
(12) STANDARD PATENT (11) Application No. AU 2002232035 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Methods of organizing data and processing queries in a database system, and database
system and software product for implementing such methods

(51) International Patent Classification(s)
G06F 17/30 (2006.01)

(21)

(87)

(31)

Application No: 2002232035

WIPO No: W002/44943

Priority Data

(22) Date of Filing: 2001.11.29

Number
00403331.2
00403329.6
00403332.0
00403330.4

(32) Date
2000.11.29
2000.11.29
2000.11.29
2000.11.29

(33) Country
EP
EP
EP
EP

(43)
(43)
(44)

(71)

(72)

(74)

(56)

Publication Date:
Publication Journal Date:
Accepted Journal Date:

2002.06.11
2002.08.15
2008.02.28

Applicant(s)
Virtual Key Graph

Inventor(s)
Koskas, Elie Ouzi

Agent Attorney
A J PARK, PO Box 949, Wellington

Related Art
US 5201046
US 5363098

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 June 2002 (06.06.2002)

a 11111 11l1111111111 R II 11111111111111111111111111 111111111 11111111111111 I
(10) International Publication Number

WO 02/44943 A2PCT

(51) International Patent Classification 7

(21) International Application Number: PC

(22) International Filing Date:
29 November 200

Filing Language:

(26) Publication Language:

G06F 17/30 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

T/IB01/02792 CZ, DE. DK, DM, DZ, EC, EE, ES, FI GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE. SG,

1 (29.11.2001) SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG. UZ, VN, YU,
ZA, ZM, ZW.

English

(84) Designated States (regional): ARIPO patent (GH, GM,
English KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,

1.2000) EP GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
1.2000) EP (BF, BJ, CF. CG, CI, CM, GA, GN, GQ, GW, ML, MR,
1.2000) EP NE, SN, TD, TG).
1.2000) EP

Priority Data:
00403329.6
00403330.4
00403331.2
00403332.0

29 November 2000 (29.1
29 November 2000 (29.1
29 November 2000 (29.1
29 November 2000 (29.1

(71) Applicant: LAFAYETTE SOFTWARE INC. [US/US];
Five Palo Alto Square, 3000 El Camino Real, Palo Alto,
CA 94306 2155 (US).

(72) Inventor: KOSKAS, Elie, Ouzi; 9, All6eEridan, F-95350
Saint Brice Sous Foret (FR).

Published:
-without international search report and to be republished

upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes andAbbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

S(54) Title: METHODS OF ORGANIZING DATA AND PROCESSING QUERIES IN A DAIABASE SYSTEM, AND DAIABASE
SYSTEM AND SOFTWARE PRODUCT FOR IMPLEMENTING SUCH METHODS

101, CPU

102

103
ROM RAM

MAN- HARD

MACHINE DRIVE
INTERFACE

104 100 105 106

(57) Abstract: A reference table has columns associated with data attributes and rows containing related words assigned to those
attribules in a collection of data, those words coming from different data tables having independent numbers of records. The stored
data include word thesauruses associated with the attributes, and reference table row identifier lists respectively associated with
thesaurus entries. Each word thesaurus associated with an attribute has a respective entry for each word assigned to this data attribute
in the collection of data. The reference table, which may be a virtual table, defines a unified algebraic framework for the entries
of all the thesauruses. Query criteria can be examined with reference to the relevant thesauruses to obtain a row-ID list or bitmap
vector which represents all the reference table rows matching the query criteria, if any. The results can then be delivered through the
original data tables, or preferably, by means of the thesauruses.

WO 02/44943 PCT/IB01/02792

-1-

METHODS OF ORGANIZING DATA AND PROCESSING QUERIES

IN A DATABASE SYSTEM AND DATABASE SYSTEM AND SOFTWARE

PRODUCT FOR IMPLEMENTING SUCH METHODS

BACKGROUND OF THE INVENTION

The present invention relates to relational database management

systems (RDBMS), and more particularly to computerized systems for storing

and accessing large amounts of data.

In a non-limiting manner, the invention is applicable to "data

warehouses". On-line transaction processing (OLTP) systems, such as for bank

teller transactions and airline reservations, are optimized for finding a record

associated with a specific key, e.g. finding the information about employee

123124. By contrast, data warehouses are optimized for finding sets of records

very quickly. The reason is that typical queries are of the form: "find all sales by

region and quarter" or "find stores that sell the greatest volume of sportswear

per month" or "select the top 5 stores for each product category for the last

year". Such queries must typically access large sets of rows in data tables. The

query processing challenge is to process these queries without doing a linear

scan of all or most of the database.

Five main approaches have been proposed to attack this problem: (i)

multidimensional arrays; (ii) special indexes; (iii) table caching; (iv) optimized

foreign key joins; and approximation.

Multidimensional arrays matrices).

This strategy consists of implementing the data warehouse as a

multidimensional array or matrix. Examples may be found in U.S. Patents No.

5,359,724 and No. 5,864,857. Each dimension corresponds to an attribute of

the data. For example, a sales table can be viewed as a matrix with

coordinates: store location, product type, customer id, and so on. A particular

sale can be identified by specifying all of these attributes. The strategy works

well for small databases or very dense ones. By dense, we mean that the

Cartesian product of possible values should all be meaningful, every

customer is likely to buy every product from every store. Since this is rarely

WO 02/44943 PCT/IB01/02792

-2-

true, this scheme must be modified to deal with sparse values. This can be

done by defining a notion of sparse attributes and dense ones. So, for example,

it might be that every store carries every product (a dense relationship that can

be stored in a matrix), but only some of these combinations are valid for any

given customer. So, a conventional index would be used whenever customer

sales are involved, but a dense one for queries involving store-wide or product-

wide sales.

(ii) Special indexes.

Bitmap indexes are an index structure tailored to data warehouses

(see, e.g. U.S. Patent No. 5,903,888). These indexes have already been used

in some commercial products to speed up query processing. In its simplest

form, a bitmap index on an attribute consists of one vector of bits bitmap)

per attribute value, where the size of each bitmap is equal to the number of

records in the indexed relation. For example, if the attribute is day-of-week,

then there would be seven bitmap vectors for that attribute, one for each day.

The bitmap vector corresponding to Monday would have a 1 at position i if

record i contains "Monday" in the day-of-week attribute. This single value-

based approach is called a Value-List index. Other techniques U.S. Patent

No. 5,761,652) associate bit vectors with ranges of values, so there could, for a

salary attribute, be a vector for the range 0 to 20,000 Euros, 20,000.01 to

35,000 Euros, and so on. Still others associate each bit vector with a bit value

(a 1 or a 0) in a given position. So, if the attribute holds n bit numbers, then

there would be 2n bit vectors (position 1, bit value 1; position 1, bit value 0;

position 2 bit value 1;

The benefit of bit vectors is that it is easy to use multiple bit vectors to

answer a single query. Consider a query on several predicates, each of which

is indexed. Most conventional database management systems would use just

one of the indexes (the one that is most "selective" so returns the fewest rows),

though some systems might attempt to intersect the record identifiers of

multiple indexes.

Bitmaps work better, because they are more compact and intersecting

several bitmaps is much faster than intersecting several collections of record

WO 02/44943 PCT/IB01/02792

-3-

identifiers. In the best case, the improvement is proportional to the word size of

the machine. For example, suppose the word size is 32 bits. Then two bit

vectors can be intersected 32 bits at a time. Each set of 32 bits corresponds to

32 record identifiers being intersected. That best case occurs when each

predicate is unselective many records match each predicate value), but all

the predicates together are quite selective. Consider for example the query:

"Find people who have brown hair, glasses, ages between 30 and 40, blue

eyes, work in the computer industry, live in California,...".

So, matrices are best when sets of predicates are dense (all, or nearly

all, values in the Cartesian product are possible), bitmaps are best when

predicates are neither dense nor individually selective. An intermediate

approach (when there is insufficient density for matrices but many values in the

Cartesian product are present) is to use multidimensional indexes.

Multidimensional indexes such as quadtrees, R-trees and their successors are

implemented as variable sized grids on a multidimensional space. The grids

are of variable sizes because the population of points differs in different places

in a hyperspace. For intuition, consider a map of equi-population rectangles of

France. The rectangles would be far more dense in Paris than in the alps.

Indexes like this work well for spatial data (where they are used to find the

points contained in latitude-longitude quadrants). This alternative is little

explored in the commercial arena except for geographical queries, however,

because these schemes do not scale well with increasing dimensionality and

commercial systems typically have far more than three dimensions.

(iii) Table Caching.

If one doesn't have the luxury to design new indexes on top of a

database system (because one is not the implementer of that system) one can

pre-compute a large number of anticipated aggregate queries and put them in

tables. For example, if a large retailer frequently asks queries that sum the

total sales across multiple stores or multiple products, one may store such

information in special tables. The main cost of such a strategy is maintaining

these tables in the face of updates. (Disk space is no longer a major factor.) In

the example, every sale of item I at store S would have to update the total

WO 02/44943 PCT/IB01/02792

-4-

product sales table for I and the total store sales table for S. So, this strategy is

worthwhile if there are few updates between queries. The strategy is not

worthwhile if there are many.

(iv) Optimized Foreign Key Joins.

Most queries in multidimensional tables entail joins between a central

"fact table" sales detail) and a set of dimension tables store

description, product description, customer description). These are known as

"foreign key joins" since the customer identifier in the sales table, for example,

is a key of the customer description table. (A key is a value belonging to an

attribute such that only one record has that value in the attribute.) One way to

accelerate these joins is to create a linkage between fact table records and

dimension records. This can be done in three basic ways

create an index that holds fact table record identifiers and dimension

table record identifiers;

create bidirectional pointers between fact table records and dimension

table rows this is what "object-oriented" databases do;

replace the customer record identifiers in the fact table by offsets into the

dimension tables.

Choice is the most independent of changes in the physical

organization of the tables and therefore is best for heavily updated systems,

because changes to the dimension table can be reflected in the index to that

table alone. Choice is the least flexible to physical reorganization, because

reorganizing a dimension table would entail updating the fact table. Choice (c)

is a compromise of the two in that certain physical reorganizations can be done

to the dimension tables changing its position on disk) without changing the

fact table. Examples of join optimization may be found in U.S. Patents No.

5,548,754, No. 5,671,403, No. 5,724,568, No. 5,752,017, No. 5,761,657 and

No. 5,822,747.

Approximating the Result

Since most people use data warehouses to get strategic aggregate

information, many would be happy with a fast approximation as long as it has

error bounds. Typical work in this area is illustrated by U.S. Patent No.

11/02 2008 MON 14:43 FAX +64 4 472 3358 004/120

00

S5,870,752, which shows how to estimate aggregate results in data warehouses
d)

T while giving error bounds. The basic problem is that sampling all tables and

then doing aggregates does not work in general. For example, if one wants to

join R and S on their keys, then taking a 1110 sample of each will give a size

that is 1/100 of the size of the real join if the samples are random. So, one must

Sbe more clever. The idea is to take an initial set of tables R, S, T, that are

Slinked by foreign key joins. Suppose for example that R is the fact table and

Sthe others are dimension tables. Take a sample of R and then perform all these

Sforeign key joins based on the sample giving Now, if a query

involves R, S, T and includes the foreign key links among these, then the query

can be done with great accuracy on The error can be estimated by

considering the result obtained by several partitions of R' and looking at their

variance.

An object of the present invention is to propose an alternative method

of organizing a database management system, which enables an efficient

query processing.

SUMMARY OF THE INVENTION

The invention proposes methods of organizing information and of

processing queries in a database system, as set out in the appended claims 1

through 121. The invention further proposes a database system for managing

information from a collection of data, comprising means arranged and

programmed to implement such a method, as well as computer program

products having instructions for carrying out such method.

Another aspect of the present invention relates to methods of handling

integer lists in computer systems. In a non-limiting manner, this aspect of the

invention is applicable in the RDBMS field, where the integer lists may

represent identifiers of records in various tables.

It is well known that, in computer systems, integer lists may

equivalently be stored and handled in the explicit form of integer lists or in the

form of bitmap vectors. A bitmap vector has binary components each indicating

whether an integer corresponding to the rank of the component belongs or

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

WO 02/44943 PCT/IB01/02792

-6-

does not belong to the list. The dimension of the vector has to be at least

equal to the largest integer of the list.

The bitmap representation is convenient because a variety of

manipulations can be performed on the coded lists by subjecting the binary

components of the vectors to Boolean operations, which are the most basic

operations in the usual processors. For example integer lists are readily

intersected by means of the Boolean AND operation, merged by means of the

Boolean OR operation, complemented by means of the Boolean NOT

operation, etc.

When the integers of the lists are potentially big, the dimension of the

bitmap vectors becomes large, so that the memory space required to store the

lists in that form becomes a problem. When the lists are scarcely filled with

integers of the big range, the explicit integer format is much more compact: a

list of K integers in the range 232[requires K x 32 bits vs. 232 4.3 billion

bits in the bitmap format.

Bitmap compression methods have been proposed to overcome this

limitation of the bitmap representation. These methods consist in locating

regions of the vectors whose components have a constant value, so as to

encode only the boundaries of those regions. The remaining regions can be

coded as bitmap segments. An appreciable gain is achieved when very large

constant regions are found. Examples of such bitmap compression methods as

disclosed in US Patents No. 5,363,098 and 5,907,297.

This type of bitmap compression optimizes the storage of the encoded

integer lists, but not their handling. Multiple comparisons are required to detect

overlapping bitmap segments when performing basic Boolean operation on the

bitmaps (see US Patent No. 6,141,656). This is not computationally efficient. In

addition, when the coding data of the constant regions and bitmap segments

are stored in memory devices such as hard drives not in RAM), numerous

disc read operations are normally required, which is detrimental to the

processing speed.

An object of this aspect of the present invention is to propose

alternative methods of encoding and/or combining integer lists, whereby lists of

WO 02/44943 PCT/IB01/02792

-7-

potentially large dimension can be efficiently handled.

Accordingly, the invention proposes methods of encoding and

combining integer lists in a computer system, as set out in the appended claims

249 through 291. The invention further proposes a computer system,

comprising means arranged and programmed to implement a such method, as

well as computer program products having instructions for carrying out such

method.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1-3 show an example of data structure as typically used in a

conventional relational database system.

Figure 4 is a diagram representing a data table tree in the example of

figures 1-3.

Figures 5-7 are diagrams showing respective data graphs constructed

with the tree of figure 4 and the data of figures 1-3.

Figure 8 is a flat file representation of the data tables of figures 1-3.

Figure 9 shows a link table as used in an embodiment of the invention.

Figures 10A-H show the contents of thesauruses corresponding to the

data tables of figures 1-3.

Figures 11A-14A, 11G-14G and 11H-14H show other representations

of the thesauruses of figures 10A, 10G and 1OH, respectively.

Figures 15-16 illustrate the data stored in a data container in

connection with the thesauruses of figures 14A, 14G and 14H.

Figure 17 shows another possible structure of the thesaurus of figures

OA- 1 4A.

Figure 18 is a block diagram of a computer system suitable for

implementing the invention.

Figure 19 is a flow chart showing a data graph creation procedure in

accordance with an embodiment the invention.

Figure 20 is a flow chart showing a procedure applicable in stage 124

of figure 19.

Figures 21 and 22 are flow charts showing procedures applicable in

step 136 of figure

WO 02/44943 PCT/IB01/02792

-8-

Figures 23 and 24 are flow charts showing another procedure

applicable in step 136 of figure 20 in two successive coding layers.

Figures 25-32 are tables showing a way of storing thesauruses

constructed from the example of figures 1-3.

Figure 33 is a flow chart showing an alternative way of executing steps

135 and 136 of figure 20 when the thesauruses are stored as shown in figure

17.

Figures 34A and 34B are tables showing an alternative embodiment of

the tables of figures 31-32.

Figures 34C and 34D are another representation of the tables of

figures 34A and 34B.

Figure 35 is a flow chart showing a procedure applicable in the

management of tables of the type shown in figures 34A and 34B.

Figure 36 is a general flow chart of a query processing procedure in

accordance with an embodiment of the invention.

Figure 37 is a diagram showing an example of query tree referring to

the example of figures 1-3.

Figure 38 is another diagram showing an expanded query tree

obtained by analyzing the query tree of figure 37.

Figure 39 is a flow chart showing a procedure of analyzing the query

tree.

Figure 40, which is obtained by placing figure 40A above figure 40B, is

a flow chart of a recursive function referred in the procedure of figure 39.

Figure 41 is the flow chart procedure for identifying matching data

graphs based on an expanded query tree as illustrated in figure 38.

Figure 42 is a flow chart of a recursive function FNODE called to in the

procedure of figure 41.

Figures 43-45 are flow charts illustrating procedures executed in steps

262, 264 and 265 of figure 42, respectively.

Figure 46 is a flow chart showing an alternative embodiment of the

procedure of step 265 of figure 42.

Figure 47 is a flow chart showing another alternative embodiment of

the procedure of step 265 of figure 42, when the thesauruses are stored as

WO 02/44943 PCT/IB01/02792

-9-

illustrated in figures 34A and 34B.

Figure 48 is a flow chart of a recursive function FILT called in the

procedure of figure 47.

Figure 49 is a flow chart showing another alternative embodiment of

the procedure of step 265 of figure 42, when the thesauruses are stored as

illustrated in figure 17.

Figure 50 is a flow chart of a variant of a leaf processing used in the

function of figure 42.

Figure 51 is a flow chart showing a procedure applicable for scanning

the thesaurus relating to a given attribute in order to retrieve the attribute

values relevant to a database query.

Figure 52 is a flow chart of a function FINTER referred to in the

procedure of figure 51.

Figures 53-55 are flow charts showing procedures executed in steps

355, 357 and 358 of figure 52, respectively.

Figure 56 is a flow chart showing an alternative procedure applicable

for scanning the thesaurus relating to a given attribute in order to retrieve the

attribute values relevant to a database query, when the thesauruses are stored

as illustrated in figures 34A and 34B.

Figure 57 is a flow chart of a recursive function FFILT called in the

procedure of figure 56.

Figures 58-61 show tables which may be stored to cooperate with the

tables of figures 25-34.

Figure 62 is a flow chart showing a pre-filtering procedure which may

be used prior to a thesaurus scanning similar to that of figure 51.

Figure 63 is a flow chart showing a part of a thesaurus scanning

procedure according to figure 51, adapted to take into account a pre-filtering

according to figure 62.

Figure 64 is a flow chart showing an alternative procedure applicable in

step 358 of figure 52, when the thesauruses are stored as illustrated in figure

17.

Figure 65 is a flow chart showing a procedure applicable in step 335 of

figure 51.

WO 02/44943 PCT/IB01/02792

Figures 66 and 67 show the contents of an exemplary output table

used to provide a query response.

Figure 68 is a diagram illustrating another possible structure of the

output table.

Figures 69 and 70 are flow charts showing procedures applicable in

step 335 of figure 51 to construct an output table of the type shown in figure 68.

Figure 71 is a flow chart showing a procedure applicable in step 335 of

figure 51 to perform computations in a database system by means of a

computation table.

Figure 72 is a block diagram of another computer system suitable for

implementing the invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

VIRTUAL DATA GRAPHS

Figures 1-3 illustrate a collection of data which can be stored in a

computer memory coupled with a processor arranged for running relational

database management programs. This example will be referred to in the

following description to give an illustration of the principles and embodiments of

the invention where appropriate.

Figures 1-3 show a conventional type of data organization in a

database system. The illustrated system handles data relevant to a

hypothetical insurance company which manages policies for its clients. The

data are organized in three tables relating to the clients, policies and accidents

as shown in figures 1-3, respectively.

From a logical point of view, each data table consists of a two-

dimensional matrix, with rows corresponding to respective records in the table

and columns corresponding to respective data attributes of the records or

structural features of the database (the latter type of column typically contains

either local record identification keys or foreign keys designating records in a

target table).

It will be appreciated, however, that for large databases the actual

WO 02/44943 PCT/IB01/02792

-11

storage of the data in a memory medium, e.g. a magnetic disc, is frequently

performed otherwise: each row typically has a memory address where the

corresponding attribute values or keys are stored in the order of the columns

and separated by predetermined symbols such as the encoded character

In our simplified example given to facilitate the explanation of the

proposed data structures, the tables are of modest size. In practice, there are

usually more tables and more attributes (columns) per table (notwithstanding,

one ore more tables could also have a single column). Moreover, the data

tables generally include much more records, up to thousands or millions of

rows depending on the application.

In that example, the database a group of seven attributes distributed

into three sub-groups corresponding to the three data tables. Each attribute has

a column in the data table corresponding to its sub-group. The client data table

(figure 1) has three attributes, i.e. client name, birth year and gender. The

policy data table of figure 2 has two attributes, i.e. policy type ("car" or "house")

and policy effect date, and a link column to the client table. The accident data

table of figure 3 has two attributes, i.e. date of accident and amount of

damages incurred in a given currency, and a link column to the policy table.

In a given data table, each record/row has a unique identifier, referred

to as a row-ID. This identifier corresponds to the memory address where the

record is stored, usually through a conversion table. It may be stored as an

identification key in a column of the data table for the purposes of unique row

identification, but this is not compulsory. In our example, the row-ID's are

integer indexes starting from zero for each data table, and they are not stored

explicitly in a column of the table.

Some of the tables are linked together, as indicated in the last column

of figures 2 and 3. Two tables are directly linked if one of them (source table)

has a link column provided for containing foreign keys designating records of

the other one (target table).

Those foreign keys, hereafter called links, reflect the hierarchy and

organization of the data handled in the relational database system. In our

example, each accident dealt with by the insurance company is related to a

certain policy managed by the company, hence the policy links of figure 3.

WO 02/44943 PCT/IB01/02792

-12-

Each policy is for a particular client of the company, hence the client links of

figure 2. It will be noted that some links may be optional. For example, some

accidents may involve third parties and if there is a separate table for third

parties, then each record of the accident table may have a link to the third party

table.

Each link typically consists of a row-ID in the target data table. For

instance, the accident stored as row-ID 0 in the accident table of figure 3,

which took place on October 3, 1998 for an amount of 1,000 has a policy link

pointing to the policy stored as row-ID 1 in the policy table of figure 2, i.e. it

relates to a car policy subscribed on September 9, 1998 by the client with

row-ID 1 in the client table of figure 1, i.e. Andre, a man born in 1976. If the

target table has other forms of record identification keys, for example

compound keys, a link may also designate a target record as identified by such

a key.

The construction of the links obeys a number of rules. In particular, the

linked data tables have a directed acyclic graph structure such as a hierarchical

tree organization illustrated in figure 4. A root table is defined as a data table for

which no other data table has links pointing to its rows, such as the accident

table of figure 3. In other words, a root table does not constitute a target table.

Likewise, a leaf table is defined as a data table with no link column, such as the

client table of figure 1. In other words, a leaf table does not constitute a source

table. Figure 4 shows only one root table, but the tree structure of the tables

may have multiple roots.

It may happen in certain cases that a group of related data tables

exhibit circular links (for example, the client table may have a link column to the

accident data table to indicate the first, or last, accident undergone by each

client). In such a case, the tree organization of the data tables is first restored

by canceling one link of the circle. Which link should be cancelled is dictated by

the semantics of the database (in the above example, the link from the client

table to the accident table will naturally be cancelled).

Paths are defined in the data table tree from the root table(s) to the leaf

tables. Each path from a root table to a leaf table is defined by a link column of

the root table pointing to the leaf table, or by a succession of link columns via

WO 02/44943 PCT/IB01/02792

-13-

one or several intermediate tables.

In figure 4, two leaf tables have been added (dashed lines) to show a

tree structure with multiple branching (the simplified example of figures 1-3

provides a tree with a single path shown with a solid line). The added leaf

tables are a third party table as mentioned previously and a broker table which

is a target table from the policy table, to contain data about the brokers who

commercialize the policies.

The data table records that are linked together can be viewed in a

similar tree representation (figures The record tree of figure 5 shows that

the accident #6 was related to policy #0 (car) subscribed by client #2 (Ariane)

through broker #Y and involved third party The solid lines represent

respective links from the data tables of figures 2 and 3.

The record tree of figure 6 further shows a Null record which may

added in the accident table with a link to row-ID 2 in the policy table, for the

reason that, as apparent from the last column of figure 3, no accident has

occurred under policy #2 (subscribed by client #4 (Max) for his house).

A Null, or dummy, record stands for the absence of data. All its attribute

values are default values (Null), which means "no value". The purpose of

inserting such dummy records in the present scheme is to make sure that any

valid record in any data table belongs to at least one record tree stemming from

a record of a root table (figure 4).

A Null record may also be present in each data table which is a target

table for at least one link column of a source table. When a row of the source

table has no foreign key in the corresponding link column, the record tree(s)

including that row is (are) completed with a Null at the location of said target

table. This situation occurs for the broker table in the example illustrated in

figure 6. To represent this, a default value can be written in the link

column of the source table, whereby the Null record is implicitly present in the

target table.

The Null records are inserted where appropriate in a process of

scanning every single path in the data table tree from the leaf table of said path

to the root table, i.e. downwardly in figure 4. When examining one source/target

table pair in the scanning of a path, the target table row-ID values that do not

WO 02/44943 PCT/IB01/02792

-14-

occur in the relevant link column of the source table are first listed, and then for

each missing row-ID value of the list, a new Null record is generated in the

source table with said missing row-ID value in said link column.

If a Null record is thus inserted in a data table having several link

columns, the Null record receives the default value in any link column

other that the one pertaining to the path being scanned, to indicate that the

corresponding link is to a Null record in the target table. This situation occurs

for the third party table in the example illustrated in figure 6.

Scanning the data table tree from the leaves to the root is important.

Otherwise, Null records containing links to other Null records in a target table

might be overlooked. An example is shown in figure 7 which shows a record

tree relating to client #0 (Oscar) who has no (more) policy: the accident table

contains a Null record pointing to another Null record of the policy table which,

in turn, points to client the root of the record tree would not be in the root

(accident) table if the paths were scanned upwardly.

In a conventional database organization as shown in figures 1-3, the

link keys are provided to optimize the memory usage. To illustrate this,

reference may be made to the flat file shown in figure 8, which has exactly the

same informational content as the three data tables of figures 1-3 (the third

party and broker tables are ignored in the sequel).

A flat file has a column for each one of the attributes (columns) of the

data tables. For each complete record tree that can be constructed with the

data table tree structure of figure 4, the flat file has a row which contains, in the

relevant columns, the attribute values of all the records of said tree. The rows

of the flat file are referred to herein as data graphs. Each data graph is

identified by a flat file row-ID shown in the left-hand portion of figure 8. The

record trees of figures 5-7 are compact representations of the data graphs at

row-ID's 6, 9 and 11, respectively.

Although the flat file representation is sometimes referred to the

literature, it is of little practical interest for databases of significant size. The

reason is that it requires excessive redundancy in the data storage.

For example, in our small-sized case, Andre's birth year and gender, as

well as the details of his car policy are written three times in the flat file

WO 02/44943 PCT/IB01/02792

(row-ID's 0, 3 and whereas they are written only once, along with link

values, when the storage is in the form of data tables as in figures 1-3. With

databases of realistic size, such redundancy is not acceptable.

The database system according to the invention makes use of the flat

file concept. However, it does not require the storage of the flat file as shown in

figure 8, hence the concept of "virtual flat file" containing "virtual data graphs"

(VDG). The term "virtual" refers to the fact that the flat file or data graphs need

not be maintained explicitly in memory, although their data structure is used as

a reference in the execution of the method.

In a particular embodiment of the invention, the flat file is reduced to a

link table as shown in figure 9. Each row of the link table corresponds to a

respective row of the flat file, i.e. to a record tree as shown in figures 5-7.

The columns of the link table respectively correspond to the data tables

of figures 1-3. In other words, each column of the link table is associated with

an attribute sub-group which is the sub-group of attributes allocated to the

corresponding (target) data table. Each column of the link table contains link

values (row-ID's) designating records of the corresponding target data table.

The row of the link table corresponding to a given data graph contains

a default value in the column corresponding to any data table having a Null

record in the record tree representing said data graph.

The data table row-ID's found in one row of the link table enable the

retrieval of linked data from the data table, i.e. a data graph or part of it. All the

links are represented in the link table. If one replaces the row-ID's stored in the

columns of the link table of figure 9 by the attribute values stored in the

identified rows of the respective data tables of figures 1-3, one recovers the flat

file of figure 8.

The proposed system further uses word thesauruses (figure

each associated with a respective column of one of the data tables, i.e. with

one of the attributes.

In a preferred embodiment, there is one word thesaurus for each

attribute used in the database system. However, if some attributes are known

to be never or almost never used in the query criteria, then it is possible to

dispense with the thesaurus for such attribute.

WO 02/44943 PCT/IB01/02792

-16-

Each word thesaurus associated with one column of a data table has

an entry for each attribute value found in that column. Such attribute value is

referred to herein as a "word". A word has one entry in a thesaurus, and only

one, as soon as it occurs at least once in the associated data table column.

The Null value is a valid word in the thesaurus.

The entries of each thesaurus are sorted on the basis of the attribute

values. An order relationship is therefore defined for each attribute category.

This requires attention when the attribute value fields of the thesaurus files are

defined and dimensioned.

