(57) 要約:

本発明の目的は、末端にチオエステル基を有する鎖状オリゴ乳酸チオエステルを単一の化合物として製造かつ単離することである。本発明によれば、一般式（1）で表される化合物又はその塩が提供される。

$$\text{O}X \quad \text{O} \quad \text{S} \quad \gamma$$

（式中、Xは水素原子または水酸基の保護基を示し、Yは脂肪族基、アリール基またはヘテロ環基を示し、nは0から19の整数を示す）
添付公開書類：
— 国際調査報告書

２文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。
明細書
鎮状オリゴ乳酸チオエステル

技術分野
本発明は、鎮状オリゴ乳酸チオエステル、並びにその製造方法に関する。より詳細には、本発明は、末端にチオエステル基を有する鎮状オリゴ乳酸チオエステル、並びにその製造方法に関する。

背景技術
総合度3～19の環状及び又は鎮状のポリ＝乳酸混合物は、抗悪性症巣剤として（特開平9－227388号公報および特開平10－130153号公報）、また癌患者のＱＯＬ改善剤として（特願平11－39894号明細書；日本癌治療学会誌第33巻第3号第493頁）有用であることが報告されている。
また、総合度3～19の環状及び又は鎮状のポリ乳酸混合物が、血糖低下作用を有し、糖尿病又は糖尿病の合併症の予防及び又は治療のための医薬として有用であることも判明しており（特願平11－224883号）、さらに適剤な食欲の抑制、基礎代謝増進並びに肥満の改善及び又は予防のために有用であることも判明している。

上記したように総合度3～19の環状及び又は鎮状のオリゴ乳酸混合物は、多種多様な薬効を示すことが実証されつつあり、今後も医薬品として開発されることが期待されている。オリゴ乳酸を医薬品として開発していくためには、異なる鎮長のポリ乳酸から成る混合物ではなく、特定の鎮長を有するポリ乳酸を单一の化合物として単離することが望ましい。特定の鎮長を有するポリ乳酸を単一の化合物として単離することを目的として、末端のカルボキシル基をエステル化した総合度3～20の鎮状のオリゴ乳酸エステルを合成する試みがなされてきた（特願2001－69766）。しかしながら、オリゴ乳酸エステルの末端にチオエステル基を有する化合物の合成についてはこれまでの所、報告がない。
発明の開示

本発明は、末端にチオエステル基を有する鎖状オリゴ乳酸チオエステルを単一の化合物として製造かつ単離することを解決すべき課題とした。本発明はまた、当該化合物の製造方法を提供することを解決すべき課題とした。

本発明者らは上記課題を解決するために鋭意検討した結果、乳酸を出発材料として使用し、これにジスルフィド化合物を反応させることにより、末端にチオエステル基を有する鎖状オリゴ乳酸チオエステルを合成することに成功した。本発明はこの知見に基づいて完成したものである。

即ち、本発明によれば、一般式（1）で表される化合物又はその塩が提供される。

\[
\begin{array}{c}
\text{(式中、Xは水素原子または水酸基の保護基を示し、Yは脂肪族基、アリール基またはヘテロ環基を示し、nは0から19の整数を示す)}
\end{array}
\]

好ましくは、nは0から5の整数を示し、特に好ましくは、nは0又は2である。

好ましくは、Yはヘテロ環基であり、より好ましくは、Yは、1又は2個のヘテロ原子を含む5～10員の芳香族ヘテロ環基であり、特に好ましくは、Yは、ピリジル基、または(4-シチル-1-イソプロピル)イミダゾリル基である。

本発明の別の側面によれば、式CH₃CH(OX)COOH（式中、Xは水素原子または水酸基の保護基を示す）で表される化合物と、式\(Y-S-S-Y\)（式
中、Yは脂肪族基、アリール基またはヘテロ環基を示す）で表される化合物とを
反応させることを含む、式CH₃CH（OX）CO－S－Yで表される化合物の
製造方法が提供される。

本発明の別の側面によれば、式CH₃CH（OX）COOCH（CH₃）COO
H（式中、Xは水素原子または水酸基の保護基を示す）で表される化合物と、式
CH₃CH（OH）CO－S－Y（式中、Yは脂肪族基、アリール基またはヘテ
ロ環基を示す）で表される化合物とを反応させることを含む、式CH₃CH（O
X）COOCH（CH₃）COOCH（CH₃）CO－S－Y（式中、Xは水素原
子または水酸基の保護基を示し、Yは脂肪族基、アリール基またはヘテロ環基を
示す）で表される化合物の製造方法が提供される。

