
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0223255A1

Watts, JR. (43) Pub. Date:

US 20050223255A1

Oct. 6, 2005

(54)

(76)

(21)

(22)

(60)

METHOD FOR IMPLEMENTING THERMAL
AND POWER MANAGEMENT IN A
PROCESSOR AND/OR APPARATUS AND/OR
SYSTEM EMPLOYING THE SAME

Inventor: La Vaughn F. Watts JR., Austin, TX
(US)

Correspondence Address:
TEXAS INSTRUMENTS INCORPORATED
PO BOX 655474, M/S 3999
DALLAS, TX 75265

Appl. No.: 11/137,032

Filed: May 25, 2005

Related U.S. Application Data

Continuation of application No. 10/106,261, filed on
Mar. 26, 2002, now Pat. No. 6,901,524, which is a

DECREASE
T(OFF)
INTERVAL

ACTIVITY

NCREASED

(51)
(52)

(57)

division of application No. 09/727,597, filed on Dec.
1, 2000, now Pat. No. 6,427,211, which is a division
of application No. 08/395,335, filed on Feb. 28, 1995,
now Pat. No. 6,158,012, which is a continuation-in
part of application No. 08/023,831, filed on Apr. 12,
1993, now Pat. No. 6,006,336, which is a continua
tion of application No. 07/429,270, filed on Oct. 30,
1989, now Pat. No. 5,218,704.

Publication Classification

Int. Cl. ... G06F 1/28
U.S. Cl. .. 713/322

ABSTRACT

A method for detecting temperature and a work load level
asSociated with a processor, results of the detecting being
used for controlling power dissipation associated with the
processor and/or apparatus and/or System employing the
SC.

10

30
INCREASE
T(OFF)
NTERVAL

Patent Application Publication Oct. 6, 2005 Sheet 1 of 4 US 2005/0223255A1

30
DECREASE INCREASE
T(OFF) T(OFF)
INTERVAL INTERVAL

DLE TICK
IDLE TICK+1

IDLETICK
IDLESTART-TICKS

O 23

O 240 =not
NTERRUPNAVAILABLE
MASK

250 p EAVAILABLE
SAVE POWER

210

160 A.

Patent Application Publication Oct. 6, 2005 Sheet 2 of 4 US 2005/0223255A1

250

DETERMINE
CURRENT_CLOCKRATE

SLEEP CLOCK
OSCILLATOR 530

INTERRUPT

HIGH SPEED
CLOCK

3D1CS ENRFSH
35.57 INTRO
36th

PCLK REFRESH-5B77B7, 13C7

5%, 1/4

Patent Application Publication Oct. 6, 2005 Sheet 3 of 4 US 2005/0223255A1

440 AT:

450 EACTIVITY
MAXTICKS

ACTIVITY_TICK
LEVELMAXTICKS
(POWER LEVEL)

=NOT
AVAILABLE

EAVAILABLE

s ZSLOW I/O

EYE '3- i?: 1=0
DETERMINE 400 ESLOW I/O CURRENT_CLOCKRATE i?:

IDLETICK 410 ECOMPLETE
STARTTICKS

CURRENTCLOCKRATE
ACOMPLETE

SAVE POWER CRITICAL /O

=CRITICAL I/O

390 Fig.2d
60

US 2005/0223255A1

XT1001WCHOEI
Patent Application Publication Oct. 6, 2005 Sheet 4 of 4

US 2005/0223255 A1

METHOD FOR IMPLEMENTING THERMAL AND
POWER MANAGEMENT IN A PROCESSOR
AND/OR APPARATUS AND/OR SYSTEM

EMPLOYING THE SAME

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 This invention relates to real-time computer ther
mal management and power conservation, and more par
ticularly to an apparatus and method for decreasing and
increasing central processing unit (CPU) clock time based
on temperature and real-time activity levels within the CPU
of a portable computer.
0003 2. Description of the Related Art
0004. During the development stages of personal com
puters, the transportable or portable computer has become
very popular. Such portable computer uses a large power
Supply and really represents a Small desktop personal com
puter. Portable computers are Smaller and lighter than a
desktop personal computer and allow a user to employ the
Same Software that can be used on a desktop computer.
0005 The first generation “portable” computers only
operated from an A/C wall power. AS personal computer
development continued, battery-powered computers were
designed. Furthermore, real portability became possible
with the development of new display technology, better disk
storage, and lighter components. Unfortunately, the software
developed was designed to run on desk top computers
without regard to battery-powered portable computers that
only had limited amounts of power available for short
periods of time. No special considerations were made by the
software, operating system (MS-DOS), Basic Input/Output
System (BIOS), or the third party application software to
conserve power usage for these portable computers.
0006 AS more and more highly functional software pack
ages were developed, desktop computer users experienced
increased performance from the introductions of higher
computational CPUs, increased memory, and faster high
performance disk drives. Unfortunately, portable computers
continued to run only on A/C power or with large and heavy
batteries. In trying to keep up with the performance require
ments of the desk top computers, and the new Software,
expensive components were used to cut the power require
ments. Even so, the heavy batteries still did not run very
long. This meant users of portable computerS has to Settle for
A/C operation or very short battery operation to have the
performance that was expected from the third party Soft
WC.

0007 Portable computer designers stepped the perfor
mance down to 8083- and 8086-type processors to reduce
the power consumption. The Supporting circuits and CPU
took less power to run and therefore, lighter batteries could
be used. Unfortunately, the new software requiring 80286
type instructions, that did not exist in the older slower
8088/8086 CPUs, did not run. In an attempt to design a
portable computer that could conserve power, thereby yield
ing longer battery operation, Smaller units, and leSS weight,
Some portable computer designers proceeded to reduce
power consumption of a portable computer while a user is
not using the computer. For example, designers obtain a
reduction in power usage by Slowing or Stopping the disk

Oct. 6, 2005

drive after Some predetermined period of inactivity; if the
disk drive is not being used, the disk drive is turned off, or
Simply placed into a Standby mode. When the user is ready
to use the disk, the operator must wait until the disk drive
Spins up and the computer System is ready again for full
performance before the operator may proceed with the
operation.

