发明名称
一种高分子重金属絮凝剂及其制备方法

摘要
本发明公开了一种高分子重金属絮凝剂及其制备方法，其为中性至碱性，其溶液为无色透明液体。高分子重金属絮凝剂的制备方法如下：将1份羧甲基纤维素和丙烯酰胺按分子量比1:0.8投入反应釜中，再加入10份水，加热至50度~60度，在机械搅拌作用下通入氮气；将温度恒定为50度~60度10分钟后逐渐加入0.1mol/L的引发剂，15min后开始逐渐加入0.1mol/L的乳化剂，加入至完成30min后撤去氮气；在50度~60度恒温下继续2.5小时，制得聚丙烯酰胺接枝共聚物；反应釜冷却至30度，在机械搅拌作用下，投入NaOH和2-巯基乙磺酸钠，NaOH和2-巯基乙磺酸的质量百分比为1:2,在碱性条件下酰胺化反应3小时。所述絮凝剂能够处理废水中的重金属离子，也可用于污泥的处理。
1. 一种高分子重金属絮凝剂，其主要成分的结构式如下：

 ![结构式](image)

 其中 n 为 20 ～ 3000 的整数。

2. 如权利要求 1 所述的高分子重金属絮凝剂，所述高分子重金属絮凝剂的外观为白色粉末，其溶液为无色透明液体。

3. 一种高分子重金属絮凝剂的制备方法，包括以下步骤：

 步骤 1，将一份羧甲基纤维素丙烯酰胺按质量比 1:0.8 ～ 1.0 投入反应釜，再加入 10 分水；

 步骤 2，将步骤 1 中加入反应釜中的羧甲基纤维素、丙烯酰胺和水加热至 50°C ～ 60°C，在加热过程中用搅拌器搅拌并通入氮气；

 步骤 3，将反应釜中的羧甲基纤维素、丙烯酰胺和水加热至 50°C ～ 60°C 后保持恒温，10 分钟后逐渐加入 0.1mol/L 的引发剂，15 分钟后再逐渐加入 0.1mol/L 的乳化剂，乳化剂加入完成 30 分钟后撤去氮气；

 步骤 4，在步骤 3 的基础上，将反应釜中的原料在 50°C ～ 60°C 恒温下继续保温 2.5 ～ 3 小时，制成聚丙烯酰胺接枝共聚物；

 步骤 5，将步骤 4 中制成的聚丙烯酰胺接枝共聚物，在反应釜中冷却至 30 度，在搅拌器的搅拌下，投入 NaOH 和 2- 羟基乙磺酸，NaOH 和 2- 羟基乙磺酸的质量百分比为 1:1.2 ～ 1.5，在碱性条件下酯化反应 3 小时；

 步骤 6，将步骤 5 中酰胺反应后的物料结晶成固体，制成高分子重金属絮凝剂。

4. 如权利要求 3 所述的高分子重金属絮凝剂的制备方法，所述步骤 3 中的引发剂为 2，2- 偶氮二 (2- 甲基丙基胺) 二盐酸盐，乳化剂为山梨糖醇酐油酸酯。
一种高分子重金属絮凝剂及其制备方法

