(12) STANDARD PATENT (11) Application No. AU 2002232035 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

Title

Methods of organizing data and processing queries in a database system, and database
system and software product for implementing such methods

International Patent Classification(s)
GO6F 17/30 (2006.01)

Application No: 2002232035 (22) Date of Filing: 2001.11.29
WIPO No: WO02/44943

Priority Data

Number (32) Date (33) Country
00403331.2 2000.11.29 EP
00403329.6 2000.11.29 EP
00403332.0 2000.11.29 EP
00403330.4 2000.11.29 EP
Publication Date: 2002.06.11

Publication Journal Date: 2002.08.15
Accepted Journal Date: 2008.02.28

Applicant(s)
Virtual Key Graph

Inventor(s)
Koskas, Elie Ouzi

Agent / Attorney
A J PARK, PO Box 949, Wellington

Related Art
US 5201046
US 5363098

44943 A2

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 June 2002 (06.06.2002)

(10) International Publication Number

WO 02/44943 A2

(51) International Patent Classification’:
(21) International Application Number:

(22) International Filing Date:

GO6F 17/30

PCT/IB01/02792

29 November 2001 (29.11.2001)

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:

00403329.6 29 November 2000 (29.11.2000)

004033304 29 November 2000 (29.11.2000)
00403331.2 29 November 2000 (29.11.2000)
00403332.0 29 November 2000 (29.11.2000)

English

English

EP
FP
EP
EP

(71) Applicant: LAFAYETTE SOFTWARE INC. |US/US];
Five Palo Alto Square, 3000 El Camino Real, Palo Alto,

CA 94306 2155 (US).

(72) Inventor: KOSKAS, Elie, Quzi; 9, Allée Eridan, F-95350

Saint Brice Sous Foret (FR).

(81)

84)

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU,
ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
[Lurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (Al, BE, CH, CY, DE, DK, ES, Hl, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BI%, BJ, CT%, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF ORGANIZING DATA AND PROCESSING QUERIES IN A DATABASE SYSTEM, AND DATABASE
SYSTEM AND SOFTWARE PRODUCT FOR IMPLEMENTING SUCH METHODS

101 ~ CPU
102
7~
\
03
ROM < > RAM /1
MAN-
MACHINE < > E’QD%
INTERFACE
/ \/ \
104 100 108 106

(57) Abstract: A reference table has columns associated with data attributes and rows containing related words assigned to those
altribules in a collection ol data, those words coming from dilTerent data tables having independent numbers of records. The stored
~ data include word thesaurusecs associated with the attributes, and reference table row identificr lists respectively associated with
thesaurus entries. Bach word thesaurus associated with an attribute has a respective entry for each word assigned to this data attribute
in the collection of data. The reference Lable, which may be a virtual table, defines a unilied algebraic framework [or the entries
of all the thesauruses. Query criteria can be examined with reference to the relevant thesauruses to obtain a row-ID list or bitmap
vector which represents all the reference table rows matching the query criteria, if any. The results can then be delivered through the
original data tables, or prelerably, by means of the thesauruses.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-1
METHODS OF ORGANIZING DATA AND PROCESSING QUERIES
IN A DATABASE SYSTEM, AND DATABASE SYSTEM AND SOFTWARE
PRODUCT FOR IMPLEMENTING SUCH METHODS

BACKGROUND OF THE INVENTION

The present invention relates to relational database management
systems (RDBMS), and more particularly to computerized systems for storing
and accessing large amounts of data.

In a non-limiting manner, the invention is applicable to “data
warehouses”. On-line transaction processing (OLTP) systems, such as for bank
teller transactions and airline reservations, are optimized for finding a record
associated with a specific key, e.g. finding the information about employee
123124. By contrast, data warehouses are optimized for finding sets of records
very quickly. The reason is that typical queries are of the form: "find all sales by
region and quarter' or "find stores that sell the greatest volume of sportswear
per month" or "select the top 5 stores for each product category for the last
year". Such queries must typically access large sets of rows in data tables. The
query processing challenge is to process these queries without doing a linear
scan of all or most of the database.

Five main approaches have been proposed to attack this problem: (i)
multidimensional arrays: (ii) special indexes; (iii) table caching; (iv) optimized
foreign key joins; and (v) approximation.

(i) Multidimensional arrays (i.e. matrices).

This strategy consists of implementing the data warehouse as a
multidimensional array or matrix. Examples may be found in U.S. Patents No.
5,359,724 and No. 5,864,857. Each dimension corresponds to an attribute of
the data. For example, a sales table can be viewed as a matrix with
coordinates: store location, product type, customer id, and so on. A particular
sale can be identified by specifying all of these attributes. The strategy works
well for small databases or very dense ones. By dense, we mean that the
Cartesian product of possible values should all be meaningful, e.g., every
customer is likely to buy every product from every store. Since this is rarely

10

15

20

25

30

WO 02/44943

PCT/1IB01/02792

-2

true, this scheme must be modified to deal with sparse values. This can be
done by defining a notion of sparse attributes and dense ones. So, for example,
it might be that every store carries every product (a dense relationship that can
be stored in a matrix), but only some of these combinations are valid for any
given customer. So, a conventional index would be used whenever customer
sales are involved, but a dense one for queries involving store-wide or product-

wide sales.

(i) Special indexes.

Bitmap indexes are an index structure tailored to data warehouses
(see, e.g. U.S. Patent No. 5,903,888). These indexes have already been used
in some commercial products to speed up query processing. In its simplest
form, a bitmap index on an attribute consists of one vector of bits (i.e. bitmap)
per attribute value, where the size of each bitmap is equal to the number of
records in the indexed relation. For example, if the attribute is day-of-week,
then there would be seven bitmap vectors for that attribute, one for each day.
The bitmap vector corresponding to Monday would have a 1 at position i if
record | contains "Monday" in the day-of-week attribute. This single value-
based approach is called a Value-List index. Other techniques (e.g. U.S. Patent
No. 5,761,652) associate bit vectors with ranges of values, so there could, for a
salary attribute, be a vector for the range 0 to 20,000 Euros, 20,000.01 to
35,000 Euros, and so on. Still others associate each bit vector with a bit value
(a 1 or a 0) in a given position. So, if the attribute holds n bit numbers, then
there would be 2n bit vectors (position 1, bit value 1; position 1, bit value O;
position 2 bit value 1; ...).

The benefit of bit vectors is that it is easy to use multiple bit vectors to
answer a single query. Consider a query on several predicates, each of which
is indexed. Most conventional database management systems would use just
one of the indexes (the one that is most “selective” so returns the fewest rows),
though some systems might attempt to intersect the record identifiers of
multiple indexes.

Bitmaps work better, because they are more compact and intersecting

several bitmaps is much faster than intersecting several collections of record

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-3-

identifiers. In the best case, the improvement is proportional to the word size of
the machine. For example, suppose the word size is 32 bits. Then two bit
vectors can be intersected 32 bits at a time. Each set of 32 bits corresponds to
32 record identifiers being intersected. That best case occurs when each
predicate is unselective (i.e. many records match each predicate value), but all
the predicates together are quite selective. Consider for example the query:
"Find people who have brown hair, glasses, ages between 30 and 40, blue
eyes, work in the computer industry, live in California, ...".

So, matrices are best when sets of predicates are dense (all, or nearly
all, values in the Cartesian product are possible), bitmaps are best when
predicates are neither dense nor individually selective. An intermediate
approach (when there is insufficient density for matrices but many values in the
Cartesian product are present) is to use multidimensional indexes.
Multidimensional indexes such as quadtrees, R-trees and their successors are

implemented as variable sized grids on a multidimensional space. The grids

‘are of variable sizes because the population of points differs in different places

in a hyperspace. For intuition, consider a map of equi-population rectangles of
France. The rectangles would be far more dense in Paris than in the alps.
Indexes like this work well for spatial data (where they are used to find the
points contained in latitude-longitude quadrants). This alternative is little
explored in the commercial arena except for geographical queries, however,
because these schemes do not scale well with increasing dimensionality and

commercial systems typically have far more than three dimensions.

(iii) Table Caching.

If one doesn't have the luxury to design new indexes on top of a
database system (because one is not the implementer of that system) one can
pre-compute a large number of anticipated aggregate queries and put them in
tables. For example, if a large retailer frequently asks queries that sum the
total sales across multiple stores or multiple products, one may store such
information in special tables. The main cost of such a strategy is maintaining
these tables in the face of updates. (Disk space is no longer a major factor.) In
the example, every sale of item | at store S would have to update the total

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-4 -

product sales table for | and the total store sales table for S. So, this strategy is
worthwhile if there are few updates between queries. The strategy is not

worthwhile if there are many.

(iv) Optimized Foreign Key Joins.

Most queries in muiltidimensional tables entail joins between a central
“fact table” (e.g. sales detail) and a set of dimension tables (e.g. store
description, product description, customer description). These are known as
“foreign key joins” since the customer identifier in the sales table, for example,
is a key of the customer description table. (A key is a value belonging to an
attribute such that only one record has that value in the attribute.) One way to
accelerate these joins is to create a linkage between fact table records and
dimension records. This can be done in three basic ways

(a) create an index that holds fact table record identifiers and dimension
table record identifiers;

(b) create bidirectional pointers between fact table records and dimension
table rows — this is what “object-oriented” databases do;

(c) replace the customer record identifiers in the fact table by offsets into the
dimension tables.

Choice (a) is the most independent of changes in the physical
organization of the tables and therefore is best for heavily updated systems,
because changes to the dimension table can be reflected in the index to that
table alone. Choice (b) is the least flexible to physical reorganization, because
reorganizing a dimension table would entail updating the fact table. Choice (c)
is a compromise of the two in that certain physical reorganizations can be done
to the dimension tables (e.g. changing its position on disk) without changing the
fact table. Examples of join optimization may be found in U.S. Patents No.
5,548,754, No. 5,671,403, No. 5,724,568, No. 5,752,017, No. 5,761,657 and
No. 5,822,747.

(v) Approximating the Result
Since most people use data warehouses to get strategic aggregate
information, many would be happy with a fast approximation as long as it has

error bounds. Typical work in this area is illustrated by U.S. Patent No.

11/02 2008 MON 14:43 FAX +64 4 472 3358 [Qooas1z20

11 Feb 2008

2002232035

10

15

20

25

30

-5-

5,870,752, which shows how to estimate aggregate results in data warehouses
while giving error bounds. The basic problem is that sampling all tables and
then doing aggregates does not work in general. For example, if one wants to
join R and S on their keys, then taking a 1/10 sample of each will give a size
that is 1/100 of the size of the real join if the samples are random. So, one must
be more clever. The idea is to take an initial set of tables R, S, T, ... that are
linked by foreign key joins. Suppose for example that R is the fact table and
the others are dimension tables. Take a sample of R and then perform all these
foreign key joins based on the sample giving R', §', T, ... Now, if a query
involves R, S, T and includes the foreign key links among these, then the query
can be done with great accuracy on R', §', T'. The error can be estimated by
considering the result obtained by several partitions of R' and looking at their

variance.

An object of the present invention is to propose an alternative method
of organizing a database management system, which enables an efficient
query processing.

SUMMARY_OF THE INVENTION

The invention proposes methods of organizing information and of
processing queries in a database system, as set out in the appended claims 1
through 121. The invention further proposes a database system for managing
information from a collection of data, comprising means arranged and
programmed to implement such a method, as well as computer program
products having instructions for carrying out such method.

Another aspect of the present invention relates to methods of handling
integer lists in computer systems. In a non-limiting manner, this aspect of the
invention is applicable in the RDBMS field, where the integer lists may
represent identifiers of records in various tables.

it is well known that, in computer systems, integer lists may
equivalently be stored and handled in the explicit form of integer lists or in the
form of bitmap vectors. A bitmap vector has binary components each indicating
whether an integer corresponding to the rank of the component belongs (1) or

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-6-

does not belong (0) to the list. The dimension of the vector has to be at least
equal to the largest integer of the list.

The bitmap representation is convenient because a variety of
manipulations can be performed on the coded lists by subjecting the binary
components of the vectors to Boolean operations, which are the most basic
operations in the usual processors. For example integer lists are readily
intersected by means of the Boolean AND operation, merged by means of the
Boolean OR operation, complemented by means of the Boolean NOT
operation, etc.

When the integers of the lists are potentially big, the dimension of the
bitmap vectors becomes large, so that the memory space required to store the
lists in that form becomes a problem. When the lists are scarcely filled with
integers of the big range, the explicit integer format is much more compact: a
list of K integers in the range [0, 232[requires K x 32 bits vs. 232 ~ 4.3 billion
bits in the bitmap format.

Bitmap compression methods have been proposed to overcome this
limitation of the bitmap representation. These methods consist in locating
regions of the vectors whose components have a constant value, so as to
encode only the boundaries of those regions. The remaining regions can be
coded as bitmap segments. An appreciable gain is achieved when very large
constant regions are found. Examples of such bitmap compression methods as
disclosed in US Patents No. 5,363,098 and 5,907,297

This type of bitmap compression optimizes the storage of the encoded
integer lists, but not their handling. Multiple comparisons are required to detect
overlapping bitmap segments when performing basic Boolean operation on the
bitmaps (see US Patent No. 6,141,656). This is not computationally efficient. In
addition, when the coding data of the constant regions and bitmap segments
are stored in memory devices such as hard drives (i.e. not in RAM), numerous
disc read operations are normally required, which is detrimental to the
processing speed.

An object of this aspect of the present invention is to propose

alternative methods of encoding and/or combining integer lists, whereby lists of

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-7-

potentially large dimension can be efficiently handled.

Accordingly, the invention proposes methods of encoding and
combining integer lists in a computer system, as set out in the appended claims
249 through 291. The invention further proposes a computer system,
comprising means arranged and programmed to implement a such method, as
well as computer program products having instructions for carrying out such
method.

BRIEF_DESCRIPTION OF THE DRAWINGS

Figures 1-3 show an example of data structure as typically used in a
conventional relational database system.

Figure 4 is a diagram representing a data table tree in the example of
figures 1-3.

Figures 5-7 are diagrams showing respective data graphs constructed
with the tree of figure 4 and the data of figures 1-3.

Figure 8 is a flat file representation of the data tables of figures 1-3.

Figure 9 shows a link table as used in an embodiment of the invention.

Figures 10A-H show the contents of thesauruses corresponding to the
data tables of figures 1-3.

Figures 11A-14A, 11G-14G and 11H-14H show other representations
of the thesauruses of figures 10A, 10G and 10H, respectively.

Figures 15-16 illustrate the data stored in a data container in
connection with the thesauruses of figures 14A, 14G and 14H.

Figure 17 shows another possible structure of the thesaurus of figures
10A-14A.

Figure 18 is a block diagram of a computer system suitable for
implementing the invention.

Figure 19 is a flow chart showing a data graph creation procedure in
accordance with an embodiment the invention.

Figure 20 is a flow chart showing a procedure applicable in stage 124
of figure 19.

Figures 21 and 22 are flow charts showing procedures applicable in
step 136 of figure 20.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-8-

Figures 23 and 24 are flow charts showing another procedure
applicable in step 136 of figure 20 in two successive coding layers.

Figures 25-32 are tables showing a way of storing thesauruses
constructed from the example of figures 1-3.

Figure 33 is a flow chart showing an alternative way of executing steps
135 and 136 of figure 20 when the thesauruses are stored as shown in figure
17.

Figures 34A and 34B are tables showing an alternative embodiment of
the tables of figures 31-32.

Figures 34C and 34D are another representation of the tables of
figures 34A and 34B.

Figure 35 is a flow chart showing a procedure applicable in the
management of tables of the type shown in figures 34A and 34B.

Figure 36 is a general flow chart of a query processing procedure in
accordance with an embodiment of the invention. ,

Figure 37 is a diagram showing an example of query tree referring to
the example of figures 1-3.

Figure 38 is another diagram showing an expanded query tree
obtained by analyzing the query tree of figure 37.

Figure 39 is a flow chart showing a procedure of analyzing the query
tree.

Figure 40, which is obtained by placing figure 40A above figure 40B, is
a flow chart of a recursive function referred in the procedure of figure 39.

Figure 41 is the flow chart procedure for identifying matching data
graphs based on an expanded query tree as illustrated in figure 38.

Figure 42 is a flow chart of a recursive function FNODE called to in the
procedure of figure 41.

Figures 43-45 are flow charts illustrating procedures executed in steps
262, 264 and 265 of figure 42, respectively.

Figure 46 is a flow chart showing an alternative embodiment of the
procedure of step 265 of figure 42.

Figure 47 is a flow chart showing another alternative embodiment of

the procedure of step 265 of figure 42, when the thesauruses are stored as

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

illustrated in figures 34A and 34B.

Figure 48 is a flow chart of a recursive function FILT called in the
procedure of figure 47.

Figure 49 is a flow chart showing another alternative embodiment of
the procedure of step 265 of figure 42, when the thesauruses are stored as
illustrated in figure 17.

Figure 50 is a flow chart of a variant of a leaf processing used in the
function of figure 42.

Figure 51 is a flow chart showing a procedure applicable for scanning
the thesaurus relating to a given attribute in order to retrieve the attribute
values relevant to a database query.

Figure 52 is a flow chart of a function FINTER referred to in the
procedure of figure 51.

Figures 53-55 are flow charts showing procedures executed in steps
355, 357 and 358 of figure 52, respectively.

Figure 56 is a flow chart showing an alternative procedure applicable
for scanning the thesaurus relating to a given attribute in order to retrieve the
attribute values relevant to a database query, when the thesauruses are stored
as illustrated in figures 34A and 34B.

Figure 57 is a flow chart of a recursive function FFILT called in the
procedure of figure 56.

Figures 58-61 show tables which may be stored to cooperate with the
tables of figures 25-34.

Figure 62 is a flow chart showing a pre-filtering procedure which may
be used prior to a thesaurus scanning similar to that of figure 51.

Figure 63 is a flow chart showing a part of a thesaurus scanning
procedure according to figure 51, adapted to take into account a pre-filtering
according to figure 62.

Figure 64 is a flow chart showing an alternative procedure applicable in
step 358 of figure 52, when the thesauruses are stored as illustrated in figure
17.

Figure 65 is a flow chart showing a procedure applicable in step 335 of
figure 51.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-10 -

Figures 66 and 67 show the contents of an exemplary output table
used to provide a query response.

Figure 68 is a diagram illustrating another possible structure of the
output table.

Figures 69 and 70 are flow charts showing procedures applicable in
step 335 of figure 51 to construct an output table of the type shown in figure 68.

Figure 71 is a flow chart showing a procedure applicable in step 335 of
figure 51 to perform computations in a database system by means of a
computation table.

Figure 72 is a block diagram of another computer system suitable for

implementing the invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

VIRTUAL DATA GRAPHS

Figures 1-3 illustrate a collection of data which can be stored in a
computer memory coupled with a processor arranged for running relational
database management programs. This example will be referred to in the
following description to give an illustration of the principles and embodiments of
the invention where appropriate.

Figures 1-3 show a conventional type of data organization in a
database system. The illustrated system handles data relevant to a
hypothetical insurance company which manages policies for its clients. The
data are organized in three tables relating to the clients, policies and accidents
as shown in figures 1-3, respectively.

From a logical point of view, each data table consists of a two-
dimensional matrix, with rows corresponding to respective records in the table
and columns corresponding to respective data attributes of the records or
structural features of the database (the latter type of column typically contains
either local record identification keys or foreign keys designating records in a
target table).

It will be appreciated, however, that for large databases the actual

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-11 -

storage of the data in a memory medium, e.g. a magnetic disc, is frequently
performed otherwise: each row typically has a memory address where the
corresponding attribute values or keys are stored in the order of the columns
and separated by predetermined symbols such as the encoded character “\”.

In our simplified example given to facilitate the explanation of the
proposed data structures, the tables are of modest size. In practice, there are
usually more tables and more attributes (columns) per table (notwithstanding,
one ore more tables could also have a single column). Moreover, the data
tables generally include much more records, up to thousands or millions of
rows depending on the application.

In that example, the database a group of seven attributes distributed
into three sub-groups corresponding to the three data tables. Each attribute has
a column in the data table corresponding to its sub-group. The client data table
(figure 1) has three attributes, i.e. client name, birth year and gender. The
policy data table of figure 2 has two attributes, i.e. policy type (“car” or “house”)
and policy effect date, and a link column to the client table. The accident data
table of figure 3 has two attributes, i.e. date of accident and amount of
damages incurred in a given currency, and a link column to the policy table.

In a given data table, each record/row has a unique identifier, referred
to as a row-ID. This identifier corresponds to the memory address where the
record is stored, usually through a conversion table. It may be stored as an
identification key in a column of the data table for the purposes of unique row
identification, but this is not compulsory. In our example, the row-ID’s are
integer indexes starting from zero for each data table, and they are not stored
explicitly in a column of the table.

Some of the tables are linked together, as indicated in the last column
of figures 2 and 3. Two tables are directly linked if one of them (source table)
has a link column provided for containing foreign keys designating records of
the other one (target table).

Those foreign keys, hereafter called links, reflect the hierarchy and
organization of the data handled in the relational database system. In our
example, each accident dealt with by the insurance company is related to a
certain policy managed by the company, hence the policy links of figure 3.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-12 -

Each policy is for a particular client of the company, hence the client links of
figure 2. It will be noted that some links may be optional. For example, some
accidents may involve third parties and if there is a separate table for third
parties, then each record of the accident table may have a link to the third party
table.

Each link typically consists of a row-ID in the target data table. For
instance, the accident stored as row-ID = 0 in the accident table of figure 3,
which took place on October 3, 1998 for an amount of 1,000 has a policy link
pointing to the policy stored as row-ID = 1 in the policy table of figure 2, i.e. it
relates to a car policy subscribed on September 9, 1998 by the client with
row-ID = 1 in the client table of figure 1, i.e. André, a man born in 1976. If the
target table has other forms of record identification keys, for example
compound keys, a link may also desighate a target record as identified by such
a key.

The construction of the links obeys a number of rules. In particular, the
linked data tables have a directed acyclic graph structure such as a hierarchical
tree organization illustrated in figure 4. A root table is defined as a data table for
which no other data table has links pointing to its rows, such as the accident
table of figure 3. In other words, a root table does not constitute a target table.
Likewise, a leaf table is defined as a data table with no link column, such as the
client table of figure 1. In other words, a leaf table does not constitute a source
table. Figure 4 shows only one root table, but the tree structure of the tables
may have multiple roots.

It may happen in certain cases that a group of related data tables
exhibit circular links (for example, the client table may have a link column to the
accident data table to indicate the first, or last, accident undergone by each
client). In such a case, the tree organization of the data tables is first restored
by canceling one link of the circle. Which link should be cancelled is dictated by
the semantics of the database (in the above example, the link from the client
table to the accident table will naturally be cancelled).

Paths are defined in the data table tree from the root table(s) to the leaf
tables. Each path from a root table to a leaf table is defined by a link column of
the root table pointing to the leaf table, or by a succession of link columns via

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-13-

one or several intermediate tables.

In figure 4, two leaf tables have been added (dashed lines) to show a
tree structure with multiple branching (the simplified example of figures 1-3
provides a tree with a single path shown with a solid line). The added leaf
tables are a third party table as mentioned previously and a broker table which
is a target table from the policy table, to contain data about the brokers who
commercialize the policies.

The data table records that are linked together can be viewed in a
similar tree representation (figures 5-7). The record tree of figure 5 shows that
the accident #6 was related to policy #0 (car) subscribed by client #2 (Ariane)
through broker #Y and involved third party #X. The solid lines represent
respective links from the data tables of figures 2 and 3.

The record tree of figure 6 further shows a Null record which may
added in the accident table with a link to row-ID = 2 in the policy table, for the
reason that, as apparent from the last column of figure 3, no accident has
occurred under policy #2 (subscribed by client #4 (Max) for his house).

A Null, or dummy, record stands for the absence of data. All its attribute
values are default values (Null), which means “no value”. The purpose of
inserting such dummy records in the present scheme is to make sure that any
valid record in any data table belongs to at least one record tree stemming from
a record of a root table (figure 4).

A Null record may also be present in each data table which is a target
table for at least one link column of a source table. When a row of the source
table has no foreign key in the corresponding link column, the record tree(s)
including that row is (are) completed with a Null at the location of said target
table. This situation occurs for the broker table in the example illustrated in
figure 6. To represent this, a default value (e.g. —1) can be written in the link
column of the source table, whereby the Null record is implicitly present in the
target table.

The Null records are inserted where appropriate in a process of
scanning every single path in the data table tree from the leaf table of said path
to the root table, i.e. downwardly in figure 4. When examining one source/target

table pair in the scanning of a path, the target table row-ID values that do not

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-14 -

occur in the relevant link column of the source table are first listed, and then for
each missing row-ID value of the list, a new Null record is generated in the
source table with said missing row-ID value in said link column.

If a Null record is thus inserted in a data table having several link
columns, the Null record receives the default value (-1) in any link column
other that the one pertaining to the path being scanned, to indicate that the
corresponding link is to a Null record in the target table. This situation occurs
for the third party table in the example illustrated in figure 6.

Scanning the data table tree from the leaves to the root is important.
Otherwise, Null records containing links to other Null records in a target table
might be overlooked. An example is shown in figure 7 which shows a record
tree relating to client #0 (Oscar) who has no (more) policy: the accident table
contains a Null record pointing to another Null record of the policy table which,
in turn, points to client #0; the root of the record tree would not be in the root
(accident) table if the paths were scanned upwardly.

In a conventional database organization as shown in figures 1-3, the
link keys are provided to optimize the memory usage. To illustrate this,
reference may be made to the flat file shown in figure 8, which has exactly the
same informational content as the three data tables of figures 1-3 (the third
party and broker tables are ignored in the sequel).

A flat file has a column for each one of the attributes (columns) of the
data tables. For each complete record tree that can be constructed with the
data table tree structure of figure 4, the flat file has a row which contains, in the
relevant columns, the attribute values of all the records of said tree. The rows
of the flat file are referred to herein as data graphs. Each data graph is
identified by a flat file row-ID shown in the left-hand portion of figure 8. The
record trees of figures 5-7 are compact representations of the data graphs at
row-ID’s 6, 9 and 11, respectively.

Although the flat file representation is sometimes referred to the
literature, it is of little practical interest for databases of significant size. The
reason is that it requires excessive redundancy in the data storage.

For example, in our small-sized case, André’s birth year and gender, as
well as the details of his car policy are written three times in the flat file

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-15-

(row-ID’s 0, 3 and 8), whereas they are written only once, along with link
values, when the storage is in the form of data tables as in figures 1-3. With
databases of realistic size, such redundancy is not acceptable.

The database system according to the invention makes use of the flat
file concept. However, it does not require the storage of the flat file as shown in
figure 8, hence the concept of “virtual flat file” containing “virtual data graphs”
(VDG). The term “virtual” refers to the fact that the flat file or data graphs need
not be maintained explicitly in memory, although their data structure is used as
a reference in the execution of the method.

In a particular embodiment of the invention, the flat file is reduced to a
link table as shown in figure 9. Each row of the link table corresponds to a
respective row of the flat file, i.e. to a record tree as shown in figures 5-7.

The columns of the link table respectively correspond to the data tables
of figures 1-3. In other words, each column of the link table is associated with
an attribute sub-group which is the sub-group of attributes allocated to the
corresponding (target) data table. Each column of the link table contains link
values (row-ID’s) designating records of the corresponding target data table.

The row of the link table corresponding to a given data graph contains
a default value (—1) in the column corresponding to any data table having a Null
record in the record tree representing said data graph.

The data table row-ID’s found in one row of the link table enable the
retrieval of linked data from the data table, i.e. a data graph or part of it. All the
links are represented in the Iihk table. If one replaces the row-ID’s stored in the
columns of the link table of figure 9 by the attribute values stored in the
identified rows of the respective data tables of figures 1-3, one recovers the flat
file of figure 8.

The proposed system further uses word thesauruses (figure 10A-G)

each associated with a respective column of one of the data tables, i.e. with

- one of the attributes.

In a preferred embodiment, there is one word thesaurus for each
attribute used in the database system. However, if some attributes are known
to be never or almost never used in the query criteria, then it is possible to
dispense with the thesaurus for such attribute.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-16 -

Each word thesaurus associated with one column of a data table has
an entry for each attribute value found in that column. Such attribute value is
referred to herein as a “word”. A word has one entry in a thesaurus, and only
one, as soon as it occurs at least once in the associated data table column.
The Null value is a valid word in the thesaurus.

The entries of each thesaurus are sorted on the basis of the attribute
values. An order relationship is therefore defined for each attribute category.
This requires attention when the attribute value fields of the thesaurus files are
defined and dimensioned.

Typically, the words are in the ASCIl format and their category is
selected for each column among the categories “integer”, “real” and “character
string”. Character strings are sorted according to the usual lexicographical
order.. A date field is preferably declared as a character string such as
yyyy (mm) (dd) (figures 10B, 10E and 10F), yyyy representing the year, mm the
month (optionally) and dd the day in the month (optionally). The thesaurus
sorting thus puts any dates in the chronological order. If the attribute category
is “integer”, the numbers are aligned on the right-hand digit, in order to provide
the natural order relationship among the integer data values. If the attribute
category is “real’, the numbers are aligned according to their whole parts, with
as many digits on the right as in the value having the longest decimal part in
the column.

The Null value is at one end (e.g. at the beginning) of each sorted
thesaurus.

Each entry E(W) for a word W in a thesaurus associated with a column
C(T) of a data table T contains information for identifying every row of the flat
file which has the attribute value W in the column corresponding to C(T). When
the flat file is stored virtually in the form of a link table, the information
contained in entry E(W) is used for identifying every row of the link table which,
in the column corresponding to the data table T, has a link pointing to a row
having the value W in column C(T).

In other words, with the contents of the entry E(W) in the thesaurus
associated with column C(T), we can retrieve all the data graphs whose

corresponding attribute has the value W.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-17 -

Such contents represent a row-ID list pointing to rows of the (virtual)
flat file, i.e. a data graph identifier list. Such list may be empty, in particular for
the Null value in some of the thesauruses (as in figures 10A-C).

Two alternative representations of the data graph identifier lists in the
thesauruses are illustrated in figures 10A-G for the seven attribute columns of
figures 1-3. The first one is the form of explicit integer lists.

The second (equivalent) representation is in the form of bitmap vectors
whose length is equal to (or greater than) the number of rows in the virtual flat
file, i.e. the number of data graphs. The bit of position i in a bitmap vector (i = 0)
indicates whether the integer i belongs (1) or not (0) to the row-ID list
represented by the bitmap vector. In our simplified example, the flat file has 12
rows so that the bitmap vectors may be of dimension 12.

The above-described data structure, comprising a virtual flat file and
sorted thesaurus files pointing to rows of the virtual flat file is referred to herein
as a VDG structure.

The VDG structure provides a powerful tool for efficiently processing
queries in the database.

The virtual flat file is a reference table which defines a unified algebraic
framework for the entries of all the thesauruses. The query criteria are
examined with reference to the relevant thesauruses to obtain a flat file row-1D
list (or bitmap vector) which represents all data graphs matching the query
criteria, if any. The results can then be delivered by accessing the link table
rows pointed to in that row-ID list to read the links which appear in part or all of
the columns in order to retrieve atiributes values as desired for the result
presentation.)

The processing with reference to the thesauruses mainly consists in
logical operations performed on the row-ID lists to which they point. If they are
represented as integer lists, such operations can be reduced to basic merge,
intersect and/or complement operations, which respectively correspond to
Boolean OR, AND, NOT operations in the bitmap representation.

The VDG structure also provides an efficient tool for accessing the
contents of the database, which does not require accesses to the data tables.