0008. Other portable computer designers conserve power
by turning the computer display off when the keyboard is not
being used. However, in normal operation the computer is
using full power. In other words, power conservation by this
method is practical only when the user is not using the
components of the System. It is very likely, however, that the
user will turn the computer off when not in use. Neverthe
less, Substantial power conservation while the operator is
using the computer for meaningful work is needed. When
the operator uses the computer, full operation of all com
ponents is required. During the intervals while the operator
is not using the computer, however, the computer could be
turned off or slowed down to conserve power consumption.
It is critical to maintaining performance to determine when
to slow the computer down or turn it off without disrupting
the user's work, upsetting the third party Software, or
confusing the operating System, until operation is needed.

0009 Furthermore, although a user can wait for the disk
to Spin up as described above, application Software packages
cannot wait for the CPU to “spin up” and get ready. The CPU
must be ready When the application program needs to
compute. Switching to full operation must be completed
quickly and without the application program being affected.
This immediate transition must be transparent to the user as
well as to the application currently active. Delays cause user
operational problems in response time and Software com
patibility, as well as general failure by the computer to
accurately execute a required program.

0010. Other attempts at power conservation for portable
computers include providing a “Shut Down” or “Standby
Mode” of operation. The problem, again, is that the com
puter is not usable by the operator during this period. The
operator could just as well turned off the power Switch of the
unit to Save power. This type of power conservation only
allows the portable computer to “shut down” and thereby
Save power if the operator forgets to turn off the power
Switch, or walks away from the computer for the pro
grammed length of time. The advantage of this type of
power conservation over just turning the power Switch
off/on is a much quicker return to full operation. However,
this method of power conservation is still not real-time,
intelligent power conservation while the computer is on and
processing data which does not disturb the operating System,
BIOS, and any third party application programs currently
running on the computer.

0011. Some attempt to meet this need was made by VLSI
vendors in providing circuits that either turned off the clockS
to the CPU when the user was not typing on the keyboard or
woke up the computer on demand when a keystroke
occurred. Either of these approaches reduce power but the
computer is dead (unusable) during this period. Background
operations Such as updating the System clock, communica
tions, print Spooling, and other like operations cannot be
performed. Some existing portable computers employ these
circuits. After a programmed period of no activity, the

US 2005/0223255 A1

computer turns itself off. The operator must turn the machine
on again but does not have to reboot the operating System
and application program. The advantage of this circuitry is
like the existing "shut down operations, a quick return to
full operation without restarting the computer. Nevertheless,
this method only reduces power consumption when the user
walks away from the machine and does not actually extend
the operational like of the battery charge.
0012. Thermal over-heating, of CPUs and other related
devices is another problem yet to be addressed by portable
computer manufacturers. CPUs are designed to operate
within specific temperature ranges (varies depending on
CPU type, manufacturer, quality, etc). CPU performance
and Speed degenerates when the limits of the operation
temperature ranges are exceeded, especially the upper tem
perature range. This problem is particularly acute with CPUs
manufactured using CMOS technology where temperatures
above the upper temperature range result in reduced CPU
performance and Speed. Existing power Saving techniques
Save power but do not measure and intelligently control
CPU and/or related device temperature.

SUMMARY OF THE INVENTION

0013 In view of the above problems associated with the
related art, it is an object of the present invention to provide
an apparatus and method for real-time conservation of
power and thermal management for computer Systems with
out any real-time performance degradation, Such conserva
tion of power and thermal management remaining transpar
ent to the user.

0.014) Another object of the present invention is to pro
vide an apparatus and method for predicting CPU activity
and temperature levels and using the predictions for auto
matic power conservation and temperature control.
0.015 Yet another object of the present invention is to
provide an apparatus and method which allows user modi
fication of automatic activity and temperature level predic
tions and using the modified predictions for automatic power
conservation and temperature control.
0016 A further object of the present invention is to
provide an apparatus and method for real-time reduction and
restoration of clock speeds thereby returning the CPU to full
processing rate from a period of inactivity, which is trans
parent to Software programs.
0.017. These objects are accomplished in a preferred
embodiment of the present invention by an apparatus and
method which determine whether a CPU may rest (including
any PCI bus coupled to the CPU) based upon CPU activity
and temperature levels and activates a hardware Selector
based upon that determination. If the CPU may rest, or sleep,
the hardware Selector applies oscillations at a sleep clock
level; if the CPU is to be active, the hardware selector
applies oscillations at a high Speed clock level.
0.018. The present invention examines the state of CPU
activity and temperature, as well as the activity of both the
operator and any application Software currently active. This
Sampling of activity and temperature is performed real-time,
adjusting the performance level of the computer to manage
power conservation, CPU temperature and computer power.
These adjustments are accomplished within the CPU cycles
and do no affect the user's perception of performance.

Oct. 6, 2005

0019. Thus, when the operator for the third party soft
ware of the operating System/BIOS is not using the com
puter, the present invention will effect a quick turn off or
slow down of the CPU until needed, thereby reducing the
power consumption and CPU temperature, and will
promptly restore full CPU operation when needed without
affecting perceived performance. This Switching back into
full operation from the “slow down” mode occurs without
the user having to request it and without any delay in the
operation of the computer while waiting for the computer to
return to a “ready” state.

BRIEF DESCRIPTION OF THE DRAWINGS

0020. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, however, as well as other features and advantages
thereof, will be best understood by reference to the detailed
description with follows, read in conjunction with the
accompanying drawings, wherein:
0021 FIG. 1 is a flowchart depicting the self-tuning
aspect of a preferred embodiment of the present invention.
0022 FIGS. 2a-2d are flowcharts depicting the active
power conservation monitor employed by the present inven
tion.