発明を実施するための最良の形態

以下、本発明の実施態様及び実施方法について詳細に説明する。

本発明は、以下の一式（1）で表される化合物又はその塩に関する。

![化合物の構造式](image)

（式中、Xは水素原子または水酸基の保護基を示し、Yは脂肪族基、アリール基
またはヘテロ環基を示し、nは0から19の整数を示す）

Xで表される水酸基の保護基の種類は特に限定されず、当業者であれば適宜選
択することができる。水酸基の保護基の具体例としては、以下のものが挙げられ
る。

（エーテル型）
メチル基、メトキシメチル基、メチルオキシメチル基、ベンジルオキシメチル基、
t-ブトキシメチル基、2-メトキシエトキシメチル基、2,2,2-トリクロロエトキシメチル基、
ピス（2-クロロエトキシ）メチル基、2-(トリメチルシリル)エトキシメチル基、テトラビドロピラニル基、3-プロモテトラヒドロピラニル基、テトラビドロロチオピラニル基、4-メトキシテトラヒドロピラニル基、
4-メトキシテトラヒドロチオピラニル基、4-メトキシテトラヒドロチオピラニルS、S-ジオキシド基、テトラビドロフランニル基、テトラビドロチオフランニル基；

1-エトキシエチル基、1-メチル-1-メトキシエチル基、1-(イソプロポキシ)エチル基、2,2,2-トリクロロエチル基、2-(フェニルセレニル)エチル基、t-ブチル基、アリル基、シンナミル基、p-クロロフェニル基、ベンジル基、p-メトキシベンジル基、α-ニトロペンジル基、p-ニトロペンジル基、p-ハロペンジル基、p-シアノペンジル基、3-メチル-2-ピコリルN-オキシド基、ジフェニルメチル基、5-ジペンゾスペリル基、トリフェニルメチル基、α-ナフチルジフェニルメチル基、p-メトキシフェニルジフェニルメチル基、p-(p’-プロモフェナシルオキシ)フェニルジフェニルメチル基、
9-アントリツル基、9-(9-フェニル)キサンテニル基、9-(9-フェニル-10-オキシ)アントリツル基、ベンズイソチアゾリルS、S-ジオキシド基、;

トリメチルシリル基、トリエチルシリル基、イソプロピルジメチルシリル基、
t-ブチルジメチルシリル基（TBDMS基）、(トリフェニルメチル)ジメチルシリル基、t-ブチルジフェニルシリル基、メチルジイソプロピルシリル基、メチルジ- t-ブチルシリル基、トリベンジルシリル基、トリ p-キシリルシリル基、トリイソプロピルシリル基、トリフェニルシリル基；

（エステル型）

ホルメート、ベンゾイルホルメート、アセチル、クロロアセチル、ジクロロアセチル、トリクロロアセチル、トリブロアセチル、トリフルオロアセチル、メトキシアセチル、トリフェニルメトキシアセチル、フェノキシアセチル、p-クロロ
フェノキシアセテート、2, 6-ジクロロ-4-メチルフェノキシアセテート、
2, 6-ジクロロ-4-（1, 1, 3, 3-テトラメチルブチル）フェノキシアセテート、4-ビス（1, 1-ジメチルプロピル）フェノキシアセテート、
クロロフェニルアセテート、p-フェニルアセテート、3-フェニルプロピオネート、3-ペンゾイルプロピオネート、イソプロレート、モノスクシノエート、
4-オキソペンタノエート、ピロロエート、アダマントエート、クロトネート、4-メトキシクロトネート、(E)-2-メチル-2-プテノエート、ベンゾエート、
o-（ジプロモメチル）ペンゾエート、o-(メトキシカルボニル)ペンゾエート、p-フェニルペンゾエート、2, 4, 6-トリメチルペンゾエート、
p-フェニルペンゾエート、α-ナフトエート；
（カーポネート型）
メチルカーポネート、エチルカーポネート、2, 2, 2-トリクロロエチルカーポネート、イソプロチルカーポネート、ビニルカーポネート、アリルカーポネート、
シンナミルカーポネート、p-ニトロフェニルカーポネート、ベンジルカーポネート、p-メトキシペンジルカーポネート、3, 4-ジメトキシペンジルカーポネート、
o-ニトロペンジルカーポネート、p-ニトロペンジルカーポネート、S-ペンジルチオカーポネート；
（その他）
N-フェニルカルバメート、N-イミダゾリルカルバメート、ポレート、ニトレート、N, N', N'-テトラメチルホスホジアミダート、2, 4-ジニトロフェニルスルフェネート；

