I*I Innovation, Sciences et Innovation, Science and CA 3084595 A1 2019/06/20
Développement économique Canada Economic Development Canada
en 3 084 595

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

t2 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13 A1

(86) Date de dépo6t PCT/PCT Filing Date: 2018/12/12 (51) ClLiInt./Int.Cl. G16H 50/20(2018.01),
(87) Date publication PCT/PCT Publication Date: 2019/06/20 A61B 8/08(2006.01), GO6T 7/00(2017.01)
< - - . (71) Demandeur/Applicant:
(85) Entrée phase nationale/National Entry: 2020/06/03 OXFORD UNIVERSITY INNOVATION LIMITED, GB
(86) N° demande PCT/PCT Application No.: EP 2018/084642
o o (72) Inventeurs/Inventors:
(87) N° publication PCT/PCT Publication No.: 2019/115652 UPTON, ROSS, GB;

(30) Priorité/Priority: 2017/12/13 (GB1720791.1) LEESON, PAUL, GB
(74) Agent: MOFFAT & CO.

(54) Titre : PROCEDE ET APPAREIL DE MODELISATION DE DIAGNOSTIC
(54) Title: DIAGNOSTIC MODELLING METHOD AND APPARATUS

200

100+

1 ]
100 200 300

(57) Abrégé/Abstract:

The present disclosure relates to a system (100) for generating a diagnostic model. The system (100) includes a processor (108)
configured to analyse a plurality of reference data sets. The reference data sets each include at least one image (230, 240). The
analysis identifies at least one feature in each image (230, 240). A metric is calculated in dependence on the at least one identified
feature. Outcome data associated with at least some of the reference data sets is acquired. The diagnostic model is compiled in
dependence on the at least one calculated metric and the associated outcome data. The present disclosure also relates to a
method of generating a diagnostic model; and a non-transitory computer-readable medium.

50 rue Victoria ¢ Place du Portage 1 ® Gatineau, (Québec) KI1AOC9 e www.opic.ic.gc.ca i+l

50 Victoria Street e Place du Portage 1 e Gatineau, Quebec KIAO0C9 e www.cipo.ic.gc.ca ( Eal lada



CA 03084595 2020-06-03

Abstract

The present disclosure relates to a system (100) for generating a
diagnostic model. The system (100) includes a processor (108) configured
to analyse a plurality of reference data sets. The reference data sets each
include at least one image (230, 240). The analysis identifies at least one
feature in each image (230, 240). A metric is calculated in dependence on
the at least one identified feature. Outcome data associated with at least
some of the reference data sets is acquired. The diagnostic model is
compiled in dependence on the at least one calculated metric and the
associated outcome data. The present disclosure also relates to a method
of generating a diagnostic model; and a non-transitory computer-readable

medium.
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DIAGNOSTIC MODELLING METHOD AND APPARATUS

TECHNICAL FIELD
The present disclosure relates to a diagnostic modelling method and apparatus. More
particularly, but not exclusively, the present disclosure relates to a system and method for

generating a diagnostic model.

BACKGROUND

Two-dimensional (2D) echocardiography is an imaging technique through which the motion of
the heart can be assessed under different conditions, for example resting or stress conditions.
The analysis may be performed under other conditions including, for example, an intermediate
stress stage and/or a recovery stage. This can highlight areas of the heart that are hypo- or
dysfunctional, and can thus identify patients in which medical intervention may be necessary.
A typical model of the left ventricle comprises sixteen (16) segments which are visible using
different 2D images of the heart. Other models of the left ventricle may, for example, comprise
seventeen (17) segments. The apical inferior segment, mid inferior segment, basal inferior
segment, apical anterior segment, mid anterior segment and basal anterior segment are
visible in an apical two chamber image. The apical septum segment, mid septum segment,
basal septum segment, apical lateral segment, mid lateral segment and basal lateral segment
are visible in an apical four chamber image. The anteroseptum segment, inferoseptum
segment, mid inferior segment, mid anterior segment, anterolateral segment and inferolateral
segment are visible in a parasternal short axis image. The apical lateral segment, the mid
inferolateral segment, basal inferolateral segment, the apical septum segment, the mid
septum segment, and the basal septum segment are visible in an apical three chamber image
(or parasternal long axis image). The behaviour of each segment can be viewed in different
sections of the left ventricle. The motion of each segment of the myocardium under different
conditions (such as resting and stress conditions) is currently determined by interpretation of
the 2D echocardiography data by an expert cardiologist. This is performed in a categorical
manner. For example, each section of the myocardial wall may be classified as having one of
the following reference wall motion scores: normal (“17), hypokinetic (“2”), akinetic (“3"),
dyskinetic (“4”), and unable to score (“X”). Other classifications may be used, for example
defining five (5) or seven (7) discrete scores for each segment. The known techniques rely on

subjective classification and may prove a time consuming exercise.

It has been recognised that image quantification tools need to allow for the following: (i)

changing underlying disease pathophysiology over time; (ii) disease pathology variations with
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geographical location and changing nature of the patient population being referred for the test;

and (iii) the changing understanding of what is defined as disease or what is disease causing.

At least in certain embodiments, the present invention seeks to provide an improved method

and apparatus for generating a diagnostic model.

SUMMARY OF THE INVENTION
Aspects of the present invention relate to a system for generating a diagnostic model, a
method of generating a diagnostic model, and a non-transitory computer-readable medium as

claimed in the appended claims.

According to a further aspect of the present invention there is provided a system for generating
a diagnostic model, the system comprising a processor configured to:

analyse a plurality of reference data sets, each reference data set comprising at least
one image, the analysis comprising identifying at least one feature in each image;

calculate at least one metric in dependence on the at least one identified feature;

acquire outcome data associated with at least some of the reference data sets; and

compile the diagnostic model in dependence on the at least one calculated metric
and the associated outcome data. The use of outcome data establishes a feedback loop which
can be used to refine and develop the diagnostic model so as to reflect different outcome
scenarios. The outcome data may be used in machine learning algorithms to adjust thresholds
and/or weightings. The outcome data may potentially facilitate identification of new biomarkers
for diagnostics. The outcome data may be used to modify or adapt the algorithms used to

generate the diagnostic model.

At least in certain embodiments, the reference data sets may each comprise a plurality of
images. Each reference data set may comprise a first image and a second image. The
processor may be configured to analyse each reference data set to identify at least one first
feature in the first image, and identify at least one second feature in the second image, each
at least one first feature being paired with a corresponding one of the at least one second
feature. The processor may be configured to analyse each reference data set to compare
each pair of corresponding first and second features to identify one or more difference
therebetween. Each pair of corresponding first and second features relate to the same feature
in both the first and second images. The first and second images may relate to the same

region, but may be acquired at different times.
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The one or more difference identified between the first and second features may, for example,
comprise one or more of the following: opacity, brightness, contrast, cross-sectional area, size
(in one dimension, two dimensions or three dimensions), position (in one dimension, two

dimensions or three dimensions) and orientation (about one axis, two axes, or three axes).

The processor may be configured to calculate the at least one metric in dependence on the
one or more difference identified between each pair of corresponding first and second

features.

The system may be suitable for generating a diagnostic model for diagnosing a heart
condition. The first image may comprise a first end systolic image and the second image
comprises a second end diastolic image. The one or more difference identified between each
pair of corresponding first and second features may represent a cardiac cyclic change. The at
least one metric may be calculated in dependence on the identified cardiac cyclic change in

respect of each reference data set.

The processor may be configured to label the images in dependence on the outcome data.
The labels may distinguish between different classifications. Each label may, for example
comprise a classification indicating a presence or an absence of a condition or a disease.
Each label may comprise a grade indicating a severity of a condition, for example comprising

an indication of the severity of stenosis.

The outcome data may comprise diagnostic information. The diagnostic information may

comprise a record of a cardiac event, such as a myocardial infarction.

The outcome data may comprise a record of stenosis greater than a threshold value. The
threshold value may be defined as a percentage of stenosis. The threshold may, for example,
be defined as 60%, 70%, 80% or 90%.

The outcome data may be generated after acquisition of the echocardiograph images. For
example, the outcome data may be generated 6 months, 12 months, 18 months, 24 months

or longer after acquisition of the echocardiograph images.

The processor may be configured to update the diagnostic model when the outcome data

becomes available or when the outcome data is updated.
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The processor may be configured to determine a weighting for at least some of the calculated
metrics. Each weighting may be determined in dependence on the outcome data associated

with a given one of the reference data sets.

The diagnostic model may be compiled in dependence on the calculated metrics and the

associated weightings.

The processor may be configured to analyse further reference data sets. The further reference
data seta may each comprise at least one image. The processor may be configured to update

the diagnostic model in dependence on the analysis of the further reference data sets.

The at least one image may comprise an ultrasound image. The at least one image may
comprise an echocardiograph image. Alternatively, or in addition, the at least one image may

comprise a magnetic resonance image (MRI) or a computed axial tomography (CAT) image.