0023 FIG. 3 is a simplified schematic diagram repre
Senting the active power conservation associated hardware
employed by the present invention.
0024 FIG. 4 is a schematic of the sleep hardware for one
embodiment of the present invention.
0025 FIG. 5 is a schematic of the sleep hardware for
another embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0026 If the period of computer activity in any given
System is examined, the CPU and associated components
have a utilization percentage. If the user is inputting data
from the keyboard, the time between keystrokes is very long
in terms of CPU cycles. Many things can be accomplished
by the computer during this time, Such as printing a report.
Even during the printing of a report, time is still available for
additional operations Such as background updating of a
clock/calendar display. Even So, there is almost always Spare
time when the CPU is not being used. If the computer is
turned off or slowed down during this spare time, then power
consumption is obtained real-time. Such real-time power
conservation extends battery operation life and lowers CPU
temperature.

0027 According to one embodiment of the present inven
tion, to conserve power and lower CPU temperature under
MS-DOS, as well as other operating systems such as OS/2,
XENIS, and those for Apple computers, requires a combi
nation of hardware and Software. It should be noted that
because the present invention will work in any System, while
the implementation may vary slightly on a System-by
System basis, the Scope of the present invention should
therefore not be limited to computer Systems operating
under MS/DOS.

0028 Slowing down or stopping computer system com
ponents reduces power consumption and lowers CPU tem

US 2005/0223255 A1

perature, although the amount of power Saved and CPU
temperature reduction may vary. Therefore, according to the
present invention, stopping the clock (where possible as
Some CPUs cannot have their clocks stopped) reduces power
consumption and CPU temperature more than just slowing
the clock.

0029. In general, the number of operations (or instruc
tions) per second may be considered to be roughly propor
tional to the processor clock:

instructions/second=instructions/cycle cycles/second

0030 Assuming for simplicity that the same instruction
is repeatedly executed So that instructions/second is con
Stant, the relationship can be expressed as follows:

0.031 where Fo is instructions/second, K is constant
equal to the instructions/cycle, and Clk equals cycles/Sec
ond. Thus, roughly Speaking, the rate of execution increases
with the frequency of the CPU clock.
0.032 The amount of power being used at any given
moment is also related to the frequency of the CPU clock
and therefore to the rate of execution. In general this
relationship can be expressed as follows:

0033 where P is power in watts, K is a constant in watts,
K is a constant and expresses the number of watt-Second/
cycle, and Clk equals the cycles/second of the CPU clock.
Thus it can also be said that the amount of power being
consumed at any given time increaseS as the CPU clock
frequency increases.
0034 Assume that a given time period T is divided into
N intervals such that the power P is constant during each
interval. Then the amount of energy E expended during T is
given by:

E=P(1) delta T+P(2) delta T, ... P(N) delta TN

0035) Further assume that the CPU clock “CLK” has only
two states, either “ON” or “OFF". For the purposes of this
discussion, the “ON” state represents the CPU clock at its
maximum frequency, while the “OFF' state represents the
minimum clock rate at which the CPU can operate (this may
be zero for CPUs that can have their clocks stopped). For the
condition in which the CPU clock is always “ON”, each P(i)
in the previous equation is equal and the total energy is:

. delta TN)=

0036) This represents the maximum power consumption
of the computer in which no power conservation measures
are being used. If the CPU clock is “off” during a portion of
the intervals, then there are two power levels possible for
each interval. The P(on) represents the power being con
sumed when the clock is in its “ON” state, while P(off)
represents the power being used when the clock is "OFF".
If all of the time intervals in which the clock is “ON” are is
Summed into the quantity “T(on)" and the "OFF" intervals
are summed into “T(off)”, then it follows:

0037 Now the energy being used during period T can be
written:

Oct. 6, 2005

0038 Under these conditions, the total energy consumed
may be reduced by increasing the time intervals T(off).
Thus, by controlling the periods of time the clock is in its
“OFF' state, the amount of energy being used may be
reduced. If the T(off) period is divided into a large number
of intervals during the period T, then as the width of each
interval goes to Zero, energy consumption is at a maximum.
Conversely, as the width of the T(off) intervals increase, the
energy consumed decreases.
0039) If the “OFF" intervals are arranged to coincide with
periods during which the CPU is normally inactive, then the
user cannot perceive any reduction in performance and
overall energy consumption is reduced from the E(max)
state. In order to align the T(off) intervals with periods of
CPU inactivity, the CPU activity and temperature levels are
used to determine the width of the T(off) intervals in a closed
loop. FIG. 1 depicts such a closed loop. The activity level
of the CPU is determined at Step 10. If this level is a
decrease over an immediately previous determination (Step
22), the present invention increases the T(off) interval (Step
20) and returns to determine the activity level of the CPU
again. If, on the other hand, this activity level is an increase
over an immediately previous determination (Step 22), a
determination is made as to whether or not the temperature
of the CPU is a concern (Step 24). If CPU temperature is not
a concern, the present invention decreases the T(off) interval
(Step 30) and proceeds to again determine the activity level
of the CPU. If, on the other hand, CPU temperature is a
concern, a determination is made as to whether or not the
CPU is processing critical I/O, a critical function or a critical
real-time event (Step 26). If critical I/O or critical function
or a critical real-time event are being processed, the present
invention decreases the T(off) interval (Step 30) and pro
ceeds to again determine the activity level of the CPU. If no
critical I/O is being processed, the present invention
increases the T(off) interval (Step 20) and proceeds again to
determine the activity level of the CPU. Thus the T(off)
intervals are constantly being adjusted to match the System
activity level and control the temperature level of the CPU.
0040. Management of CPU temperature (thermal man
agement) is necessary because CPUs are designed to operate
within a specific temperature range. CPU performance and
Speed deteriorates when the Specified high operating tem
perature of a CPU is exceeded (especially in CMOS process
CPUs where temperatures above the high operating tem
perature translate into slower CPU speed). The heat output
of a CPU is directly related to the power consumed by the
CPU and heat it absorbs from devices and circuitry that
immediately Surround it. CPU power consumption increases
with CPU clock speed and the number of instructions per
second to be performed by the CPU. As a result, heat related
problems are becoming more common as faster and increas
ingly complex CPUs are introduced and incorporated into
electronic devices.