Typically, the words are in the ASCII format and their category is

selected for each column among the categories "integer", "real" and "character

string". Character strings are sorted according to the usual lexicographical

order. A date field is preferably declared as a character string such as

yyyy (mm) (dd) (figures 10B, 10E and 1 OF), yyyy representing the year, mm the

month (optionally) and dd the day in the month (optionally). The thesaurus

sorting thus puts any dates in the chronological order. If the attribute category

is "integer", the numbers are aligned on the right-hand digit, in order to provide

the natural order relationship among the integer data values. If the attribute

category is "real", the numbers are aligned according to their whole parts, with

as many digits on the right as in the value having the longest decimal part in

the column.

The Null value is at one end at the beginning) of each sorted

thesaurus.

Each entry E(W) for a word W in a thesaurus associated with a column

C(T) of a data table T contains information for identifying every row of the flat

file which has the attribute value W in the column corresponding to When

the flat file is stored virtually in the form of a link table, the information

contained in entry E(W) is used for identifying every row of the link table which,

in the column corresponding to the data table T, has a link pointing to a row

having the value W in column C(T).

In other words, with the contents of the entry E(W) in the thesaurus

associated with column we can retrieve all the data graphs whose

corresponding attribute has the value W.

WO 02/44943 PCT/IB01/02792

-17-

Such contents represent a row-ID list pointing to rows of the (virtual)

flat file, i.e. a data graph identifier list. Such list may be empty, in particular for

the Null value in some of the thesauruses (as in figures 1 OA-C).

Two alternative representations of the data graph identifier lists in the

thesauruses are illustrated in figures 10A-G for the seven attribute columns of

figures 1-3. The first one is the form of explicit integer lists.

The second (equivalent) representation is in the form of bitmap vectors

whose length is equal to (or greater than) the number of rows in the virtual flat

file, i.e. the number of data graphs. The bit of position i in a bitmap vector (i 0)

indicates whether the integer i belongs or not to the row-ID list

represented by the bitmap vector. In our simplified example, the flat file has 12

rows so that the bitmap vectors may be of dimension 12.

The above-described data structure, comprising a virtual flat file and

sorted thesaurus files pointing to rows of the virtual flat file is referred to herein

as a VDG structure.

The VDG structure provides a powerful tool for efficiently processing

queries in the database.

The virtual flat file is a reference table which defines a unified algebraic

framework for the entries of all the thesauruses. The query criteria are

examined with reference to the relevant thesauruses to obtain a flat file row-ID

list (or bitmap vector) which represents all data graphs matching the query

criteria, if any. The results can then be delivered by accessing the link table

rows pointed to in that row-ID list to read the links which appear in part or all of

the columns in order to retrieve attributes values as desired for the result

presentation.

The processing with reference to the thesauruses mainly consists in

logical operations performed on the row-ID lists to which they point. If they are

represented as integer lists, such operations can be reduced to basic merge,

intersect and/or complement operations, which respectively correspond to

Boolean OR, AND, NOT operations in the bitmap representation.

The VDG structure also provides an efficient tool for accessing the

contents of the database, which does not require accesses to the data tables.

This tool is well suited to queries having special result presentation features

WO 02/44943 PCT/IB01/02792

-18-

such as SORT, COUNT, DISTINCT, ORDER BY, GROUP BY, etc. clauses,

and also for carrying out any type of calculation on the data values of the

records which match the query.

Example 1:

As an illustration, consider the following query: find the client name and

accident date for all car accidents that incurred damages higher than 900, and

group the results according to the client name. The query may be processed as

follows. First, all the flat file row-ID lists identified in the accident amount

thesaurus entries relating to amounts higher than 900 (the five last rows of

figure 10G) are merged, which yields the list 1,3, 5, 6, 7} (or the bitmap

vector 110101110000 obtained by a bitwise Boolean OR). Then the

intersection of that list with the row-ID list identified in the policy type thesaurus

entry relating to the value "car" (the second row of figure 10D) is determined.

The result list 3, 5, 6} (or bitmap vector 100101100000 obtained by a bitwise

Boolean AND) specifies the data graphs that satisfy the query criteria. Finally,

the entries of the client name thesaurus (figure 10A) are read sequentially and

when there is a non-empty intersection between the result list and the row-ID

list identified in the client name thesaurus entry, the link table rows having their

row-ID's in that intersection are read to retrieve the desired attribute values. In

our case, the output would be: Andre [accident dates 1998 10 03 and

1999 06 12 Ariane [accident date 1999 12 09 and Laure [accident

date 199912 08

The above type of processing is applicable to any kind of query. The

response is prepared by referring only to the sorted thesauruses, which

implicitly refer to the flat file framework. Once an output flat file row-ID list is

obtained, the link table or the thesauruses can be used for retrieving the data of

interest.

Example 2:

To further illustrate the outstanding performance of the VDG scheme,

let us consider the query which consists in identifying any client who has had a

car accident before the beginning of the civil year of his or her 35 th birthday. In

WO 02/44943 PCT/IB01/02792

-19-

a typical conventional system, all the records of the accident data table of figure

3 have to be read to obtain the date attribute and policy link values. For each

accident record, the policy data table is read at the row-ID found in the policy

link column to obtain the policy type attribute and client link values and then, if

the policy type is "car", another access to the client data table is necessary at

the row-ID found in the client link column to obtain the birth year attribute value.

The latter value is compared with the date attribute value previously obtained in

the accident table to determine whether the criteria of the query are fulfilled.

If the data tables are sorted beforehand on the basis of the attributes

referred to in the query criteria, such conventional processing may be

accelerated by limiting the number of disc accesses. This requires data table

sorting every time records are added, deleted or amended, which is not

practical when the collection of data is large. And it is possible only in specific

cases dictated by the data table sorting rule.

For example, if the client and policy tables were respectively sorted on

the basis of the birth year and policy type attributes, the preceding request

could be processed in a less prohibitive time by accessing the data records in a

suitable order and with the help of the computer cache memory. However, the

tip would not apply to other similar queries assuming an additional

column in the policy table for containing excess amounts, the identification of all

accidents for which the damage amount was more than ten times the excess

amount would raise the same problems).

With the VDG scheme, the above illustrative query can be dealt with in

a very efficient manner. By means of the client birth year thesaurus (figure

and the accident date thesaurus (figure 10G), the computer identifies the {client

birth year, accident date} word pairs which satisfy the date criterion, i.e.

accident date earlier than beginning of client's birth year 35. This is done

without worrying about whether the accident was undergone by the client. Such

identification is relatively easy for any possible pair of attributes since any

attribute likely to be referred to in queries has a sorted thesaurus. For each

identified word pair, the intersection of the two flat file row-ID lists of the

thesaurus entries is obtained. The resulting integer lists are merged. Then the

computer intersects the row-ID list of the entry relating to the value "car" in the

WO 02/44943 PCT/IB01/02792

policy type thesaurus (second row in figure 10D) with the list

1, 3, 5, 6, 8, 10) resulting from the merger. The resulting list 3, 5, 6, 8)

designates a set of matching rows in the link table, from which the relevant

client names (Andre -3 times-, Laure and Ariane) are readily retrieved by

accessing the client table records whose row-ID's appear in the matching rows

and in the client column of the link table.

It is noted that, when processing a query, the link table is simply used

as a mean to retrieve the data of interest. Different ways of achieving this

retrieval function may be thought of.

A method is to keep the original data tables (figures 1-3) in memory.

However, it is worth noting that the link columns may be deleted from those

data tables, since their contents are already present in the link table.

From the observation that all possible attribute values are stored in the

corresponding thesauruses, another method is to store in the link table pointers

to the thesauruses. The latter method reduces the required disc space since an

attribute value has to be written only once, even if the value occurs frequently

in a data table column. It enables to quickly retrieve attribute values which

occur in a given flat file row without requiring the use of the original data tables.

For certain attributes, it may be interesting to store the explicit attribute

values in the link table, i.e. like in the flat file. In particular, this may be

interesting for numerical fields (usually of smaller size than character strings)

whose values are very dispersed and which are often requested among the

output attributes of a query response money amounts). If those values are

explicitly written in the link table, there can be an appreciable gain in the disc

accesses required for fetching the output data, at the cost of a moderate

increase in the needed disc space.

In the foregoing explanations, the link table is a sort of skeleton of the

flat file, which is stored to facilitate the data retrieval once the list of flat file row-

ID's matching the query has been determined by means of the sorted

thesauruses.

Notwithstanding, storing a link table or any form of table reflecting the

flat file structure is not strictly necessary. In an advantageous embodiment, the

WO 02/44943 PCT/IB01/02792

-21

data graphs (or their portions requested for the result presentation) may be

recovered from the thesaurus files only. To illustrate this, consider again

Example 2. Once the result list 3, 5, 6, 8) of matching virtual flat file rows

has been obtained by processing the query criteria with reference to the

thesaurus files, it is possible to scan the client name thesaurus and, for each

word (client name), to intersect the flat file row-ID list represented in the

thesaurus with the result list. If the intersection is non-empty, the word is

included in the output. It may be accompanied with the intersection list to allow

the user to quickly obtain further information from the relevant data graphs.

This method requires the minimum memory space since only the thesaurus

files need to be stored.

Even if a link table is stored, it may be advantageous, for certain

queries, to retrieve the attribute values by scanning the thesaurus(es) as

indicated hereabove rather than through the link table. This may occur, in

particular, to perform computations on the data values when there is a relatively

slow interface between the query processor and the data tables, e.g. an ODBC

interface ("Open DataBase Connectivity").

Another advantage of the VDG scheme is that it provides a query

processing engine which can co-exist with the data tables in their original form.

Changes in the thesaurus entries are then done in response to corresponding

changes in the original data tables. This is an interesting feature for users who

find it important to keep their data in the form of conventional tables, because

they do not want to be too dependent on a new system or because they need

to access their tables through a conventional interface for other applications.

MACROWORDS

The above-described VDG's are advantageously completed with prefix

thesauruses also referred to as macroword thesauruses.

Like the above-described word thesauruses, each macroword

thesaurus is associated with one attribute, i.e. one column of one data table. In

addition, it has a prefix length (or truncation length) parameter.

Each entry of the macroword thesaurus relates to a range of attribute

values, and contains or points to data for identifying all the flat file rows having,

WO 02/44943 PCT/IB01/02792

-22-

in the column corresponding to said attribute, an attribute value which falls

within said range. The range corresponding to the entry of the macroword

thesaurus corresponds to a prefix value having the prefix length assigned to the

thesaurus: any word beginning by such prefix value has its flat file row-ID list

included in that of the macroword. If the prefix length is noted P, a macroword

C1C2 0P is the set of all values of the attribute which begin by the P

characters or digits C1C2 C. The limit case where the prefix length is the

number of characters or digits of the value field truncation length is zero) is

the word thesaurus described previously.

In other words, the macroword thesaurus entry identifies the flat file

row-ID list (or bitmap vector) corresponding to the merger of the flat file row-ID

lists (or to the logical OR between the bitmap vectors) which are identified in

the entries of the word thesaurus corresponding to the individual words

encompassed by the macroword.

Each thesaurus (word or macroword) associated with an attribute AT

can thus be defined with reference to a partition into subsets of the set of words

which can be assigned to attribute AT in the relevant data table record. It has a

respective entry for each subset including at least one word assigned to

attribute AT, this entry being associated with a flat file row-ID list including any

ID of a flat file row having a word of the subset assigned to attribute AT. In the

case of a macroword thesaurus, the partition is such that each subset consists

of words beginning by a common prefix. In the case of a word thesaurus, the

partition is such that each subset consists of only one word.

As an example, figure 10H shows the accident amount macroword

thesaurus for a truncation length of 3 characters. It is not necessary to repeat

the Null entry, which is already in the word thesaurus. Such a macroword

thesaurus provides substantial economy in terms of disc accesses and flat file

row-ID list mergers. For example, for obtaining information about the accidents

that had an amount between 1,000 and 1,999, one access to the macroword

thesaurus of figure 10H is enough to obtain the relevant list of flat file row-ID's

3, whereas it would require two thesaurus accesses and one merge

operation with the non-truncated accident amount thesaurus of figure 10G. The

WO 02/44943 PCT/IB01/02792

-23-

gain can be quite substantial for large databases and attributes of high

cardinality, i.e. with many possible attribute values.

Macroword thesauruses based on prefix or truncation lengths provide a

great flexibility in the processing of range-based query criteria. It is possible, for

a given attribute, to provide several macroword thesauruses having different

prefix lengths in order to optimize the processing speed of various queries.

Typically, a date attribute may have a yearly macroword thesaurus

(prefix length 4) and a monthly thesaurus (prefix length 6) in addition to the

(daily) word thesaurus. Any other kind of attribute (numbers or text) may lend

itself to a convenient macroword thesaurus hierarchy.

VDG COMPRESSION

With the VDG scheme as described so far, the memory space required

by the thesaurus files is not optimized.

The row-ID's being integers typically coded with 32 bits, if a word

occurs n times in the attribute column of the flat file of figure 8, nx32 bits are

needed to explicitly encode its flat file row-ID lists. If the flat file has Nmax rows

(for example millions of rows), Nmax bits are needed for each entry in the

bitmap representation, for whatever value of n.

Generally speaking, for an attribute of high cardinality, such as the date

or amount attributes (figures O10E-G), the flat file row-ID lists are scarcely filled,

so that the explicit integer list representation is satisfactory in terms of memory

requirement, while the bitmap representation can be prohibitive for large flat

files. Other attributes have a low cardinality, such as the client gender or policy

type attribute in our example (figures 10C-D), whereby the bitmap

representation is well suited, while the integer list representation is unfavorable.

It is possible to adopt for each thesaurus a representation which is

believed to be the most appropriate in order to reduce the needed memory

space. However, this requires an a priori knowledge of how the attribute values

will be distributed. Many attributes can be ambiguous in this respect, and the

optimization may also be difficult for different macroword sizes relating to a

given attribute.

WO 02/44943 PCT/IB01/02792

-24-

Bitmap compression methods as known in the art US Patent No.

5,363,098 or No. 5,907,297) may also be used. A problem is that those

methods are designed essentially for optimizing the storage volume, not the

processing speed. In the VDG context, the advantage of reduced memory

space may be counterbalanced by the disadvantage of longer response times

due to multiple compression and/or decompression operations when

processing a query. To the contrary, it is desired to increase the processing

speed as much as possible.

In the preferred implementation of the VDG scheme, the compression

of the flat file row-ID lists in the thesauruses is carried out by dividing a range

covering all the row-IDs of the flat file into subsets according to a

predetermined pattern. Then, each flat file row-ID list of a thesaurus entry is

encoded with data for locating in the pattern each subset of the range which

contains at least one row-ID of the list, and data representing the position of

each integer of the row-ID list within any subset thus located.

The row-ID range Nmax[is selected to be equal to or larger than the

number of rows in the flat file. The "predetermined pattern" conveniently defines

the "subsets" as consecutive intervals D1-1[, [D1,2xD1-1[, etc., having the

same length D1 within said range.

The coding data can then be produced very simply by Euclidean

division. For any positive numbers x and y, we note LxJ the integer equal to or

immediately below x, Fx the integer equal to or immediately above x, and

x mod y x Lx/y/. A Euclidean division by D1 is performed for each row-ID N

of the input list. The quotient Q1 =LN/D11 indicates the rank of the

corresponding interval in the pattern (Q1 while the remainder

R1 N modD1 represents the position of the row-ID within the interval

(0 R1 D1). The decoding is also very simple: from the encoding data Q1

and R1 for an item of the coded list, the row-ID is N Ql xD1 R1.

Advantageously, the interval length is a whole power of 2, so that the

Euclidean divisions are performed by straightforward bit shift operations. A

typical length is D1 27 128.

The encoding method can be expressed equivalently by referring to the

WO 02/44943 PCT/IB01/02792

bitmap representation. Each bitmap vector is divided into bitmap segments (or

other types of bit groups if a more tortuous pattern is referred to), and for each

segment containing at least one the coding data include the rank Q1)

and the contents of the segment. The all zero segments are discarded.

Figures 11A, 11G and 11H are other presentations of the client name

and accident amount word thesauruses of figures 10A and 10G and of the

accident amount macroword thesaurus of figure 10H, with D1 3 (a non-typical

value of D1 used here for conciseness). The second columns are copied from

the last columns of figures 10A, 10G and 1OH, respectively, with blanks to

highlight the segmentation of the bitmap vectors. The third columns show the

lists of ranks Euclidean quotients Q1) resulting from the encoding, and the

fourth columns show the corresponding non-zero bitmap segments (having a 1

at the position of each remainder R1).

It is observed that for each thesaurus entry, the ranks Q1 form an

integer list included in the range Nlmax[, with Nlmax rNmax/iD11.

According to a preferred embodiment of the invention, a similar type of

encoding can be applied to those rank lists. The encoding process may be

iterated several times, with the same encoding pattern or different ones. In

particular, the interval lengths could vary from one iteration to the next one.

They are preferably whole powers of 2.

The ranks and bitmap segments obtained in the first iteration with the

interval length D1 are called layer 1 (or L1) ranks and layer 1 segments (figures

11A, 11G and 11H). Those obtained in the second iteration, with an interval

length noted D2, are called layer 2 (or L2) ranks and layer 2 segments (figures

12A, 12G and 12H), and so forth.

In the following, n denotes the number of encoding layers numbered k

with 1 k< n, layer k having a divisor parameter Dk, and the product

k-1
Ak I Dk' being the number of flat file row-ID's encompassed by one bit of a

k'=1

layer k bitmap segment (Al 1).

In the simplified case illustrated in figures 12A, 12G and 12H, n 2 and

the second encoding layer uses D2 2. The columns labeled "L1 Bitmap" are a

WO 02/44943 PCT/IB01/02792

-26-

bitmap representation of the layer 1 rank lists, with blanks to highlight the

further bitmap segmentation leading to the layer 2 data shown in the last two

columns.

The layer 1 and layer 2 coding data are summarized in figures 13A,

13G and 13H which show a possible way of storing the flat file row-ID list

information. It is noted that storage of the layer 1 rank lists is not strictly

necessary since those list are completely defined by the layer 2 data. However,

it will be appreciated further on that such storage somewhat simplifies the

query processing in certain embodiments of the invention.

The same kind of encoding may be used for any one of the word and

macroword thesauruses. However, it is also possible for some of them to retain

a conventional type of row-ID list storage (explicit integer lists or bitmap vector),

i.e. n 0. In particular, the explicit integer list representation may remain well-

suited for scarcely distributed thesauruses.

Figures 14-16 show another possible way of storing the information

contained in the thesauruses of figures 13A, 13G and 13H. For each encoding

layer, the thesaurus entries are associated with respective chains of records in

a data container (figure 15 for layer 1 and figure 16 for layer 2) including a rank

file and a bitmap segment file. Each record in the layer k rank file (1 k n)

has a field for receiving a rank value (between 0 and Nkmax-1) and a field for

receiving an address of a next record in the rank file. A default value in the next

address field (0 in the example shown) means that the record is the last one of

the chain. The bitmap segment file (right-hand parts of figures 15 and 16) is

addressed in the same manner as the associated rank file. In each record for

layer k, its has a bitmap field of Dk bits for receiving the bitmap segment

associated with the rank stored in the corresponding record of the rank file. It

will be appreciated that the rank values and next record addresses could also

be stored in two separated files having a common addressing rather than in two

fields of the same file.

For each VDG coding layer k, an entry in a thesaurus has a head

address field for containing an address in the layer k rank file where a first rank

record concerning the entry is stored. From there, the relevant rank chain can

WO 02/44943 PCT/IB01/02792

-27-

be retrieved. For example, Max's layer 1 ranks 0, 2 and 3 (figure 13A) are

retrieved by accessing the rank file of figure 15 at the address 29 indicated in

the head address field of the thesaurus entry (figure 14A), and then at the

chained addresses 27 and 15. In parallel, the corresponding layer 1 bitmap

segments 001, 010 and 100 are read. Figures 15 and 16 also show that the

rank and bitmap segment files have an additional chain consisting of free

records (addresses 32/33/17 in figure 15 and 29/8/17/24 in figure 16). The

head of the latter chain is allocated to write new coding data when necessary.

Preferably, the thesaurus entry further has a layer 1 tail address field

for containing the address in the rank file of the last record of the chain

pertaining to the entry, as shown in the third columns of figures 14A, 14G and

14H. This facilitates the updating of the encoding data storage. For instance,

the insertion of a new layer I rank for Max, with a corresponding layer 1 bitmap

segment, may proceed as follows: the head of the free record chain is located

(address 32); the address (33) found in its next record address field becomes

the address of the new free record chain head; the records at address 32

receives the new layer 1 rank in the rank field, the end-of-chain flag in the

next address field and the new bitmap segment in the segment field,

respectively; the address obtained in the tail address field of Max's thesaurus

entry (15) is accessed directly (bypassing the potentially long path along the

chain) to write the address (32) of the new data, which is also written into the

tail address field of Max's thesaurus entry. The fact that the layer 1 rank is a

new one for Max can be determined from the layer 2 data: if the layer 2

updating performed previously has changed a to a in the layer 2 bitmap

segment, then the layer 1 rank is a new one for the word; otherwise the layer 1

rank is already present in Max's layer 1 rank list which has to be scanned until

said layer 1 rank is found. If there are more than two encoding layers, it is

possible to provide a layer k tail address field in the thesaurus entries for k 1

and to proceed in the same manner for new layer k ranks as determined from

the layer k+l data. However the main gain in doing so lies in layer 1 which has

the longest chains.

In figures 15 and 16, the coding data coming from three heterogeneous

thesauruses (client name thesaurus, accident amount word thesaurus and

WO 02/44943 PCT/IB01/02792

-28-

accident amount macroword thesaurus) are stored in the same data containers.

The other thesauruses are ignored for clarity of the figures. In fact, all the

coding data of one layer may be piled up in the same rank bitmap segment

files, irrespective of the word or macroword thesaurus where they come from.

Any entry of any thesaurus will then point to a respective record chain in those

two coupled files.

In order to optimize the processing speed, it is preferable to sort the

rank and bitmap segment files for disc storage, so as to group the records

based on the thesaurus entries to which they pertain. The advantage in doing

so is that the reading of the coding data for one thesaurus entry requires fewer

disc accesses, by means of the computer cache memory which enables the

simultaneous RAM loading of a group of physically contiguous records. A batch

execution of that optimization sorting, which requires a simultaneous update of

the thesaurus entries (head and tail address fields), may be used to avoid

untimely resource usage.

In order to facilitate this optimization, it is preferable to use separate

data containers for different thesauruses, rather than common files. This

reduces the amount of data to be sorted each time. In particular, using one

rank I bitmap segment file pair for each thesaurus and each coding layer

seems appropriate.

A further possibility is to provide separate rank and bitmap segment

files for the different thesaurus entries. This requires a higher number of file

declarations in the memory. But it is optimal in terms of processing speed

without requiring the above-mentioned optimization sorting operation. It also

eliminates the need for storing head and tail addresses pointing to record

chains: the thesaurus entries simply designate data containers where the rank

and bitmap segment data are stored.

Figure 17 illustrates how the data of the client name thesaurus may be

arranged in the latter case. The thesaurus has an index register where the

thesaurus words are kept sorted. For each word and each coding layer k, two

files are provided in the system memory, one for containing the rank data

(noted NOk), and one for containing the bitmap segments (noted HPk). The

attribute value (Andre, Ariane and so on) can be used to name the

WO 02/44943 PCT/IB01/02792

-29-

corresponding files. The storage is less compact than with common data

containers as shown in figures 15-16, but access to the data relating to one

word can be very quick without requiring any sorting.

An arrangement as illustrated in figure 17 is preferred if the operating

system does not suffer too severe limitations regarding the number of files that

can be managed in the memory, and if the overhead due to the storage of

numerous individual files is not a problem. Otherwise, it is possible to group the

rank and bitmap segment files relating to different (macro)words, or even to

different thesauruses, as indicated before.

In addition to enhanced data compression, the multi-layer row-ID list

encoding method provides a substantial acceleration of most query processing.

The processing is first performed in the higher layer, and the results are passed

to the lower layers. The coding scheme preserves a common structure for the

entries of all thesauruses in each layer, imprinted by the original structure

imparted by the virtual flat file. Accordingly, collective logical operations

between integer lists or bitmaps originating from different thesauruses are

possible in the various layers. The results obtained in a layer k+l provide a sort

of filter for executing the minimum number of operations in layer k, which

enhances the processing efficiency, particularly for multi-attribute query criteria.

This enhancement is hardly visible on our simplified example, which is

too small. Consider the following request: find Max's accidents for an amount of

1,300 (there is no response). The direct layer 1 processing is to read and

decode the relevant layer 1 data to rebuild the bitmap vectors of the words

"Max" and "1,300" in the thesauruses of figures 10A and 10G, and to compute

the logical AND of the two bitmap vectors. Exactly the same kind of processing

in layer 2 requires fewer read operations since there are fewer layer 2 records,

and avoids any layer 1 processing because there is no overlap between the

two layer 1 rank lists for the words "Max" and "1,300" 2 nd column of figures

13A and 13G). If the same request is made with the amount value 10,000

instead of 1,300, the layer 2 results may reduce the layer 1 processing to

loading the two layer 1 bitmap segments corresponding to rank 0 (the other

ranks are filtered out) and computing the AND between those segments.

With more representative values of D1 and D2 D1 D2 128)

WO 02/44943 PCT/IB01/02792

and a large size database, this filtering principle between two layers provides a

spectacular gain. Large pieces of bitmap vectors disappear from the layer 1 (or

generally layer k 1) processing owing to the groupwise filtering achieved in

layer 2 (layer k+l).

VDG CREATION AND MANAGEMENT

Figure 18 shows an exemplary layout of a computer system suitable for

forming the hardware platform of a system in accordance with the invention.

That hardware platform may be of conventional type. It has a bus 100 for

exchanging digital signals between a plurality of units including:

a central processing unit (CPU) 101;

a read only memory (ROM) 102 for containing basic operating

instructions of the CPU;

a random access memory (RAM) 103 which provides a working space

for the CPU 101, dynamically containing program instructions and

variables handled by the CPU;

a man-machine interface 104 which comprises circuitry for controlling

one or more display devices (or other kind of devices for delivering

information to humans) and circuitry for inputting information to the

computer system from acquisition devices such as a keyboard, mouse,

digital pen, tactile screen, audio interface, etc.;

a mass storage device for storing data and computer programs to be

loaded into RAM 103. In the typical example shown in figure 18, the

mass storage device comprises a hard drive 105 for storing data on a

set of magnetic discs 106. It will be appreciated that any kind of mass

storage device, magnetic or optical, may be used in implementing the

invention.

For implementing the present invention, the hard drive unit 105 is used

for storing data structures as described in the foregoing and programs

described in more detail herebelow. The program instructions and the useful

data are loaded into the dynamic storage RAM 103 for processing by CPU 101.

The query results are stored in the hard drive and/or delivered to a user

through the man-machine interface 104 or through a network interface (not

WO 02/44943 PCT/IB01/02792

-31

shown) in the case of a remote access.

The mass storage device 105 is suitable for the storage of large

amounts of data, but with an access time significantly longer than the RAM

103. This is due to the time needed to put the reading head of the hard drive in

front of the desired disc location. As well-known in the art, when a disc access

is performed in hard drive 105, the data that are actually read form a block of

data stored contiguously on the hard disc, which is loaded in a portion of RAM

103, called "cache" memory. When it is known that the CPU is likely to need

different data pieces simultaneously or in a short period of time, it is convenient

to arrange the data storage organization such that those data belong to the

same block so as to be retrievable by a single disc access, which minimizes the

processing time.

The system of figure 18 may be a personal computer (PC) of the

desktop or laptop type. It may also be a workstation or a mainframe computer.

Of course, other hardware platforms may be used for implementing the

invention. In particular, those skilled in the art will appreciate that many

calculations performed on the bitmap segments and vectors lend themselves to

efficient implementation by means of dedicated logical circuits or coprocessors.

Furthermore, parallel computation is very natural in this system.

The process of creating the VDG data structure is now described with

reference to figure 19 from input data tables being in the form shown in figures

1-3, which is the most usual data representation. That creation process is thus

suitable for creating the VDG structure from legacy databases. From the VDG

updating rules described further on, it will be understood that VDG's may also

be created directly from brand new data.

In certain databases, the data tables have their rows characterized by

compound keys rather than row-ID's as in figures 1-3. A compound key is the

concatenation of the contents of several key fields of a data table. In a source

data table, the records include foreign keys which designate the compound

keys of records of a target table. If such a legacy databases is handled, the first

stage of the VDG creation procedure is to translate the compound keys into

single keys such as the row-ID's shown in figures 1-3. This (optional) first stage

is illustrated in box 120 in figure 19.

WO 02/44943 PCT/IB01/02792

-32-

The second stage 121 consists in completing the data tables with Null

records where appropriate. This is performed as discussed hereabove with

reference to figures 4-7, by scanning every path in the data table tree from the

leaf table of the path to the root table. A link to a Null record is denoted by the

default value As a result, for each source target table pair, all the row-IDs

of the target table are present at least once in the source table link column.

The next stage 122 comprises the creation of the word thesauruses.

The relevant attributes, i.e. those likely to be used in query criteria (it may be all

of them), are determined. For each of the determined attribute, the word format

(type and length) is selected. For each word thesaurus, the attribute values

occurring in the associated column, including the Null value, are read from the

data table stored in the hard drive 105. Repeated values are eliminated, and

the remaining values are sorted based on the attribute values and the order

relationship applicable to the type of attribute. This sorting operation may be

performed in successive data record blocks transferred from the hard drive 105

to the CPU cache memory, with an external sorting after processing each

block.