According to a further aspect of the present invention there is provided a method of generating
a diagnostic model, the method comprising:
analysing a plurality of reference data sets, each reference data set comprising at
least one image, the analysis comprising identifying at least one feature in each image;
calculating at least one metric in dependence on the at least one identified feature;
acquiring outcome data associated with at least some of the reference data sets; and
compiling the diagnostic model in dependence on the calculated metrics and the

associated outcome data.

At least in certain embodiments, the reference data sets may each comprise a plurality of
images. Each reference data set may comprise first and second images. The method may
comprise analysing each reference data set to identify at least one first feature in the first
image, and identify at least one second feature in the second image, each at least one first
feature being paired with a corresponding one of the at least one second feature. The method
may comprise comparing each pair of corresponding first and second features to identify one
or more difference therebetween. Each pair of corresponding first and second features relate
to the same feature identified in both the first and second images. The first and second images
may relate to the same region, but may be acquired at different times. The one or more
difference identified between the first and second features may, for example, comprise one or
more of the following: opacity, brightness, contrast, cross-sectional area, size (in one
dimension, two dimensions or three dimensions), position (in one dimension, two dimensions

or three dimensions) and orientation (about one axis, two axes, or three axes).

4
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The method may comprise calculating the at least one metric in dependence on the one or

more difference identified between each pair of corresponding first and second features.

The system may be suitable for generating a diagnostic model for diagnosing a heart
condition. The first image comprises a first end systolic image and the second image
comprises a second end diastolic image. The one or more difference identified between each

pair of corresponding first and second features represents a cardiac cyclic change.

The outcome data may be used to label the corresponding reference data sets. The labels
may distinguish between different classifications. Each label may, for example comprise a
classification indicating a presence or an absence of a condition or a disease. Each label may
comprise a grade indicating a severity of a condition, for example comprising an indication of

the severity of stenosis.

The outcome data may comprise diagnostic information. The diagnostic information may

comprise a record of a cardiac event, such as a myocardial infarction.

The outcome data may comprise a record of stenosis greater than a threshold value.

The outcome data may be generated after acquisition of the echocardiograph images. For
example, the outcome data may be generated 6 months, 12 months, 18 months, 24 months

or longer after acquisition of the echocardiograph images.

The method may comprise updating the diagnostic model when the outcome data is updated

and/or when new outcome data becomes available.

The method may comprise determining a weighting for at least some of the calculated metrics.
Each weighting may be determined in dependence on the outcome data associated with a
given one of the reference data sets. The diagnostic model may be compiled in dependence

on the calculated metrics and the associated weightings.

The method may comprise adding further reference data sets of incrementally. The method
may comprise analysing the further reference data sets. The method may comprise updating

the diagnostic model in dependence on the analysis of the further reference data sets.
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The at least one image may comprise an ultrasound image. The at least one image may
comprise an echocardiograph image. Alternatively, or in addition, the at least one image may

comprise a magnetic resonance image (MRI) or a computed axial tomography (CAT) image.

According to a further aspect of the present invention there is provided a system for generating
a diagnostic model for diagnosing a heart condition, the system comprising a processor
configured to:

analyse a plurality of reference data sets, each reference data set comprising at least
first and second echocardiograph images, the analysis comprising identifying an end systolic
image and an end diastolic image within each reference data set;

compare the end systolic image and the end diastolic image in each reference data
set to identify a cardiac cyclic change;

calculate at least one metric in dependence on the identified cardiac cyclic change in
respect of each reference data set;

acquire outcome data associated with at least some of the reference data sets; and

compile the diagnostic model in dependence on the calculated metrics and the

associated outcome data.

The outcome data may be acquired a period of time after the at least one image. For example,
the outcome data may be generated 6 months, 12 months, 18 months, 24 months or longer

after acquisition of the at least one image.

According to an aspect of the present invention there is provided a method of generating a
diagnostic model for diagnosing a heart condition, the method comprising:

analysing a plurality of reference data sets, each reference data set comprising at
least first and second echocardiograph images, the analysis comprising identifying an end
systolic image and an end diastolic image within each reference data set;

comparing the end systolic image and the end diastolic image in each reference data
set to identify a cardiac cyclic change;

in respect of each reference data set, calculate at least one metric in dependence on
the identified cardiac cyclic change;

acquiring outcome data associated with at least some of the reference data sets; and

compiling the diagnostic model in dependence on the calculated metrics and the

associated outcome data.



10

15

20

25

30

35

CA 03084595 2020-06-03

WO 2019/115652 PCT/EP2018/084642

According to a further aspect of the present invention there is provided a non-transitory
computer-readable medium having a set of instructions stored therein which, when executed,

cause a processor to perform the method described herein.

Any control unit or controller described herein may suitably comprise a computational device
having one or more electronic processors. The system may comprise a single control unit or
electronic controller or alternatively different functions of the controller may be embodied in,
or hosted in, different control units or controllers. As used herein the term “controller” or
“control unit” will be understood to include both a single control unit or controller and a plurality
of control units or controllers collectively operating to provide any stated control functionality.
To configure a controller or control unit, a suitable set of instructions may be provided which,
when executed, cause said control unit or computational device to implement the control
techniques specified herein. The set of instructions may suitably be embedded in said one or
more electronic processors. Alternatively, the set of instructions may be provided as software
saved on one or more memory associated with said controller to be executed on said
computational device. The control unit or controller may be implemented in software run on
one or more processors. One or more other control unit or controller may be implemented in
software run on one or more processors, optionally the same one or more processors as the

first controller. Other suitable arrangements may also be used.

Within the scope of this application it is expressly intended that the various aspects,
embodiments, examples and alternatives set out in the preceding paragraphs, in the claims
and/or in the following description and drawings, and in particular the individual features
thereof, may be taken independently or in any combination. That is, all embodiments and/or
features of any embodiment can be combined in any way and/or combination, unless such
features are incompatible. The applicant reserves the right to change any originally filed claim
or file any new claim accordingly, including the right to amend any originally filed claim to
depend from and/or incorporate any feature of any other claim although not originally claimed

in that manner.

BRIEF DESCRIPTION OF THE DRAWINGS
One or more embodiments of the present invention will now be described, by way of example
only, with reference to the accompanying figures, in which:

Figure 1 is a schematic view of an echocardiography system according to an
embodiment of the invention;

Figure 2 shows schematically a four-chamber view of a heart;
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Figure 3 is a flow diagram showing the main steps of a diagnostic method performed
by the system of Figure 1;

Figure 4A shows an end systole image captured by the echocardiography system
shown in Figure 1;

Figure 4B shows an end diasystole image captured by the echocardiography system
shown in Figure 1;

Figure 5A shows contour data sets composed of end systole contour points and end
diastole contour points;

Figure 5B shows a plurality of elements generated from the contour data sets shown
in Figure 5A;

Figure 6A illustrates generation of an area metric for each element illustrated in
Figure 5B;

Figure 6B illustrates generation of a mean distance metric for each element illustrated
in Figure 5B;

Figure 6C illustrates generation of a rectangularity metric for each element illustrated
in Figure 5B;

Figure 6D illustrates generation of a solidity metric for each element illustrated in
Figure 5B;

Figure 7A illustrates the analysis of the area metric for a rest condition;

Figure 7B illustrates the analysis of the mean distance metric for a rest condition;

Figure 7C illustrates the analysis of the rectangularity metric for a rest condition;

Figure 7D illustrates the analysis of the solidity metric for a rest condition;

Figure 8A illustrates the analysis of the area metric for a stress condition;

Figure 8B illustrates the analysis of the distance metric for a stress condition;

Figure 8C illustrates the analysis of the rectangularity metric for a stress condition;

Figure 8D illustrates the analysis of the solidity metric for a stress condition;

Figure 9A illustrates a reference data model based on bivariate analysis of the
normalised area and mean distance metrics;

Figure 9B shows a normally distributed data set applied to the reference data model
illustrated in Figure 9A;

Figure 10A illustrates the multivariate analysis of each of the metrics for a first rest
condition in a two-chamber apical image;

Figure 10B illustrates the multivariate analysis of each of the metrics for a second
rest condition in a four-chamber apical image;

Figure 11A illustrates the multivariate analysis of each of the metrics for a first stress

condition in a two-chamber apical image;
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Figure 11B illustrates the multivariate analysis of each of the metrics for a second
stress condition in a four-chamber apical image;

Figure 12A shows scoring applied to elements in a rest condition;

Figure 12B shows scoring applied to elements in a stress condition; and

Figure 13 shows a decision tree composed of a series of decision points defining

threshold values.

DETAILED DESCRIPTION

An echocardiography system 100 in accordance with an embodiment of the present invention
will now be described with reference to the accompanying figures. The echocardiography
system 100 is operable to analyse images of a heart 200 and to score the cardiac cyclic

motion.