This tool is well suited to queries having special result presentation features

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-18 -

such as SORT, COUNT, DISTINCT, ORDER BY, GROUP BY, etc. clauses,
and also for carrying out any type of calculation on the data values of the
records which match the query.

Example 1:

As an illustration, consider the following query: find the client name and
accident date for all car accidents that incurred damages higher than 900, and
group the results according to the client name. The query may be processed as
follows. First, all the flat file row-ID lists identified in the accident amount
thesaurus entries relafing to amounts higher than 900 (the five last rows of
figure 10G) are merged, which yields the list {0, 1, 3, 5, 6, 7} (or the bitmap
vector 110101110000 obtained by a bitwise Boolean OR). Then the
intersection of that list with the row-ID list identified in the policy type thesaurus
entry relating to the value “car” (the second row of figure 10D) is determined.
The result list {0, 3, 5, 6} (or bitmap vector 100101100000 obtained by a bitwise
Boolean AND) specifies the data graphs that satisfy the query criteria. Finally,
the entries of the client name thesaurus (figure 10A) are read sequentially and
when there is a non-empty intersection between the result list and the row-1D
list identified in the client name thesaurus entry, the link table rows having their
row-ID’s in that intersection are read to retrieve the desired attribute values. In
our case, the output would be: André [accident dates 1998 10 03 (#0) and
1999 06 12 (#3)], Ariane [accident date 1999 12 09 (#6)] and Laure [accident
date 1999 12 08 (#5)].

The above type of processing is applicable to any kind of query. The
response is prepared by referring only to the sorted thesauruses, which
implicitly refer to the flat file framework. Once an output flat file row-ID list is
obtained, the link table or the thesauruses can be used for retrieving the data of
interest.

Example 2:
To further illustrate the outstanding performance of the VDG scheme,

let us consider the query which consists in identifying any client who has had a

car accident before the beginning of the civil year of his or her 351 birthday. In

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-19-

a typical conventional system, all the records of the accident data table of figure
3 have to be read to obtain the date attribute and policy link values. For each
accident record, the policy data table is read at the row-ID found in the policy
link column to obtain the policy type attribute and client link values and then, if
the policy type is “car”, another access to the client data table is necessary at
the row-ID found in the client link column to obtain the birth year attribute value.
The latter value is compared with the date attribute value previously obtained in
the accident table to determine whether the criteria of the query are fulfilled.

If the data tables are sorted beforehand on the basis of the attributes
referred to in the query criteria, such conventional processing may be
accelerated by limiting the number of disc accesses. This requires data table
sorting every time records are added, deleted or amended, which is not
practical when the collection of data is large. And it is possible only in specific
cases dictated by the data table sorting rule.

For example, if the client and policy tables were respectively sorted on
the basis of the birth year and policy type attributes, the preceding request
could be processed in a less prohibitive time by accessing the data records in a
suitable order and with the help of the computer cache memory. However, the
tip would not apply to other similar queries (e.g., assuming an additional
column in the policy table for containing excess amounts, the identification of all
accidents for which the damage amount was more than ten times the excess
amount would raise the same problems).

With the VDG scheme, the above illustrative query can be dealt with in
a very efficient manner. By means of the client birth year thesaurus (figure 10B)
and the accident date thesaurus (figure 10G), the computer identifies the {client
birth year, accident date} word pairs which satisfy the date criterion, i.e.
accident date earlier than beginning of client's birth year + 35. This is done
without worrying about whether the accident was undergone by the client. Such
identification is relatively easy for any possible pair of attributes since any
attribute likely to be referred to in queries has a sorted thesaurus. For each
identified word pair, the intersection of the two flat file row-ID lists of the
thesaurus entries is obtained. The resulting integer lists are merged. Then the
computer intersects the row-ID list of the entry relating to the value “car” in the

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-20 -

policy type thesaurus (second row in figure 10D) with the Ilist
{0, 1,3, 5, 6, 8, 10} resulting from the merger. The resulting list {0, 3, 5, 6, 8}
designates a set of matching rows in the link table, from which the relevant
client names (André — 3 times —, Laure and Ariane) are readily retrieved by
accessing the client table records whose row-ID’s appear in the matching rows

and in the client column of the link table.

It is noted that, when processing a query, the link table is simply used
as a mean to retrieve the data of interest. Different ways of achieving this
retrieval function may be thought of.

A method is to keep the original data tables (figures 1-3) in memory.
However, it is worth noting that the link columns may be deleted from those
data tables, since their contents are already present in the link table.

From the observation that all possible attribute values are stored in the
corresponding thesauruses, another method is to store in the link table pointers
to the thesauruses. The latter method reduces the required disc space since an
attribute value has to be written only once, even if the value occurs frequently
in a data table column. It enables to guickly retrieve attribute values which
occur in a given flat file row without requiring the use of the original data tables.

For certain attributes, it may be interesting to store the explicit attribute
values in the link table, i.e. like in the flat file. In particular, this may be
interesting for numerical fields (usually of smaller size than character strings)
whose values are very dispersed and which are often requested among the
output attributes of a query response (e.g. money amounts). If those values are
explicitly written in the link table, there can be an appreciable gain in the disc
accesses required for fetching the output data, at the cost of a moderate
increase in the needed disc space.

In the foregoing explanations, the link table is a sort of skeleton of the
flat file, which is stored to facilitate the data retrieval once the list of flat file row-
ID's matching the query has been determined by means of the sorted
thesauruses.

Notwithstanding, storing a link table or any form of table reflecting the

flat file structure is not strictly necessary. In an advantageous embodiment, the

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-21 -

data graphs (or their portions requested for the result presentation) may be
recovered from the thesaurus files only. To illustrate this, consider again
Example 2. Once the result list {0, 3, 5, 6, 8} of matching virtual flat file rows
has been obtained by processing the query criteria with reference to the
thesaurus files, it is possible to scan the client name thesaurus and, for each
word (client name), to intersect the flat file row-ID list represehted in the
thesaurus with the result list. If the intersection is non-empty, the word is
included in the output. It may be accompanied with the intersection list to allow
the user to quickly obtain further information from the relevant data graphs.
This method requires the minimum memory space since only the thesaurus
files need to be stored.

Even if a link table is stored, it may be advantageous, for certain
queries, to retrieve the attribute values by scanning the thesaurus(es) as
indicated hereabove rather than through the link table. This may occur, in
particular, to perform computations on the data values when there is a relatively
slow interface between the query processor and the data tables, e.g. an ODBC
interface (“Open DataBase Connectivity”).

Anocther advantage of the VDG scheme is that it provides a query
processing engine which can co-exist with the data tables in their original form.
Changes in the thesaurus entries are then done in response to corresponding
changes in the original data tables. This is an interesting feature for users who
find it important to keep their data in the form of conventional tables, because
they do not want to be too dependent on a new system or because they need

to access their tables through a conventional interface for other applications.

MACROWORDS

The above-described VDG’s are advantageously completed with prefix
thesauruses also referred to as macroword thesauruses.

Like the above-described word thesauruses, each macroword
thesaurus is associated with one attribute, i.e. one column of one data table. In
addition, it has a prefix length (or truncation length) parameter.

Each entry of the macroword thesaurus relates to a range of attribute
values, and contains or points to data for identifying all the flat file rows having,

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-22.

in the column corresponding to said attribute, an attribute value which falls
within said range. The range corresponding to the entry of the macroword
thesaurus corresponds to a prefix value having the prefix length assigned to the
thesaurus: any word beginning by such prefix value has its fiat file row-ID list
included in that of the macroword. If the prefix length is noted P, a macroword
C4C,...Cp is the set of all values of the attribute which begin by the P

characters or digits C4C,...Cp. The limit case where the prefix length is the

number of characters or digits of the value field (i.e. truncation length is zero) is
the word thesaurus described previously.

In other words, the macroword thesaurus entry identifies the flat file
row-ID list (or bitmap vector) corresponding to the merger of the flat file row-ID
lists (or to the logical OR between the bitmap vectors) which are identified in
the entries of the word thesaurus corresponding to the individual words
encompassed by the macroword.

Each thesaurus (word or macroword) associated with an attribute AT
can thus be defined with reference to a partition into subsets of the set of words
which can be assigned to attribute AT in the relevant data table record. It has a
respective entry for each subset including at least one word assigned to
attribute AT, this entry being associated with a flat file row-ID list including any
ID of a flat file row having a word of the subset assigned to attribute AT. In the
case of a macroword thesaurus, the partition is such that each subset consists
of words beginning by a common prefix. In the case of a word thesaurus, the
partition is such that each subset consists of only one word.

As an example, figure 10H shows the accident amount macroword
thesaurus for a truncation length of 3 characters. It is not necessary to repeat
the Null entry, which is already in the word thesaurus. Such a macroword
thesaurus provides substantial economy in terms of disc accesses and fiat file
row-ID list mergers. For example, for obtaining information about the accidents
that had an amount between 1,000 and 1,999, one access to the macroword
thesaurus of figure 10H is enough to obtain the relevant list of flat file row-1D’s
{0, 3, 6}, whereas it would require two thesaurus accesses and one merge

operation with the non-truncated accident amount thesaurus of figure 10G. The

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-23-

gain can be quite substantial for large databases and attributes of high
cardinality, i.e. with many possible attribute values.

Macroword thesauruses based on prefix or truncation lengths provide a
great flexibility in the processing of range-based query criteria. It is possible, for
a given attribute, to provide several macroword thesauruses having different
prefix lengths in order to optimize the processing speed of various queries.

Typically, a date attribute may have a yearly macroword thesaurus
(prefix length = 4) and a monthly thesaurus (prefix length = 6) in addition to the
(daily) word thesaurus. Any other kind of attribute (numbers or text) may lend

itself to a convenient macroword thesaurus hierarchy.

VDG COMPRESSION

With the VDG scheme as described so far, the memory space required
by the thesaurus files is not optimized.

The row-ID’s being integers typically coded with 32 bits, if a word
occurs n times in the attribute column of the flat file of figure 8, nx32 bits are

needed to explicitly encode its flat file row-ID lists. If the flat file has N .. rows
(for example millions of rows), N .. bits are needed for each entry in the

bitmap representation, for whatever value of n.

Generally speaking, for an attribute of high cardinality, such as the date
or amount attributes (figures 10E-G), the flat file row-ID lists are scarcely filled,
so that the explicit integer list representation is satisfactory in terms of memory
requirement, while the bitmap representation can be prohibitive for large flat
files. Other attributes have a low cardinality, such as the client gender or policy
type attribute in our example (figures 10C-D), whereby the bitmap
representation is well suited, while the integer list representation is unfavorable.

It is possible to adopt for each thesaurus a representation which is
believed to be the most appropriate in order to reduce the needed memory
space. However, this requires an a priori knowledge of how the attribute values
will be distributed. Many attributes can be ambiguous in this respect, and the
optimization may also be difficult for different macroword sizes relating to a
given attribute.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-24 -

Bitmap compression methods as known in the art (e.g. US Patent No.
5,363,098 or No. 5,907,297) may also be used. A problem is that those
methods are designed essentially for optimizing the storage volume, not the
processing speed. In the VDG context, the advantage of reduced memory
space may be counterbalanced by the disadvantage of longer response times
due to multiple compression and/or decompression operations when
processing a query. To the contrary, it is desired to increase the processing
speed as much as possible. '

In the preferred implementation of the VDG scheme, the compression
of the flat file row-ID lists in the thesauruses is carried out by dividing a range
covering all the row-IDs of the flat file into subsets according to a
predetermined pattern. Then, each flat file row-ID list of a thesaurus entry is
encoded with data for locating in the pattern each subset of the range which
contains at least one row-ID of the list, and data representing the position of
each integer of the row-ID list within any subset thus located.

The row-ID range [0, N__ [is selected to be equal to or larger than the

max
number of rows in the flat file. The “predetermined pattern” conveniently defines
the “subsets” as consecutive intervals [0, D1-1[, [D1, 2xD1-1][, etc., having the
same length D1 within said range.

The coding data can then be produced very simply by Euclidean
division. For any positive numbers x and y, we note |x/ the integer equal to or
immediately below x, [x] the integer equal to or immediately above x, and
x mod y = x —|x/y]. A Euclidean division by D1 is performed for each row-ID N
of the input list. The quotient Q1=[N/D1] indicates the rank of the
corresponding interval in the pattern (Q120), while the remainder
R1=Nmod D1 represents the position of the row-ID within the interval
(0 <R1 < D1). The decoding is also very simple: from the encoding data Q1
and R1 for an item of the coded list, the row-ID is N = Q1xD1 + R1.

Advantageously, the interval length is a whole power of 2, so that the
Euclidean divisions are performed by straightforward bit shift operations. A
typical length is D1 = 27 = 128.

The encoding method can be expressed equivalently by referring to the

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-25-

bitmap representation. Each bitmap vector is divided into bitmap segments (or
other types of bit groups if a more tortuous pattern is referred to), and for each
segment containing at least one “1”, the coding data include the rank (= Q1)
and the contents of the segment. The all zero segments are discarded.

Figures 11A, 11G and 11H are other presentations of the client name
and accident amount word thesauruses of figures 10A and 10G and of the
accident amount macroword thesaurus of figure 10H, with D1 = 3 (a non-typical
value of D1 used here for conciseness). The second columns are copied from
the last columns of figures 10A, 10G and 10H, respectively, with blanks to
highlight the segmentation of the bitmap vectors. The third columns show the
lists of ranks (= Euclidean quotients Q1) resulting from the encoding, and the
fourth columns show the corresponding non-zero bitmap segments (having a 1
at the position of each remainder R1).

It is observed that for each thesaurus entry, the ranks Q1 form an

integer list included in the range [0, N1 5[, with N1 .5, =[N o, /D1].

max

According to a preferred embodiment of the invention, a similar type of
encoding can be applied to those rank lists. The encoding process may be
iterated several times, with the same encoding pattern or different ones. In
particular, the interval lengths could vary from one iteration to the next one.
They are preferably whole powers of 2.

The ranks and bitmap segments obtained in the first iteration with the
interval length D1 are called layer 1 (or L1) ranks and layer 1 segments (figures
11A, 11G and 11H). Those obtained in the second iteration, with an interval
length noted D2, are called layer 2 (or L2) ranks and layer 2 segments (figures
12A, 12G and 12H), and so forth.

In the following, n denotes the number of encoding layers numbered k

with 1 <k<n, layer k having a divisor parameter Dk, and the product

k=1
Ak = H Dk' being the number of flat file row-ID’s encompassed by one bit of a
k'=1

layer k bitmap segment (A1 =1).
In the simplified case illustrated in figures 12A, 12G and 12H, n = 2 and
the second encoding layer uses D2 = 2. The columns labeled “L1 Bitmap” are a

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-26-

bitmap representation of the layer 1 rank lists, with blanks to highlight the
further bitmap segmentation leading to the layer 2 data shown in the last two
columns.

The layer 1 and layer 2 coding data are summarized in figures 13A,
13G and 13H which show a possible way of storing the flat file row-ID list
information. It is noted that storage of the layer 1 rank lists is not strictly
necessary since those list are completely defined by the layer 2 data. However,
it will be appreciated further on that such storage somewhat simplifies the
query processing in certain embodiments of the invention.

The same kind of encoding may be used for any one of the word and
macroword thesauruses. However, it is also possible for some of them to retain
a conventional type of row-ID list storage (explicit integer lists or bitmap vector),
i.e. n=0. In particular, the explicit integer list representation may remain well-
suited for scarcely distributed thesauruses.

Figures 14-16 show another possible way of storing the information
contained in the thesauruses of figures 13A, 13G and 13H. For each encoding
layer, the thesaurus entries are associated with respective chains of records in
a data container (figure 15 for layer 1 and figure 16 for layer 2) including a rank
file and a bitmap segment file. Each record in the layer k rank file (1 <k <n)

has a field for receiving a rank value (between 0 and Nk.,..—1) and a field for

receiving an address of a next record in the rank file. A default value in the next
address field (0 in the example shown) means that the record is the last one of
the chain. The bitmap segment file (right-hand parts of figures 15 and 16) is
addressed in the same manner as the associated rank file. In each record for
layer k, its has a bitmap field of Dk bits for receiving the bitmap segment
associated with the rank stored in the corresponding record of the rank file. It
will be appreciated that the rank values and next record addresses could also
be stored in two separated files having a common addressing rather than in two
fields of the same file.

For each VDG coding layer k, an entry in a thesaurus has a head
address field for containing an address in the layer k rank file where a first rank
record concerning the entry is stored. From there, the relevant rank chain can

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-27 -

be retrieved. For example, Max's layer 1 ranks 0,2 and 3 (figure 13A) are
retrieved by accessing the rank file of figure 15 at the address 29 indicated in
the head address field of the thesaurus entry (figure 14A), and then at the
chained addresses 27 and 15. In parallel, the corresponding layer 1 bitmap
segments 001, 010 and 100 are read. Figures 15 and 16 also show that the
rank and bitmap segment files have an additional chain consisting of free
records (addresses 32/33/17 in figure 15 and 29/8/17/24 in figure 16). The
head of the latter chain is allocated to write new coding data when necessary.

Preferably, the thesaurus entry further has a layer 1 tail address field
for containing the address in the rank file of the last record of the chain
pertaining to the entry, as shown in the third columns of figures 14A, 14G and
14H. This facilitates the updating of the encoding data storage. For instance,
the insertion of a new layer 1 rank for Max, with a corresponding layer 1 bitmap
segment, may proceed as follows: the head of the free record chain is located
(address 32); the address (33) found in its next record address field becomes
the address of the new free record chain head; the records at address 32
receives the new layer 1 rank in the rank field, the end-of-chain flag (0) in the
next address field and the new bitmap segment in the segment field,
respectively; the address obtained in the tail address field of Max’s thesaurus
entry (15) is accessed directly (bypassing the potentially long path along the
chain) to write the address (32) of the new data, which is also written into the
tail address field of Max’s thesaurus entry. The fact that the layer 1 rank is a
new one for Max can be determined from the layer 2 data: if the layer 2
updating performed previously has changed a “0" to a “1” in the layer 2 bitmap
segment, then the layer 1 rank is a new one for the word; otherwise the layer 1
rank is already present in Max’s layer 1 rank list which has to be scanned until
said layer 1 rank is found. If there are more than two encoding layers, it is
possible to provide a layer k tail address field in the thesaurus entries for k > 1
and to proceed in the same manner for new layer k ranks as determined from
the layer k+1 data. However the main gain in doing so lies in layer 1 which has
the longest chains.

In figures 15 and 16, the coding data coming from three heterogeneous

thesauruses (client name thesaurus, accident amount word thesaurus and

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-28-

accident amount macroword thesaurus) are stared in the same data containers.
The other thesauruses are ignored for clarity of the figures. In fact, all the
coding data of one layer may be piled up in the same rank / bitmap segment
files, irrespective of the word or macroword thesaurus where they come from.
Any entry of any thesaurus will then point to a respective record chain in those
two coupled files.

In order to optimize the processing speed, it is preferable to sort the
rank and bitmap segment files for disc storage, so as to group the records
based on the thesaurus entries to which they pertain. The advantage in doing
so is that the reading of the coding data for one thesaurus entry requires fewer
disc accesses, by means of the computer cache memory which enables the
simultaneous RAM loading of a group of physically contiguous records. A batch
execution of that optimization sorting, which requires a simultaneous update of
the thesaurus entries (head and tail address fields), may be used to avoid
untimely resource usage.

In order to facilitate this optimization, it is preferable to use separate
data containers for different thesauruses, rather than common files. This
reduces the amount of data to be sorted each time. In particular, using one
rank / bitmap segment file pair for each thesaurus and each coding layer
seems appropriate.

A further possibility is to provide separate rank and bitmap segment
files for the different thesaurus entries. This requires a higher number of file
declarations in the memory. But it is optimal in terms of processing speed
without requiring the above-mentioned optimization sorting operation. It also
eliminates the need for storing head and tail addresses pointing to record
chains: the thesaurus entries simply designate data containers where the rank
and bitmap segment data are stored.

Figure 17 illustrates how the data of the client name thesaurus may be
arranged in the latter case. The thesaurus has an index register where the
thesaurus words are kept sorted. For each word and each coding layer k, two
files are provided in the system memory, one for containing the rank data
(noted NOK), and one for containing the bitmap segments (noted HPk). The

attribute value (André, Ariane and so on) can be used to name the

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-29-

corresponding files. The storage is less compact than with common data
containers as shown in figures 15-16, but access to the data relating to one
word can be very quick without requiring any sorting.

An arrangement as illustrated in figure 17 is preferred if the operating
system does not suffer too severe limitations regarding the number of files that
can be managed in the memory, and if the overhead due to the storage of
numerous individual files is not a problem. Otherwise, it is possible to group the
rank and bitmap segment files relating to different (macro)words, or even to
different thesauruses, as indicated before.

In addition to enhanced data compression, the multi-layer row-ID list
encoding method provides a substantial acceleration of most query processing.
The processing is first performed in the higher layer, and the results are passed
to the lower layers. The coding scheme preserves a common structure for the
entries of all thesauruses in each layer, imprinted by the original structure
imparted by the virtual flat file. Accordingly, collective logical operations
between integer lists or bitmaps originating from different thesauruses are
possible in the various layers. The results obtained in a layer k+1 provide a sort
of filter for executing the minimum number of operations in layer k, which
enhances the processing efficiency, particularly for multi-attribute query criteria.

This enhancement is hardly visible on our simplified example, which is
too small. Consider the following request: find Max's accidents for an amount of
1,300 (there is no response). The direct layer 1 processing is to read and
decode the relevant layer 1 data to rebuild the bitmap vectors of the words
“Max” and “1,300” in the thesauruses of figures 10A and 10G, and to compute
the logical AND of the two bitmap vectors. Exactly the same kind of processing
in layer 2 requires fewer read operations since there are fewer layer 2 records,
and avoids any layer 1 processing because there is no overlap between the
two layer 1 rank lists for the words “Max” and “1,300" (2" column of figures
13A and 13G). If the same request is made with the amount value 10,000
instead of 1,300, the layer 2 results may reduce the layer 1 processing to
loading the two layer 1 bitmap segments corresponding to rank O (the other
ranks are filtered out) and computing the AND between those segments.

With more representative values of D1 and D2 (e.g. D1 =D2 = 128)

10

156

20

25

30

WO 02/44943 PCT/1IB01/02792

-30-

and a large size database, this filtering principle between two layers provides a
spectacular gain. Large pieces of bitmap vectors disappear from the layer 1 (or
generally layer k > 1) processing owing to the groupwise filtering achieved in
layer 2 (layer k+1).

VDG _CREATION AND MANAGEMENT

Figure 18 shows an exemplary layout of a computer system suitable for
forming the hardware platform of a system in accordance with the invention.
That hardware platform may be of conventional type. It has a bus 100 for
exchanging digital signals between a plurality of units including:

- a central processing unit (CPU) 101;

- a read only memory (ROM) 102 for containing basic operating
instructions of the CPU;

- a random access memory (RAM) 103 which provides a working space
for the CPU 101, dynamically containing program instructions and
variables handled by the CPU;

- a man-machine interface 104 which comprises circuitry for controlling
one or more display devices (or other kind of devices for delivering
information to humans) and circuitry for inputting information to the
computer system from acquisition devices such as a keyboard, mouse,
digital pen, tactile screen, audio interface, etc.;

- a mass storage device for storing data and computer programs to be
loaded into RAM 103. In the typical example shown in figure 18, the
mass storage device comprises a hard drive 105 for storing data on a
set of magnetic discs 106. It will be appreciated that any kind of mass
storage device, magnetic or optical, may be used in implementing the
invention.

For implementing the present invention, the hard drive unit 105 is used
for storing data structures as described in the foregoing and programs
described in more detail herebelow. The program instructions and the useful
data are loaded into the dynamic storage RAM 103 for processing by CPU 101.
The query results are stored in the hard drive and/or delivered to a user

through the man-machine interface 104 or through a network interface (not

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-31-

shown) in the case of a remote access.

The mass storage device 105 is suitable for the storage of large
amounts of data, but with an access time significantly longer than the RAM
103. This is due to the time needed to put the reading head of the hard drive in
front of the desired disc location. As well-known in the art, when a disc access
is performed in hard drive 105, the data that are actually read form a block of
data stored contiguously on the hard disc, which is loaded in a portion of RAM
103, called “cache” memory. When it is known that the CPU is likely to need
different data pieces simultaneously or in a short period of time, it is convenient
to arrange the data storage organization such that those data belong to the
same block so as to be retrievable by a single disc access, which minimizes the
processing time.

The system of figure 18 may be a personal computer (PC) of the
desktop or laptop type. It may also be a workstation or a mainframe computer.

Of course, other hardware platforms may be used for implementing the
invention. In particular, those skilled in the art will appreciate that many
calculations performed on the bitmap segments and vectors lend themselves to
efficient implementation by means of dedicated logical circuits or coprocessors.
Furthermore, parallel computation is very natural in this system.

The process of creating the VDG data structure is now described with
reference to figure 19 from input data tables being in the form shown in figures
1-3, which is the most usual data representation. That creation process is thus
suitable for creating the VDG structure from legacy databases. From the VDG
updating rules described further on, it will be understood that VDG’s may also
be created directly from brand new data.

In certain databases, the data tables have their rows characterized by
compound keys rather than row-ID’s as in figures 1-3. A compound key is the
concatenation of the contents of several key fields of a data table. In a source
data table, the records include foreign keys which designate the compound
keys of records of a target table. If such a legacy databases is handled, the first
stage of the VDG creation procedure is to translate the compound keys into
single keys such as the row-ID’s shown in figures 1-3. This (optional) first stage

is illustrated in box 120 in figure 19.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-32-

The second stage 121 consists in completing the data tables with Null
records where appropriate. This is performed as discussed hereabove with
reference to figures 4-7, by scanning every path in the data table tree from the
leaf table of the path to the root table. A link to a Null record is denoted by the
default value -1. As a result, for each source / target table pair, all the row-1Ds
of the target table are present at least once in the source table link column.

The next stage 122 comprises the creation of the word thesauruses.
The relevant attributes, i.e. those likely to be used in query criteria (it may be all
of them), are determined. For each of the determined attribute, the word format
(type and length) is selected. For each word thesaurus, the attribute values
occurring in the associated column, including the Null value, are read from the
data table stored in the hard drive 105. Repeated values are eliminated, and
the remaining values are sorted based on the attribute values and the order
relationship applicable to the type of attribute. This sorting operation may be
performed in successive data record blocks transferred from the hard drive 105
to the CPU cache memory, with an external sorting after processing each
block.

The VDG creation procedure then proceeds to a stage 123 ‘of deciding
the relevant macroword formats. Some word thesauruses will not give rise to
macroword thesauruses (for example, the client gender thesaurus of figure 10C
needs no macrowords). In contrast, other thesauruses, for example
corresponding to date or amount attributes, will give rise to several macroword
thesauruses having different truncation lengths. If the values found in an
attribute column include characters strings beginning by most letters of the
alphabet, it is convenient to create a macroword thesaurus with a prefix length
of one character. The decision about the suitable macroword hierarchy may be
made by a database manager and input through the man-machine interface
104. It may also be an automatic process, based on the attribute type and/or
the distribution of the words in the thesaurus. In stage 123, the macroword
thesauruses are also created, directly in sorted form, by applying the truncation
to the words of the corresponding word thesauruses and deleting the repeated
macrowords.

Each entry of a macroword thesaurus preferably indicates the first word

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-33-

(or lower level macroWord) of the lower level thesaurus included in the range
covered by the macroword. This indication of the lowest word (or macroword)
whose prefix matches the macroword under consideration reduces the time
needed to access the “children” of that macroword since the first one can be
accessed without scanning the lower level thesaurus. Alternatively, or
cumulatively, the highest word (or lower level macroword) whose prefix
matches the macroword could be indicated in the macroword thesaurus.

In stage 124, the rows of the link table and the entries of the individual
word thesauruses are generated. This is preferably done without storing the
whole flat file (figure 8), for example according to the algorithm illustrated in
figure 20, in the case of an encoding with n = 2 layers.

In the embodiments illustrated in figures 20-32, it is assumed that each
entry of a thesaurus for an attribute value contains an index WI which forms a
row-ID in an auxiliary table of the type shown in figure 14A, 14G or 14H,
pointing to coding data containers of the type shown in figures 15 and 16. For
each encoding layer k, this auxiliary table has :

- a column for containing the address, noted AT_Fk(WI), of a first record
concerning the thesaurus word of index W! in the coding data container
relating to layer k;

- a column for containing the address, noted AT_Lk(WI), of the last record
of the chain for thesaurus word of index WI in the data container; as
indicated before, the latter column may be present only for layer 1.

As mentioned previously, the data container for a given coding layer
may be shared between all or part of the thesauruses, or it may be associated
with each individual thesaurus. A record at address AD (= 1) in the layer k
container (here assumed to be common to all thesauruses) comprises a first
field NOk(AD) for containing the rank data as an integer ranging from 0 to
Dk—1, a second field for containing the address NXk(AD) of the next record of
the chain (this address is O if there is no further address), and a third field for
containing the corresponding bitmap segment HPk(AD). The layer k container
has a free record chain whose first record address is noted Hk.

It is noted that the auxiliary table could also be shared by several
thesauruses containing distinct word indexes to access such common auxiliary

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-34 -

table.

Before stage 124, all the records of the data container are chained
together and free, and the bitmap segments HPKk(AD) are initialized with all
zero segments. The columns AT_Fk and AT_Lk of all the auxiliary tables are
also initialized with the value 0.

The quotient and the remainder of the Euclidean division of a flat file
row-ID by D1 are respectively noted Q1 and R1. For each further layer k > 1,
Qk and Rk respectively denote the quotient and remainder of the Euclidean
division of Q(k—-1) by Dk. At the initialization step 130 of figure 20, the integers
Q1, R1, Q2 and R2 are set to 0.

The rows of the root table(s), which may be read one by one or block
by block from the hard drive 105, are selected one by one in step 131. The
records of the other data tables which are linked with the selected root table
row are read in step 132. This provides a data graph of the type illustrated in
compact form in figures 5-7.

The links of those data graphs, i.e. the row-ID’s in the data tables, are
written into the relevant columns of the link table (figure 9) at row-ID
Q1xD1 + R1 (step 133). If there is no link table, step 133 is skipped.

For the current data graph, the different attributes AT are successively
selected (step 134). The value of the selected attribute AT is located by means
of a dichotomic search in the corresponding thesaurus, and its word index WI is
read in step 135. Step 136, which will be detailed hereafter with reference to
figures 21-24, consists in updating the auxiliary table and data containers with
respect to the AT thesaurus entry for the word index WI. This updating
corresponds to the insertion of the current flat file row-ID Q1 x D1 + R1 into the
integer list relating to the thesaurus word index WI.

When all the attributes have been thus handled (test 137), the layer 1
remainder index R1 is incremented by one unit in step 138. If the incremented
R1 is equal to D1 (test 139), then the index R1 is reset to 0, and the layer 1
quotient index Q1 and layer 2 remainder index R2 are each incremented by
one unit in step 140. If the incremented R2 is equal to D2 (test 141), then the
index R2 is reset to 0, and the layer 2 quotient Q2 is incremented by one unit in
step 142. After step 142, or when R1 < D1 in step 139 or R2 < D2 in step 141,

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-35-

a test 143 is performed to determine whether all the rows or all the root tables
have been considered. If not, the procedure comes back to step 131 to select a
new root table row.

Once all the root table rows have been considered, stage 124 of figure
19 is over, and the parameters Q1, R1, Q2 and R2 are memorized for
subsequent insertion of possible new data records. Eventually, the number of
rows in the virtual flat file is given by Q1 x D1 + R1.

