WO 2017/039703 PCT/US2015/048728

4/8 /— 400
(STl\RT)

410
SORT NODES BY PRIORITY 2

I

‘ /—‘ 420

DENTIFY THRESHOLD PRIORITY
SELECT NODES FROM QUEUE BASED ON|— 430
THRESHOLD PRIORITY

|

PROVIDE SELECTED NODES FOR L 440
EXECUTION

FIG. 4

WO 2017/039703

5/8

(START)
l

PCT/US2015/048728

/-— 500

SORT NODES BY PRIORITY

L — 510

|

SELECT A THRESHOLD NUMBER OF
NODES BASED ON SORTED NODES

l

PROVIDE SELECTED NODES FOR
EXECUTION

END

FIG. 5

WO 2017/039703

6/8

(START)
l

PCT/US2015/048728

/— 600

DESIGNATE A PLURALITY OF BINS

L — 610

|

ASSIGN THE NODES TO THE BINS BASED
ON THE PRIORITY

Ve 620

l

SELECT NODES FROM THRESHOLD
NUMBER OF BINS

I

PROVIDE SELECTED NODES FOR
EXECUTION

FIG. 6

WO 2017/039703 PCT/US2015/048728

718

/— 400

(START)

EXECUTE SELECTED NODES IN e 710
PARALLEL

DETERMINE UPDATED PRIORITIES OF

L 720
SELECTED NODES AND/OR NODES
LINKED TO SELECTED NODES

PROVIDE UPDATED PRIORITIES FOR | — 730
SUBSEQUENT ITERATIONS

FIG. 7

WO 2017/039703 PCT/US2015/048728

8/8

/- 800
T T T T v e e e e ey e ey e e ’ -1
| i
P
RN =L 55
| RANDOM vass || L
; ACCESS P> STORAGE | HYBRID
; T MEMORY N " | le- GRAPH EXECUTOR
| 837 N 832 : CODED
; 822 | INSTRUCTIONS
b o818 INPUT
| — DEVICE(S) |
; READ ONLY | |
; MEMORY [® l |
; -—1\— 820 : | 7
| 832 | INTERFACE [¢——L——>C NETWORK
; 812 N\ :

P SSOR
| Mo ek
| MEMORY | [QUTPUT |
; — B3 DEVICE(S) :
kY

| \—- 832 18 :
i |

FIG. 8

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2015/048728

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 17/30(2006.01)i, GOGF 17/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 17/30; GO6F 9/48; HO4L 29/08; GO6F 9/50; GO6F 17/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: graph processing, hybrid, priority, setting, parallel, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2014-0136553 A1 (INTERNATIONAL BUSINESS MACHINES CORP.) 15 May 2014 1-15
See paragraphs [0070]-[0075]; claim 1; and figures 5A-5C.

A WENLEI XIE et al., "Fast Iterative Graph Computation with Block Updates," 1-15
In: Proceedings of the VLDB Endowment, Vol. 6, No. 14, pp. 2014-2025,
September 2013

(http://dl.acm.org/citation.cfm?id=2556581)

See pages 2015 and 2024.

A US 2015-0006606 A1 (GOOGLE INC.) 01 January 2015 1-15
See paragraphs [0036]-[0047] and figure 4.

A US 2014-0380322 A1 (SAP AG) 25 December 2014 1-15
See paragraphs [0027]-[0030] and [0049]-[0054]; claims 1-2; and
figures 1 and 5.

A US 2015-0067695 A1 (MASAKI HAMAMOTO et al.) 05 March 2015 1-15
See paragraphs [0045]-[0046] and [0065]-[0075]; and figures 2 and 10-11.

. . . . N .
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
"E" carlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
"O" document referting to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art
"P" document published prior to the international filing date but later "&" document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
31 May 2016 (31.05.2016) 31 May 2016 (31.05.2016)
Name and mailing address of the [SA/KR Authorized officer

International Application Division
¢ Korean Intellectual Property Office NHO, Ji Myong
Y 189 Cheongsa-ro, Seo-gu, Daejeon, 35208, Republic of Korea

inb;imile No. +82-42-481-8578 Telephone No. +82-42-481-8528

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2015/048728
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014-0136553 Al 15/05/2014 US 2014-0136555 Al 15/05/2014
US 2015-0006606 Al 01/01/2015 EP 3014446 Al 04/05/2016
WO 2014-210501 Al 31/12/2014
US 2014-0380322 Al 25/12/2014 EP 2819009 A2 31/12/2014
EP 2819009 A3 06/05/2015
US 9329899 B2 03/05/2016
US 2015-0067695 Al 05/03/2015 WO 2013-145001 Al 03/10/2013

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - wo-search-report
	Page 33 - wo-search-report