As shown in Figure 1, the echocardiography system 100 comprises a transducer array 102
arranged to be located close to the body of a patient 104, typically as close to the heart as
possible, a processing unit 106 which includes a processor 108 which may be a digital
electronic processor, a memory 110 such as a hard disk, and a display 112, such as a flat
screen monitor or LED display. The system may further include a user input device, for
example a touchscreen 114 integrated into the display 112, which provides a user input
allowing a user to provide inputs to the echocardiography system 100. Other user inputs such
as a mouse, touchpad or keyboard may of course be used. The processing unit 106 is
connected to the transducer array 102 and is arranged to control the transducer array as a
phased array so as to emit an ultrasound beam which scans across the patient in a series of
pulses, and detect reflected ultrasound from the heart from each pulse. One scan of the heart
builds up a single image, and the scan is repeated at typically 25 to 50 images per second to
build up a real time video image of the heart showing its movement during the cardiac cycle.
Each image may be stored in the memory 110 as an image data set which may comprise, for
example, intensity values for each of the pixels of which the image is made up. While the
system is described herein in general terms, suitable echocardiography systems include, for
example the Philips Epic iE33, GE vivid €9, or portable systems such as the Philips CX50, or

hand-held systems.

The process of echocardiography is well known and is not described herein in detail. There
are several different imaging methods, but the echocardiography system 100 in accordance
with the present embodiment uses two-dimensional imaging. It is known to provide images on
several different planes through the heart, which show different aspects of the four main
chambers of the heart, the left ventricle (LV), right ventricle (RV), left atrium (LA) and right

9
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atrium (RA). Such views include, for example, an apical four chamber view, an apical two
chamber view, an apical three chamber view and parasternal long and short axis views. In
each case, while a single still image can be obtained, typically a series of views is acquired
over the cycle of the heart so that its movement can be recorded and analysed. The
echocardiography system 100 may utilise one or more of the aforementioned views to score

the cardiac cyclic motion of the heart 200.

A four-chamber apical image of a heart 200 is shown in Figure 2 by way of example. The
image comprises a 2D plane of the heart 200. The image shows a left ventricle (LV) 202, a
right ventricle (RV) 204, a left atrium 206, a right atrium 208 and a septum 210. An apex 212,
a lateral wall 214, a base 216 and an inner wall 218 of the left ventricle 202 are also visible in
the four-chamber apical view. A longitudinal axis 220 of the left ventricle 202 extends through
the apex 212. The left ventricle 202 has first and second sides 222, 224 disposed on opposing

sides of the longitudinal axis 220.

The processing unit 106 analyses the four-chamber apical image to implement the scoring
techniques described herein. Alternatively, or in addition, the processing unit 106 may utilise
one or more of the following: a two-chamber apical image, a parasternal short axis image and
a three-chamber apical view. Other echocardiograph images could be used by the processing
unit 106 to implement the scoring techniques described herein. The processing unit 106 may
use various combinations of the echocardiograph images provide scoring for the sixteen (16)
segments of the left ventricle. The processing unit 106 may analyse a plurality of images and
score the cardiac cyclic motion in dependence on the metrics for multiple images. The
processing unit 106 may qualitatively assess the available images and prioritise an image
determined as providing a clearer representation of the cardiac cyclic motion of a particular
section of the heart wall. A Cartesian coordinate system is defined comprising a vertical axis
(referred to as the y axis herein) extending through the apex 212 of the left ventricle 202 and
extending along its longitudinal axis, and a horizontal axis (referred to as the x axis herein)
through the mid-point of the left ventricle 202 half way between the apex 212 and the base
216.

A block diagram representing operation of the echocardiography system 100 is shown in
Figure 3. The echocardiography system 100 is arranged to acquire a sequence of 2D images
and store them in memory 110 (BLOCK 300). The images may be acquired over a single
cardiac cycle, and may include for example between ten (10) and fifty (50) images covering
one cycle. The echocardiography system 100 may perform a single scan or more than one

scan. For example, the echocardiography system 100 may perform first and second scans.

10
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The first scan may be performed when the patient is under rest conditions and the second
scan may be performed when the patient is under stress condition. The echocardiography
system 100 may optionally perform one or more intermediate scan between the rest condition
and the stress condition, for example during a recovery phase as heart rate returns to normal
after being stressed. The acquisition of the images can be carried out on a conventional
echocardiography system. The subsequent analysis of the images can be carried out using
the same processing unit 106 that forms part of the echocardiography system as shown in
Figure 1. However, the images may be downloaded onto a computer, such as a laptop or PC,
which has a processor, memory, user input and display, which operate for this purpose in the
same way as those of the processing unit 106, and the further analysis of the images may be
carried out on that computer under the control of dedicated software. It will be understood that
the images may be retrieved from a PACS (picture archiving and communication system).
Alternatively, or in addition, images may be transmitted to an external server for processing.

The images may be anonymised prior to transmission.

The image closest to end systole, i.e. maximum contraction during the cardiac cycle, and the
image closest to end diastole, i.e. maximum volume during the cardiac cycle, are identified for
the left ventricle 202 (BLOCK 302). This can be done by a user viewing the images on the
display 112 and selecting a first image 230 as closest to end systole (referred to herein as the
end systole image 230), and a second image 240 as closest to end diastole (referred to herein
as the end diastole image 240). The end systole image 230 and the end diastole image 240
are acquired at first and second times respectively in the cardiac cycle. An exemplary end
systole image 230 is shown in Figure 4A, and an exemplary end diastole image 240 is shown
in Figure 4B. The selection of the end systole image 230 and the end diastole image 240 may
be made by the user on the basis of an assessment and comparison of the volume of the left
ventricle 202 in each of the images as judged by eye, or by noting the points of opening and
closing of the mitral valve, or using the QRS complex on an ECG plot, or by any combination
of these. Alternatively, the processor 108 may be arranged to use image processing
techniques to identify the end systole image 230 and the end diastole image 240. The image
processing techniques may, for example, determine the volume of the left ventricle 202 in
each of the images. The processor may identify the image with the smallest left ventricle
volume as the end systole image 230; and the image with the largest left ventricle volume as
the end diastole image 240. Alternatively, the image processing techniques may identify and
track movements of image elements which are persistent across multiple images to identify
the end systole image 230 and the end diastole image 240. The reversal in the direction of
movement of the persistent image elements may be used to identify end systole and end

diastole, for example. The end systole image 230 and the end diastole image 240 are identified

11
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in the memory 110, for example being marked with an appropriate flag, so that they can be

selected and viewed by a user.

The inner wall 218 of the left ventricle 202 is identified at end systole in the end systole image
230, and at end diastole in the end diastole image 240 (BLOCK 304). The left ventricle 202 is
contoured (or mapped) at end diastole in the end systole image 230 and at end systole in the
end diastole image 240 (BLOCK 306). The contouring of the left ventricle 202 comprises
identifying a plurality of end systole contour points 232-n around the inner wall 218 in the end
systole image 230; and a plurality of end diastole contour points 242-n around the inner wall
218 in the end diastole image 240. A first continuous curve is plotted between the end systole
contour points 232-n to form an end systole contour line 233; and a second continuous curve
is plotted between the end systole contour points 242-n to form an end diastole contour line
243. The end systole contour line 233 and the end diastole contour line 243 may comprise
straight lines and/or curved lines. The end systole contour line 233 and the end diastole
contour line 243 may, for example, be profiled to match a boundary identified in the end systole

image 230 and the end diastole image 240 respectively.

The end systole contour points 232-n and the end systole contour line 233 form an end systole
contour data set 234; and the end diastole contour points 242-n and the end diastole contour
line 243 form an end diastole contour data set 244. Each end systole contour point 232-n in
the end systole contour data set 234 is paired with a corresponding one of the end diastole
contour points 242-n in the end diastole contour data set 244. The resulting pairs of end systole
and end diastole contour points 232-n, 242-n represent changes in the motion of the wall of
the heart 200 during a cardiac cycle. The pairs of end systole and end diastole contour points
232-n, 242-n may correspond to the same feature of the left ventricle 202, albeit in different
locations in the end systole image 230 and the end diastole image 240 due to the wall motion
during the cardiac cycle. In the present embodiment, thirteen (13) end systole and end diastole
contour points are identified in the end systole image 230 and the end diastole image 240.
The end diastolic contour points and the end systolic contour points are labelled 1 to 13
according to their position along the endocardium (i.e. n=1, 2, 3, ...13). The end systole and

end diastole contour data sets 234, 244 are combined, as shown in Figure 5A.

As shown in Figure 5B, the end systole contour points 232-n and the end diastole contour
points 242-n form a plurality of elements E; (where i is a whole number) representing the
cardiac cyclic motion of the internal wall (BLOCK 308). As described herein, the elements E;
are analysed and scored to grade the cardiac cyclic motion of the corresponding section of

the inner wall 218 of the left ventricle 202. In the illustrated arrangement, three (3) pairs of end

12
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systole contour points 232-n and end diastole contour points 242-n (i.e. three (3) end systole
contour points 232-n and three (3) end diastole contour points 242-n from the respective end
systole and end diastole contour data sets 234, 244) define each element E;. In the illustrated
example, the end systole image 230 and the end diastole image 240 are two-chamber apical
images. The changes in the cardiac cyclic motion of the internal wall are represented by six
(6) elements E1s. Each of the elements E16 is in the form of a planar (two-dimensional)
polygon. The elements E1s correspond to a respective segment of the model of the left
ventricle. In particular, a first element Eicorresponds to the basal inferior segment; a second
element E, corresponds to the mid inferior segment; a third element Es corresponds to the
apical inferior segment; a fourth element E4 corresponds to the apical anterior segment; a fifth
element Es corresponds to the mid anterior segment; and a sixth element Es corresponds to
the basal anterior segment. It will be understood that the cardiac cyclic changes may be
represented by a different number of elements E;, for example less than six (6) elements or

more than six (6) elements.