Clearly, the procedure of figure 20 is readily extended to n>2
encoding layers, by initializing all Qk and Rk parameters to 0 in step 130 and
by developing steps 138-142 (which are equivalent to incrementing the data
graph pointer Q1 x D1 + R1) in the higher layers.

Figure 21 shows how the program can manage the record chains in the
data container and the thesaurus auxiliary table in layer k > 1 for a word index
W1 in the thesaurus relating to an attribute AT. The first step 150 is to load the
value AT_Fk(WI) stored in the auxiliary table into the address variable AD. If
AD =0 (test 151), then a record chain has to be initialized for thesaurus index
WI, so that the head address Hk of the free record chain in the data container is
assigned to AT_Fk(WI) in step 152.

If there was already a record chain for the thesaurus index WI (AD > 0
at test 151), the rank NOk(AD) is loaded into the rank variable q in step 153. If
the following test 154 shows that q is different from the quotient variable Qk,
the address variable AD’ receives the address of the next record of the chain,
i.e. NXK(AD), in step 155. If AD' is still different from O (test 156), the process
comes back to step 153 for examining the next rank variable of the record
chain, after substituting AD’ for AD in step 157. When AD =0 in test 156, a
data container record has to be appended to the chain for thesaurus index WI,
so that the head address Hk of the free record chain, in written into the next
record field NXk(AD) in step 158.

After step 152 or 158, the head address Hk of the free record chain is
loaded into the address variable AD in step 159. Step 160 is then executed to
update the auxiliary table and data container. This update operation 160

consists in:

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-36 -

- replacing the head address Hk by the next address NXk(AD) of the free
chain;

- writing the current value of the address variable AD into AT _Lk(WI); and

- writing Qk and 0O, respectively, in the fields NOk(AD) and NXk(AD) of the
data container.

After step 160, or when q = Qk in the above-mentioned test 154, the
bitmap segment HPk(AD) is updated in step 161 by writing the digit “1” at bit
position Rk of that segment.

In figure 20, it has been considered that both the layer 1 and layer 2
coding data are updated in step 136. This means that the procedure of figure
20 is executed once for k=1 and once for k = 2. Another possibility is to
execute it only for k = 1, and to generate the layer 2 coding data subsequently,
by processing the layer 1 rank data produced in stage 124.

It is worth noting that when initializing the VDG's from a legacy
database as in figure 20, the rank data Qk appear in an increasing order (we
always have q < Qk in test 154 of figure 21). Accordingly, it is possible to move
directly to the record chain tail, i.e. to take AD=AT_Lk(WI) instead of
AD = AT_Fk(WI) in step 150. In this case, step 158 is executed directly when
Qk > q in test 154, thereby avoiding the scanning of the record chain. Such
embodiment is illustrated in figure 22.

In the latter embodiment, once the VDG initialization is over, the layer k
tail address fields AT_Lk with k> 1 may be discarded. However, if the VDG
management is such that any new VDG likely to be inserted has a flat file row-
ID equal to or greater than all the flat file row-1D’s of the existing VDG’s (i.e. the
flat file row of any deleted VDG will not be used any more), then it is
advantageous to keep all the tail address fields AT_Lk in order to perform any
subsequent update in accordance with the embodiment of figure 22.

In the form depicted in figure 21, the update procedure is applicable
independently of any hypothesis on the rank values Qk.

Figures 23 and 24 show an alternative method of updating the auxiliary
table and data containers with respect to the AT thesaurus entry for the word
index WI in step 136, which takes advantage of the tail address field AT_L1 of
the auxiliary table in layer 1 (with n = 2 coding layers). Figure 23 illustrates the

10

16

20

25

30

WO 02/44943 PCT/1IB01/02792

-37-

layer 2 processing which is performed before the layer 1 processing of figure
24. Most of the steps of figures 23-24 are very similar to steps of figure 21, so
that corresponding reference numerals have been used.

The layer 2 processing of figure 23 is essentially the same as that of
figure 21 (k = 2), with the following differences:

- itis not necessary to deal with tail address fields AT_L2(WI) in step 160;

- step 161 further includes setting to “1” the binary variable LL1, which
means that the current layer 1 rank data Q1 does not belong to the layer
1 record chain relating to the word index WI;

- when g = Q2 in test 154, another test 164 is made to determine whether
the bit position R2 of the layer 2 segment HP2(AD) contains the value
“17; step 161 follows only if that test 164 is negative;

- if test 164 is positive, the current layer 1 rank data Q1 already belongs to
the layer 1 record chain relating to the word index WI, so that the
variable LL1 is set to “0” in step 165.

The layer 1 processing of figure 24 begins at step 170 by testing
whether LL1 is 0 or 1. If LL1 =0, step 150 is executed to load the value
AT_F1(WI) stored in the layer 1 auxiliary table into the address variable AD,
and a loop 153-155 is executed to find the data container address AD where
the data relating to the rank Q1 are stored. Steps 153 and 154 are the same as
in figure 21, and in step 155 the\ next address NX1(AD) is directly loaded into
the address variable AD (AD is never 0 because LL1=0). The program
proceeds to step 161 when q = Q1 in test 154.

If LL1 =1 in test 170, step 171 is executed to load the value AT_L1(WI)
stored in the layer 1 auxiliary table into the address variable AD. If AD = 0 (test
172), the sequence of steps 152, 159-161 is executed as in figure 21 (however,
it is not necessary to deal with next address fields NX1(AD) in step 160). If
AD = 1intest 172, the sequence of steps 158-161 is executed as in figure 21.

The procedure of figures 23-24 avoids the scanning of the layer 1
record chains when the rank data Q1 are not in such chains, without any
hypothesis on the rank values.

After all the coding data for the individual word thesauruses have been

generated, the next stage 125 of the procedure shown in figure 19 is to

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-38-

rearrange the stored coding data. As indicated previously, this is done to
organize the record chains in the coding data container of each layer so that
records pertaining to the same thesaurus word have contiguous addresses in
order to be accessible in one or few disc accesses by means of the CPU cache
memory. A simple way to do this is to reserve memory space for a new
auxiliary table and new coding data containers. The thesaurus words are
considered one by one, and for each of them, the coding data pointed to in the
old auxiliary table are read sequentially and copied into the new data container
at an address AD incremented after each write operation. When proceeding to
the next thesaurus word index WI+1, new pointers AT_Lk(WI) = AD-1 and
AT_Fk(WI+1) = AD are determined and stored into the new auxiliary table.
After all the coding data records have been thus read and rewritten into the
new data container, the old data container and auxiliary table are discarded.

Such rearrangement can be performed separately for each coding
layer k.

If there are several data containers for different thesauruses in a coding
layer, they may also be reordered separately.

As indicated before, the rearrangement step 125 is dispensed with
when the thesauruses are organized in the manner illustrated by figure 17,
since the coding data files naturally fulfil the grouping condition with respect to
the thesaurus words.

In the following stage 126 of the procedure shown in figure 19, the
macroword thesaurus entries are generated. For each macroword and each
layer, this is done simply by merging the rank coding data Q1, Q2 of the words
(or lower level macrowords) covered by the macroword, and by obtaining the
corresponding bitmap segments by a logical OR of those relating to the words
(or lower level macrowords). If the coding data have been rearranged for the
word thesauruses as indicated in stage 125, the same grouping of the coding
data will automatically be achieved for the macroword thesauruses.

In stage 127, the now useless link columns of the original data tables
(figures 1-3) can be deleted. The Null records which have been added in stage

121 can also be deleted, their occurrence being indicated by the default value

-1 in the link table (figure 9).

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-39 -

Finally, the elements to be stored in the hard drive 105 in the above-

described embodiment are:

the data tables as illustrated in figures 1-3, without the link columns.
. Parameters defining the data table tree structure of figure 4 are stored in
association with the tables:

the link table as illustrated in figure 9;

the sorted thesauruses comprising an index register and an auxiliary
table for each desired attribute. Figures 25-26 show the index registers
for the attributes AT =CN (‘client name”) and AT = AA (“accident
amount”) in our simplified example. Figures 28-29 show the
corresponding auxiliary tables;

the macroword thesauruses organized like the individual word
thesauruses, with a specified truncation or prefix length. The index
register of each macroword thesaurus further has an additional column
containing, for each macroword, the row-ID, in the index register of the
thesaurus of. lower level for the same attribute, of the first word (or
macroword) covered by the macroword. Figures 27 and 30 show the
index register and auxiliary table for the attribute AT =CN and the
truncation length 3;

the coding data container(s) for each coding layer, each having a
variable head address for its free record chain. Figures 31 and 32 show
layer 1 and layer 2 data containers shared by the thesauruses of figures
24-29 (free record chain head addresses 31 and 27, respectively);
optionally, one or more thesauruses stored in a “low density” format
suitable for attributes of high cardinality. In the low density format, n =0
and the flat file row-ID's are stored as explicit (short) integer lists, for
example by means of record chains. If the coding data for layers 1
through n are needed, they are easily calculated by performing n
successive Euclidean divisions from each stored integer of the list. For a
given high cardinality attribute, it may be appropriate to provide an
individual word thesaurus in the low density format and one or more
macroword thesauruses in the “normal” encoded format.

The data containers of figures 31 and 32 are derived from those shown

WO 02/44943 PCT/1IB01/02792

10

15

20

25

30

-40 -

in figures 15 and 16 pursuant to the rearrangement stage 125, in which the
auxiliary tables of figures 28-30 are also obtained from those of figures 14A,
14G and 14H, respectively. For treating a query concerning the client called
André, the processor would have to read records #20, #11 and #2 of figure 15
(limiting ourselves to layer 1) if the coding data container were not rearranged,
whereas it reads the physically contiguous records #1, #2 and #3 of the
rearranged container of figure 31. The latter reading can typically be done by
loading a single block into the cache memory. More disc accesses, and hence
a longer processing time, are required for reading scattered records.

The columns separated by broken lines in figures 9 and 28-32 are
preferably stored separately. For example, the storage address of one value in
such a column may be defined as a start address assigned to the column plus
an offset equal to its row-ID multiplied by a field length.

Accordingly, the links of a link table row (data graph) are stored at
corresponding addresses given by the flat file row-ID. This separate storage of
the link column accelerates the data retrieval when some of the data tables
need not be accessed to produce the output data requested in the query.

Likewise, some elementary operations performed in the query
processing require only coding data for one layer, so that it is advantageous to
separate the information concerning each layer in the auxiliary tables to
accelerate the processing. Other operations imply the rank data and the bitmap
segment data independently, so that it is advantageous to separate those data
in the data containers as shown in figures 31 and 32.

In an alternative way of storing a thesaurus, the word index register
and the auxiliary table are merged in a single table with a Huffman type of
indexing: each row of that table contains a value of attribute AT, the AT_Fk and
AT_Lk data, a next row pointer (the next row contains the next value of the

attribute in the sorted thesaurus) and optionally a preceding row pointer.

In an embodiment, the maintenance of VDG’s created as described
hereabove may involve the following operations:

1/ Record insertion

A new virtual data graph, i.e. a new row in the flat file, is generally

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-41 -

generated in response to the insertion of a new record in a data table.

However, if the new record has a link to an existing record of another
target table such that no other link points to said existing record, then there is
no need for a new data graph, but for the update of an existing data graph. For
example, if client Oscar subscribes a first policy, e.g. for his car, a new record
is added to the policy data table without creating any new VDG: the data graph
of figure 7 is simply modified to place the new data in the node corresponding
to the policy table. If Oscar then subscribes a second policy, e.g. for his house,
a new VDG will be necessary.

To generate the new VDG, all records from the other data tables,
related to the new inserted record, including Null records, are identified by their
respective row-ID’s which, if necessary, can be retrieved by queries based on
attribute values of those related records.

After appending the new record to the data table, the first thing to do is
to initialize any new thesaurus entry which may be necessary if new attribute
values occur (all AT_Fk and AT_Lk fields are initialized to 0). The new virtual
flat file row and its corresponding thesaurus entries may be generated as in
steps 133-142 of figure 20. Any higher level macroword thesaurus is updated

accordingly.

2/ Record attribute modification

Changing or adding an attribute value in an already existing data table
record has no effect on the link table which does not reflect the table contents
but the link structure. Adding is a particular case of changing when the
preceding attribute value was Null. Likewise, deleting an attribute value from a
record is a particular case of changing when the new attribute value is Null.

If the new attribute value requires a new thesaurus entry, such entry is
initialized (AT_Fk=AT_Lk=0). The list L of the link table row-ID’s
corresponding to flat file records comprising the data record to be amended is
obtained by placing a suitable query. The latter list L is merged (bitmap OR
operation) with the flat file row-ID list L' of the new attribute value, and the
coding data of the merged list L v L' are assigned to the new attribute value.

The complement L of list L is also determined (bitmap NOT operation) to be

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-42 -

intersected (ANDed) with the flat file row-ID list L” of the preceding attribute
value. If the resulting intersection list L A L" is not empty, its coding data are
assigned to the preceding attribute value. This may transfer to the free record
chain of one or more data containers records that previously belonged to the
record chain associated with the preceding attribute value. If the intersection list
LAL” is empty, the preceding attribute value may be deleted from its word
thesaurus. The same intersection and update sequence is performed for any
higher level macroword thesaurus.

3/ Record link modification

Changing a link in a source data table leads to corresponding changes
in every occurrence of the link in the link table. The list L of the concerned link
table rows can be determined by processing a suitable query.

If the target table record pointed to by the former link has no more link
pointing thereto (its row-ID does not occur any more in the corresponding
column of the link table after the modification), a new VDG is generated.
Downstream of the modified link, this new VDG has the same content as the
one(s) which is (are) being aménded. Upstream of the modified link, it consists
of Null records. The new virtual flat file row and its corresponding thesaurus
entries may be generated as in steps 133-142 of figure 20. Any higher level
macroword thesaurus is updated accordingly.

After that, a procedure similar to the one described in the preceding
section can be performed for each attribute of the target table: /a/ the list L is
merged with the flat file row-ID list L' of the new attribute value (the value
occurring in the target table record pointed to by the new link); /b/ the coding
data of the merged list L v L' are assigned to the new attribute value; /c/ the
complement L of list L is intersected with the flat file row-ID list L” of the
preceding attribute value (the value occurring in the target table record pointed
to by the former link); /d/ the coding data of the resulting intersection list L A L”
are assigned to the preceding attribute value; and /e/ the same intersection and
update sequence is performed for any higher level macroword thesaurus.

If the first target table (for the modified link) has a link column to a
second target table, the link value stored in the column of the link table

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-43 -

associated with the second target table and in each row of list L is also
changed, and the above procedure /a/-/e/ is performed for each attribute of the
second target table. This is repeated for any data table located downstream of
the first target table in the data table tree (figure 4).

For example, if a correction is made in the accident table of figure 3 to
indicate that accident #6 was under policy #2 instead of policy #0, i.e.
concerned Max’s house instead of Ariane's car, the link from the accident table
in the data graph of figure 5 has to be changed to point to policy record #2, and
the link from the policy table has to be changed to point to client record #4. A
new row is inserted in the virtual flat file, to contain the useful information about
Ariane’s car policy under which no accident took place. As a result, row #6 of
the link table of figure 9 is changed to include the values 4, 2 and 8,
respectively, in the client, policy and accident link columns, and a new row #12
is added including the values 2, 4 and -1, respectively, with corresponding
changes in the thesauruses.

4/ Record cancellation

Canceling a record from a root table involves deleting the row(s) of the
flat file containing that record. The corresponding flat file row-ID’s are removed
from the lists encoded in the thesauruses, i.e. zeroes are written at the
associated locations of the bitmap vectors. These flat file row-ID’s may be
made available for further VDG insertion, for example pursuant to section 1/ or
3/ hereabove. They may also remain as blank rows if the virtual flat file size is
not a major concern. Likewise, canceling a record from a target table which has
no link pointing thereto in the corresponding source table involves deleting the
row(s) of the flat file containing that record (these row were representing data
graphs with Null records upstream of the cancelled record).

If the cancelled record belongs to a target table for a compulsory link
(e.g. the client or policy table in our example), any flat file row containing that
record is also deleted. If the cancelled record belongs to a target table for an
optional link (e.g. the third party or broker table in the example of figure 4), the
cancellation comprises a link modification whereby any link pointing to that

record is replaced by a link to a Null record (link value = —1). Such modification

10

156

20

25

30

WO 02/44943 PCT/1IB01/02792

-44 -

may be performed as described in the above section 3/ (but without generating
any new VDG).

For any link of the cancelled record which pointed to a non-Nulf target
table record whose row-ID does not occur any more in the corresponding
column of the link table, it is necessary to generate a new VDG containing the
same data as the cancelled record in and downstream of said non-Null target
table record and Null values in and upstream of the cancelled record. The new
virtual fiat file row and its corresponding thesaurus entries may be generated as
in steps 133-142 of figure 20. Any higher level macroword thesaurus is updated
accordingly.

5/ Thesaurus update and sorting

With the above-described structure of the thesaurus entries, the
cancellation of a word in a thesaurus, which occurs when its flat file row-ID list
becomes empty, could be done by leaving the thesaurus entry with zeroes in its
HPk data. However, this is not optimal regarding memory usage.

A more efficient method is to update the record chains in the data
container, so that the auxiliary table has AT_Fk(WI) = AT_Lk(WI) =0 for the
entry WI of the cancelled word. In such a case, the word index WI| can be
released, a default value (e.g. —1) being written into the word index column for
the cancelled word in the thesaurus index register.

The creation of a new word thesaurus entry can be done as illustrated
in figures 21-24 (AD = 0 in test 151 or 172). The word index WI is obtained by
incrementing a counter representing the number of thesaurus entries, or by
selecting an available word index (e.g. which has been released previously
when canceling another word). In this process, a (useful) row is added to the
auxiliary table of the corresponding attribute, with row-ID = WI.

Similar procedures can be applied for updating the macroword
thesauruses. A macroword index WI may be released when canceling a
macroword (all its constituent words have been cancelled). In the case of a
word creation, it is first checked whether the macroword already exists, in
which case its macroword index WI is recovered; otherwise, a macroword is

also created.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-45-

It is thus appreciated that, once words have been removed and/or
added, the auxiliary tables are no more sorted in the ascending order of the
thesaurus words. The word index register has to be manipulated in order to
maintain the thesaurus sorting.

However, it is not necessary to perform such manipulation of the word
index register immediately. This is very advantageous because the updated
database is made available for any new query without requiring a sorting
operation in the whole thesaurus, which may take some time.

The newly created words or macroword of a thesaurus can have their
word indexes stored in a separate, secondary index register, whereas they
share the same auxiliary table and coding data containers as the former words
of the thesaurus. Only this secondary index register can be sorted when a
thesaurus entry is added, which is a relatively light job since most of the
thesaurus words belong to the primary register. When a word is deleted, its row
in the primary or secondary index register remains with the default value in the
word index column. Accordingly, to access the coding data relating to a given
word range, the range boundaries are searched, by dichotomy, in both the
primary and secondary index registers to determine the relevant word indexes
which are then used in the usual way to address the common auxiliary table
and data containers.

From time to time, when the CPU 101 is available, a batch task is run
to merge the primary and secondary index registers while deleting their rows
having the default value in the word index column. This is a straightforward
external sorting operation since both registers are already sorted. The resulting
merged register is saved to replace the primary register, and the secondary
register is cancelled.

If the secondary word index register becomes too big (i.e. its sorting
requires a too long time every time an entry is added) before such merge
operation is carried out, it is possible to create a further, tertiary index register

to receive the new thesaurus entries, and so forth.

6/ Data container optimization

This is useful if the thesaurus organization is of the type shown in

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-46 -

figures 25-32 rather than of the type shown in figure 17.

As records are inserted and deleted in a coding data container, the
above-mentioned condition that the record chains should preferably be
arranged so that records pertaining to the same thesaurus word have
contiguous addresses is no more fulfilled. This does not prevent the database
system from operating satisfactorily. However, in order to optimize the query
processing time, it is preferable to rearrange the records of the coding data
container and the corresponding columns of the thesaurus auxiliary table(s) as
in the above-described step 125. Like the word index register sorting, such

rearrangement can be carried out when CPU time is available.

ALTERNATIVE THESAURUS ARRANGEMENTS

If the thesauruses are arranged according to the preferred organization
ilustrated by figure 17, with distinct files for each word or macroword, the flow
charts of figures 19-24 are somewhat simplified. First, stage 125 of figure 19 is
not performed (it is an advantage of the file organization to dispense with such
sorting when the VDG’s are created and maintained). In figure 20, the
dichotomy search 135 and the thesaurus update of step 136 may be replaced
by the procedure illustrated in figure 33.

In this procedure, imax(AT, W, k) designates the current number of
layer k records in the coding data file relating to thesaurus AT and word W.
These parameters are set to zero for all values of AT, W and k at the
initialization step 130.

The value in the current data graph of the attribute AT selected in step
134 of figure 20 is allocated to the variable W in step 175 of figure 33, and the
coding layer index kK is initialized to 1. The integer i, which points to the records
of the coding data file is first set to zero in step 176. If i = imax(AT, W, k) in the
following test 177, a record AT_W_NOKk(i) having the value Qk is appended to
the layer k rank file pertaining to word W and a record AT_W_HPk(i) having the
all-zero value is appended to the corresponding bitmap segment file. This is
done in step 178, where imax(AT, W, k) is also incremented by one unit. If
i <imax(AT, W, k) in test 177, the rank AT_W_NOKk(i) is loaded into the rank
variable q in step 179. If the following test 180 shows that q is different from the

WO 02/44943 PCT/1IB01/02792

10

15

20

25

30

-47 -

quotient variable Qk, the integer i is incremented by one unit in step 181 and
the process comes back to step 177 for examining the next rank variable of the
file, if any. Accordingly, the scanning of the coding data record chain for each
layer k (corresponding to loop 153-156 in figure 21) is performed within the
AT_W_NOK file which is smaller than the data container common to all words
of the thesaurus. Therefore, the minimum number of disc accesses is ensured.

After step 178, or when q = Qk in test 180, a “1” is written into the bit of
rank Rk of the bitmap segment AT_W_HPK(i) in the relevant coding data file
(step 182). The coding layer index k is compared with n (or to a lower value if
the higher layer coding data are calculated afterwards) in test 183. If k < n, the
index k is incremented by one unit in step 184 before coming back to step 176.
When k = n, the thesaurus update is over and the program proceeds to step
137 of figure 20.

In the procedure of figure 33, the rank data AT_W_NOKk(i), each
consisting of an integer value, can be read in large blocks from the hard drive

105 to the cache memory, so that the procedure is very quick.

Another option which can be used in the thesauruses is to include in
each entry relating to a word an indication of the representation format of the
flat file row-ID list. Indeed, the format (e.g. low or normal density) can be
chosen word by word depending on the number of data graphs including the
word under consideration. This is illustrated in broken lines in the right part of
figures 25-27 in the case where there are only two formats, i.e. low density (0)
and normal density with n =2 coding layers (1). In the example, all the
thesaurus entries are in the normal density format. There could be more than
two formats; for example, the format data in the thesaurus could specify the
number of coding layers for each word. When the flat file row-ID Iist are
represented by data stored in data containers common to one or more
thesauruses, distinct containers are provided for the different coding formats.

When the above option is used, the format for each thesaurus entry
can be modified as the database lives, in order to optimize the storage. This is
a low priority task since the query engine can work with any format. For

example, when thesaurus entries are being updated, it is possible to mark any

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-48 -

entry for which a format change appears to be desirable, based on predefined
conditions fulfilled by the density of the word in the amended database. For
example, a word or macroword could be changed from low to normal density
format when a certain number of data graphs are identified in its thesaurus
entry, and vice versa. Afterwards, when processor time is available, the marked

entries can be translated into the new format to optimize the system.

It has been mentioned above that, when n > 1, storing the rank data in
every coding layer is somewhat redundant, since the flat file row-ID lists are
completely defined by the bitmap segment data in all layers and the rank data
in the last layer.

Figures 34A-B illustrate an alternative way of arranging the coding data
files, which avoids storing the layer k ranks with k < n. In this arrangement, it is
sufficient that the auxiliary tables (figures 28-30) point to a first record in the
layer n data container: the addresses AT_F1 and AT_L1 are not necessary.
The data container of the highest layer n = 2, shown in figure 34A, is the same
as that of figure 32, with an additional field in each record to contain the head
address F(n—1)(AD) = F1(AD) of a record chain in the data container of the
lower layer n—1 = 1. The latter data container (figure 34B) has one record chain
for each layer n rank pertaining to each thesaurus entry covered by the data
container. Each record of a layer k < n data container comprises a first field for
containing the address NXk(AD) of the next record of the chain (this address is
0 if there is no further address), and a second field for containinAg the
corresponding bitmap segment HPk(AD). The layer k < n chain is ordered in
accordance with the non-zero bits of the bitmap segment HP(k+1) stored in the
record of the upper layer data container which contains the head address of the
chain. If 1 <k <n (not shown), the record further has a third field for containing
the head address of a record chain in the data container of the lower layer k—1
(and so forth until k = 1).

The procedure for retrieving a flat file row-ID list from a thesaurus
pointing to data containers of figures 34A-B may be as follows. The word index
Wl is used to obtain the address of the first relevant record in the layer 2 data
container. For this address (and then for each address of the chain defined by

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-49-

the NX2 field), the layer 2 rank NO2 is read and the bitmap segment HP2 is
scanned. Every time a “1” is found in this scanning, at a bit position R2, a layer
1 rank NO1 = NO2 x D2 + R2 is determined and a corresponding record of the
lower layer data container is read (the first time at the head address given by
the column F1 in the layer 2 data container, and then at the addresses pointed
to by the NX1 addresses in the layer 1 data container). By this method the layer
1 bitmap segments HP1 and their positions NO1 are retrieved to assemble the
bitmap vector representing the desired flat file row-ID list.

In the general case, the data containers are accessed from layer n.
Each segment HPk read after determining a rank NOk with k > 1 is scanned to
locate its non-zero bits. Each non-zero bit of HPk located in a position Rk
provides a lower layer rank NO(k—1) = NOk x Dk + Rk, and a corresponding
bitmap segment HP(k-1) is read in the chain designated in the lower layer
container. The process is repeated recursively until k=1: the numbers
NO1 x D1 + R1 are the flat file row-ID's for the thesaurus entry.

The coding data files illustrated in figures 34A-B can be created by a
method similar to that described with reference to figures 19-21. All the HPk
and F(k—1) fields are initialized with zeroes before stage 124. The procedure of
figure 21 is executed only for k = n, with step 161 replaced by the loop depicted
in figure 35 in which the coding layer index k decreases from n to 1.

The first step 450 of this loop consists in writing the digit “1” at bit
position Rk of the bitmap segment HPk(AD). If the coding layer k is greater
than 1 (test 451), it is decremented by one unit in step 452, and the first
address M = Fk(AD) is read in the layer (k+1) coding data container (step 453).

If M is zero (test 454), the head address Hk of the free record chain in
the layer k coding data container is written into the first address field Fk(AD) of
the layer (k+1) coding data container (step 455), to create a new chain. The
value of AD is then replaced by Hk (step 456), and the record chains are
updated in the layer k coding data container (steps 457-458): Hk is replaced by
NXk(AD) before NXk(AD) is set to 0. After step 458, the process loops back to
step 450.

If M > 0 in test 454, the index R is set to 0 in step 460 to initialize the

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-50-

scanning of the bitmap segment HP = HP(k+1)(AD). If R is smaller than the
remainder R(k+1) corresponding to the current data graph identifier, the
corresponding bit HP(R) of the bitmap segment HP is evaluated (test 462). If
HP(R) = 0, the program proceeds to step 463 for incrementing R by one unit
before coming back to test 461. When HP(R) = 1 in test 462, it is necessary to
move forward in the layer k record chain: the integer M’ receives the value of M
in step 464, and M is replaced by NXk(M’) in step 465. If the new value of M is
not zero (test 466), the program proceeds to the above-mentioned step 463.
Otherwise, the end of the layer k record chain is reached, so that the head
address Hk of the layer k free record chain is assigned to NXk (M} in step 467
before proceeding to the above-mentioned step 456.

If R is equal to the remainder R(k+1) in test 461, the corresponding bit
HP(R) of the bitmap segment HP is also evaluated (test 470). If HP(R) = 1, the
rank Qk already exists in the layer k+1 input list relating to the current
thesaurus entry, so that it is not necessary to create a new record in the layer k
coding data container: the value of AD is simply replaced by Min step 471, and
the process loops back to step 450.

If HP(R) =0 in test 470, the value of AD is replaced by the head
address Hk of the free record chain (step 472), and the Huffman-type record
chains are updated in the layer k coding data container (steps 473-474). Hk is
replaced by NXk(AD) before NXk(AD) is set to M. After step 474, the process
loops back to step 450.

The loop of figure 35 is over when k = 1 in test 451.

Figures 34C and 34D show tables whose contents are equivalent to
those of figures 34A and 34B, and in which the bitmap segments HPk for k > 1
are not explicitly stored. The layer n coding data container (figure 34C) is
identical to that described with reference to figure 34A, but without the HPn
column. Each layer k coding data container for k < n (figure 34D) is identical to
that described with reference to figure 34B, with an additional column R(k+1)
containing layer k+1 remainders. The presence of a remainder value R(k+1) in
a record to the layer k coding data container means that there is a “1” at
position R(k+1) in the non-stored higher layer bitmap segment HP(k+1).

It will be appreciated that the scheme of figure 17, i.e. distinct coding

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-51-

data files for each thesaurus entry to minimize the disc accesses, is also
applicable when the stored coding data do not include the ranks for layers
1, ..., n=1. The layer n ranks and bitmap segments may be stored as in figure
17. For the lower layers, there are several options. There can be one data
container for each thesaurus word and each coding layer k < n, with record
chains pointed to in the records relating the upper layer k+1. The layer k record
chains can also be isolated in distinct files whose name include the attribute
name AT, the word or macroword value W, the coding layer index k and a layer
k+1 rank NO(k+1). Each record of such file AT_W_k_NO(k+1) then contains a
layer k+1 remainder R(k+1) and a layer k bitmap segment HPk which is located
at rank NOk = NO(k+1) x D(k+1) + R(k+1).

QUERY CRITERIA HANDLING

As in any RDBMS, queries can be expressed in accordance with the
Structured Query Language (SQL), which has been adopted as a standard by
the International Standard Organization (ISO) and the American National
Standard Institute (ANSI).

A general flow chart of the query processing procedure is shown in
figure 36.

The query criteria, contained in the SQL “WHERE" clause, are
converted into a request tree in stage 190 of figure 36. The query criteria are
analyzed and structured according to a tree in which the leaves correspond to
ranges for respective attributes values as defined in the SQL query and the
nodes correspond to logical operations to be performed from those leaves. The
leaves are also referred to as “BETWEEN clauses” of the SQL query. An
individual attribute value defined in the SQL query is a BETWEEN clause
covering a single word.

Example 3.
An example of such a tree is shown in figure 37 in the illustrative case

of a query which consists in finding all data graphs relating to accidents
undergone by client Andre or client Max and having a damage amount AA such

that 500 < AA <5000. That tree has three leaves, indicated by broken lines,

10

16

20

25

30

WO 02/44943 PCT/1IB01/02792

-52.

corresponding to the BETWEEN clauses defined in the query: [Andre, André]
and [Max, Max] for the client name attribute and [500, 5000] for the accident
amount attribute. The tree also has two nodes, one for the OR operation
between the two CN criteria, and one at the root for the AND operation with the
AA criterion.

The tree decomposition is not unique. The one having the minimum
number of nodes is preferably selected.

The next stage 191 is a tree expansion made by analyzing and splitting
the BETWEEN clauses relating to attributes having macroword thesauruses.
This is done from the tree obtained in step 190, with reference to the sorted
thesaurus word and macroword index files associated with the attributes used
in the query. The lower and upper bounds of each range defined in a
BETWEEN clause are compared with the words of the thesaurus associated
with the attribute, to find a decomposition of the range into sub-ranges,
whereby each sub-range is also defined as a BETWEEN clause in a word or
macroword thesaurus.

