(51) International Patent Classification: F01N 13/08 (2010.01)
(21) International Application Number: PCT/EP2012/054987
(22) International Filing Date: 21 March 2012 (21.03.2012)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data: TO2011A000256 24 March 2011 (24.03.2011) IT
(71) Applicant (for all designated States except US): CNH ITALIA SPA [IT/IT]; Via Plava 80, 1-10135 Turin (IT).

(54) Title: EXHAUST STACK PIPE COVER

(57) Abstract: A cover (14) for the upper end of an exhaust stack pipe (10) comprises a curved cover pipe (16) of greater diameter than the stack pipe (10). The curved cover pipe (16) has a proximal end to fit over the end of the stack pipe and a distal end from which exhaust gases are discharged. The cover pipe (16) is shaped to prevent rain from falling directly onto the end of the stack pipe. A flow diverter (18) of lesser diameter than the cover pipe (16) is mounted within the proximal end of the cover pipe (16) to overlie the end of the stack pipe. The flow diverter (18) comprises an extension tube (20) for mounting onto the end of the stack pipe (10) having lateral openings (22) and a tapering deflector (24) extending into the extension tube (20) to divert exhaust gases to flow into the cover pipe through the lateral openings in the extension tube (20).

Fig 1

Published: with international search report (Art. 21(3))
EXHAUST STACK PIPE COVER

Field of the invention

The present invention relates to a cover for the upper end of an exhaust stack pipe to prevent ingress of water into the stack pipe.

Background of the invention

It is common for commercial and agricultural vehicles, such as tractors and harvesters, to use a vertical stack pipe for the engine exhaust. It is also known to provide sensors, such as NO$_x$ or lambda sensors, within vehicle exhaust pipes to monitor the contents of the exhaust gases, the output signals of such sensors being used by the engine management system. A problem that arises when an exhaust stack pipe is fitted with a sensor is that water ingress can damage the sensor caused for instance by the large temperature difference between the water and the sensor in working conditions. Water ingress may further also generate a false read-out of a sensor. Steps need to be taken to prevent rain or other precipitation from penetrating into the stack pipe.

Hitherto, this has been achieved by placing a flat cover over the end of the stack pipe. Such an arrangement is described, for example, in US 7347044 in the context of a vertical exhaust water trap assembly having an outer housing and an internal housing or exhaust tube defining an annular water collection spaced therebetween bypassing a central exhaust flow area. However, such an obstruction in the path of the exhaust gases creates a backpressure within the exhaust system which reduces engine performance and efficiency. An increased backpressure is critical for vehicles equipped with an exhaust aftertreatment system. Due to the reduced speed of the exhaust gases the temperature in these aftertreatment systems increase and components may be
damaged permanently, resulting in high warranty and maintenance costs.

Object of the invention

The present invention seeks therefore to provide a cover for the upper end of an exhaust stack pipe that effectively prevents ingress of water while minimising backpressure within the exhaust system.

Summary of the invention

According to a first aspect of the present invention, there is provided an exhaust stack pipe having and upper end and lateral openings adjacent the upper end, a curved cover pipe of greater diameter than the stack pipe overlying the lateral openings and shaped to prevent rain from falling directly onto the upper end of the stack pipe, and a flow diverter of lesser diameter than the cover pipe mounted within the cover pipe to overlie the end of the stack pipe, the flow diverter comprising a tapering deflector extending into the stack pipe to divert exhaust gases to flow into the cover pipe through the lateral openings in the stack pipe. Preferably, the lateral openings in the extension tube are downwardly tapering cut-outs, being narrower at their proximal ends than at their distal ends.

The tapering deflector may be pyramidal but it is preferred for it to be of circular cross section. While it is furthermore convenient, for ease of manufacture, to form the pyramidal or conical deflector with straight sides (when viewed in an axial section) it possible for the sides to be curved, in particular inwardly concave.

By virtue of its construction, the diverter serves to deflect the exhaust gases to flow smoothly out of the stack pipe into the annular space between the extension tube and
the larger curved cover pipe to be discharged from the distal end of the cover pipe. The smooth flow avoids backpressure in the exhaust stack pipe while the cover pipe and the tapering deflector effectively prevent rain from entering the stack pipe.

In an embodiment of the invention, a baffle plate extends between the proximal ends of the extension tube and the cover pipe to ensure that exhaust gases are discharged only from the distal end of the cover pipe. Drainage holes may be provided in the baffle plate for any water that collects on the inner surface of the cover pipe.

Preferably, a tray is provided to cover the upper end of the deflector and drainage spouts are provided around the circumference of the tray to allow water falling on the tray to drip onto the baffle plate.

It is also known to provide a flow restrictor within an exhaust stack to act as a venturi for creating a negative pressure in a pipe that draws air into the exhaust stack pipe from the engine intake air filter. Such an arrangement is used to help prolong the life of the intake air filter.