The elements E; are analysed to generate at least one wall motion metric for scoring (i.e.
classifying or grading) the cardiac cyclic motion of the corresponding sections of the heart 200
(BLOCK 310). The analysis of the elements E; is described in more detail herein. The
generated metric is compared to a predefined reference data model to score the wall motion
(BLOCK 312). The results of the scoring are then output, for example to a screen or display

(BLOCK 314). The scoring may be reviewed by a clinician.

The contouring of the left ventricle 202 will now be described in more detail. The contouring
may be performed by an echocardiographer; or using suitable image processing techniques.
Echo images of a left ventricle 202 acquired with a contrast agent are shown in Figures 4A
and 4B. The end systole image 230 is shown in Figure 4A; and the end diastole image 240 is
shown in Figure 4B. The apex 212 of the left ventricle 202 can be located as the top of the left
ventricle 202, and the base 216 of each side 222, 224 can be located from the shape of the
inner wall 218. The longitudinal (Y) axis is defined as the reference line passing through the
apex 212 and the midpoint between the base of the two sides 222, 224. The x axis can then
be defined as the line perpendicular to the y axis half way between the apex and the midpoint
between the two sides of the base 216. The mid-point on each side 222, 224 can be identified
as the point where the x axis intersects the side wall on that side 222, 224. The intermediate
end systole contour points 232-n and the end diastole contour points 242-n may be identified
by subdividing the regions between the apex 212 and the mid-point on each side 222, 224;
and by subdividing the region between the mid-point and the base on each side 222, 224.
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As mentioned above, each of these end systole contour points 232-n and the end diastole
contour points 242-n may be identified by a user. Alternatively, image processing may be used
to identify the end systole contour points 232-n and the end diastole contour points 242-n. If
image processing is used, the outline of the left ventricle 202 is first identified as the boundary
between the lighter area within the left ventricle 202 and the darker area of the myocardium
forming the walls around it (or vice versa for images acquired without use of a contrast agent).
Suitable algorithms for identifying such boundaries are well known. Once the boundary has
been identified, the algorithm may then be arranged to identify the highest point (maximum y
value) of the boundary as being the apex 212, and the points where the boundary changes
direction at the lower end as the base 216. Again, algorithms for analysing the radius and
direction of curvature, and how that changes around the boundary, can be used to identify
these points, and the points at the lower end of the apex 212. The coordinates of each of the
end systole contour points 232-n and the end diastole contour points 242-n are determined
with reference to the coordinate system. The scale of the images acquired by the
echocardiography system 100 is known. Thus, the coordinates of each of the end systole
contour points 232-n and the end diastole contour points 242-n define the position of the point
in the plane of the corresponding image. The distance between the contour points in each pair
indicates the distance moved by the corresponding section of the heart 200 between end

systole and end diastole.

The analysis of the elements E; to generate wall motion metrics will now be described with
referenced to Figures 6A to 6D. As shown in Figures 6A, each element E; is in the form of a
polygon having n sides. As shown in Figure 6A, an element area A of each element E; is

calculated from the first and second sets of contour data 234, 244 by means of a shoelace

formula:
1 n—1 n—1
A= 5 Z XiYiv1 T XpY1 — Z Xit1Yi + X1Yn
i=1 i=1
(Equation 1)
where n = the number of sides of the polygon; and

(x;,y;) = the vertices of the polygon (i = 1,2, ..., 6).

The calculated area A of each element E; is then normalised as a fraction of the total area

represented by the total area of the end-diastolic contour points.

14



10

15

20

25

30

CA 03084595 2020-06-03

WO 2019/115652 PCT/EP2018/084642

As shown in Figure 6B, the Euclidean distance (d) between each pair of end-diastolic and end-
systolic end systole contour points 232-n and the end diastole contour points 242-n is

computed using the equation:

n
d= > @-p
i=1
(Equation 2)
where n = the number of dimensions;

p = the co-ordinates of the end diastolic contour point; and

q = the co-ordinates of the end systolic contour point.

The mean distance (d) for each element E; is then calculated (i.e., x(d,,d,, d3) for the first
element E1, x(ds,d,,ds) for the second element E2, and so on). The mean distance is
subsequently normalised as a fraction of the total perimeter distance of the end diastolic

contour points.

As shown in Figure 6C, a rectangularity of each element E;was calculated as the ratio between

the area of each element (4;) and the area of its minimum bounding rectangle (R;):

A,
Rectangularity; = R_l
i

(Equation 3)

where area of each element E;; and

=
I

R; = area of the minimum bounding rectangle.

As shown in Figure 6D, a solidity S; of each element E; was calculated as the ratio between

the element’s area (4;) and the area of its convex hull (H;):

(Equation 4)

where A; = area of each element E;; and

H; = area of the corresponding convex hull.
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In order to assess the correlation between the calculated metrics and the reference wall motion
scores, a reference data set comprising raw (i.e. unprocessed) two-dimensional
echocardiography data was analysed. The reference data set was composed of historic data
comprising end diastolic images and end systolic images for a group of patients. The end
diastolic images and the end systolic images were analysed in accordance with the techniques
described herein to identify the end systole contour points 232-n and the end diastole contour
points 242-n. Elements E; corresponding to respective segments of a standard model of the
left ventricle 202 were thereby identified. The elements E; were analysed using the techniques
described herein to calculate the following metrics: normalised area A, normalised mean
distance d, rectangularity, and solidity S;. The metrics were generated for rest and stress
conditions for each element E. The elements E; were also independently scored by two
cardiologists using a standard scoring system consisting of the reference wall motion scores:
normal (“17), hypokinetic (“2”), akinetic (“3”), dyskinetic (“4”), and unable to score (“X”). Any
scores that were discrepant between the two reference data sets were reviewed and a
consensus reached. Elements with a wall motion score of “X” were removed from the
reference data set (n = 2). Due to the low number of elements in the available reference data
set having a wall motion score of “4” (n = 2), these were also removed from the analysis. Thus,
in the present embodiment, each element E;from the reference data set was scored as normal
(“17), hypokinetic (“27), akinetic (“3”). The analysis was repeated for s rest condition and a
stress condition for each patient. As described herein, the metrics calculated through analysis
of the raw reference data set are used to generate a reference data model against which the
calculated metrics may be compared. The reference data model is generated for each element
E.. The reference data model may be a univariate model or a multivariate model. The reference
data model may be stored in the memory 110 of the echocardiography system 100.
Alternatively, the reference data set may be stored in the memory 110 and the reference data
model generated by the processing unit 106. This approach may enable dynamic

comparisons, for example in respect of particular metrics or combinations of metrics.

A plot of the calculated metrics for each element E; and the wall motion score allocated by the
cardiologists (i.e. normal “1”, hypokinetic “2”, akinetic “3”) for the rest condition are shown in
Figures 7A-7D. The second quartile of the metrics is represented for each reference wall
motion score by a box plot comprising a median line for that set of metrics. The normalised
element area A for each reference wall motion score is shown in Figure 7A. The normalised
mean distances d for each reference wall motion score is shown in Figure 7B. The calculated
solidity for each reference wall motion score is shown in Figure 7C. The calculated

rectangularity for each reference wall motion score is shown in Figure 7D. A Wilks-Lambda
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non-parametric, multivariate test statistic of P < 0.05 is determined in each wall motion score
group. A statistically significant correlation is identified between the calculated metrics and the

allocated wall motion score.

A plot of the calculated metrics for each element E; and the wall motion score allocated by the
cardiologists (i.e. normal “1”, hypokinetic “2”, akinetic “3”) for the stress condition are shown
in Figures 8A-8D. The second quartile of the metrics is represented for each reference wall
motion score by a box plot comprising a median line for that set of metrics. The normalised
element area A for each reference wall motion score is shown in Figure 8A. The normalised
mean distances d for each reference wall motion score is shown in Figure 8B. The calculated
solidity for each reference wall motion score is shown in Figure 8C. The calculated
rectangularity for each reference wall motion score is shown in Figure 8D. A Wilks-Lambda
non-parametric, multivariate test statistic of P < 0.05 is determined in each wall motion score
group. A statistically significant correlation is identified between the calculated metrics and the

allocated wall motion score.