In a preferred embodiment, the decomposition is optimized to make
maximum use of the macrowords. This optimization consists in retaining the
lowest possible number of words or macrowords to form the sub-ranges to be
mapped onto the range defined in the BETWEEN clause. The system selects
the highest level macrowords that are included in the interval, and repeats the
same process in the remaining parts of the range until the atomic word level is
attained or the words of the range are exhausted.

In the expanded tree produced in stage 191, the BETWEEN leaves
which have been split are replaced by sub-trees made of OR nodes and leaves
associated with the sub-ranges. Those leaves are also in the form of
BETWEEN clauses, covering thesaurus entries relevant to the query. The
expanded tree defines a combination of the relevant thesaurus entries for the
subsequent processing.

All the leaves of the expanded tree are associated with respective word
or macroword (sub-)ranges. Such range may be defined by its bounds in terms

of word or macroword row-1D’s in the thesaurus index file.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-53-

Figure 38 shows the expanded tree corresponding to the tree of
Example 3 (figure 37). It is obtained by means of the thesaurus index files of
figures 25-27. The one-word ranges “CN = André” and “CN = Max” are not split,
but simply encoded by the row-ID’'s CN_x=1 and 4 of the words in the
thesaurus index file, obtained by dichotomic searches. Another search in the
accident amount thesauruses of figures 26 and 27 leads to splitting the range
500 < AA <5000 into three sub-ranges, one for the individual words AA x =2
and 5, and one for the macroword AA 3 x=1.

Figure 39 shows a flow chart of an optimal procedure for splitting a
BETWEEN clause in stage 191 of figure 36. It is assumed that the (connected)
range does not include the Null value (otherwise the leaf can be first split into
two substitute leaves linked by an OR node, one leaf with the individual word
row-ID AT_x = 0, and the other satisfying the above assumption).

It is also assumed that the attribute AT considered in the BETWEEN
clause has a number Q = 0 of macroword thesauruses indexed by an integer
level parameter g with 1 < q < Q, the level g = 0 designating the individual word
thesaurus. For a level q thesaurus, the prefix length (e.g. number of ASCII
characters) is noted P(q), with P(0) > P(1) > ... > P(Q). P(0) is the individual

word length. In figures 39-40, x designates the number of non-Null words in

max

thesaurus 0, Wq(x) designates the (macro)word stored at row-ID = x in the level
q thesaurus, and [W]P(q) designates the macroword obtained by truncating a

word W to keep its prefix of length P(q), for g > 1.
In the initial step 200 of the procedure of figure 39, the program selects
the word thesaurus row-ID’s a and b such that Wy(a) and Wy(b) are

respectively the lowest and highest thesaurus words included in the range
defined for the leaf being processed. The integers a and b are readily selected
by dichotomic searches in the word thesaurus based on the range bounds. If
the search shows that the range covers no thesaurus word, the procedure is
terminated by specifying that the leaf output will be an empty flat file row-ID list.

If Wq(a) is the lowest word of the thesaurus (a =1 in test 201), the

binary variable XL is initialized as XL = 0 in step 202. Otherwise, it is initialized

10

16

20

25

30

WO 02/44943 PCT/1IB01/02792

-54 -

as XL = 1 in step 203. If Wy(b) is the highest word of the thesaurus (b = x__, in

max
test 204), the binary variable XR is initialized as XR = 0 in step 205. Otherwise,
it is initialized as XR=1 in step 206. In the following steps, the value
XL (XR) = 0 denotes the fact that the lower (upper) bound of the range under
consideration is aligned with a macroword boundary. If it is aligned with a
macroword boundary from a level q thesaurus, then this is also true for any
level g’ thesaurus with 1 < g’ < . The initialization 201-206 is valid forq = Q.

In step 207, the program invokes a function FUNC whose flow chart is
represented in figure 40. This function returns data describing a sub-tree to be
inserted in the place of the processed leaf (step 208). The function FUNC has
six arguments input when starting its execution in step 210 of figure 40A: the
attribute reference AT, a thesaurus level parameter q (q = Q when the function
is first invoked in step 207 of figure 39); the thesaurus row-ID’s a and b of the
lowest and highest AT words in the range of interest; and the above-defined
variables XL and XR.

After step 210, it is determined whether the thesaurus level parameter
q is zero (test 211). If 9> 0, two madroword thesaurus row-ID’s a’ and b’ are
selected in step 212, such that Wq(a’) = [Wo(a)]P(q) and Wq(b’)= [WO(b)]P(q)'
This is done by simple dichotomic searches in the level q thesaurus after
truncating the words Wy(a) and W(b).

In the following test 213, the variable XL is evaluated. If XL =1, it is
determined in test 214 whether the consecutive words Wy(a—1) and Wy(a)
share the same level g macroword, i.e. whether [Wy(a—1)]P(q) =W, (@). If so,
the integer & is increased by one unit in step 215. If [Wy(a—1)]P(q) < Wq(a’) in
test 214, the value of XL is changed to 0 in step 216 since the lower bound of
the range under consideration is aligned with a level q macroword boundary.
After step 215 or 216, or when XL = 0 in test 213, the variable XR is evaluated
(test 217). If XR = 1, it is determined in test 218 whether the consecutive words
Wy(b) and Wy(b+1) share the same level q macroword, i.e. whether
[Wo(b+1)]p(q) = Wq(b’). If so, the integer b’ is decreased by one unit in step
219. If [WO(b+1)]P(q) > Wq(b’) in test 218, the value of XR is changed to 0 in

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

- 55 .-

step 216 since the upper bound of the range under consideration is aligned
with a level g macroword boundary.

After step 219 or 220, or when XR = 0 in test 217, the variables a' and
b’ are compared in test 221. If 2’ > b’, no level q macroword is spanned by the
range under consideration, the program decrements q by one unit in step 222
and comes back to step 211.

When a <b’ in test 221, a sub-range of b'—a’+1 macrowords is
generated for insertion into the expanded query tree (step 223 in figure 40B).
This sub-range covers the macroword row-ID's from AT _P(gq) x=a' to
AT_P(q) x=Db".

Afterwards, the variable XL is evaluated again in step 224. If XL =1,
another range has to be considered, below the sub-range generated in step
223. In step 225, the row-ID b” of the upper bound of that lower range is
determined: the corresponding word Wq(b”) is the highest of the AT thesaurus
such that [Wo(b")]P(q) < Wq(a’). The function FUNC(AT, g-1, a, b”, 1, 0) is then
called recursively in step 226, to deal with the additional lower range. After step
226, or when XL = 0 in test 224, the variable XR is evaluated again in step 227.
If XR =1, another range has to be considered, above the sub-range generated

in step 223. In step 228, the row-ID a” of the lower bound of that upper range is

determined: the corresponding word Wy(a") is the lowest of the AT thesaurus
such that [Wo(a")]p(q) > Wq(b’). The function FUNC(AT, g-1, a", b, 0, 1) is then

called recursively in step 229, to deal with the additional upper range.

When g =0 in test 211, a sub-range of b—a+1 words is generated for
insertion into the expanded query tree (step 230). This sub-range covers the
individual word row-ID’s from AT_x=ato AT_x= b. v

After step 229 or 230, or when XR = 0 in test 227, the execution of the
function FUNC is terminated in step 231 by returning the data describing the
sub-tree, which have been generated in step 223 or 230 and/or which have
been returned by the function recursively called in steps 226 and/or 229.

Once the stage 191 of analyzing and expanding the query tree is
completed, the expanded tree is processed in stage 192 of figure 36, starting

from the highest coding layer n. If n>1, the processing is performed

10

16

20

25

30

WO 02/44943 PCT/1IB01/02792

- 56 -

successively in the layers k, with k decreasing from n to 1, as shown in the loop
represented in figure 41.

The coding layer index K is initialized with the value n in step 240 of
figure 41. The layer k processing is started in step 241 by selecting the root ND
of the expanded query tree as a node for calling a function named FNODE
(step 242). The input to this function comprise the coding layer index k, the
parameters describing node ND and its children nodes, and a bitmap vector
Res (initialized in an arbitrary manner for k = n). Its output is a bitmap vector
noted WZ. In layer 1, the bits of value 1 of the output bitmap vector WZ indicate
the VDG’s (flat file row-ID’s) matching the query criteria defined by the tree
whose root is node ND. In layer k > 1, they indicate the respective layer k-1
ranks of the groups of Ak flat file row-ID’s which include at least one matching
flat file row-ID. In each coding layer index k, the function FNODE is called
recursively to process all the nodes of the expanded query tree.

The bitmap vector WZ output by the function called in step 242 is
saved as the layer k query result Res in step 243, to be used in the subsequent
layer k—1 processing if k > 1. If so (test 244), the index k is decremented by one
unit in step 245, and the next layer processing is started from step 241.

For k = 1, Res is the bitmap representation of the desired flat file row-
ID list, output in step 246.

A flow chart of function FNODE is shown in figure 42. The bitmap
vector WZ is considered there as a succession of segments of Dk bits. The
segment of rank N of vector WZ (i.e. the (N+1)-th segment with N > 0) is noted
WZ[N]. The bit of rank N of vector WZ (i.e. the (N+1)-th bit with N > 0) is noted
WZ(N). After the function is started (step 248), a working zone is reserved in
RAM 103 for containing the bitmap vector WZ (step 249).

In test 250, it is first determined whether ND designates a preset node.
A preset node (not illustrated in the example of figure 38) is a node for which a
flat file row-ID list has already been determined. Typically, that list has been
produced as a matching data graph identifier list in the processing of a previous
query (output of step 192). It may also be a combination of such matching

identifier lists. One or more preset nodes can be defined in the conversion step

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-57 -

190 when the SQL query refers to the results of one or more previous queries,
for example to restrict the response to records which were included in the
response to the previous queries. This feature is particularly useful when the
database is used in interactive mode.

The flat file row-ID list previously determined for a preset node can be
stored in RAM 103 or saved in hard drive 105 (preferably in compressed form
in the latter case). That list is encoded according to the n coding layers to
provide layer k input lists in the form of bitmap vectors for 1 <k < n. Such layer
k bitmap vector is loaded as WZ in step 251 when test 250 reveals that the
node ND is preset.

Otherwise, if ND does not designate a leaf but an operator node (test
252), its first child node ND1 is selected in step 253, and the function FNODE is
called recursively in step 254 to obtain the bitmap vector WZ1 corresponding to
node ND1. The second child node ND2 of the operator node ND is then
selected in step 255, and the function FNODE is called again in step 256 to
obtain the bitmap vector WZ2 corresponding to node ND2.

In step 257, the bitmap vectors WZ1 and WZ2 are combined bitwise to
form the bitmap vector WZ. The combination (WZ(N) = WZ1(N) ® WZ(N) for
any N) is in accordance with the Boolean operator ® described in the
parameters of node ND, e.g. AND, OR, Exclusive OR, etc. operation. It is
essentially a superposition of bitmap vectors, which is performed very quickly
since both operand vectors are stored in RAM 103. In step 258, the RAM space
which has been allocated to working zones WZ1 and WZ2 is released. In figure
42, the case where the operator node has two child nodes is only considered.
Clearly it can be extended to the case where there are more than two
operands. Moreover, some operations may involve a single operand, such as
the NOT operation, so that the function FNODE may be call only once.

When node ND is a leaf (test 252), all the bits of the working zone WZ
are set to zero in the initialization step 260. In addition, the thesaurus pointer x
is initialized to the value x1 of the first row-ID of the BETWEEN range defined
for node ND.

If node ND relates to an attribute AT and macroword index q for which

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

- 58 -

the thesaurus is stored in the “low density” format (test 261), the leaf
processing is as described below with reference to figure 43 (step 262) to
obtain the relevant bitmap vector WZ. If the thesaurus format is “normal
density”, the processing depends on whether the program is in the
(chronologically) first layer, that is k = n (test 263). The processing of figure 44
is applied if k = n (step 264), and that of figure 45 if k < n (step 265).

After step 251, 258, 262, 264 or 265, the execution of function FNODE
is terminated in step 266 by returning the bitmap vector WZ.

For explaining the low density processing, we assume in figure 43 that
the thesaurus storage also makes use of record chains: the thesaurus has an
index file similar to those of figures 25-27 (the word index stored at row-ID x
being noted AT_WI(x)) and an auxiliary table addressed by the word indexes
and containing the addresses AT_F(WI) in a data container of the first flat file
row-ID’s of the record chains. In each record of address AD > 0, this data
container has, in addition to a flat file row-ID value NO(AD), a next address field
for contaihing a pointer to the next address NX(AD) of the record chain. The
chain tail has NX(AD) = 0. Alternatively, the low density lists could be stored in
individual files for each word (similarly to figure17).

The low density processing of figure 43 has a loop in which the words
of the BETWEEN range are successively handled. In each iteration, the
program first obtains the word index Wil = AT_WI(x) in step 270, and then the
head address AD = AT_F(WI) in step 271 to initiate the scanning of the record
chain. If AD > 0O (test 272), there remains at least one item to be examined in
the record chain, so that the flat file row-ID value NO(AD) and the next address

NX(AD) are read as variables N and M, respectively, in step 273. The

k=1
Euclidean division of N by Ak = HDk’ (A1 =1)is made in step 274 to obtain
k'=1

the layer k—1 quotient (rank) N’. For k =1, N’ = N. For k > 1, this operation 274
k=1

is simply a deletion of the Z ok' least significant bits of N (remainder) if the
k'=1

layer k’ divisors Dk’ are 25K with 8k’ integer (1 <k’ <k). A “1” is then written
into bit WZ(N') of the bitmap vector WZ (step 275). The next address M is

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-59.-

substituted for AD in step 276 before coming back to the test 272. When the
record chain has been completely examined (AD =0 in test 272), it is
determined whether the current word x is the last one x2 of the BETWEEN
range (test 277). If x < x2, the thesaurus pointer x is incremented by one unit in
step 278 for the next iteration of the loop. The loop is over when x = x2 in test
277, and the program proceeds to step 266 of figure 42.

The layer n normal density processing of figure 44 has a similar loop in
which the words or macrowords of the BETWEEN range are successively
handled, but without recalculating the (stored) coding data. In each iteration,
the program first obtains the word index WI = AT_P(q)_WI(x) in step 280, and
then the head address AD = AT P(q) Fn(Wl) in step 281 to initiate the
scanning of the record chain. If AD > 0 (test 282), there remains at least one
item to be examined in the record chain, so that the layer n rank value
NOnR(AD), the next address NXn(AD) and the corresponding layer n bitmap
segment HPn(AD) are read as variables N, M and H, respectively, in step 283.
The bitmap segment H is then superimposed, by an Boolean OR operation,
onto the segment WZ[N] of bitmap vector WZ (step 284), and M is substituted
for AD in step 285 before coming back to test 282. When the record chain has
been completely examined (AD = 0 in test 282), it is determined whether the
current word x is the last one x2 of the BETWEEN range (test 286). If x < x2,
the thesaurus pointer x is incremented by one unit in step 287 for the next
iteration of the loop. The loop is over when x = x2 in test 286, and the program
proceeds to step 266 of figure 42,

The layer k < n normal density processing is detailed in figure 45 in the
case where the thesauruses are arranged as illustrated in figures 25-32. it
takes advantage of the fact that, even where NOk(AD) belongs to a layer k rank
list associated with a word or macroword of the BETWEEN range, it is useless
to access the bitmap segment HPk(AD) if there is a zero in the bit of rank
NOKk(AD) of the bitmap vector Res obtained in the preceding layer k+1.

The procedure of figure 45 is comparable to that of figure 44. Steps
280-282 and 285-287 are the same with k substituted for n. However, when a
record chain is to be examined (AD > 0 in test 282), only the layer k rank value
NOKk(AD) and the next address NXk(AD) are read as variables N and M in step

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-60 -

290. The bit Res(N) of the layer k+1 result bitmap Res is then evaluated in test
291. If Res(N) =0, the rank N is filtered out by jumping directly to step 285.
Otherwise (Res(N)=1), the bitmap segment HPk(AD) is read in step 293
before proceeding to step 284. |

With the arrangement of the thesaurus entry coding data, it is noted
that the loops of figures 44 and 45 will generally imply the successive reading
of contiguous data container records (steps 283 and 290), because each word
of index WI has its coding data stored at consecutive addresses AD in the data
container, as well as most consecutive words of the BETWEEN range. -
Therefore, those loops can be executed efficiently by loading blocks of data
container records by means of the computer cache memory, thereby reducing
the required number of disc accesses. The same consideration applies to the
low density data NO(AD) and NX(AD) read in step 273 of figure 43.

A further improvement is obtained with the layer k < n normal density
processing shown in figure 46, which is made of two successive loops. The first
loop, indexed by the thesaurus pointer x, is for determining a temporary rank
table noted TNO, which is used to handle the bitmap segments in the second
loop. Table TNO has a number of addresses which is at least equal to the
number of addresses ADmax of the data container in which the layer k coding
data of the current thesaurus (AT, q) are stored. Each entry TNO(AD) of
address AD in the rank table TNO is for containing an integer representing the
rank NOk(AD) if it is useful to access the bitmap segment HPk(AD), or else a
default value (-1).

In the initialization step 279, all entries of the rank table TNO are set to
the default value —1. The first loop is comparable to that of figure 45. When
Res(N) = 1 in test 291, the rank N is written at address AD into table TNO in
step 295 before substituting M for AD in step 285.

When the first loop is over (x = x2 in test 286), the program proceeds to
the second loop which is initialized with AD = 1 in step 301. In each iteration of
the second loop, the contents N of the rank table TNO at address AD, read in
step 302, are compared with the default value in test 303. If N is a valid rank
value (#-1), the bitmap segment HPk(AD) is read (step 304) and

superimposed, by a bitwise Boclean OR operation, onto the segment WZ[N] of

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-61-

the bitmap vector WZ (step 305). If AD < ADmax (test 306), the rank table
address AD is incremented by one unit in step 307 before coming back to step
302. The second loop is over when AD = ADmax in test 306, and the program
proceeds to step 266 of figure 42.

In addition to filtering out the bitmap segments HPk(AD) that are not
worth reading, the procedure illustrated by figure 46, owing to the rank table
TNO, groups the read operations in the file containing the layer k bitmap
segment data based on the address AD (step 304 in the second loop). Such
grouping is not only done word by word but for all words of the BETWEEN
range: when the HPk file is eventually read in the second loop, no more
distinction is made between the words for which a rank value has been written
into table TNO. This takes maximum advantage of the blockwise access to the
HPK file, and provides a very significant advantage because the lower layers,
especially layer 1, imply the largest HPk files and the highest numbers of read
operations therein.

Figure 47 shows how the procedure of figure 45 can be adapted when
the coding data containers are stored as illustrated in figures 25-30 and 34A-B.
The loop has a similar structure. However, since the coding data are accessed
from the highest layer n, the address AD read in step 281 is the head address
AT_P(q)_Fn(WI) of the record chain in the layer n data container, and when
AD > 0 in step 282, the rank value NOn(AD) and next address NXn(AD) read
as variables N and M in step 296 also relate to layer n. After step 296, a
filtering function FILT is called in step 297 before substituting M for AD in step
285.

A flow chart of this function FILT is shown in figure 48. lts arguments,
input when starting its execution in step 500, are as follows (in addition to the
attribute name and macroword level which are implicit in figures 47-48):

- a first coding layer index k, corresponding to the first argument of the
function FNODE called in step 242 of figure 41;

- a second coding layer index k' > k, with k' = n when the function FILT is
called in step 297 of figure 47,

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-62 -

- k'-k bitmap vectors Resy .1, Res,,,, ..., Resy,, where Res,, 4 is the layer
k+1 query result Res. If k'>k+1, Res,,,, ..., Res,. are the bitmap

vectors obtained, in step 243 of figure 41, by encoding Res in the higher
layers;
- a layer k’ rank N, with N = NOn(AD) when the function FILT is called in
step 297 of figure 47;
- the corresponding record address AD in the layer k' data container; and
- the bitmap vector WZ which is being calculated.
In test 501, it is determined whether the (N+1)-th segment of the

bitmap vector Res,. is only made of zeroes. If so, it is not necessary to read

any further coding data relating to the layer k' rank N, so that the execution of
the function is terminated in step 502 by returning the bitmap vector WZ.

If the segment Res, [N] has at least one “1” in test 501, the bitmap

segment HPK'(AD) is read as segment variable H in step 503, and the
intersection segment H AND Resy[N] is evaluated in test 504. If this

intersection segment is only made of zeroes, it is also useless to read any
further coding data, and the program directly proceeds to step 502.
If test 504 reveals that H AND Resy[N] has at least one “1”, it is

necessary to get into the lower layer record chain. Its head address F(k'-1)(AD)
is read as variable AD’ in step 505, while the layer k’ remainder R is initialized
to 0 and the layer k'-1 rank N' is initialized to N x DK’. The bitmap segment
H = HPK'(AD) is scanned in a loop in which its bits H(R) are successively
examined (test 506) to ascertain whether the rank N’ = N x Dk’ + R should be
regarded. If H(R) = 0, the rank N’ is not in the layer k' coding data of the current
thesaurus entry, so that it is disregarded: R is incremented by one unit in step
507 and if the new R is still smaller than Dk’ (test 508), N’ is also incremented
by one unit in step 509 before proceeding to the next iteration from test 506.

If H(R) =1 in test 506, the (N'+1)-th bit of the vector Res,, is examined

in test 510 to determine whether the layer k'-1 rank N' has been filtered out in
the higher layer processing. If so (Res),(N') = 0), the program jumps to the next

position in the layer k'-1 record chain by replacing AD’ by the next address

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-63-

NX(k'-1)(AD’) in step 511. After step 511, the program proceeds to the above-
described step 507.

If Res,(N)=1 in test 510, the processing depends on whether the

coding layer k' is immediately above k (test 512). If k' = k+1, the bitmap
segment HPk(AD’) is read (step 513) and superimposed, by a bitwise Boolean
OR operation, onto the segment WZ[N'] of the bitmap vector WZ (step 514). If
k' > k+1 in test 512, the recursive function FILT is called in step 515 with the
arguments k, k-1, Res, 4, ..., Res._4, N, AD’ and WZ. After step 514 or 515,

the program proceeds to the above-described step 511.

The scanning of the bitmap segment H = HPK’'(AD) is over when
R =Dk’ in test 508. The updated bitmap vector WZ is then returned in step 502.

When the coding data containers are arranged as illustrated in figures
34C-D, the scanning of the layer k’ bitmap segment in loop 505-509 is replaced
by the scanning of the layer k' remainders in the record chain of the layer k'-1
coding data container.

The procedure of figures 47-48 has the advantage that the lower layer
record chains are accessed only when it is strictly necessary. In particular, it is
noted that the loop 282-285 of figure 45 requires the reading of all the layer k
ranks (step 290) relating to the current thesaurus entry while it may be already
known from the k+1 processing that some ranks will be disregarded
(Res(N) =0 in test 291). When this occurs in figures 47-48, the rank N is not
read in the hard drive (it is not even stored). This advantage is very significant
since the lower layers, particularly layer 1, have the largest coding data
containers, so that plenty of useless read operation are avoided.

It is noted that the use of a rank table TNO according to figure 46 is
quite compatible with the procedure of figures 47-48. The first loop 280-287 of
figure 46 is simply replaced by that of figure 47, and steps 513-514 of figure 48
are replaced by writing N’ into TNO(AD’).

It is noted that the loops of figures 43-47 may cover not only a
BETWEEN range in a thesaurus, but generally words and/or macrowords
whose coding data are stored in the same data container, and which are

combined in an OR type of operation. Instead of running the loops from x = x1

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-64 -

to x = x2, an iteration is made for each one of such word or macroword.

For example, if the word and macroword thesauruses for a given
attribute share the same data container, the loop may be executed only once
for all relevant values of the attribute, i.e. for the sub-tree which, in stage 191 of
figure 36, has been substituted for the corresponding node of the query tree.

In addition, such words and/or macrowords may possibly belong to
different thesauruses (which requires a suitable labeling of the OR nodes of the
query tree). For example, if a query aims at the accidents undergone by a
certain client or having a damage amount greater than a given value, and if the
client and accident amount thesauruses share the same data containers (as in
figures 31-32), the client and accident amount attributes may be examined
within the same first loop of figure 46, and the TNO table scanned only once to
retrieve all the relevant HP1 segments.

However, it is preferable to have one data container for each thesaurus
and each macroword level, as indicated previously. An advantage of this is to
reduce the sizes of the rank tables TNO used in the procedure of figure 46.

It is also noted that, when encoding the leaves of the expanded query
tree, it is possible to use the word indexes AT_P(q) WI(x) instead of the
thesaurus row-1D’s x. A list of word indexes is then encoded for each leaf of the
expanded query tree. Accordingly, the tree expansion procedure 191 is carried
out with reference to the thesaurus word index files, whereas they are not used
in the processing of stage 192, which directly calls the record chain head
addresses by means of the word indexes. This is useful when the word indexes
do not coincide with the thesaurus row-ID’s (contrary to figures 25-27), which
will normally happen as the database lives.

In the preferred case where separate coding data files are used for
each thesaurus word, as in figure 17, the layer n processing of step 264 is
similar to that shown in figure 44. The loop is not performed in a common data
container (with the loop index AD), but in the individual coding data files
AT_P(q)_W_NOk and AT_P(q)_W_HPk (with a loop index i as in figure 33).
Optimal disc access is ensured without any thesaurus sorting. The layer k <n
processing of step 265 does not need two loops as in figure 46. It may be in

accordance with figure 49.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

- B5 -

The first step 310 of the procedure shown in figure 49 consists in
allocating the value AT_P(q)(x) of the word of rank x in the current thesaurus to
the word variable W, and in initiating the loop index i to zero. As long as i is
lower than the total number imax(AT, g, W, k) of layer k records in the coding
data file relating to thesaurus AT, macroword level q and word W (test 311),
steps 312-315 are performed. In step 312, the rank AT _P(q)_W_NOK(i) is
assigned to the integer variable N. Those rank data are read block by block to
minimize the disc accesses. In the following test 313, the bit Res(N) of the layer
k+1 result bitmap Res is evaluated. If Res(N)=1, the bitmap segment
AT_P(q)_W_HPk(i) is read in step 314 and superimposed, by an Boolean OR
operation, onto the segment WZ[N] of bitmap vector WZ in step 315, whereby
any “1” in AT_P(q)_W_HPk(i) is written at the corresponding position into
WZ[N] and any “0” in AT_P(q)_W_HPk(i) leaves unchanged the corresponding
bit of WZ[N]. The bitmap segment data AT_P(q) W_HPk(i) are also read by
blocks. In step 316, performed after step 315 or when Res(N) = 0 in test 313,
the loop index i is incremented by one unit before coming back to test 311.
When the relevant coding -data have been completely examined
(i = imax(AT, g, W, k) in test 311), it is determined whether the current word x is
the last one x2 of the BETWEEN range (test 317). If x <x2, the thesaurus
pointer x is incremented by one unit in step 318 before coming back to step 310
for the next iteration of the loop. The loop is over when x = x2 in test 317.

Figure 50 shows an alternative way of performing the leaf processing of
figure 42 (when test 252 is positive), in the case where the coding format of the
flat file row-ID lists is specified in the thesaurus index registers, as shown in the
right part of figures 25-27.

The initialization step 260A is similar to that 260 of figure 42, except
that the rank table TNO is initialized to the default value at the same time. In
step 280A, the word index WI = AT_P(q)_WI(x) and the corresponding format
F = AT_P(q)_FORMAT(x) are read from the AT level q thesaurus index
register. If F designates “low density” (test 261A), the loop 271-276 depicted in
figure 43 is executed in step 262A. Otherwise (F designates “normal density”
with n coding layers), the head address AD = AT_P(q)_Fk(WI) is read in step

281A to initiate the scanning of a record chain. If we are in the first coding layer

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-66 -

k =n (test 263A), the loop 282-285 depicted in figure 44 is executed in step
264A. Otherwise, the first loop 282-285 of figure 46 is executed in step 265A.
After step 262A, 264A or 265A, the current thesaurus pointer x is compared
with the upper bound x2 of the BETWEEN range in test 286A, to be
incremented in step 2870A before coming back to step 280A if x < x2. When
X =x2 in test 286A, the table TNO is exploited in step 301A, which is identical
to the second loop 301-306 of figure 46, in order to complete the bitmap vector
WZ returned in step 266 of figure 42.

QUERY OUTPUT

The SQL query further specifies how the data matching the query
criteria should be presented in the response. Therefore, the next stage 193 of
the query processing (figure 36) is the preparation of the results for their display
in stage 194.

Typically, the query defines a list of attributes whose values should be
included in the displayed response (“SELECT” and “FROM?” clauses in the SQL
query, with FROM specifying the relevant data tables and SELECT specifying
the relevant columns in those tables).

When a link table of the type shown in figure 9 is stored, the columns of
that link table corresponding to the listed attributes are read in the matching
rows, identified in the bitmap vector Res output in step 246 of figure 41, in order
to obtain the links pointing to the relevant data tables. The attribute values are
then retrieved from the data tables for display.

Another possibility is to scan the thesaurus relating to such attribute
and to compute the bitwise Boolean AND between the result bitmap vector Res
and each encoded bitmap vector of the thesaurus. Every time there is a hit
between those vectors (a “1” in the AND output vector), the corresponding
thesaurus word will be displayed or otherwise processed. This permits the
attribute values of the response to be retrieved without using any link or data
table.

The AND operations may be performed directly in layer 1. They can
also be performed as previously, by decrementing the layer index fromk =n to
k = 1. This requires the layer k results which can be calculated from the layer 1

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-87 -

bitmap vector Res. The latter option optimizes the disc access by taking
advantage of the multi-layer VDG compression scheme.

Such scanning may also be accelerated by taking advantage of the
macroword thesauruses. The highest level thesaurus of an attribute is first
scanned, and the portions of the lower level thesaurus(es) covered by a given
macroword are scanned only if a hit has been observed for the macroword.

Figure 51 shows a procedure suitable for accessing the values to be
included in the response for a given attribute AT by scanning the corresponding
macroword and/or word thesauruses, which fully takes advantage of both the
macroword grouping and the VDG compression scheme.

As before, it is assumed that the attribute AT has a number Q+1 > 1 of
thesauruses indexed by a level parameter q with 0 < q < Q, having respective
prefix lengths P(q) with P(0)>P(1)>... > P(Q), the level parameter q=0
designating the individual word thesaurus, whose prefix length corresponds to
the attribute word length. In the notations of figure 45:

- QA is an integer with 0 < QA < Q representing a degree of acéuracy
expected in the query result; QA is set to 0 for maximum accuracy;

- the thesaurus pointer Xq is a row-ID in the AT thesaurus index register of
level q;

- forg=2QA, WZ1q is a bitmap vector which represents a layer q target list

of data graph identifiers which match the query criteria and should be

examined in connection with the level q thesaurus word Xq In the

initialization step 320, the result bitmap vector Res, output in step 246 of
figure 41, is assigned to the vector WZ14 which thus represents the flat

file row-1D's matching the query criteria;
- fork>1, Wqu designates a bitmap vector in which each bit of rank N

(i.e. the (N+1)-th bit) indicates whether the (N+1)-th segment of D(k—1)
bits of WZ(k-1)q includes at least one “1”, in accordance with the VDG

compression scheme (0 <q<Q). Wqu is referred to as a layer k and

level q filtering list for QA<q<Q and 1<k <n. Working zones are

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

- 68 -

reserved in RAM 103 for containing the bitmap vectors Wqu which

need not be stored in the hard drive.