本発明において、Yで表される脂肪族基、アリール基またはヘテロ環基の種類は特に限定されない。

本発明における脂肪族基としては、低級アルキル基、低級アルケニュル基又は低
級アルキニル基などが挙げられる。脂肪族基の炭素数は特に限定されないが、一般的には１〜１０であり、好ましくは１から６であり、より好ましくは１から４である。脂肪族基の鎖型は特に限定されず、直鎖、分岐鎖、環状鎖又はこれらの組み合わせの何れでもよい。

本発明における脂肪族基としては、低級アルキル基が特に好ましい。低級アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロプロピルメチル基、シクロブチル基、ベンチル基、ヘキシル基などを挙げることができる。

本発明におけるアリール基としては、炭素数６〜２４、好ましくは６〜１２のアリール基であり、このアリール基は１個以上の置換基を有していてもよい。アリール基の具体例としては、例えば、フェニル、ナフチル、p-メトキシフェニルなどが挙げられる。

本発明におけるヘテロ環基としては、酸素原子、窒素原子もしくは硫黄原子を１個以上含む５〜１０員環の飽和または不飽和の單環または総合環である。ヘテロ環基の具体例としては、例えば、ピリジル、イミダゾリル、キノリル、イソキノリル、ピリミジニル、ビラジニル、ピリダジニル、フタラジニル、トリアジニル、フリル、チエニル、ビロリル、オキサゾリル、チアゾリル、チアジアゾリル、トリアゾリル、ベンゾイミダゾリル、ピロリジノ、モルホリノなどが挙げられる。また、これらヘテロ環は１個以上の置換基を有していてもよい。

アリール基またはヘテロ環基が有していてもよい置換基としては、ハロゲン原子（フッ素、塩素、臭素、またはヨウ素）、アルキル基、アリール基、カルボンアミド基、アリルカルボンアミド基、アリールスルホンアミド基、アリルスルホンアミド基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、カルバモイル基、スルファモイル基、シアノ基、アリルスルホニル基、アリールスルホニル基、アルコキシカルボニル基、アリールオキシカルボニル基、およびアシル基などを挙げることができる。
本発明において好ましくは、Yは芳香族基であり、特に好ましくは、Yは1又は2個のへテロ原子を含む5～10員の芳香族へテロ環基である。最も好ましくは、Yは、ビリジル基、または(4-テトラヒドロピラン-2-イソプロピル)イミダゾリル基である。

nは0から19の整数を示す。nが0の場合は乳酸の1量体になり、nが1の場合は乳酸の2量体になり、nが2の場合は乳酸の3量体になり、nが3の場合は乳酸の4量体になり、以下同様にnが19の場合には乳酸の20量体になる。

本発明において好ましくは、nは0から5の整数を示し、特に好ましい場合は、nは0又は2である。

一般式（1）においてXは水素原子である場合、本発明の化合物は金属塩としても存在することができ、このような金属塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アルミニウム塩、又は亜鉛塩等が挙げられる。

さらに、本発明の化合物の各種の水和物、溶媒和物や結晶多形の物質も本発明の範囲内のものである。

本発明の化合物には不斉炭素が含まれるため立体異性体が存在するが、全ての可能な異性体、並びに2種類以上の該異性体を任意の比率で含む混合物も本発明の範囲内のあるものである。即ち、本発明の化合物は、光学活性体、ラセミ体、ジアステレオマー等の各種光学異性体の混合物及びそれらの単離されたものを含む。

本発明の化合物の立体配置は、原料として使用する化合物における乳酸単位の立体配置に依存する。即ち、原料として使用する化合物における乳酸単位としてL体、D体またはその混合物を使用するかにより、本発明の化合物の立体配置が多様なものとなる。本発明においては、乳酸単位の立体配置としてはL体を使用することが好ましい。