技术领域
[0001] 本发明属于重金属污水处理领域，特别涉及一种高分子重金属絮凝剂及其制备方法。

背景技术
[0002] 微量的重金属元素对人体健康是必不可少的，但如果环境中存在着过多的重金属污染物，将对人体造成巨大的危害，重金属污染对处在食物链末端的人来说，危害尤甚。重金属在人体内能和蛋白质及各种酶发生强烈的相互作用，使它们失去活性，也可能在人体的某些器官中富集，如果超过人体所能耐受的限度，会造成人体急性中毒、亚急性中毒、慢性中毒等，对人类会造成很大的危害，例如，日本发生的水俣病（汞污染）和骨痛病（镉污染，等公害病，都是由重金属污染引起的。
[0003] 重金属废水常见于电镀、电子工业和冶金工业，尤其是电镀、电子工业废水，它的成分非常复杂，除含氮（CN–）废水和酸碱废水外，根据重金属废水中所含重金属元素进行分类，一般可以分为含铬（Cr）废水、含镍（Ni）废水、含镉（Cd）废水、含铜（Cu）废水、含锌（Zn）废水、含金（Au）废水、含银（Ag）废水等。目前，针对重金属废水处理方法主要有四类：
[0004] 1）物理处理法：主要是通过物理作用，以分离、回收废水中不溶解的呈悬浮状态污染物的废水处理方法，如重力离心法（气浮、浮选等）、离心分离法和筛滤截流法等。
[0005] 2）化学处理法：是通过化学反应和传质作用来分离、去除废水中呈溶解、胶体状态的污染物或将其转化为无害物质的废水处理法，如混凝、中和、氧化还原、吸附、离子交换或反渗透等。
[0006] 3）物理化学法：是利用物理化学作用去除废水中的污染物的方法，如吸附分离法、萃取法和气提法等。
[0007] 4）生物化学处理法：是通过微生物的代谢作用去除废水中污染物的方法。
[0008] 最为常用的方法仍然是化学处理法。
[0009] 中国也于 70 年代末开始对黄原酸酯类高分子聚合物进行了研究应用，并取得了良好地效果。重金属离子捕集剂技术在中国已经有广泛应用，并拥有了一批专利技术和产品，例如：
[0010] 中国专利公开号为 CN 1069008A 的《利用二硫胺基类聚合物处理废水中重金属的方法》；
[0011] 中国专利申请号为 86 108746 的《水溶液中重金属离子的胶体剂及其制备方法》；
[0012] 中国专利公开号为 CN 1382170A 的《有机高分子材料及其制备方法和由其组成的重金属离子除去剂》；
[0013] 中国专利公开号为 CN 1495225A 的《一种含有壳聚糖衍生物的重金属聚合物组合物》；
[0014] 中国专利公开号为 CN 1323747A 的《高分子重金属捕集沉淀剂》；
[0015] 中国专利公开号为 CN 1603249A 的《一种重金属沉淀剂》；
发明内容

本发明目的在于，克服现有技术中的缺陷，提供一种能够处理废水中的重金属离子，也能够用于污泥、重金属污染的土壤、垃圾液等处理，效果好、易于固定化处理和回收重金属，化学性能稳定，不会造成二次污染的絮凝剂及其制备方法。

为实现上述目的，本发明的技术方案是：提供一种高分子重金属絮凝剂，其主要成分的结构式如下：

\[
\begin{align*}
\text{H}_2\text{C} & \cdot \text{CH}_2 \\
\text{C} & \equiv \text{O} \\
\text{O} & \to \text{S-CH}_2\text{CH}_2\text{-S} \\
\text{O} &
\end{align*}
\]

其中 n 为 20 ～ 3000 的整数。

优选地，所述高分子重金属絮凝剂的外观为白色粉末，其溶液为无色透明液体。

一种高分子重金属絮凝剂的制备方法，包括以下步骤：

步骤 1，将一份羧甲基纤维素和丙烯酰胺按质量比 1:0.8 ～ 1.0 投入反应釜，再加入 10 分水；

步骤 2，将步骤 1 中加入反应釜中的羧甲基纤维素、丙烯酰胺和水加热至 50℃～60℃，在加热过程中用搅拌器搅拌并通入氮气；

步骤 3，将反应釜中的羧甲基纤维素、丙烯酰胺和水加热至 50℃～60℃后保持恒温，10 分钟后逐渐加入 0.1mol/L 的引发剂，15 分钟后再逐渐加入 0.1mol/L 的乳化剂，乳化剂加入完成 30 分钟后撤去氮气；
步骤 4，在步骤 3 的基础上，将反应釜中的原料在 50℃～60℃恒温下继续保温 2.5～3 小时，制成聚丙烯酰胺接枝共聚物；

步骤 5，将步骤 4 中制备后的聚丙烯酰胺接枝共聚物，在反应釜中冷却至 30 度，再搅拌器的搅拌下，投入 NaOH 和 2-巯基乙磺酸，NaOH 和 2-巯基乙磺酸的质量百分比为 1:1.2～1.5，在碱性条件下酰胺化反应 3 小时；

步骤 6，将步骤 5 中酰胺反应后的物料结晶成固体，制成高分子重金属絮凝剂。

优选地，所述步骤 5 中的引发剂为 2,2-偶氮二 (2- 4- 甲基丙基咔唑) 二盐酸盐，乳化剂为山梨糖醇酐油酸酯。

本发明的优点及有益效果，

（1）本发明高分子重金属絮凝剂的分子结构设计新颖，经过分子结构层面的系统设计，在性能方面具有优势，分子极性增加，与重金属离子的作用力提高，因而具有更强的重金属螯合能力，易于微生物分解，能够自组装形成更复杂的网络结构，因而在絮凝效果显著提高。