The VDG creation procedure then proceeds to a stage 123 of deciding

the relevant macroword formats. Some word thesauruses will not give rise to

macroword thesauruses (for example, the client gender thesaurus of figure

needs no macrowords). In contrast, other thesauruses, for example

corresponding to date or amount attributes, will give rise to several macroword

thesauruses having different truncation lengths. If the values found in an

attribute column include characters strings beginning by most letters of the

alphabet, it is convenient to create a macroword thesaurus with a prefix length

of one character. The decision about the suitable macroword hierarchy may be

made by a database manager and input through the man-machine interface

104. It may also be an automatic process, based on the attribute type and/or

the distribution of the words in the thesaurus. In stage 123, the macroword

thesauruses are also created, directly in sorted form, by applying the truncation

to the words of the corresponding word thesauruses and deleting the repeated

macrowords.

Each entry of a macroword thesaurus preferably indicates the first word

WO 02/44943 PCT/IB01/02792

-33-

(or lower level macroword) of the lower level thesaurus included in the range

covered by the macroword. This indication of the lowest word (or macroword)

whose prefix matches the macroword under consideration reduces the time

needed to access the "children" of that macroword since the first one can be

accessed without scanning the lower level thesaurus. Alternatively, or

cumulatively, the highest word (or lower level macroword) whose prefix

matches the macroword could be indicated in the macroword thesaurus.

In stage 124, the rows of the link table and the entries of the individual

word thesauruses are generated. This is preferably done without storing the

whole flat file (figure for example according to the algorithm illustrated in

figure 20, in the case of an encoding with n 2 layers.

In the embodiments illustrated in figures 20-32, it is assumed that each

entry of a thesaurus for an attribute value contains an index WI which forms a

row-ID in an auxiliary table of the type shown in figure 14A, 14G or 14H,

pointing to coding data containers of the type shown in figures 15 and 16. For

each encoding layer k, this auxiliary table has

a column for containing the address, noted ATFk(WI), of a first record

concerning the thesaurus word of index WI in the coding data container

relating to layer k;

a column for containing the address, noted AT_Lk(WI), of the last record

of the chain for thesaurus word of index WI in the data container; as

indicated before, the latter column may be present only for layer 1.

As mentioned previously, the data container for a given coding layer

may be shared between all or part of the thesauruses, or it may be associated

with each individual thesaurus. A record at address AD 1) in the layer k

container (here assumed to be common to all thesauruses) comprises a first

field NOk(AD) for containing the rank data as an integer ranging from 0 to

Dk-1, a second field for containing the address NXk(AD) of the next record of

the chain (this address is 0 if there is no further address), and a third field for

containing the corresponding bitmap segment HPk(AD). The layer k container

has a free record chain whose first record address is noted Hk.

It is noted that the auxiliary table could also be shared by several

thesauruses containing distinct word indexes to access such common auxiliary

WO 02/44943 PCT/IB01/02792

-34-

table.

Before stage 124, all the records of the data container are chained

together and free, and the bitmap segments HPk(AD) are initialized with all

zero segments. The columns ATFk and AT_Lk of all the auxiliary tables are

also initialized with the value 0.

The quotient and the remainder of the Euclidean division of a flat file

row-ID by D1 are respectively noted Q1 and RI. For each further layer k 1,

Qk and Rk respectively denote the quotient and remainder of the Euclidean

division of Q(k-1) by Dk. At the initialization step 130 of figure 20, the integers

Q1, R1, Q2 and R2 are set to 0.

The rows of the root table(s), which may be read one by one or block

by block from the hard drive 105, are selected one by one in step 131. The

records of the other data tables which are linked with the selected root table

row are read in step 132. This provides a data graph of the type illustrated in

compact form in figures 5-7.

The links of those data graphs, i.e. the row-ID's in the data tables, are

written into the relevant columns of the link table (figure 9) at row-ID

QlxD1 R1 (step 133). If there is no link table, step 133 is skipped.

For the current data graph, the different attributes AT are successively

selected (step 134). The value of the selected attribute AT is located by means

of a dichotomic search in the corresponding thesaurus, and its word index WI is

read in step 135. Step 136, which will be detailed hereafter with reference to

figures 21-24, consists in updating the auxiliary table and data containers with

respect to the AT thesaurus entry for the word index WI. This updating

corresponds to the insertion of the current flat file row-ID Q1 x D1 R1 into the

integer list relating to the thesaurus word index WI.

When all the attributes have been thus handled (test 137), the layer 1

remainder index R1 is incremented by one unit in step 138. If the incremented

R1 is equal to D1 (test 139), then the index R1 is reset to 0, and the layer 1

quotient index Q1 and layer 2 remainder index R2 are each incremented by

one unit in step 140. If the incremented R2 is equal to D2 (test 141), then the

index R2 is reset to 0, and the layer 2 quotient Q2 is incremented by one unit in

step 142. After step 142, or when R1 D1 in step 139 or R2 D2 in step 141,

WO 02/44943 PCT/IB01/02792

a test 143 is performed to determine whether all the rows or all the root tables

have been considered. If not, the procedure comes back to step 131 to select a

new root table row.

Once all the root table rows have been considered, stage 124 of figure

19 is over, and the parameters Q1, R1, Q2 and R2 are memorized for

subsequent insertion of possible new data records. Eventually, the number of

rows in the virtual flat file is given by Q1 x D1 R1.

Clearly, the procedure of figure 20 is readily extended to n 2

encoding layers, by initializing all Qk and Rk parameters to 0 in step 130 and

by developing steps 138-142 (which are equivalent to incrementing the data

graph pointer Q1 x D1 R1) in the higher layers.

Figure 21 shows how the program can manage the record chains in the

data container and the thesaurus auxiliary table in layer k 1 for a word index

WI in the thesaurus relating to an attribute AT. The first step 150 is to load the

value ATFk(WI) stored in the auxiliary table into the address variable AD. If

AD 0 (test 151), then a record chain has to be initialized for thesaurus index

WI, so that the head address Hk of the free record chain in the data container is

assigned to ATFk(WI) in step 152.

If there was already a record chain for the thesaurus index WI (AD 0

at test 151), the rank NOk(AD) is loaded into the rank variable q in step 153. If

the following test 154 shows that q is different from the quotient variable Qk,

the address variable AD' receives the address of the next record of the chain,

i.e. NXk(AD), in step 155. If AD' is still different from 0 (test 156), the process

comes back to step 153 for examining the next rank variable of the record

chain, after substituting AD' for AD in step 157. When AD 0 in test 156, a

data container record has to be appended to the chain for thesaurus index WI,

so that the head address Hk of the free record chain, in written into the next

record field NXk(AD) in step 158.

After step 152 or 158, the head address Hk of the free record chain is

loaded into the address variable AD in step 159. Step 160 is then executed to

update the auxiliary table and data container. This update operation 160

consists in:

WO 02/44943 PCT/IB01/02792

-36-

replacing the head address Hk by the next address NXk(AD) of the free

chain;

writing the current value of the address variable AD into AT Lk(WI); and

writing Qk and 0, respectively, in the fields NOk(AD) and NXk(AD) of the

data container.

After step 160, or when q Qk in the above-mentioned test 154, the

bitmap segment HPk(AD) is updated in step 161 by writing the digit at bit

position Rk of that segment.

In figure 20, it has been considered that both the layer 1 and layer 2

coding data are updated in step 136. This means that the procedure of figure

is executed once for k 1 and once for k 2. Another possibility is to

execute it only for k 1, and to generate the layer 2 coding data subsequently,

by processing the layer 1 rank data produced in stage 124.

It is worth noting that when initializing the VDG's from a legacy

database as in figure 20, the rank data Qk appear in an increasing order (we

always have q Qk in test 154 of figure 21). Accordingly, it is possible to move

directly to the record chain tail, i.e. to take AD= ATLk(WI) instead of

AD ATFk(WI) in step 150. In this case, step 158 is executed directly when

Qk q in test 154, thereby avoiding the scanning of the record chain. Such

embodiment is illustrated in figure 22.

In the latter embodiment, once the VDG initialization is over, the layer k

tail address fields AT_Lk with k> 1 may be discarded. However, if the VDG

management is such that any new VDG likely to be inserted has a flat file row-

ID equal to or greater than all the flat file row-ID's of the existing VDG's the

flat file row of any deleted VDG will not be used any more), then it is

advantageous to keep all the tail address fields AT_Lk in order to perform any

subsequent update in accordance with the embodiment of figure 22.

In the form depicted in figure 21, the update procedure is applicable

independently of any hypothesis on the rank values Qk.

Figures 23 and 24 show an alternative method of updating the auxiliary

table and data containers with respect to the AT thesaurus entry for the word

index WI in step 136, which takes advantage of the tail address field AT_Li of

the auxiliary table in layer 1 (with n 2 coding layers). Figure 23 illustrates the

WO 02/44943 PCT/IB01/02792

-37-

layer 2 processing which is performed before the layer 1 processing of figure

24. Most of the steps of figures 23-24 are very similar to steps of figure 21, so

that corresponding reference numerals have been used.

The layer 2 processing of figure 23 is essentially the same as that of

figure 21 (k with the following differences:

it is not necessary to deal with tail address fields ATL2(WI) in step 160;
step 161 further includes setting to the binary variable LL1, which

means that the current layer 1 rank data Q1 does not belong to the layer

1 record chain relating to the word index WI;

when q Q2 in test 154, another test 164 is made to determine whether

the bit position R2 of the layer 2 segment HP2(AD) contains the value

step 161 follows only if that test 164 is negative;

if test 164 is positive, the current layer 1 rank data Q1 already belongs to

the layer 1 record chain relating to the word index WI, so that the

variable LL1 is set to in step 165.

The layer 1 processing of figure 24 begins at step 170 by testing

whether LL1 is 0 or 1. If LL1 0, step 150 is executed to load the value

AT_F1(WI) stored in the layer 1 auxiliary table into the address variable AD,
and a loop 153-155 is executed to find the data container address AD where

the data relating to the rank Q1 are stored. Steps 153 and 154 are the same as

in figure 21, and in step 155 the next address NX1(AD) is directly loaded into

the address variable AD (AD is never 0 because LL1 The program

proceeds to step 161 when q Q1 in test 154.

If LL1 1 in test 170, step 171 is executed to load the value AT-_LI(WI)

stored in the layer 1 auxiliary table into the address variable AD. If AD 0 (test

172), the sequence of steps 152, 159-161 is executed as in figure 21 (however,
it is not necessary to deal with next address fields NX1(AD) in step 160). If

AD 1 in test 172, the sequence of steps 158-161 is executed as in figure 21.

The procedure of figures 23-24 avoids the scanning of the layer 1

record chains when the rank data Q1 are not in such chains, without any

hypothesis on the rank values.

After all the coding data for the individual word thesauruses have been

generated, the next stage 125 of the procedure shown in figure 19 is to

WO 02/44943 PCT/IB01/02792

-38-

rearrange the stored coding data. As indicated previously, this is done to

organize the record chains in the coding data container of each layer so that

records pertaining to the same thesaurus word have contiguous addresses in

order to be accessible in one or few disc accesses by means of the CPU cache

memory. A simple way to do this is to reserve memory space for a new

auxiliary table and new coding data containers. The thesaurus words are

considered one by one, and for each of them, the coding data pointed to in the

old auxiliary table are read sequentially and copied into the new data container

at an address AD incremented after each write operation. When proceeding to

the next thesaurus word index WI+l, new pointers ATLk(WI)= AD-1 and

AT_Fk(WI+1) AD are determined and stored into the new auxiliary table.

After all the coding data records have been thus read and rewritten into the

new data container, the old data container and auxiliary table are discarded.

Such rearrangement can be performed separately for each coding

layer k.

If there are several data containers for different thesauruses in a coding

layer, they may also be reordered separately.

As indicated before, the rearrangement step 125 is dispensed with

when the thesauruses are organized in the manner illustrated by figure 17,

since the coding data files naturally fulfil the grouping condition with respect to

the thesaurus words.

In the following stage 126 of the procedure shown in figure 19, the

macroword thesaurus entries are generated. For each macroword and each

layer, this is done simply by merging the rank coding data Q1, Q2 of the words

(or lower level macrowords) covered by the macroword, and by obtaining the

corresponding bitmap segments by a logical OR of those relating to thewords

(or lower level macrowords). If the coding data have been rearranged for the

word thesauruses as indicated in stage 125, the same grouping of the coding

data will automatically be achieved for the macroword thesauruses.

In stage 127, the now useless link columns of the original data tables

(figures 1-3) can be deleted. The Null records which have been added in stage

121 can also be deleted, their occurrence being indicated by the default value

-1 in the link table (figure 9).

WO 02/44943 PCT/IB01/02792

-39-

Finally, the elements to be stored in the hard drive 105 in the above-

described embodiment are:

the data tables as illustrated in figures 1-3, without the link columns.

Parameters defining the data table tree structure of figure 4 are stored in

association with the tables;

the link table as illustrated in figure 9;

the sorted thesauruses comprising an index register and an auxiliary

table for each desired attribute. Figures 25-26 show the index registers

for the attributes AT CN ("client name") and AT AA ("accident

amount") in our simplified example. Figures 28-29 show the

corresponding auxiliary tables;

-the macroword thesauruses organized like the individual word

thesauruses, with a specified truncation or prefix length. The index

register of each macroword thesaurus further has an additional column

containing, for each macroword, the row-ID, in the index register of the

thesaurus of lower level for the same attribute, of the first word (or

macroword) covered by the macroword. Figures 27 and 30 show the

index register and auxiliary table for the attribute AT CN and the

truncation length 3;

the coding data container(s) for each coding layer, each having a

variable head address for its free record chain. Figures 31 and 32 show

layer 1 and layer 2 data containers shared by the thesauruses of figures

24-29 (free record chain head addresses 31 and 27, respectively);

optionally, one or more thesauruses stored in a "low density" format

suitable for attributes of high cardinality. In the low density format, n 0

and the flat file row-ID's are stored as explicit (short) integer lists, for

example by means of record chains. If the coding data for layers 1

through n are needed, they are easily calculated by performing n

successive Euclidean divisions from each stored integer of the list. For a

given high cardinality attribute, it may be appropriate to provide an

individual word thesaurus in the low density format and one or more

macroword thesauruses in the "normal" encoded format.

The data containers of figures 31 and 32 are derived from those shown

WO 02/44943 PCT/IB01/02792

in figures 15 and 16 pursuant to the rearrangement stage 125, in which the

auxiliary tables of figures 28-30 are also obtained from those of figures 14A,
14G and 14H, respectively. For treating a query concerning the client called
Andre, the processor would have to read records #20, #11 and #2 of figure
(limiting ourselves to layer 1) if the coding data container were not rearranged,
whereas it reads the physically contiguous records #2 and #3 of the
rearranged container of figure 31. The latter reading can typically be done by
loading a single block into the cache memory. More disc accesses, and hence
a longer processing time, are required for reading scattered records.

The columns separated by broken lines in figures 9 and 28-32 are
preferably stored separately. For example, the storage address of one value in
such a column may be defined as a start address assigned to the column plus
an offset equal to its row-ID multiplied by a field length.

Accordingly, the links of a link table row (data graph) are stored at
corresponding addresses given by the flat file row-ID. This separate storage of
the link column accelerates the data retrieval when some of the data tables
need not be accessed to produce the output data requested in the query.

Likewise, some elementary operations performed in the query
processing require only coding data for one layer, so that it is advantageous to
separate the information concerning each layer in the auxiliary tables to
accelerate the processing. Other operations imply the rank data and the bitmap
segment data independently, so that it is advantageous to separate those data
in the data containers as shown in figures 31 and 32.

In an alternative way of storing a thesaurus, the word index register
and the auxiliary table are merged in a single table with a Huffman type of
indexing: each row of that table contains a value of attribute AT, the AT Fk and
AT_Lk data, a next row pointer (the next row contains the next value of the
attribute in the sorted thesaurus) and optionally a preceding row pointer.

In an embodiment, the maintenance of VDG's created as described

hereabove may involve the following operations:

1/ Record insertion

A new virtual data graph, i.e. a new row in the flat file, is generally

WO 02/44943 PCT/IB01/02792

-41-

generated in response to the insertion of a new record in a data table.

However, if the new record has a link to an existing record of another

target table such that no other link points to said existing record, then there is

no need for a new data graph, but for the update of an existing data graph. For

example, if client Oscar subscribes a first policy, e.g. for his car, a new record

is added to the policy data table without creating any new VDG: the data graph

of figure 7 is simply modified to place the new data in the node corresponding

to the policy table. If Oscar then subscribes a second policy, e.g. for his house,

a new VDG will be necessary.

To generate the new VDG, all records from the other data tables,

related to the new inserted record, including Null records, are identified by their

respective row-ID's which, if necessary, can be retrieved by queries based on

attribute values of those related records.

After appending the new record to the data table, the first thing to do is

to initialize any new thesaurus entry which may be necessary if new attribute

values occur (all AT_Fk and AT_Lk fields are initialized to The new virtual

flat file row and its corresponding thesaurus entries may be generated as in

steps 133-142 of figure 20. Any higher level macroword thesaurus is updated

accordingly.

2/ Record attribute modification

Changing or adding an attribute value in an already existing data table

record has no effect on the link table which does not reflect the table contents

but the link structure. Adding is a particular case of changing when the

preceding attribute value was Null. Likewise, deleting an attribute value from a

record is a particular case of changing when the new attribute value is Null.

If the new attribute value requires a new thesaurus entry, such entry is

initialized (ATFk ATLk The list L of the link table row-ID's

corresponding to flat file records comprising the data record to be amended is

obtained by placing a suitable query. The latter list L is merged (bitmap OR

operation) with the flat file row-ID list L' of the new attribute value, and the

coding data of the merged list L v L' are assigned to the new attribute value.

The complement U of list L is also determined (bitmap NOT operation) to be

WO 02/44943 PCT/IB01/02792

-42-

intersected (ANDed) with the flat file row-ID list L" of the preceding attribute

value. If the resulting intersection list LA L" is not empty, its coding data are

assigned to the preceding attribute value. This may transfer to the free record

chain of one or more data containers records that previously belonged to the
record chain associated with the preceding attribute value. If the intersection list

LA L" is empty, the preceding attribute value may be deleted from its word

thesaurus. The same intersection and update sequence is performed for any

higher level macroword thesaurus.

3/ Record link modification

Changing a link in a source data table leads to corresponding changes

in every occurrence of the link in the link table. The list L of the concerned link
table rows can be determined by processing a suitable query.

If the target table record pointed to by the former link has no more link

pointing thereto (its row-ID does not occur any more in the corresponding

column of the link table after the modification), a new VDG is generated.

Downstream of the modified link, this new VDG has the same content as the
one(s) which is (are) being amended. Upstream of the modified link, it consists

of Null records. The new virtual flat file row and its corresponding thesaurus

entries may be generated as in steps 133-142 of figure 20. Any higher level

macroword thesaurus is updated accordingly.

After that, a procedure similar to the one described in the preceding

section can be performed for each attribute of the target table: the list L is

merged with the flat file row-ID list L' of the new attribute value (the value

occurring in the target table record pointed to by the new link); the coding

data of the merged list L v L' are assigned to the new attribute value; the

complement L of list L is intersected with the flat file row-ID list L" of the

preceding attribute value (the value occurring in the target table record pointed

to by the former link); the coding data of the resulting intersection list LA L"

are assigned to the preceding attribute value; and /e/the same intersection and

update sequence is performed for any higher level macroword thesaurus.

If the first target table (for the modified link) has a link column to a

second target table, the link value stored in the column of the link table

WO 02/44943 PCT/IB01/02792

-43-

associated with the second target table and in each row of list L is also

changed, and the above procedure lal-le/ is performed for each attribute of the
second target table. This is repeated for any data table located downstream of

the first target table in the data table tree (figure 4).

For example, if a correction is made in the accident table of figure 3 to
indicate that accident #6 was under policy #2 instead of policy i.e.
concerned Max's house instead of Ariane's car, the link from the accident table
in the data graph of figure 5 has to be changed to point to policy record and
the link from the policy table has to be changed to point to client record A
new row is inserted in the virtual flat file, to contain the useful information about
Ariane's car policy under which no accident took place. As a result, row #6 of
the link table of figure 9 is changed to include the values 4, 2 and 6,
respectively, in the client, policy and accident link columns, and a new row #12
is added including the values 2, 4 and respectively, with corresponding

changes in the thesauruses.

4/ Record cancellation

Canceling a record from a root table involves deleting the row(s) of the

flat file containing that record. The corresponding flat file row-ID's are removed
from the lists encoded in the thesauruses, i.e. zeroes are written at the
associated locations of the bitmap vectors. These flat file row-ID's may be
made available for further VDG insertion, for example pursuant to section 1/ or
3/ hereabove. They may also remain as blank rows if the virtual flat file size is
not a major concern. Likewise, canceling a record from a target table which has
no link pointing thereto in the corresponding source table involves deleting the
row(s) of the flat file containing that record (these row were representing data
graphs with Null records upstream of the cancelled record).

If the cancelled record belongs to a target table for a compulsory link

the client or policy table in our example), any flat file row containing that

record is also deleted. If the cancelled record belongs to a target table for an
optional link the third party or broker table in the example of figure the

cancellation comprises a link modification whereby any link pointing to that
record is replaced by a link to a Null record (link value Such modification

WO 02/44943 PCT/IB01/02792

-44-

may be performed as described in the above section 3/ (but without generating

any new VDG).

For any link of the cancelled record which pointed to a non-Null target

table record whose row-ID does not occur any more in the corresponding

column of the link table, it is necessary to generate a new VDG containing the

same data as the cancelled record in and downstream of said non-Null target

table record and Null values in and upstream of the cancelled record. The new

virtual flat file row and its corresponding thesaurus entries may be generated as

in steps 133-142 of figure 20. Any higher level macroword thesaurus is updated

accordingly.

Thesaurus update and sorting

With the above-described structure of the thesaurus entries, the

cancellation of a word in a thesaurus, which occurs when its flat file row-ID list

becomes empty, could be done by leaving the thesaurus entry with zeroes in its

HPk data. However, this is not optimal regarding memory usage.

A more efficient method is to update the record chains in the data

container, so that the auxiliary table has ATFk(WI) ATLk(WI) 0 for the

entry WI of the cancelled word. In such a case, the word index WI can be

released, a default value being written into the word index column for

the cancelled word in the thesaurus index register.

The creation of a new word thesaurus entry can be done as illustrated

in figures 21-24 (AD 0 in test 151 or 172). The word index WI is obtained by

incrementing a counter representing the number of thesaurus entries, or by

selecting an available word index which has been released previously

when canceling another word). In this process, a (useful) row is added to the

auxiliary table of the corresponding attribute, with row-ID WI.

Similar procedures can be applied for updating the macroword

thesauruses. A macroword index WI may be released when canceling a

macroword (all its constituent words have been cancelled). In the case of a

word creation, it is first checked whether the macroword already exists, in

which case its macroword index WI is recovered; otherwise, a macroword is

also created.

WO 02/44943 PCT/IB01/02792

It is thus appreciated that, once words have been removed and/or

added, the auxiliary tables are no more sorted in the ascending order of the

thesaurus words. The word index register has to be manipulated in order to

maintain the thesaurus sorting.

However, it is not necessary to perform such manipulation of the word

index register immediately. This is very advantageous because the updated

database is made available for any new query without requiring a sorting

operation in the whole thesaurus, which may take some time.

The newly created words or macroword of a thesaurus can have their

word indexes stored in a separate, secondary index register, whereas they

share the same auxiliary table and coding data containers as the former words

of the thesaurus. Only this secondary index register can be sorted when a

thesaurus entry is added, which is a relatively light job since most of the

thesaurus words belong to the primary register. When a word is deleted, its row

in the primary or secondary index register remains with the default value in the

word index column. Accordingly, to access the coding data relating to a given

word range, the range boundaries are searched, by dichotomy, in both the

primary and secondary index registers to determine the relevant word indexes

which are then used in the usual way to address the common auxiliary table

and data containers.

From time to time, when the CPU 101 is available, a batch task is run

to merge the primary and secondary index registers while deleting their rows

having the default value in the word index column. This is a straightforward

external sorting operation since both registers are already sorted. The resulting

merged register is saved to replace the primary register, and the secondary

register is cancelled.

If the secondary word index register becomes too big its sorting

requires a too long time every time an entry is added) before such merge

operation is carried out, it is possible to create a further, tertiary index register

to receive the new thesaurus entries, and so forth.

6/ Data container optimization

This is useful if the thesaurus organization is of the type shown in

WO 02/44943 PCT/IB01/02792

-46-

figures 25-32 rather than of the type shown in figure 17.

As records are inserted and deleted in a coding data container, the

above-mentioned condition that the record chains should preferably be

arranged so that records pertaining to the same thesaurus word have

contiguous addresses is no more fulfilled. This does not prevent the database

system from operating satisfactorily. However, in order to optimize the query

processing time, it is preferable to rearrange the records of the coding data

container and the corresponding columns of the thesaurus auxiliary table(s) as

in the above-described step 125. Like the word index register sorting, such

rearrangement can be carried out when CPU time is available.

ALTERNATIVE THESAURUS ARRANGEMENTS

If the thesauruses are arranged according to the preferred organization

illustrated by figure 17, with distinct files for each word or macroword, the flow

charts of figures 19-24 are somewhat simplified. First, stage 125 of figure 19 is

not performed (it is an advantage of the file organization to dispense with such

sorting when the VDG's are created and maintained). In figure 20, the

dichotomy search 135 and the thesaurus update of step 136 may be replaced

by the procedure illustrated in figure 33.

In this procedure, imax(AT, W, k) designates the current number of

layer k records in the coding data file relating to thesaurus AT and word W.

These parameters are set to zero for all values of AT, W and k at the

initialization step 130.

The value in the current data graph of the attribute AT selected in step

134 of figure 20 is allocated to the variable W in step 175 of figure 33, and the

coding layer index k is initialized to 1. The integer i, which points to the records

of the coding data file is first set to zero in step 176. If i imax(AT, W, k) in the

following test 177, a record ATW NOk(i) having the value Qk is appended to

the layer k rank file pertaining to word W and a record ATWHPk(i) having the

all-zero value is appended to the corresponding bitmap segment file. This is

done in step 178, where imax(AT, W, k) is also incremented by one unit. If

i imax(AT, W, k) in test 177, the rank ATW NOk(i) is loaded into the rank

variable q in step 179. If the following test 180 shows that q is different from the

WO 02/44943 PCT/IB01/02792

-47-

quotient variable Qk, the integer i is incremented by one unit in step 181 and

the process comes back to step 177 for examining the next rank variable of the

file, if any. Accordingly, the scanning of the coding data record chain for each

layer k (corresponding to loop 153-156 in figure 21) is performed within the

ATWNOk file which is smaller than the data container common to all words

of the thesaurus. Therefore, the minimum number of disc accesses is ensured.

After step 178, or when q Qk in test 180, a is written into the bit of

rank Rk of the bitmap segment ATWHPk(i) in the relevant coding data file

(step 182). The coding layer index k is compared with n (or to a lower value if
lo the higher layer coding data are calculated afterwards) in test 183. If k n, the

index k is incremented by one unit in step 184 before coming back to step 176.

When k n, the thesaurus update is over and the program proceeds to step

137 of figure

In the procedure of figure 33, the rank data ATW-NOk(i), each

consisting of an integer value, can be read in large blocks from the hard drive

105 to the cache memory, so that the procedure is very quick.

Another option which can be used in the thesauruses is to include in

each entry relating to a word an indication of the representation format of the

flat file row-ID list. Indeed, the format low or normal density) can be

chosen word by word depending on the number of data graphs including the

word under consideration. This is illustrated in broken lines in the right part of

figures 25-27 in the case where there are only two formats, i.e. low density (0)

and normal density with n 2 coding layers In the example, all the

thesaurus entries are in the normal density format. There could be more than

two formats; for example, the format data in the thesaurus could specify the

number of coding layers for each word. When the flat file row-ID list are

represented by data stored in data containers common to one or more

thesauruses, distinct containers are provided for the different coding formats.

When the above option is used, the format for each thesaurus entry

can be modified as the database lives, in order to optimize the storage. This is

a low priority task since the query engine can work with any format. For

example, when thesaurus entries are being updated, it is possible to mark any

WO 02/44943 PCT/IB01/02792

-48-

entry for which a format change appears to be desirable, based on predefined

conditions fulfilled by the density of the word in the amended database. For

example, a word or macroword could be changed from low to normal density

format when a certain number of data graphs are identified in its thesaurus

entry, and vice versa. Afterwards, when processor time is available, the marked

entries can be translated into the new format to optimize the system.

It has been mentioned above that, when n 1, storing the rank data in

every coding layer is somewhat redundant, since the flat file row-ID lists are

completely defined by the bitmap segment data in all layers and the rank data

in the last layer.

Figures 34A-B illustrate an alternative way of arranging the coding data

files, which avoids storing the layer k ranks with k n. In this arrangement, it is

sufficient that the auxiliary tables (figures 28-30) point to a first record in the

layer n data container: the addresses AT_F1 and AT_L1 are not necessary.