In the initialization step 320, the indexes q and x, are set to g = Q and
Xq = 0, in order to start scanning the highest level thesaurus. In the conversion
step 321, the bitmap vector WZ1q is processed to provide the corresponding

higher layer vectors WZkq (1 <k <n).

The coding layer index k is set to n in step 322, and a function FINTER
is called (step 323) to determine the intersection between the integer list

represented in the layer k coding data of the thesaurus entry Xq and the filtering
list represented by the bitmap vector Wqu. The input to this function comprise

the coding layer index k, the (macro)word thesaurus level q, the (macro)word
index x = Xq» and the bitmap vector WZ = Wqu. Its output is another bitmap
vector having the same dimension, noted WX, which represents the integer list
intersection. '

The bitmap vector WX output by the function FINTER called in step
323 is tested in step 324 to determine whether at least one of its bits is “1”. If

not, the (macro)word pointed to by Xq does not cover any attribute value

relevant to the query, so that the thesaurus pointer x, is incremented by one

q
unit in step 325, and the program comes back to step 322 to examine the next

(macro)word of the level q thesaurus.

If the bitmap vector WX has at least one “1” and if k > 1 (following test
326), the layer index k is decremented by one unit in step 327. The next layer
processing is then started from step 323.

When k = 1 in test 326, WX = 0 is the bitmap representation of the list
of flat file row-1D’s which are represented both in the result bitmap vector Res

and in the coding data of the current (macro)word Xy
If q > QA (test 330), this bitmap vector WX is saved as WZ1q_1 in step
331. The row-ID AT_P(q)_FW(xq) of the first “child” of macroword Xq in the

lower level thesaurus is then read in the level g thesaurus and assigned as a

starting value of the thesaurus pointer Xg-1 (step 332). The thesaurus level q is

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

- 69 -

then decremented by one unit in step 333, and the lower level processing is
started from step 321.
When q = QA in test 330, the word pointed to by xq, (f QA =0), or a

word covered by the macroword pointed to by xq, (if QA >0), is an attribute

value of a data graph matching the query criteria. In step 335, a certain action

is taken based on this word or its thesaurus pointer xq and the corresponding

bitmap vector WX. The latter vector identifies the rows of the flat file which

contain the (macro)word xqp in the AT column and which satisfy the query

criteria. The type of action depends on the SQL query. Different possibilities will
be described further on.
After step 335, the higher level bitmap vectors WZ1q are updated to

remove any “1” present at the same location as in WX. Such a “1” stands for a
data graph having the word pointed to by x4 (if QA = 0), or a word covered by

the macroword pointed to by xq, (if QA > 0), as the value of attribute AT;

therefore, no other word will have a hit with it, so that it can be removed. To
initialize the update, the index q is taken equal to Q in step 336. In step 337,
the Boolean operation WZ1qAND NOT WX is performed bit by bit, and the

result becomes the updated WZ1q. If the resulting bitmap vector WZ1CI has at

least one “1” remaining (test 338), the thesaurus level index q is decremented
by one unit in step 339, and step 337 is repeated.
If WzZ1 q consists only of zeroes in test 338, it is not necessary to

continue the update in the lower levels. If q < Q (test 340), the (macro)word
pointed to by Xq does not cover any more attribute value relevant to the query:

the thesaurus pointer x, is incremented in step 341, and the program comes

q
back to step 321 to examine the next (macro)word of the level q thesaurus.

The scanning of the thesauruses for attribute AT is over when g =Q in
test 340.

This function FINTER called in step 323 may be in accordance with the
flow chart shown in figure 52 when the thesauruses are stored as shown in
figures 25-32. It is started in step 350 by loading the above-menticned input

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-70 -

arguments k, q, x (= xq) and WZ (= Wqu). In step 351, the bitmap vector WX is

initialized with zeroes. The program first obtains the word index
WI=AT_P(q)_WI(x) in step 352, and then the head address
AD = AT_P(q)_Fk(WI1) in step 353 to initiate the scanning of the relevant record
chain in the data container.

If the level g thesaurus entry x for attribute AT is stored in the “low
density” format (test 354), the processing is as described below with reference
to figure 53 (step 355) to obtain the intersection vector WX. If the format is
“normal density”, the processing depends on whether the program is in the first
layer, that is k = n (test 356). The processing of figure 54 is applied if k =n
(step 357), and that of figure 55 if k < n (step 358). After step 355, 357 or 358,
the execution of function FINTER is terminated in step 359 by returning the
bitmap vector WX.

The low density processing of figure 53 has a loop in which each
iteration begins by comparing the address AD with the end-of-chain value (0) in
test 360. If AD >0, there remains at least one item to be examined in the
record chain, so that the flat file row-ID value NO(AD) and the next address
NX(AD) are read as variables N and M, respectively, in step 361. The
Euclidean division of N by Ak is made in step 362 to obtain the layer k—1
quotient (rank) N'. If WZ(N') = 1 in the following test 363, a “1” is written into bit
WX(N'’) of the bitmap vector WX (step 364). After step 364, or if WZ(N')=0 in
test 363, the variable M is substituted for AD in step 365 before coming back to
test 360. The low density processing for the current (macro)word is over when
the record chain has been completely examined (AD = 0 in test 360), and the
program proceeds to step 359 of figure 52.

The layer n normal density processing of figure 54 has a similar loop in
which each iteration begins, in step 370, by comparing the address AD with the
end-of-chain value (0). If AD > 0, the layer n rank value NOn(AD) and the next
address NXn(AD) are read as variables N and M, respectively, in step 371. If
the segment of rank N in the bitmap vector WZ has at least one “1” (WZ[N] = 0
in the following test 372), the bitmap segment HPn(AD) is read (step 373) and
combined with the bitmap segment WZ[N] in a bitwise Boolean AND operation

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-71-

to provide the segment WX|N] of the bitmap vector WX (step 374). After step
374, or if WZ[N] = 0 in test 372, the variable M is substituted for AD in step 375
before coming back to test 370. The layer n normal density processing for the
current (macro)word is over when the record chain has been completely
examined (AD = 0 in test 370), and the program proceeds to step 359 of figure
52.

The layer k < n normal density processing is advantageously made of
two successive loops (figure 55). The first loop is for determining a temporary
rank table TNO, which is used to handle the bitmap segments in the second
loop, like in the procedure described previously with reference to figure 46.
Table TNO has a number of addresses which is at least equal to the number of
addresses ADmax of the data container in which the layer k coding data of the
current thesaurus (AT, q) are stored. Each entry TNO(AD) of address AD in the
rank table TNO is for containing an integer representing the rank NOk(AD) if it
is useful to access the bitmap segment HPk(AD), or else a default value (-1).
Subh access is useless if NOk(AD) does not belong to the layer k rank list

associated with the current (macro)word Xq» or if there are only zeroes in the
segment of rank NOk(AD) in the bitmap vector WZ = Wqu+1.

In the initialization step 380, all entries of the rank table TNO are set to
the default value —1. Each iteration of the first loop begins in step 381 by
comparing the address AD with the end-of-chain value (0). If AD > 0, the layer
k rank value NOk(AD) and the next address NXk(AD) are read as variables N
and M, respectively, in step 382. The segment WZ[N] of rank N in the bitmap
vector WZ is examined in test 383. If that segment WZ[N] has at least one “1”
(WZ[N] = 0 in test 383), the rank N is written at address AD into table TNO in
step 384 before substituting M for AD in step 385 and coming back to test 381
to examine the next record of the chain. Otherwise (WZ[N] = 0), the rank N is
filtered out by jumping directly to step 385.

The first loop is over when the record chain has been completely
examined (AD = 0 in test 381). The program then proceeds to the second loop
386-391. In each iteration of the second loop, the contents N of the rank table
TNO at address AD, read in step 387 after having incremented AD in step 386,

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-72-

are compared with the default value in test 388. If N is a valid rank value (= —1),
the bitmap segment HPk(AD) is read (step 389) and combined with the bitmap
segment WZ|[N] in a bitwise Boolean AND operation to provide the segment
WXI[N] of rank N in the bitmap vector WX (step 390). If AD < ADmax (test 391),
the rank table address AD is incremented by one unit in step 386 when starting
the next iteration. The second loop is over when AD = ADmax in test 391, and
the program proceeds to step 359 of figure 52.

The scanning of the thesauruses as explained with reference to figures
51-55 has a number of significant advantages:

- it does not require any access to the original data tables. Therefore it is
not compulsory to maintain the data tables in memory. Even when they
are stored, they will often be accessible through a relatively low software
interface, such as ODBC. The scanning method advantageously
circumvents that interface;

- itis very efficient in terms of disc accesses, because it takes advantage
of the record grouping in the coding data container. The procedures of
figures 53-55 are respectively similar to those of figures 43, 44 and 46
regarding the disc accesses, and they provide the above-described
advantages in this respect;

- the procedure of figure 51 is also very efficient owing to the filtering
achieved by the updating of the bitmap vectors WZ1q (loop 336-339)

This filtering takes advantage of the fact that each flat file row has a
unique value (possibly Null) for each attribute. It avoids plenty of useless
operations to read coding data pertaining to subsequent thesaurus
words and macrowords which would not provide hits in the lowest layer
(because the hit in the higher layer would be due to a flat file row-ID
corresponding to an already considered thesaurus word).

Figure 56 shows how the procedure of figure 51 can be adapted when
the coding data containers are stored as illustrated in figures 25-30 and 34A-B.
The above-described function FINTER is replaced by a recursive function
FFILT illustrated by figure 57. Accordingly, the loop 322-327 is replaced by a
loop 590-593 after executing steps 351-353 as in figure 52 (with k = n). If the

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-73-

resulting intersection bitmap WX is made of zeroes only (test 324), Xq is
incremented in step 325 before coming back to step 351 for the next
(macro)word of the current level q thesaurus range. If WX has at least one “1”
in test 324, the program proceeds to step 330 as described before. Otherwise,
the procedure of figure 56 is the same as that of figure 51.

Each iteration in the loop 590-593 begins by comparing the address AD
with the end-of-chain value (0) in test 590. If AD > 0, the layer n rank value
NOnN(AD) and the next address NXn(AD) are read as variables N and M,
respectively, in step 591. Afterwards, the filtering and intersection function
FFILT is called in step 592 before substituting M for AD in step 593. The
computation of the intersection list WX for the current (macro)word is over
when the layer n record chain has been completely examined (AD = 0 in test
590), and the program proceeds to test 324 as indicated hereabove.

A flow chart of this function FFILT is shown in figure 57. lts arguments,

input when starting its execution in step 600, are as follows:

a coding layer index k, with k = n when the function FFILT is called in
step 592 of figure 56;
- k bitmap vectors WZ1q, WZ2q, Wqu as obtained in step 321 of
figure 56;
- a layer k rank N, with N = NOn(AD) when the function FFILT is called in
step 592 of figure 56;
- the corresponding record address AD in the layer k data container; and
- the intersection bitmap vector WX which is being calculated.
In test 601, it is determined whether the segment of rank N of the
bitmap vector Wqu is only made of zeroes. If so, it is not necessary to read

any further coding data relating to the layer k rank N, so that the execution of
the function is terminated in step 602 by returning the bitmap vector WX.
If the segment Wqu[N] has at least one “1” in test 601, the bitmap

segment HPK(AD) is read as segment variable H in step 603, and the
intersection segment H AND Wqu[N] is evaluated in test 604. If this

intersection segment is only made of zeroes, it is also useless to read any

further coding data, and the program directly proceeds to step 602.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-74 -

If test 604 reveals that H AND Wqu[N] has at least one “1”, it is

necessary to get into the lower layer record chain. Its head address F(k—1)(AD)
is read as variable AD' in step 605, while the layer k remainder R is initialized to
0 and the layer k-1 rank N’ is initialized to N x Dk. The bitmap segment
H = HPk(AD) is scanned in a loop in which its bits H(R) are successively
examined (test 606) to ascertain whether the rank N' = N x Dk + R should be
regarded. If H(R) = 0, the rank N’ is not in the layer k coding data of the current
thesaurus entry, so that it is disregarded: R is incremented by one unit in step
607 and if the new R is still smaller than Dk (test 608), N’ is also incremented
by one unit in step 609 before proceeding to the next iteration from test 606.

If H(R) = 1 in test 606, the bit of rank N’ of the vector Wqu is examined

in test 610 to determine whether the layer k—1 rank N’ is in the result list. If not
(Wqu(N’) = 0), the program jumps to the next position in the layer k-1 record

chain by replacing AD’ by the next address NX(k—1)(AD’) in step 611. After step
611, the program proceeds to the above-described step 607.
If Wqu(N’) =1 in test 610, the processing depends on whether the

coding layer k is immediately above 1 (test 612). If k = 2, the bitmap segment
HP1(AD’) is read (step 613) and combined with the bitmap segment WZ1q[N’]

in a bitwise Boolean AND operation to provide the segment WX[N'] of rank N’ in
the bitmap vector WX (step 614). If k> 2 in test 612, the recursive function
FFILT is called in step 615 with the arguments k, WZ1q, veey WZ(k=1)q, N’, AD’

and WX. After step 614 or 615, the program proceeds to the above-described
step 611.

The scanning of the bitmap segment H = HPK(AD) is over when R = Dk
in test 608. The updated bitmap vector WX is then returned in step 602.

It is noted that the use of a layer 1 rank table TNO (as in figure 55) is
quite compatible with the procedure of figures 56-57. The records of the table
TNO are initialized with the default value in step 351; steps 613-614 of figure
57 are replaced by writing N’ into TNO(AD’); and when AD = 0 in test 590, table
TNO is scanned as in loop 386-391 of figure 55.

A further optimization of the procedure of figure 51 or 56 can be

achieved when the stored thesaurus data include files organized as illustrated

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-75 -

in figures 58-61. For each thesaurus, a table of the type shown in figures 58-60
is stored, to associate each possible value of the layer n rank NOn with a
record chain head address F_AD’ in an additional data container as shown in
figure 61. The latter data container contains the same layer n bitmap segment
data HP'2 = HP2 as that of figure 32 or 34A, but the links NX'2 define record
chains which pertain to the same layer n rank rather than to the same
thesaurus entry. The data container of figure 61 is thus obtained by sorting that
of figure 32 or 34A based on the NO2 column, deleting the NO2, NX2 and F1
columns, and adding a column NX'2 to contain the next addresses in the record
chains based on NO2 and a further column PTR where the thesaurus indexes x
to which the record pertain is written. For each rank NO2 the head address of
the chain is memorized in F_AD'(NO2).

Before starting the procedure of figure 51 or 56, or after every iteration
of step 321, the pre-filtering treatment shown in figure 62 is applied to mark
thesaurus entries that will not be read for the reason that their layer n ranks are
not in the layer n coding data of the matching data graph identifier list. The
marking is done by means of a table Tq for a macroword level g, which has one

bit Tq(xq) for each level q thesaurus pointer Xq- Those bits, as well as the layer

n rank N = NOn are initialized to zero in step 620 of figure 62. If the segment of
rank N of Wan is only made of zeroes (test 621), test 622 is performed to

determine whether the highest possible layer n rank NOn has been

max
reached. If not, N is incremented in step 623 and test 621 is repeated. When

Wan[N] # 0 in test 621, the head address F_AD’(N) is read as variable AD’ in

step 624 and compared to the end-of-chain value (0) in test 625. If AD’ =0, the
program proceeds to step 622. Otherwise, the bitmap segment HP'n(AD’) and
the corresponding next address value NX'n(AD’) are read as variables H' and

M’, respectively, in step 626. If H' and Wan[N] have no “1” in common (test

627), M' is substituted for AD’ in step 628, and the next iteration is started from
test 625. If there is at least one “1” in the bitwise Boolean AND combination of
H' and Wan[N] in test 627, the thesaurus pointer Xq = PTR(AD’) is read in the

last column of figure 61, and a “1" is written in the corresponding location of

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-76 -

table Tq before proceeding to step 628.

After that, as shown in figure 63, the loop 322-327 of figure 51, where a
relevant bitmap vector WX is calculated, is completed by an initial filtering step
640 where the bit Tq(xq) is tested. This test 640 is also performed after having

incremented Xq in step 325. If Tq(xq) =1 in test 640, the program proceeds to
step 322 as described before. If Tq(xq) =0, it proceeds directly to step 325,

thereby avoiding the computation of an intersection list WX that will be empty.

The same filtering step 640 can be performed before step 351 in figure
56.

The function FINTER illustrated in figures 52-55 is readily adapted to
the case where separate coding data files are used for each thesaurus word,
as in figure 17. Steps 352-353 of figure 52 are replaced by the allocation of the
value AT_P(q)(x) to the word variable W, and by the initialization of the loop
index i to zero. The low density processing of step 355 and the layer n normal
density processing of step 357 are similar to those shown in figures 53 and 54.
The loop is not performed in a common data container (with the loop index AD),
but in the individual coding data files (with a loop index i as in figure 33). The
layer k < n processing of step 358 does not need two loops as in figure 55. It
may be in accordance with figure 64.

In the procedure shown in figure 64, steps 395-399 are performed as
long as the loop index i is lower than the total number imax(AT, q, W, k) of layer
k records in the coding data file relating to thesaurus AT, macroword level g
and word W (test 394). In step 395, the rank AT_P(q)_W_NOKk(i) is assigned to
the integer variable N. In the following step 396, the segment WZ[N] of rank N
in the bitmap vector WZ is tested. If WZ|N] has at least one “1” (WZ[N] # 0), the
bitmap segment AT_P(q) W_HPk(i) is read (step 397) and combined with the
bitmap segment WZ[N] in a bitwise Boolean AND operation to provide the
segment WX[N] of rank N in the bitmap vector WX (step 398). In step 399,
performed after step 398 or when WZ[N] =0 in test 396, the loop index i is
incremented by one unit before coming back to test 394. The loop is over when
the relevant coding data have been completely examined, i.e. when
i =imax(AT, g, W, k) in test 394.

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-77 -

The above-described procedure may involve different types of action in
step 335 of figure 51 or 56, based on features of the SQL query.

In a relatively simple type of SQL query, a list of values of one attribute
is required (e.g. name all clients who meet certain criteria). In such a case, the
scanning of figure 51 or 56 is performed only in the thesaurus(es) relating to
that attribute, with QA = 0, and the action of step 335 may simply be to read the

word AT(xp) which is in position x, in the individual word thesaurus (in fact, if
the coding data are stored as illustrated in figure 17, the word AT(x,) has been
read just before) and to write this word AT(xy) into an output table, or print it

out. It is observed that the word list thereby produced is automatically sorted, in
the ascending order. If the reverse order is required, the thesaurus may be
scanned in the opposite direction.

If the SQL query has a DISTINCT keyword in the SELECT clause
regarding the attribute AT, there is one output of the word AT(x;) in step 335. If

not, or if the SELECT clause has the keyword ALL, there may be one output of

the word AT(x,) for each non-zero bit of WX in step 335. Those non-zero bits
may also be counted to provide the number of occurrences of the word AT(x,)

in the matching data graphs.

If the values of the attribute are required with a reduced accuracy, the
thesaurus may be scanned as shown in figure 51 or 56 with QA > 0, thereby
avoiding memory accesses to obtain irrelevant details from the level q
thesauruses with g < QA. For example, if a date attribute is required expressed
in years, the scanning of figure 51 or 56 may be stopped at the level QA
corresponding to a truncation length of 4.

The SQL query frequently requires several attributes in the SELECT
and FROM clauses. In order to maintain the connections between the attribute
values belonging to the same data graph, some form of indexing is needed. A
possibility is to reserve in RAM 103 a working zone for containing an output
table having as many rows as in the virtual flat file and respective columns for
receiving the attribute values of the result lists. The memory locations of the

output table are initialized with a default value. The above-mentioned attribute

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-78-

values AT(xg), or their prefixes AT(xqa) if QA >0, are written into the output

table in the occurrences of step 335 shown in figure 51 or 56. Such write
operation in step 335 is made into any row of the output table indicated by a
non-zero bit of the bitmap vector WX. The output data are eventually produced
by eliminating the empty rows from the output table (the rows that stili contain
the default value).

Figure 65 shows how step 335 is developed in such a case, to write the

word W = AT(xqa) Where appropriate in the column OT_AT of the output table.

The row pointer | is initialized to zero in step 400, and the word W is loaded (if it
has not been before). Every time the bit WX(j) is 1 (test 401), the word W is
written into row j and column AT of the output table (step 402). The row pointer
j is the compared to its maximum value jmax in test 403 and incremented if
j <jmax (step 404). The program has finished the action of step 335 when
j = jmax in test 403.

Example 4:
We consider the query criteria of Example 3 and assume that the

attributes requested for display are accident date, client name and policy date.
In Example 3, discussed with reference to figures 37-38, the bitmap of the
matching data graphs (output in step 246 of figure 41) is Res = 101100001000,
as may be checked in figure 8. In this example, figure 66 shows the contents of

the output table as described hereabove.

The above-mentioned output table may be too big to be conveniently
reserved in RAM 103. In real databases, the number of rows in the virtual flat
file is relatively high (e.g. millions) and if there are too many characters in one
row of the output table (because there are too many attributes to be included or
because some of them use a relatively high number of characters), the output
table may become prohibitively big. There are several solutions to deal with this
potential problem.

One of them is to write the thesaurus row-ID’'s xq, (integers) into the
output table instead of the (macro)words AT(xn,) in step 402 of figure 65.

Once all the relevant thesauruses have been scanned, the non-empty output

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-79-

table rows are selected to retrieve the attribute values from the thesaurus row-
ID’s. This reduces the breadth of the columns of the output table since the

words AT(xq,) often require much more characters.

Figure 67 shows the contents of such an output table in the case of
Example 4, the thesauruses being sorted as in figures 10A-G.

Another solution, alternative or cumulative, is to use an index in RAM
103, to associate an integer address with each data graph or flat file row-ID. A
default address is initially assigned to all the data graphs. When one of them is
designated for the first time by a “1” in the corresponding bit of WX in step 335
(i.e. when scanning the first thesaurus), it is allocated a new address obtained
by incrementing a counter. This address is retrieved from the index when the
data graph is again designated in the scanning of the subsequent
thesaurus(es). This integer address is a row-ID in an output table stored in
RAM 103, which has a reduced number of rows where the attribute values or

prefixes AT(xqp), or their thesaurus row-ID’s x4, are written. The non-empty

rows are consecutive and hence the total number of rows can be significantly
reduced. This compressed output table is eventually read out to display the
results.

Figure 68 shows the contents of such index and output table,
containing thesaurus row-ID’s, in the case of Example 4.

Figures 69 and 70 show how step 335 is developed when scanning the
first thesaurus and the subsequent thesaurus(es), respectively. The steps 400,
401, 403, 404 indicated by the same reference numerals are identical to those
of figure 65. In figure 69, when the bit WX(j) is 1, the counter value m (initialized
to 0 in step 320 of figure 51 or 56) is allocated to the index IND(j) for row j (step
410), the thesaurus pointer xqp (or word W = AT(xqp)) is written into row j and

column AT of the output table (step 411), and the counter value m is
incremented (step 412). When the scanning the first thesaurus is over, m
represents the number of matching data graphs. In figure 70, when the bit
WX(j) is 1, the index IND(j) for row j is retrieved as pointer m’ (step 413) and
the thesaurus pointer Xqa (or word W) is written into row m’ and column AT of

the output table (step 414).

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-80-

The output table is easily sorted based on the contents of its columns
when the SQL query has GROUP BY, ORDER BY or similar clauses. Such
sorting operation may be performed hierarchically with reference to a plurality
of attributes. The most significant attribute in the hierarchy is preferably
subjected to the first thesaurus scanning as shown in figure 51 or 56 so that the
first sorting criterion will be automatically fulfilled when constructing the output
table. The sorting based on the remaining attributes is done within each portion
of the output table that has common values for the previous attribute(s).

The sorting is particularly simple when the columns of the output table

contain thesaurus row-ID’s xq,, as in figure 68, because it only involves sorting

integer lists.

It has been indicated before that for certain attributes, in particular
numerical fields, the explicit attribute values may be stored in the link table (if
there is a link table). The output table of the type illustrated in figure 66, 67 or
68 need not have a column for such attribute. If the attribute is to be displayed
or otherwise exploited, its values can be retrieved from the link table in the rows
corresponding to (i.e. having the same row-ID as) the non-empty rows of the
output table (figures 66-67) or the valid pointers in the output table index (figure
68).

SQL queries may also require calculations to be made on attribute
values of the matching data records, particularly in data warehousing
applications. Such calculations can be performed from the data of an output
table of the type illustrated in figure 66, 67 or 68.

Example 5:

From Example 4, we assume that the (arithmetic) mean value of the
time difference between the accident date and the policy date is requested,
expressed as a number of days. For each non-empty row of the output table,
the program computes the difference, in number of days, between the first and
third column. Those differences are accumulated and the result is divided by
the number of non-empty rows (4) to obtain the desired mean value.

In fact, this mean value can be computed with an output table reduced

to only one memory location: when scanning the accident date thesaurus, the

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-81-

attribute value expressed as a number of days from an arbitrary reference day
is multiplied by the number of non-zero bits in WX in step 335 of figure 51 or 56
and added to an accumulation variable V (initialized to O in step 320) stored in
the memory location of the reduced output table; then, when scanning the
policy date thesaurus, the attribute value expressed as a number of days from
the same reference day is multiplied by the number of non-zero bits in WX in
step 335 and subtracted from V in step 335; finally, the resulting V is divided by
the number of non-zero bits in the result bitmap Res to provide the desired
mean value.

However, an output or computation table having more than one
memory location is often useful in RAM 103 for that sort of calculations, in
particular in cases where the desired quantity is not linear with respect to the
attribute values (e.g. if the quadratic or geometric, rather than arithmetic, mean
value is requested in Example 5).

A computation table is a particular case of output table, and it has a
structure similar to that of the output table described hereabove. It may have as
many rows as in the virtual flat file (as the output tables of figures 66-67).
Alternatively, it may be associated with an index identical to that of figure 68. It
may also have only one row, as in the above example of the output table
having one memory location. Each column of the computation table is for
containing values of an operand used in the calculation to be made. Depending
on the complexity of the calculation, one or more columns may be needed, but
in most cases one column will be sufficient.

The attribute whose values are involved in the calculation have their
thesauruses scanned successively, as described with reference to figure 51 or
56. Step 335 may be developed as shown in figure 71 in the case of a
computation table CT having a single column and as many rows as in the
virtual flat file (when there is an index, it can be handled as in figures 69-70). In
figure 71, steps 400, 401, 403 and 404 are identical to those of figure 65. When
the bit WX(j) is 1 in step 401, the contents CT(j) of the computation table in row
j is allocated to the operand Y in step 416, and then a function f of the operand
Y and of the current (macro)word W = AT(xq) is calculated and saved as the

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-82-

new contents CT(j) in step 417.

The mathematical function f is selected on the basis of the calculation
to be performed and of the thesaurus being scanned. Referring again to
Example 5, when the accident date is first scanned, the function f(Y,W) may be
the transformation of the date W expressed in the format yyyy mm dd into a
number of days from a reference day (it is thus a function of W only); when the
policy date thesaurus is scanned, the function f(Y,W) may consist in applying
the same transformation to the date W and subtracting the result from Y.
Afterwards, the mean value (arithmetic, quadratic, geometric, ...) of the non-
empty rows of CT is calculated to provide the desired output result. Other kinds
of global calculation can be performed from the columns of the computation
table, for example statistical, financial or actuarial calculations.

The macrowords are advantageously used in this type of calculation if
the desired accuracy is lower than that afforded by the individual words of at

least one of the attributes involved.

VIRTUAL FLAT FILE PARTITIONING

For large systems, it is often advantageous to partition the virtual flat
file into several portions or blocks each consisting of a determined number of
rows. The data graphs are distributed into the blocks based on their identifiers
(flat file row-1D’s).

Preferably, each thesaurus is divided into corresponding thesaurus
sections, whereby each section has entries whose flat file row-ID lists are
included in the corresponding virtual flat file block. The complete flat file row-ID
list associated with one word assigned to an attribute is the union of the lists
represented in the entries of the corresponding thesaurus sections for that
word. Accordingly the complete flat file row-ID lists of the thesaurus entries are
subjected to the same partitioning as the virtual flat file: they are split into sub-
lists corresponding to the thesaurus sections.

The thesaurus index file for an attribute may be common to all the
sections. A separate index file may also be provided for each section.

For each one of the blocks, steps 191-193 of the processing of a SQL

query (figure 36) are performed as described hereabove with reference to

10

15

20

25

30

WO 02/44943 PCT/1IB01/02792

-83-

figures 38-71. The results thus obtained are merged to display the response.
The processing of the query with respect to the different blocks may be
performed sequentially or in parallel.
In a sequential processing, RAM availability for optimal processing

speed can be effectively controlled. Even though the cost of RAM circuits is not

currently considered to be critical, a given machine has a certain amount of

available RAM capacity and this is a limitation to reserve RAM space for the
above-described output or computation tables. When the limitation is likely to
be encountered, partitioning the virtual flat file directly reduces the size of those
tables (jmax in figures 65 and 69-71).

Accordingly, the use of a particular machine to carry out the invention
will dictate the choice of jmax, that is the block size. The virtual flat file blocks
are dimensioned based on the selected size parameter, and the corresponding
thesaurus sections are constructed one section after the other as indicated with
reference to steps 122-126 of figure 19.

Such dimensioning of the query processing engine enables to use
optimal algorithms at all stages while avoiding the need to swap intermediary
data between RAM 103 and hard drive 105.

A further acceleration is achieved when parallel processing is used.
The query processing is distributed between several processors, one for each
virtual flat file block.

A possible architecture of the parallel query processing engine is
illustrated in figure 72, in the particular case where all blocks have the same
size jmax. A number M of matching units 700 are connected to a query server
701 through a communication network 702. Each matching unit 700 may be a
processor system of the type shown in figure 18. It has a storage device 703
such as a hard drive for storing the thesaurus sections associated with the
block. If a link table of the type shown in figure 9 is used, it is partitioned into
blocks in the same manner as the virtual flat file, and each block is stored in the
corresponding matching unit. The server 701 provides the man-machine
interface. It transiates the query criteria of the SQL WHERE clause into trees of
the type shown in figure 37, which are provided to the M matching units 700
along with a description of the desired output. Each of the units 700 does its

10

15

20

WO 02/44943 PCT/1IB01/02792

-84 -

part of the job according to steps 191-193 of figure 36 and returns its response
to the server 701. The latter compiles the results from the different matching
units to provide the overall response to the user. In order to perform the
analysis of step 191, each matching unit 700 uses its thesaurus sections.

Alternatively, the analysis of the query criteria could be executed
centrally by the server 701 by means of global thesauruses, each global
thesaurus being common to all the (macro)words and having M columns for
containing pointers to identifier sub-lists in the M storage units 703. At the end
of the analysis stage, the relevant pointers are addressed to the matching units
700 for their execution of steps 192-193.

An update server 704, which may be the same machine as the query
server 701, is also connected to the network 702 to create and maintain the
VDG's relating to the different blocks. It monitors the changes made in the data
tables of the RDBMS and routes thesaurus update commands to the units 700
in order to make the necessary changes in the thesaurus sections.

The above-described parallel system is readily extended when the
number of data graphs becomes close to the current maximum (M x jmax in the
illustration of figure 72). This requires the addition of a further matching unit to
deal with a new virtual flat file block, whose size may be the same as or
different from the previous blocks, and a reconfiguration of the routing and
result compilation functions in the servers 701, 704. The reconfiguration is
completely transparent to the previously existing matching units. Therefore,
increasing the system capacity can be done at a minimum cost. It does not
even require to shut down the system.