0041. In any operating System, two key logic points exist:
an IDLE, or “do nothing, loop within the operating System
and an operating System request channel, usually available
for Services needed by the application Software. By placing
logic inline with these logic points, the type of activity
request made by an application Software can be evaluated,
power conservation and thermal management can be acti
Vated and Slice periods determined. A Slice period is the
number of T(on) vs. T(off) intervals over time, computed by

US 2005/0223255 A1

the CPU activity and thermal levels. An assumption may be
made to determine CPU activity level: Software programs
that need Service usually need additional Services and the
period of time between Service requests can be used to
determine the activity level of any application Software
running on the computer and to provide Slice counts for
power conservation according to the present invention.
Another assumption that may be made is that each CPU has
a temperature coefficient unique to that CPU-CPU tempera
ture rise time, CPU maximum operating temperature, CPU
temperature fall time and intervention time required for
thermal control. If this information is not provided by the
CPU manufacturer, testing of the CPU being used (or
another of the same make and type tested under Similar
conditions) is required to obtain accurate information.
0042. Once the CPU is interrupted during a power con
servation and thermal management slice (T(off)), the CPU
will Save the interrupted routine's State prior to vectoring to
the interrupt Software. Off course, Since the power conser
Vation and thermal management Software was operating
during this Slice, control will be returned to the active power
conservation and thermal management loop (monitor 40)
which simply monitors the CPU's clock to determine an exit
condition for the power conservation and thermal manage
ment mode thereby exiting from T(off) to T(on) state. The
interval of the next power conservation and thermal man
agement State is adjusted by the activity level monitor, as
discussed above in connection with FIG. 1. Some imple
mentations can create an automatic exit from T(off) by the
hardware logic, thereby forcing the power conservation and
thermal management loop to be exited automatically and
executing an interval T(on).
0.043 More specifically, looking now at FIGS. 2a-2d,
which depict the active power conservation and thermal
management monitor 40 of the present invention. The CPU
installs monitor 40 either via a program stored in the CPU
ROM or loads it from an external device Storing the program
in RAM. Once the CPU has loaded monitor 40, it continues
to INIT 50 for system interrupt initialization, user configu
rational Setup, and System/application Specific initialization.
IDLE branch 60 (more specifically set out in FIG. 2b) is
executed by a hardware or software interrupt for an IDLE or
“do nothing function. This type of interrupt is caused by the
CPU entering either an IDLE or a “do nothing” function.
This type of interrupt is caused by the CPU entering either
an IDLE or a "do nothing loop (i.e., planned inactivity).
The ACTIVITY branch 70 of the flow chart, more fully
described below in relation to FIG. 2d, is executed by a
Software or hardware interrupt due to an operating System or
I/O Service request, by an application program or internal
operating System function. An I/O Service request made by
a program may, for example, be a disk I/O, read, print, load,
etc. Regardless of the branch Selected, control is eventually
returned to the CPU operating system at RETURN 80. The
INIT branch 50 of this flowchart, shown in FIG. 2a, is
executed only once if it is loaded via program into ROM or
is executed every time during power up if it is loaded from
an external device and stored in the RAM. Once this branch
of active power and thermal management monitor 40 has
been fully executed, whenever control is yielded from the
operating System to the power conservation and thermal
management mode, either IDLE 60 or ACTIVITY 70
branches are selected depending on the type of CPU activity:
IDLE branch 60 for power conservation and thermal man

Oct. 6, 2005

agement during planned inactivity and ACTIVITY branch
70 for power conservation and thermal management during
CPU activity.

0044) Looking more closely at INIT branch 50, after all
System interrupt and variables are initialized, the routine
continues at Step 90 to set the Power level equal to
DEFAULT LEVEL. In operating systems where the user
has input control for the Power level, the program at Step
100 checks to see if a User level has been selected. If the
User level is less than Zero or greater than the MAXIMUM
LEVEL, the system used the DEFAULT LEVEL. Other

wise, it continues onto Step 110 where it modifies the
Power level to equal the User level.
0045 According to the preferred embodiment of the
present invention, the system at Step 120 sets the variable
Idle tick to zero and the variable Activity tick to zero. Under
an MS/DOS implementation. Idle tick refers to the number
of interrupts found in a “do nothing loop. Activity tick
refers to the number of interrupts caused by an activity
interrupt which in turn determines the CPU activity level.
Tick count represents a delta time for the next interrupt
Idle tick is a constant delta time from one tick to another
(interrupt) unless overwritten by a Software interrupt. A
Software interrupt may reprogram delta time between inter
rupts.

0046. After setting the variables to Zero, the routine
continues on to Setup 130 at which time any application
Specific configuration fine-tuning is handled in terms of
System-Specific details and the System is initialized. Next the
routine arms the interrupt I/O (Step 140) with instructions to
the hardware indicating the hardware can take control at the
next interrupt. INIT branch 50 then exits to the operating
System, or whatever called the active power and thermal
management monitor originally, at RETURN 80.

0047 Consider now IDLE branch 60 of active power and
thermal management monitor 40, more fully described at
FIG. 2b. In response to a planned inactivity of the CPU,
monitor 40 (not specifically shown in this Figure) checks to
see if entry into IDLE branch 60 is permitted by first
determining whether the activity interrupt is currently busy.
If Busy A equals BUSY FLAG (Step 150), which is a
reentry flag, the CPU is busy and cannot now be put to sleep.
Therefore, monitor 40 immediately proceeds to RETURNI
160 and exits the routine RETURN I 160 is an indirect
vector to the previous operating System IDLE Vector inter
rupt for normal processing Stored before entering monitor
40. (I.e., this causes an interrupt return to the last chained
vector.)
0048 If the Busy A interrupt flag is not busy, then
monitor 40 checks to see if the Busy Idle interrupt flag,
Busy I, equals BUSY FLAG (Step 170). If so, this indi
cates the system is already in IDLE branch 60 of monitor 40
and therefore the system should not interrupt itself. If
Busy I=BUSY FLAG, the system exits the routine at
RETURN I indirect vector 160.
0049) If, however, neither the Busy Areentry flag or the
Busy I reentry flag have been Set, the routine sets the
Busy I flag at Step 180 for reentry protection (Busy I=
BUSY FLAG). At Step 190 Idle tick is incremented by
one. Idle tick is the number of T(on) before a T(off) interval
and is determined from IDLE interrupts, Setup interrupts and