The data container of the highest layer n 2, shown in figure 34A, is the same

as that of figure 32, with an additional field in each record to contain the head

address F1(AD) of a record chain in the data container of the

lower layer n-1 1. The latter data container (figure 34B) has one record chain

for each layer n rank pertaining to each thesaurus entry covered by the data

container. Each record of a layer k n data container comprises a first field for

containing the address NXk(AD) of the next record of the chain (this address is

0 if there is no further address), and a second field for containing the

corresponding bitmap segment HPk(AD). The layer k n chain is ordered in

accordance with the non-zero bits of the bitmap segment HP(k+l) stored in the

record of the upper layer data container which contains the head address of the

chain. If 1 k n (not shown), the record further has a third field for containing

the head address of a record chain in the data container of the lower layer k-1

(and so forth until k 1).

The procedure for retrieving a flat file row-ID list from a thesaurus

pointing to data containers of figures 34A-B may be as follows. The word index

WI is used to obtain the address of the first relevant record in the layer 2 data

container. For this address (and then for each address of the chain defined by

WO 02/44943 PCT/IB01/02792

-49-

the NX2 field), the layer 2 rank N02 is read and the bitmap segment HP2 is

scanned. Every time a is found in this scanning, at a bit position R2, a layer

1 rank NO1 N02 x D2 R2 is determined and a corresponding record of the

lower layer data container is read (the first time at the head address given by

the column F1 in the layer 2 data container, and then at the addresses pointed

to by the NX1 addresses in the layer 1 data container). By this method the layer

1 bitmap segments HP1 and their positions N01 are retrieved to assemble the

bitmap vector representing the desired flat file row-ID list.

In the general case, the data containers are accessed from layer n.

Each segment HPk read after determining a rank NOk with k 1 is scanned to

locate its non-zero bits. Each non-zero bit of HPk located in a position Rk

provides a lower layer rank NO(k-1) NOk x Dk Rk, and a corresponding

bitmap segment HP(k-1) is read in the chain designated in the lower layer

container. The process is repeated recursively until k= 1: the numbers

NO1 x D1 R1 are the flat file row-ID's for the thesaurus entry.

The coding data files illustrated in figures 34A-B can be created by a

method similar to that described with reference to figures 19-21. All the HPk

and F(k-1) fields are initialized with zeroes before stage 124. The procedure of

figure 21 is executed only for k n, with step 161 replaced by the loop depicted

in figure 35 in which the coding layer index k decreases from n to 1.

The first step 450 of this loop consists in writing the digit at bit

position Rk of the bitmap segment HPk(AD). If the coding layer k is greater

than 1 (test 451), it is decremented by one unit in step 452, and the first

address M Fk(AD) is read in the layer coding data container (step 453).

If M is zero (test 454), the head address Hk of the free record chain in

the layer k coding data container is written into the first address field Fk(AD) of

the layer coding data container (step 455), to create a new chain. The

value of AD is then replaced by Hk (step 456), and the record chains are

updated in the layer k coding data container (steps 457-458): Hk is replaced by

NXk(AD) before NXk(AD) is set to 0. After step 458, the process loops back to

step 450.

If M 0 in test 454, the index R is set to 0 in step 460 to initialize the

WO 02/44943 PCT/IB01/02792

scanning of the bitmap segment HP HP(k+1)(AD). If R is smaller than the
remainder R(k+1) corresponding to the current data graph identifier, the
corresponding bit HP(R) of the bitmap segment HP is evaluated (test 462). If
HP(R) 0, the program proceeds to step 463 for incrementing R by one unit
before coming back to test 461. When HP(R) 1 in test 462, it is necessary to
move forward in the layer k record chain: the integer M' receives the value of M

in step 464, and M is replaced by NXk(M') in step 465. If the new value of M is
not zero (test 466), the program proceeds to the above-mentioned step 463.
Otherwise, the end of the layer k record chain is reached, so that the head
address Hk of the layer k free record chain is assigned to NXk in step 467
before proceeding to the above-mentioned step 456.

If R is equal to the remainder R(k+1) in test 461, the corresponding bit
HP(R) of the bitmap segment HP is also evaluated (test 470). If HP(R) 1, the
rank Qk already exists in the layer k+1 input list relating to the current
thesaurus entry, so that it is not necessary to create a new record in the layer k
coding data container: the value of AD is simply replaced by M in step 471, and
the process loops back to step 450.

If HP(R) 0 in test 470, the value of AD is replaced by the head

address Hk of the free record chain (step 472), and the Huffman-type record

chains are updated in the layer k coding data container (steps 473-474): Hk is

replaced by NXk(AD) before NXk(AD) is set to M. After step 474, the process

loops back to step 450.

The loop of figure 35 is over when k 1 in test 451.

Figures 34C and 34D show tables whose contents are equivalent to

those of figures 34A and 34B, and in which the bitmap segments HPk for k 1
are not explicitly stored. The layer n coding data container (figure 34C) is
identical to that described with reference to figure 34A, but without the HPn

column. Each layer k coding data container for k n (figure 34D) is identical to

that described with reference to figure 34B, with an additional column R(k+1)

containing layer k+1 remainders. The presence of a remainder value R(k+1) in

a record to the layer k coding data container means that there is a at

position R(k+1) in the non-stored higher layer bitmap segment HP(k+1).

It will be appreciated that the scheme of figure 17, i.e. distinct coding

WO 02/44943 PCT/IB01/02792

-51

data files for each thesaurus entry to minimize the disc accesses, is also

applicable when the stored coding data do not include the ranks for layers

1, n-1. The layer n ranks and bitmap segments may be stored as in figure

17. For the lower layers, there are several options. There can be one data

container for each thesaurus word and each coding layer k n, with record

chains pointed to in the records relating the upper layer k+l. The layer k record

chains can also be isolated in distinct files whose name include the attribute

name AT, the word or macroword value W, the coding layer index k and a layer

k+l rank NO(k+1). Each record of such file ATW k NO(k+1) then contains a

layer k+l remainder R(k+l) and a layer k bitmap segment HPk which is located

at rank NOk NO(k+1) x D(k+l) R(k+l).

QUERY CRITERIA HANDLING

As in any RDBMS, queries can be expressed in accordance with the

Structured Query Language (SQL), which has been adopted as a standard by

the International Standard Organization (ISO) and the American National

Standard Institute (ANSI).

A general flow chart of the query processing procedure is shown in

figure 36.

The query criteria, contained in the SQL "WHERE" clause, are

converted into a request tree in stage 190 of figure 36. The query criteria are

analyzed and structured according to a tree in which the leaves correspond to

ranges for respective attributes values as defined in the SQL query and the

nodes correspond to logical operations to be performed from those leaves. The

leaves are also referred to as "BETWEEN clauses" of the SQL query. An

individual attribute value defined in the SQL query is a BETWEEN clause

covering a single word.

Example 3:

An example of such a tree is shown in figure 37 in the illustrative case

of a query which consists in finding all data graphs relating to accidents

undergone by client Andr6 or client Max and having a damage amount AA such

that 500 AA 5000. That tree has three leaves, indicated by broken lines,

WO 02/44943 PCT/IB01/02792

-52-

corresponding to the BETWEEN clauses defined in the query: [Andre, Andr6]

and [Max, Max] for the client name attribute and [500, 5000] for the accident

amount attribute. The tree also has two nodes, one for the OR operation

between the two CN criteria, and one at the root for the AND operation with the

AA criterion.

The tree decomposition is not unique. The one having the minimum

number of nodes is preferably selected.

The next stage 191 is a tree expansion made by analyzing and splitting

the BETWEEN clauses relating to attributes having macroword thesauruses.

This is done from the tree obtained in step 190, with reference to the sorted

thesaurus word and macroword index files associated with the attributes used

in the query. The lower and upper bounds of each range defined in a

BETWEEN clause are compared with the words of the thesaurus associated

with the attribute, to find a decomposition of the range into sub-ranges,

whereby each sub-range is also defined as a BETWEEN clause in a word or

macroword thesaurus.

In a preferred embodiment, the decomposition is optimized to make

maximum use of the macrowords. This optimization consists in retaining the

lowest possible number of words or macrowords to form the sub-ranges to be

mapped onto the range defined in the BETWEEN clause. The system selects

the highest level macrowords that are included in the interval, and repeats the

same process in the remaining parts of the range until the atomic word level is

attained or the words of the range are exhausted.

In the expanded tree produced in stage 191, the BETWEEN leaves

which have been split are replaced by sub-trees made of OR nodes and leaves

associated with the sub-ranges. Those leaves are also in the form of

BETWEEN clauses, covering thesaurus entries relevant to the query. The

expanded tree defines a combination of the relevant thesaurus entries for the

subsequent processing.

All the leaves of the expanded tree are associated with respective word

or macroword (sub-)ranges. Such range may be defined by its bounds in terms

of word or macroword row-ID's in the thesaurus index file.

WO 02/44943 PCT/IB01/02792

-53-

Figure 38 shows the expanded tree corresponding to the tree of

Example 3 (figure 37). It is obtained by means of the thesaurus index files of

figures 25-27. The one-word ranges "CN Andre" and "CN Max" are not split,

but simply encoded by the row-ID's CNx 1 and 4 of the words in the

thesaurus index file, obtained by dichotomic searches. Another search in the

accident amount thesauruses of figures 26 and 27 leads to splitting the range

500 AA 5000 into three sub-ranges, one for the individual words AA x 2

and 5, and one for the macroword AA 3_x 1.

Figure 39 shows a flow chart of an optimal procedure for splitting a

BETWEEN clause in stage 191 of figure 36. It is assumed that the (connected)

range does not include the Null value (otherwise the leaf can be first split into

two substitute leaves linked by an OR node, one leaf with the individual word

row-ID AT_x 0, and the other satisfying the above assumption).

It is also assumed that the attribute AT considered in the BETWEEN

clause has a number Q 0 of macroword thesauruses indexed by an integer

level parameter q with 1 q Q, the level q 0 designating the individual word

thesaurus. For a level q thesaurus, the prefix length number of ASCII

characters) is noted with P(0) is the individual

word length. In figures 39-40, xmax designates the number of non-Null words in

thesaurus 0, Wq(x) designates the (macro)word stored at row-ID x in the level

q thesaurus, and designates the macroword obtained by truncating a

word W to keep its prefix of length for q 1.

In the initial step 200 of the procedure of figure 39, the program selects

the word thesaurus row-ID's a and b such that Wo(a) and Wo(b) are

respectively the lowest and highest thesaurus words included in the range

defined for the leaf being processed. The integers a and b are readily selected

by dichotomic searches in the word thesaurus based on the range bounds. If

the search shows that the range covers no thesaurus word, the procedure is

terminated by specifying that the leaf output will be an empty flat file row-ID list.

If Wo(a) is the lowest word of the thesaurus (a 1 in test 201), the

binary variable XL is initialized as XL 0 in step 202. Otherwise, it is initialized

WO 02/44943 PCT/IB01/02792

-54-

as XL 1 in step 203. If Wo(b) is the highest word of the thesaurus (b Xmax in

test 204), the binary variable XR is initialized as XR 0 in step 205. Otherwise,

it is initialized as XR 1 in step 206. In the following steps, the value

XL (XR) 0 denotes the fact that the lower (upper) bound of the range under

consideration is aligned with a macroword boundary. If it is aligned with a

macroword boundary from a level q thesaurus, then this is also true for any

level q' thesaurus with 1 q' q. The initialization 201-206 is valid for q Q.

In step 207, the program invokes a function FUNC whose flow chart is

represented in figure 40. This function returns data describing a sub-tree to be

inserted in the place of the processed leaf (step 208). The function FUNC has

six arguments input when starting its execution in step 210 of figure 40A: the

attribute reference AT; a thesaurus level parameter q (q Q when the function

is first invoked in step 207 of figure 39); the thesaurus row-ID's a and b of the

lowest and highest AT words in the range of interest; and the above-defined

variables XL and XR.

After step 210, it is determined whether the thesaurus level parameter

q is zero (test 211). If q 0, two macroword thesaurus row-ID's a' and b' are

selected in step 212, such that Wq(a') and Wq(b')

This is done by simple dichotomic searches in the level q thesaurus after

truncating the words Wo(a) and Wo(b).

In the following test 213, the variable XL is evaluated. If XL 1, it is

determined in test 214 whether the consecutive words Wo(a-1) and Wo(a)

share the same level q macroword, i.e. whether If so,

the integer a' is increased by one unit in step 215. If Wq(a') in

test 214, the value of XL is changed to 0 in step 216 since the lower bound of

the range under consideration is aligned with a level q macroword boundary.

After step 215 or 216, or when XL 0 in test 213, the variable XR is evaluated

(test 217). If XR 1, it is determined in test 218 whether the consecutive words

Wo(b) and Wo(b+1) share the same level q macroword, i.e. whether

[W0 If so, the integer b' is decreased by one unit in step

219. If Wq(b') in test 218, the value of XR is changed to 0 in

WO 02/44943 PCT/IB01/02792

step 216 since the upper bound of the range under consideration is aligned

with a level q macroword boundary.

After step 219 or 220, or when XR 0 in test 217, the variables a' and

b' are compared in test 221. If a' no level q macroword is spanned by the

range under consideration, the program decrements q by one unit in step 222

and comes back to step 211.

When a' in test 221, a sub-range of macrowords is

generated for insertion into the expanded query tree (step 223 in figure

This sub-range covers the macroword row-ID's from AT_P(q)_x a' to

AT_P(q)_x b'.

Afterwards, the variable XL is evaluated again in step 224. If XL 1,

another range has to be considered, below the sub-range generated in step

223. In step 225, the row-ID b" of the upper bound of that lower range is

determined: the corresponding word Wo(b") is the highest of the AT thesaurus

such that The function FUNC(AT, q-1, a, 1, 0) is then

called recursively in step 226, to deal with the additional lower range. After step

226, or when XL 0 in test 224, the variable XR is evaluated again in step 227.

If XR 1, another range has to be considered, above the sub-range generated

in step 223. In step 228, the row-ID a" of the lower bound of that upper range is

determined: the corresponding word Wo(a") is the lowest of the AT thesaurus

such that The function FUNC(AT, q-1, b, 0, 1) is then

called recursively in step 229, to deal with the additional upper range.

When q 0 in test 211, a sub-range of b-a+1 words is generated for

insertion into the expanded query tree (step 230). This sub-range covers the

individual word row-ID's from AT_x a to ATx b.

After step 229 or 230, or when XR 0 in test 227, the execution of the

function FUNC is terminated in step 231 by returning the data describing the

sub-tree, which have been generated in step 223 or 230 and/or which have

been returned by the function recursively called in steps 226 and/or 229.

Once the stage 191 of analyzing and expanding the query tree is

completed, the expanded tree is processed in stage 192 of figure 36, starting

from the highest coding layer n. If n> 1, the processing is performed

WO 02/44943 PCT/IB01/02792

-56-

successively in the layers k, with k decreasing from n to 1, as shown in the loop

represented in figure 41.

The coding layer index k is initialized with the value n in step 240 of

figure 41. The layer k processing is started in step 241 by selecting the root ND

of the expanded query tree as a node for calling a function named FNODE

(step 242). The input to this function comprise the coding layer index k, the

parameters describing node ND and its children nodes, and a bitmap vector

Res (initialized in an arbitrary manner for k Its output is a bitmap vector

noted WZ. In layer 1, the bits of value 1 of the output bitmap vector WZ indicate

the VDG's (flat file row-ID's) matching the query criteria defined by the tree

whose root is node ND. In layer k> 1, they indicate the respective layer k-1

ranks of the groups of Ak flat file row-ID's which include at least one matching

flat file row-ID. In each coding layer index k, the function FNODE is called

recursively to process all the nodes of the expanded query tree.

The bitmap vector WZ output by the function called in step 242 is

saved as the layer k query result Res in step 243, to be used in the subsequent

layer k-1 processing if k 1. If so (test 244), the index k is decremented by one

unit in step 245, and the next layer processing is started from step 241.

For k 1, Res is the bitmap representation of the desired flat file row-

ID list, output in step 246.

A flow chart of function FNODE is shown in figure 42. The bitmap

vector WZ is considered there as a succession of segments of Dk bits. The

segment of rank N of vector WZ the (N+1)-th segment with N 0) is noted

WZ[N]. The bit of rank N of vector WZ the (N+1)-th bit with N 0) is noted

WZ(N). After the function is started (step 248), a working zone is reserved in

RAM 103 for containing the bitmap vector WZ (step 249).

In test 250, it is first determined whether ND designates a preset node.

A preset node (not illustrated in the example of figure 38) is a node for which a

flat file row-ID list has already been determined. Typically, that list has been

produced as a matching data graph identifier list in the processing of a previous

query (output of step 192). It may also be a combination of such matching

identifier lists. One or more preset nodes can be defined in the conversion step

WO 02/44943 PCT/IB01/02792

-57-

190 when the SQL query refers to the results of one or more previous queries,

for example to restrict the response to records which were included in the

response to the previous queries. This feature is particularly useful when the

database is used in interactive mode.

The flat file row-ID list previously determined for a preset node can be

stored in RAM 103 or saved in hard drive 105 (preferably in compressed form

in the latter case). That list is encoded according to the n coding layers to

provide layer k input lists in the form of bitmap vectors for 1 k n. Such layer

k bitmap vector is loaded as WZ in step 251 when test 250 reveals that the

node ND is preset.

Otherwise, if ND does not designate a leaf but an operator node (test

252), its first child node ND1 is selected in step 253, and the function FNODE is

called recursively in step 254 to obtain the bitmap vector WZ1 corresponding to

node ND1. The second child node ND2 of the operator node ND is then

selected in step 255, and the function FNODE is called again in step 256 to

obtain the bitmap vector WZ2 corresponding to node ND2.

In step 257, the bitmap vectors WZ1 and WZ2 are combined bitwise to

form the bitmap vector WZ. The combination (WZ(N) WZI(N) WZ(N) for

any N) is in accordance with the Boolean operator described in the

parameters of node ND, e.g. AND, OR, Exclusive OR, etc. operation. It is

essentially a superposition of bitmap vectors, which is performed very quickly

since both operand vectors are stored in RAM 103. In step 258, the RAM space

which has been allocated to working zones WZ1 and WZ2 is released. In figure

42, the case where the operator node has two child nodes is only considered.

Clearly it can be extended to the case where there are more than two

operands. Moreover, some operations may involve a single operand, such as

the NOT operation, so that the function FNODE may be call only once.

When node ND is a leaf (test 252), all the bits of the working zone WZ

are set to zero in the initialization step 260. In addition, the thesaurus pointer x

is initialized to the value xl of the first row-ID of the BETWEEN range defined

for node ND.

If node ND relates to an attribute AT and macroword index q for which

WO 02/44943 PCT/IB01/02792

-58-

the thesaurus is stored in the "low density" format (test 261), the leaf

processing is as described below with reference to figure 43 (step 262) to

obtain the relevant bitmap vector WZ. If the thesaurus format is "normal

density", the processing depends on whether the program is in the

(chronologically) first layer, that is k n (test 263). The processing of figure 44

is applied if k n (step 264), and that of figure 45 if k n (step 265).

After step 251, 258, 262, 264 or 265, the execution of function FNODE

is terminated in step 266 by returning the bitmap vector WZ.

For explaining the low density processing, we assume in figure 43 that

the thesaurus storage also makes use of record chains: the thesaurus has an

index file similar to those of figures 25-27 (the word index stored at row-ID x

being noted AT_WI(x)) and an auxiliary table addressed by the word indexes

and containing the addresses AT_F(WI) in a data container of the first flat file

row-ID's of the record chains. In each record of address AD 0, this data

container has, in addition to a flat file row-ID value NO(AD), a next address field

for containing a pointer to the next address NX(AD) of the record chain. The

chain tail has NX(AD) 0. Alternatively, the low density lists could be stored in

individual files for each word (similarly to figurel7).

The low density processing of figure 43 has a loop in which the words

of the BETWEEN range are successively handled. In each iteration, the

program first obtains the word index WI ATWI(x) in step 270, and then the

head address AD AT_F(WI) in step 271 to initiate the scanning of the record

chain. If AD 0 (test 272), there remains at least one item to be examined in

the record chain, so that the flat file row-ID value NO(AD) and the next address

NX(AD) are read as variables N and M, respectively, in step 273. The

k-1
Euclidean division of N by Ak Dk' (Al 1) is made in step 274 to obtain

k'=1

the layer k-1 quotient (rank) For k 1, N' N. For k 1, this operation 274

k-1
is simply a deletion of the 6Sk' least significant bits of N (remainder) if the

k'=1

layer k' divisors Dk' are 2 5k' with 6k' integer (1 k' A is then written

into bit WZ(N') of the bitmap vector WZ (step 275). The next address M is

WO 02/44943 PCT/IB01/02792

-59-

substituted for AD in step 276 before coming back to the test 272. When the

record chain has been completely examined (AD= 0 in test 272), it is

determined whether the current word x is the last one x2 of the BETWEEN

range (test 277). If x x2, the thesaurus pointer x is incremented by one unit in

step 278 for the next iteration of the loop. The loop is over when x x2 in test

277, and the program proceeds to step 266 of figure 42.

The layer n normal density processing of figure 44 has a similar loop in

which the words or macrowords of the BETWEEN range are successively

handled, but without recalculating the (stored) coding data. In each iteration,

the program first obtains the word index WI ATP(q)_WI(x) in step 280, and

then the head address AD =ATP(q)_Fn(WI) in step 281 to initiate the

scanning of the record chain. If AD 0 (test 282), there remains at least one

item to be examined in the record chain, so that the layer n rank value

NOn(AD), the next address NXn(AD) and the corresponding layer n bitmap

segment HPn(AD) are read as variables N, M and H, respectively, in step 283.

The bitmap segment H is then superimposed, by an Boolean OR operation,

onto the segment WZ[N] of bitmap vector WZ (step 284), and M is substituted

for AD in step 285 before coming back to test 282. When the record chain has

been completely examined (AD 0 in test 282), it is determined whether the

current word x is the last one x2 of the BETWEEN range (test 286). If x x2,

the thesaurus pointer x is incremented by one unit in step 287 for the next

iteration of the loop. The loop is over when x x2 in test 286, and the program

proceeds to step 266 of figure 42.

The layer k n normal density processing is detailed in figure 45 in the

case where the thesauruses are arranged as illustrated in figures 25-32. It

takes advantage of the fact that, even where NOk(AD) belongs to a layer k rank

list associated with a word or macroword of the BETWEEN range, it is useless

to access the bitmap segment HPk(AD) if there is a zero in the bit of rank

NOk(AD) of the bitmap vector Res obtained in the preceding layer k+l.

The procedure of figure 45 is comparable to that of figure 44. Steps

280-282 and 285-287 are the same with k substituted for n. However, when a

record chain is to be examined (AD 0 in test 282), only the layer k rank value

NOk(AD) and the next address NXk(AD) are read as variables N and M in step

WO 02/44943 PCT/IB01/02792

290. The bit Res(N) of the layer k+l result bitmap Res is then evaluated in test

291. If Res(N) 0, the rank N is filtered out by jumping directly to step 285.

Otherwise (Res(N)= the bitmap segment HPk(AD) is read in step 293

before proceeding to step 284.

With the arrangement of the thesaurus entry coding data, it is noted

that the loops of figures 44 and 45 will generally imply the successive reading

of contiguous data container records (steps 283 and 290), because each word

of index WI has its coding data stored at consecutive addresses AD in the data

container, as well as most consecutive words of the BETWEEN range.

Therefore, those loops can be executed efficiently by loading blocks of data

container records by means of the computer cache memory, thereby reducing

the required number of disc accesses. The same consideration applies to the

low density data NO(AD) and NX(AD) read in step 273 of figure 43.

A further improvement is obtained with the layer k n normal density

processing shown in figure 46, which is made of two successive loops. The first

loop, indexed by the thesaurus pointer x, is for determining a temporary rank

table noted TNO, which is used to handle the bitmap segments in the second

loop. Table TNO has a number of addresses which is at least equal to the

number of addresses ADmax of the data container in which the layer k coding

data of the current thesaurus (AT, q) are stored. Each entry TNO(AD) of

address AD in the rank table TNO is for containing an integer representing the

rank NOk(AD) if it is useful to access the bitmap segment HPk(AD), or else a

default value

In the initialization step 279, all entries of the rank table TNO are set to

the default value The first loop is comparable to that of figure 45. When

Res(N) 1 in test 291, the rank N is written at address AD into table TNO in

step 295 before substituting M for AD in step 285.

When the first loop is over (x x2 in test 286), the program proceeds to

the second loop which is initialized with AD 1 in step 301. In each iteration of

the second loop, the contents N of the rank table TNO at address AD, read in

step 302, are compared with the default value in test 303. If N is a valid rank

value the bitmap segment HPk(AD) is read (step 304) and

superimposed, by a bitwise Boolean OR operation, onto the segment WZ[N] of

WO 02/44943 PCT/IB01/02792

-61

the bitmap vector WZ (step 305). If AD ADmax (test 306), the rank table

address AD is incremented by one unit in step 307 before coming back to step

302. The second loop is over when AD ADmax in test 306, and the program

proceeds to step 266 of figure 42.

In addition to filtering out the bitmap segments HPk(AD) that are not

worth reading, the procedure illustrated by figure 46, owing to the rank table

TNO, groups the read operations in the file containing the layer k bitmap

segment data based on the address AD (step 304 in the second loop). Such

grouping is not only done word by word but for all words of the BETWEEN

range: when the HPk file is eventually read in the second loop, no more

distinction is made between the words for which a rank value has been written

into table TNO. This takes maximum advantage of the blockwise access to the

HPk file, and provides a very significant advantage because the lower layers,

especially layer 1, imply the largest HPk files and the highest numbers of read

operations therein.

Figure 47 shows how the procedure of figure 45 can be adapted when

the coding data containers are stored as illustrated in figures 25-30 and 34A-B.

The loop has a similar structure. However, since the coding data are accessed

from the highest layer n, the address AD read in step 281 is the head address

AT_P(q)_Fn(WI) of the record chain in the layer n data container, and when

AD 0 in step 282, the rank value NOn(AD) and next address NXn(AD) read

as variables N and M in step 296 also relate to layer n. After step 296, a

filtering function FILT is called in step 297 before substituting M for AD in step

285.

A flow chart of this function FILT is shown in figure 48. Its arguments,

input when starting its execution in step 500, are as follows (in addition to the

attribute name and macroword level which are implicit in figures 47-48):

a first coding layer index k, corresponding to the first argument of the

function FNODE called in step 242 of figure 41;

a second coding layer index k' k, with k' n when the function FILT is

called in step 297 of figure 47;

WO 02/44943 PCT/IB01/02792

-62-

k'-k bitmap vectors Resk+l, Resk+2 Resk., where Resk+1 is the layer

k+1 query result Res. If k+l, Rek+2 Res k are the bitmap

vectors obtained, in step 243 of figure 41, by encoding Res in the higher

layers;

a layer k' rank N, with N NOn(AD) when the function FILT is called in

step 297 of figure 47;

the corresponding record address AD in the layer k' data container; and

the bitmap vector WZ which is being calculated.

In test 501, it is determined whether the (N+1)-th segment of the

bitmap vector Resk is only made of zeroes. If so, it is not necessary to read

any further coding data relating to the layer k' rank N, so that the execution of

the function is terminated in step 502 by returning the bitmap vector WZ.

If the segment Resk,[N] has at least one in test 501, the bitmap

segment HPk'(AD) is read as segment variable H in step 503, and the

intersection segment H AND Resk,[N] is evaluated in test 504. If this

intersection segment is only made of zeroes, it is also useless to read any

further coding data, and the program directly proceeds to step 502.

If test 504 reveals that H AND Resk.[N] has at least one it is

necessary to get into the lower layer record chain. Its head address F(k'-1)(AD)

is read as variable AD' in step 505, while the layer k' remainder R is initialized

to 0 and the layer k'-1 rank N' is initialized to N x Dk'. The bitmap segment

H HPk'(AD) is scanned in a loop in which its bits H(R) are successively

examined (test 506) to ascertain whether the rank N' N x Dk' R should be

regarded. If H(R) 0, the rank N' is not in the layer k' coding data of the current

thesaurus entry, so that it is disregarded: R is incremented by one unit in step

507 and if the new R is still smaller than Dk' (test 508), N' is also incremented

by one unit in step 509 before proceeding to the next iteration from test 506.

If H(R) 1 in test 506, the bit of the vector Resk, is examined

in test 510 to determine whether the layer k'-1 rank N' has been filtered out in

the higher layer processing. If so (Resk,(N') the program jumps to the next

position in the layer k'-1 record chain by replacing AD' by the next address

WO 02/44943 PCT/IB01/02792

-63-

in step 511. After step 511, the program proceeds to the above-

described step 507.

If Resk'(N') 1 in test 510, the processing depends on whether the

coding layer k' is immediately above k (test 512). If k' k+1, the bitmap

segment HPk(AD') is read (step 513) and superimposed, by a bitwise Boolean

OR operation, onto the segment WZ[N'] of the bitmap vector WZ (step 514). If

k' k+1 in test 512, the recursive function FILT is called in step 515 with the

arguments k, Resk+, Resk_ 1 AD' and WZ. After step 514 or 515,

the program proceeds to the above-described step 511.

The scanning of the bitmap segment H HPk'(AD) is over when

R Dk' in test 508. The updated bitmap vector WZ is then returned in step 502.