次に、本発明の化合物またはその塩の製造方法について説明する。

一般式（1）においてnが0である化合物に相当するCH₃CH（OX）COO⁻S⁻Yで表される化合物は、CH₃CH（OX）COOH（式中、Xは水素原
子または水酸基の保護基を示す）と、一般式 $Y - S - S - Y$ （式中、Y は脂肪族基、アリール基またはヘテロ環基を示す）で表される化合物とを反応させることにより製造することができる。

出発物質として使用する $\text{CH}_3\text{CH(OX)COOH}$ としては、L-乳酸、D-乳酸、またはそれらの混合物を使用することができる。乳酸中の水酸基は保護されているといよい。

式 $\text{CH}_3\text{CH(OX)COOH}$ で表される化合物と式 $Y - S - S - Y$ で表される化合物とを反応させる場合、先ず、式 $\text{CH}_3\text{CH(OX)COOH}$ で表される化合物を含む溶液に、トリフェニルホスフィン溶液を加える。得られた混合物に式 $Y - S - S - Y$ で表される化合物を含む溶液を添加し、一定時間攪拌して反応させることができる。

式 $\text{CH}_3\text{CH(OX)COOH}$ で表される化合物と式 $Y - S - S - Y$ で表される化合物の使用量は適宜選択できるが、好ましくは、$\text{CH}_3\text{CH(OX)COOH} : Y - S - S - Y = 1 : 0.5 \sim 1 : 2$、より好ましくは $1 : 0.7 \sim 1 : 1.5$ である。

反応温度は、反応が進行する限り特に限定されないが、好ましくは $-100 \degree C \sim 室温$ である。

反応は、好ましくは反応溶媒の存在下で実施される。反応溶媒は反応に不活性な溶媒であれば特に制限されないが、好ましくは、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素溶媒およびテトラヒドロフラン (THF)、ジエチルエーテル、ジメトキシエタン等を用いることができる。

また、反応雰囲気としては、窒素ガスやアルゴンガス等の不活性ガス雰囲気を使用することができる。

本発明の方法の好ましい実施態様の一例を以下に具体的に説明する。
アルゴン雰囲気下、室温において L-乳酸のトルエン溶液にトリフェニルホスフィンのトルエン溶液を加え、さらに式 $Y - S - S - Y$ で表される化合物（例えば、ビリジルジスキルフィドまたは 2,2-ビジル-(4-イソプロピル-N-イソプロピル)イミダゾ
リルジスルフィドなど）のトルエン溶液を加え15時間攪拌する。減圧濃縮後、水を加え、クロホルムで数回抽出する。塩析後、硫酸ナトリウムで乾燥し、減圧濃縮し、シリガルカラムクロマトグラフィー（展開溶媒エーテル/CHCl₃=1/1）を用いて単離精製を行うことにより、L-乳酸ビリジンチオールエステルを得ることができる。

一般式（1）においてnが1である化合物に相当するCH₃CH（OX）COOCH（CH₃）CO—S—Yで表される化合物は、出発物質としてCH₃CH（OX）COOHを使用する代わりに、CH₃CH（OX）COOCH（CH₃）COOHを使用することにより、上記と同様に、式Y—S—S—Yで表される化合物と反応することにより製造することができる。

一般式（1）においてnが2である化合物に相当する式CH₃CH（OX）COOCH（CH₃）COOCH（CH₃）CO—S—Y（式中、Xは水素原子または水酸基の保護基を示し、Yは脂肪族基、アリール基またはヘテロ環基を示す）で表される化合物は、式CH₃CH（OX）COOCH（CH₃）COOH（式中、Xは水素原子または水酸基の保護基を示す）で表される化合物と、式CH₃CH（OH）CO—S—Y（式中、Yは脂肪族基、アリール基またはヘテロ環基を示す）で表される化合物とを反応させることにより製造することができる。

式CH₃CH（OH）CO—S—Yで表される化合物の製造方法は前報細書中上記した通りである。

式CH₃CH（OX）COOCH（CH₃）COOH（式中、Xは水素原子または水酸基の保護基を示す）で表される化合物は、所望により水酸基を保護したラクトイル乳酸である。本発明においては、水酸基を保護したラクトイル乳酸（即ち、Xが水酸基の保護基である場合）を使用することが好ましい。