（2）本发明高分子重金属絮凝剂作用范围广，能在常温下与废水中的 Pb2+、Cd2+、Hg2+、Cu2+、Ni2+、Mn2+、Zn2+、Ag+、Cr3+、CO3+ 等多种重金属离子迅速反应，生成不溶于水的具有良好化学稳定性的螯合物，既可适应游离态重金属离子，也可适应络合态重金属离子的去除，以铜为例，高分子重金属絮凝剂可将含铜废水的铜离子浓度降至 0.1ppm 以下，但用量仅为市场同类产品的 1/2～1/5 (游离态铜)，对于络合铜用量优势更明显。

（3）本发明高分子重金属絮凝剂适合不同的重金属废水，处理效果很好，如处理制电镀废水，主要重金属为 Cu2+，pH 为 1～2，经高分子重金属絮凝剂处理，废水浓度由 50mg/L 降低至 0.03mg/L（特别排放限值 0.3mg/L）。又如处理电镀络合废水，主要重金属为 Ni2+，pH 为 6～7，经高分子重金属絮凝剂处理，废水浓度由 40mg/L 降低至 0.05mg/L（特别排放限值 0.1mg/L）。

（4）本发明高分子重金属絮凝剂更加安全环保，高分子重金属絮凝剂自身无毒性，在使用过程中不会产生硫化氢等有毒有害物质，使用量也不会增加废水 COD（水质分析仪）中重金属的含量在高温（不高于 250℃）及强酸强碱条件下不分解，因此由高分子重金属絮凝剂稳定化处理的重金属土壤不会产生二次污染。

附图说明

图 1 为本发明高分子重金属絮凝剂的制备流程图；
图 2 为本发明高分子重金属絮凝剂与重金属离子结合的示意图。

具体实施方式

本发明一种能够处理废水中的重金属离子，也能够用于污泥、受重金属污染的土壤、垃圾液等处理，效果好、易于固定化处理和回收重金属，化学性能稳定，不会造成二次污染的絮凝剂及其制备方法。

实施例 1

一种高分子重金属絮凝剂，其主要成分的结构式如下：
其中 n 为 $20 \sim 3000$ 的整数。

本发明优选地，所述高分子重金属絮凝剂的外观为白色粉末，其溶液为无色透明液体。

一种高分子重金属絮凝剂的制备方法，包括以下步骤：

步骤 1，将一份羧甲基纤维素和丙烯酰胺按质量比 1:0.8 投入反应釜，再加入 10 分水；

步骤 2，将步骤 1 中加入反应釜中的羧甲基纤维素、丙烯酰胺和水加热至 50℃，在加热过程中用搅拌器搅拌并通入氮气；

步骤 3，将反应釜中的羧甲基纤维素、丙烯酰胺和水加热至 50℃后保持恒温，10 分钟后逐渐加入 0.1mol/L 的引发剂，15 分钟后再逐渐加入 0.1mol/L 的乳化剂，乳化剂加入完成 30 分钟后撤去氮气；

步骤 4，在步骤 3 的基础上，将反应釜中的原料在 50℃恒温下继续保温 2.5 小时，制成聚丙烯酰胺接枝共聚物；

步骤 5，将步骤 4 中制成后的聚丙烯酰胺接枝共聚物，在反应釜中冷却至 30 度，在搅拌器的搅拌下，投入 NaOH 和 2-巯基乙磺酸，NaOH 和 2-巯基乙磺酸的质量百分比为 1:1.2，在碱性条件下酰胺化反应 3 小时；