The scoring for each element E; can be calculated in dependence on one of the calculated
metrics. The processing unit 106 may be configured to define a univariate distribution, for
example a univariate normal distribution. By way of example, the scoring can correspond to a
z-score (standard score) for one of the calculated metrics. The z-score indicates how many
standard deviations a calculated metric is from the population mean in units of standard
deviation. The processing unit 106 may be configured to allocate a score to each element E;
corresponding to the determined z-score. However, the accuracy of the score calculated for
each element E; may be improved referencing two or more of the calculated metrics. The
processing unit 106 may be configured to define a multivariate distribution, for example a
multivariate normal distribution. The processing unit 106 may be configured to define a
bivariate distribution or a higher dimensional distribution. The processing unit 106 may be
configured to calculate a ‘distance’ of the calculated metric from a reference population. This
technique enables analysis to be performed in higher dimensions. One approach is to use the
distance from the first principal component of the data PC1. Alternatively, or in addition, the
Mahalanobis distance may be calculated by the processing unit 106. Other statistical analysis

techniques are also appropriate.

By determining the correlation between the mean distance and the area of each element E;, a
score can be determined for the wall section corresponding to each element E;. In the present
embodiment, the scoring comprises a continuous scale, rather than the traditional scoring

system which relies on discrete values. A mock representation of the correlation between z-
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scaled element areas and mean distances is illustrated in Figure 9A. A lower left quadrant Q3
represents those elements E; identified as having potentially abnormal wall motion. A set of
three (3) ellipses E1 to E3 represent the confidence intervals (ClI) for the distribution of the
data points: the inner ellipse E1 represents Cl=68%, the middle ellipse E2 represents CI-95%
and the outer ellipse E3 represents CI=99%. A centroid O of the data is shown; and a line PC1
represents an orthogonal regression line through the data (i.e., the first principal component
of the data PC1). A set of markers M1-M3 are representative of data points which are being
scored. A set of randomly generated, normally distributed data with a covariance of 0.56 (n =
1,000) is illustrated in Figure 9B. Each data point is coloured according to the continuous

scoring determined in accordance with the analysis techniques described herein.

The processing unit 106 in accordance with the present embodiment implements a continuum
approach for scoring each element E;. The principal component models are constructed in
dependence on the z-scaled metrics of each element E;, as described herein. This is
performed for each elements E; derived from the end systole image 230 and the end diastole
image 240. The description herein focuses on the six (6) elements E; corresponding to the
segments visible in the standard model of the two-chamber apical images. It will be understood
that the same techniques may be implemented in respect of additional elements E;
corresponding to other segments of the left ventricle 202, for example by analysis of three-
chamber apical images and/or four-chamber apical images. The analysis is performed
independently in respect of end systole and end diastole images 230, 240 acquired for rest
and stress conditions. The processing unit 106 may compare the results of the analysis in

respect of the rest and stress conditions.

The scoring of the elements E;in dependence on a bivariate analysis based on two calculated
metrics is visualised in Figures 9A and 9B. The metrics in the present case are the normalised
area and the mean distance of each element E;. A reference data model is generated in
dependence on the normalised area and the mean distance of the elements E; identified
through analysis of the reference data set. In the present case, only those elements with an
allocated wall motion score of “1” were included in the generation of the reference data model.
In order to generate a score for a given element E;, the processing unit 106 calculates the
corresponding metrics for that element E;. The processing unit 106 calculates the normalised
area and the mean distance of elements E;identified through analysis of the end systole image
230 and the end diastole image 240 for a patient. The implementation described herein with
reference to Figures 9A and 9B utilises bivariate analysis based on the normalised area and
the mean distance of each element E;. It will be understood that other combinations of the

metrics may be used for scoring each element E;. For example, the bivariate analysis may
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combine the mean distance and solidity metrics; or the normalised area and rectangularity

metrics.

The processing unit 106 may be configured to perform multivariate analysis. The processing
unit 106 may be configured to combine each of the metrics described herein, namely: the
normalised area A, the normalised mean distance d, the rectangularity, and the solidity S;. The
score for each element E; may be calculated in dependence on the multivariate analysis of the
four (4) calculated metrics. Plots of the score calculated in dependence on a first principal
component PC1 and the allocated wall motion score (i.e. normal “1”, hypokinetic “2”, akinetic
“3") are shown in Figures 10, 10B, 11A and 11B. A plot of the score calculated in dependence
on a first principal component PC1 of the multivariate analysis of a rest condition in a two-
chamber apical image is illustrated in Figure 10A. A plot of the score calculated in dependence
on a first principal component PC1 of the multivariate analysis of a rest condition in a four-
chamber apical image is illustrated in Figure 10B. A plot of the score calculated in dependence
on a first principal component PC1 of the multivariate analysis of a stress condition in a two-
chamber apical image is illustrated in Figure 11A. A plot of the score calculated in dependence
on a first principal component PC1 of the multivariate analysis of a stress condition in a four-

chamber apical image is illustrated in Figure 11B.

The calculated metrics for each element E; are compared to the reference data model for a
corresponding element E;. The score for each element E; is calculated in dependence on this
comparison. The score represents a value of the first principal component of the new data; i.e.
how far the calculated metrics are from the centroid of the data and thus how different they
are from the reference data. The score can be calculated on a continuous scale. An example
of this can be seen in Figures 12A and 12B where each element has been shaded according
to the continuous scoring scale described herein. The scored images shown in Figure 12A
represent two chamber data for a rest condition; and the scored images shown in Figure 12B

represent two chamber data for a stress condition.

The processing unit 106 may be configured to calculate different metrics for scoring each
element E;. These metrics may be used in addition to, or instead of the metrics described
herein for the univariate and multivariate analysis. The processing unit 106 may, for example,
calculate one or more of the following metrics: shear; strain; coefficient of variation of the
distances in an element; and aspect ratio. The processing unit 106 may also calculate a
distance metric other than the distance between the pairs of points described herein. For

example, the processing unit 106 may calculate the distance between diametrically opposed
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points within the same element; or the distance between corresponding points in different

elements (i.e. between Ei and Ei+j).

The processing unit 106 has been described with particular emphasis on the analysis of the
element E;in one image to calculate the metrics. It will be understood that the processing unit
106 may analyse multiple images. The different images may contain the same element E;. The
processing unit 106 may be configured to compare the scores generated for a particular
element E; in dependence on the analysis of the different images. If a discrepancy is detected
between the scores, this can be flagged up as a potential problem with image quality or similar.
This may enable the quality of the different images to be checked. Similarly, particularly with
fine-grained elements E;, the scores calculated for elements E; disposed proximal to each
other are typically related. If an expected relationship is identified, this can be flagged as a
potential image quality issue. These techniques may enable identification of an image of one

or more of the element E;, which is more likely to be correct.

The processing unit 106 may analyse the elements E; visible in one or more images to infer
the behaviour of elements E; which are not visible. For example, a score may be estimated for
an unsighted element E; in dependence on a calculated score for at least one element E;
disposed adjacent to or proximal to the unsighted element E;. Further analysis may be
performed to build up a complete model of the left ventricle 202 based on the available views.

The resulting model may enable scoring to be inferred from one or more nearby elements E;.

The statistical analysis described herein was performed within the R statistical computing
environment (v3.4.1), making use of the ggplot2, dplyr, ggbeeswarm, Momocs, pathmapping,
and ggpubr packages. Due to the imbalance in the number of observations between groups
in each comparison, multivariate, non-parametric hypothesis tests were employed to compare
group means using the npmv package. A type | error rate (a) of 0.05 was used for all

comparisons.

The processing unit 106 has been described herein as calculating metrics for elements E;
corresponding to the segments of a standard model of the left ventricle 102. It will be
understood that the techniques described herein do not require that the elements E;
correspond to the segments. For example, the elements E; may be smaller than the segments
of the standard model. The elements E; may correspond to sub-segments of the standard
model. By reducing the size of the elements E; the scoring may provide a more precise
indication of the location of abnormalities in the cardiac cyclic motion. For example, it is

envisaged that the scoring may indicate the location of an abnormal function within one of the

20



10

15

20

25

30

35

CA 03084595 2020-06-03

WO 2019/115652 PCT/EP2018/084642

segments of the standard model, for example highlighting a position near a boundary of the

segment or in a central location.

As described herein, a reference data model is generated by analysing a reference data set
comprising raw two-dimensional echocardiography data. In the embodiment described above,
the reference data set comprises historic data comprising end diastolic images and end
systolic images for a group of patients. In a further development, the reference data set used
to generate the reference data mode may be updated iteratively. For example, the analysis of
new echocardiographs may be incorporated into the reference data set to increase the
available data population. Thus, the reference data model may continue to be refined as
additional data becomes available. The iterative development of the reference data model

may allow for pathological changes and patient evolution.

The analysis described herein is performed independently for each element E;. However, it
will be appreciated that the analysis may be modified to consider the relationship between a
plurality of elements E;. For example, the analysis may simultaneously score the motion of first
and second elements E; which are disposed adjacent to each other or in opposition to each

other, for example on opposing sides of the left ventricle 202.