When the coding data containers are arranged as illustrated in figures

34C-D, the scanning of the layer k' bitmap segment in loop 505-509 is replaced

by the scanning of the layer k' remainders in the record chain of the layer k'-1

coding data container.

The procedure of figures 47-48 has the advantage that the lower layer

record chains are accessed only when it is strictly necessary. In particular, it is

noted that the loop 282-285 of figure 45 requires the reading of all the layer k

ranks (step 290) relating to the current thesaurus entry while it may be already

known from the k+1 processing that some ranks will be disregarded

(Res(N) 0 in test 291). When this occurs in figures 47-48, the rank N is not

read in the hard drive (it is not even stored). This advantage is very significant

since the lower layers, particularly layer 1, have the largest coding data

containers, so that plenty of useless read operation are avoided.

It is noted that the use of a rank table TNO according to figure 46 is

quite compatible with the procedure of figures 47-48. The first loop 280-287 of

figure 46 is simply replaced by that of figure 47, and steps 513-514 of figure 48

are replaced by writing N' into TNO(AD').

It is noted that the loops of figures 43-47 may cover not only a

BETWEEN range in a thesaurus, but generally words and/or macrowords

whose coding data are stored in the same data container, and which are

combined in an OR type of operation. Instead of running the loops from x xl

WO 02/44943 PCT/IB01/02792

-64-

to x x2, an iteration is made for each one of such word or macroword.

For example, if the word and macroword thesauruses for a given

attribute share the same data container, the loop may be executed only once

for all relevant values of the attribute, i.e. for the sub-tree which, in stage 191 of

figure 36, has been substituted for the corresponding node of the query tree.

In addition, such words and/or macrowords may possibly belong to

different thesauruses (which requires a suitable labeling of the OR nodes of the

query tree). For example, if a query aims at the accidents undergone by a

certain client or having a damage amount greater than a given value, and if the

client and accident amount thesauruses share the same data containers (as in

figures 31-32), the client and accident amount attributes may be examined

within the same first loop of figure 46, and the TNO table scanned only once to

retrieve all the relevant HP1 segments.

However, it is preferable to have one data container for each thesaurus

and each macroword level, as indicated previously. An advantage of this is to

reduce the sizes of the rank tables TNO used in the procedure of figure 46.

It is also noted that, when encoding the leaves of the expanded query

tree, it is possible to use the word indexes ATP(q)_WI(x) instead of the

thesaurus row-ID's x. A list of word indexes is then encoded for each leaf of the

expanded query tree. Accordingly, the tree expansion procedure 191 is carried

out with reference to the thesaurus word index files, whereas they are not used

in the processing of stage 192, which directly calls the record chain head

addresses by means of the word indexes. This is useful when the word indexes

do not coincide with the thesaurus row-ID's (contrary to figures 25-27), which

will normally happen as the database lives.

In the preferred case where separate coding data files are used for

each thesaurus word, as in figure 17, the layer n processing of step 264 is

similar to that shown in figure 44. The loop is not performed in a common data

container (with the loop index AD), but in the individual coding data files

AT_P(q)_W_NOk and AT_P(q)_WHPk (with a loop index i as in figure 33).

Optimal disc access is ensured without any thesaurus sorting. The layer k n

processing of step 265 does not need two loops as in figure 46. It may be in

accordance with figure 49.

WO 02/44943 PCT/IB01/02792

The first step 310 of the procedure shown in figure 49 consists in

allocating the value AT_P(q)(x) of the word of rank x in the current thesaurus to

the word variable W, and in initiating the loop index i to zero. As long as i is

lower than the total number imax(AT, q, W, k) of layer k records in the coding

data file relating to thesaurus AT, macroword level q and word W (test 311),

steps 312-315 are performed. In step 312, the rank ATP(q)_W_NOk(i) is

assigned to the integer variable N. Those rank data are read block by block to

minimize the disc accesses. In the following test 313, the bit Res(N) of the layer

k+1 result bitmap Res is evaluated. If Res(N)= 1, the bitmap segment

AT_P(q)_W_HPk(i) is read in step 314 and superimposed, by an Boolean OR

operation, onto the segment WZ[N] of bitmap vector WZ in step 315, whereby

any in AT_P(q)_W_HPk(i) is written at the corresponding position into

WZ[N] and any in AT_P(q)_W_HPk(i) leaves unchanged the corresponding

bit of WZ[N]. The bitmap segment data AT_P(q)_W_HPk(i) are also read by

blocks. In step 316, performed after step 315 or when Res(N) 0 in test 313,

the loop index i is incremented by one unit before coming back to test 311.

When the relevant coding data have been completely examined

(i imax(AT, q, W, k) in test 311), it is determined whether the current word x is

the last one x2 of the BETWEEN range (test 317). If x x2, the thesaurus

pointer x is incremented by one unit in step 318 before coming back to step 310

for the next iteration of the loop. The loop is over when x x2 in test 317.

Figure 50 shows an alternative way of performing the leaf processing of

figure 42 (when test 252 is positive), in the case where the coding format of the

flat file row-ID lists is specified in the thesaurus index registers, as shown in the

right part of figures 25-27.

The initialization step 260A is similar to that 260 of figure 42, except

that the rank table TNO is initialized to the default value at the same time. In

step 280A, the word index WI AT_P(q)_WI(x) and the corresponding format

F ATP(q)_FORMAT(x) are read from the AT level q thesaurus index

register. If F designates "low density" (test 261A), the loop 271-276 depicted in

figure 43 is executed in step 262A. Otherwise (F designates "normal density"

with n coding layers), the head address AD AT_P(q)_Fk(WI) is read in step

281A to initiate the scanning of a record chain. If we are in the first coding layer

WO 02/44943 PCT/IB01/02792

-66-

k n (test 263A), the loop 282-285 depicted in figure 44 is executed in step

264A. Otherwise, the first loop 282-285 of figure 46 is executed in step 265A.

After step 262A, 264A or 265A, the current thesaurus pointer x is compared

with the upper bound x2 of the BETWEEN range in test 286A, to be

incremented in step 2870A before coming back to step 280A if x x2. When

x x2 in test 286A, the table TNO is exploited in step 301A, which is identical

to the second loop 301-306 of figure 46, in order to complete the bitmap vector

WZ returned in step 266 of figure 42.

QUERY OUTPUT

The SQL query further specifies how the data matching the query

criteria should be presented in the response. Therefore, the next stage 193 of

the query processing (figure 36) is the preparation of the results for their display

in stage 194.

Typically, the query defines a list of attributes whose values should be

included in the displayed response ("SELECT" and "FROM" clauses in the SQL

query, with FROM specifying the relevant data tables and SELECT specifying

the relevant columns in those tables).

When a link table of the type shown in figure 9 is stored, the columns of

that link table corresponding to the listed attributes are read in the matching

rows, identified in the bitmap vector Res output in step 246 of figure 41, in order

to obtain the links pointing to the relevant data tables. The attribute values are

then retrieved from the data tables for display.

Another possibility is to scan the thesaurus relating to such attribute

and to compute the bitwise Boolean AND between the result bitmap vector Res

and each encoded bitmap vector of the thesaurus. Every time there is a hit

between those vectors (a in the AND output vector), the corresponding

thesaurus word will be displayed or otherwise processed. This permits the

attribute values of the response to be retrieved without using any link or data

table.

The AND operations may be performed directly in layer 1. They can

also be performed as previously, by decrementing the layer index from k n to

k 1. This requires the layer k results which can be calculated from the layer 1

WO 02/44943 PCT/IB01/02792

-67-

bitmap vector Res. The latter option optimizes the disc access by taking

advantage of the multi-layer VDG compression scheme.

Such scanning may also be accelerated by taking advantage of the

macroword thesauruses. The highest level thesaurus of an attribute is first

scanned, and the portions of the lower level thesaurus(es) covered by a given

macroword are scanned only if a hit has been observed for the macroword.

Figure 51 shows a procedure suitable for accessing the values to be

included in the response for a given attribute AT by scanning the corresponding

macroword and/or word thesauruses, which fully takes advantage of both the

macroword grouping and the VDG compression scheme.

As before, it is assumed that the attribute AT has a number Q+1 1 of

thesauruses indexed by a level parameter q with 0 q Q, having respective

prefix lengths P(q) with P(0) the level parameter q 0

designating the individual word thesaurus, whose prefix length corresponds to

the attribute word length. In the notations of figure

-QA is an integer with 0 5 QA Q representing a degree of accuracy

expected in the query result; QA is set to 0 for maximum accuracy;

the thesaurus pointer xq is a row-ID in the AT thesaurus index register of

level q;

for q QA, WZ1q is a bitmap vector which represents a layer q target list

of data graph identifiers which match the query criteria and should be

examined in connection with the level q thesaurus word xq. In the

initialization step 320, the result bitmap vector Res, output in step 246 of

figure 41, is assigned to the vector WZ1Q which thus represents the flat

file row-ID's matching the query criteria;

for k 1, WZkq designates a bitmap vector in which each bit of rank N

the (N+1)-th bit) indicates whether the (N+1)-th segment of D(k-1)

bits of WZ(k-1)q includes at least one in accordance with the VDG

compression scheme (0 q WZkq is referred to as a layer k and

level q filtering list for QA q Q and 1 k n. Working zones are

WO 02/44943 PCT/IB01/02792

-68-

reserved in RAM 103 for containing the bitmap vectors WZkq which

need not be stored in the hard drive.

In the initialization step 320, the indexes q and XQ are set to q Q and

XQ 0, in order to start scanning the highest level thesaurus. In the conversion

step 321, the bitmap vector WZlq is processed to provide the corresponding

higher layer vectors WZkQ (1 k n).

The coding layer index k is set to n in step 322, and a function FINTER

is called (step 323) to determine the intersection between the integer list

represented in the layer k coding data of the thesaurus entry xq and the filtering

list represented by the bitmap vector WZkq. The input to this function comprise

the coding layer index k, the (macro)word thesaurus level q, the (macro)word

index x xq, and the bitmap vector WZ WZkq. Its output is another bitmap

vector having the same dimension, noted WX, which represents the integer list

intersection.

The bitmap vector WX output by the function FINTER called in step

323 is tested in step 324 to determine whether at least one of its bits is If

not, the (macro)word pointed to by Xq does not cover any attribute value

relevant to the query, so that the thesaurus pointer xq is incremented by one

unit in step 325, and the program comes back to step 322 to examine the next

(macro)word of the level q thesaurus.

If the bitmap vector WX has at least one and if k 1 (following test

326), the layer index k is decremented by one unit in step 327. The next layer

processing is then started from step 323.

When k 1 in test 326, WX 0 is the bitmap representation of the list

of flat file row-ID's which are represented both in the result bitmap vector Res

and in the coding data of the current (macro)word Xq.

If q QA (test 330), this bitmap vector WX is saved as WZ1q_ 1 in step

331. The row-ID AT_P(q)_FW(xq) of the first "child" of macroword Xq in the

lower level thesaurus is then read in the level q thesaurus and assigned as a

starting value of the thesaurus pointer Xq_1 (step 332). The thesaurus level q is

WO 02/44943 PCT/IB01/02792

-69-

then decremented by one unit in step 333, and the lower level processing is

started from step 321.

When q QA in test 330, the word pointed to by XQA (if QA or a

word covered by the macroword pointed to by XQA (if QA is an attribute

value of a data graph matching the query criteria. In step 335, a certain action

is taken based on this word or its thesaurus pointer XQA and the corresponding

bitmap vector WX. The latter vector identifies the rows of the flat file which

contain the (macro)word XQA in the AT column and which satisfy the query

criteria. The type of action depends on the SQL query. Different possibilities will

be described further on.

After step 335, the higher level bitmap vectors WZlq are updated to

remove any present at the same location as in WX. Such a stands for a

data graph having the word pointed to by XQA (if QA or a word covered by

the macroword pointed to by XQA (if QA as the value of attribute AT;

therefore, no other word will have a hit with it, so that it can be removed. To

initialize the update, the index q is taken equal to Q in step 336. In step 337,

the Boolean operation WZ1q AND NOT WX is performed bit by bit, and the

result becomes the updated WZ1q. If the resulting bitmap vector WZ1q has at

least one remaining (test 338), the thesaurus level index q is decremented

by one unit in step 339, and step 337 is repeated.

If WZ1q consists only of zeroes in test 338, it is not necessary to

continue the update in the lower levels. If q Q (test 340), the (macro)word

pointed to by xq does not cover any more attribute value relevant to the query:

the thesaurus pointer Xq is incremented in step 341, and the program comes

back to step 321 to examine the next (macro)word of the level q thesaurus.

The scanning of the thesauruses for attribute AT is over when q Q in

test 340.

This function FINTER called in step 323 may be in accordance with the

flow chart shown in figure 52 when the thesauruses are stored as shown in

figures 25-32. It is started in step 350 by loading the above-mentioned input

WO 02/44943 PCT/IB01/02792

arguments k, q, x Xq) and WZ WZkq). In step 351, the bitmap vector WX is

initialized with zeroes. The program first obtains the word index

WI AT_P(q)_WI(x) in step 352, and then the head address

AD AT_P(q)_Fk(WI) in step 353 to initiate the scanning of the relevant record

chain in the data container.

If the level q thesaurus entry x for attribute AT is stored in the "low

density" format (test 354), the processing is as described below with reference

to figure 53 (step 355) to obtain the intersection vector WX. If the format is

"normal density", the processing depends on whether the program is in the first

layer, that is k n (test 356). The processing of figure 54 is applied if k n

(step 357), and that of figure 55 if k n (step 358). After step 355, 357 or 358,

the execution of function FINTER is terminated in step 359 by returning the

bitmap vector WX.

The low density processing of figure 53 has a loop in which each

iteration begins by comparing the address AD with the end-of-chain value in

test 360. If AD 0, there remains at least one item to be examined in the

record chain, so that the flat file row-ID value NO(AD) and the next address

NX(AD) are read as variables N and M, respectively, in step 361. The

Euclidean division of N by Ak is made in step 362 to obtain the layer k-1

quotient (rank) If WZ(N') 1 in the following test 363, a is written into bit

WX(N') of the bitmap vector WX (step 364). After step 364, or if WZ(N') 0 in

test 363, the variable M is substituted for AD in step 365 before coming back to

test 360. The low density processing for the current (macro)word is over when

the record chain has been completely examined (AD 0 in test 360), and the

program proceeds to step 359 of figure 52.

The layer n normal density processing of figure 54 has a similar loop in

which each iteration begins, in step 370, by comparing the address AD with the

end-of-chain value If AD 0, the layer n rank value NOn(AD) and the next

address NXn(AD) are read as variables N and M, respectively, in step 371. If

the segment of rank N in the bitmap vector WZ has at least one (WZ[N] 9 0

in the following test 372), the bitmap segment HPn(AD) is read (step 373) and

combined with the bitmap segment WZ[N] in a bitwise Boolean AND operation

WO 02/44943 PCT/IB01/02792

-71

to provide the segment WX[N] of the bitmap vector WX (step 374). After step

374, or if WZ[N] 0 in test 372, the variable M is substituted for AD in step 375

before coming back to test 370. The layer n normal density processing for the

current (macro)word is over when the record chain has been completely

examined (AD 0 in test 370), and the program proceeds to step 359 of figure

52.

The layer k n normal density processing is advantageously made of

two successive loops (figure 55). The first loop is for determining a temporary

rank table TNO, which is used to handle the bitmap segments in the second

loop, like in the procedure described previously with reference to figure 46.

Table TNO has a number of addresses which is at least equal to the number of

addresses ADmax of the data container in which the layer k coding data of the

current thesaurus (AT, q) are stored. Each entry TNO(AD) of address AD in the

rank table TNO is for containing an integer representing the rank NOk(AD) if it

is useful to access the bitmap segment HPk(AD), or else a default value

Such access is useless if NOk(AD) does not belong to the layer k rank list

associated with the current (macro)word Xq, or if there are only zeroes in the

segment of rank NOk(AD) in the bitmap vector WZ WZkq+1

In the initialization step 380, all entries of the rank table TNO are set to

the default value Each iteration of the first loop begins in step 381 by

comparing the address AD with the end-of-chain value If AD 0, the layer

k rank value NOk(AD) and the next address NXk(AD) are read as variables N

and M, respectively, in step 382. The segment WZ[N] of rank N in the bitmap

vector WZ is examined in test 383. If that segment WZ[N] has at least one "1"

(WZ[N] 0 in test 383), the rank N is written at address AD into table TNO in

step 384 before substituting M for AD in step 385 and coming back to test 381

to examine the next record of the chain. Otherwise (WZ[N] the rank N is

filtered out by jumping directly to step 385.

The first loop is over when the record chain has been completely

examined (AD 0 in test 381). The program then proceeds to the second loop

386-391. In each iteration of the second loop, the contents N of the rank table

TNO at address AD, read in step 387 after having incremented AD in step 386,

WO 02/44943 PCT/IB01/02792

-72-

are compared with the default value in test 388. If N is a valid rank value

the bitmap segment HPk(AD) is read (step 389) and combined with the bitmap

segment WZ[N] in a bitwise Boolean AND operation to provide the segment

WX[N] of rank N in the bitmap vector WX (step 390). If AD ADmax (test 391),

the rank table address AD is incremented by one unit in step 386 when starting

the next iteration. The second loop is over when AD ADmax in test 391, and

the program proceeds to step 359 of figure 52.

The scanning of the thesauruses as explained with reference to figures

51-55 has a number of significant advantages:

it does not require any access to the original data tables. Therefore it is

not compulsory to maintain the data tables in memory. Even when they

are stored, they will often be accessible through a relatively low software

interface, such as ODBC. The scanning method advantageously

circumvents that interface;

it is very efficient in terms of disc accesses, because it takes advantage

of the record grouping in the coding data container. The procedures of

figures 53-55 are respectively similar to those of figures 43, 44 and 46

regarding the disc accesses, and they provide the above-described

advantages in this respect;

the procedure of figure 51 is also very efficient owing to the filtering

achieved by the updating of the bitmap vectors WZlq (loop 336-339)

This filtering takes advantage of the fact that each flat file row has a

unique value (possibly Null) for each attribute. It avoids plenty of useless

operations to read coding data pertaining to subsequent thesaurus

words and macrowords which would not provide hits in the lowest layer

(because the hit in the higher layer would be due to a flat file row-ID

corresponding to an already considered thesaurus word).

Figure 56 shows how the procedure of figure 51 can be adapted when

the coding data containers are stored as illustrated in figures 25-30 and 34A-B.

The above-described function FINTER is replaced by a recursive function

FFILT illustrated by figure 57. Accordingly, the loop 322-327 is replaced by a

loop 590-593 after executing steps 351-353 as in figure 52 (with k If the

WO 02/44943 PCT/IB01/02792

-73-

resulting intersection bitmap WX is made of zeroes only (test 324), xq is

incremented in step 325 before coming back to step 351 for the next

(macro)word of the current level q thesaurus range. If WX has at least one "1"

in test 324, the program proceeds to step 330 as described before. Otherwise,

the procedure of figure 56 is the same as that of figure 51.

Each iteration in the loop 590-593 begins by comparing the address AD

with the end-of-chain value in test 590. If AD 0, the layer n rank value

NOn(AD) and the next address NXn(AD) are read as variables N and M,

respectively, in step 591. Afterwards, the filtering and intersection function

FFILT is called in step 592 before substituting M for AD in step 593. The

computation of the intersection list WX for the current (macro)word is over

when the layer n record chain has been completely examined (AD 0 in test

590), and the program proceeds to test 324 as indicated hereabove.

A flow chart of this function FFILT is shown in figure 57. Its arguments,

input when starting its execution in step 600, are as follows:

a coding layer index k, with k n when the function FFILT is called in

step 592 of figure 56;

k bitmap vectors WZlq, WZ2 q, WZkq as obtained in step 321 of

figure 56;

a layer k rank N, with N NOn(AD) when the function FFILT is called in

step 592 of figure 56;

the corresponding record address AD in the layer k data container; and

the intersection bitmap vector WX which is being calculated.

In test 601, it is determined whether the segment of rank N of the

bitmap vector WZkq is only made of zeroes. If so, it is not necessary to read

any further coding data relating to the layer k rank N, so that the execution of

the function is terminated in step 602 by returning the bitmap vector WX.

If the segment WZkq[N] has at least one in test 601, the bitmap

segment HPk(AD) is read as segment variable H in step 603, and the

intersection segment H AND WZkq[N] is evaluated in test 604. If this

intersection segment is only made of zeroes, it is also useless to read any

further coding data, and the program directly proceeds to step 602.

WO 02/44943 PCT/IB01/02792

-74-

If test 604 reveals that H AND WZkq[N] has at least one it is

necessary to get into the lower layer record chain. Its head address F(k-1)(AD)

is read as variable AD' in step 605, while the layer k remainder R is initialized to

0 and the layer k-1 rank N' is initialized to N x Dk. The bitmap segment

H HPk(AD) is scanned in a loop in which its bits H(R) are successively

examined (test 606) to ascertain whether the rank N' N x Dk R should be

regarded. If H(R) 0, the rank N' is not in the layer k coding data of the current

thesaurus entry, so that it is disregarded: R is incremented by one unit in step

607 and if the new R is still smaller than Dk (test 608), N' is also incremented

by one unit in step 609 before proceeding to the next iteration from test 606.

If H(R) 1 in test 606, the bit of rank N' of the vector WZkq is examined

in test 610 to determine whether the layer k-1 rank N' is in the result list. If not

(WZkq(N') the program jumps to the next position in the layer k-1 record

chain by replacing AD' by the next address NX(k-1)(AD') in step 611. After step

611, the program proceeds to the above-described step 607.

If WZkq(N') 1 in test 610, the processing depends on whether the

coding layer k is immediately above 1 (test 612). If k 2, the bitmap segment

HP1(AD') is read (step 613) and combined with the bitmap segment WZ1q[N']

in a bitwise Boolean AND operation to provide the segment WX[N'] of rank N' in

the bitmap vector WX (step 614). If k 2 in test 612, the recursive function

FFILT is called in step 615 with the arguments k, WZq, WZ(k-1)q, AD'

and WX. After step 614 or 615, the program proceeds to the above-described

step 611.

The scanning of the bitmap segment H HPk(AD) is over when R Dk

in test 608. The updated bitmap vector WX is then returned in step 602.

It is noted that the use of a layer 1 rank table TNO (as in figure 55) is

quite compatible with the procedure of figures 56-57. The records of the table

TNO are initialized with the default value in step 351; steps 613-614 of figure

57 are replaced by writing N' into TNO(AD'); and when AD 0 in test 590, table

TNO is scanned as in loop 386-391 of figure

A further optimization of the procedure of figure 51 or 56 can be

achieved when the stored thesaurus data include files organized as illustrated

WO 02/44943 PCT/IB01/02792

in figures 58-61. For each thesaurus, a table of the type shown in figures 58-60

is stored, to associate each possible value of the layer n rank NOn with a

record chain head address F_AD' in an additional data container as shown in

figure 61. The latter data container contains the same layer n bitmap segment

data HP'2 HP2 as that of figure 32 or 34A, but the links NX'2 define record

chains which pertain to the same layer n rank rather than to the same

thesaurus entry. The data container of figure 61 is thus obtained by sorting that

of figure 32 or 34A based on the N02 column, deleting the N02, NX2 and F1

columns, and adding a column NX'2 to contain the next addresses in the record

chains based on N02 and a further column PTR where the thesaurus indexes x

to which the record pertain is written. For each rank N02 the head address of

the chain is memorized in F_AD'(N02).

Before starting the procedure of figure 51 or 56, or after every iteration

of step 321, the pre-filtering treatment shown in figure 62 is applied to mark

thesaurus entries that will not be read for the reason that their layer n ranks are

not in the layer n coding data of the matching data graph identifier list. The

marking is done by means of a table Tq for a macroword level q, which has one

bit Tq(xq) for each level q thesaurus pointer Xq. Those bits, as well as the layer

n rank N NOn are initialized to zero in step 620 of figure 62. If the segment of

rank N of WZnq is only made of zeroes (test 621), test 622 is performed to

determine whether the highest possible layer n rank NOnmax has been

reached. If not, N is incremented in step 623 and test 621 is repeated. When

WZnq[N] 0 in test 621, the head address F_AD'(N) is read as variable AD' in

step 624 and compared to the end-of-chain value in test 625. If AD' 0, the

program proceeds to step 622. Otherwise, the bitmap segment HP'n(AD') and

the corresponding next address value NX'n(AD') are read as variables H' and

respectively, in step 626. If H' and WZnq[N] have no in common (test

627), M' is substituted for AD' in step 628, and the next iteration is started from

test 625. If there is at least one in the bitwise Boolean AND combination of

H' and WZnq[N] in test 627, the thesaurus pointer xq PTR(AD') is read in the

last column of figure 61, and a is written in the corresponding location of

WO 02/44943 PCT/IB01/02792

-76-

table Tq before proceeding to step 628.

After that, as shown in figure 63, the loop 322-327 of figure 51, where a

relevant bitmap vector WX is calculated, is completed by an initial filtering step

640 where the bit Tq(Xq) is tested. This test 640 is also performed after having

incremented Xq in step 325. If Tq(Xq) 1 in test 640, the program proceeds to

step 322 as described before. If Tq(Xq) 0, it proceeds directly to step 325,

thereby avoiding the computation of an intersection list WX that will be empty.

The same filtering step 640 can be performed before step 351 in figure

56.

The function FINTER illustrated in figures 52-55 is readily adapted to

the case where separate coding data files are used for each thesaurus word,

as in figure 17. Steps 352-353 of figure 52 are replaced by the allocation of the

value AT_P(q)(x) to the word variable W, and by the initialization of the loop

index i to zero. The low density processing of step 355 and the layer n normal

density processing of step 357 are similar to those shown in figures 53 and 54.

The loop is not performed in a common data container (with the loop index AD),

but in the individual coding data files (with a loop index i as in figure 33). The

layer k n processing of step 358 does not need two loops as in figure 55. It

may be in accordance with figure 64.

In the procedure shown in figure 64, steps 395-399 are performed as

long as the loop index i is lower than the total number imax(AT, q, W, k) of layer

k records in the coding data file relating to thesaurus AT, macroword level q

and word W (test 394). In step 395, the rank AT_P(q)_W_NOk(i) is assigned to

the integer variable N. In the following step 396, the segment WZ[N] of rank N

in the bitmap vector WZ is tested. If WZ[N] has at least one (WZ[N] the

bitmap segment AT P(q)_W_HPk(i) is read (step 397) and combined with the

bitmap segment WZ[N] in a bitwise Boolean AND operation to provide the

segment WX[N] of rank N in the bitmap vector WX (step 398). In step 399,

performed after step 398 or when WZ[N] 0 in test 396, the loop index i is

incremented by one unit before coming back to test 394. The loop is over when

the relevant coding data have been completely examined, i.e. when

i imax(AT, q, W, k) in test 394.

WO 02/44943 PCT/IB01/02792

-77-

The above-described procedure may involve different types of action in

step 335 of figure 51 or 56, based on features of the SQL query.

In a relatively simple type of SQL query, a list of values of one attribute

is required name all clients who meet certain criteria). In such a case, the

scanning of figure 51 or 56 is performed only in the thesaurus(es) relating to

that attribute, with QA 0, and the action of step 335 may simply be to read the

word AT(x 0 which is in position x0 in the individual word thesaurus (in fact, if

the coding data are stored as illustrated in figure 17, the word AT(x0 has been

read just before) and to write this word AT(x0 into an output table, or print it

out. It is observed that the word list thereby produced is automatically sorted, in

the ascending order. If the reverse order is required, the thesaurus may be

scanned in the opposite direction.

If the SQL query has a DISTINCT keyword in the SELECT clause

regarding the attribute AT, there is one output of the word AT(x 0 in step 335. If

not, or if the SELECT clause has the keyword ALL, there may be one output of

the word AT(x 0 for each non-zero bit of WX in step 335. Those non-zero bits

may also be counted to provide the number of occurrences of the word AT(x 0

in the matching data graphs.

If the values of the attribute are required with a reduced accuracy, the

thesaurus may be scanned as shown in figure 51 or 56 with QA 0, thereby

avoiding memory accesses to obtain irrelevant details from the level q

thesauruses with q QA. For example, if a date attribute is required expressed

in years, the scanning of figure 51 or 56 may be stopped at the level QA

corresponding to a truncation length of 4.

The SQL query frequently requires several attributes in the SELECT

and FROM clauses. In order to maintain the connections between the attribute

values belonging to the same data graph, some form of indexing is needed. A

possibility is to reserve in RAM 103 a working zone for containing an output

table having as many rows as in the virtual flat file and respective columns for

receiving the attribute values of the result lists. The memory locations of the

output table are initialized with a default value. The above-mentioned attribute

WO 02/44943 PCT/IB01/02792

-78-

values AT(x0 or their prefixes AT(XQA) if QA 0, are written into the output

table in the occurrences of step 335 shown in figure 51 or 56. Such write

operation in step 335 is made into any row of the output table indicated by a

non-zero bit of the bitmap vector WX. The output data are eventually produced

by eliminating the empty rows from the output table (the rows that still contain

the default value).

Figure 65 shows how step 335 is developed in such a case, to write the

word W AT(XQA) where appropriate in the column OT_AT of the output table.