US 2005/0223255 A1

from CPU activity and temperature levels. Idle tick incre
ments by one to allow for Smoothing of events, thereby
letting a critical I/O activity control Smoothing.
0050. At Step 200 monitor 40 checks to see if Idle tick
equals IDLE MAXTICKS. IDLE MAXTICKS is one of
the constants initialized in Setup 130 of INIT branch 50,
remains constant for a System, and is responsible for Self
tuning of the activity and thermal levels. If Idle tick does
not equal IDLE MAXTICKS, the Busy I flag is cleared at
Step 210 and exits the loop proceeding to the RETURN I
indirect vector 160. If, however, Idle tick equals
IDLE MAXTICKS, Idle tick is set equal to IDLE START
TICKS (Step 220). IDLE START TICKS is a constant
which may or may not be Zero (depending on whether the
particular CPU can have its clock stopped). This step
determines the self-tuning of how often the rest of the sleep
functions may be performed. By setting IDLE START
TICKS equal to IDLE MAXTICKS minus one, a continu
ous T(off) interval is achieved. At Step 230, the Power level
is checked. If it is equal to Zero, the monitor clears the
Busy I flag (Step 210), exits the routine at RETURNI 160,
and returns control to the operating System So it may
continue what it was originally doing before it entered active
power monitor 40.
0051) If, however, the Power level does not equal zero at
Step 240, the routine determines whether an interrupt mask
is in place. An interrupt mask is Set by the System/applica
tion Software, and determines whether interrupts are avail
able to monitor 40. If interrupts are NOT AVAILABLE, the
Busy I reentry flag is cleared and control is returned to the
operating System to continue what it was doing before it
entered monitor 40. Operating Systems, as well as applica
tion Software, can Set T(on) interval to yield a continuous
T(on) state by Setting the interrupt mask equal to
NOT AVAILABLE.
0.052 Assuming an interrupt is AVAILABLE, monitor 40
proceeds to the SAVE POWER subroutine 250 which is
fully executed during one T(off) period established by the
hardware state. (For example, in the preferred embodiment
of the present invention, the longest possible interval could
be 18 ms, which is the longest time between two ticks or
interrupts from the real-time clock.) During the SAVE
POWER subroutine 250, the CPU clock is stepped down to
a sleep clock level.
0053) Once a critical I/O operation forces the T(on)
intervals, the IDLE branch 60 interrupt tends to remain
ready for additional critical I/O requests. As the CPU
becomes busy with critical I/O, less T(off) intervals are
available. Conversely, as critical I/O requests decrease, and
the time intervals between them increase, more T(off) inter
vals are available. IDLE branch 60 is a self-tuning system
based on feedback from CPU activity and temperature
interrupts and tends to provide more T(off) intervals as the
activity level slows and/or the CPU temperature becomes a
concern. As soon as monitor 40 has completed SAVE
POWER subroutine 250, shown in FIG.2c and more fully
described below, the Busy I reentry flag is cleared (Step
210) and control is returned at RETURNI 160 to whatever
operating System originally requested monitor 40.

0.054 Consider now FIG.2c, which is a flowchart depict
ing the SAVE POWER subroutine 250. Monitor 40 deter
mines what the I/O hardware high speed clock is at Step 260.

Oct. 6, 2005

It sets the CURRENT_CLOCK RATE equal to the relevant
high speed clock and saves this value to be used for CPUs
with multiple level high Speed clockS. Thus, if a particular
CPU has 12 MHZ and 6 MHz high speed clocks, monitor 40
must determine which high speed clock the CPU is at before
monitor 40 reduces power so it may reestablish the CPU at
the proper high speed clock when the CPU awakens. At Step
270, the Save clock rate is set equal to the CURRENT
CLOCK RATE determined. Save clock rate 270 is not

used when there is only one high speed clock for the CPU.
Monitor 40 now continues to SLEEPCLOCK 280, where a
pulse is sent to the hardware selector (shown in FIG. 3) to
put the CPU clock to sleep (i.e., lower or stop its clock
frequency). The I/O port hardware sleep clock is at much
lower oscillations than the CPU clock normally employed.
0055. At this point either of two events can happen. A
System/application interrupt may occur or a real-time clock
interrupt may occur. If a System/application interrupt 290
occurs, monitor 40 proceeds to interrupt routine 300, pro
cessing the interrupt as Soon as possible, arming interrupt
I/O at Step 310, and returning to determine whether there
has been an interrupt (Step 320). Since in this case there has
been an interrupt, the Save clock rate is used (Step 330) to
determine which high speed clock to return the CPU to and
SAVE POWER subroutine 250 is exited at RETURN 340. If,
however, a System/application interrupt is not received, the
SAVE POWER Subroutine 250 will continue to wait until a
real-time clock interrupt has occurred (Step 320). Once such
an interrupt has occurred, SAVE POWER subroutine 250
will continue to wait until a real-time clock interrupt has
occurred (Step 320). Once such an interrupt has occurred,
SAVEPOWER subroutine 250 will execute interrupt loop
320 several times. If however, control is passed when the
Sleep clock rate was Zero, in other words, there was no clock,
the SAVE POWER subroutine 250 will execute interrupt
loop 320 once before returning the CPU clock to the
Save clock rate 330 and exiting (Step(340)).
0056 Consider now FIG.2d which is a flowchart show
ing ACTIVITY branch 70 triggered by an application/
System activity request via an operating System Service
request interrupt. ACTIVITY branch 70 begins with reentry
protection. Monitor 40 determines at Step 350 whether
Busy I has been set to BUSY FLAG. If it has, this means
the system is already in ACTIVITY branch 70 and cannot be
interrupted. If Busy I=BUSY FLAG, monitor 40 exits to
RETURNI 160, which is an indirect vector to an old activity
vector interrupt for normal processing, via an interrupt
vector after the operating System performs the requested
Service.