The reference data model described herein may also be modified in dependence on outcome
data available in respect of some or all of the reference data set. The term “outcome data” is
used herein to refer to diagnostic information. The outcome data is associated with a
corresponding record or set of data in the reference data set. The diagnostic information may,
for example, relate to angiographic data and/or cardiac events for a patient. The outcome data
may indicate whether the patient had a positive or negative diagnosis for a cardiac condition,
for example the presence or absence of coronary artery disease, during an elapsed time
interval. The outcome data may, for example, be generated one (1) year, two (2) years or
three (3) years after acquisition of the echocardiography data. A weighting of the data within
the reference data set may be adjusted in dependence on the outcome data. For example, a
weighting applied to the data within the reference data set for which outcome data is available
may be increased or decreased to change the statistical significance thereof. The weighting
may be adjusted in dependence on the period of time elapsed between acquisition of the
echocardiograph image and a subsequent diagnostic event. In a variant, the reference data
model could be generated exclusively in dependence on data for which outcome data is
available. The reference data model could be generated exclusively in dependence on data

for which the outcome data indicates the presence or absence of a particular condition, such
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as coronary artery disease. The outcome data may be used to filter the reference data set to

generate different reference data models.

The processing unit 106 may be configured also to provide a diagnostic function to generate
a diagnostic output. A diagnostic system is disclosed in the Applicant’s International patent
application PCT/GB2017/051720, the contents of which are incorporated herein in their
entirety by reference. It has been recognised that the diagnostic function may utilise the
outcome data described herein. The diagnostic function may also rely on one or more of the
metrics generated for the wall motion score. By way of example, the rectangularity of each
element E; may be used as a feature in the diagnostic model. The use of outcome data when
generating a diagnostic model may help to take account of different disease proportions and
characteristics over time and/or at different medical sites. For example, different sites may
record different proportions of positive (‘Disease’) to negative (‘Normal’) outcomes. By utilising
the outcome data in generating a diagnostic model, allowances may be made for these types
of variations. The results of stress echo test (as determined by a cardiologist during/shortly
after the test) may not always be accurate. An analysis undertaken by the Applicant of one (1)
year outcome accuracy has shown an average inaccuracy of 7.2% in stress echo results
across multiple data sets. By referencing outcome data over a period of time, the accuracy of
the diagnostic model may be improved, thereby enabling mode accurate prediction of whether
or not an individual will go on to develop a disease, such as coronary artery disease. The use
of outcome data is believed to be patentable independently. This enhanced diagnostic
functionality will now be described as a development of the previous embodiment. Like

reference numerals are used for like components.

As described herein, each end systole contour point 232-n is paired with a corresponding one
of the end diastole contour points 242-n in the end diastole contour data set 244. The resulting
pairs of end systole and end diastole contour points 232-n, 242-n represent changes in the
motion of the wall of the heart 200 during a cardiac cycle. Once the end systole and end
diastole contour points 232-n, 242-n have been identified, their x and y coordinates in the
Cartesian coordinate system may be stored in the memory 110, for example as an end systole
coordinate set including the coordinates of the points on the end systole image and an end
diastole coordinate set including the coordinates of the points on the end diastole image. The
processor may be configured to calculate, from the two coordinate sets, the transformation in

geometry of the left ventricle 202 between end systole and end diastole.

The processing unit 106 is configured to calculate values for various parameters that quantify

the movement of the left ventricle 202 between end systole and end diastole. The calculation
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may include working out how far each point has moved in each of the x and y directions, by
working out the change in position (End diastole — End systole) along both the x axis and the
y axis. This gives a set of x axis movements Ax and a set of y axis movements Ay for each
corresponding pair of end systole and end diastole contour points 232-n, 242-n. Each of these
values may be a simple distance with no indication of direction. The mean change of all the
points in both the x axis (AX) and y axis (AY) may then be calculated separately so as to
provide an average Ax value or x direction movement AX, and an average Ay value or y
direction movement AY for the entire left ventricle 202. If each of the individual movement
values are purely distance, without any indication of whether they are in the positive or
negative x or y direction, then these averages will describe the total amount of movement, but
not give an indication of the direction or of whether different parts of the LV wall are moving in

the same direction or opposite directions.

Another parameter that may be calculated for each pair of end systole and end diastole
contour points 232-n 242-n is the mean of the x and y direction movements Ax and Ay, where
the mean value for each point Axy=(Ax+Ay)/2. The mean of all the values of Axy for all points
can then be calculated to a value for the entire ventricle AXY. This calculation is similar to the
calculation of shear strain and is therefore referred to herein as the shear transformation. It
will be appreciated that, for a given distance of movement, this parameter will be largest for
movements at 45 degrees to both of the x and y axes, and smallest for movements along one

of the axes.

A further parameter that can be calculated is similar to the principal transformation that can
be calculated from x and y strain components, and is therefore referred to herein as the

principal transformation, given by

Principal transformation = C1(AX+AY-V(AX+AY)*2+ C2AXY"2)
where C1 and C2 are constants. The constant C1 may, for example, be 2 and

the constant C2 may be 4. These values are used in the examples described below.

This transformation is closely related to the shear transformation and therefore tends to vary
in a similar way to that parameter, but has a negative value indicating contraction of the heart.
However, as indicated by the test results below, the principal transformation value can give a

more reliable diagnosis in some cases, in particular of coronary artery disease (CAD).

It will be appreciated that each of these parameters relates to changes between end systole

and end diastole in a single coronary cycle. However in stress echocardiography, (or
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corresponding tests carried out with other imaging methods) there will be one value for each
parameter for the heart at rest and one value for the heart at stress. Comparing those values,
for example determining the difference between them, gives further information about heart

function that can be used in diagnosis.

Once the x and y movements, and shear and principal transformation values have been
calculated, the processor is then configured to compare these with reference values stored in
the memory 110 to make a diagnosis of one or more specific heart conditions, and to generate
a diagnostic output. The output may be a simple binary output indicating a positive or negative
diagnosis. The processor unit 106 may be arranged to display the output on the display 112.
Alternatively, or in addition, it may be arranged to store the output as data in association with
the images on which it was based, for example by adding output data, indicative of the

diagnosis, to a file in which the images are stored.

The reference values may be determined by means of a learning algorithm which, for example,
can be run on the processor unit 106, and which uses a database of stress echo images with
associated diagnoses as determined by conventional methods, which may be stored in the
memory 110. Specifically, the database may include a large number of sets of images, each
set comprising an end systole image and an end diastole image for both rest condition and
stress condition, together with, for each set of images, an associated diagnosis, such as a
positive or negative diagnosis for coronary artery disease (CAD). The learning algorithm may
be arranged to analyse the images to calculate values of the various parameters described
above, and then to determine the correlation between the diagnosis and the values of each of

the various parameters.

Analysis was carried out on sample images from seventy (70) subjects. All results generated
were from an apical four chamber view. Firstly the values were compared for positive and
negative outcomes as determined from the DSE results. Then the comparison was repeated

with the DSE results corrected for confirmed false positives in the DSE results.
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Table 1 Shows values of the principal transformation (in mm), shear transformation value (in
mm), and mean AX (in mm) at rest and stress for DSE outcome (1= Pos, 2= Neg) in the Apical

four Chamber view.

Group Statistics

DSE_Result N Mean Std. Deviation | Std. Error Mean

Stress_Prin 1.00 9 -6.8214 4.08788 1.36263
2.00 61 -8.9260 2.20018 .28170

Rest_Prin 1.00 9 -7.7332 3.86497 1.28832
2.00 61 -9.3163 2.41589 .30932

Rest_Shr 1.00 9 17.7267 9.16943 3.05648
2.00 61 21.5356 5.50610 .70498

Stress_Shr 1.00 9 17.0074 8.06969 2.68990
2.00 61 22.2608 4.56871 .58496

Rest_X 1.00 9 18.8694 11.021186 3.67372
2.00 61 21.8492 6.65078 .85155

Stress_X 1.00 9 19.9334 9.80639 3.26880
2.00 61 25.8710 7.43965 .95255

Table 2 Shows means of Principal transformation value (in mm), Shear transformation (in mm)

and X transformation (in mm) at rest and stress for Adjusted DSE outcome (1= Pos, 2= Neg).

Group Statistics
Adjusted_DSE N Mean Std. Deviation | Std. Error Mean
Stress_Prin 1.00 7 -4.4716 1.29120 .48803
2.00 63 -9.1203 2.24588 .28295
Rest_Prin 1.00 7 -5.3352 1.21275 .45838
2.00 63 -9.5325 2.44136 .30758
Rest_Shr 1.00 7 12.0845 2.74525 1.03761
2.00 63 22.0438 5.58342 .70344
Stress_Shr 1.00 7 12.2348 3.81629 1.44242
2.00 63 22.6243 4.44025 .55942
Rest_X 1.00 7 11.6937 2.73459 1.03358
2.00 63 22.5519 6.84823 .86280
Stress_X 1.00 7 141727 4.81157 1.81860
2.00 63 26.3226 7.29318 .91885
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Table 3 shows independent samples T-Test for variables vs adjusted DSE.