The row pointer j is initialized to zero in step 400, and the word W is loaded (if it

has not been before). Every time the bit WX(j) is 1 (test 401), the word W is

written into row j and column AT of the output table (step 402). The row pointer

j is the compared to its maximum value jmax in test 403 and incremented if

j jmax (step 404). The program has finished the action of step 335 when

j jmax in test 403.

Example 4:

We consider the query criteria of Example 3 and assume that the

attributes requested for display are accident date, client name and policy date.

In Example 3, discussed with reference to figures 37-38, the bitmap of the

matching data graphs (output in step 246 of figure 41) is Res 101100001000,

as may be checked in figure 8. In this example, figure 66 shows the contents of

the output table as described hereabove.

The above-mentioned output table may be too big to be conveniently

reserved in RAM 103. In real databases, the number of rows in the virtual flat

file is relatively high millions) and if there are too many characters in one

row of the output table (because there are too many attributes to be included or

because some of them use a relatively high number of characters), the output

table may become prohibitively big. There are several solutions to deal with this

potential problem.

One of them is to write the thesaurus row-ID's XQA (integers) into the

output table instead of the (macro)words AT(XQA) in step 402 of figure

Once all the relevant thesauruses have been scanned, the non-empty output

WO 02/44943 PCT/IB01/02792

-79-

table rows are selected to retrieve the attribute values from the thesaurus row-

ID's. This reduces the breadth of the columns of the output table since the

words AT(XQA) often require much more characters.

Figure 67 shows the contents of such an output table in the case of

Example 4, the thesauruses being sorted as in figures

Another solution, alternative or cumulative, is to use an index in RAM

103, to associate an integer address with each data graph or flat file row-ID. A

default address is initially assigned to all the data graphs. When one of them is

designated for the first time by a in the corresponding bit of WX in step 335

when scanning the first thesaurus), it is allocated a new address obtained

by incrementing a counter. This address is retrieved from the index when the

data graph is again designated in the scanning of the subsequent

thesaurus(es). This integer address is a row-ID in an output table stored in

RAM 103, which has a reduced number of rows where the attribute values or

prefixes AT(XQA), or their thesaurus row-ID's XQA, are written. The non-empty

rows are consecutive and hence the total number of rows can be significantly

reduced. This compressed output table is eventually read out to display the

results.

Figure 68 shows the contents of such index and output table,

containing thesaurus row-ID's, in the case of Example 4.

Figures 69 and 70 show how step 335 is developed when scanning the

first thesaurus and the subsequent thesaurus(es), respectively. The steps 400,

401, 403, 404 indicated by the same reference numerals are identical to those

of figure 65. In figure 69, when the bit WX(j) is 1, the counter value m (initialized

to 0 in step 320 of figure 51 or 56) is allocated to the index IND(j) for row j (step

410), the thesaurus pointer XQA (or word W AT(xQA)) is written into row j and

column AT of the output table (step 411), and the counter value m is

incremented (step 412). When the scanning the first thesaurus is over, m

represents the number of matching data graphs. In figure 70, when the bit

WX(j) is 1, the index IND(j) for row j is retrieved as pointer m' (step 413) and

the thesaurus pointer xQA (or word W) is written into row m' and column AT of

the output table (step 414).

WO 02/44943 PCT/IB01/02792

The output table is easily sorted based on the contents of its columns

when the SQL query has GROUP BY, ORDER BY or similar clauses. Such

sorting operation may be performed hierarchically with reference to a plurality

of attributes. The most significant attribute in the hierarchy is preferably

subjected to the first thesaurus scanning as shown in figure 51 or 56 so that the

first sorting criterion will be automatically fulfilled when constructing the output

table. The sorting based on the remaining attributes is done within each portion

of the output table that has common values for the previous attribute(s).

The sorting is particularly simple when the columns of the output table

contain thesaurus row-ID's XQA, as in figure 68, because it only involves sorting

integer lists.

It has been indicated before that for certain attributes, in particular

numerical fields, the explicit attribute values may be stored in the link table (if

there is a link table). The output table of the type illustrated in figure 66, 67 or

68 need not have a column for such attribute. If the attribute is to be displayed

or otherwise exploited, its values can be retrieved from the link table in the rows

corresponding to having the same row-ID as) the non-empty rows of the

output table (figures 66-67) or the valid pointers in the output table index (figure

68).

SQL queries may also require calculations to be made on attribute

values of the matching data records, particularly in data warehousing

applications. Such calculations can be performed from the data of an output

table of the type illustrated in figure 66, 67 or 68.

Example

From Example 4, we assume that the (arithmetic) mean value of the

time difference between the accident date and the policy date is requested,

expressed as a number of days. For each non-empty row of the output table,

the program computes the difference, in number of days, between the first and

third column. Those differences are accumulated and the result is divided by

the number of non-empty rows to obtain the desired mean value.

In fact, this mean value can be computed with an output table reduced

to only one memory location: when scanning the accident date thesaurus, the

WO 02/44943 PCT/IB01/02792

-81

attribute value expressed as a number of days from an arbitrary reference day

is multiplied by the number of non-zero bits in WX in step 335 of figure 51 or 56

and added to an accumulation variable V (initialized to 0 in step 320) stored in

the memory location of the reduced output table; then, when scanning the

policy date thesaurus, the attribute value expressed as a number of days from

the same reference day is multiplied by the number of non-zero bits in WX in

step 335 and subtracted from V in step 335; finally, the resulting V is divided by

the number of non-zero bits in the result bitmap Res to provide the desired

mean value.

However, an output or computation table having more than one

memory location is often useful in RAM 103 for that sort of calculations, in

particular in cases where the desired quantity is not linear with respect to the

attribute values if the quadratic or geometric, rather than arithmetic, mean

value is requested in Example

A computation table is a particular case of output table, and it has a

structure similar to that of the output table described hereabove. It may have as

many rows as in the virtual flat file (as the output tables of figures 66-67).

Alternatively, it may be associated with an index identical to that of figure 68. It

may also have only one row, as in the above example of the output table

having one memory location. Each column of the computation table is for

containing values of an operand used in the calculation to be made. Depending

on the complexity of the calculation, one or more columns may be needed, but

in most cases one column will be sufficient.

The attribute whose values are involved in the calculation have their

thesauruses scanned successively, as described with reference to figure 51 or

56. Step 335 may be developed as shown in figure 71 in the case of a

computation table CT having a single column and as many rows as in the

virtual flat file (when there is an index, it can be handled as in figures 69-70). In

figure 71, steps 400, 401, 403 and 404 are identical to those of figure 65. When

the bit WX(j) is 1 in step 401, the contents CT() of the computation table in row

j is allocated to the operand Y in step 416, and then a function f of the operand

Y and of the current (macro)word W AT(XQA) is calculated and saved as the

WO 02/44943 PCT/IB01/02792

-82-

new contents CT(j) in step 417.

The mathematical function f is selected on the basis of the calculation

to be performed and of the thesaurus being scanned. Referring again to

Example 5, when the accident date is first scanned, the function f(Y,W) may be

the transformation of the date W expressed in the format yyyy mm dd into a

number of days from a reference day (it is thus a function of W only); when the

policy date thesaurus is scanned, the function f(Y,W) may consist in applying

the same transformation to the date W and subtracting the result from Y.

Afterwards, the mean value (arithmetic, quadratic, geometric, of the non-

empty rows of CT is calculated to provide the desired output result. Other kinds

of global calculation can be performed from the columns of the computation

table, for example statistical, financial or actuarial calculations.

The macrowords are advantageously used in this type of calculation if

the desired accuracy is lower than that afforded by the individual words of at

least one of the attributes involved.

VIRTUAL FLAT FILE PARTITIONING

For large systems, it is often advantageous to partition the virtual flat

file into several portions or blocks each consisting of a determined number of

rows. The data graphs are distributed into the blocks based on their identifiers

(flat file row-ID's).

Preferably, each thesaurus is divided into corresponding thesaurus

sections, whereby each section has entries whose flat file row-ID lists are

included in the corresponding virtual flat file block. The complete flat file row-ID

list associated with one word assigned to an attribute is the union of the lists

represented in the entries of the corresponding thesaurus sections for that

word. Accordingly the complete flat file row-ID lists of the thesaurus entries are

subjected to the same partitioning as the virtual flat file: they are split into sub-

lists corresponding to the thesaurus sections.

The thesaurus index file for an attribute may be common to all the

sections. A separate index file may also be provided for each section.

For each one of the blocks, steps 191-193 of the processing of a SQL

query (figure 36) are performed as described hereabove with reference to

WO 02/44943 PCT/IB01/02792

-83-

figures 38-71. The results thus obtained are merged to display the response.

The processing of the query with respect to the different blocks may be

performed sequentially or in parallel.

In a sequential processing, RAM availability for optimal processing

speed can be effectively controlled. Even though the cost of RAM circuits is not

currently considered to be critical, a given machine has a certain amount of

available RAM capacity and this is a limitation to reserve RAM space for the

above-described output or computation tables. When the limitation is likely to

be encountered, partitioning the virtual flat file directly reduces the size of those

tables (jmax in figures 65 and 69-71).

Accordingly, the use of a particular machine to carry out the invention

will dictate the choice of jmax, that is the block size. The virtual flat file blocks

are dimensioned based on the selected size parameter, and the corresponding

thesaurus sections are constructed one section after the other as indicated with

reference to steps 122-126 of figure 19.

Such dimensioning of the query processing engine enables to use

optimal algorithms at all stages while avoiding the need to swap intermediary

data between RAM 103 and hard drive 105.

A further acceleration is achieved when parallel processing is used.

The query processing is distributed between several processors, one for each

virtual flat file block.

A possible architecture of the parallel query processing engine is

illustrated in figure 72, in the particular case where all blocks have the same

size jmax. A number M of matching units 700 are connected to a query server

701 through a communication network 702. Each matching unit 700 may be a

processor system of the type shown in figure 18. It has a storage device 703

such as a hard drive for storing the thesaurus sections associated with the

block. If a link table of the type shown in figure 9 is used, it is partitioned into

blocks in the same manner as the virtual flat file, and each block is stored in the

corresponding matching unit. The server 701 provides the man-machine

interface. It translates the query criteria of the SQL WHERE clause into trees of

the type shown in figure 37, which are provided to the M matching units 700

along with a description of the desired output. Each of the units 700 does its

WO 02/44943 PCT/IB01/02792

-84-

part of the job according to steps 191-193 of figure 36 and returns its response

to the server 701. The latter compiles the results from the different matching

units to provide the overall response to the user. In order to perform the

analysis of step 191, each matching unit 700 uses its thesaurus sections.

Alternatively, the analysis of the query criteria could be executed

centrally by the server 701 by means of global thesauruses, each global

thesaurus being common to all the (macro)words and having M columns for

containing pointers to identifier sub-lists in the M storage units 703. At the end

of the analysis stage, the relevant pointers are addressed to the matching units

700 for their execution of steps 192-193.

An update server 704, which may be the same machine as the query

server 701, is also connected to the network 702 to create and maintain the

VDG's relating to the different blocks. It monitors the changes made in the data

tables of the RDBMS and routes thesaurus update commands to the units 700

in order to make the necessary changes in the thesaurus sections.

The above-described parallel system is readily extended when the

number of data graphs becomes close to the current maximum (M x jmax in the

illustration of figure 72). This requires the addition of a further matching unit to

deal with a new virtual flat file block, whose size may be the same as or

different from the previous blocks, and a reconfiguration of the routing and

result compilation functions in the servers 701, 704. The reconfiguration is

completely transparent to the previously existing matching units. Therefore,

increasing the system capacity can be done at a minimum cost. It does not

even require to shut down the system.

11/02 2008 MON 15!12 FAX +64 4 472 3358 0087/120

00

d

CLAIMS

1. A method of organizing information in a database system, wherein a
group of attributes is defined and attribute values of a collection of data are

Sassigned to said attributes, wherein the group of attributes is divided into a
plurality of sub-groups each associated with a respective data table, each data

Stable having a column for each attribute of the associated sub-group and rows
Sfor containing data table records comprising at least one attribute value
Sassigned to an attribute of the associated sub-group, wherein links are defined

between the data tables records, each link having a target table and a
1o corresponding source table having a link column containing link values each

designating a record of said target table, whereby each of said link values
represents a link between the record of the source table including said link
value and the record of the target table designated by said link value, the
method comprising the steps of:

allocating respective identifiers to data graphs, wherein each data graph

represents related attribute values respectively assigned to the attributes
of said group, wherein each attribute value of a data graph is either a
default value or an attribute value of said collection of data, and wherein
the attribute values of each data graph are from linked data table
records;

storing a plurality of word thesauruses respectively associated with
attributes of said group, wherein for each attribute value assigned at
least once to an attribute in the collection of data, the word thesaurus
associated with said attribute has a respective entry containing said
attribute value; and

storing data representing data graph identifier lists respectively

associated with the word thesaurus entries, wherein the data graph
identifier list associated with a thesaurus entry relating to an attribute
value assigned to an attribute includes any identifier allocated to a data
graph having said attribute value assigned to said attribute.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:13 FAX +64 4 472 3358 2088/120

00

C-86-

d)
S2. A method according to claim 1, wherein the entries of each word

thesaurus associated with an attribute of said group are sorted based on the

attribute values assigned to said attribute.

S3. A method according to claim 1 or 2, further comprising the step of

storing a link table having a plurality of rows respectively associated with the

M data graphs and a plurality of columns respectively associated with the attribute

sub-groups, wherein each row of the link table contains, in each one of the

Scolumns, either a value indicating that each attribute value represented in the

C data graph associated with said row and assigned to an attribute of the sub-

lo group associated with said one of the columns is a default value or a link value

for retrieving at least one stored attribute value of the collection of data

represented in the data graph associated with said row and assigned to an

attribute of the sub-group associated with said one of the columns.

4. A method according to claim 3, wherein said data tables are stored,

and wherein each link value contained in the column of the link table

associated with an attribute sub-group comprises data for identifying a row of

the data table associated with said sub-group.

A method according to claim 3 or 4, wherein the link table has at

least one column associated with a sub-group consisting of one attribute, each

link value contained in said column being an attribute value assigned to said

one attribute in the collection of data.

6. A method according to claim 3, wherein the link table has at least

one column associated with a sub-group consisting of one attribute, each link

value contained in said column being a pointer to an entry of the word

thesaurus associated with said one attribute.

7. A method according to any one of the preceding claims, wherein at

least one thesaurus entry comprises data for pointing to at least one memory

region where coding data representing the data graph identifier list associated

with said entry are stored.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15,13 FAX +64 4 472 3358 0089/120

00

-87

S8. A method according to claim 7, wherein said memory region

comprises a file individually allocated to said thesaurus entry.

9. A method according to claim 8, wherein said data for pointing to at

Sleast one memory region comprise the attribute value for which said thesaurus

entry is provided, said attribute value being part of a respective file name used

Sfor accessing each file allocated to said thesaurus entry.

C 10. A method according to claim 7, wherein said memory region

comprises a portion of a data container having a plurality of records each

having a next address field, said portion being defined as a record chain in said

data container, the chains being defined by means of the next address fields,

and wherein said data for pointing to at least one memory region comprise a

respective address of a first record of a chain in said data container.

11. A method according to claim 10, further comprising the step of

grouping the records stored in the data container so that the records of each

chain have contiguous addresses.

12. A method according to claim 10 or 11, wherein said data container is

individually allocated to a thesaurus.

13. A method according to claim 10 or 11, wherein said data container is

shared by a plurality of thesauruses.

14. A method according to any one of claims 10 to 13, wherein the

thesaurus associated with an attribute of said group has an index register

where the thesaurus entries are sorted based on the attribute values assigned

to said attribute, each entry including an index for pointing to a row of an

auxiliary table, and wherein each row of the auxiliary table contains an address

in the data container of a first record of a chain.

A method according to any one of claims 10 to 14, wherein said data

for pointing to at least one memory region comprise a respective address of a

last record of a chain in said data container.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15: 13 FAX +64 4 472 3358 0090/120

00
0

88-
0

16. A method according to any one of claims 7 to 15, wherein said

coding data representing a data graph identifier list comprises integers

respectively equal to the identifiers of said list.

17. A method according to any one of the preceding claims, wherein a

o 5 plurality of formats are provided for representing the data graph identifier lists,

e and wherein each thesaurus entry contains an indication of the format used for

representing the data graph identifier list associated therewith.

S18. A method according to any one of the preceding claims, whereinci
said data representing data graph identifier lists comprise, for at least one

thesaurus entry, coding data obtained by a coding scheme having n successive

coding layers, n being a number at least equal to 1, each layer having a

predetermined pattern for dividing a range covering integers of an input list of

said layer into subsets, said identifier list being the input list of the first layer for

said thesaurus entry, wherein for any layer other than the last layer, an integer

list representing the position, in the pattern of said layer, of each subset

containing at least one integer of the input list forms the input list for the next

layer, and wherein said coding data comprise, for each layer and each subset

containing at least one integer of the input list, data representing the position of

each integer of the input list within said subset and, at least if said layer is the

last layer, data representing the position of said subset in the pattern of said

layer.

19. A method according to claim 18, wherein the coding data are stored

in a plurality of files including files respectively allocated to thesaurus entries.

A method according to claim 18 or 19, wherein the coding data are

stored in a plurality of files including at least one file allocated to a respective

thesaurus, for containing the coding data relating to the entries of said

thesaurus.

21. A method according to any one of claims 18 to 20, wherein the

coding data are stored in at least one file allocated to a plurality of thesauruses,

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:14 FAX +64 4 472 3358 E091/120

00

I 89-

d) for containing the coding data relating to the entries of said plurality of
thesauruses.

22. A method according to any one of claims 18 to 21, wherein the data
Srepresenting the position of each integer of the input list of each layer within a
M 5 subset consist of a bitmap segment in which each bit is associated with a

C respective integer of the subset to indicate whether said integer belongs to the
input list of said layer.

23. A method according to any one of claims 18 to 22, wherein the
position of each subset in the layer n pattern is represented by an integer rank
which is included in the coding data, in association with the data representing
the position of the integers of the input list of layer n within said subset.

24. A method according to any one of claims 18 to 22, wherein the
position of a subset in the pattern of each layer is represented by an integer
rank which is included in the coding data for said layer, in association with the
data representing the position of the integers of the input list of said layer within
said subset.

A method according to any one of claims 18 to 25, wherein n 2 and
layer k data containers each having a plurality of records are provided in a
computer memory for 1 k 5 n, each record of a layer k data container being
associated with a layer k integer rank representing the position of a subset in
the layer k pattern, and wherein each record of a layer k data container
associated with a layer k rank representing the position of a subset in the layer
k pattern has a first field for containing data for retrieving the position within
said subset of any integer of a layer k input list relating to a data graph identifier
list, whereby a combination of said layer k rank with any position retrievable
from the data contained in said first field determines a layer k-1 rank with which
a respective record of the layer k-1 data container is associated if k 1, and an
identifier of said data graph identifier list if k 1.

26. A method according to claim 25, wherein, for 1 k n, said data
contained in the first field of a record of the layer k data container for retrieving

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15!14 FAX +64 4 472 3358 2092/120

00

Sthe position of any integer of a layer k input list within a subset comprise a

bitmap segment in which each bit is associated with a respective integer of said

subset to indicate whether said integer belongs to said layer k input list.

S27. A method according to claim 26, wherein, for 1 k n, each record

of the layer k data container associated with a layer k rank further has a second

ffield for containing said layer k rank.

28. A method according to claim 27, wherein each data container

Scomprises at least two files where the first and second fields of the records of

said data container are respectively stored, said files being accessible

lo separately.

29. A method according to claim 25, wherein, for 1 k n, each record

of the layer k data container further has a second field for containing a number

representing the position of an integer of a layer k+l input list within a subset of

the layer k+l pattern,

and wherein, for 1 k 5 n, said data contained in the first field of a

record of the layer k data container associated with a layer k rank for retrieving

the position of any integer of a layer k input list within a subset of the layer k

pattern comprise a pointer to at least one record of the layer k-1 data container

in which the second field contains a number representing the position of an

integer of said layer k input list within said subset of the layer k pattern,

whereby said record of the layer k-1 data container is associated with the layer

k-1 rank determined by the combination of said layer k rank with the position

represented by said number.

A method according to claim 29, wherein said data contained in the

first field of a record of the layer 1 data container for retrieving the position of

any integer of a data graph identifier list within a subset comprise a bitmap

segment in which each bit is associated with a respective integer of said subset

to indicate whether said integer represents a data graph identifier of said list.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15 14 FAX +64 4 472 3358 0093/120

00

-91-

31. A method according to claim 29 or 30, wherein each record of the
layer n data container associated with a layer n rank further has a second field

for containing said layer n rank.

32. A method according to any one of claims 29 to 31, wherein each
M 5 layer k data container for 1 k n comprises at least two files where the first

Sand second fields of the records of said data container are respectively stored,

Ssaid files being accessible separately.

33. A method according to any one of claims 28 to 32, wherein, for

1 k n, each record of the layer k data container further has a next address

field, whereby record chains are defined in the layer k data container by means

of the next address fields, and wherein at least some of the thesaurus entries

are respectively associated with record chains in the layer n data container,

whereby the coding data relating to one of said entries for layer n are stored in

or retrievable from the record chain associated therewith in the layer n data

container.

34. A method according to claim 33, wherein, for 1 k n, said

thesaurus entries are respectively associated with record chains in the layer k

data container, whereby the coding data relating to one of said entries for layer

k are stored in or retrievable from the record chain associated therewith in the

layer k data container.

A method according to claim 33, wherein, for 1 k n, each record

of the layer k data container further has a head address field for pointing to an

address of a first record of a respective chain in the layer k-i data container.

36. A method according to any one of claims 33 to 35, wherein each

layer k data container for 1 k n comprises at least two files where the first

fields and the next address fields of the records of said data container are

respectively stored, said files being accessible separately.

37. A method according to any one of the preceding claims, wherein an

integer range covering the identifiers allocated to the data graphs is partitioned

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:15 FAX +64 4 472 3358 0094/120

00

-92-

C into a plurality of predetermined portions, wherein at least some of the data

representing identifier lists are distributed into a plurality of storage sections

respectively associated with said portions, wherein a storage section

associated with one of said portions contains data representing identifier sub-

lists consistingof identifiers of said portion.

M38. A method according to claim 37, wherein a respective storage unit is

provided for each of said portions of the data graph identifier range, to receive

Sthe storage sections associated with said portion.

39. A method according to claim 38, wherein at least some of the word

thesauruses have a plurality of sections respectively associated with said

portions, wherein a section, associated with one of said portions, of a word

thesaurus associated with an attribute has a respective entry for each attribute

value assigned to said attribute in a data graph to which an identifier of said

portion is allocated, said entry containing data for retrieving an identifier sub-list

from the storage section associated with said portion.

A method according to claim 37 or 38, wherein each thesaurus entry

has a plurality of fields respectively associated with said portions, for containing

data for retrieving respective identifier sub-lists from the storage sections.

41. A method of processing an SQL query in a database system,

wherein a group of attributes is defined and attribute values of a collection of

data are assigned to said attributes, the group of attributes being divided into a

plurality of sub-groups respectively associated with a plurality of data tables

having independent numbers of records, with links between respective records

from the data tables, wherein identifiers are respectively allocated to data

graphs, each data graph representing related attribute values respectively

assigned to the attributes of said group, each attribute value of a data graph

being either a default value or an attribute value of said collection of data,

wherein a plurality of thesauruses each associated with a respective attribute of

said group and data representing first lists of data graph identifiers respectively

associated with entries of said thesauruses are stored, wherein each thesaurus

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15!15 FAX +64 4 472 3358 (095/120

00

-93-

Sassociated with one attribute is defined with reference to a partition into subsets

_of a set of attribute values which can be assigned to said one attribute and has

a respective entry for each subset including at least one attribute value

assigned to said one attribute in the collection of data, the first list of data graph

identifiers associated with said thesaurus entry including any identifier allocated

to a data graph having an attribute value of said subset assigned to said one

Sattribute, the method comprising the steps of:

C- analyzing query criteria of a WHERE clause to determine a combination
involving thesaurus entries relevant to the query criteria;
determining a second list of identifiers of data graphs which match said

query criteria based on said combination and on the stored data

representing the first data graph identifier lists associated with said

relevant thesaurus entries;

processing said second data graph identifier list to output a response.

42. A method according to claim 41, wherein the step of analyzing the

query criteria comprises, for at least one attribute referred to in said criteria:

selecting at least one range of attribute values defined for said attribute

in the query criteria; and

mapping the attribute values of the selected range which are assigned to

said attribute in the collection of data with one or more subsets, the

thesaurus entry for each of said one or more subset being retained as a

relevant entry for the selected range,

and wherein the step of determining the second data graph identifier list

comprises merging respective portions of the first identifier lists represented by

the data of the relevant thesaurus entries retained for said selected range.

43. A method according to claim 42, wherein the mapping is performed

so as to retain a minimum number of relevant thesaurus entries for each

selected range.

44. A method according to claim42or 43, wherein each thesaurus

3o associated with an attribute is defined with reference to a partition such that

each subset consists of one attribute value or of consecutive attribute values of

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:15 FAX +64 4 472 3358 0096/120

00
0

S- 94-

the set of attribute values which can be assigned to said attribute, the entries of

said thesaurus being sorted based on the attribute values assigned to said

attribute, and wherein the step of analyzing the query criteria comprises at least

one dichotomy search in at least one thesaurus for identifying relevant

Mn 5 thesaurus entries.
O

A method according to claim 44, wherein the thesauruses comprise

word thesauruses each associated with a respective attribute of the group, with

o reference to a partition into subsets each consisting of one attribute value.
0

46. A method according to claim 1 or 45, wherein each word thesaurus

associated with an attribute of the group to which the default value is assigned

in at least one of the data graphs further has an entry for the default value,

whereby one of said first data graph identifier lists is associated with said

thesaurus entry for the default value and includes any identifier allocated to a

data graph having said default value assigned to said attribute.

47. A method according to any one of claims 42 to 46, wherein the step

of analyzing the query criteria comprises determining said combination

involving relevant thesaurus entries as a tree having at least one leaf node,

each leaf node corresponding to at least one relevant thesaurus entry retained

for a respective attribute.

48. A method according to claim 47, wherein said tree has a plurality of

nodes including said at least one leaf node and at least one operator node,

each operator node representing a Boolean operator applied to at least one

partial criterion represented by another node of said tree, one of the operator

nodes being a root node representing all the query criteria.

49. A method according to claim 48, wherein the nodes of said tree

further include at least one preset node for which a data graph identifier list has

been determined prior to said step of analyzing the query criteria.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:15 FAX +64 4 472 3358 0097/120

00

A method according to claim 49, wherein the data graph identifier list
_of said preset node is determined from at least one matching data graph

identifier list obtained when processing a previous query.

51, A method according to any one of claims 48 to 50, wherein the step
of determining the second data graph identifier list comprises obtaining a

Srespective identifier list for each node of said tree, whereby the identifier list
obtained for each leaf node corresponding to at least one relevant thesaurus

Sentry is the merger of respective portions of the first identifier lists associated
Swith said at least one relevant thesaurus entry, and the identifier list obtained

for each operator node representing a Boolean operator applied to at least one
partial criterion is obtained by applying said Boolean operator to the identifier
lists obtained for the node representing said at least one partial criterion, said
second data graph identifier list being determined as the identifier list obtained
for the root node.

52. A method according to claim 51, wherein each of said obtained
identifier lists is produced in the form of a bitmap vector consisting of bits
assigned to respective data graphs to indicate whether the identifiers allocated
to said data graphs belong to said obtained list,

53. A method according to claim 51 or 52, wherein a coding scheme
comprising n successive coding layers is used to provide coding data
representing the first identifier list associated with a thesaurus entry, n being a
number at least equal to 1, each layer having a predetermined pattern for
dividing a range covering integers of an input list of said layer into subsets, said
first identifier list being the input list of the first layer for said thesaurus entry,
wherein for any layer other than the last layer, an integer list representing the
position, in the pattern of said layer, of each subset containing at least one
integer of the input list forms the input list for the next layer,

and wherein the coding data comprise, for each layer and each
subset containing at least one integer of the input list, data representing the
position of each integer of the input list within said subset and, at least if said

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:16 FAX +64 4 472 3358 0098/120

00

96-

d)
T layer is the last layer, data representing the position of said subset in the

pattern of said layer.

54. A method according to claim 53, wherein the pattern of each layer is

such that the integer subsets are consecutive intervals consisting of the same

number of integers.

A method according to claim 54, wherein said number of integers is

a whole power of 2 for each layer.

56. A method according to any one of claims 53 to 55, wherein said data

representing the position of an integer of an input list within a subset consist of

a bitmap segment.

57. A method according to any one of claims 53 to 56, wherein the step

of determining the second data graph identifier list comprises determining a

layer n integer list for each node of said tree, whereby the layer n integer list

determined for a leaf node consists of a layer n input list associated, in the

coding scheme, with the merger of the first identifier lists represented in the

relevant thesaurus entries to which said leaf node corresponds, and whereby

the layer n integer list obtained for each operator node representing a Boolean

operator applied to at least one partial criterion is obtained by applying said

Boolean operator to the layer n integer lists determined for the nodes

representing said at least one partial criterion, and wherein a layer n result list

is determined as the layer n integer list obtained for the root node.