In an embodiment of the invention, drainage holes are formed in the exhaust stack pipe around such a flow restrictor. If water should condense on the section of the exhaust stack pipe downstream of the flow restrictor then such water can flow safely out of the drainage hole, the restrictor acting as a barrier to prevent the water from running down the inside surface of the exhaust stack towards a sensor.

As an alternative to integrating the cover into the design of the exhaust stack pipe, the invention may be implemented by attaching a cover to the upper end of a conventional stack pipe.
Thus, in accordance with a second aspect of the invention, there is provided a cover for the upper end of an exhaust stack pipe comprising a curved cover pipe of greater diameter than the stack pipe having a proximal end to fit over the end of the stack pipe and a distal end from which exhaust gases are discharged, the cover pipe being shaped to prevent rain from falling directly onto the end of the stack pipe, and a flow diverter of lesser diameter than the cover pipe mounted within the proximal end of the cover pipe to overlie the end of the stack pipe, the flow diverter comprising an extension tube for mounting onto the end of the stack pipe having lateral openings and a tapering deflector extending into the extension tube to divert exhaust gases to flow into the cover pipe through the lateral openings in the extension tube.

It is common for an exhaust stack pipe to be fitted with a heat shield that surrounds the stack pipe over at least the majority of its circumference. The cover pipe in the present invention may conveniently be formed of the same diameter as such a heat shield to appear as a curved extension of the heat shield.

Brief description of the drawings

The invention will now be described further, by way of example, with reference to the accompanying drawings, in which:

- Figure 1 is a section through the upper end of an exhaust stack pipe fitted with a cover,
- Figure 2 is a section through a part of the exhaust stack pipe of Figure 1 disposed further upstream,
- Figure 3 is a perspective view of flow diverter disposed with the cover of Figure 1, and
- Figure 4 is a plan view from above of the flow diverter shown in Figure 3.
Detailed description of the preferred embodiment

Figure 1 shows a vertical exhaust stack pipe 10 surrounded by a heat shield 12 that surrounds the stack pipe over slightly less than its entire circumference and a cover, generally designated 14, fitted over the top of the stack pipe 10. The cover 14 comprises a curved pipe 16 having the same diameter as the heat shield 12 that bends through approximately 90° and has a proximal end 16a that is fitted over the stack pipe 10 and a distal end 16b with an undercut discharge opening 16c so that rain cannot drop vertically into the cover pipe 16.

A flow diverter 18 is disposed within the proximal end of the cover pipe 16. The flow diverter 18, which is shown more clearly in Figures 3 and 4, comprises an extension tube 20 of the same diameter as the stack pipe formed around it circumference with U-shaped or V-shaped cut-outs 22. In an alternative embodiment in which the cover 14 is integrated into the stack pipe, the tube 20 is constituted by the end of the stack pipe rather than by an extension secured to the end of the stack pipe.

A conical straight-sided deflector 24 extends downwards into the extension tube 20 to approximately the same level as the lower tips of the cut-outs 22. The upper end of the deflector 24 is covered by a tray 30 that has drip spouts 32 distributed about its periphery.

A baffle plate 26 extends between the proximal ends of the curved cover pipe 16 and the extension tube 20. The baffle plate ensures that exhaust gases are discharged from the distal rather than the proximal end of curved pipe 16. Water that condenses on the curved pipe 16 or that somehow finds its way onto the tray 30 and drip offs the spouts 32 onto the baffle plate 26 can escape through drainage holes
28 in the baffle plate 26 (see Figure 4) to fall into the space between the stack pipe 10 and the heat shield 12.

Prior to reaching the upper end of the stack pipe 10, the exhaust gases passes through a flow restrictor shown in Figure 2. The flow restrictor 40 is in the form of a ring secured to the interior surface of the stack pipe that is shaped as a venturi to create a reduced pressure at the mouth of a suction pipe 42. The pipe 42 passes through the wall of the stack pipe 10 and the heat shield and draws air from the engine intake air filter.

The curved cover pipe 16 prevents most rain water from reaching the upper end of the stack pipe. Any rain water that may be blown will fall on the inner surface of the curved pipe 16 or possibly on the tray 30. In either case, water will find its way under gravity to the baffle plate 26 from which it will escape through the drainage holes 28. In this way, no rain water can reach the interior of the stack pipe and find its way onto a sensor disposed within the stack pipe 10.

Despite this effective preventing of water entering the stack pipe, the cover offers minimal resistance to the discharge of exhaust gases and therefore does not create a high exhaust backpressure. In particular, the exhaust gases are diverted by the deflector 24 to flow evenly through the cut-outs 22 into the annular space between the diverter 18 and the interior of the curved pipe 16.

A further, second stage water trap is available to avoid contact of the sensor with water. Should any water from the exhaust gases condense on the inner surface of the stack pipe above the venturi flow restrictor 40, it will reach the annular channel between the flow restrictor 40 and the inner surface of the stack pipe 10. Further drainage holes in this
channel (not shown) allow such water to flow out into the gap between the stack pipe 10 and the heat shield 12.