Independent Samples Test
Levene's Test for Equality of
Yaliances

F Sig. t df Sig. (2-tailed)

Stress_Prin ES;SLESEMES 1705 a5 s 255 - o0
cosumed 8260 | 1059 000

Rest_Prin ESSSLESEHCES 2355 120 4 455 s o0
cosumed rens | 12377 000

RestShr ESSSLESEMES 2106 151 -4 544 Gt non
E;‘:m:games net -7.861 12427 non

Stress_Shr ES:SLESEMES a4 . 5042 o5 000
cosumed 8715 | 7o 000

Rest = Eg:j*f:;iances = 545 00 4135 o5 000
ES:SLESEMES net -8.065 16.400 non

Stress_x Eg:gmeaéiances 427 339 4200 o5 00
cooumed o83 | a9 000

From the values of the various parameters obtained from the sample data, machine learning

may be used to determine the accuracy of each parameter as an indicator of adjusted

Dobutamine stress echo (DSE) outcome. Using the data above, a J48 pruned decision tree

with 10 fold cross validation method was used to classify the data. The accuracy of each

parameter as an indicator of diagnostic outcome is summarized in the tables below, in which

the following abbreviations are used: TP = true positive; FP = false positive; FN = false

negative; TN = true negative; PPV = positive predictive value; and NPV = negative predictive

value.

Table 4 Accuracy of Consultant Interpretation

J4g TP=6 FN=1
Accuracy = 94.3% FP=3 TN =60
Sensitivity = 85.7% PPV =66.7%

Specificity = 95% NPV =98.4%
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Table 5 Accuracy of Stress Principal Transformation for Adjusted DSE outcome

J48 Value =-5.95 TP=7 FN=0
Accuracy = 95.7% FP=3 TN =60
Sensitivity = 100% PPV =70%

Specificity = 95.2% NPV =100%

Table 6 Accuracy of Rest Principal Transformation for Adjusted DSE outcome

J48 Value =-6.92 TP=5 FN=2
Accuracy = 88.6% FP=6 TN =57
Sensitivity =71.4 PPV =455 %
Specificity = 90.5% NPV =96.6%

Table 7 Accuracy of Stress Shear Transformation for Adjusted DSE outcome
J48 Value = 15.85 TP=6 FN=1
Accuracy = 95.7% FP=2 TN=61
Sensitivity = 85.7% PPV =85.7
Specificity = 96.8 % NPV =98.4

Table 8 Accuracy of Rest Shear Transformation for Adjusted DSE Outcome

J48 Value = 15.35 TP=5 FN=2
Accuracy = 91.4% FP=4 TN =59
Sensitivity =71.4 PPV = 55.6%

Specificity =93.7 % NPV =96.7%

Then from all of the variables, using machine learning, a decision tree which is shown in Figure
13 was derived to provide accurate diagnosis from the data. The decision tree defines a series
of decision points, each of which defines a reference or threshold value of a parameter. The
decision tree outlines a simple algorithm which operates as follows. Firstly the principal
transformation of the left ventricle 202 as described above is determined for the stress
condition of the heart. If the transformation is less than -5.95mm (i.e. a negative value with
magnitude greater than 5.95mm) then the diagnosis is negative. If the value is greater than

-5.95mm (i.e. a negative value with magnitude greater than 5.95mm) then difference in
principal transformation between rest and stress conditions is greater than 12.278053mm then
the diagnosis is negative, but if it is less than that distance, the diagnosis is positive. It will be
appreciated that the structure of the decision tree, and the reference or threshold values at

each decision point in the decision tree, will depend on the diagnosis that is to be made.
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The processing unit 106 described above implements a fixed (static) diagnostic model for
diagnosing coronary artery disease. As illustrated in Figure 13, the decision tree defines a
series of decision points, each of which defines a reference or threshold value of a parameter.
The processing unit 106 may implement a dynamic diagnostic model. The reference or
threshold values at each decision point in the decision tree may be modified dynamically, for
example to reflect the new echocardiographic data and/or outcome data. At least in certain

embodiments, this may provide improved diagnostic functions.

The new echocardiographic data may be incrementally added to the existing set of reference
data. The new data is used to expand the data population and may progressively change the
diagnostic model. The reference or threshold values used in the decision tree may be updated
to reflect the available echocardiographic data. The iterative development of the reference
data allows the diagnostic model to change with respect to time. It will be understood that the
decision tree described herein may be replaced with other analysis tools, such as a supervised

machine learning model.

The outcome data comprises diagnostic information for each patient, for example relating to
angiographic data and/or cardiac events. The outcome data in the present embodiment
indicates whether the presence or absence of coronary artery disease was detected during
an elapsed time interval after acquisition of the end systole image and end diastole image
used in the reference data set. The outcome data may, for example, be generated one (1)
year, two (2) years, three (3) years or longer after acquisition of the echocardiography data.
The outcome data in the present embodiment is generated one (1) year after acquisition of
the echocardiography data. The outcome data is compiled by considering any angiographic
data and cardiac events that have taken place during the elapsed time interval. It will be
understood that the outcome data continues to evolve with respect to time. The outcome data
may, therefore, be updated on an ongoing basis, for example on an annual basis or when a
classification changes. By updating the outcome data, the diagnostic tools and diagnostic
models generated in dependence on the reference data may be adjusted dynamically to

represent pathological changes and patient evolution.

In order to implement the dynamic diagnostic model, a classification model is built using a
supervised machine learning algorithm. The outcome data is used to label the reference data
accessed by the machine learning algorithm. The machine learning algorithm uses the labels
to distinguish between different classifications. In the present embodiment, the classifications
correspond to the presence or absence of coronary artery disease. Alternatively, or in addition,

the classifications may grade a particular condition, for example in dependence on an
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identified stenosis level or percentage. It will be understood that the classifications may
distinguish between other conditions When generating the diagnostic models, the machine
learning algorithm may adjust the relative weighting of the reference data in dependence on
the labels derived from the outcome data. At least in certain embodiments, updating the
reference data in dependence on the outcome data may provide improved diagnostic accuracy

based on the stress echocardiograms.

In order to build a diagnostic model, a set of features are calculated from the contour data.
The features are calculated per-segment (for example by analysing one or more of the
elements E; described herein) and optionally in respect of the entire left ventricle 202. The
available feature-set is analysed to identify those features that are most relevant. The most
pertinent features may thereby be identified to build the diagnostic model. In the case of a
random forest (which consists of multiple decision trees), the identified features form the
decision nodes. The most relevant features may vary across geographic regions and/or
change as the disease evolves, the features identified for use in the model may change. Even
if the features remain the same, the thresholds and weightings may change. As shown in
Tables 1 and 2 herein, the top feature remains unchanged as the ejection fraction at peak
stress. However, the next most important features changes for the different conditions. In the
first data set (Table 1), the volume change between end-systole and end-diastole is the next
most relevant. However, in the combined dataset, the area of a specific segment at rest in the
two-chamber view is the next most relevant. In order to train the model, the reference data
needs to be labelled. In view of the potential inaccuracies, using the results of a stress echo
(as determined by a cardiologist) as the label will not necessarily lead to an accurate model.
The use of outcome data that is collected a period of time after the acquisition of the reference
data (for example, one (1) year after acquisition of the echocardiograph images), at least some

of these deficiencies can be overcome or ameliorated.

The outcome data can be collected for different periods of time. The outcome data can, at
least in certain embodiments, provide an indication of how far in advance the effects of
coronary artery disease can be identified. Moreover, multiple classes of labels can be used to
predict different disease severity. As more outcome data is accumulated, the diagnostic model
is updated to help ensure that the classification remains as accurate as possible due to the
possibility of disease evolution and population changes. This can be done by retraining the
entire model every time new outcome data is received. In practice, this may prove time-
consuming. As an alternative, incremental machine learning techniques can be implemented

by the processor to continually update the diagnostic model.
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The implementation of the classification model will now be described with reference to a first
reference data set and a second reference data set. The first data set comprises a first set of
one hundred and twenty-four (124) stress echocardiograms (collected in Oxford between May
2011 and August 2013). The second data set comprises a set of three hundred and thirty-nine
(339) stress echocardiograms from a separate study (collected between March 2015 and
August 2016 in six (6) different hospitals across the Thames Valley). The outcome data is
compiled one (1) year after acquisition of the stress echocardiograms. The outcome data
generates a binary outcome value. In particular, an outcome is considered positive if during
the elapsed one (1) year interval one of the following events is identified:

(i a cardiac event (e.g. myocardial infarction);

(i) an angiogram which showed greater than 70% stenosis.
The outcome is considered negative if neither of the aforementioned events (i) or (ii) occurred
in the elapsed one (1) year interval. In the first data set, ten (10) positive outcomes were

identified, and in the second data set thirteen (13) positive outcomes were identified.