式CH₃CH（OX）COOCH（CH₃）COOH（式中、Xは水酸基の保護基を示す）と、式CH₃CH（OH）CO—S—Y（式中、Yは脂肪族基、アリール基またはヘテロ環基を示す）で表される化合物との反応は、通常のエステル反応である。
このエステル化反応は、例えば、式\(CH_3CH(OX)COOCH(CH_3)COOH\)で表される化合物を含む溶液に、ジシクロヘキシルカルボビジミド溶液を加え攪拌後、式\(CH_3CH(OH)CO-S-Y\)で表される化合物の溶液、及びジメチルアミノビリジン溶液を添加し、一定時間攪拌することにより行うことができる。

式\(CH_3CH(OX)COOCH(CH_3)COOH\)で表される化合物と式\(CH_3CH(OH)CO-S-Y\)で表される化合物の使用量は適宜選択できるが、好ましくは、式\(CH_3CH(OX)COOCH(CH_3)COOH:CH_3CH(OH)CO-S-Y=1:0.3\sim1:2\)、より好ましくは\(1:0.4\sim1:1.5\)である。

反応温度は、反応が進行する限り特に限定されないが、好ましくは\(-100℃\)～室温である。

また、反応は、好ましくは反応溶媒の存在下で実施される。反応溶媒は反応に不活性な溶媒であれば特に制限されないが、好ましくは、トルエン、ペンゼン、キシレン、アルキルペンゼン、テトラヒドロフラン（THF）、ジエチルエーテル、ジメトレキシエタン等を用いることができる。

また、反応雰囲気としては、窒素ガスやアルゴンガス等の不活性ガス雰囲気を使用することができると。

上記の通り、一般式（1）において\(n\)が0、1又は2である化合物を製造することができる。\(n\)が3である化合物についても、上記と同様に、乳酸単位を所望の数だけ含むチオエステル化合物を出発物質として使用し、これを式\(CH_3CH(OX)COOCH(CH_3)COOH\)（式中、\(X\)は水酸基の保護基を示す）で表される化合物と反応させることにより合成することができる。

以下の実施例により本発明をより具体的に説明するが、本発明は実施例によって限定されることはない。

実施例
実施例１：L-乳酸ピリジルチオールエステルの合成

アルゴン雰囲気下、室温において L-乳酸（化合物12）0.0901g（1mmol）の 10ml トルエン溶液にトリフェニルホスフィン 0.289g（1.1mmol）の 5ml トルエン溶液を加え、さらにピリジルジスルフィド（化合物13）0242g（1.1mmol）の 5ml トルエン溶液を加え 15 時間攪拌した。減圧濃縮後、水 30ml を加え、クロロホルムで抽出（15ml で 3 回）した。塩析をした後、硫酸ナトリウムで乾燥後、減圧濃縮し、シリカゲルカラムクロマトグラフィー（展開溶媒＝エーテル／CHCl₃=1/1）を用いて単離精製を行うことにより、L-乳酸ピリジルチオールエステル（化合物14）を 0.0556g、30%（[α]²₀D = -24.55°（C=0.11（CHCl₃）））の収率で得た。

L-乳酸ピリジルチオールエステル（化合物14）
IR（cm⁻¹）: 1737（C=O）、3438（-OH）
¹H-NMR（300MHz、CDCl₃）
δ (ppm)=1.59 (3H, d, J=7.2Hz)
4.06 (1H, q, J=7.2Hz)
7.23 (1H, ddd, J=0.9Hz, 5.1Hz, 7.2Hz)
7.41 (1H, d, J=7.8Hz)
7.70 (1H, ddd, J=1.8Hz, 7.5Hz, 8.1Hz)
8.43 (1H, d, J=5.7Hz)

実施例２：L-乳酸（4-トプチル-N-イソプロピル）イミダゾリルチオールエステルの合成
アルゴン雰囲気下、室温においてL-乳酸（化合物12）0.450g（5mmol）の50mLTHF-トルエン（1:1）混合溶液にトリフェニルホスフィン1.44g（6.5mmol）の25mLTHF-トルエン（1:1）混合溶液を加え、さらに2,2-ビス-(4-トール-5-イソプロピル)イミダゾリジノール（化合物16）2.17g（5.5mmol）の25mLTHF-トルエン（1:1）混合溶液を加え7時間攪拌した。減圧濃縮後、水30mLを加え、クロロホルムで抽出（15mLで3回）した。塩析をした後、硫酸ナトリウムで乾燥後、減圧濃縮し、シリカゲルカラムクロマトグラフィー（展開溶媒エーテル/CHCl₃＝1/1）を用いて単離精製を行うことにより、L-乳酸（4-トール-5-イソプロピル）イミダゾリジノールオールエステル（化合物17）を0.308g、23% ([α]₂⁰ = -80.82°（C=2.0, CHCl₃）)の収率で得た。

