Abstract:

A turning device (1) for a turbomachine comprises a plurality of electromagnets (2) connectable to an electric power source (3); a rotor (4) magnetically coupled with the electromagnets (2), connectable to a main shaft (S) of the turbomachine and having a rotation axis (A); the electromagnets (2) are arranged facing the rotor (4) in order to induce eddy currents (7) on a surface (4a) of the rotor (4) and apply a torque to the rotor (4), thus rotating the main shaft (S).
SM, TR, OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: with international search report (Art. 21(3))
TURNING DEVICE FOR A TURBOMACHINE

DESCRIPTION

The present disclosure relates to a turning device for a turbomachine. Namely, the present disclosure relates to a device which is applied to a shaft of a turbomachine in order to keep such turbomachine rotating at low speed during production inactivity. This is done for several reasons, for example to prevent the shaft of the turbomachine from bending under the weight of the rotors. Also, especially in the field of steam turbines, the turning device is used to avoid shaft deformation after a shut-down during the cool-down phase and before the start-up when the steam is injected into the seals with the inlet valve closed.

In detail the turning device from the state of the art, also known as turning gear, comprises an electrical motor connected to a secondary shaft. A mechanical transmission is adapted to connect the secondary shaft to the primary shaft of the turbomachine, namely the shaft to which the rotating components exchanging power with the working fluid are attached. Such mechanical transmission can be, for example, a swiveling pinion in which a pinion engages a gear when necessary and disengages when it is not. The pinion can be brought into engagement by a rotating arm. Alternatively, the turning gear may be of the clutch type.

Since the turning gear is used when the turbomachine is either deactivated or is starting up, it must then be disengaged prior to enabling the normal function of the turbomachine. However, the mechanical transmission can sometimes fail, leading to jamming of the turbomachine.

Furthermore, the turning gear can conceivably engage while the turbomachine is running at full speed. This poses a safety hazard, since in such condition the turning gear rotating elements would be subject to excessive dynamic loads and shocks that may lead to turbomachine catastrophic failure, ejecting parts and risking injuries to the personnel around it.
SUMMARY

A first embodiment of the invention therefore relates to a turning device for a turbomachine. The turning device comprises a plurality of electromagnets connectable to an electric power source. A rotor is magnetically coupled with the electromagnets, and is connectable to a main shaft of the turbomachine. The rotor has a rotation axis.

The electromagnets are arranged facing the rotor in order to induce eddy currents on the rotor surface.

The modulation of the currents flowing into the electromagnets coils generates variable magnetic fluxes, which induce electric currents on the rotor surface. These eddy currents produce magnetic fluxes that tend to react to the cause of the variation. Thus, the electromagnets, properly dimensioned, are able to induce a torque to the rotor capable to put the main shaft in rotation.

Advantageously, this is a completely contactless version of the turning gear. Therefore it overcomes all of the safety problems, since the device does not need a physical engagement in order to work. Indeed, the turning device according to the above mentioned embodiment, cannot jam and does not require lubrication.

Also, the safety of the device is greatly improved over the turning gear, as it does not pose a safety risk since it cannot be accidentally engaged while the turbomachine is active. Indeed, the turning device just described operates in a completely contactless torque transmission therefore, even if an accidental engagement were to happen, there would be no risks for the machine operator or persons nearby.

More advantageously, the above described turning device can be optionally used as a brake.

Further details and specific embodiments will refer to the attached drawings, in which:
- Figure 1 is a schematic representation of a turning device according to an embodiment of the present invention; and

- Figure 2 is a detail of the turning device of figure 1.

DETAILED DESCRIPTION

The following description of exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.

Reference throughout the specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases "in one embodiment" or "in an embodiment" in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.

With reference to the attached drawings, with the number 1 is indicated a turning device for a turbomachine.

The device 1 comprises a plurality of electromagnets 2. These electromagnets are connectable to an electric power source 3. Moreover, the electromagnets 2 define a stator of the device 1, thus they are attached to a fixed portion of the structure of the turbomachine (not shown in the drawings). Further details on the electromagnets 2 and the power source 3 will be given in a subsequent part of the present disclosure.

A rotor 4 is magnetically coupled with the electromagnets 2. The rotor 4 is connectable to a main shaft "S" of the turbomachine.
With additional detail, the rotor 4 has a rotation axis "A". The rotor 4 is preferably disc shaped. Therefore, the rotor has a central zone 4c around the rotation axis "A" and a peripheral zone 4b located externally with respect to the rotation axis "A". In other words, the peripheral zone 4b is located externally with respect to the central zone 4c.

The rotor 4 also has two surfaces 4a, opposite to each other. The surfaces 4a are substantially flat. Also, the surfaces 4a are arranged substantially perpendicularly with respect to the rotation axis "A".

The rotor 4 itself is made of an electrically conductive but non magnetic material. For example, such material can be Inconel or steel.