The Boruta package from the R statistical computing environment to assess the most relevant
features for predicting an outcome. The Boruta package performs feature selection by
comparing the importance of attributes to those possible at random. A standard
implementation comprising a random forest with 500 trees was implemented. Table 9 details
the most important features and their mean importance score for the first dataset. The second
data set was added to the first data set. Table 10 details the most important features and their
mean importance score for the combined first and second data sets. The most relevant
features change as more data is available for processing. This demonstrates that the
classification model may change with the addition of more reference data. It is believed that
these changes would be more pronounced if the additional reference data is acquired at a
later date and/or over a more widespread geographical area. Although the use of a random
forest model has been described herein, it will be understood that another model could be

used, or indeed an ensemble of models.

Table 9 Most relevant features using the first data set

Feature Mean
importance

EF_P 6.23

Ejection fraction at peak stress

ES_P_to ED_P 6.20

Ratio of end-systolic to end-diastolic peak volume

rect_segment_ 4 R 2C 5.42

Rectangularity of the apical anterior segment at rest
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solid_segment_4_ R 2C 5.41
Solidity of the apical anterior segment at rest
norm_area_segment_4 R 2C 5.35
Normalised area of the apical anterior segment at rest
ES P_to ED_P_2C 5.00

Ratio of the end-systolic to end-diastolic 2 chamber area at peak stress

ES P_to ED_P _4C 4.70
Ratio of the end-systolic to end-diastolic 4 chamber area at peak stress

P_ES 4.53
End-systolic volume at peak stress

total_ES_area_P_2C 3.86
2 chamber end-systolic area at peak stress

dy_ 8 P_4C 3.75

Euclidean distance of the eighth point in 4 chamber at peak stress

Table 10 Most relevant features using combined data from the first and second data sets

Feature Mean
importance

EF_P 6.59

Ejection fraction at peak stress

norm_area_segment_4 R 2C 6.53

Normalised area of the apical anterior segment at rest

ES P_to ED_P _4C 6.38

Ratio of the end-systolic to end-diastolic 4 chamber area at peak stress

norm_area_segment_4 P_4C 5.05

Normalised area of the apical anterior segment at rest

total_ES_area_P_4C 4.30

4 chamber end-systolic area at peak stress

ES P_to ED_P 4.10

Ratio of the end-systolic to end-diastolic area at peak stress

prin_trans_P_4C 3.96

Principal strain in the 4 chamber view at peak stress

solid_segment_4_ R 2C 3.96

Solidity of the apical anterior segment at rest

norm_d_segment_6_P_4C 3.94

Normalised average distance in the basal lateral segment

ES P_to ED_R_4C 3.91

Ratio of the end-systolic to end-diastolic 4 chamber area at peak stress

The implementation of a continued learning strategy capable of incorporating new reference

data may provide a more robust and accurate diagnostic model may be achieved. By

incorporating the new reference data incrementally, the need to retrain the entire model may

be reduced or avoided each time new data becomes available (which can prove a time-
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consuming process, particularly as the size of the reference data set increases). Moreover,
the diagnostic model can adapt to changing disease characteristics over time. This is
particularly important as the most relevant biomarkers may change over time due to the
changing environments and lifestyles of the population, and the model needs to adapt to
account for these. The dynamic diagnostic model can adapt to changing facets and
characteristics of cardiovascular disease, thereby providing a robust and accurate prediction

model.

The dynamic diagnostic model described herein utilises outcome data acquired over a one (1)
year period. It will be understood that the outcome data may be accumulated over different
periods of time. By combining the outcome data over a longer time period, the predictive power

of the dynamic diagnostic model over a longer time period may be assessed.

The present application has been described with reference to cardiovascular disease.
However, it will be understood that the methods and apparatus described herein may have
other applications. For example, diagnostic tools may be developed to adapt to the changing
imaging biomarkers for a tumour if the environment changes and the tumour size, appearance
or calcification changes. Furthermore, the techniques may be applicable in imaging systems

other than echocardiographs.

It will be appreciated that various modifications may be made to the embodiment(s) described

herein without departing from the scope of the appended claims.

32



10

15

20

25

30

35

CA 03084595 2020-06-03

WO 2019/115652 PCT/EP2018/084642

CLAIMS:

1. A system for generating a diagnostic model, the system comprising a processor
configured to:
analyse a plurality of reference data sets, each reference data set comprising at least
one image, the analysis comprising identifying at least one feature in each image;
calculate at least one metric in dependence on the at least one identified feature;
acquire outcome data associated with at least some of the reference data sets; and
compile the diagnostic model in dependence on the at least one calculated metric

and the associated outcome data.

2. A system as claimed in claim 1, wherein each reference data set comprises first and
second images, the processor being configured to analyse each reference data set to:
identify at least one first feature in the first image, and identify at least one second
feature in the second image, each at least one first feature being paired with a corresponding
one of the at least one second feature; and
compare each pair of corresponding first and second features to identify one or more

difference therebetween.

3. A system as claimed in claim 2, wherein the processor is configured to calculate the
at least one metric in dependence on the one or more difference identified between each pair

of corresponding first and second features.

4. A system as claimed in claim 2 or claim 3, wherein the first image comprises a first
end systolic image and the second image comprises a second end diastolic image, the one or
more difference identified between each pair of corresponding first and second features

represents a cardiac cyclic change.

5. A system as claimed in any one of the preceding claims, wherein the processor is

configured to label the images in dependence on the outcome data.

6. A system as claimed in claim 5, wherein the label distinguishes between different

classifications.

7. A system as claimed in any one of the preceding claims, wherein the outcome data

comprises diagnostic information.
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8. A system as claimed in claim 7, wherein the diagnostic information comprises a

record of a cardiac event, such as a myocardial infarction.

9. A system as claimed in claim 7 or claim 8, wherein the outcome data comprises a

record of stenosis greater than a threshold value.

10. A system as claimed in any one of the preceding claims, wherein the processor is
configured to update the diagnostic model when the outcome data becomes available or when

the outcome data is updated.

11. A system as claimed in any one of the preceding claims, wherein the processor is
configured to determine a weighting for at least some of the calculated metrics, each weighting
being determined in dependence on the outcome data associated with a given one of the

reference data sets.

12. A system as claimed in claim 11, wherein the diagnostic model is compiled in

dependence on the calculated metrics and the associated weightings.

13 A system as claimed in any one of the preceding claims, wherein the processor is

configured to implement a machine learning algorithm to generate the diagnostic model.

14. A system as claimed in any one of the preceding claims, wherein the processor is
configured to analyse further reference data sets; and to update the diagnostic model in

dependence on the analysis of the further reference data sets.

15. A method of generating a diagnostic model, the method comprising:
analysing a plurality of reference data sets, each reference data set comprising at
least one image, the analysis comprising identifying at least one feature in each image;
calculating at least one metric in dependence on the at least one identified feature;
acquiring outcome data associated with at least some of the reference data sets; and
compiling the diagnostic model in dependence on the calculated metrics and the

associated outcome data.

16. A method as claimed in claim 15, wherein each reference data set comprises first

and second images, the method comprising analysing each reference data set to:
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identify at least one first feature in the first image, and identify at least one second
feature in the second image, each at least one first feature being paired with a corresponding
one of the at least one second feature; and

comparing each pair of corresponding first and second features to identify one or

more difference therebetween.

17. A method as claimed in claim 16 comprising calculating the at least one metric in
dependence on the one or more difference identified between each pair of corresponding first

and second features.

18. A method as claimed in claim 16 or claim 17, wherein the firstimage comprises a first
end systolic image and the second image comprises a second end diastolic image, the one or
more difference identified between each pair of corresponding first and second features

represents a cardiac cyclic change.

19. A method as claimed in any one of claims 15 to 18, wherein the outcome data is used

to label the corresponding reference data sets.

20. A method as claimed in claim 19, wherein the label distinguishes between different

classifications.

21. A method as claimed in any one of claims 15 to 20, wherein the outcome data

comprises diagnostic information.

22. A method as claimed in claim 21, wherein the diagnostic information comprises a

record of a cardiac event, such as a myocardial infarction.

23. A method as claimed in claim 21 or claim 22, wherein the outcome data comprises a

record of stenosis greater than a threshold value.

24. A method as claimed in any one of claims 15 to 23 comprising updating the diagnostic

model when the outcome data is updated and/or when new outcome data becomes available.
25. A method as claimed in any one of claims 15 to 24 comprising determining a

weighting for at least some of the calculated metrics, each weighting being determined in

dependence on the outcome data associated with a given one of the reference data sets.
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26. A method as claimed in claim 25, wherein the diagnostic model is compiled in

dependence on the calculated metrics and the associated weightings.

27 A method as claimed in any one of claims 15 to 26, wherein a machine learning

algorithm is implemented to generate the diagnostic model.

28. A method as claimed in any one of claims 15 to 27 comprising adding further
reference data sets incrementally, the method comprising analysing the further reference data
sets; and updating the diagnostic model in dependence on the analysis of the further reference

data sets.
29. A non-transitory computer-readable medium having a set of instructions stored

therein which, when executed, cause a processor to perform the method claimed in any one

of claims 15 to 28.
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