L-乳酸（4-トール-5-イソプロピル）イミダゾリジノールオールエステル（化合物17）

IR（cm⁻¹）：1718（C=O）、3440（-OH）

¹H-NMR（300MHz, CDCl₃）
δ（ppm）=1.26（9H, s）
1.40（3H, d, J=7.2Hz）
1.45（3H, d, J=6.6Hz）
1.55（3H, d, J=7.2Hz）
3.93（1H, q, J=7.2Hz）
4.34（1H, sept, J=6.6Hz）
6.65（1H, s）
実施例2の2）
アルゴン雰囲気下、0℃においてL-乳酸（化合物12）0.901g（10mmol）の100mLTHF-トルエン（1:1）混合溶液にトリフェニルホスフィン2.89g（11mmol）の50mLTHF-トルエン（1:1）混合溶液を加え、さらに2,2-ビス-(4-ト-プチル-N-イソプロピル)イミダゾリルジスルフィド（化合物16）4.34g（11mmol）の50mLTHF-トルエン（1:1）混合溶液を加え5時間攪拌し、さらに室温で10時間攪拌した。減圧濃縮後、水30mLを加え、クロロホルムで抽出（15mLで3回）した。塩析をした後、硫酸ナトリウムで乾燥後、減圧濃縮し、シリカゲルカラムクロマトグラフィー（展開溶媒エーテル/CHCl₃=1/1）を用いて単離精製を行うことにより、L-乳酸（4-ト-プチル-N-イソプロピル）イミダゾリルチオールエステル（化合物）を0.463g、17%の収率で得た。生成物の機器データは上記のものと一致した。

実施例3：O-(ト-プチルジメチルシリル)ラクトイル乳酸の合成

アルゴン雰囲気下、室温においてイミダゾール2.04g（30mmol）の30mL塩化メチレン溶液にト-プチルジメチルシリルクロライド2.06g（15mmol）の10mL塩化メチレン溶液を滴下し30分攪拌後、ラクトイル乳酸（化合物19）0.486g（3mmol）の10mL塩化メチレン溶液を加え18時間攪拌した。水200mLを加え、エーテルで抽出（200mLで3回）した。塩析をした後、硫酸ナトリウムで乾燥後、減圧濃縮するこ
とにより、生成物を1.15g得た。得られた生成物はそのまま次の反応に用いた。
室温にて得られた生成物1.15gの30mlメタノール溶液にTHF10mlを加え、さらに炭酸カリウム1.00g(7.2mmol)の10ml水溶液を加え1時間攪拌した。溶液の容量を4分の1まで減圧濃縮後、鰹和食塩水30mlで希釈し溶液を0℃に冷却し1M硫酸水素カリウム溶液12.5mlでpH=4〜5に調節した。その後、エーテルで抽出(50mlで3回)した。塩析をした後、硫酸ナトリウムで乾燥後、減圧濃縮することにより、0-((t-プチルジメチルシリル)ラクトイル乳酸(化合物20)を0.591g、71％([α]20°D＝-36.91°(C=2.0CHCl3))の収率で得た。
0-((t-プチルジメチルシリル)ラクトイル乳酸(化合物20)
IR(cm⁻¹)：1733(C=O), 3185(-OH)

1H-NMR(300MHz, CDCl3)
δ(ppm)=0.10(6H, d, J=7.5Hz)
0.91(9H, s)
1.45(3H, d, J=6.6Hz)
1.56(3H, d, J=7.2Hz)
4.40(1H, q, J=6.6Hz)
5.12(1H, q, J=7.2Hz)

実施例4：3量体(4-t-プチル-N-イソプロピル)イミダゾリチオールエステルの合成

アルゴン雰囲気下、室温において0-((t-プチルジメチルシリル)ラクトイル乳酸(化合物20)0.276g(1mmol)の10mlトルエン溶液にジシクロヘキシルカルボジ
イミド0.206g(1mmol)の5mlトルエン溶液を加え15分攪拌後、L-乳酸(4-ト-ブチル-N-イソプロピル)イミダゾリルチオールエステル（化合物17）0.135g(0.5mmol)の5mlトルエン溶液、ジメチルアミノビジン0.0661g(0.5mmol)の5mlトルエン溶液を加え2時間攪拌した。相和塩化アンモニア溶液で処理し、エーテルで抽出(30mlで3回)した。塩析をした後、硫酸ナトリウムで乾燥後、シリカゲルカラムクロマトグラフィー(エーテル/ヘキサン=1/1)によりカラム濾過したところ、3量化体(4-ト-ブチル-N-イソプロピル)イミダゾリルチオールエステルTBDMS体(化合物21)を0.138g、52%の収率で得た。