0057) If however, the Busy I flag does not equal BUSY
FLAG, which means ACTIVITY branch 70 is not being

accessed, monitor 40 determines at Step 360 if the BUSY A
flag has been set equal to BUSY FLAG. If so, control will
be returned to the system at this point because ACTIVITY
branch 70 is already being used and cannot be interrupted.
If the Busy A flag has not been set, in other words, Busy A
does not equal BUSY FLAG, monitor 40 sets Busy Aequal
to BUSY FLAG at Step 370 so as not to be interrupted
during execution of ACTIVITY branch 70. At Step 380 the
Power level is determined. If Power level equals zero,
monitor 40 exits ACTIVITY branch 70 after clearing the
Busy Areentry flag (Step 390). If however, the Power level
does not equal zero, the CURRENT CLOCK RATE of the

US 2005/0223255 A1

I/O hardware is next determined. As was true with Step 270
of FIG. 2C, Step 400 of FIG. 2d uses the CURRENT
CLOCK RATE if there are multiple level high speed

clocks for a given CPU. Otherwise, CURRENT_CLOCK
RATE always equals the CPU high speed clock. After the
CURRENT CLOCK RATE is determined (step 400), at
Step 410 Idle tick is set equal to the constant START
TICKS established for the previously determined CUR
RENT CLOCK RATE. T(off) intervals are established
based on the current high Speed clock that is active.
0.058 Monitor 40 next determines that a request has been
made. A request is an input by the application Software
running on the computer, for a particular type of Service
needed. At Step 420, monitor 40 determines whether the
request is a CRITICAL I/O. If the request is a CRITICAL
I/O, it will continuously force T(on) to lengthen until the
T(on) is greater than the T(off), and monitor 40 will exit
ACTIVITY branch 70 after clearing the Busy Areentry flag
(Step 390). If, on the other hand, the request is not a
CRITICALI/O, then the Activity tick is incremented by one
at Step 430. It is then determined at Step 440 whether the
Activity tick now equals ACTIVITY MAXTICKS. Step
440 allows a smoothing from a CRITICAL I/O, and makes
the system ready from another CRITICAL I/O during
Activity tick T(on) intervals. ASSuming Activity tick does
not equal ACTIVITY MAXTICKS, ACTIVITY branch 70
is exited after clearing the Busy Areentry flag (Step 390).
If, on the other hand, the Activity tick equals constant
ACTIVITY MAXTICKS, at Step 450 Activity tick is set to
the constant LEVEL MAXTICKS established for the par
ticular Power level determined at Step 330.
0059) Now monitor 40 determines whether an interrupt
mask exists (Step 460). An interrupt mask is set by system/
application software. Setting it to NOT AVAILABLE cre
ates a continuous T(on) state. If the interrupt mask equals
NOT AVAILABLE, there are no interrupts available at this
time and monitor 40 exits ACTIVITY branch 70 after
clearing the Busy Areentry flag (Step 390). If, however, an
interrupt is AVAILABLE, monitor 40 determines at Step 470
whether the request identified at Step 420 was for a SLOW
I/O INTERRUPT Slow I/O requests may have a delay until
the I/O device becomes “ready'. During the “make ready”
operation, a continuous T(off) interval may be set up and
executed to conserve power. Thus, if the request is not a
SLOW I/O INTERRUPT, ACTIVITY branch 70 is exited
after clearing the Busy. A reentry flag (Step 390). If, how
ever, the request is a SLOW I/O INTERRUPT, and time yet
exists before the I/O device becomes “ready”, monitor 40
then determines at Step 480 whether the I/O request is
COMPLETE (i.e., is I/O device ready?). If the I/O device is
not ready, monitor 40 forces T(off) to lengthen, thereby
forcing the CPU to wait, or sleep, until the SLOW I/O device
is ready. At this point it has time to Save power and
ACTIVITY branch 70 enterS SAVE POWER Subroutine 250
previously described in connection with to FIG. 2C. If,
however, the I/O request is COMPLETE, control is returned
to the operating System Subsequently to monitor 40 exiting
ACTIVITY branch 70 after clearing Busy. A reentry flag
(Step 390).
0060 Self-runing is inherent within the control system of
continuous feedback loops. The Software of the present
invention can detect when CPU activity is low and/or CPU
temperature is high enough to be of concern and therefore

Oct. 6, 2005

when the power conservation and thermal management
aspect of the present invention may be activated. To detect
when CPU temperature is high enough to be of concern, the
power and thermal management Software monitors a ther
mistor on the PWB board adjacent the CPU (or mounted
directly on or in the CPU if the CPU includes a thermistor).
In one embodiment of the present invention, the Software
monitors the thermistor 18 timeS/sec through an A/D con
verter. If no power is being conserved and the temperature
of the thermistor is within acceptable parameters, then
monitoring continues at the same rate. If, however, the
temperature of the thermistor is rising, a Semaphore is Set to
tell the system to start watching CPU temperature for
possible thermal management action. Each CPU has a
temperature coefficient unique to that specific CPU. Infor
mation on how long it takes to raise the temperature and at
what point intervention must occur to prevent performance
degradation must be derived from information Supplied with
the CPU or through testing.
0061 According to one embodiment of the invention, a
counter is Set in hardware to give an ad hoc interrupt
(counter is based on coefficient of temperature rise). The
thermal management System must know how long it takes
CPU temperature to go down to minimize temperature
effect. If the counter is counting down and receives an active
power interrupt, the ad hoc interrupt is turned off because
control has been regained through the active power and
thermal management. The result is unperceived operational
power Savings. The ad hoc interrupt can be overridden or
modified by the active power interrupt which checks the
type gradient i.e., up or down, checks the count and can
adjust the up count and down count ad hoc operation based
on what the CPU is doing real time. If there are no real time
interrupts, then the timer interval continually comes in and
monitors the gradual rise in temperature and it will adjust the
ad hoc counter as it needs it up or down. The result is
dynamic feedback from the active power and thermal man
agement into the ad hoc timer, adjusting it to the dynamic
adjustment based on what the temperature rise or fall is at
any given time and how long it takes for that temperature to
fall off or rise through the danger point. This is a different
concept that just throwing a timer out ad hoc and letting it

.