11/02 2008 MON 15:12 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

16

20

25

30

-85-

CLAIMS

1. A method of organizing information in a database system, wherein a
group of attributes is defined and attribute values of a collection of data are
assigned to said attributes, wherein the group of attributes is divided into a
plurality of sub-groups each associated with a respective data table, each data
table having a column for each attribute of the associated sub-group and rows
for containing data table records comprising at least one attribute value
assigned to an attribute of the associated sub-group, wherein links are defined
between the data tables records, each link having a target table and a
corresponding source table having a link column containing link values each
designating a record of said target table, whereby each of said link values
represents a link between the record of the source table including said link
value and the record of the target table designated by said link value, the
method comprising the steps of:

- allocating respective identifiers to data graphs, wherein each data graph
represents related attribute values respectively assigned to the attributes
of said group, wherein each attribute value of a data graph is either a
default value or an attribute value of said collection of data, and wherein
the attribute values of each data graph are from linked data table
records;

- storing a plurality of word thesauruses respectively associated with
attributes of said group, wherein for each attribute value assigned at
least once to an attribute in the collection of data, the word thesaurus
associated with said attribute has a respective entry containing said
attribute value; and

- storing data representing data graph identifier lists respectively
associated with the word thesaurus entries, wherein the data graph
identifier list associated with a thesaurus entry relating to an attribute
value assigned to an attribute includes any identifier allocated to a data
graph having said attribute value assigned to said attribute.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

[Qog7/120

11/02 2008 MON 15:13 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

-86 -

2. A method according to claim 1, wherein the entries of each word
thesaurus associated with an attribute of said group are sorted based on the
attribute values assigned to said attribute.

3. A method according to claim 1 or 2, further comprising the step of
storing a link table having a plurality of rows respectively associated with the
data graphs and a plurality of columns respectively associated with the attribute
sub-groups, wherein each row of the link table contains, in each one of the
columns, either a value indicating that each attribute value represented in the
data graph associated with said row and assigned to an attribute of the sub-
group associated with said one of the columns is a default value or a link value
for retrieving at least one stored attribute value of the collection of data
represented in the data graph associated with said row and assigned to an
attribute of the sub-group associated with said one of the columns.

4, A method according to claim 3, wherein said data tables are stored,
and wherein each link value contained in the column of the link table
associated with an attribute sub-group comprises data for identifying a row of
the data table associated with said sub-group.

5. A method according to claim 3 or 4, wherein the link table has at
least one column associated with a sub-group consisting of one attribute, each
link value contained in said column being an attribute value assigned to said
one attribute in the collection of data.

6. A method according to claim 3, wherein the link table has at least
one column associated with a sub-group consisting of one atiribute, each link
value contained in said column being a pointer to an entry of the word
thesaurus associated with said one attribute.

7. A method according to any one of the preceding claims, wherein at
least one thesaurus entry comprises data for pointing to at least one memory
region where coding data representing the data graph identifier list associated
with said entry are stored.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

(1088 /120

11/02 2008 MON 15:13 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

-87 -

8. A method according to claim 7, wherein said memory region
comprises a file individually allocated to said thesaurus entry.

9. A method according to claim 8, wherein said data for pointing to at
least one memory region comprise the attribute value for which said thesaurus
entry is provided, said attribute value being part of a respective file name used
for accessing each file aliocated to said thesaurus entry.

10. A method according to claim 7, wherein said memory region
comprises a portion of a data container having a plurality of records each
having a next address field, said portion being defined as a record chain in said
data container, the chains being defined by means of the next address fields,
and wherein said data for pointing to at least one memory region comprise a
respective address of a first record of a chain in said data container.

11. A method according to claim 10, further comprising the step of
grouping the records stored in the data container so that the records of each
chain have contiguous addresses.

12, A method according to claim 10 or 11, wherein said data container is
individually allocated to a thesaurus.

13. A method according to claim 10 or 11, wherein said data container is
shared by a plurality of thesauruses.

14, A method according to any one of claims 10 to 13, wherein the
thesaurus associated with an attribute of said group has an index register
where the thesaurus entries are sorted based on the attribute values assigned
to said attribute, each entry including an index for pointing to a row of an
auxiliary table, and wherein each row of the auxiliary table contains an address
in the data container of a first record of a chain.

15. A method according to any one of claims 10 to 14, wherein said data
for pointing to at least one memory region comprise a respective address of a
last record of a chain in said data container.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

[@osss120

11/02 2008 MON 15:13 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

-88 -

16. A method according to any one of claims 7 to 15, wherein said
coding data representing a data graph identifier list comprises integers
respectively equal to the identifiers of said list.

17. A method according to any one of the preceding claims, wherein a
plurality of formats are provided for representing the data graph identifier lists,
and wherein each thesaurus entry contains an indication of the format used for
representing the data graph identifier list associated therewith.

18. A method according to any one of the preceding claims, wherein
said data representing data graph identifier lists comprise, for at least one
thesaurus entry, coding data obtained by a coding scheme having n successive
coding layers, n being a number at least equal to 1, each layer having a
predetermined pattern for dividing a range covering integers of an input list of
said layer into subsets, said identifier list being the input list of the first layer for
said thesaurus entry, wherein for any layer other than the last layer, an integer
list representing the position, in the pattern of said layer, of each subset
containing at least one integer of the input list forms the input list for the next
layer, and wherein said coding data comprise, for each layer and each subset
containing at least one integer of the input list, data representing the position of
each integer of the input list within said subset and, at least if said layer is the
last layer, data representing the position of said subset in the pattern of said
layer.

18. A method according to claim 18, wherein the coding data are stored
in a plurality of files including files respectively allocated to thesaurus entries.

20. A method according to claim 18 or 19, wherein the coding data are
stored in a plurality of files including at least one file aflocated to a respective
thesaurus, for containing the coding data relating to the entries of said
thesaurus.

21. A method according to any one of claims 18 to 20, wherein the
coding data are stored in at least one file allocated to a plurality of thesauruses,

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@osos120

11/02 2008 MON 15:14 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

-89-

for containing the coding data relating to the entries of said plurality of
thesauruses.

22. A method according to any one of claims 18 to 21, wherein the data
representing the position of each integer of the input list of each layer within a
subset consist of a bitmap segment in which each bit is associated with a
respective integer of the subset to indicate whether said integer belongs to the
input list of said layer. '

23. A method according to any one of claims 18 to 22, wherein the
position of each subset in the layer n pattern is represented by an integer rank
which Is included in the coding data, in association with the data representing
the position of the integers of the input list of layer n within said subset.

24. A method according to any one of claims 18 to 22, wherein the
position of a subset in the pattern of each layer is represented by an integer
rank which is included in the coding data for said layer, in association with the
data representing the position of the integers of the input list of said layer within
said subset.

25. A method according to any one of claims 18 to 25, wherein n 2 2 and
layer k data containers each having a plurality of records are provided in a
computer memory for 1 <k < n, each record of a layer k data container being
associated with a layer k integer rank representing the position of a subset in
the layer k pattern, and wherein each record of a layer k data container
associated with a layer k rank representing the position of a subset in the layer
k pattern has a first field for containing data for retrieving the position within
said subset of any integer of a layer k input list relating to a data graph identifier
list, whereby a combination of said layer k rank with any position retrievable
from the data contained in said first field determines a layer k~1 rank with which
a respective record of the layer k~1 data container is associated if k > 1, and an
identifier of said data graph identifier list if k = 1.

26. A method according to claim 25, wherein, for 1<k <n, said data
contained in the first field of a record of the layer k data container for retrieving

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

10917120

11/02 2008 MON 15:14 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

-90 -

the position of any integer of a layer k input list within a subset comprise a
bitmap segment in which each bit is associated with a respective integer of said
subset to indicate whether said integer belongs to said layer k input list.

27. A method according to claim 26, wherein, for 1 <k <n, each record
of the layer k data container associated with a layer k rank further has a second
field for containing said layer k rank.

28, A method according to claim 27, wherein each data container
comprises at least two files where the first and second fields of the records of
said data container are respectively stored, said files being accessible
separately.

29, A method according to claim 25, wherein, for 1 <k < n, each record
of the layer k data container further has a second field for containing a number
representing the position of an integer of a layer k+1 input list within a subset of
the layer k+1 pattern,

and wherein, for 1 < k < n, said data contained in the first field of a
record of the layer k data container associated with a layer k rank for retrieving
the position of any integer of a layer k input list within a subset of the layer k
pattern comprise a pointer to at least one record of the layer k—1 data container
in which the second field contains a number representing the position of an
integer of said layer k input list within said subset of the layer k pattem,
whereby said record of the layer k-1 data container is associated with the layer
k—1 rank determined by the combination of said layer k rank with the position
représented by said number.

30. A method according to claim 29, wherein said data contained in the
first field of a record of the layer 1 data container for retrieving the position of
any integer of a data graph identifier list within a subset comprise a bitmap
segment in which each bit is associated with a respective integer of said subset
to indicate whether said integer represents a data graph identifier of said list.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

do9z2/120

11/02 2008 MON 15:14 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

-91 -

31, A method according to claim 29 or 30, wherein each record of the
layer n data container associated with a layer n rank further has a second field
for containing said layer n rank.

32. A method according to any one of claims 29 to 31, wherein each
layer k data container for 1 < k < n comprises at least two files where the first
and second fields of the records of said data container are respectively stored,
said files being accessible separately.

33. A method according to any one of claims 28 to 32, wherein, for
t <k < n, each record of the layer k data container further has a next address
field, whereby record chains are defined in the layer k data container by means
of the next address fields, and wherein at least some of the thesaurus entries
are respectively associated with record chains in the layer n data container,
whereby the coding data relating to one of said entries for fayer n are stored in
or retrievable from the record chain associated therewith in the layer n data
container.

34, A method according to claim 33, wherein, for 1<k<n, said
thesaurus entries are respectively associated with record chains in the layer k
data container, whereby the coding data relating to one of said entries for layer
k are stored in or retrievable from the record chain associated therewith in the
layer k data container.

35. A method according to claim 33, wherein, for 1 <k <n, each record
of the layer k data container further has a head address field for pointing to an
address of a first record of a respective chain in the layer k~1 data container.

36. A method according to any one of claims 33 to 35, wherein each
layer k data container for 1 <k < n comprises at least two files where the first
fields and the next address fields of the records of said data container are
respectively stored, said files being accessible separately.

37. A method according to any one of the preceding claims, wherein an
integer range covering the identifiers allocated to the data graphs is partitioned

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@o93/120

11/02 2008 MON 15:15 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

-92 -

into a plurality of predetermined portions, wherein at least some of the data
representing identifier lists are distributed into a plurality of storage sections
respectively associated with said portions, wherein a storage' section
associated with one of said portions contains data representing identifier sub-
lists consisting:of identifiers of said portion.

38. A method according to claim 37, wherein a respective storage unit is
provided for each of said portions of the data graph identifier range, to receive
the storage sections associated with said portion.

39. A method according to claim 38, wherein at least some of the word
thesauruses have a plurality of sections respectively associated with said
portions, wherein a section, associated with one of said portions, of a word
thesaurus associated with an attribute has a respective entry for each attribute
value assigned to said attribute in a data graph to which an identifier of said
portion is allocated, said entry containing data for retrieving an identifier sub-list
from the storage section associated with said portion.

40. A method according to claim 37 or 38, wherein each thesaurus entry
has a plurality of fields respectively associated with said portions, for containing
data for retrieving respective identifier sub-lists from the storage sections.

41, A method of processing an SQL query in a database system,
wherein a group of attributes is defined and attribute values of a collection of
data are assigned to said attributes, the group of attributes being divided into a
plurality of sub-groups respectively associated with a plurality of data tables
having independent numbers of records, with links between respective records
from the data tables, wherein identifiers are respectively allocated to data
graphs, each data graph representing related attribute values respectively
assigned to the attributes of said group, each attribute value of a data graph
being either a default value or an attribute value of said collection of data,
wherein a plurality of thesauruses each associated with a respective attribute of
said group and data representing first lists of data graph identifiers respectively
associated with entries of said thesauruses are stored, wherein each thesaurus

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

[A1094/120

11/02 2008 MON 15:15 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

-93.

associated with one attribute is defined with reference to a partition into subsets
of a set of attribute values which can be assigned to said one attribute and has
a respective entry for each subset including at least one attribute value
assigned to said one attribute in the collection of data, the first list of data graph
identifiers associated with said thesaurus entry including any identifier allocated
to a data graph having an attribute value of said subset assigned to said one
attribute, the method comprising the steps of:

- analyzing query criteria of a WHERE clause to determine a combination
involving thesaurus entries relevant to the query criteria;

- determining a second list of identifiers of data graphs which match said
query criteria bhased on said combination and on the stored data
representing the first data graph identifier lists associated with said
relevant thesaurus entries;

- processing said second data graph identifier list to output a response.

42, A method according to claim 41, wherein the step of analyzing the
query criteria comprises, for at least one attribute referred to in said criteria:
- selecting at least one range of attribute values defined for said attribute
in the query criteria; and
- mapping the attribute values of the selected range which are assigned to
said attribute in the collection of data with one or more subsets, the
thesaurus entry for each of said one or more subset being retained as a
relevant entry for the selected range,
and wherein the step of determining the second data graph identifier list
comprises merging respective portions of the first identifier lists represented by
the data of the relevant thesaurus entries retained for said selected range.

43. A method according to claim 42, wherein the mapping is performed
so as to retain a minimum number of relevant thesaurus entries for each
selected range.

44, A method according to claim42or 43, wherein each thesaurus
associated with an attribute is defined with reference to a partition such that
each subset consists of one attribute value or of consecutive attribute values of

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@o95/120

11/02 2008 MON 15:15 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

-94 -

the set of attribute values which can be assigned to said attribute, the entries of
said thesaurus being sorted based on the attribute values assigned to said
attribute, and wherein the step of analyzing the query criteria comprises at least
one dichotomy search in at least one thesaurus for identifying relevant
thesaurus entries.

45, A method according to claim 44, wherein the thesauruses comprise
word thesauruses each associated with a respective attribute of the group, with
reference to a partition into subsets each consisting of one attribute value.

46, A method according to claim 1 or 45, wherein each word thesaurus
associated with an attribute of the group to which the default value is assigned
in at least one of the data graphs further has an entry for the default value,
whereby one of said first data graph identifier lists is associated with said
thesaurus entry for the default value and includes any identifier allocated to a
data graph having said default value assigned to said attribute.

47. A method according to any one of claims 42 to 46, wherein the step
of analyzing the query criteria comprises determining said combination
involving relevant thesaurus entries as a tree having at least one leaf node,
each leaf node corresponding to at least one relevant thesaurus entry retained
for a respective attribute.

48, A method according to claim 47, wherein said tree has a plurality of
nodes Including said at least one leaf node and at least one operator node,
each operator node representing a Boolean operator applied to at least one
partiat criterion represented by another node of said tree, one of the operator
nodes being a root node representing ail the query criteria.

49, A method according to claim 48, wherein the nodés of said tree
further include at least one preset node for which a data graph identifier list has
been determined prior to said step of analyzing the query criteria.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

Aoss/120

11/02 2008 MON 15:15 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

-95-

50. A method according to claim 49, wherein the data graph identifier fist
of said preset node is determined from at least one matching data graph
identifier list obtained when processing a previous query.

51, A method according to any one of claims 48 to 50, wherein the step
of determining the second data graph identifier list comprises obtaining a
respective identifier list for each node of said tree, whereby the identifier list
obtained for each leaf node corresponding to at least one relevant thesaurus
entry is the merger of respective portions of the first identifier lists associated
with said at least one relevant thesaurus entry, and the identifier list obtained
for each operator node representing a Boolean operator applied to at least one
partial criterion is obtained by applying sald Boolean operator to the identifier
lists obtained for the node representing said at jeast one partial criterion, said
second data graph identifier list being determined as the identifier list obtained
for the root node.

52, A method according to claim 51, wherein each of said obtained
identifier lists is produced in the form of a bitmap vector consisting of bits
assigned to respective data graphs to indicate whether the identifiers allocated
to said data graphs belong to said obtained list.

53. A method according to claim 51 or 52, wherein a coding scheme
comprising n successive coding layers is used to provide coding data
representing the first identifier list associated with a thesaurus entry, n being a
number at least equal o 1, each layer having a predetermined pattern for
dividing a range covering integers of an input list of said layer into subsets, said
first identifier list being the input list of the first layer for said thesaurus entry,
wherein for any layer other than the last layer, an integer list representing the
position, in the pattern of said layer, of each subset containing at least one
integer of the input list forms the input list for the next layer,

and wherein the coding data comprise, for each layer and each
subset containing at least one integer of the input list, data representing the
position of each integer of the input list within said subset and, at least if said

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@o97/120

11/02 2008 MON 15:16 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

- 96 -

layer is the last layer, data representing the position of said subset in the
pattern of said layer.

54, A method according to claim 53, wherein the pattern of each layer is
such that the integer subsets are consecutive intervals consisting of the same
number of integers.

55. A method according to claim 54, wherein said number of integers is
a whole power of 2 for each layer.

56. A method according to any one of claims 53 to 55, wherein said data
representing the position of an integer of an input list within a subset consist of
a bitmap segment.

57. A method according toﬁ any one of claims 53 to 56, wherein the step
of determining the second data graph identifier list comprises determining a
layer n integer list for each node of said tree, whereby the layer n integer list
determined for a leaf node consists of a layer n input list associated, in the
coding scheme, with the merger of the first identifier lists represented in the
relevant thesaurus entries to which said leaf node corresponds, and whereby
the layer n integer list obtained for each operator node representing a Boolean
operator applied to at ieast one partial criterion is obtained by applying said
Boolean operator to the layer n integer lists determined for the nodes
representing said at least one partial criterion, and wherein a layer n resuit list
is determined as the layer n integer list obtained for the root node.

58. A method according to claim 57, wherein the nodes of said tree
further include at least one preset node for which a data graph identifier list has
been determined prior to said step of analyzing the query criteria, said data
graph identifier list being subjected to the coding scheme to provide a layer n
input list which is determined as said layer n integer list for said preset node.

59. A method according to claim 57 or 58, wherein, in the coding
scheme, the coding data representing the position of each integer of an input
list within a subset for the coding layer n define a layer n bitmap segment in

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@098/120

11/02 2008 MON 15:16 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

-97-

which each bit is associated with a respective integer of the subset to indicate
whether said integer belongs to said input list, while the data representing the
position of said subset in the layer n pattern comprise a layer n integer rank
associated with said layer n bitmap segment, and wherein the step of
determining a layer n integer list for a leaf node comprises:

- linitializing a layer n bitmap vector with logical zeroes;

- obtaining the layer n ranks and associated bitmap segments from the
coding data for each relevant thesaurus entry to which said leaf node
corresponds; and

- for each of said layer n ranks, superimposing the layer n bitmap segment
associated therewith onto a segment of said layer n bitmap vector
having a position determined by said layer n rank, the superimposition
being performed according to a bitwise Boolean OR operation,

said layer n list for the leaf node corresponding to the resuiting layer n bitmap
vector,

60. A method according to any one of claims 57 to 59, wherein n > 1
and the step of determining the second data graph identifier list further
comprises, for k decreasing from n—1 to 1, determining a layer k integer list for
each node of said tree, whereby the layer k integer list determined for a leaf
node consists of any integer of a layer k input list, associated in the coding
scheme with the first identifier list represented in a relevant thesaurus entry to
which said leaf node corresponds, which belongs to a layer k subset whose
position is represented in the layer k+1 result fist, and whereby the layer k
integer list obtained for each operator node representing a Boolean operator
applied to at least one partial criterion is obtained by applying said Boolean
operator to the layer k integer lists determined for the nodes representing said
at least one partial criterion, wherein a layer k result list is determined as the
layer k integer list obtained for the root node, and wherein said second data
graph identifier list corresponds to the determined layer 1 result fist.

61. A method according to claim 60, wherein the nodes of said tree
further include at least one preset node for which a data graph identifier list has
been determined prior to said step of analyzing the query criteria, said data

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

[Ao099/s120

11/02 2008 MON 15:16 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

.98 -

graph identifier list being subjected to the coding scheme to provide a layer k
input list which is determined as said layer k integer list for said preset node.

62. A method according to claim 60 or 61, wherein, in the coding
scheme, the coding data representing the position of each integer of an input
list within a subset for a coding layer k < n define a layer k bitmap segment in
which each bit is associated with a respective integer of the subset to indicate
whether said integer belongs to said input list, while the coding data further
comprise a layer k integer rank associated with said layer k bitmap segment to
represent the position of said subset in the layer k pattern, and wherein the
step of determining a layer k integer list for a leaf node comprises:
- initializing a layer k bitmap vector with logical zeroes;
- obtaining the layer k ranks from the coding data for each relevant
thesaurus entry to which said leaf node corresponds; and
- selecting any obtained layer k rank belonging to the layer k+1 result list
and superimposing the associated layer k bitmap segment onto a
segment of said layer k bitmap vector having a position determined by
the selected layer k rank, the superimposition being performed according
to a bitwise Boolean OR operation,
said layer k list for the leaf node corresponding to the resuiting layer k bitmap
vector.

63. A method according to claim 62, wherein, for 1 <k <n, the layer k
ranks and the layer k bitmap segments associated therewith for at least one
thesaurus entry are stored at corresponding addresses in distinct first and
second files, and wherein the step of determining a layer k integer list for a leaf
node comprises:
- providing a rank table in a RAM memotry, having records associated with
the addresses in said first and second files;
- filling the rank table by writing any selected layer k rank into the rank
table record associated with the address of the selected layer k rank in
said first file; and

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

[@Loo/120

11/02 2008 MON 15:17 TFAX +64 4 472 3358 @ioi/120

-99 -

- for any record of the filled rank table containing a layer k rank and
assoclated with an address in the second file, reading the associated

11 Feb 2008

layer k bitmap segment at said address in the second file and
superimposing the read layer k bitmap segment onto a segment of said
5 layer k bitmap vector having a position determined by said layer k rank,

64. A method according to claim 60 or 61, wherein the step of
determining the second data graph identifier list further comprises, for any
coding layer k such that 1 <k<n, determining a layer K filtering list for

2002232035

k <k <n consisting of the layer k' input list obtained by providing the layer k

10 result list as an input list in layer k of the coding scheme,

wherein, in the coding scheme, the coding data representing the
position of each integer of an input list within a subset for a coding layer k < n
define a layer k bitmap segment in which each bit is associated with a
respective integer of the subset to indicate whether said integer belongs to said

15 input list, while a layer k integer rank associated with said layer k bitmap

segment represents the position of said subset in the layer k pattern, and
wherein the step of determining a layer k integer list for a leaf node for k<n
comprises:

fa/ initializing a layer k bitmap vector with logical zeroes;

20 /ol selecting the layer n ranks obtained from the coding data for each
relevant thesaurus entry to which said leaf node corresponds, and
setting k' =n;

/c/ for each selected layer k' rank:
/el if the selected layer k' rank represents the position in the layer k'

25 patiern of a subset which includes at least one integer of the

layer K’ filtering list, obtaining the layer k' bitmap segment with
which the selected layer K’ rank is associated:;

fc2/ for any integer of the layer K’ filtering list whose position within
said subset is represented in said layer k’ bitmap segment,

30 selecting a respective layer k-1 rank determined from the

selected layer k' rank and said position represented in said layer
K’ bitmap segment;

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

11/02 2008 MON 15:17 FAX +64 4 472 3358 [Aroz2/120

o0
-
8 - 100 -
!
[/c8/ if K > k+1, executing step /c/ with k' decremented by one unit;
— and
— fc4/ if kK—1 =k, obtaining any layer k bitmap segment with which a
selected layer k’-1 rank is associated, and superimposing said

Q 5 layer k bitmap segment onto a segment of said layer k bitmap
8 vector having a position determined by said selected layer k'-1
g rank, the superimposition being performed according to a bitwise
S Boolean OR operation,
-) said layer k list for the leaf node corresponding to the resulting layer k bitmap
N 10 vector.

65. A method according to claim 64, wherein, for 1 <k <n, the layer k

bitmap segments for at least one thesaurus entry are stored in at least one
layer k file at addresses respectively corresponding to the layer k ranks
associated therewith, and wherein, for 1 < k < n, the step of determining a fayer
15 kinteger list for a leaf node comprises:
- providing a rank table in a RAM memory, having records associated with
the addresses in said layer k file;
- filling the rank table by writing any selected layer k rank into the rank
table record associated with the address corresponding to the selected
20 layer k rank; and
- for any record of the filled rank table containing a layer k rank and
associated with an address in said layer k file, reading the associated
layer k bitmap segment at said address and superimposing the read
layer k bitmap segment onto a segment of said layer k bitmap vector
25 having a position determined by said layer k rank.

66. A method according to any one of claims 41 to 65, wherein a link
table is stored, having a plurality of rows respectively associated with the data
graphs and a plurality of columns respectively associated with the attribute sub-
groups, wherein each row of the link table contains, in each one of the
30 columns, either a value indicating that each attribute value represented in the
data graph associated with said row and assigned to an atiribute of the sub-

COMS ID No: ARCS-178725 Received by IP Australia; Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

11/02 2008 MON 15:17 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

-101 -

group associated with said one of the columns is a default value or a link value
for retrieving at least one stored attribute value of the collection of data
represented in the data graph associated with said row and assigned to an
attribute of the sub-group associated with said one of the columns, and wherein
the step of processing the second data graph identifier list comprises reading at
least one value in any row of the link table associated with a data graph
identified in the second data graph identifier list.

67. A method according to claim 66, wherein said data tables are stored,
wherein each link value contained in the column of the link table associated
with an attribute sub-group comprises data for identifying a record of the data
table associated with said sub-group, and wherein the step of processing the
second data graph identifier list further comprises reading at least part of any
data table record identified by a link value read in a row of the link table.

68. A method of organizing information in a database system, wherein a
plurality of row identifiers are defined to designate respective rows of a
reference table having columns respectively assoclated with data attributes,
said rows containing groups of related atiribute values assigned to said
attributes in a collection of data, the method comprising the steps of:
- storing at least one macroword thesaurus associated with one of the
attributes and with a prefix length shorter than a length corresponding to
a zero truncation length for said attribute, said macroword thesaurus
having a respective entry for each prefix value having said prefix length
and matching a corresponding prefix of at least one attribute value
assigned to said data attribute in the collection of data; and
- storing data representing first identifier lists respectively associated with
the macroword thesaurus entries, wherein the first identifier list
associated with an entry, relating to a prefix value, of a macroword
thesaurus associated with an attribute includes any row identifier
designating a row of the reference table having an attribute value whose
corresponding prefix matches said prefix value in the column associated
with said attribute.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

[d1o3/120

11/02 2008 MON 15:18 FAX +64 4 472 3358 Qitoas120

- 102 -

69. A method according to claim 68, wherein the entries of each
macroword thesaurus associated with an attribute are sorted based on the

11 Feb 2008

prefix values.

70. A method according to claim 68 or 69, wherein a plurality of
5 macroword thesauruses respectively associated with different prefix lengths are
stored for at least ane attribute.

71. A method ai:cording to any one of claims 68 to 70, further
comprising the step of storing a word thesaurus associated with said one of the

2002232035

attributes, said word thesaurus having a respective entry for each word

10 assigned at least once to said attribute in the collection of data, said entry
containing data representing an identifier list including each row identifier
designating a row of the reference table having said word in the column
associated with said attribute.

72. A method according to claim 71, wherein the word thesaurus

16 associated with an attribute for which the reference table has a default value in
at least one row further has an entry for the default value, containing data
representing an identifier list including each row identifier designating a row of
the reference table having said default value in the column associated with said
attribute.

20 73. A method according to claim 71 or 72, wherein the entries of the
word thesaurus are sorted based on the words assigned to said attribute.

74, A method according to both claims 89 and 73, wherein at least one
attribute has a number Q of stored macroword thesauruses respectively
associated with different prefix lengths, each having a thesaurus level
25 parameter q such that 1<q=<Q, Q beihg an integer at least equal to 1, the
prefix length being a decreasing function of the level parameter if Q> 1,
wherein the level 1 macroword thesaurus further contains, in each entry
provided for a level 1 prefix value, data designating the entry of the word
thesaurus associated with said attribute which corresponds to the lowest or
30 highest attribute value whose corresponding prefix matches said level 1 prefix

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

11/02 2008 MON 15:18 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

- 108 -

value, and wherein any macroword thesaurus having a level paramegter g > 1
further contains, in each entry provided for a level q prefix value, data
designating the entry of the level g—1 macroword thesaurus which cotresponds
to the lowest or highest level q-1 prefix value whose corresponding prefix
matches said level q prefix value.

75. A method according to any one of claims 68 to 74, wherein said
reference table is a virtual table which is not stored.

76. A method according to claim 75, further comprising the step of
storing a link table having a plurality of rows respectively associated with the
rows of the reference table and a plurality of columns respectively associated
with attribute sub-groups, wherein each row of the link table contains, in each
one of the columns, either a value indicating that each atiribute value
represented in the associated reference table row and assigned to an attribute
of the sub-group associated with said one of the columns is a default value or a
link value for retrieving at least one stored attribute value of the collection of
data represented in the associated reference table row and assigned to an
attribute of the sub-group associated with said one of the columns.

77. A method according to claim 76, wherein a respective data table is
stored for each of the attribute sub-groups, and wherein each link value
contained in a column of the link table associated with an aftribute sub-group
comprises data for identifying a row of the data table stored for said sub-group.

78. A method of processing an SQL query in a database system,
wherein a plurality of row identifiers are defined to designate respective rows of
a reference tabie having columns respectively associated with data attributes,
said rows containing groups of related atiribute values assigned to said
attributes in a collection of data,

wherein a plurality of thesauruses each associated with a respective
aftribute and data representing first lists of reference table row identifiers
respectively associated with entries of said thesauruses are stored,

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@ios/120

11/02 2008 MON 15:18 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

-104 -

wherein each thesaurus associated with one attribute is defined with
reference to a partition into subsets of a set of attribute vaiues which can be
assigned to said one attribute and has a respective entry for each subset
including at least one attribute value assigned to said one attribute in the
collection of data, the first identifier list associated with said thesaurus entry
including any identifier allocated to a row of the reference table having an
attribute value of said subset assigned to said one atiribute,

wherein the thesaurus include at least one macroword thesaurus
associated with an attribute and with a prefix length shorter than a length
corresponding to a zero truncation length for said attribute, whereby said
macroword thesaurus is defined with reference to a partition into subsets each
consisting of attribute values beginning by a common prefix having said prefix
length, the method comprising the steps of:

- analyzing query criteria of a WHERE clause to determine a combination
involving thesaurus entries relevant to the query criteria;

- determining a second reference table row identifier list based on said
combination and on the stored data representing the first identifier lists
associated with said relevant thesaurus entries; and

- processing said second identifier list to output a response.

79. A method according to claim 78, wherein at least one attribute has a
plurality of macroword thesauruses, associated with different prefix lengths.

80. A method according to any one of claims 41 to 67 and 151 to 205,
wherein an integer range covering the identifiers designating the rows of the
reference table is partitioned into a plurality of predetermined portions, wherein
at least some of the data representing first identifier lists are distributed into a
plurality of storage sections respectively associated with said portions, wherein
a storage section associated with one of said portions contains data
representing identifier sub-lists consisting of identifiers of said portion.

and wherein the step of determining a second identifier list is
executed separately for the different portions of the reference table row
identifier range, by means of the respective storage sections.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@1o6/120

11/02 2008 MON 15:18 FAX +64 4 472 3358 @io7/120

- 105 -

81. A method according to claim 80, wherein the step of processing the
second identifier list is at least partially executed separately for the different

11 Feb 2008

portions of the reference table row identifier range, by means of the respective
storage sections.

