Title: SOURCE/DRAIN TO GATE CAPACITIVE SWITCHES AND WIDE TUNING RANGE VARACTORS

Abstract: A two-terminal capacitive circuit element 100 includes a MOS transistor including a source 126 and drain 127 separated by a body region 131, and a gate 125 separated from the body 129 by a gate insulator layer 110, and a bypass capacitor 125. The gate node (port 2:115) is AC grounded through the bypass capacitor 125 and the source 126 and drain 127 are tied together (port 1:120). By toggling the transistor on and off using an appropriate gate to body voltage, the capacitance of the capacitive circuit element 100 between port 1 and port 2 significantly changes.
SOURCE/DRAIN TO GATE CAPACITIVE SWITCHES
AND WIDE TUNING RANGE VARACTORS

FIELD OF THE INVENTION

[0001] The invention relates to low loss switches based on capacitive switching, and
more specifically to capacitive switches and wide tuning range varactors.

BACKGROUND

[0002] The demand for multiple band and standard radios has increased interest in
voltage controlled oscillators with a wide tuning range, as well as tunable amplifiers and
mixers. Key components required to implement these tunable blocks are varactors, variable
inductors, and variable L-C (VLC) tanks which provide wide tuning ranges. Implementation
of variable inductors and LC tanks require low loss capacitive switches.

SUMMARY

[0003] A two-terminal capacitive circuit element comprises a MOS transistor
including a source and drain separated by a body region and a gate separated from the body
region by a gate insulator layer, and a bypass capacitor, wherein the gate is AC grounded
through the bypass capacitor and the source and drain are tied together. By toggling the
transistor on and off using an appropriate gate to body voltage, the capacitance of the
capacitive circuit element between port-1 and port-2 significantly changes. In one
embodiment, the MOS transistor is formed in a well. The MOS transistor can be an NMOS
transistor or a PMOS transistor.

[0004] One electrode of the bypass capacitor can be provided by the gate of the MOS
transistor, or be separate from the MOS transistor. A ratio of a maximum capacitance
(C_{\text{max}}) when the transistor is ON to a minimum capacitance when said transistor is OFF
(C_{\text{min}}) at 1 GHz can be at least 5 for a drawn channel length of at least 1 \mu m.

[0005] A method of providing a variable capacitance comprises the steps of providing
a two-terminal capacitive circuit element comprising a MOS transistor including a source and
drain separated by a channel region and a gate separated from said channel region by a gate
insulator layer, and a bypass capacitor, wherein said gate is AC grounded through the bypass
capacitor and the source and drain are tied together, and biasing the gate with a gate voltage
toggling between a voltage exceeding a threshold of said MOS transistor and a gate voltage
less than the threshold voltage.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] A fuller understanding of the present invention and the features and benefits
thereof will be accomplished upon review of the following detailed description together with
the accompanying drawings, in which:

[0007] Fig. 1 shows cross sections of an NMOS source/drain to-gate varactor
including a bypass capacitor and its equivalent circuit according to an embodiment of the
invention in the cutoff (a, b, respectively) and linear mode (c, d, respectively).

[0008] Fig. 2 shows a cross sectional view of a capacitive switch according to the
invention which utilizes an PMOS transistor to obtain a source/drain to gate (SDG) capacitor
structure.

[0009] Fig. 3 shows the C_{\text{Vmax}}/C_{\text{Vmin}} ratio obtained as a function of gate-to-body bias
(V_{\text{gb}}) for structures with varying drawn channel lengths at varying source/drain-to-body bias
(V_{\text{j}}) voltages at 1 GHz.

[0010] Fig. 4(a) shows capacitance C_{\text{v}}, (b) resistance R_{\text{s}}, and (c) quality factor (Q)
versus gate to body voltage (V_{\text{gb}}) at 1 GHz when V_{\text{j}}=0.9V.
[0011] Fig. 5 shows Q_{on} at $C_{V_{\max}}$, Q_{min} at V_{th} and the capacitance tuning range vs. L_{drawn} at 1 GHz when $V_j=0.9V$.