58. A method according to claim 57, wherein the nodes of said tree

further include at least one preset node for which a data graph identifier list has

been determined prior to said step of analyzing the query criteria, said data

graph identifier list being subjected to the coding scheme to provide a layer n

input list which is determined as said layer n integer list for said preset node.

59. A method according to claim 57 or 58, wherein, in the coding

scheme, the coding data representing the position of each integer of an input

list within a subset for the coding layer n define a layer n bitmap segment in

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15.16 FAX +64 4 472 3358 2099/120

00

-97-

Swhich each bit is associated with a respective integer of the subset to indicate
Swhether said integer belongs to said input list, while the data representing the

position of said subset in the layer n pattern comprise a layer n integer rank
associated with said layer n bitmap segment, and wherein the step of
determining a layer n integer list for a leaf node comprises:

initializing a layer n bitmap vector with logical zeroes;
m- obtaining the layer n ranks and associated bitmap segments from the
Ccoding data for each relevant thesaurus entry to which said leaf node

corresponds; and
for each of said layer n ranks, superimposing the layer n bitmap segment
associated therewith onto a segment of said layer n bitmap vector
having a position determined by said layer n rank, the superimposition
being performed according to a bitwise Boolean OR operation,

said layer n list for the leaf node corresponding to the resulting layer n bitmap
vector.

A method according to any one of claims 57 to 59, wherein n 1
and the step of determining the second data graph identifier list further
comprises, for k decreasing from n-1 to 1, determining a layer k integer list for
each node of said tree, whereby the layer k integer list determined for a leaf
node consists of any integer of a layer k input list, associated in the coding
scheme with the first identifier list represented in a relevant thesaurus entry to
which said leaf node corresponds, which belongs to a layer k subset whose
position is represented in the layer k+1 result list, and whereby the layer k
integer list obtained for each operator node representing a Boolean operator
applied to at least one partial criterion is obtained by applying said Boolean
operator to the layer k integer lists determined for the nodes representing said
at least one partial criterion, wherein a layer k result list is determined as the
layer k integer list obtained for the root node, and wherein said second data
graph identifier list corresponds to the determined layer 1 result list.

61. A method according to claim 60, wherein the nodes of said tree
further include at least one preset node for which a data graph identifier list has
been determined prior to said step of analyzing the query criteria, said data

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:16 FAX +64 4 472 3358 1i00/120

00
0

-98-

graph identifier list being subjected to the coding scheme to provide a layer k

input list which is determined as said layer k integer list for said preset node.

62. A method according to claim 60 or 61, wherein, in the coding

Sscheme, the coding data representing the position of each integer of an input

list within a subset for a coding layer k n define a layer k bitmap segment in

Swhich each bit is associated with a respective integer of the subset to indicate

whether said integer belongs to said input list, while the coding data further

Scomprise a layer k integer rank associated with said layer k bitmap segment to

Srepresent the position of said subset in the layer k pattern, and wherein the

step of determining a layer k integer list for a leaf node comprises:

initializing a layer k bitmap vector with logical zeroes;

obtaining the layer k ranks from the coding data for each relevant

thesaurus entry to which said leaf node corresponds; and

selecting any obtained layer k rank belonging to the layer k+1 result list

and superimposing the associated layer k bitmap segment onto a

segment of said layer k bitmap vector having a position determined by

the selected layer k rank, the superimposition being performed according

to a bitwise Boolean OR operation,

said layer k list for the leaf node corresponding to the resulting layer k bitmap

vector.

63. A method according to claim 62, wherein, for 1 k n, the layer k

ranks and the layer k bitmap segments associated therewith for at least one

thesaurus entry are stored at corresponding addresses in distinct first and

second files, and wherein the step of determining a layer k integer list for a leaf

node comprises:

-providing a rank table in a RAM memory, having records associated with

the addresses in said first and second files;

-filling the rank table by writing any selected layer k rank into the rank

table record associated with the address of the selected layer k rank in

said first file; and

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:17 FAX +64 4 472 3358 o101/120

00
O

,q -99-

S- for any record of the filled rank table containing a layer k rank and
Sassociated with an address in the second file, reading the associated

layer k bitmap segment at said address in the second file and
superimposing the read layer k bitmap segment onto a segment of said
layer k bitmap vector having a position determined by said layer k rank.

O
r 64. A method according to claim 60 or 61, wherein the step of

Sdetermining the second data graph identifier list further comprises, for any
O coding layer k such that 1 k n, determining a layer k' filtering list for

Sk k' n consisting of the layer k' input list obtained by providing the layer k
result list as an input list in layer k of the coding scheme,

wherein, in the coding scheme, the coding data representing the
position of each integer of an input list within a subset for a coding layer k n
define a layer k bitmap segment in which each bit is associated with a
respective integer of the subset to indicate whether said integer belongs to said
input list, while a layer k integer rank associated with said layer k bitmap
segment represents the position of said subset in the layer k pattern, and
wherein the step of determining a layer k integer list for a leaf node for k n
comprises:

initializing a layer k bitmap vector with logical zeroes;
selecting the layer n ranks obtained from the coding data for each
relevant thesaurus entry to which said leaf node corresponds, and
setting k' n;

for each selected layer k' rank:

/cl/ if the selected layer k' rank represents the position in the layer k'
pattern of a subset which includes at least one integer of the
layer k' filtering list, obtaining the layer k' bitmap segment with
which the selected layer k' rank is associated;

/c2/ for any integer of the layer k' filtering list whose position within
said subset is represented in said layer k' bitmap segment,
selecting a respective layer k'-1 rank determined from the
selected layer k' rank and said position represented in said layer
k' bitmap segment;

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:17 FAX +64 4 472 3358 0102/120

00
0

-100-

/c3/ if k' k+1, executing step with k' decremented by one unit;

and

/c4/ if k'-1 k, obtaining any layer k bitmap segment with which a

selected layer k'-1 rank is associated, and superimposing said

layer k bitmap segment onto a segment of said layer k bitmap

Svector having a position determined by said selected layer k'-1

Srank, the superimposition being performed according to a bitwise

C1 Boolean OR operation,

0said layer k list for the leaf node corresponding to the resulting layer k bitmap

vector.

A method according to claim 64, wherein, for 1 5 k n, the layer k

bitmap segments for at least one thesaurus entry are stored in at least one

layer k file at addresses respectively corresponding to the layer k ranks

associated therewith, and wherein, for 1 k n, the step of determining a layer

k integer list for a leaf node comprises:

providing a rank table in a RAM memory, having records associated with

the addresses in said layer k file;

filling the rank table by writing any selected layer k rank into the rank

table record associated with the address corresponding to the selected

layer k rank; and

for any record of the filled rank table containing a layer k rank and

associated with an address in said layer k file, reading the associated

layer k bitmap segment at said address and superimposing the read

layer k bitmap segment onto a segment of said layer k bitmap vector

having a position determined by said layer k rank.

66. A method according to any one of claims 41 to 65, wherein a link

table is stored, having a plurality of rows respectively associated with the data

graphs and a plurality of columns respectively associated with the attribute sub-

groups, wherein each row of the link table contains, in each one of the

columns, either a value indicating that each attribute value represented in the

data graph associated with said row and assigned to an attribute of the sub-

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:17 FAX +64 4 472 3358 0103/120

00

-101-

group associated with said one of the columns is a default value or a link value
for retrieving at least one stored attribute value of the collection of data
represented in the data graph associated with said row and assigned to an
attribute of the sub-group associated with said one of the columns, and wherein
the step of processing the second data graph identifier list comprises reading at
least one value in any row of the link table associated with a data graph

q identified in the second data graph identifier list.

S67. A method according to claim 66, wherein said data tables are stored,
Swherein each link value contained in the column of the link table associated

with an attribute sub-group comprises data for identifying a record of the data
table associated with said sub-group, and wherein the step of processing the
second data graph identifier list further comprises reading at least part of any
data table record identified by a link value read in a row of the link table.

68. A method of organizing information in a database system, wherein a
plurality of row identifiers are defined to designate respective rows of a
reference table having columns respectively associated with data attributes,
said rows containing groups of related attribute values assigned to said
attributes in a collection of data, the method comprising the steps of:

storing at least one macroword thesaurus associated with one of the
attributes and with a prefix length shorter than a length corresponding to
a zero truncation length for said attribute, said macroword thesaurus
having a respective entry for each prefix value having said prefix length
and matching a corresponding prefix of at least one attribute value
assigned to said data attribute in the collection of data; and
storing data representing first identifier lists respectively associated with
the macroword thesaurus entries, wherein the first identifier list
associated with an entry, relating to a prefix value, of a macroword
thesaurus associated with an attribute includes any row identifier
designating a row of the reference table having an attribute value whose
corresponding prefix matches said prefix value in the column associated
with said attribute.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:18 FAX +64 4 472 3358 [oD4/12o

00

-102-

S69. A method according to claim 68, wherein the entries of each

macroword thesaurus associated with an attribute are sorted based on the

prefix values.

A method according to claim 68 or 69, wherein a plurality of

macroword thesauruses respectively associated with different prefix lengths are

stored for at least one attribute.

71. A method according to any one of claims 68 to 70, further

comprising the step of storing a word thesaurus associated with said one of the

attributes, said word thesaurus having a respective entry for each word

assigned at least once to said attribute in the collection of data, said entry

containing data representing an identifier list including each row identifier

designating a row of the reference table having said word in the column

associated with said attribute.

72. A method according to claim 71, wherein the word thesaurus

associated with an attribute for which the reference table has a default value in

at least one row further has an entry for the default value, containing data

representing an identifier list including each row identifier designating a row of

the reference table having said default value in the column associated with said

attribute.

73. A method according to claim 71 or 72, wherein the entries of the

word thesaurus are sorted based on the words assigned to said attribute.

74. A method according to both claims 69 and 73, wherein at least one

attribute has a number Q of stored macroword thesauruses respectively

associated with different prefix lengths, each having a thesaurus level

parameter q such that 1 q Q, Q being an integer at least equal to 1, the

prefix length being a decreasing function of the level parameter if Q0 1,

wherein the level 1 macroword thesaurus further contains, in each entry

provided for a level 1 prefix value, data designating the entry of the word

thesaurus associated with said attribute which corresponds to the lowest or

highest attribute value whose corresponding prefix matches said level 1 prefix

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:18 FAX +64 4 472 3358 105/1z20

00

C -103-

Cvalue, and wherein any macroword thesaurus having a level parameter q 1
further contains, in each entry provided for a lever q prefix value, data
designating the entry of the level q-1 macroword thesaurus which corresponds
to the lowest or highest level q-1 prefix value whose corresponding prefix
matches said level q prefix value.

C 75. A method according to any one of claims 68 to 74, wherein said
reference table is a virtual table which is not stored.

S76. A method according to claim 75, further comprising the step of
storing a link table having a plurality of rows respectively associated with the
rows of the reference table and a plurality of columns respectively associated
with attribute sub-groups, wherein each row of the link table contains, in each
one of the columns, either a value indicating that each attribute value
represented in the associated reference table row and assigned to an attribute
of the sub-group associated with said one of the columns is a default value or a
link value for retrieving at least one stored attribute value of the collection of
data represented in the associated reference table row and assigned to an
attribute of the sub-group associated with said one of the columns.

77. A method according to claim 76, wherein a respective data table is
stored for each of the attribute sub-groups, and wherein each link value
contained in a column of the link table associated with an attribute sub-group
comprises data for identifying a row of the data table stored for said sub-group.

78. A method of processing an SQL query in a database system,
wherein a plurality of row identifiers are defined to designate respective rows of
a reference table having columns respectively associated with data attributes,
said rows containing groups of related attribute values assigned to said
attributes in a collection of data,

wherein a plurality of thesauruses each associated with a respective
attribute and data representing first lists of reference table row identifiers
respectively associated with entries of said thesauruses are stored,

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15.18 FAX +64 4 472 3358 0106/120

00

-104-

Swherein each thesaurus associated with one attribute is defined with

reference to a partition into subsets of a set of attribute values which can be

assigned to said one attribute and has a respective entry for each subset

including at least one attribute value assigned to said one attribute in the

5 collection of data, the first identifier list associated with said thesaurus entry

0 including any identifier allocated to a row of the reference table having an

q attribute value of said subset assigned to said one attribute,

C wherein the thesaurus include at least one macroword thesaurus

associated with an attribute and with a prefix length shorter than a length

corresponding to a zero truncation length for said attribute, whereby said

macroword thesaurus is defined with reference to a partition into subsets each

consisting of attribute values beginning by a common prefix having said prefix

length, the method comprising the steps of:

analyzing query criteria of a WHERE clause to determine a combination

involving thesaurus entries relevant to the query criteria;

determining a second reference table row identifier list based on said

combination and on the stored data representing the first identifier lists

associated with said relevant thesaurus entries; and

processing said second identifier list to output a response.

79. A method according to claim 78, wherein at least one attribute has a

plurality of macroword thesauruses, associated with different prefix lengths.

A method according to any one of claims 41 to 67 and 151 to 205,

wherein an integer range covering the identifiers designating the rows of the

reference table is partitioned into a plurality of predetermined portions, wherein

at least some of the data representing first identifier lists are distributed into a

plurality of storage sections respectively associated with said portions, wherein

a storage section associated with one of said portions contains data

representing identifier sub-lists consisting of identifiers of said portion.

and wherein the step of determining a second identifier list is

executed separately for the different portions of the reference table row

identifier range, by means of the respective storage sections.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15: 18 FAX +64 4 472 3358 0107/120

00
0

S- 105-

81. A method according to claim 80, wherein the step of processing the

_second identifier list is at least partially executed separately for the different

portions of the reference table row identifier range, by means of the respective

storage sections.

o 5 82. A method according to claim 80 or 81, wherein the thesauruses have

n a plurality of sections respectively associated with said portions, wherein a

section, associated with one of said portions, of a thesaurus associated with an
o attribute and defined with reference to a partition into subsets has a respective

0 entry for each subset of said partition which includes at least one attribute value

assigned to said attribute in a reference table row to which an identifier of said

portion is allocated, said entry containing data representing an identifier sub-list
including each identifier of said portion allocated to a reference table row
having an attribute value of said subset assigned to said attribute, and wherein

the step of analyzing the query criteria is at least partially executed separately

for the different portions of the reference table row identifier range, by means of

the respective thesaurus sections.

83. A method according to any one of claims 80 to 82, wherein the
separate step executions are carried out in parallel by respective processors for
the different portions of the reference table row identifier range.

84. A method according to claim 83, wherein each thesaurus entry has a

plurality of fields respectively associated with said portions, for containing data
for retrieving respective identifier sub-lists from the storage sections, wherein

the step of analyzing the query criteria is executed centrally for all the portions

of the reference table row identifier range, and wherein the relevant thesaurus

entries used by a processor executing the step of determining a second
identifier list by means of a storage section are designated by the data for

retrieving identifier sub-lists from said storage section.

A method according to claim 84, wherein the step of analyzing the

query criteria is executed by a query server connected to said processors

through a communication network.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15t 19 FAX +64 4 472 3358 (108/120

00
0

-106

86. A method according to claim 85, wherein a list update server is

connected, through the communication network, to a plurality of storage units

respectively coupled to said processors, the list update server controlling the

storage units to maintain the storage sections.

O 5 87. A method of processing an SQL query in a database system,

nwherein a plurality of row identifiers are defined to designate respective rows of

N a reference table having columns respectively associated with data attributes,

said rows containing groups of related attribute values, the related attribute

C values of each group being assigned to said attributes in a collection of data,

wherein a plurality of thesauruses each associated with a respective

attribute and data representing first lists of reference table row identifiers

respectively associated with entries of said thesauruses are stored,

wherein each thesaurus associated with one attribute is defined with

reference to a partition into subsets of a set of attribute values which can be

assigned to said one attribute and has a respective entry for each subset

including at least one attribute value assigned to said one attribute In the

collection of data, the first identifier list associated with said thesaurus entry

including any identifier allocated to a row of the reference table having an

attribute value of said subset assigned to said one attribute, the method

comprising the steps of:

determining a second list of identifiers of reference table rows which

match query criteria of a WHERE clause, based on a combination of

thesaurus entries relevant to the query criteria and on the stored data

representing the reference table row identifier lists associated with said

relevant thesaurus entries; and

processing said second identifier list to output a response,

wherein the step of processing the second identifier list comprises,

for at least one attribute specified in the query, selecting a thesaurus

associated with said attribute and detecting entries of the selected thesaurus

with which first identifier lists having a non-empty intersection with said second

identifier list are associated.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:19 FAX +64 4 472 3358 Q109/120

00

-107-

d) 88. A method according to claim 87, wherein said attribute specified in

the query has Q+1 stored thesauruses respectively associated with different
prefix lengths, Q being an integer at least equal to 0, each of said Q+1

thesauruses having a thesaurus level parameter q such that 0<q :Q,

whereby the prefix length is a decreasing function of the level parameter q and
0 corresponds to a zero truncation length for said attribute for q 0, wherein

Seach of said Q+1 thesauruses is defined with reference to a respective partition

[C into subsets each consisting of attribute values beginning by a common prefix
having the prefix length associated with said thesaurus, the entries of said
thesaurus being sorted based on the prefix values.

89. A method according to claim 88, wherein, the selected thesaurus

having a level parameter QA 0, the detection of entries in the selected

thesaurus comprises the steps of:

providing respective level q target lists and respective level q thesaurus

ranges covering consecutive entries of the level q thesaurus for

QA q Q;

initializing the level Q target list with the second identifier list, initializing

the level parameter q with the value Q, and selecting a first entry of the

level Q thesaurus range;

determining an intersection list between the level q target list and the first

identifier list associated with the selected entry of the level q thesaurus

range;

if the intersection list determined in the preceding step is empty,
selecting another entry of the level q thesaurus range and repeating step

if q is greater than QA:

/el/ setting the level q-1 target list as equal to the intersection list

determined in the preceding step

/e2/ setting the level q-1 thesaurus range as consisting of the entries

of the level q-1 thesaurus relating to level q-1 prefixes which

begin with the level q prefix of the selected level q thesaurus

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:19 FAX +64 4 472 3358 M110/120

00

-108-

entry, and selecting a first entry of the level q-1 thesaurus

range;

/e3/ decrementing q by one unit and returning to step

/fl if q is equal to QA:

/f1/ including the selected level QA thesaurus entry in the detected

entries;

S/f2/ if the level Q target list is equal to the intersection list determined

C in the preceding step terminating the detection of entries in

0 the selected thesaurus;

/f3/ removing the integers of the intersection list determined in the

preceding step from any target list including at least one

integer which is not in said intersection list;

/f4/ setting q as the smallest level parameter for which the target list

includes at least one integer which is not in said intersection list;

/f5/ selecting another entry in the level q thesaurus range and

returning to step

A method according to claim 89, wherein Q 2 1 and each thesaurus

having a level parameter q 1 further contains, in each entry provided for a

level q prefix value, data designating the entry of the level q-1 thesaurus which

corresponds to the lowest or highest level q-1 prefix beginning with the level q

prefix of said level q thesaurus entry, and wherein step /e2/ comprises selecting

the level q-1 thesaurus entry designated in the selected level q thesaurus

entry.

91. A method according to claim 89or 90, wherein a coding scheme

comprising n successive coding layers is used to provide coding data

representing the first identifier list associated with a level q thesaurus entry for

0 Q, n being a number at least equal to 1, each layer having a

predetermined pattern for dividing a range covering integers of an input list of

said layer into subsets, said first identifier list being the input list of the first layer

for said thesaurus entry, wherein for any layer other than the last layer, an

integer list representing the position, in the pattern of said layer, of each subset

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:20 FAX +64 4 472 3358 0111/120

00
0

-109-

Scontaining at least one integer of the input list forms the input list for the next

layer,

wherein the coding data comprise, for each layer and each subset

containing at least one integer of the input list, data representing the position of

each integer of the input list within said subset and, at least if said layer is the

O last layer, data representing the position of said subset in the pattern of said

c layer,

C and wherein each level q target list forms a layer 1 and level q

filtering list and is submitted as a layer 1 input list in the coding scheme for

QA q Q to provide respective layer k and level q filtering lists for 1 k n if

n 1, said layer k and level q filtering list provided from a level q target list

being the layer k input list obtained from said level q target list in the coding

scheme.

92. A method according to claim 91, wherein the pattern of each layer is

such that the integer subsets are consecutive intervals consisting of the same

number of integers.

93. A method according to claim 92, wherein said number of integers is

a whole power of 2 for each layer.

94. A method according to any one of claims 91 to 93, wherein the step

of determining the intersection list between a level q target list and a first

identifier list comprises, from k n:

/cl/ computing a layer k intersection list between the layer k input list

obtained from said first identifier list in the coding scheme and the

layer k and level q filtering list corresponding to said level q target list;

/c2/ if the computed layer k intersection list is empty, determining said

intersection list between the level q target list and the first identifier list

as being empty;

/c3/ if k 1, determining said intersection list between the level q target list

and the first identifier list as the computed layer 1 intersection list; and

/c4/ if k 1, decrementing k by one unit and repeating from step /cl/.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:20 FAX +64 4 472 3358 0112/120

00

-110-

A method according to claim 94, wherein, in the coding scheme, the

coding data representing the position of each integer of an input list within a

subset for a coding layer k s n define a layer k bitmap segment in which each

bit is associated with a respective integer of the subset to indicate whether said

integer belongs to said input list, while the data representing the position of said

Ssubset in the layer k pattern comprise a layer k integer rank associated with

Ssaid layer k bitmap segment, and wherein the step /cl/ of computing a layer k

C intersection list between a layer k input list obtained from a first identifier list in

Sthe coding scheme and a layer k and level q filtering list, represented by a first

layer k bitmap vector, comprises:

initializing a second layer k bitmap vector with logical zeroes;

obtaining layer k ranks from the coding data representing said first

identifier list; and

selecting any obtained layer k rank which represents the position in the

layer k pattern of a subset including at least one integer of said layer k

and level q filtering list, obtaining the layer k bitmap segment with which

the selected layer k rank is associated, and determining a segment of

the second layer k bitmap vector having a position determined by the

selected layer k rank by combining the obtained layer k bitmap segment

with a segment of the first layer k bitmap vector having a position

determined by the selected layer k rank according to a bitwise Boolean

AND operation,

said layer k intersection list corresponding to the resulting second layer k

bitmap vector.

96. A method according to claim 95, wherein, for 1 s k n, the layer k

ranks and the layer k bitmap segments associated therewith for at least one

thesaurus entry are stored at corresponding addresses in distinct first and

second files, and wherein the step /cll of computing a layer k intersection list

between a layer k input list obtained from a first identifier list in the coding

scheme and a layer k and level q filtering list, represented by a first layer k

bitmap vector, comprises:

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:20 FAX +64 4 472 3358 0113/120

00
0

S-111-

providing a rank table in a RAM memory, having records associated with

the addresses in said first and second files;

-filling the rank table by writing any selected layer k rank into the rank

table record associated with the address of said selected layer k rank in

said first file; and

for any record of the filled rank table containing a layer k rank and
r associated with an address in the second file, reading the associated

layer k bitmap segment at said address in the second file and combining

Sthe read layer k bitmap segment with a segment of the first layer k

bitmap vector having a position determined by said layer k rank

according to a bitwise Boolean AND operation to determine a segment

of the second layer k bitmap vector having a position determined by said

layer k rank.

97. A method according to any one of claims 91 to 93, wherein n 1

and in the coding scheme, the coding data representing the position of each

integer of an input list within a subset for a coding layer k 5 n define a layer k

bitmap segment in which each bit is associated with a respective integer of the

subset to indicate whether said integer belongs to said input list, while a layer k

integer rank associated with said layer k bitmap segment represents the

position of said subset in the layer k pattern, and wherein the step of

determining the intersection list between a level q target list, corresponding to

layer k and level q filtering lists represented by a respective first layer k bitmap

vectors for 1 k n, and a first identifier list comprises:

/cl/ initializing a second bitmap vector with logical zeroes;

/c2/ selecting layer n ranks obtained from the coding data representing said

first identifier list, and setting k n;

/c3/ for each selected layer k rank:

/c31/ if the selected layer k rank represents the position in the layer

k pattern of a subset which includes at least one integer of

said layer k and level q filtering list, obtaining the layer k

bitmap segment with which the selected layer k rank is

associated;

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:20 FAX +64 4 472 3358 0114/120

00
O

-112-

/c321 for any integer of the layer k and level q filtering list whose

position within said subset is represented in said layer k

bitmap segment, selecting a respective layer k-1 rank

determined from the selected layer k rank and said position

S 5 represented in said layer k bitmap segment;

C, /c33/ if k 2, executing step /c3/ with k decremented by one unit;

Sand
C /c34/ if k 2, obtaining any layer 1 bitmap segment with which a

selected layer 1 rank is associated, and combining the

obtained layer 1 bitmap segment with a segment of the first

layer 1 bitmap vector having a position determined by said

layer 1 rank according to a bitwise Boolean AND operation to

determine a segment of the second bitmap vector having a

position determined by said layer 1 rank,

said intersection list corresponding to the resulting second bitmap vector.

98. A method according to claim 97, wherein the layer 1 bitmap

segments for at least one thesaurus entry are stored in at least one layer 1 file

at addresses respectively corresponding to the layer 1 ranks associated

therewith, and the step of determining an intersection list comprises:

providing a rank table in a RAM memory, having records associated with

the addresses in said layer 1 file;

filling the rank table by writing any layer 1 rank selected in step /c32/ into

the rank table record associated with the address corresponding to the

selected layer 1 rank; and

for any record of the filled rank table containing a layer 1 rank and

associated with an address in said layer 1 file, reading the associated

layer 1 bitmap segment at said address and combining the read layer 1

bitmap segment with a segment of the first layer 1 bitmap vector having

a position determined by said layer 1 rank according to a bitwise

Boolean AND operation to determine a segment of the second layer 1

bitmap vector having a position determined by said layer 1 rank.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:21 FAX +64 4 472 3358 0115/120

00

-113-

S99. A method according to any one of claims 95 to 98, further

comprising determining a pre-filtering flag for each entry of a level q thesaurus,

said pre-filtering flag having a first value when said entry is associated with a

first identifier list represented by coding data which do not define any layer n

t' 5 rank representing the position in the layer n pattern of a subset which includes

at least one integer of a layer n and level q filtering list, and wherein the step /c/
M of determining the intersection list between a level q target list, corresponding

r to said layer n and level q filtering list, and a first identifier list associated with

an entry of the level q thesaurus comprises determining said intersection list as

being empty if the pre-filtering flag determined for said entry has said first

value.

100. A method according to claim 99, wherein, for any level q thesaurus

entry associated with a first identifier list represented by coding data which

define a layer n rank representing the position in the layer n pattern of a subset

which includes at least one integer of the layer n and level q filtering list, the

layer n bitmap segment associated with said layer n rank is obtained and said
first value is allocated to the pre-filtering flag determined for said entry if the

obtained layer n bitmap segment does not represent the position of any integer

of said layer n and level q filtering list within said subset.

101. A method according to any one of claims 87 to 100, wherein the step

of processing the second Identifier list further comprises writing output data

associated with any detected entry of a selected thesaurus into an output table.

102. A method according to claim 101, wherein the output table includes

a respective row corresponding to each identifier of the second identifier list,

and wherein output data associated with a detected entry of a selected

thesaurus are written into any row of the output table corresponding to a

reference table row identifier belonging to both the second identifier list and the

first identifier list associated with said detected thesaurus entry.

103. A method according to claim 102, wherein each reference table row

identifier has a respective row of the output table corresponding thereto,

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:21 FAX +64 4 472 3358 2116/120

00

-114-

T wherein the rows of the output table are initialized with a default value before

writing the output data, and wherein the rows of the output table which do not

contain the default value are read after writing the output data.

104. A method according to claim 102, wherein the output table is

associated with an index file having a respective record for each reference

Stable row identifier, containing either a default value or a pointer designating a

Nrespective row of the output table corresponding to said reference table row

Sidentifier, wherein the records of the index file are initialized with a default value

before writing the output data, and wherein the step of writing output data

io associated with a detected entry of a first selected thesaurus comprises, for

each reference table row identifier belonging to both the second identifier list

and the first identifier list associated with said detected entry of the first

selected thesaurus:

allocating an available row of the output table to correspond to said

is reference table row identifier,

writing output data into the allocated row; and

writing a pointer to the allocated row into the record of the index file

provided for said reference table row identifier.

105. A method according to any one of claims 102 to 104, wherein the

output table has a plurality of columns each associated with a respective

attribute for which a thesaurus is selected, and wherein output data associated

with a detected entry of a thesaurus selected for an attribute associated with a

column of the output table are written into said column.

106. A method according to both claims 104 and 105, wherein the step of

writing output data associated with a detected entry of at least one second

selected thesaurus comprises, for each reference table row identifier belonging

to both the second identifier list and the first identifier list associated with said

detected entry of the second selected thesaurus:

reading the pointer contained in the record of the index file provided for

said reference table row identifier; and

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:21 FAX +64 4 472 3358 0117/120

00
0
0-115-

writing output data into the row of the output table designated by said

pointer.

107. A method according to any one of claims 101 to 106, wherein the

selected thesaurus being a word thesaurus defined with reference to a partition

o 5 into subsets each consisting of one attribute value, the output data associated

ewith a detected entry comprise the attribute value for which said detected entry
C is provided.