1H-NMR (300MHz, CDCl₃)
δ (ppm)=0.09 (6H, d, J=5.1Hz)
0.90 (9H, s)
1.23 (9H, s)
1.29 (3H, d, J=6.6Hz)
1.34 (3H, d, J=7.2Hz)
1.38 (3H, d, J=6.6Hz)
1.42 (3H, d, J=6.9Hz)
1.45 (3H, d, J=6.9Hz)
4.36 (1H, q, J=6.6Hz)
4.56 (1H, sept, J=6.6Hz)
5.25 (1H, q, J=6.9Hz)
5.39 (1H, q, J=6.9Hz)
6.67 (1H, s)

産業上の利用の可能性

本発明により、末端にチオエステル基を有する鎖状オリゴ乳酸チオエステルを单一の化合物として提供することが可能になった。本発明により提供されるオリゴ乳酸チオエステルの単一化合物を利用することにより該オリゴ乳酸チオエステル
テルを医薬品、医薬品原料、食品添加物、香料料原料、製剤原料、製剤添加物として開発していくことが可能になる。
請求の範囲

1. 一般式（1）で表される化合物又はその塩。

\[
\begin{align*}
\text{OX} & \quad \text{O} \\
\text{Y} & \quad \text{S} \\
\end{align*}
\]

（式中、Xは水素原子または水酸基の保護基を示し、Yは脂肪族基、アリール基またはヘテロ環基を示し、nは0から19の整数を示す）

2. nが0から5の整数を示す、請求項1に記載の化合物またはその塩。

3. nが0又は2である、請求項1に記載の化合物またはその塩。

4. Yがヘテロ環基である、請求項1から3の何れかに記載の化合物またはその塩。

5. Yが、1又は2個のヘテロ原子を含む5～10員の芳香族ヘテロ環基である、請求項1～4の何れかに記載の化合物またはその塩。

6. Yが、ピリジル基、または(4-羥基-プチル-5-イソプロピル)イミダゾリル基である、請求項1～5の何れかに記載の化合物またはその塩。

7. 式CH₃CH(OX)COOH（式中、Xは水素原子または水酸基の保護基を示す）で表される化合物と、式Y－S－S－Y（式中、Yは脂肪族基、アリール基またはヘテロ環基を示す）で表される化合物とを反応させることを含む、式CH₃CH(OX)CO－S－Yで表される化合物の製造方法。

8. 式CH₃CH(OX)COOCH(CH₃)COOH（式中、Xは水素原子または水酸基の保護基を示す）で表される化合物と、式CH₃CH(OH)CO－S－Y（式中、Yは脂肪族基、アリール基またはヘテロ環基を示す）で表される化合物とを反応させることを含む、式CH₃CH(OX)COOCH(CH₃)COOCH(CH₃)CO－S－Y（式中、Xは水素原子または水酸基の保護基を示す）で表される化合物の製造方法。
を示し、Yは脂肪族基、アリール基またはヘテロ環基を示す）で表される化合物の製造方法。
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl 7 C07D213/70, 233/84, A61K31/4164, 31/4402, 31/695, A61P3/04, 3/10, 35/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl 7 C07D213/70, 233/84, A61K31/4164, 31/4402, 31/695, A61P3/04, 3/10, 35/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