[0012] Fig. 6(a) shows a variable L-C tank (VLC) circuit schematic including three (3) capacitive switches according to the invention; Fig. 6(b) is a scanned micrograph of the VLC circuit; Fig. 6(c) shows the equivalent circuit looking into port-1 with port-2 grounded for the VLC; Fig. 6(d) shows the measured resistance (R_p) for different C_V across a frequency range up to about 2.5 GHz; Fig. 6(e) shows the measured susceptance (B) for different C_V across a frequency range up to about 2.5 GHz, and (f) shows the Q_{bw} obtained for different C_V across a frequency range up to about 3.5 GHz.

DETAILED DESCRIPTION

[0013] A two-port capacitive circuit element includes a MOS transistor including a source and drain separated by a body region, and a gate separated from the body by a gate insulator layer, and a bypass capacitor. The bypass capacitor is preferably separate from the MOS transistor forming the two terminal capacitive circuit element. The gate node (port-2) is AC grounded through the bypass capacitor and the source and drain are tied together (port-1). By toggling the transistor on and off using an appropriate gate to body voltage, the capacitance of the capacitive circuit element between port-1 and port-2 significantly changes. Specifically, in the case that the bypass capacitance is much greater than the gate-to-body capacitance (C_{gb}) the bypass capacitor effectively bypasses the gate to body capacitance (C_{gb}) when the transistor is in the off state producing a low capacitance value for the capacitive circuit element.

[0014] The bypass capacitor can be a variety of capacitor types, including a metal-insulator-metal (MIM) capacitor or a metal-oxide-semiconductor (MOS) capacitor. In another
The capacitive circuit element can be embodied as a capacitive switch or a varactor. Although described relative to a polysilicon gate NMOS transistor generally having gate oxides, the invention can be embodied using PMOS transistors, and utilize other gate electrode and gate insulator materials. In addition, although the capacitive structures described herein do not use wells, transistors can be formed in wells (e.g. NMOS in a p-well formed in an n-substrate).

A cross sectional view of a capacitive switch 100 according to the invention shown in Fig. 1(a) which utilizes an NMOS transistor to obtain a source/drain to gate (SDG) capacitor structure. Capacitive switch 100 includes gate electrode (shown as a polysilicon gate) 105, gate insulator 110 (shown as a gate oxide), n+ source 126 and drain 127 diffused into body (p-substrate) 129. Unlike a conventional MOS varactor or capacitive switch, the gate node (port-2; 115) is AC grounded using a bypass capacitor 125 \((C_{bypass})\) and is also connected to a DC control voltage. The n+ source 126 and drain 127 terminals are tied together using an electrically conductive layer, such as a metal layer 131, and are connected to an AC node at port-1 (120). Connecting the source 126 and drain 127 together allows the capacitive switch 100 to operate between cut-off (OFF) when the DC control voltage is \(<V_{th}\) (such as when grounded), and the linear (ON) region which forms an n-channel when the DC control voltage is \(>V_{th}\) as shown in Figs. 1 (a) and (c), respectively.

When the NMOS transistor is in the cut-off (OFF) region, the equivalent circuit model for capacitive switch 100 is shown in Fig. 1(b). In this bias state, the gate-to-body capacitance \((C_{gb})\) is bypassed by the much larger \(C_{bypass}\) and is effectively excluded from the capacitance of the capacitive switch 100 measured between port-1 and port-2, denoted as \((C_v)\). As a result, \(C_{Vmin}\) seen from port-1 (120) is effectively equal to \(2C_{ov}\) (gate-to-
source/drain overlap capacitances) plus $2C_{jt}$ (source/drain-to-body capacitances). R_s shown in Fig. 1(b) represents the series resistance from gate-to-source/drain resistance and source/drain-to-body resistance.

[0018] The equivalent circuit model for capacitive switch 100 measured between port-1 (120) and port-2 (115) when the NMOS is in the linear (ON) region is shown in Fig. 1(d). The surface of the p-body under the gate is inverted (n-type). As a result, C_v seen from port-1 (120) is equal to the sum of $2C_{ov}$, $2C_{jt}$, the gate-to-channel capacitance (C_{go}), and channel to body capacitance (C_{dep}). The resulting total capacitance is denoted as the maximum capacitance (C_{vmax}).