Concerning the above mentioned electromagnets 2, it is to be noted that they are arranged facing the rotor 4 in order to induce eddy currents 7 on the surface 4a of the rotor 4. As a consequence, a torque is applied onto the rotor 4, and is transferred from the rotor 4 to the main shaft "S", thus rotating the main shaft "S". Indicatively, such torque can be estimated as between 500 Nm for smaller turbomachines and 60000 Nm for the largest models currently in production.

With particular reference to figure 1, the rotor 4 is shown together with electromagnets 2. The electromagnets 2 are arranged so that their north-south axis - i.e. the axis of the coils - is substantially perpendicular to the rotor 4. A magnetic field 8 is shown as crossing the rotor 4. Indeed, the modulation of the currents flowing into the coils of the electromagnets 2 generates variable magnetic fluxes, which induce the above mentioned electric eddy currents 7 on the surfaces 4a of the rotor 4. These eddy currents 7 produce magnetic fluxes that, by reacting with the magnetic field 8, propel the rotor 4 as needed. In other words, as an effect of the superficial eddy currents 7, the portion of the surface 4a of the rotor 4 on which they are located is provided with a magnetic field (not shown in the drawings) which then interacts with the magnetic field from the electromagnets 2. In order to perform in this way, the electrical power source 3 has to provide a rotating alternated current to the electromagnets 2, so that their magnetic field 8 is correctly phased. More details will be given in a
following part of this disclosure.

With more detail, the device 1 comprises at least two sets 5 of electromagnets 2. Each set 5 comprises at least one electromagnet 2. Each set 5 is located at a respective angular position with respect to the rotation axis "A" of the rotor 4. With reference to figure 1, two sets 5 of electromagnets 2 are shown, separated by a 180° angle. Should any more of the sets 5 of magnets 2 be needed, they will be preferably arranged in an angularly equally spaced fashion, namely with having the same angle between any two consecutive radial directions.

Indeed, the electromagnets 2 are configured to apply the torque along a predefined direction of rotation of the main shaft "S", in order to accelerate the main shaft "S". Therefore, the turning device 1 can keep the turbomachine in a low rotation while not in use. By the word "low rotation", according to the present disclosure, it is meant a non operating rotation at most of 300 rpm, typically 20 rpm. In a typical application, the low rotation is maintained for at least 10 minutes before the machine startup and maximum 100 hours after the machine operation.

With additional detail, the set of electromagnets 2 is rated for a total electric power consumption comprised between 1000 W and 150000 W.

In order to induce the eddy currents 7, each electromagnet 2 is placed close to the surface 4a of the rotor 4. The distance can be estimated as comprised between 1 mm and 2 mm.

As shown in figure 1, two electromagnets 2 can be active on the same spot of the rotor 4, each being placed opposite to the other with respect to the rotor 4 and facing a respective surface 4b of the rotor 4. Advantageously, this helps balancing the load on the rotor 4.

With additional detail, it is to be noted that each set 5 is configured to act at least on the peripheral zone 4b of the rotor 4, in other words the zone of the rotor 4 further from the rotation axis "A". Advantageously, this allow to
maximize the torque produced by each electromagnet. Optionally, each set 5 can also act on the central zone 4c of the rotor 4. Advantageously, this allow to spread the load on the rotor 4 more evenly along the radial direction of the rotor 4.

As shown in figure 1, each set 5 comprises several electromagnets 2 arranged along a radial direction of the rotor 4. In further embodiment of the invention, not shown in the drawings, the electromagnets 2 can be arranged in whatever way is more convenient.

Each set 5 is configured to be powered by a respective phase of an input electric current. Preferably, as shown in figure 1, each set 5 of electromagnets 2 shares a single electric power source 3. These electric power sources 3 are phased differently, depending on the total number of sets 5 of electromagnets 2. Advantageously, having at least two electric power source 3, namely at least two electric phases, allows the device 1 to start itself from a rest condition.

Another embodiment of the invention has a rotor 4 which is hollow. Advantageously this allows to have a lighter rotor 4 that would otherwise be possible, while the device 1 can still work, since the eddy currents 7 are generated only on the surface 4a facing the electromagnets 2, and do not go very deep inside the rotor 4 itself.

Preferably, the rotor 4 has a plurality of holes 6. Advantageously, these holes 6 allow to optimize both the rotor 4 weight and cooling. One example of pattern of holes 6 is shown in figure 2. Accordingly, other patterns of holes 6 may be applied to the rotor 4, following design optimization. Indeed, in the embodiment shown in figure 1 both the rotor 4 and electromagnets 2 are designed to be passively gas cooled. In other embodiments, not shown in the drawings, the rotor 4 and the electromagnets 2 are designed to be actively gas cooled or liquid cooled.