S108. A method according to any one of claims 101 to 106, wherein the

selected thesaurus being a macroword thesaurus associated with a prefix

length and defined with reference to a partition into subsets each consisting of

attribute values beginning by a common prefix having said prefix length, the

output data associated with a detected entry comprise the prefix value for

which said detected entry is provided.

109. A method according to any one of claims 101 to 106, wherein the

output data associated with a detected entry comprise an address of said

detected entry in the selected thesaurus.

110. A method according to any one of claims 101 to 106, wherein the

output data associated with a detected entry of a selected thesaurus comprise

a numerical value derived from said thesaurus entry.

111. A method according to claim 110, wherein, for a detected entry of at

least one selected thesaurus, said numerical value is calculated by applying a

mathematical function to a thesaurus value stored in said entry.

112. A method according to claim 110 or 111, wherein, for a detected

entry of at least one selected thesaurus, said numerical value is calculated by

applying a mathematical function to a plurality of values including a thesaurus

value stored in said entry and at least one value already present in the output

table.

113. A method according to any one of claims 110 to 112, wherein the

output table includes a respective row corresponding to each identifier of the

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15! 22 FAX +64 4 4272 3358 18/2(Mi 18 /120

00

-116-

second identifier list, and wherein a numerical value derived from a detected

thesaurus entry is written into any row of the output table corresponding to a

reference table row identifier belonging to both the second identifier list and the

first identifier list associated with said detected thesaurus entry.

114. A method according to claim 113, wherein the numerical value,

en derived from a detected entry of a first selected thesaurus and written into any

Nl row of the output table corresponding to a reference table row identifier

belonging to both the second identifier list and the first identifier list associated
Cl with said entry of the first selected thesaurus, is obtained from a thesaurus

lo value stored in said entry,

and wherein the numerical value, derived from a detected entry of at

least one second selected thesaurus and written into a row of the output table

corresponding to a reference table row identifier belonging to both the second

identifier list and the first identifier list associated with said entry of the second

selected thesaurus, is calculated by applying a mathematical function to a

plurality of values including a thesaurus value stored in said entry and at least

one value already present in said row of the output table.

115. A method according to claim 113 or 114, further comprising

calculating an output value from a set of numerical values which have been

respectively written into the rows of the output table.

116. A method according to any one of claims 87 to 114, wherein an

integer range covering the identifiers designating the rows of the reference

table is partitioned into a plurality of predetermined portions, wherein at least

some of the data representing first identifier lists are distributed into a plurality

of storage sections respectively associated with said portions, wherein a

storage section associated with one of said portions contains data representing

identifier sub-lists consisting of identifiers of said portion.

and wherein the step of determining a second identifier list is

executed separately for the different portions of the reference table row

identifier range, by means of the respective storage sections.

COMS tD No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:22 FAX +64 4 472 3358 0119/120

00

-117-

117. A method according to claim 116, wherein the step of processing the
second identifier list is at least partially executed separately for the different
portions of the reference table row identifier range, by means of the respective

storage sections.

118. A method according to claim 116 or 117, wherein the separate step
rexecutions are carried out in parallel by respective processors for the different
Sportions of the reference table row identifier range.

119. A method according to claim 118, wherein the combination of
thesaurus entries relevant to the query is determined, on the basis of criteria
specitied in the query, by a query server connected to said processors through
a communication network.

120. A method according to claim 119, wherein a list update server is
connected, through the communication network, to a plurality of storage units
respectively coupled to said processors, the list update server controlling the
storage units to maintain the storage sections.

121. A method according to any one of claims 87 to 120, wherein said
reference table is a virtual table which is not stored.

122. A database system for managing information from a collection of
data, comprising means arranged and programmed to implement a method as
claimed in any one of claims 1 to 121.

123. A computer program product, loadable into the internal memory of a
digital computer, comprising software code portions for carrying out a method
as claimed in any one of claims 1 to 121 when said product is run on the

computer.

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

11/02 2008 MON 15:22 FAX +64 4 472 3358 0120/120

00
O -118-

124. A method of organising information in a database system,

substantially as herein described with reference to the accompanying

figures.

125. A method of processing an SQL query in a database system,

Ssubstantially as herein described with reference to the accompanying
c figures.

SVIRTUAL KEY GRAPH
c By the authorised agents

A J PARK
Per:

13147(X) 1 .D C

COMS ID No: ARCS-178725 Received by IP Australia: Time 13:21 Date 2008-02-11

WO 02/44943 PCT/IB01/02792

1/57
CLIENTS

Row-ID
0
1

FIG. 1 2
3
4

POLICIES
Row-ID

0
1
2

FIG. 2 3
4

6

ACCIDENTS
Row-ID

C
1
I-

FIG. 3 4

6
7
8

Name Birth Year
Oscar 1959 M
Andr6 1976 M
Ariane 1965 F
Laure 1976 F
Max 1947 M

Type Date Client Link
Car 19980624 2
Car 19980909 1

House 19981211 4
Car 199901 10 4

House 1999 01 31 2
Car 19990201 3

House 19990201 3

Date Amount Policy Link

19981003 1000 1
19990418 10000 4
19990418 800 3

S19990612 1300 1
S19990831 300 3
S19991208 2200

5 19991209 1000 0
20000225 6000 4

S2000 03 20 800 1

Gender

WO 02/44943 WO 02/44943PC T/IBO1102 792

2/57

3rd Party Table

Broker Table

PolicyTal

Table
FG

Broker #Y

(Ariane)Clin#2

3rd Party #X

Accident #6
FIG.

WO 02/44943 WO 02/44943PC T/IBO1102 792

3/57

Null

Client #4(Max)

Null

I Null

(Houe

FIG. 6

Nul

Null

FIG. 7

FLAT FILE
Row-ID

0
1
2
3
4

6
7
8
9

11

Client Name Birth Year Gender Policy Type Policy Date Acc. Date Amount
Andre 1976 M Car 19980909 19981003 1000
Ariane 1965 F House 1999 01 31 19990418 10000

Max 1947 M Car 199901 10 19990418 800
Andre 1976 M Car 19980909 19990612 1 300
Max 1947 M Car 199901 10 19990831 300

Laure 1976 F Car 19990201 1999 1208 2200
Ariane 1965 F Car 1998 06 24 1999 12 09 1 000
Ariane 1965 F House 1999 01 31 2000 02 25 6 000
Andre 1976 M Car 19980909 20000320 800
Max 1947 M House 19981211 Null Null

Laure 1976 F House 19990201 Null Null
Oscar 1959 M Null Null Null Null

FIG. 8

WO 02/44943 PCT/IB01/02792

5/57

LINK TABLE
FF Row-ID

0
1
2
3
4

6
7
8
9

11

E
Client Link

1
2
4

Policy Link
1
4
3

Accident Link
0
1
2

1 1 3
4 3 4
3 5
2 0 6
2 4 7
1 1 8
4 2 -1
3 6 -1
0 -1 -1 I

FIG. 9

ACCIDENT AMOUNT (TRUNCATION LENGTH 3) THESAURUS
Amount Prefix FF Row-ID List Bitmap

0 001010001000
1 100100100000
2 000001000000
6 000000010000

010000000000

FIG.

WO 02/44943 WO 02/44943PC T/IBO1102 792

6/57
CLIENT NAME THESAURUS

Name FE Row-ID List Bitmap
000000000000

Andr6 100100001000
Ariane {1 010000110000
Laure (511000001 000010
Max 001 01 00001 00

Oscar {1 1} 000000000001

FIG. I OA

Cl IFENT BIRTH YEAR THESAURUS
CLIENT Birth Year FE Row-ID List Bitmap

Null -000000000000

1947 {2,4,91 001010000100
1959 {11} 000000000001
1965 010000110000
1976 3,5,8,1 0} 100101001010

FIG. l OB

CLIENT GENDER THESAURUS
Gender FE Row-ID List Bitmap

Null -000000000000

I 1,5,6,71} 010001110010
If0, 2,3,4,8,9,11il 101110001101 1

L- -1

FIG. IOC

WO 02/44943 WO 02/44943PC T/IBO1102 792

7/57

POLICY TYPE THESAURUS_
Type FE Row-ID List Bitmap
Nul {1 1} 000000000001

I Car {0,2,3,4,5,6,81 101111101000
House f{1,7,9,1O0} 010000010110

FIG. 1IOD

POLICY DATE THESAURUS
Date FE Row-ID List Bitmap
Null {1 1) 000000000001

19980624 f6) 000000100000
19980909 100100001000
19981211 000000000100
199901 10 {2,41 001010000000
199901 31 010000010000
19990201 {5,1 0) 000001000010

FIG.

WO 02/44943 PCT/IB01/02792

8/57

ACCIDENT DATE THESAURUS
Date FF Row-ID List Bitmap
Null {9,10,11} 000000000111

1998 1003 100000000000
199904 18 010000000000
199906 12 000100000000
19990831 000010000000
199912 08 000001000000
19991209 000000100000
20000225 000000010000
20000320 000000001000

FIG. 1OF

ACCIDENT AMOUNT THESAURUS
Amount FF Row-ID List Bitmap

Null {9,10,11} 000000000111
300 000010000000
800 001000001000
1 000 100000100000
1 300 000100000000
2200 000001000000
6000 000000010000
10000 010000000000

FIG. 1OG

WO 02/44943 PCT/IB01/02792

9/57
CLIENT NAME THESAURUS

Name BitmaD L1 Ranks L1 Segments

Null 000 000 000 000
Andr6 100 100 001 000 {100,100,001}
Ariane 010 000 110 000 {010,110}
Laure 000 001 000 010 {001,010}
Max 001 010 000 100 {001,010,100}

Oscar 000 000 000 001 {001}

FIG. 11A

ACCIDENT AMOUNT THESAURUS
Amount BitmaD L1 Ranks L1 Segments

Null 000 000 000 111 {111}
300 000 010 000 000 {010}
800 001 000 001 000 {001,001}

1 000 100 000 100 000 {100,100}
1 300 000 100 000 000 {100}
2 200 000 001 000 000 {001}
6 000 000 000 010 000 {010}

000 010 000 000 000 {010}

FIG. 11G

ACCIDENT AMOUNT MACROWORD 3) THESAURUS
Prefix BitmaD L1 Ranks L1 Segments

0 001 010 001 000 {001,010,001}

1 100 100 100 000 {100,100,100}

2 000 001 000 000 {001}
6 000 000 010 000 {010}

010 000 000 000 {010}

FIG. 11H

WO 02/44943 WO 02/44943PC T/IBO1102 792

10/57
CLIENT NAME THESAURUS

Name LI Ranks Li Bitmap L2 Ranks L2 Segments
Null -0000

Andre' 11 10 {0,I {1 1,10)
Ariane 1010 {1 0,10)
Laure (1,31 01 01 01} {0I,01}
Max {0,2,31 10l o11 _01}{10,111

O0scar 0001 1}1 1

FIG. 12A

ACCIDENT AMOUNT THESAURUS
Amount LI Ranks LI Bitmap L2 Ranks L2 Segments

Null .{31 0001 J {01}1
300 01 00
800 1010 {0,1 {10,I0}

1 000 10 10 10,1} {10,10}
1 300 {1}1 01 00 f{0)
2200 01 00 {01}
6000 0010
10000 1000 {1 0)

FIG. 12G

ACCIDENT AMOUNT MACROWORD THESAURUS
Prefix LI Ranks LI Bitmap L2 Ranks L2 Segments
0 1,2} 11 10 1} 11,10}
1 1,2} 11 10 {1 1,10}
2 01 00 {01}
6 f2}. 0010 M1

1000 {10}

FIG. 12H

WO 02/44943 PCT/IBO1102792

11/57
CLIENT NAME THESAURUS

Name LI Ranks Li Segments L2 Ranks L2 Segments
Null

Andr6 {100,00,001} (11,10)
Ariane {0,21 {010,1101 {10,10}
Laure (001,010 (0 1,01)
Max {0,2,31 {001,0I0,I001 {10,11}

Oscar {001} (01}

FIG. 13A

ACCIDENT AMOUNT THESAURUS
Amount LI Ranks Li Segments L2 Ranks L2 Segments

Null {111) {01)
300 {010) (01)
800 {001,001} {10,10}
1 000 {100,100) 0,1} {10,10}
1 300 {1 {100} {0 01
2200 fL A001} (1)
6000 {010}
10000 {010)

FIG. 13G

ACCIDENT AMOUNT MACROWORD 3) THESAURUS
Prefix LI Ranks LI Segments L2 Ranks L2 Segments
0 (001,010,001} {11,10}
1 {0,1,2}1 {00,I00,I00}1 {1,10
2 VI{001} f l
6 2 {0101) {I0}

{010 I {I0

FIG. 13H

WO 02/44943 PCT/IB01/02792

12/57
THESAURUSCLIENT NAME

Name L1 First L1 Last L2 First
Null 0 0 0

Andre 20 2 3
Ariane 5 6 12
Laure 8 12 14
Max 29 15 6

Oscar 26 26 7

FIG. 14A

ACCIDENT AMOUNT THESAURUS
Amount L1 First L1 Last L2 First

Null 13 13 21
300 4 4 22
800 9 10 16

1 000 3 19 18
1 300 24 24
2200 25 25 4
6000 23 23 9
10000 16 16

FIG. 14G

ACCIDENT AMOUNT MACROWORD 3) THESAURUS
Prefix L1 First L1 Last L2 First

0 21 7 19
1 31 14
2 1 1 27
6 28 28 28

18 18 1

FIG. 14H

WO 02/44943 PCT/IB01/02792

13/57
L1 Rank NextAddress

1
2
3
4

6
7
8
9

11
12
13
14

16
17
18
19

21
22
23
24

2E
27
28

5 29
3(
31
3
3

L1 Segment
1 0 001
2 0 001
0 19 100
1 0 010
0 6 010
2 0 110
2 0 001
1 12 001
0 10 001
2 0 001
1 2 100
3 0 010
3 0 111
2 0 100
3 0 100
0 0 010
x 0 000
0 0 010
2 0 100
0 11 100
0 22 001
1 7 010
2 0 010
1 0 100
1 0 001
3 0 001
2 15 010
2 0 010
0 27 001
1 14 100
0 30 100
x 33 000

3 x 17 000

FIG. 1,

WO 02/44943 WO 02/44943PC T/IBO1102 792

14/57
NextAddress

1
2
3
4

6
7
8
9

11
12

1IE
1

2(

24
2
2
2'
2

L2 Rank L2 Segment
o 0
1 0 01
o 11 11
0 0 01
1 0
0 1310
1 0 01
x 17 00

I 1 0-
I 0 0

1 0
0 23
1 0 11
0 2 01
1 0
0 15
x 24 00
0 5
0 30 11
0 0 01

I 1 0 01
2 0 0 01

3 1 0
I. x 0 00

0 26 11
3 1 0
7 0 0 01
8 1 0
9 x 8 00
0l 1 0

FIG. 16

CLIENT NAME THESAURUS
ON Andr6 N01

Row-ID Name
0 Null
I Andre'
2 Ariane
3 Laure
4 Max
51 Oscar

FIG. 17

CNArianeNOI

CNLaureNOIw
CNMax_-NOl

ONAndr6_HPI CNAndr6*_N02 ONAndr6_HP2

1000

CNArianeHPI CNArianeN02 ON-ArianeHP2
010h 0i

110 1 1L1 1
CNLaureHP1 CNLaureN02 ONLaureHP2

001E0 01
010I 1 1u 0

CNMaxHPI
001~3
0109

1 100

CNMaxN02
011

CNMaxHP2

ONOscarNOI ONOscarHPI
1 3 1 001

ONOscarN02 ONOscarHP2
1LIE]I 01

WO 02/44943 PCT/IB01/02792

16/57

101 C FIG. 18

102

ROM RAM 1 0 3

MAN-

MACHINE HARDDRIVE
INTERFACE

104 100 105 106

I Translating compound keys into row-ID's I
120

Completing data tables with Null records
121

Creating and sorting word thesauruses
122

Macroword formatting.
123 Creating macroword thesauruses123

Generating link table rows and word thesaurus entries

124
Rearranging word thesaurus entry coding data

125

Merging word thesaurus entries
6 into macroword thesaurus entries FIG. 19

126

Deleting data table link columns and Null records
127

WO 02/44943 WO 02/44943PC T/IBO1102 792

17/57

130

132

133

134

Dichotomy Search
WI a- word index 135

136

137 138

140
R I
Qj
R2

0
QI +1I
R2 1

139

142

FIG. 20En End

WO 02/44943 WO 02/44943PC T/IBO1102 792

18/57

150

153

AD AD'152

157

156

158

FIG. 21
160

Hk NXk (AD)
ATLk (WI) a- AD
NOk Qk
NXk (AD) ~-0

161

WO 02/44943 WO 02/44943PC T/IBO1102 792

19/57

150

153

152

Hk (AD)
ATjk AD
NOk (AD) Qk
NXk (AD) 0

160

161 161 FIG. 22

WO 02/44943 WO 02/44943PC T/IBO1102 792

20/57

150

153

152

164

165

H2 -0--NX2 (AD)
N02 (AD) Q2
NX2 0

FIG. 23

160

161

WO 02/44943 WO 02/44943PC T/IBO1102 792

21/57

170

Yes

171

158

150

154152

159
155

HI NXl (AD)
N01 (AD) ~-QI
AT-LI (WIu-AD 160

FIG. 24

161

WO 02/44943

22/57
CLIENT NAME THESAURUS

PCT/IB01/02792

Row-ID
0
1
2
3
4

Name Word Index
Null 0

Andre 1
Ariane 2
Laure 3
Max 4

Oscar

Format
I1 i
1i

1 i
1 i

FIG.

ACCIDENT AMOUNT THESAURUS
Row-ID

0
1
2
3
4

6
7

Amount Word Index
Null 0
300 1
800 2

1 000 3
1300 4
2200 5
6000 6
10 000 7

Format
1 i

11 i
1 iI
I
1
1 i

1

FIG. 26

ACC. AMOUNT. MACROWORD 3) THESAURUS
Row-ID Prefix Macro Index First Word

0 0 0 1
1 1 1 3
2 2 2
3 6 3 6
4 10 4 7

Format

II
1
1 -i

1

1

FIG. 27

WO 02/44943

23/57
CLIENT NAME AUXILIARY TABLE
Row-ID CN F1 CN L1 CN F2

0 0 0 0
1 1 3 1
2 4 5 3
3 6 7
4 8 10 7

11 11 9

FIG. 28

PCT/IB01/02792

ACCIDENT AMO
Row-ID AA F1

0 12
1 13
2 14
3 16
4 18

19
6 20
7 21

UNT AUXILIARY TABLE
AA L1 AA F2

12
13 11
15 12
17 14
18 16
19 17
20 18
21 19

FIG. 29

ACC. AMOUNT. MACROWORD 3) AUXILIARY TABLE
Row-ID AA 3 F1 AA 3 L1 AA 3 F2

0 22 24
1 25 27 22
2 28 28 24
3 29 29
4 30 30 26

FIG.

WO 02/44943 WO 02/44943PC T/IBO1102 792

24/57

NXIAD
1
2
3
4

6
7
8
9

11
12
13
14

16
17
18
19

21
22
23
24

26
27
28
29

31
32
33

N01
02
1

HPI
100
100
001

015 010

1 7
3 0
0 9
2 10
3 0
3 0-
3 0
1 0
0 15
2 0
o 17
2 0
1 0
1 0

-2 0
o 0
0 23
1 24

110
001
010
001
010
100
001
111
010
001
001
100
100
100
001
010
010
001
010
001

FIG. 31

0 26 100
1 27 100
2 0 100
1 0 001
2 0 010
0 0 010
x 32 000

xl 0
000
000

WO 02/44943 WO 02/44943PC T/IBO1102 792

25/57

NX2AD
1
2
3
4

6
7
8
9

11
12
13
14

16
17
18
19

21
22
23
24
25
26
27
28
29

N02
0 2
1 1 O)E:l

HP2
11

0 4
1 0
o 6 01
1 0 01
0 8
1 0 11
1 0 01
1 0 01
0 0 01
0 13
1 0
0 15
1 16
0 17 01
0 18 01
1 19
0 20
0 21 11
1 0
0 23 11
1 0
0. 0 01
1 0
0 0
x 28 00
x 29 00
x 30 00
x 0 00

FIG. 32

WO 02/44943 WO 02/44943PC T/IBO1102 792

26/57

183

FIG. 33

WO 02/44943 WO 02/44943PC T/IBO1102 792

27/57

AD
1
2
3
4

6
7
8
9

11
12
13
14

16
17
18
19

21
22
23
24

26
27
28
29

N02 NX2

1 0
0 4
1 0
0 6
1 0
0 8
1 0

1 0
1 0

0 0
0 13
1 0
0 15
1 16

HP2
11
10
10
10
01
01
10
11
01
01
01
10
10
10
10
01

0 18 01
1 19 10
0 20 10
o 21 11
1 0 10
0 23 11
1 0 10
0 0 01
1 0 10
0 0 10
x 28 00
x 29 00

Fl
1
3
4

6
7
8
9

12
13
14

16
17
18

S19

21
22
24

27
28
29

x
x
x
xxl 0

00
00

FIG. 34A

WO 02/44943 WO 02/44943PC T/IBO1102 792

28/57

AD
1
2
3
4

6
7
8
9

11
12
13
14

16
17
18
19

21
22
23
24

26
27
28
29

31
32
33

NXI
2
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0

23
0
0

26
0
0
0
0
0

32
33
0

HPI
100
100
001
010
110
001
010
001
010
100
001

010
001
001
100
100
100
001
010
010
001
010
001
100
100
100
001
010
010
000
000
000

FIG. 34B

WO 02/44943 WO 02/44943PC T/IBO1102 792

29/57

NX2AD
1
2
3
4

6
7
8
9

11
12
13
14

16
17
18
19

21
22
23
24

26
27
28
29

N02
0 2 1
1 0
0 4
1 0
0 6
1 0
0 8
1 0-
1 0
1 0
0 0
0 13
1 0
o 15
1 16
o 17
0 18
1 19
o 20
o 21
1 0
o 23

3
4

6
7
8
9

12
13

14

16
17
18
19

21
22
24

o 0
1 0
o 0
x 28
x 29
x 30
x 0

27
28
29

x
x
x

FIG. 34C

WO 02/44943 WO 02/44943PC T/IBO1102 792

30/57

AD
1
2
3
4

R2 NXI
o 2
1 0
o 0
0 0
o 0
1 0
1 0
o o
o 10
1 0
1 0
1 0
1 0
0 0
0 0
o 0
0 0
1 0
1 0
o 0
0 0
o 23
1 0
0 0
0 26
1 0
0 0
1 0-
0 0
0 0
x 32
x 33
x 0

HP1
100
100
001
010
110
001
010
001
010
100
001
111
010
001
001
100
100
100
001
010
010
001
010
001
100
100
100
001
010
010
000

F000000

FIG. 34D

FIG.

452

453

465

467

472

456

457

458

NXk AD
NXk (AD)

WO 02/44943 PCT/IB01/02792

32/57

Converting SQL query criteria into tree
190

Analyzing splitting BETWEEN clauses
191

S Identifying Matching Data Graphs
192

Result preparation
193

194 Result display

194FIG. 36

F/G. 36

WO 02/44943 WO 02/44943PC T/IBO1102 792

33/57

i CN =Andre

iCN =Max i

1500! AA !g50001

CNx x=1

FIG. 37

AA x=2_

ONx x=4

AA 3x= 1

FIG. 38

WO 02/44943 WO 02/44943PC T/IBO1102 792

34/57

200

202

205

203

206

207

FIG. 39

.1-

.1-

.1-

C.O
U,
U,
-'I

-1

FIG.

Generate sub-range in word thesaurus
from AT_x a to AT_x b

Generate sub-range in macroword thesaurus
from AT_P(q)_x a' to AT_P(q)_x b'

230

231

2 Ye N
22 3 L L 1 1 224 FIG.

Select b":
Wo highest thesaurus word such that

Wo(b") p(q) Wq(a')
225

226
SCall FUNC (AT, q-1, a, 1, 0)

I 227

.No

228
Select a":
Wo lowest thesaurus word such that

Wo(a") p(q) Wq(b')

229 Call FUNC (AT, q-1, b, 0, 1)

Return Sub-Tree

WO 02/44943 WO 02/44943PC T/IBO1102 792

37/57

240 k-*

[Select roc

242 =4 NODE:k

FIG. 41 L3

FIG. 43

277 278

Start FNODE ND, Res, WZ) 248
248

251 Reserve working zone WZ in RAM 249

Get WZ Yes No 252(layer k) ND is preset
(layer k)

Yes No
250 Yes ND is leaf?

260- WZ 0
x x1

Yes 261

Yes NoYes low density 263

low density Yes k n
processing (Fig.43)

262
layer n layer k n

processing (Fig.44) processing (Fig.45)

FIG. 42

Select first child node ND1 t- 253
F-

Call FNODE ND1, Res, WZ1) 254

Select second child node ND2 255

Call FNODE ND2, Res, WZ2) 256

WZ WZ1 WZ2 257

264 265 Release WZ1 and WZ2 in RAM 258]-258

Return WZ 266

WO 02/44943 PC T/IBO1102 792

39/57

WO 02/44943 WO 02/44943PC T/IBO1102 792

40/57

279

280

281

FIG. 46

286

N ~-NOk (AD)
M NXk (AD) 290

302

305

306 307

WO 02/44943 WO 02/44943PC T/IBO1102 792

41/57

287

3 10 L I-a- 0

i
i =imax (AT,q, Wk)? No

316

311
312 IN -ATP(q)W Nk) IFIG. 49

Yes N
j Res(N) 1?

H -a-AT P(q)WY H~k(i) 1I 314

IWZ ORH 315

JI;j

Yes x x2 No x t- X+l

317 318

42/57

FIG. 48

503

No

504

505

Call FILT k'-1,
Resk+ 1, ,Resk-1, AD', WZ)

508
502

WO 02/44943 WO 02/44943PC T/IBO1102 792

43/57

260A

280A

262A

WI l AT-P(q)WIN(x)
F -AT-P(q)_FORMAT(x)

281A

261A

264A

301A

FIG.

WO 02/44943 WO 02/44943PC T/IBO1102 792

44/57

320

321

341

333

338 339

340 End
FIG. 51

WO 02/44943 PC T/IBO1102 792

45/57

WO 02/44943 WO 02/44943PC T/IBO1102 792

46/57

NO (AD) 361
NX (AD)

i N/Ak I FIG. 53

FIG. 54

WO 02/44943 WO 02/44943PC T/IBO1102 792

47/ 57

FIG.

WO 02/44943 WO 02/44943PC T/IBO1102 792

48/57

320

321

352

353

593

N NOn (AD)
M NXn (AD)

339
FIG. 56

WO 02/44943 WO 02/44943PC T/IBO1102 792

49/57

FIG. 57

603

No

604

605

Call FFILT WZlqI
WZ(k-1 AD', WX)

615

602 608

WO 02/44943 PCT/IB01/02792

50/57

HP'2
CLIENT NAME

N02 FAD'
0F 1
1 5

FIG. 58

ACC. AMOUNT
N02 FAD'

0 101 16
FIG. 59

ACC. AMOUNT 3
N02 FAD'

0 20
1 24

AD'
1
2
3
4

6
7
8
9

11
12
13
14
15
16
17
18
19

21
22
23
24

26
27
28
29

11 2
10 3
01 4
10 0
10 6
10 7
01 8

NX'2

01 0
01 11 1
10 12 2
10 13 3
01 14 4
01 15
10 0 7
01 17 0
10 18 2
10 19 3
10 0 6
11 21 0
11 22 1
01 23 2
10 0 4
10 25 0
10 26 1
10 0 3
00 28 x
00 29 x
00 30 x

PTR
1
2
3
4
1
2
3
4

x
FIG.

FIG. 61

WO 02/44943 WO 02/44943PC T/IBO1102 792

51/57

620

621 624

H' H P'n (AD')
NX'n (AD')

Yes

622

FIG. 62

WO 02/44943 WO 02/44943PC T/IBO1102 792

52/57

FIG. 63

399

FIG. 64

WO 02/44943 WO 02/44943PC T/IBO1102 792

53/57

400-

y

FIG.

400-

FIG. 71

403 .404

403 404

WO 02/44943 WO 02/44943PC T/IBO1102 792

54/57

OUTPUT TABLE
Flat File Row-ID

0
1
2
3
4

6
7
8

1IG. 66 9

11

Acc. Date Client Name Policy Date
19981003 Andr6 19980909

19990418 Max 199901
19990612 Andr6 19980909

2000 03 20 Andr6 19980909
F

OUTPUT TABLE
Flat File Row-ID

0
1
2
3
4

6
7
8

FIG. 67
11

Acc. Date Client Name Poli

INDEX
Flat File Row-ID

0
1
2
3
4

6
7
8
9

11

OUTPUT TABLE
Row-ID

0
Acc. Date Client Name Policy Date

1 1 2
2 4 4
3 1 2
8 1 2

FIG. 68

WO 02/44943 WO 02/44943PC T/IBO1102 792

56/57

400

FIG. 69

400

FIG. 70

403 404

403 404

QUERY UPDATE
701 SERVER 704--- SERVER

70211
MATCHING MATCHING MATCHING
UNIT 1 UNIT 2 UNIT M

1nJ700(700 700

VDG VDG VDG
I max jmax

jmax -12. jmax -1 M .jmax -1

703 703 703

FIG. 72

	Abstract
	Description
	Claims
	Drawings