[0019] However, in an alternate embodiment, port-2 (115) of capacitive switch 100 is not AC grounded by sufficiently lowering the value of C_{bypass}. In this embodiment, the overlap capacitance ($2C_{ov}$) is in series with C_{gb}, and the capacitance C_{vmin} seen from port-1 (120) can be even lower. Thus, in this arrangement, the capacitance ratio (C_{vmax}/C_{vmin}) can further be improved.

[0020] C_{go} and C_{dep} can be made much larger than C_{ov} and C_{jt} by making the channel length longer to increase the C_{vmax}/C_{vmin} ratio. However, increased channel length increases the channel resistance (R_{ch}). Exemplary layouts of various capacitive switches/varactors with W/L_{drawn} ratios of 64\(\mu\)m/0.18\(\mu\)m, 32\(\mu\)m/0.36\(\mu\)m, 16\(\mu\)m/0.72\(\mu\)m, 8\(\mu\)m/1.44\(\mu\)m, and 4\(\mu\)m/2.88\(\mu\)m have been fabricated and studied. Compared to a MOS transistor switch which adds R_{ch} in series, because the source and drain are tied together in capacitive switch 100 shown in FIG. 1, a capacitive switch according to the invention with the same channel length adds series resistance of only about $R_{ch}/12$. This provides capacitive switches having lower loss, and thus higher Q, as compared to conventional MOS transistor switches.

[0021] As noted above, capacitive elements according to the invention can also be implemented using PMOS transistors. Figure 2 shows a cross sectional view of a capacitive
switch 200 according to the invention which utilizes an PMOS transistor to obtain a
source/drain to gate (SDG) capacitor structure. Capacitive switch 200 includes gate electrode
(shown as a polysilicon gate) 205, gate insulator 210 (shown as a gate oxide), p+ source 226
and drain 227 diffused into an n-well 229 which is diffused into p-substrate) 231. A potential
advantage of this implementation is that since the structure can be placed in an isolated well,
it should pick up less noise injected into the substrate by other nearby circuitry. A potential
disadvantage is that the inversion layer resistance may be higher. However, in CMOS
processes which provide a deep n-well, the high resistance can be bypassed using NMOS
transistors in isolated p-wells.

[0022] Fig. 3 shows the measured $C_{V_{\text{max}}}/C_{V_{\text{min}}}$ ratio as function of gate-to-body bias
(V_{gb}) for capacitive circuit elements according to the invention having varying drawn channel
lengths at various source/drain-to-body bias (V_{j}) voltages. The $C_{V_{\text{max}}}/C_{V_{\text{min}}}$ ratio increases for
increasing L_{drawn} and can be greater than 10. As V_{j} increases, C_{j} decreases and C_{ov} slightly
decreases because the effective gate-to-drain/source overlap is reduced. This decreases $C_{V_{\text{min}}}$
and $C_{V_{\text{max}}}$ and slightly increases the $C_{V_{\text{min}}}/C_{V_{\text{max}}}$ ratio and tuning range.

[0023] When the MOS structure is in the linear region, the series resistance (R_{s}) is
mainly due to R_{ch} and increases as the drawn channel length (L_{drawn}) increases as shown in
Fig. 4(b). Because of this, measured Q_{on} is not as high as that of accumulation mode MOS
varactors, and decreases as L_{drawn} increases as shown in Fig. 4(c). There is thus a trade-off
between a wide tuning range and a high quality (Q) factor.

[0024] Figure 5 shows the measured Q_{on} at $C_{V_{\text{max}}}$, Q_{min} at V_{th} and capacitance tuning
range vs. L_{drawn} at 1 GHz when $V_{j}=0.9 V$. The impact of the lower Q can be reduced because
when the MOS transistor is on, the varactor is generally used to create an L-C circuit
resonating at a lower frequency and Q is inversely proportional to the frequency (ω). The
minimum Q (Q_{\min}) occurs when port-2 is biased around the threshold voltage as shown in
Fig. 4(c) and Fig. 5, where the channel resistance is large. Since when used as a switch, the inventive capacitive structure does not operate around the threshold voltage, Q_{min} is not an issue. However, channel resistance (R_{c}) can become a factor when the inventive capacitive structure is used as a varactor.