REGISTRY (STN), CAPLUS (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1224936 A1 (AMATO PHARMACEUTICAL PRODUCTS), 24 July, 2002 (24.07.02), All references; particularly, pages 7 to 8 & WO 01/21182 A1</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-8</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 06 May, 2003 (06.05.03)
Date of mailing of the international search report 27 May, 2003 (27.05.03)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)
INTERNATIONAL SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 60-149554 A (HOKKO CHEMICAL INDUSTRY CO., LTD.), 07 August, 1985 (07.08.85), All references; particularly, page 4, compound 20 (Family: none)</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4-8</td>
</tr>
<tr>
<td>X</td>
<td>US 4257801 A (INPERIAL CHEMICAL INDUSTRIES LTD.), 24 March, 1981 (24.03.81), All references; particularly, column 3, compound 20 & GB 1588731 A & ZA 7801076 A & AU 7833783 AI & ES 467701 AI & GB 1588732 A</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4-8</td>
</tr>
<tr>
<td>X</td>
<td>US 4115100 A (CIBA-GEIGY CORP.), 19 September, 1978 (19.09.78), All references; columns 5 to 8, compounds 17, 45 & JP 52-108978 A & DE 2709108 AI & FR 2342965 AI & GB 1540975 A</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4-8</td>
</tr>
<tr>
<td>X</td>
<td>JP 51-125740 A (MITSUI TOATSU CHEMICALS INC.), 02 November, 1976 (02.11.76), All references; particularly, page 3, compounds 10 to 15 (Family: none)</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>4-8</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>7-8</td>
</tr>
<tr>
<td>X</td>
<td>JP 50-94172 A (Takasago International Corp.), 26 July, 1975 (26.07.75), All references; particularly, page 2, table 1, compounds (Family: none)</td>
<td>1-3</td>
</tr>
<tr>
<td>P, A</td>
<td>JP 2002-265420 A (AMATO PHARMACEUTICAL PRODUCTS), 18 September, 2002 (18.09.02), All references & WO 02/72531 AI</td>
<td>1-8</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 1998)
A. 発明の属する分野の分類（国際特許分類（IPC））
Int. Cl. C07D 213/70, 233/84, A61K31/4164, 31/4402, 31/695, A61P3/04, 3/10, 35/00

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int. Cl. C07D 213/70, 233/84, A61K31/4164, 31/4402, 31/695, A61P3/04, 3/10, 35/00

最小限資料以外の資料で調査を行った分野に含まれるもの

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>BERENGUER, R.; CAVERO, M.; GARCIA, J.; MUNOZ, M.</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Enantioselective synthesis of .alpha.-hydroxy thioesters via oxazaborolidine-mediated reduction of .alpha.-phenylthio- enones.</td>
<td></td>
</tr>
</tbody>
</table>

| | 全文文献、特に、第7-8頁などを参照。 | |

| WO 01/21182 A1 | |

C欄の続きにも文献が列挙されている。 □ バリュエンザミリーに関する別紙を参照。

<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>関連する文献内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>「A」特に関連のある文献ではなく、一般的的技術水準を示すもの</td>
<td></td>
</tr>
<tr>
<td>「E」国際出願日後の出願または特許であるが、国際出願日以前に公表されたもの</td>
<td></td>
</tr>
<tr>
<td>「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特許の提出日の理由を付するための文献（理由を付す）</td>
<td></td>
</tr>
<tr>
<td>「O」口頭による開示、使用、展示等に言及する文献</td>
<td></td>
</tr>
<tr>
<td>「P」国際出願日以前、かつ優先権の基礎となる出願の日の後に公表された文献</td>
<td></td>
</tr>
<tr>
<td>「T」国際出願日又は優先日後に公表された文献であって、出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの</td>
<td></td>
</tr>
<tr>
<td>「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの</td>
<td></td>
</tr>
<tr>
<td>「Y」特に関連のある文献であって、当該文献及び他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの</td>
<td></td>
</tr>
</tbody>
</table>

国際調査を完了した日 06.05.03 国際調査報告の発送日 27.05.03

国際調査機関の名称及び住所
日本国特許庁（ISA／JP）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号
特許庁審査官（権限のある職員）
菅藤 恵
電話番号 ０３－581－1101 内線 3490

様式PCT／ISA／210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>引用文献の</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>カテゴリー＊</td>
<td>X JP 60-149654 A (HOKKO CHEMICAL INDUSTRY CO., LTD.) 1985.08.07</td>
<td>全文献、特に、第4頁の化合物20などを参照。 (ファミリーなし)</td>
<td>1-3 4-8</td>
</tr>
<tr>
<td></td>
<td>X JP 51-125740 A (MITSUI TOATSU CHEMICALS INC.) 1976.11.02 & JP 52-027774 A & FR 2322138 A & ES 450942 A</td>
<td>全文献、特に、第3頁の化合物10-15などを参照。 (ファミリーなし)</td>
<td>1-3 4-8</td>
</tr>
</tbody>
</table>