In addition, the electromagnets 2 can optionally be configured to apply the torque opposite to the predefined direction of rotation of the main shaft "S", in
order to slow down the main shaft "S". In other words, this allows the turning device 1 to be used as a brake for the turbomachine onto which it is installed. Advantageously, it is only necessary to have a power source 3 that provides a constant voltage to obtain this effect, since the variation of the magnetic field 8 is given by the motion of the rotor 4 itself. In this case, the eddy currents generated on the surfaces 4a of the rotor 4 are such that they generate a magnetic field that tend to counter the rotation of the rotor 4. This effect is directly proportional to the rotation speed of the rotor 4, thus giving the effect of viscous friction on the rotor 4.
CLAIMS:

1. Turning device (1) for a turbomachine, comprising a plurality of electromagnets (2) connectable to an electric power source (3); a rotor (4) magnetically coupled with said electromagnets (2), connectable to a main shaft (S) of said turbomachine and having a rotation axis (A), said electromagnets (2), being arranged in proximity of said rotor (4) in order to induce eddy currents (7) on the facing surfaces (4a) of said rotor (4), apply a torque to said rotor (4), thus rotating said main shaft (S).

2. Turning device (1) according to the previous claim, wherein said electromagnets (2) are configured to apply said torque along a predefined direction of rotation of said main shaft (S) in order to accelerate said main shaft (S).

3. Turning device (1) according to any one of the previous claims, wherein said electromagnets (2) are configured to apply said torque opposite to a predefined direction of rotation of said main shaft (S) in order to slow down said main shaft (S).

4. Turning device (1) according to any one of the previous claims, wherein it comprises at least two sets (5) of electromagnets (2), each set (5) comprising at least one electromagnet (2), each set (5) being located at a respective angular position with respect to the rotation axis (A) of the rotor (4).

5. Turning device (1) according to the previous claim, wherein each set (5) is configured to act at least on a peripheral zone (4b) of said rotor (4).

6. Turning device (1) according to claim 4 or 5, wherein each set (5) is configured to be powered by a respective phase of an input electric current.

7. Turning device (1) according to any one of the previous claims, wherein the rotor (4) is shaped as a disc.

8. Turning device (1) according to any one of the previous claims,
wherein the rotor (4) is provided with holes (6) to optimize both the rotor weight and cooling.

9. Turning device (1) according to any one of the previous claims, wherein the rotor (4) is configured to be directly jointed to said main shaft (S).

10. Turning device (1) according to any one of the claims from 1 to 8, wherein the rotor (4) is configured to be connected to the main shaft (S) via transmission coupling.

11. Turning device (1) according to any one of the previous claims, wherein the rotor (4) is made of an electrically conductive material.

12. Turbomachine comprising a shaft (S); a turning device (1) according to any one of the preceding claims attached to said shaft (S).

13. Use of the turning device (1) according to any one of the previous claim in the startup and/or cooldown procedure of said turbomachine.

14. Use of the turning device (1) according to any claim from 1 to 11 as a braking device for said turbomachine.
A. CLASSIFICATION OF SUBJECT MATTER

INV. F01D25/36

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F01D F02C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 1 147 730 A (ROLLS ROYCE) 2 April 1969 (1969-04-02) page 2, line 36 - page 3, line 91; claims 1-6, 8-12; figure 1</td>
<td>1,2,4-7, 9,11-14</td>
</tr>
<tr>
<td>X</td>
<td>EP 1 443 189 Al (HOLSET ENGINEERING CO.[GB]) 4 August 2004 (2004-08-04) paragraph [0024] - paragraph [0036]; claims 1,4-6, 8-10, 13</td>
<td>I-7,9, II-14</td>
</tr>
<tr>
<td>X</td>
<td>DE 12 31 344 B (ALSTHOM CGEE) 29 December 1966 (1966-12-29) column 2 - column 3; claims 1,2; figure 1</td>
<td>I-7,9-14</td>
</tr>
<tr>
<td>X</td>
<td>US 2004/123603 Al (CARE IAN C D [GB] ET AL) 1 July 2004 (2004-07-01) paragraph [0019] - paragraphs [0039], [0051]; claims 1,2,15; figure 1</td>
<td>I-9, II-14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - **A** document defining the general state of the art which is not considered to be of particular relevance
 - **E** earlier application or patent but published on or after the international filing date
 - **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - **O** document referring to an oral disclosure, use, exhibition or other means
 - **P** document published prior to the international filing date but later than the priority date claimed
 - **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - **A** document member of the same patent family

Date of completion of the international search: 9 January 2017

Date of mailing of the international search report: 18/01/2017

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Authorized officer: Balice, Marco
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB 1147730 A</td>
<td>02-04-1969</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>EP 1443189 A</td>
<td>04-08-2004</td>
<td>DE 602004012340 T2</td>
<td>12-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1443189 A1</td>
<td>04-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004216458 A1</td>
<td>04-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008124233 A1</td>
<td>29-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011203271 A1</td>
<td>25-08-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014010669 A1</td>
<td>09-01-2014</td>
</tr>
<tr>
<td>DE 1231344 B</td>
<td>29-12-1966</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2004123603 A</td>
<td>01-07-2004</td>
<td>GB 2372157 A</td>
<td>14-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2409936 A</td>
<td>13-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002122723 A1</td>
<td>05-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004123603 A1</td>
<td>01-07-2004</td>
</tr>
</tbody>
</table>