EXAMPLES

[0025] The present invention is further illustrated by the following specific Examples, which should not be construed as limiting the scope or content of the invention in any way.

[0026] Capacitive structures according to the invention were designed, fabricated using a 0.18-μm standard CMOS technology, and then tested. The measured tuning ranges of the capacitive structures according to the invention given below in Table I are wide.

<table>
<thead>
<tr>
<th>W/L_{draw} [$\mu\text{m/μm}$]</th>
<th>C_{Vmax} [fF]</th>
<th>C_{Vmin} [fF]</th>
<th>Tuning Range</th>
<th>$\frac{C_{\text{Vmax}}}{C_{\text{Vmin}}}$</th>
<th>$Q_{\text{on at }} V_{\text{gs}}=+V_{\text{th}}$</th>
<th>$Q_{\text{min at }} V_{\text{gs}}=+V_{\text{th}}$</th>
<th>$Q_{\text{on at }} V_{\text{gs}}=1.8$V</th>
<th>$Q_{\text{ref at }} V_{\text{gs}}=0$V</th>
</tr>
</thead>
<tbody>
<tr>
<td>64/0.18</td>
<td>178.79</td>
<td>110.5</td>
<td>±23.58%</td>
<td>1.617</td>
<td>51.153</td>
<td>51.288</td>
<td>50.816</td>
<td>~50</td>
</tr>
<tr>
<td>32/0.36</td>
<td>156.36</td>
<td>58.41</td>
<td>±45.60%</td>
<td>2.677</td>
<td>53.193</td>
<td>36.270</td>
<td>53.481</td>
<td>~70</td>
</tr>
<tr>
<td>16/0.72</td>
<td>141.24</td>
<td>33.91</td>
<td>±61.27%</td>
<td>4.164</td>
<td>38.487</td>
<td>11.319</td>
<td>39.419</td>
<td>~95</td>
</tr>
<tr>
<td>8/1.44</td>
<td>131.18</td>
<td>19.37</td>
<td>±74.30%</td>
<td>6.772</td>
<td>15.726</td>
<td>4.147</td>
<td>16.579</td>
<td>~110</td>
</tr>
<tr>
<td>4/2.88</td>
<td>125.10</td>
<td>12.13</td>
<td>±82.32%</td>
<td>10.320</td>
<td>5.255</td>
<td>2.683</td>
<td>5.255</td>
<td>~300</td>
</tr>
</tbody>
</table>

[0027] Specifically, the tuning range increased from ±23.6% to ±45.6% as L_{drawn} was increased from 0.18-μm and 0.36-μm. The quality factor (Q_{on}) when the gate-to-source voltage (V_{gs}) was 1.8 V was about 50 at 1 GHz, and the minimum quality factor (Q_{min}) when V_{gs} was near V_{th} was found to decrease from about 50 to 36.4. When L_{drawn} was increased further to 0.54 μm, varactors according to the invention should have about a ±53% tuning range and Q_{min} of near 20 at 1 GHz. Such a Q_{min} is sufficiently high for the structure to generally be used as a varactor. A ±53% tuning range is about 75% higher as compared to
previously reported two terminal varactors and comparable to those of three terminal varactors.

[0028] When \(L_{\text{drawn}} \) is between 0.72-\(\mu \)m and 1.44-\(\mu \)m, the structure can be used as a capacitive switch to avoid the \(Q_{\text{min}} \) problem. As \(L_{\text{drawn}} \) was increased in this range, the tuning range increased from \(\pm 61.2\% \) to \(\pm 74.3\% \), and the \(C_{V_{\text{max}}} \) to \(C_{V_{\text{min}}} \) ratio increases from 4.2 to 6.8. \(Q_{\text{on}} \) at 1 GHz decreases from 38.4 to 15.7.