0062 For example, assume that the CPU being used has
a maximum Safe operating temperature of 95 degrees C.
(obtained from the CPU spec sheet or from actual testing).
Assume also that a thermistor is located adjacent the CPU
and that when the CPU case is at 95 degrees C., the
temperature of the thermistor may be lower Since it is spaced
a distance from the CPU (such as 57 degrees C.). A deter
mination should be made as to how long it took the CPU to
reach 95 degrees. If it took an hour, the System may decide
to sample the thermistor every 45 minutes. Once the CPU is
at 95 degrees, CPU temperature may need to be sampled
every minute to make Sure the temperature is going down,
otherwise, the temperature might go up, i.e., to 96 degrees.
If 5 minutes are required to raise CPU temperature from 95
to 96 degrees, CPU temperature Sampling must be at a
period less than 5 minutes-i.e., every 3 or 1 minutes. If the
temperature is not going down, then the length of the rest
cycles should be increased. Continual evaluation of the
thermal read constant is key to knowing when CPU tem
perature is becoming a problem, when thermal management
intervention is appropriate and how much time can be

US 2005/0223255 A1

allowed for other things in the system. This decision must be
made before the target temperature is reached. Once CPU
temperature Starts to lower, it is O.K. to go back to the
regular thermal constant number because 1) you have
Selected the right slice period, or 2) the active power portion
of the active power and thermal management has taken over,
So the Sampling rate can be reduced.

0.063 Examples of source code that can be stored in the
CPU ROM or in an external RAM device, according to one
embodiment of the invention, are listed in the COMPUTER
PROGRAMS LISTING section under: 1) Interrupt 8 Timer
interrupt Service-listed on pages tO ; 2)
CPU Sleep Routine-listed on pages to ; 3)
FILE=FORCE5. ASM-listed on pages tO
and 4) FILE=Thermal.EQU-listed on pages to

0064. Utilizing the above listed source code, and assum
ing that Interrupt 8 Timer interrupt Service is the interrupt
mask called at Step 240 of IDLE loop 60 or at Step 460 of
ACTIVITY loop 70, the procedure for thermal management
is set up “Do Thermal Management if needed” after which
the System must decide if there is time for thermal manage
ment “Time for Thermal Management?”. If there is time for
thermal management, the System calls the file “force sleep”
if there is time to sleep (which also sleeps any PCI bus
coupled to the CPU), or alternatively, could do a STI nop
and a halt-which is an alternate way and does not get PCI
devices and does not have a feedback loop from the power
and temperature management Systems. The “force sleep”
File gets feedback from other power Systems. Force sleep
does a jump to force5.asm, which is the PCI multiple sleep
program. Are there speakers busy in the System'? Is there
Something else in the System going on from a power
management point of View? Are DMAS running in the
System'? Sleeping may not be desirable during a Sound cycle.
It needs to know what is going on in the System to do an
intelligent sleep. The thermal management cares about the
CPU and cares about all the other devices out there because
collectively they all generate heat.

0065. There are some equations in the program that are
running-others that may or may not be running. “tk” is the
number of interrupts per Second that are Sampled times the
interval that is Sampled over. “it represents a thermal read
constant and the thermal read constant in the present
embodiment is 5. In the code, the thermal read constant is
dynamically adjusted later depending on what the tempera
ture is. Thus, this is the Starting thermal read interval, but as
the temperature rises, reading should be more often and the
cooler it is, reading should be less often than 5 minutes
e.g., 10 minutes. The thermal read constant will adjust. TP1
or TP2 represents what percentage of the CPU cycles do we
want to sample at-for example, TP7 set at 50=the number
of interrupts that have to occur over Some period of time
Such that if we take that number that going to represent every
So many clock cycles that go by before we sample and Sleep
the CPU. These equations are variable. Other equations can
also be used

0.066 Thus, one concept of the present invention is that
there are various levels of temperature that require testing in
relationship to the hottest point to be managed. The Sample
period will change based on temperature and active feed
back. Active feedback may be required even though thermal

Oct. 6, 2005

management has determined that the CPU temperature is too
high and should be reduced (by slowing or stopping the CPU
clock). CPU clock speed may not be reduced because other
System things are happening-the result is intelligent feed
back. The power conservation and thermal management
Systems asks the CPU questions Such as are you doing
Something now that I cannot go do? If not, please Sleep. If
yes, don't Sleep and come back to me So that I can reset my
count. The result is a graduated effect up and graduated
effect down and the thermal read constant time period
adjusts itself in response to CPU temperature. Performance
taken away from the user during power conservation and
thermal management control is balanced against critical I/O
going on in the System.

0067 Active power and thermal management cooperates
with Standard CPU power management So that when Stan
dard power management gets a chance to take over the
active feedback can Start degrading even though the tem
perature has not. Existing power/thermal management Sys
tems turn on and Stay on until the temperature goes down.
Unfortunately, this preempts things in the System Such is not
the case in the environment of the present invention. The
Same Sleep manager works in conjunction with power con
Servation and thermal management-the sleep manager has
global control. As a example, while CPU temperature may
be rising or have risen to a level of concern, the System may
be processing critical I/O, Such as a wave file being played.
With critical I/O, the system of the present invention will
play the wave file without interruption even though the
result may be a higher CPU temperature. CPUs do not
typically overheat all at once. There is a temperature rise
gradient. The System of the present invention takes advan
tage of the temperature rise gradient to give a user things that
affect the user time Slices and take it away from him when
its not affected.