5 82 A method according to claim 80 or 81, wherein the thesauruses have
a piurality of sections respectively associated with said portions, wherein a
section, associated with ane of said portions, of a thesaurus associated with an
attribute and defined with reference to a partition into subsets has a respective

2002232035

entry for each subset of said partition which includes at least one attribute value

10 assigned to said attribute in a reference table row to which an identifier of said
portion is allocated, said entry containing data representing an identifier sub-list
including each identifier of said portion allocated to a reference table row
having an attribute value of said subset assigned to said attribute, and wherein
the step of analyzing the query criteria is at least partially executed separately

15 for the different portions of the reference table row identifier range, by means of
the respective thesaurus sections.

83. A method according to any one of claims 80 to 82, wherein the
separate step executions are carried out in paralle! by respective processors for
the different portions of the reference table row identifier range.

20 84, A method according to claim 83, wherein each thesaurus entry has a
plurality of fields respectively associated with said portions, for containing data
for retrieving respective identifier sub-lists from the storage sections, wherein
the step of analyzing the query criteria is executed centrally for all the portions
of the reference table row identifier range, and wherein the relevant thesaurus

25 entries used by a processor executing the step of determining a second
identifier fist by means of a storage section are designated by the data for
retrieving identifier sub-lists from said storage section.

85. A method according to claim 84, wherein the step of analyzing the
query criteria is executed by a query server connected to said processors
30 through a communication network.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

11/02 2008 MON 15:19 ©FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

- 106 -

86. A method according to claim 85, wherein a list update server is
connected, through the communication network, o a plurality of storage units
respectively coupled to said processors, the list update server controlling the
storage units to maintain the storage sections.

87. A method of processing an SQL query in a database system,
wherein a plurality of row identifiers are defined to designate respective rows of
a reference table having columns respectively associated with data attributes,
said rows containing groups of related attribute values, the related attribute
values of each group being assigned to said attributes in a collection of data,

wherein a plurality of thesauruses each associated with a respeactive
attribute and data representing first lists of reference table row identifiers
respectively associated with entries of said thesauruses are stored,

wherein each thesaurus associated with one attribute is defined with
reference to a partition into subsets of a set of attribute values which can be
assigned to said one attribute and has a respective entry for each subset
including at least one attribute value assigned to said one attribute In the
collection of data, the first identifier list associated with said thesaurus entry
including any identifier allocated to a row of the reference table having an
attribute value of said subset assigned to said one attribute, the method
comprising the steps of:

- determining a second list of identifiers of reference table rows which
match query criteria of a WHERE clause, based on a combination of
thesaurus entries relevant to the query criteria and on the stored data
representing the reference table row identifier lists associated with said
relevant thesaurus entries; and

- processing said second identifier list to output a response,

wherein the step of processing the second identifier list comprises,
for at least one aftribute specified in the query, selecting a thesaurus
associated with said attribute and detecting entries of the selected thesaurus
with which first identifier lists having a non-empty intersection with said second
identifier list are associated.

COMS ID No: ARCS-178725 Received by P Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

drogs120

11/02 2008 MON 15:19 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

- 107 -

88. A method according to claim 87, wherein said attribute specified in
the query has Q+1 stored thesauruses respectively associated with different
prefix lengths, Q being an integer at least equal to 0, each of said Q+1
thesauruses having a thesaurus levet parameter g such that 0<q<Q,
whereby the prefix length is a decreasing function of the level parameter q and
corresponds to a zero truncation length for said attribute for q =0, wherein
each of said Q+1 thesauruses is defined with reference to a respective partition
into subsets each consisting of attribute values beginning by a common prefix
having the prefix length associated with said thesaurus, the entries of said
thesaurus being sorted based on the prefix values.

89. A method according to claim 88, wherein, the selected thesaurus
having a level parameter QA >0, the detection of entries in the selected
thesaurus comprises the steps of:

/a/ providing respective level q target lists and respective levei q thesaurus
ranges covering consecutive entries of the level g thesaurus for
QA<q<Q;

/b/ initializing the Jevel Q target list with the second identifier list, initializing
the level parameter q with the value Q, and selecting a first entry of the
level Q thesaurus range;

/el determining an intersection list between the level g target list and the first
identifier list associated with the selected entry of the level q thesaurus
range;

/d/ if the intersection list determined in the preceding step /c/ is empty,
selecting another entry of the level g thesaurus range and repeating step
fcf,

/el if g is greater than QA:

le1/ setting the level g—1 target list as equal fo the intersection list
determined in the preceding step /c/;

fe2/ setting the level g1 thesaurus range as consisting of the entries
of the level g—1 thesaurus relating to level g-1 prefixes which
begin with the level g prefix of the selected level q thesaurus

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@ALoes/120

11/02 2008 MON 15:19

11 Feb 2008

2002232035

10

i5

20

25

30

90.
having a level parameter g 2 1 further contains, in each entry provided for a
level q prefix value, data designating the entry of the level g-1 thesaurus which
corresponds to the lowest or highest level g~1 prefix beginning with the level q
prefix of said level q thesaurus entry, and wherein step /e2/ comprises selecting
the level g-1 thesaurus entry designated in the selected level g thesaurus

FAX +64 4 472 3358

-108 -

entry, and selecting a first entry of the level g—1 thesaurus
range;

/e3/ decrementing q by one unit and retuming to step /c/;

M/

2/

13/

14/

155/

entry.

fff it qis equal to QA:

including the selected level QA thesaurus entry in the detected
entries; \

if the level Q target list is equal to the intersection list determined
in the preceding step /c/, terminating the detection of entries in
the selected thesaurus;

removing the integers of the intersection list determined in the
preceding step /¢/ from any target list including at least one
integer which is not in said intersection list;

setting q as the smallest level parameter for which the target list
includes at least one integer which is not in said intersection list;
selecting another entry in the level q thesaurus range and
returning to step /c/. |

A method according to claim 89, wherein Q 2 1 and each thesaurus

A method according to claim 89or 90, wherein a coding scheme

comprising n successive coding layers is used to provide coding data
representing the first identifier list associated with a level q thesaurus entry for
0<g<Q, n being a number at least equal to 1, each layer having -a
predetermined pattern for dividing a range covering integers of an input list of
said layer into subsets, said first identifier list being the input list of the first layer
for said thesaurus entry, wherein for any layer other than the last layer, an
integer list representing the position, in the pattern of said layer, of each subset

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@i1o0/120

11/02 2008 MON 15:20 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

-109 -

containing at least one integer of the input list forms the input list for the next
layer,

wherein the coding data comprise, for each layer and each subset
containing at least one integer of the input list, data representing the position of
sach integer of the input list within said subset and, at least if said layer is the
last layer, data representing the position of said subset in the pattern of said
layer,

and wherein each level q target list forms a layer 1 and level g
filtering list and is submitted as a layer 1 input list in the coding scheme for
QA < g < Q to provide respective layer k and level q filtering lists for 1 <k < n if
n> 1, said layer k and level q filtering list provided from a level q target list
being the layer k input list obtained from said level q target list in the coding
scheme.

92. A method according to claim 91, wherein the pattern of each layer is
such that the integer subsets are consecutive intervals consisting of the same
number of integers.

93. A method according to claim 92, wherein said number of integers is
a whole power of 2 for each layer.

94. A method according to any one of claims 91 to 93, wherein the step
/el of determining the intersection list between a level q target list and a first
identifier list comprises, from k=n:

/e1/ computing a layer k intersection list between the layer k input list
obtained from said first identifier list in the coding scheme and the
layer k and level g filtering list corresponding to said level g target list;

/c2/ if the computed layer k intersection list is empty, determining said
intersection list between the level q target list and the first identifier list
as being empty;

fc3/ if k = 1, determining said intersection list between the level q target list
and the first identifier list as the computed layer 1 intersection list; and

fea/ if k > 1, decrementing k by one unit and repeating from step /c1/.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@L11/120

11/02 2008 MON 15:20 FAX +§4 4 472 3358 Q1127120

-110 -

95. A method according to claim 94, wherein, in the coding scheme, the
coding data representing the position of each integer of an input list within a

11 Feb 2008

subset for a coding layer k < n define a layer k bitmap segment in which each
bit is associated with a respective integer of the subset to indicate whether said
5 integer belongs to said input list, while the data representing the position of said
subset in the layer k pattern comprise a layer k integer rank associated with
said layer k bitmap segment, and wherein the step /c1/ of computing a layer k
intersection list between a layer K input list obtained from a first identifier list in
the coding scheme and a layer k and level g filtering list, represented by a first

2002232035

10 layer k bitmap vector, comprises:
- initializing a second layer k bitmap vector with logical zeroes;
- obtaining layer k ranks from the coding data representing said first
identifier list; and
- selecting any obtained layer k rank which represents the position in the
15 layer k pattern of a subset including at least one integer of said layer k
and level q filtering list, obtaining the layer k bitmap segment with which
the selected layer k rank is associated, and determining a segment of
the second layer k bitmap vector having a position determined by the
selected layer k rank by combining the obtained layer k bitmap segment
20 with a segment of the first layer k bitmap vector having a position
determined by the selected layer k rank according to a bitwise Boolean
AND cperation,
said layer k intersection list corresponding to the resulting second layer k
bitmap vector.

25 96. A method according to claim 95, wherein, for 1 sk <n, the layer k
ranks and the layer k bitmap segments associated therewith for at least one
thesaurus entry are stored at corresponding addresses in distinct first and
second files, and wherein the step /c1/ of computing a layer k intersection list
between a layer k input list obtained from a first identifier list in the coding

30 scheme and a layer k and level q filtering list, represented by a first layer k
bitmap vector, comprises:

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

11/02 2008 MON 15:20 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

-111 -

- providing a rank table in a RAM memory, having records associated with
the addresses in said first and second files;

- filling the rank table by writing any selected layer k rank into the rank
table record associated with the address of said selected layer k rank in
said first file; and

- for any record of the filled rank table containing a layer k rank and
associated with an address in the second file, reading the associated
layer k bitmap segment at said address in the second file and combining
the read layer k bitmap segment with a segment of the first layer k
bitmap vector having a position determined by said layer k rank
according to a bitwise Boolean AND operation to determine a segment
of the second layer k bitmap vector having a position determined by said
layer k rank.

97. A method according to any one of claims 91 to 93, wherein n> 1
and in the coding scheme, the coding data representing the position of each
integer of an input list within a subset for a coding layer k < n define a layer k
bitmap segment in which each bit is associated with a respective integer of the
subset to indicate whether said integer belongs to said input list, while a layer k
integer rank associated with said layer k bitmap segment represents the
position of said subset in the layer k pattem, and wherein the step /c/ of
determining the intersection list between a level g target list, corresponding to
layer k and level g filtering lists represented by a respective first layer k bitmap
vectors for 1 < k < n, and a first identifier list comprises:
/c1/ initializing a second bitmap vector with logical zeroes;
/c2/ selecting layer n ranks obtained from the coding data representing said
first identifier list, and setting k= n;
/c3/ for each selected layer k rank:
/c31/ if the selected layer k rank represents the position in the layer
k pattern of a subset which includes at least one integer of
said layer k and level q filtering list, obtaining the layer k
bitmap segment with which the selected layer k rank is
associated;

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

@L13/120

11/02 2008 MON 15:20 FAX +64 4 472 3358 ‘ Ar1a/120

11 Feb 2008

2002232035

10

15

20

25

30

-112-

/c32/ for any integer of the layer k and level q filtering list whose
position within said subset is represented in said layer k
bitmap segment, selecting a respective layer k-1 rank
determined from the selected layer k rank and said position
represented in said layer k bitmap segment;

/c33/ if k> 2, executing step /c3/ with k decremented by one unit;
and

Jc34/ if k=2, obtaining any layer 1 bitmap segment with which a
selected layer 1 rank is associated, and combining the
obtained layer 1 bitmap segment with a segment of the first
layer 1 bitmap vector having a position determined by said
layer 1 rank according to a bitwise Boolean AND operation to
determine a segment of the second bitmap vector having a
position determined by said layer 1 rank,

said intersection list corresponding to the resulting second bitmap vector.

98. A method according to claim 97, wherein the layer 1 bitmap
segments for at least one thesaurus entry are stored in at least one layer 1 file
at addresses respectively corresponding to the layer 1 ranks associated
therewith, and the step /c/ of determining an intersection list comprises:

- providing a rank table in a RAM memory, having records associated with
the addresses in said layer 1 file;

- filling the rank table by writing any layer 1 rank selected in step /c32/ into
the rank table record associated with the address corresponding to the
selected layer 1 rank; and

- for any record of the filled rank table containing a layer 1 rank and
associated with an address in said layer 1 file, reading the associated
layer 1 bitmap segment at said address and combining the read layer 1
bitmap segment with a segment of the first layer 1 bitmap vector having
a position determined by said layer 1 rank according to a bitwise
Boolean AND operation to determine a segment of the second layer 1
bitmap vector having a position determined by said layer 1 rank.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

11/02 2008 MON 15:21 FAX +64 4 472 3358 @1i1s5/120

-113 -

99, A method according to any one of claims 95 to 98, further
comprising determining a pre-filtering flag for each entry of a level q thesaurus,

11 Feb 2008

said pre-filtering flag having a first value when said entry is associated with a
first identifier list represented by coding data which do not define any layer n

5 rank representing the position in the layer n pattern of a subset which includes
at least one integer of a layer n and level q filtering list, and wherein the step /¢/
of determining the intersection list between a level g target list, corresponding
to said layer n and level q filtering list, and a first identifier list associated with
an entry of the level q thesaurus comprises determining said intersection list as

10 being empty if the pre-filtering flag determined for said entry has said first
value.

2002232035

100. A method according to claim 99, wherein, for any level q thesaurus
entry associated with a first identifier list represented by coding data which
define a layer n rank representing the position in the layer n pattern of a subset

15 which includes at least one integer of the layer n and level q filtering list, the
layer n bitmap segment associated with said layer n rank is obtained and said
first value is allocated to the pre-filtering flag determined for said entry if the
obtained layer n bitmap segment does not represent the position of any integer
of said layer n and level g filtering list within said subset.

20 101, A method according to any one of claims 87 to 100, wherein the step
of processing the second identifier list further comprises writing output data
associated with any detected entry of a selected thesaurus into an output table.

102. A method according to claim 101, wherein the output table includes
a respective row corresponding to each identifier of the second identifier list,
25 and wherein output data associated with a detected entry of a selected
 thesaurus are written into any row of the output table corresponding to a
reference table row identifier belonging to both the second identifier list and the

first identifier list associated with said detected thesaurus entry.

103. A method according to claim 102, wherein each reference table row
30 identifier has a respective row of the output table corresponding thereto,

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

11/02 2008 MON 15:21 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

25

30

-114 -

wherein the rows of the output table are initialized with a default value before
writing the output data, and wherein the rows of the output table which do not
contain the default value are read after writing the output data.

104, A method according to claim 102, wherein the output table is
associated with an index file having a respective record for each reference
table row identifier, containing either a default value or a pointer designating a
respective row of the output table corresponding to said reference table row
identifier, wherein the records of the index file are initialized with a default value
before writing the output data, and wherein the step of writing output data
associated with a detected entry of a first selected thesaurus comprises, for
each reference table row identifier belonging to both the second identifier list
and the first identifier list associated with said detected entry of the first
selected thesaurus:
- allocating an avaitable row of the output table to correspond to said
reference table row identifier,
- writing output data into the allocated row; and
- writing a pointer to the allocated row into the record of the index file
provided for said reference table row identifier.

105. A method according to any one of claims 102 to 104, wherein the
output table has a plurality of columns each associated with a respective
attribute for which a thesaurus is selected, and wherein output data associated
with a detected entry of a thesaurus selected for an atiribute associated with a
column of the output table are written into said column.

106. A method according to both claims 104 and 105, wherein the step of
writing output data associated with a detected entry of at least one second
selected thesaurus comprises, for each reference table row identifier belonging
to both the second identifier list and the first identifier list associated with said
detected entry of the second selected thesaurus:
- reading the pointer contained in the record of the index file provided for
said reference table row identifier, and

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

di16/120

11/02 2008 MON 15:21 FAX +64 4 472 3358 [@A117/120

o0
-
8 -115 -
e
L%j - writing output data into the row of the output table designated by said
— pointer.
—

107, A method according to any one of claims 101 to 1086, wherein the
Vo) selected thesaurus being a word thesaurus defined with reference to a partition
8 5 into subsets each consisting of one attribute value, the output data associated
g with a detected entry comprise the attribute value for which said detected entry
g is provided.
-
8 108. A method according to any one of claims 101 to 106, wherein the

selected thesaurus being a macroword thesaurus associated with a prefix

10 length and defined with reference to a partition into subsets each consisting of
attribute values beginning by a common prefix having said prefix length, the
output data associated with a detected entry comprise the prefix value for
which said detected entry is provided. |

109. A method according to any one of claims 101 to 106, wherein the
15 output data associated with a detected entry comprise an address of said
detected entry in the selected thesaurus.

110. A method according to any one of claims 101 to 1086, wherein the
output data associated with a detected entry of a selected thesaurus comprise
a numerical value derived from said thesaurus entry,

20 111, A method according to claim 110, wherein, for a detected entry of at
least one selected thesaurus, said numerical value is calculated by applying a
mathematical function to a thesaurus value stored in said entry.

112, A method according to claim 110 or 111, wherein, for a detected
entry of at least one selected thesaurus, said numerical value is calculated by

25 applying a mathematical function to a piurality of values including a thesaurus
value stored in said entry and at least one value already present in the output
table.

113. A method according to any one of claims 110 to 112, wherein the
ouiput table includes a respective row corresponding to each identifier of the

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

11/02 2008 MON 15:22 FAX +64 4 472 3358 [AL1g/120

- 116 -

second identifier list, and wherein a numerical value derived from a detected
thesaurus entry is written into any row of the ouiput table corresponding to a

11 Feb 2008

reference table row identifier belonging to both the second identifier list and the
first identifier list associated with said detected thesaurus entry.

5 114, A method according to claim 113, wherein the numerical value,
derived from a detected entry of a first selected thesaurus and written into any
row of the output table corresponding to a reference table row identifier
belonging to both the second identifier list and the first identifier list associated
with said entry of the first selected thesaurus, is obiained from a thesaurus

2002232035

10 value stored in said entry,
and wherein the numerical value, derived from a detected entry of at
least one second selected thesaurus and written into a row of the output table
corresponding to a reference table row identifier belonging to both the second
identifier list and the first identifier list associated with said entry of the second
15 selected thesaurus, Is calculated by applying a mathematical function to a
plurality of values including a thesaurus value stored in said entry and at feast
one value already present in said row of the output table.

115. A method according to claim 113 or 114, further comprising
calculating an output value from a set of numerical values which have been
20 respectively written into the rows of the output table.

116. A method according to any one of claims 87 to 114, wherein an
integer range covering the identifiers designating the rows of the reference
table is partitioned into a plurality of predetermined portions, wherein at least
some of the data representing first identifier lists are distributed into a plurality
25 of storage sections respectively associated with said portions, wherein a
storage section associated with one of said portions contains data representing
identifier sub-lists consisting of identifiers of said portion.
and wherein the step of determining a second 1dent|f|er list is
executed separately for the different portions of the reference table row
30 identifier range, by means of the respective storage sections.

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

11/02 2008 MON 15:22 FAX +64 4 472 3358

11 Feb 2008

2002232035

10

15

20

- 117 -

117. A method according to claim 116, wherein the step of processing the
second identifier list is at least partially executed separately for the different
portions of the reference table row identifier range, by means of the respective
storage sections.

118. A method according to claim 116 or 117, wherein the separate step
executions are carried out in parallel by respective processors for the different
portions of the reference table row identifier range.

119. A method according to claim 118, wherein the combination of
thesaurus entries relevant o the query is determined, on the basis of criteria
specified in the query, by a query server connected to said processors through
a communication network,

120. A method according to claim 119, wherein a list update server is
connected, through the communication network, to a plurality of Storage units
respectively coupled to said processors, the list update server controlling the
storage units to maintain the storage sections.

121. A method according to any one of claims 87 to 120, wherein said
reference table is a virtual table which is not stored.

122. A database system for managing information from a collection of
data, comprising means arranged and programmed to impiement a method as
claimed in any one of claims 1 to 121.

123. A computer program product, loadable into the internal memory of a
digital computer, comprising software code portions for carrying out a method
as claimed in any one of claims 1 to 121 when said product is run on the
compuler,

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

A119/120

11/02 2008 MON 15:22 FAX +64 4 472 3358 B di1z20/120

11 Feb 2008

2002232035

-118 -

124. A method of organising information in a database system,
substantially as herein described with reference to the accompanying

figures.

125. A method of processing an SQL query in a database system,
substantially as herein described with reference to the accompanying

figures.

VIRTUAL KEY GRAPH
By the authorised agents
A J PARK

Per:

1314700_1.00C

COMS ID No: ARCS-178725 Received by IP Australia: Time (H:m) 13:21 Date (Y-M-d) 2008-02-11

WO 02/44943

CLIENTS
Row-1D

FIG. 1

PWN=O

POLICIES
Row-ID

FIG. 2

G WN=O

ACCIDENTS

1/57

PCT/1IB01/02792

Row-ID

FIG. 3

oO~NOOO DS WN=O

Name Birth Year Gender
Oscar 1959 - M
André 1976 M
Ariane 1965 F
Laure 1976 F
Max 1047 M
Type Date Client Link
Car 1998 06 24 2
Car 1998 09 09 1
House 1998 12 11 4
Car 1999 01 10 4
House 1999 01 31 2
Car 1999 02 01 3
House 1999 02 01 3
Date Amount Policy Link
1998 10 03 1 000 1
1999 04 18 10 000 4
1999 04 18 800 3
1999 06 12 1 300 1
1999 08 31 300 3
1999 12 08 2200 5
1999 12 09 1 000 0
2000 02 25 6 000 4
2000 03 20 800 1

WO 02/44943 PCT/1IB01/02792

2/57

\ Broker Table |

Client Table !

v Pary Tabl *\\\» /
———————— F------‘ ’I

. | Policy Table

\
AN
“
N
AY
A Y
AY
A

Accident Table

FIG. 4

S pary #X_| ‘\\\ /
________ ﬁ_...____.I ’l

Policy #0 (Car)
Accident #6

FIG. 5

WO 02/44943 PCT/1IB01/02792

3/57

Client #4 (Max) !

[Bandheedne | ll
: Null : !
———————— F\— - d ll

Policy #2 (House)
Null
FIG. 6
L UNa
______ .

FIG. 7

FLAT FILE

Row-ID

2O OONOOTOTD OWN-2O

—

Client Name Birth Year Gender Policy Type Policy Date

Acc. Date Amount

André 1976 M Car 1998 09 09 | 1998 10 03| 1 000
Ariane 1965 F House | 19990131 (199904 18] 10000
Max 1947 M Car 1999 01 101999 04 18| 800
Andre 1976 M Car 1998 09 09 | 1999 06 12| 1 300
Max 1947 M Car 1999 01 10 199908 31| 300
Laure 1976 F Car 1999 02 01 [1999 1208 | 2 200
Ariane 1965 F Car 1998 06 24 { 1999 12 09| 1000
Ariane 1965 F House | 1999 01 31| 200002 25| 6 000
André 1976 M Car 1998 09 09 | 2000 03 20| 800
Max 1947 M House |1998 12 11 Null Null
Laure 1976 F House | 1999 02 01 Null Null
Oscar 1959 M Null Null Null Null

FIG. 8

LS/y

€rorr/i0 OM

T6LT0/1041/1LDd

WO 02/44943

5/567

PCT/1IB01/02792

LINK TABLE
FF Row-ID Client Link Policy Link Accident Link
0 1 1 0
1 2 4 1
2 4 3 2
3 1 1 3
4 4 3 4
5 3 5 5
6 2 0 6
7 2 4 7
8 1 1 8
9 4 2 —1
10 3 6 -1
11 0 -1 -1
FIG. 9

ACCIDENT AMOUNT (TRUNCATION LENGTH 3) THESAURUS

Amount Prefix FF Row-ID List Bitmap
0 {2,4,8} 001010001000
1 {0,3,6} 100100100000
2 {5} 000001000000
6 {7} 000000010000
10 {1} 010000000000

FIG. 10H

WO 02/44943

6/57

CLIENT NAME THESAURUS

PCT/1IB01/02792

Name FF Row-ID List Bitmap
0 Null - 000000000000
1 André {0,3,8} 100100001000
2 Ariane {1,6,7} 010000110000
3 Laure {5,10} 000001000010
4 Max {2,4,9} 001010000100
5 Oscar {11} 000000000001

FIG. 10A
CLIENT BIRTH YEAR THESAURUS

Birth Year FF Row-ID List Bitmap
0 Null - 000000000000
1 1947 {2,4,9} 001010000100
2 1959 {11} 000000000001
3 1965 {1,6,7} 010000110000
4 1976 {0,3,5,8,10} 100101001010

FIG. 10B
CLIENT GENDER THESAURUS

Gender FF Row-ID List Bitmap
0 Null - 000000000000
1 F {1,5,6,7,10} 010001110010
2 M {0,2,3,4,8,9,11}] 101110001101

FIG. 10C

WO 02/44943

7/57

PCT/1IB01/02792

POLICY TYPE THESAURUS
Type FF Row-ID List Bitmap
0 Null {11} 000000000001
1 Car {0,2,3,4,5,6,8}| 101111101000
2 House {1,7,9,10} 010000010110
FIG. 10D
POLICY DATE THESAURUS
Date FF Row-ID List Bitmap
-0 Null {11} 000000000001
1] 1998 06 24 {6} 000000100000
2| 1998 09 09 {0,3,8} 100100001000
3] 1998 12 11 {9} 000000000100
4] 1999 01 10 {2,4} 001010000000
5| 1999 01 31 {1,7} - 010000010000
6] 1999 02 01 {5,10} 000001000010

FIG. 10E

WO 02/44943

8/57

ACCIDENT DATE THESAURUS

O~NOONP,WN-—=O

PCT/1IB01/02792

Date FF Row-ID List Bitmap
Null {9,10,11} 000000000111
1998 10 03 {0} 100000000000
1999 04 18 {1,2} 010000000000
1999 06 12 {3} 000100000000
1999 08 31 {4} 000010000000
1999 12 08 {5} 000001000000
1999 12 09 {6} 000000100000
2000 02 25 {7} 000000010000
2000 03 20 {8} 000000001000

FIG. 10F
ACCIDENT AMOUNT THESAURUS

Amount FF Row-ID List Bitmap
Null {9,10,11} 000000000111
300 {4} 000010000000
800 {2,8} 001000001000
1 000 {0,6} 100000100000
1 300 {3} 000100000000
2 200 {5} 000001000000
6 000 {7} 000000010000
10 000 {1} 010000000000

~NOoOOhk WN-O

FIG. 10G

WO 02/44943 PCT/1IB01/02792

9/57
CLIENT NAME THESAURUS

Name Bitmap L1 Ranks L1 Segments
Null | 000 000 000 000 - - |
André | 100 100 001 000 | {0,1,2} | {100,100,001}

Ariane | 010 000 110000 | {0,2} {010,110}
Laure | 000 001 000010 | {1,3} {001,010}
Max | 001 010 000 100 | {0,2,3} |{001,010,100}
Oscar | 000 000 000 001 {3} {001}
FIG. 11A

ACCIDENT AMOUNT THESAURUS

Amount Bitmap L1 Ranks L1 Segments
Null | 000 000 000 111 {3} {111}
300 | 000 010 000 000 {1} {010}
800 | 001 000 001 000 {0,2} {001,001}

1 000 | 100 000 100 000 {0,2} {100,100}
1 300 | 000 100 000 000 {1} {100}
2 200 | 000 001 000 000 {1} - {001}
6 000 | 000 000 010 000 {2} {010}
10 000 | 010 000 000 000 {0} {010}
FIG. 11G

ACCIDENT AMOUNT MACROWORD (/ 3) THESAURUS

Prefix Bitmap L1 Ranks L1 Segments
0 001 010 001 000 | {0,1,2} | {001,010,001}
1 100 100 100 000 | {0,1,2} |{100,100,100}
2 000 001 000 000 {1} {001}
6 000 000 010 000 {2} {010}
10 | 010 000 000 000 {0} {010}

FIG. 11H

WO 02/44943

' 10/57
CLIENT NAME THESAURUS

PCT/1IB01/02792

Name L1 Ranks L1 Bitmap L2 Ranks L2 Segments

Null - 00 00 - -
Andre | {0,1,2} 1110 {0,1} {11,10}
Ariane | {0,2} 10 10 {0,1} {10,10}
Laure {1,3} 01 01 {0,1} {01,01}

Max {0,2,3} 10 11 {0,1} {10,11}
Oscar {3} 00 01 {1} {01}

FIG. 12A

ACCIDENT AMOUNT THESAURUS
Amount L1 Ranks L1 Bitmap L2 Ranks L2 Segments

Null 3} 00 01 1 {01}
300 {1) 01 00 {0} {01)
800 | {0,2} 10 10 {0,1} {10,10}
1000 | {0, 10 10 10,1} {10,10}
1300 | {1} 01 00 {0} {01}
2200 | {1} 01 00 {0} {01}
6000 | {2} 00 10 (1) {10}
10000] {0} 10 00 {0} {10}
FIG. 12G

ACCIDENT AMOUNT MACROWORD (/ 3) THESAURUS
Prefix L1 Ranks L1 Bitmap L2 Ranks L2 Segments

0 | {01.2} | 1110 {01} (11,10}
1 0,12} | 1110 {0,1) (11,10}
2 1} 01 00 {0} {01}
6 {2) 00 10 {1} {10}
10 {0} 10 00 {0} {10}

FIG. 12H

WO 02/44943

11/57

CLIENT NAME THESAURUS

PCT/1IB01/02792

Name L1 Ranks L1 Segments L2 Ranks L2 Segments

Null - - - -
André | {0,1,2} [{100,100,001}| {O,1} {11,10}
Ariane | {0,2} {010,110} {0,1} {10,10}
Laure {1,3} {001,010} {0,1} {01,01}

Max {0,2,3} {{001,010,100} | {0,1} {10,11}
Oscar {3} {001} {1} {01}

FIG. 13A

ACCIDENT AMOUNT THESAURUS

Amount L1 Ranks L1 Segments L2 Ranks L2 Segments

Null (3} 111} {1} {01}
300 (1) {010} {0} {01}
800 | {0,2} {001,001} {0,1} {10,10}
1000 | {0,2) {100,100} (0,1} {10,10}
1300 | {1} {100} {0} {01}
2200 | {1} {001} {0} {01}
6000 | {2} {010} {1} {10}
10000| {0} {010} {0) {10}
FIG. 13G

ACCIDENT AMOUNT MACROWORD (/ 3) THESAURUS

Prefix L1 Ranks L1 Segments L2 Ranks L2 Segments

0 | {0,1,2}]{001,010,001}] {0,1} (11,10}
1 {0,1,2} |{100,100,100}| {0,1} (11,10}
2 {1} {001} {0} {01}
6 {2} {010} {1} {10}
10 | {0} {010} {0} {10}

FIG. 13H

WO 02/44943

12/57

CLIENT NAME THESAURUS

PCT/1IB01/02792

Name L1 First L1 Last L2 First
Null 0 0 0
André 20 2 3
Ariane 5 6 12
Laure 8 12 14
Max 29 15 6
Oscar 26 26 7
FIG. 14A
ACCIDENT AMOUNT THESAURUS
Amount L1 First L1 Last L2 First
Null 13 13 21
300 4 4 22
800 9 10 16
1 000 3 19 18
1 300 24 24 20
2 200 25 25 4
6 000 23 23 9
10 000 16 16 10
FIG. 14G
ACCIDENT AMOUNT MACROWORD (/ 3) THESAURUS
Prefix L1 First L1 Last L2 First
0 21 7 19
1 31 14 25
2 1 1 27
6 28 28 28
10 18 18 1