[0029] The invention was applied to a circuit arrangement referred to as a variable L-C (VLC) tank. Figs. 6(a) shows a VLC tank schematic including three (3) capacitive switches \(C_{V1} - C_{V3} \) according to the invention providing a \(C_{V_{\text{max}}}/C_{V_{\text{min}}} \) ratio of 6.8, while Fig. 6(b) is a scanned micrograph of the VLC circuit. The capacitive switches each include a separate control input \((V_{Ld1}, V_{Ld2}, \text{or} V_{Ld3}) \). The VLC tank can be used as part of a tunable output matching network for a low noise amplifier (LNA), such as an LNA that can be tuned between 0.7 and 2.1 GHz for multi-band operation.

[0030] Figure 6(c) shows a simplified equivalent circuit looking into port-1 with port-2 grounded for the VLC. Figure 6(d) shows the measured resistance \((R_p) \) for different \(C_v \) across a frequency range up to about 2.5 GHz, while Figure 6(e) shows the measured susceptance \((B) \) for different \(C_v \) across a frequency range up to about 2.5 GHz. Between 0.7 and 2.5 GHz the susceptance \((B) \) can be made negative or the VLC can be made to behave as an inductor. At a given frequency, \(B \) increases or effective inductance becomes smaller as the capacitance is increased by turning on more capacitive switches (moving up on the dotted line in Fig. 6(e)). Figure 6(f) shows \(Q_{bw} \) obtained for different \(C_v \) by switching \(V_{Ld1}, V_{Ld2}, \) and \(V_{Ld3} \) on and off between 0 V and 1.8 V across a frequency range up to about 3.5 GHz. The Q-factors of structures generally ranged between 4.5 and 8, which is suitable for an LNA output matching network.
[0031] It is to be understood that while the invention has been described in
conjunction with the preferred specific embodiments thereof, that the foregoing description as
well as the examples which follow are intended to illustrate and not limit the scope of the
invention. Other aspects, advantages and modifications within the scope of the invention will
be apparent to those skilled in the art to which the invention pertains.
CLAIMS

1. A two-terminal capacitive circuit element, comprising:
 a MOS transistor including a source and drain separated by a body region and a gate
 separated from said body region by a gate insulator layer, and
 a bypass capacitor, wherein said gate is AC grounded through said bypass capacitor
 and said source and drain are tied together.

2. The capacitive circuit element of claim 1, wherein said MOS transistor is
 formed in a well.

3. The capacitive circuit element of claim 1, wherein said MOS transistor is an
 NMOS transistor.

4. The circuit element of claim 1, wherein said MOS transistor is a PMOS
 transistor.

5. The circuit element of claim 1, wherein one electrode of said bypass capacitor
 is provided by said gate.

6. The circuit element of claim 1, wherein a ratio of a maximum capacitance
 \((C_{\text{max}})\) when said transistor is ON to a minimum capacitance when said transistor is OFF
 \((C_{\text{min}})\) at 1 GHz is at least 5 for a drawn channel length of at least 1 µm.

7. A method of providing a variable capacitance, comprising the steps of:
providing a two-terminal capacitive circuit element comprising a MOS transistor including a source and drain separated by a channel region and a gate separated from said channel region by a gate insulator layer, and a bypass capacitor, wherein said gate is AC grounded through said bypass capacitor and said source and drain are tied together, and biasing said gate with a gate voltage toggling between a voltage exceeding a threshold of said MOS transistor and a gate voltage less than said threshold voltage.
FIG. 2
FIG. 3

- $V_j = 0.0 \text{ V}$, $V_j = 0.9 \text{ V}$, $V_j = 1.8 \text{ V}$
- $L_{\text{draw}} = 2.88 \mu \text{m}$
- $L_{\text{draw}} = 1.44 \mu \text{m}$
- $L_{\text{draw}} = 0.72 \mu \text{m}$
- $L_{\text{draw}} = 0.36 \mu \text{m}$
- $L_{\text{draw}} = 0.18 \mu \text{m}$

$\frac{C_{\text{max}}}{C_{\text{min}}}$ as a function of 1 GHz
FIG. 4(a)

FIG. 4(b)

SUBSTITUTE SHEET (RULE 26)
FIG. 4(C)
Figure 5
FIG. 6