It is an advantage of the invention that the cover pipe 16 is aesthetically pleasing by appearing as an extension of the heat shield 12. Furthermore, all drainage takes place into the annular gap between the stack pipe and the heat shield so that the appearance of the stack pipe is not marred.
CLAIMS

1. An exhaust stack pipe, characterized in that the stack pipe (10) has an upper end and lateral openings (22) adjacent the upper end, a curved cover pipe (16) of greater diameter than the stack pipe (10) overlying the lateral openings (22) and shaped to prevent rain from falling directly onto the upper end of the stack pipe (10), and a flow diverter (18) of lesser diameter than the cover pipe (16) mounted within the cover pipe (16) to overlie the end of the stack pipe (10), the flow diverter (18) comprising a tapering deflector (24) extending into the stack pipe (10) to divert exhaust gases to flow into the cover pipe (16) through the lateral openings (22) in the stack pipe (10).

2. An exhaust stack pipe as claimed in claim 1, wherein the lateral openings (22) in the extension tube are downwardly tapering cut-outs.

3. An exhaust stack pipe as claimed in claim 1 or 2, wherein the tapering deflector (24) is straight-sided cone of circular cross section.

4. An exhaust stack pipe as claimed in any preceding claim, wherein a baffle plate (26) extends between the proximal end of the cover pipe (16a) and the exhaust stack pipe (10) to ensure that exhaust gases are discharged only from the distal end (16b) of the cover pipe.

5. An exhaust stack pipe as claimed in claim 4, wherein drainage holes (28) are provided in the baffle plate (26) for any water that collects on the inner surface of the cover pipe (10).

6. An exhaust stack pipe as claimed in claim 4 or 5, wherein a tray (30) is provided to cover the upper end of the deflector (24) and drainage spouts (32) are provided...
around the circumference of the tray (30) to allow water falling on the tray (30) to drip onto the baffle plate (26).

7. An exhaust stack pipe as claimed in any preceding claim, further comprising a heat shield (12) surrounding the stack pipe (10) over at least the majority of its circumference, wherein the cover pipe (16) is formed of the same diameter as such a heat shield (12).

8. An exhaust stack pipe as claimed in any preceding claim, wherein a flow restrictor (40) is provided within the exhaust stack upstream of the cover pipe (16) to act as a venturi and wherein drainage holes are formed in the exhaust stack pipe around the flow restrictor.

9. A cover (14) for the upper end of an exhaust stack pipe comprising a curved cover pipe (16) of greater diameter than the stack pipe (10) having a proximal end (16a) to fit over the end of the stack pipe (10) and a distal end (16b) from which exhaust gases are discharged, the cover pipe (16) being shaped to prevent rain from falling directly onto the end of the stack pipe (10), and a flow diverter (18) of lesser diameter than the cover pipe (16) mounted within the proximal end of the cover pipe (16) to overlie the end of the stack pipe (10), characterized in that the flow diverter (18) comprising an extension tube (20) for mounting onto the end of the stack pipe (10) having lateral openings (22) and a tapering deflector (24) extending into the extension tube (20) to divert exhaust gases to flow into the cover pipe (16) through the lateral openings (22) in the extension tube (20).

10. A cover (14) as claimed in claim 9, wherein the lateral openings (22) in the extension tube (20) are downwardly tapering cut-outs.
11. A cover (14) as claimed in claim 9 or 10, wherein the tapering deflector (24) is of circular cross section.

12. A cover (14) as claimed in any of claims 8 to 11, wherein the tapering deflector (24) has straight sides when viewed in axial section.

13. A cover (14) as claimed in any of claims 8 to 12, wherein a baffle plate (26) extends between the proximal ends of the extension tube (20) and the cover pipe (16) to ensure that exhaust gases are discharged only from the distal end (16b) of the cover pipe.

14. A cover (14) as claimed in claim 13, wherein drainage holes (28) are provided in the baffle plate (26) for any water that collects on the inner surface of the cover pipe (16).

15. A cover (14) as claimed in claim 13 or 14, wherein a tray (30) is provided to cover the upper end of the deflector (24) and drainage spouts (32) are provided around the circumference of the tray to allow water falling on the tray (30) to drip onto the baffle plate (26).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. F01N13/08
ADD.

According to International Patent Classification (IPC) into both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPO-Internal, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. [X] See patent family annex.

* Special categories of cited documents:
 * "A" document describing the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) on which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 * "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 * "Z" document member of the same patent family

Date of the actual completion of the international search: 1 June 2012

Date of mailing of the international search report: 11/06/2012

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer: Blanc, Sebastien
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 5170020 A</td>
<td>08-12-1992</td>
<td>CA 2043184 A1</td>
<td>06-09-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5170020 A</td>
<td>08-12-1992</td>
</tr>
<tr>
<td>US 7347044 B1</td>
<td>25-03-2008</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2732913 A</td>
<td>31-01-1956</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2006157296 A1</td>
<td>20-07-2006</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>