FIG. 14H

WO 02/44943 PCT/1IB01/02792

13/57
Address L1 Rank Next L1 Seginent

1 1 0 001
2| 2 0 001
3 o 19 100
4 1 0 010
51 0 6 010
6] 2 0 110
71 2 0 001
gl 1 12 001
af o 10 001

10, 2 0 001
11 1 2 100
12| 3 0 010
13] 3 0 111
14| 2 0 100
15| 3 0 100
16] O 0 010
17 X 0 000
18] O 0 010
19] 2 0 100
20| O 11 100
21 0 22 001
22 1 7 010
23| 2 0 010
24 1 0 100
25 1 0 001
26| 3 0 001
271 2 15 010
28 2 0 010
FIG. 15 29 0 27 001
30 1 14 100
31 0 30 100
32| «x 33 000
33| x 17 000

WO 02/44943 PCT/1IB01/02792

14/57
Address L2 Rank Next L2 Segment

1 0 0 10
2 1 0 01
3 0 11 11
4 0 0 - 01
5 1 0 10
6 0 13 10
7 1 0 01
8 X 17 00
9 1 0 10
10 0 0 10
11 1 0 10
12 0 23 10
13 1 0 11
14 0 2 01
15 1 0 10
16 0 15 10
17 X 24 00
18 0 5 10
19 0 30 11
20 0 0 01
21 1 0 01
22 0 0 01
23 1 0 10
24 X 0 00
25 0 26 11
26 1 0 10
27 0 0 01
28 1 0 10
29 X 8 00
30 1 0 10

FIG. 16

CLIENT NAME THESAURUS
CN_André_NO1 CN_André HP1 CN_André NO2 CN_André HP2

0 100 0 11
Row-ID Name 1 100 1 10
0l Null 2 001
1| André |
2| Ariane ——> CN_Ariane_ NO1 CN_Ariane_ HP1 CN_Ariane NO2 CN_Ariane_HP2
3| Laure 0 010 0 10
4] Max 2 110 1 10
5] Oscar \
CN_Laure NO1 CN_Laure HP1 CN_Laure NO2 CN_Laure_HP2
1 ' 001 0 01
3 010 1 01
CN_Max_NOf1 CN_Max_HP1 CN_Max_NO2 CN_Max HP2
0 001 0 10
FIG. 17 2 010 | 1 11
3 100

CN_Oscar NO1 CN_Oscar HP1 CN_Oscar NO2 CN_Oscar_HP2

i

€rorr/i0 OM

1S/S1

T6LT0/1041/1LDd

WO 02/44943

16/57

101—] CPU
102\ ~
ROM < > RAM | —
MAN-
MACHINE < > SQE/%
INTERFACE
/ N \
104 100 105

e — — — — — — — OTPOY tvel T U G S Gum— — — — — —

PCT/1IB01/02792

FIG. 18

103

106

| Translating compound keys into row-ID's |)

FIG. 19

120 7T T T T =
Completing data tables with Null records
d
121 y
Creating and sorting word thesauruses
~
122 J
Macroword formatting.
123 _- Creating macroword thesauruses
v
Generating link table rows and word thesaurus entries
124 ~ v
Rearranging word thesaurus entry coding data
A
125)
Merging word thesaurus entries
126 _-1 into macroword thesaurus entries
v
P Deleting data table link columns and Null records

127

WO 02/44943

17/57

PCT/1IB01/02792

Q1,R1,Q2,R2 =-— 0

™ 130

Y

Y

Select row in root table | ~—__

'

131

Read linked records in other data tables

™~ 132

v

Write data graph links into row Q1 x D1 + R1 of link table

™~ 133

Y

'

Select attribute AT

[134

Y

Dichotomy Search -
W| -<—— word index 135

Y

Update AT thesaurus entry for Wi |~ 136

Y

ﬁ< Attributes remaining ?

e,

\
137

R1 «—R1 + 1

™ 138

| {
J——YE‘°’<R1=D1'.>>-hlg
\

140 |

R1 =0

Q1 = Q1 + 1
R2 «-—R2 + 1

139

142 r<Y“"s
\

R2=D27

No

R2 -0

Q2=— Q2 +1

A
141

143
/

Y

Yes /

Rows remaining in root table(s) ? >ﬁ9+

AN
FIG. 20

End

WO 02/44943 PCT/1IB01/02792

18/57

150 — | AD =— AT_Fk (WI)

No
l Y
153 — 9= NOk (AD) AT Fk (WI)<— Hk
A\
Yes q=QK? No AD ~— AD' 152
154 to
AD' <— NXk (AD) 157
166

l-§< AD'-O’?
156

NXk (AD) -— Hk [~ 158

P g

AD =— Hk |~_ 159

Y

Hk ~— NXk (AD)
AT_Lk (WI) =— AD FIG. 21
NOk (AD) =— Qk | ~ 160 -

NXk (AD) <— 0

Y Y

Write "1" into bit Rk of HPk (AD) [~ 441

WO 02/44943

19/57

PCT/1IB01/02792

AD <— AT

Lk (WI)

Yes

1563 |

q-— NOk (AD)

154

y

-

—Qk'? >_l

151

AT _Fk (WI)<— Hk

\
152

NXk (AD) <— Hk

_— 1568

rd

AD < Hk

Y

[~

159

Hk ~<— NXk (AD)
AT LK (WI) -— AD
NOk (AD) <— Qk
NXk (AD) <— 0

[160

'

Write "1"

into bit Rk of HPk (AD)

l

161

FIG. 22

WO 02/44943 PCT/1IB01/02792

20/57

150 —1AD -— AT_F2 (WI)

No AD =0 ? Yes
151
l Y
153 —9 = NO2 (AD) AT _F2 (Wl)=—H2
\
\
157
155 |
Yes bit R2 of ,\\No
HP2 (AD)—
r¥
Y
H2 <-— NX2 (AD) E/_@__ZQ
NO2 (AD) =-— Q2|
NX2 (AD)<— 0 160
Y v
Write "1" into bit R2 of HP2 (AD)
LLT1 - 1 ~~ 161

.1

WO 02/44943 PCT/1IB01/02792

21/57
170
S CED
171 —|AD =— AT_L1 (WI) AD <— AT_F1 (WI) [~150
172 ; i

No Yes
158 < AD=07> q=—NOT (AD) .

\

NX1 (AD)=—H1| |AT_F1 (Wi)<—H1 Yes No

l [\
154
Y 152 AD <— NX1 (AD)
AD <-— H1 ~_ 159 / I
Y 155

H1 <— NX1 (AD)
NO1 (AD) =— Q1 |__
AT L1 (Wl)=—AD| 160 FIG. 24

Y Y

Write "1" into bit R1 of HP1 (AD) |~ 4a 4

l

WO 02/44943

CLIENT NAME THESAURUS

22/57

Row-ID Name Word Index

NP WON 2O

Null

Andreé

Ariane

Laure

Max

Oscar

0
1
2
3
4
5
. 2

o)

Format

— — A — — - —

ACCIDENT AMOUNT THESAURUS

Row-ID Amount Word Index

~NOoOG S WN-=2O

Null

300

800

1 000

1 300

2 200

6 000

10 000

FIG. 26

0
1
2
3
4
5
6
7
2

6

Format

— — - — - — om— —]

PCT/1IB01/02792

ACC. AMOUNT. MACROWORSD (/ 3) THESAURUS

Row-ID Prefix Macro Index First Word
0 0 1
1 1 3
2 2 5
6 3 6
10 4 7

0

1
2
3
4

WO 02/44943

PCT/1IB01/02792

23/57
CLIENT NAME AUXILIARY TABLE

Row-ID CN F1 ~ CN L1 CN_F2
o 0 0 0
1 1 3 1
2| 4 5 3
3l_6 7 5
4 8 10 7
5{ 11 11 9
FIG. 28

ACCIDENT AMOUNT AUXILIARY TABLE

Row-ID AA_F1 AA L1 AA_F2
o] 12 12 10
1 13 13 11
2| 14 15 12
3] 16 17 14
4] 18 18 16
5 19 19 17
6f 20 20 18
7 21 21 19
FIG. 29

ACC. AMOUNT. MACROWORD (/ 3) AUXILIARY TABLE

Row-ID AA 3 F1

2WN O

AA 3 L1 AA 3 F2
22 24 20
25 27 22
28 28 24
29 29 25
30 30 26

FIG. 30

WO 02/44943 PCT/1IB01/02792

24/57

AD _NO1 NX1 HP1
10 2 |_ 100
2| 1 3 |_ 100
3 2 o |_ 001
40 5 |_ 010
5| 2 0o |_ 110
6 1 7 |- 001
713 0o |_ 010
80 9 |_ 001
o] 2 10 | _ 010
10 3 o |_ 100
113 0o |_ 001
12 3 o |_ 111
13 1 o |_ 010
14 0 15 | _ 001
15] 2 0 | 001
16] 0O 17| _ 100
17 2 o |_ 100
18] 1 o |_ 100
19 1 o | 001
20 2 0o |_ 010
21 0 0o |_ 010
22[0 23 | _ 001
23] 1 24 | _ 010
24 2 0o |_ 001
25 0 26 | _ 100
26] 1 27 |~ 100

FIG.31 27 2 0o |_ 100
28] 1 0o | 001
29| 2 0 |_ 010
3 O 0 | 010
3 x 32 | 000
32 «x 33 000
33 x 01~ 000

WO 02/44943 PCT/1IB01/02792

25/57

AD NO2 Nx2 HP2

11 0 2 |_ 11
2[1 o |_ 10
3 0O 4 | _ 10
4 1 o |_ 10
5] 0 6 |_ 01
6 1 o |_ 01
70 8 | 10
8 1 o | 11
of 1 o |_ 01
10 1 o |_ 01
110 o |_ 01
12 0 13| _ 10
13 1 o |_ 10
14 0 15 | 10
15 1 16 | _ 10
16 0 17 | _ 01
17 0 18 | _ 01
18 1 19 |_ 10
19 0 20 |_ 10
200 0O 21 | _ 11
21 1 o | 10
22| 0O 23 | 11
23] 1 0 10
24 0 o 1 01

FIG.32 25| 1 o |_. 10

26] 0 o | 10
27| x 28 | 00
28] x 29 | . 00
29 X 30 00
30[X 0o | 00

WO 02/44943 PCT/1IB01/02792

26/57

W -=— AT value in data graph

k <—1
/
175 l ! 181
l | -a— j+1 |-
178 25 = imax (AT, W, k) ?>ﬁ1 179
\ Y /
Append records: 177 |q-<— AT_W_NOK (i)
AT_W_NOK (i) -— Qk !
AT_W_HPk (i) =— 00...0

imax (AT, W, K)<— i+1 Yes No

l | 180
Write "1" into bit Rk of AT_W_HPK (i) 184
/ /
182 Yes /o \NO ol Kk < Kk+1

FIG. 33

WO 02/44943 PCT/1IB01/02792

27/57

AD NO2 NX2 HP2 F1
11 0 2 [N
2 1 0 [10 1 3
3l 0O 4 10 4
41 0 | 10 1 5
5] 0O 6 o1 16
6 1 0 | o1 17
71 0 8 [10 8
8 1 0 K | 9
of 1 0 Lot | [11

10 1 0 ot | [12
1[0 o | [o1 | | 13
12 0 13 | [10 | | 14
13 1 0 | 10 | | 15
14 0 15 10 16
150 1 6 | | 10 | | 17
16 0 17 | [o1t | | 18
17 0 18 | [o1 | 1T 19
18] 1 19 | [10 | [20
19 0 20 | [10 | | 21
200 O 21 L1 1] 22
21 1 o | [10 | | 24
22| 0 23 | 11 | | 25
23] 1 o | [10 | [27
24| 0 0 01 28
251 1 o | [10 T | 29
26| O o | [10 | [30
27 x 28 | [00 | [«x
28] x 29 00 X
29[x 30 | | 00 - X
30f x 0 | [o0] 1T «x

FIG. 34A

WO 02/44943

FIG. 34B

>
O

. .
QWO ~NOO ~WN=

WWWWNNNNNNMNNNNNMNONN=2A =S A a2l
WN 20000 NODANPEPWN-2 000 NS WN =

28/57

——

HP1

PCT/1IB01/02792

100

100

001

010

110

001

010

O|OjO|O|O|O|OIN] X

001

—_
o

010

100

001

111

010

001

001

100

100

100

001

010

010

001

010

001

100

100

100

001

010

010

000

000

Wwlw N N
OwNOOOOOmOOwOOOOOOOOOOOO

000

WO 02/44943 PCT/1IB01/02792

29/57

AD NO2 NX2 F1
110 2 | 1
2 1 0o | 3
3l_ 0O 4 | 4
41 0 | 5
51 0 6 | 6
6 1 0 7
71 0 8 |~ 8
8 1 0o |_ 9
of 1 0o |_ 11

10 1 0o | 12
11 0 0o | 13
12 0 13 | 10
13 1 o | 14
14 0 15 15
15 1 16 | 16
16 0 17 17
17[0O 18 | 18
18 1 19 | 19
190 0 20 | 20
200 0O 21 | 21
21 1 o | | 22
22l 0O 23 | | 24
23| 1 0o |_ 25
24| 0 0 |_ 27
25| 1 0o | 28
26 0O 0o |_ 29
27 x 28 | 30
28 X 2 | X
29 X 30 X
30[X 0o | X

FIG. 34C

WO 02/44943 PCT/1IB01/02792

30/57

AD R2 NX1 HP1
1 0 2 100
2[1 0 | | 100
3l O 0 001
4 0 o | 010
5 0 o | [110
6 1 0 001
711 o | | o010
gl o© o | 001
9] O 10 | 010

10 1 o | 100
11 1 o | 001
12 1 o | 111
13 1 o | 010
14] 0 0 001
15 0 0 T 001
16] O o | 100
17] O o | - 100
18 1 o | 100
19 1 o | 001
20l O o | 010
21 0 o | 010
22l 0 23 | 001
23 1 o | 010
24 0 o | 001
251 0 26 100
FIG 34D 26 1 0 T 100
271 0 o | = 100
28 1 0 001
29] O o | 010
30 0 o | 010
31 x 32 | | 000
32 x 33 | 000
33 x 0 000

¥ v

450 —1_Vrite "1" into bit Rk of HPk (AD) FIG. 35
45 — K=Kk Yes ks 12 DN
! 451
453 —1 M <— Fk (AD)
FK(AD) =— Hk <22 M =07 > THP =— HP (k+1) (AD)] 460
/ 454 R=—0
495 Yes Y ‘ No
R <R (k+1) /\Q 470
461
Yes (HP R) =0?> No M =— M Yes No
462 M <— NXk (M)~ 465 AD <— M
/
Yes Mm>07>N0 467 471
Y v / Y
R<— R+1}—463 466 NXk (M')~<— Hk AD < Hk +—472
|]
Y Y ‘
AD <— Hk | —456 Hk <— NXk (AD) |-—473
Y Y
Hk <— NXk (AD) |— 457 NXk (M) <—AD| _,-,
Y NXk (AD) <M [
NXk (AD) =— 0 |— 458
I:l

-~

LS/LE

€rorr/i0 OM

T6LT0/1041/1LDd

WO 02/44943 PCT/1IB01/02792

32/57

Converting SQL query criteria into tree

190 ¥
Analyzing / splitting BETWEEN clauses
~
191 J
_~ Identifying Matching Data Graphs
192 7

Result preparation
193 v

-~ Result display

194

FIG. 36

WO 02/44943 PCT/1IB01/02792

I
| U R e — -l

OR

AND

OR

AND

OR \ /'__é’i—fiE_J

OR

FIG. 38 . ____'____
| AA x=5 |

WO 02/44943

34/57

PCT/1IB01/02792

Selecta, b:
Wy (a) = lowest thesaurus word in range
Wj (b) = highest thesaurus word in range

202 —

XL -0

l

a1

201

200

XL —-=—1

_— 203

205

XR =—(

207 — L

Y

204

XR =1

_— 206

Y

Call FUNC (AT, Q, a, b, XL, XR)

208 |

Y

Insert sub-tree

FIG. 39

210 |

Start FUNC (AT, q, a, b, XL, XR)

Yes /i__c;*;'\ No

< 94=0? >

21

'

q<— g-1 fa—

222

Selecta', b':
Wy () = [Wo(a)] p(q)
Wq (b) = [Wo(b)] p(q)

215 214
/

/
a'=— a+1 |22 [Wo(a-1)] p(g)= Wa () 212

XL =0

219 218
/ /

| -

b'<— b'-1 Yes<[Wo(b+1)] pq)= Wa () ?>&> XR<— 0

FIG. 40A

LSG/GE

€rorr/i0 OM

T6LT0/1041/1LDd

T

T

Generate sub-range in word thesaurus
from AT _x=a to AT x=b

Generate sub-range in macroword thesaurus
from AT _P(q) x=a' to AT P(q) x=b'

/

230 223

/

Select b":

Wy (b") = highest thesaurus word such that
[Wo(b") I p(q) < Wq(a)

!

226 |

Call FUNC (AT, g-1, a, b", 1, 0)

L

224

225

227
‘ Yes <XR=1?§N°

FIG. 40B

Select a":

[Wo(a")] p(q)> Wq(b)

228 — Wop (a") = lowest thesaurus word such that

Y

229

Call FUNC (AT, g-1,a", b, 0, 1)

Y

231

Return Sub - Tree

LG/9€

€rorr/i0 OM

T6LT0/1041/1LDd

WO 02/44943 PCT/1IB01/02792

37/57

k -—n

240 |

bf

Select root node ND |~ 241

Y

— Call FNODE (k, ND, Res, WZ)

Y
FIG. 41 Res -— WZ ™~ 243

242

\
244 245

P

WI =— AT_WI(x)

'

AD <— AT_F(WI)

270

271

AD <«-— M |=—

Yes No \
{Ap=07) 276

272 [N <= NO (AD)
FIG. 43 M~ NX(AD) |27

' Y
274 N"_&N’A"J 275

Write "1" into bit WZ (N')
l

AN

277 278

Start FNODE (I;, ND, Res, WZ) |~ 048
: , FIG. 42
251 Reserve working zone WZ in RAM | ~_ 249
\ !
Get WZ Yes . N\, No 252
?
(layer k) <—&ND is preset “)
Yes / . N\, No
250 i Q ND is Ieaf?/ ‘
260~ WZ <=0 Select first child node ND1 [~ 253
X <«-— X1
T 261 Y
Yes <IOW density 25-NC Call FNODE (k, lei1, Res, WZ1) [~ 254
low density Yes Select second child node ND2 |~ 555
processing (Fig.43) +
/
262 Call FNODE (k, ND2, Res, WZ2) P~ 955
layer n layerk < n &
processing (Fig.44) processing (Fig.45) WZ -— WZ1 @ WZ2 [~ 957
/ / Y
264 265 Release WZ1 and WZ2 in RAM [~ 5gg
v Y
Return WZ

266

1G/8€

€rorr/i0 OM

T6LT0/1041/1LDd

WO 02/44943 PCT/1IB01/02792

39/57

Y

080 —_WI = AT_P(q)_WI(x)

v

g1 —| AD == AT_P(q)_Fn(Wi)

AD =-— M |
@ \
285

N <—NOn(AD)| o,
FIG. 44 M <— NXn (AD) [~
- H -«— HPn (AD) 284
{ /

W2Z [N] <— WZ [N] or H

286 287
Yi N \ |
DT L e
! {

280 — WI «— AT_P(q)_WIi(x)

y

081 — AD =— AT_P(q)_Fk(WI)

N <— NOK (AD)
M <— NXk (AD) | 290

Y |
FIG 45 Yes ;RGS(N)= 0?> No 2/92

291 H -— HPk (AD)

v
284~ WZ [N] <— WZ [N] or H

Y

285 — AD =— M

|
x<—x+1
287

WO 02/44943

40/57

279

TNO -=— -1

l

PCT/1IB01/02792

Y

280

WI <— AT_P(q)_WI(x)

Y

281

AD —=— AT _P(q)_Fk(WI)

FIG. 46

286

fb—“es =

— 301

AD =— 1

Yoo Cap =07 >0

282

Y8S “Res(N)=0 ?>%

291 TNO(AD) ~— N

N <-— NOK (AD)
M ~— NXk (AD)

_—290

'

295
/ .

¥

285 —]

AD = M

X -— X+1

\
287

P

N --— TNO(AD)

— 302

303

H <« HPk(AD)

-— 304

Y

WZ [N] <— WZ [N] or H

— 305

l

Y
AD = ADmax ? >&>

Yes (

\
306

AD <— AD+1

\
307

WO 02/44943

41/57

PCT/1IB01/02792

P

280 —1 WI =— AT_P(q)_Wi(x)
Y
281 — AD=— AT_P(q)_Fn(WI)
Yes No 285 —{ AD < M
\
FIG. 47 297 M =— NXn (AD) [~
\ Y
Call FILT (k, n, Resg41, ...,Resp, N, AD, WZ)
286 |
e x=x22 >0
X - X+1
\
287
P
i -— O
‘ 316
Yes + No /
—<i = imax (AT, g, W, k) ? | | —— 1
/ 1
311 ,
AN -— AT_P(q)_W_NOK(i)
FIG. 49 312 7
Yes — No
r—<Res(N) =17
H <— AT_P(q)_W_HPK() I~ 344 313
Y
WZ [N] <— WZ [N]orH }— 315
I
Yoo (x=xa 7 ot
X a— xX+1 N
317 318

42/57

Start FILT (k, K, Ress1, ..,

Resy', N, AD, WZ)

\

YeS{/ReSk'[N] SoN 500 FIG. 48
501 H —— HPk' (AD) |— 503
Yes CHAND Reik-[N] =07 >N
PN
504 ;
AD' =— F (K1) (AD)
R=—10 "~ 505
N' <— N.DK
Yes H(R) = 0 ? No
506
Y8 ¢ Resye(N) = 07 >N
)\
510

k_

[ues K = k+1 ?

H' —— HPk (AD') |— 513

512

Yy v

Return WZ — 502

Y
WZ [N']<— WZ [N]ORrR H' }— 514
y
Call FILT (k, k'-1,
Resk+1,Resp_q, N', AD', WZ)
' \
AD' —— NX (k-1) (AD") 515
Y \
R <— R+1 ~ 507 511
Yes No N <— N+1
508 5\09

WO 02/44943

43/57

¢

260A

WZ «-— 0
X --— x1

TNO -— -1

PCT/1IB01/02792

v

280A]

WI <— AT_P(q)_WI(x)
F <— AT_P(q)_FORMAT(x)

Y

—Ye8 CF = Low Density 7 >0
/

281A
/

261A [AD < AT P(q)_Fk(WI)

262A 264A 265A
\ y \ 263A /
Loop 271 - 276 Loop 282 - 285 Loop 282 - 285
of Fig.43 of Fig.44 of Fig.46
| |
2G>
X ~-— X+1
\
286A 287A
Loop 301 - 306
B01A " Fig.46

$

FIG. 50

WO 02/44943

WZ1q <+— Res
320 Xxq <— 0
¥ ' i

PCT/1IB01/02792

44/57

Convert WZ1q into bitmap vectors WZ2q, ..., WZnq

\
| ¢ 321
322 — K=<=n
Y Y
303 —1 Call FINTER (k, q, xq, WZkg, WX) 397
- /
Xq -— Xq + 1 Ka— k-1
/
325

Xq‘—Xq+1

A

/
341 331 —] WZ1g-1 <— WX
v
Action with xga, WX Xg-1 <+ AT_P(q)_FW(xq)
/ Y \
335 332

y

333— 9 < q-1

336— 9+ @

v

Y

337 — WZ1q - WZ1q AND NOT WX

340

Yes

Y

End

wz1q=0'.?NL> q =—q-1
\

No 338 339

FIG. 51

WO 02/44943 PCT/1IB01/02792

45/57

350 — Start FINTER (k, g, xq, WZ, WX)

Y
Y
352 — WI <— AT_P(q)_WiIi(x)
Y
353 — AD —-— AT_P(q)_Fk(WI)
| Y
Yes Low Density ? No
/
Low density 354
processing (Fig.53)
/
355
Layer n : Layerk <n
processing (Fig.54) processing (Fig.55)
/ /
Y 357 358

359 — Return WX

WO 02/44943

Y

46/57

PCT/1IB01/02792

2 AD=07)5

360

362

N <— NO (AD)
M ~<— NX (AD)

_— 361

Y

A N'=—| N/Ak |

FIG. 53

¥
Yes N
364 l—<WZ(N)—1?
\ /

WX(N') <— 1

363

v

No

365

AD «-—M

e A= 07y

370

N <— NOn (AD)
M ~=— NXn (AD)

371

v
\-(95< WZ[N]=0?>N—°l
/

372 H <— HPn (AD) |— 373

Y

WXIN] <— WZ[N] ANDH | — 374

Y

3757

AD -— M

FIG. 54

WO 02/44943 PCT/1IB01/02792

380 — TNQO -=— -1
Yes AD =0 ? No
381 | N < NOk (AD) 282
M ~=— NXk (AD)
Yes + No
WZ[N] = 0 ? 384
/ /
383 TNO(AD) <— N
Y
385 AD =—M
Y Y
AD <-— AD+1 }|— 386
Y

N <— TNO(AD) |- 387

388 | H <«— HPK (AD) |— 389

Y
WX[N] --— WZ[N] AanD H |- 390
1y

Yes A[/) = ADmax ?> No
I 391 FIG. 55

WO 02/44943

PCT/1IB01/02792

48/57

WZ1q <— Res
— q +— Q
320 xq < 0
Y Y Y
Convert WZ1q into bitmap vectors W22q, ...,Wan
it Ay
Y
359 — WI —— AT_P(q)_WI(xq)
Y 593
353 —AD =— AT_P(q)_Fn(W)) /
AD -— M [+
Yes * No
/ 590 |N -=— NOn (AD) | —~591
Xq < Xq*1 M -<«— NXn (AD) 592
Y /
Call FFILT (n,WZ1q, ...,WZnq,N,AD,WX)
I

331—

WZ1q-1 <— WX

Y

Action with xqa, WX

Xq-1<— AT_P(q)_FW(xq)

/
335

y

336

q-— Q

Y

Y

\

333

q =-— q-1

332

]

337

WZ1q - WZ1q AND NOT WX

340

Yes

wz1q=0?2—N°—;q -—q-1
/

339

FIG. 56

WO 02/44943

49/57

PCT/1IB01/02792

Start FFILT (k, WZ1g, ..., WZkg, N, AD, WX)

i

Yes /

/
601

\
WakgiN = 0 3> Ne 600 FIG. 57

H <— HPk (AD)

—— 603

Y

Yes ¢ H AND WZkg[N] = 0 7 DN

604 A

Y

AD' -— F (k-1) (AD)
R-=-—0
N' <«— N.Dk

[605

H(R) =0 ?

No

Yes / Wqu

610

l_(k”

H' <— HP1 (AD') }— 613

Y

WXIN ~— WZ1g[N7 anD H'

— 614

k_Ni

612

Call FFILT (k-1, WZ1q,

- WZ(k-1)g, N', AD', WX)

Y \

AD' <—— NX (k-1) (AD') 615
Y Y \
R ~— R+1 807 611
vy \
Return WX — 602 608 609

WO 02/44943

CLIENT NAME
NO2 F_AD'

ACC. AMOUNT
NO2 F_AD'

0 10

1 16

FIG. 59

ACC. AMOUNT /3

NO2__F_AD'
o[__20
1|24

FIG. 60

AD’

OO~ PSWN=

50/57

PCT/1IB01/02792

HP'2 NX'2 PTR
11 2 1
10 3 2
01 4 3
10 0 4
10 6 1
10 7 2
01 8 3
11 9 4
01 0 9
01 11 1
10 12 2
10 13 3
01 14 4
01 15 S
10 0 7
01 17 0
10 18 2
10 19 3
10 0 6
11 21 0
11 22 1
01 23 2
10 0 4
10 25 0
10 26 1
10 0 3
00 28 X
00 29 X
00 30 X
00 0 X

FIG. 61

WO 02/44943 PCT/1IB01/02792

51/57
620 —] N <« 0
l N<— N+1
Y ' /
resWzngINj = 02 >N—°l 623
/
621 AD' -— F_AD'(N) | — 624

625 H' <— HP'n (AD") | — 626
M’ <— NX'n (AD')

+ /627
Yis(H' AND WZng[N] = 0 ?>N—°

Y
xq =— PTR (AD') | 629

{

Y Y

AD' =— M — 628
L

Y Y
r—<Yes N = NOfmax 7 >
\

622
FIG. 62

WO 02/44943 PCT/1IB01/02792

52/57
YeS (Xq) O ') >—1
/
640 K —a— -322
+ Y

323 —] Call FINTER (k, q, xq, WZkg, WX)

FIG. 63
i 399
Y ' N /
22 i = imax (AT, g, W, k) ? >— | < i+1
7 I
394 395 N = AT P(q) W_NOK()

r—(wzm] 202 Yo

396
+
WX [N] =— WZ [N] AnpH |— 398
v I

FIG. 64

WO 02/44943 PCT/1IB01/02792

53/57

W —a— AT (Xqa)
00— 32 g

'
Yes WX () = 0 2 No
/ l

401 OT_AT () =— W |— 402
teo oo >0 o T 1
N\
403 - 404
FIG. 65
W <— AT
400 — j —-— (()XQA)
Y ¢ Y N
S wx (j)=0?>—°—i
/
401 Y = CT() |- 416
Y
CT() = f(V\W) | — 417

G T

\
FIG. 71 403 404

WO 02/44943

OUTPUT TABLE
Flat File Row-ID
0

FIG. 66

= O OWOONOOODWN=

— -

OUTPUT TABLE
Flat File Row-ID

FIG. 67

= O OVOoONOOOONAWN-2O

(S5 NP N

54/57

PCT/1IB01/02792

Acc. Date Client Name Policy Date
1998 10 03 André 1998 09 09
/ / /
1999 04 18 Max 1999 01 10
1999 06 12 André 1998 09 09
/ / /

/ / -/
/ / /

/ / /
2000 03 20 André 1998 09 09
/ / /

/ / /

/ / /

Acc. Date Client Name Policy Date

NININOINININI N W] =

NININ2RININ NN 2PN -

NUNSNINININEIONINDNIN A NN

INDE
Flat File Row-I

D
0
1
2
3
4
5
6
7
8
9
0
1

OUTPUT TABLE
Row-ID

Acc. Date Client Name Policy Date

> 0

1
/2
3

OIWIN|—~

1
4
1
1

NINIB&IN

NI N WINININININ = N O

FIG. 68

1G/9G

€rorr/i0 OM

T6LT0/1041/1LDd

WO 02/44943 PCT/1IB01/02792

56/57
400— 1 =~ 0
Y l Y N
€S WX(j)=0?>—°l
/
401 IND (j) <— m |— 410
Y
411 — OT_AT (m) <— xqa(W)
Y
m--—m+1}L— 412

e max 2 > == e

\
FIG. 69 403 404

400—_1 =~ 0

'
Yes WX (j) = 0 ? No
/ 1

401 m' <— IND (j) |— 413

Y

414 —| OT_AT (m') <— Xqa(W)

= Gepe> eI

FIG. 70 - 403 404

QUERY UPDATE
701—] SERVER 704— SERVER
/
702
MATCHING MATCHING MATCHING
UNIT # 1 UNIT # 2 UNIT # M
700/ 700/ ' 700/
VDG - VDG VDG
1 jmax (M-1). jmax
e e v
703 703 703

FIG. 72

L9//G

€rorr/i0 OM

T6LT0/1041/1LDd

	Abstract
	Description
	Claims
	Drawings