步骤 6，将步骤 5 中酰胺反应后的物料结晶成固体，制成高分子重金属絮凝剂。

优选地，所述步骤 3 中的引发剂为 2,2-偶氮二 (2-甲基丙基过氧) 二盐酸盐，乳化剂为山梨糖醇酐单油酸酯。

实施例 2

一种高分子重金属絮凝剂，其主要成分的结构式如下：

其中 n 为 $20 \sim 3000$ 的整数。

本发明优选地，所述高分子重金属絮凝剂的外观为白色粉末，其溶液为无色透明液体。
一种高分子重金属絮凝剂的制备方法，包括以下步骤：
步骤1，将一份羧甲基纤维素和丙烯酰胺按质量比1:0.8投入反应釜，再加入10分水；
步骤2，将步骤1中加入反应釜中的羧甲基纤维素、丙烯酰胺和水加热至60℃，在
加热过程中用搅拌器搅拌并通入氨气；
步骤3，将反应釜中的羧甲基纤维素、丙烯酰胺和水加热至60℃后保持恒温，10分
钟后逐次加入0.1mol/L的引发剂，15分钟后逐次加入0.1mol/L的乳化剂，乳化剂加入完
成30分钟后撤去氨气；
步骤4，在步骤3的基础上，将反应釜中的原料在50℃恒温下继续保温3小时，制
成聚丙烯酰胺接枝共聚物；
步骤5，将步骤4中制成后的聚丙烯酰胺接枝共聚物，在反应釜中冷却至30度，在
搅拌器的搅拌下，投入NaOH和2-硫基乙磺酸，NaOH和2-硫基乙磺酸的质量百分比为
1:1.5，在碱性条件下酰胺化反应3小时；
步骤6，将步骤5中酰胺反应后的物料结晶成固体，制成高分子重金属絮凝剂。
优选地，所述步骤3中的引发剂为2,2-二氯二(2-甲基丙基咪)二盐酸盐，乳化剂
为山梨糖醇酐单油酸酯。

<table>
<thead>
<tr>
<th></th>
<th>Zn²⁺</th>
<th>Pb²⁺</th>
<th>Cd²⁺</th>
<th>Hg²⁺</th>
<th>Cu²⁺</th>
<th>Ni²⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>用量 (mg/L)</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>处理前浓度 (mg/L)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>处理后浓度 (mg/L)</td>
<td>0.09</td>
<td>0.4</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>去除率%</td>
<td>99.01</td>
<td>99.6</td>
<td>99.94</td>
<td>99.96</td>
<td>99.97</td>
<td>99.95</td>
</tr>
</tbody>
</table>

以实施例2所得样品为药剂，分别配制含Zn²⁺、Cu²⁺、Pb²⁺、Cd²⁺、Hg²⁺和Ni²⁺的模
拟重金属水样。絮凝试验条件：分别取500mL模拟重金属水样，调节pH值至7～9，加
入药剂，利用定时变速六联搅拌机在200～240r/min下快搅拌5min，在100～120r/min下搅
拌10min，再在50～60r/min下慢搅拌10min，静置35min，将沉降后的上清液过滤，取滤液在
A-Analyzer 300型原子吸收分光光度计上测定残余重金属离子浓度，处理效果见表1。

以下为本发明高分子重金属絮凝剂与不同重金属絮凝剂在实际应用中的使用效果
比较见表二。
<table>
<thead>
<tr>
<th></th>
<th>废水</th>
<th>本发明（FW-01）</th>
<th>DTCR</th>
<th>CM-1</th>
<th>TMTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>用量(g/L)</td>
<td></td>
<td>2.0</td>
<td>7.6</td>
<td>6.8</td>
<td>4.2</td>
</tr>
<tr>
<td>总铬</td>
<td>溶度 (mg/L)</td>
<td>23</td>
<td>0.03</td>
<td>0.12</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>去除率</td>
<td>99.97</td>
<td>99.88</td>
<td>99.68</td>
<td>99.78</td>
</tr>
<tr>
<td>COD</td>
<td>溶度 (mg/L)</td>
<td>256</td>
<td>80</td>
<td>168</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>去除率</td>
<td>68.75</td>
<td>34.37</td>
<td>53.12</td>
<td>57.81</td>
</tr>
<tr>
<td>浊度</td>
<td>溶度 (mg/L)</td>
<td>25</td>
<td>0.8</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>去除率</td>
<td>97.8</td>
<td>96.2</td>
<td>96</td>
<td>95.4</td>
</tr>
</tbody>
</table>

[0073] 以玉石染色加工废水为处理对象，其污染物指标为：CODcr约为256mg/L，总铬浓度约为23mg/L，pH=6.5，红色液体。以实施例1所得样品、以市场销售的ADTCR、CM-1、TMTB为药剂，在烧杯中加入200mL玉石染色加工废水，然后按100mg/L的投加量加入NaOH，再加入一定量的上述药剂，再按2mg/L加入助凝剂聚丙烯酰胺（PAM），利用定时变速六联搅拌机在100r/min下搅拌2min，在50～60r/min慢搅8min，然后静置15min。取液面下2cm处溶液分别在化学耗氧量快速测定仪和WGH-3(3A)型浊度仪上测定其残余COD和残余浊度；将沉降后的上清液过滤，取滤液在A-Analyst 300型原子吸收分光光度计上测定残余重金属离子浓度，在最佳投加量时的处理结果如表二。

[0074] 本发明不仅限于上述实施方式，本领域技术人员所做出的对上述实施方式任何显而易见的改进或变更，都不会超出本发明的构思和所附权利要求的保护范围。
图 1

图 2

FW-01 重金属离子 螯合物