0068 Thermal management can be also be achieved
using a prediction mode. Prediction mode utilizes no Sensors
or thermistors or even knowledge as to actual CPU tem
perature. Prediction mode uses a guess-i.e. that the System
will need the ad hoc interrupt once every 5 seconds or 50
times/second (=constant) and then can take it up or down
based on what the System is doing with the active power and
thermal management. The prediction theory can also be
combined with actual CPU temperature monitoring.

0069. Once the power conservation and thermal manage
ment monitor is activated, a prompt return to full speed CPU
clock operation within the interval is achieved So as to not
degrade the performance of the computer. To achieve this
prompt return o full Speed CPU clock operation, the pre
ferred embodiment of the present invention employs Some
asSociated hardware.

0070 Looking now at FIG. 3 which shows a simplified
Schematic diagram representing the associated hardware
employed by the present invention for active power conser
vation and thermal management. When monitor 40 (not
shown) determines the CPU is ready to sleep, it writes to an
I/O port (not shown) which causes a pulse on the SLEEP
line. The rising edge of this pulse on the SLEEP line causes
flip flop 500 to clock a high to Q and a low to Q. This
causes the AND/OR logic (AND gates 510, 520, OR late
530) to select the pulses travelling the SLEEP CLOCK line
from SLEEP CLOCK Oscillator 540 to be sent to and used

US 2005/0223255 A1

by the CPU CLOCK. SLEEP CLOCK oscillator 540 is a
slower clock than the CPU clock used during normal CPU
activity. The high coming from the Q of flip flop 500 ANDed
(510) with the pulses coming from SLEEP CLOCK oscil
lator 540 is ORed (530) with the result of the low on the Q
of flip flop 500 ANDed (520) with the pulse generated along
the HIGH SPEED CLOCK line by the HIGH SPEED
CLOCKoscillator 550 to yield the CPU CLOCK. When the
I/O port designates SLEEP CLOCK, the CPU CLOCK is
then equal to the SLEEP CLOCKoscillator 540 value. If, on
the other hand, an interrupt occurs, an interrupt-value
clears flip flop 500, thereby forcing the AND/OR selector
(comprising 510,520 and 530) to choose the HIGH SPEED
CLOCK value, and returns the CPU CLOCK value to the
value coming from HIGH SPEED CLOCK oscillator 550.
Therefore, during any power conservation and/or thermal
management operation on the CPU, the detection of any
interrupt within the system will restore the CPU operation at
full clock rate prior to Vectoring and processing the interrupt.

0071. It should be noted that the associated hardware
needed, external to each of the CPUs or any given System,
may be different based on the operating System used,
whether the CPU can be stopped, etc. Nevertheless, the
scope of the present invention should not be limited by
possible System Specific modifications needed to permit the
present invention to actively conserve power and manage
CPU temperature in the numerous available portable com
puter Systems. For example two actual implementations are
shown in FIGS. 4 and 5, discussed below.

0.072 Many VSLI designs today allow for clock Switch
ing of the CPU speed. The logic to Switch from a null clock
or slow clock to a fast clock logic is the same as that which
allows the user to change Speeds by a keyboard command.
The added logic of monitor 40 working with Such Switching
logic, causes an immediate return to a fast clock upon
detection of any interrupt. This simple logic is the key to the
necessary hardware Support to interrupt the CPU and
thereby allow the processing of the interrupt at full Speed.

0073. The method to reduce power consumption under
MS-DOS employs the MS-DOS IDLE loop trap to gain
access to the “do nothing” loop. The IDLE loop provides
Special access to application Software and operating System
operations that are in a state of IDLE of low activity. Careful
examination is required to determine the activity level at any
given point within the System. Feedback loops are used from
the interrupt 21H service request to determine the activity
level. The prediction of activity level is determined by
interrupt 21H requests, from which the present invention
thereby sets the slice periods for “sleeping” (slowing down
or stopping) the CPU. An additional feature allows the user
to modify the Slice depending on the activity level of
interrupt 21H. The method to produce power conservation
under WINDOWS employs real and protect modes to save
the power interrupt which is called by the operating System
each time WINDOWS has nothing to do.
0.074 Looking now at FIG. 4, which depicts a schematic
of an actual sleep hardware implementation for a System
such as the Intel 50386 (CPU cannot have its clock stopped).
Address enable bus 600 and address bus 610 provide CPU
input to demultiplexer 620. The output of demultiplexer 620
is sent along SLEEPCS- and provided as input to OR gates
630, 640 The other inputs to OR gates 630, 640 are the I/O

Oct. 6, 2005

write control line and the I/O read control line, respectively.
The outputs of these gates, in addition to NOR gate 650, are
applied to D flip flop 660 to decode the port. “INTR” is the
interrupt input dorm the I/O port (peripherals) into NOR
gate 650, which causes the logic hardware to Switch back to
the high speed clock. The output of flip flop 660 is then fed,
along with the output from OR gate 630, to tristate buffer
670 to enable it to read back what is on the port. All of the
above-identified hardware is used by the read/write I/O port
(peripherals) to select the power saving “Sleep' operation.
The output “SLOW is equivalent to “SLEEP” in FIG. 2,
and is inputted to flip flop 680, discussed later.

0075) The output of SLEEP CLOCK oscillator 690 is
divided into two slower clocks by D flip flops 700, 710. In
the particular implementation shown in FIG. 4, 16 MHz
sleep clock oscillator 690 is divided into 4 MHZ and 8 MHz
clocks. Jumper J1 selects which clock is to be the “SLEEP
CLOCK.

0076. In this particular implementation, high speed clock
oscillator 720 is a 32 MHz oscillator, although this particular
Speed is not a requirement of the present invention. The 32
MHz oscillator is put in series with a resistor (for the
implementation shown, 33 ohms), which is in series with
two parallel capacitors (10 pF). The result of such oscilla
tions is tied to the clocks of D flip flops 730, 740.
0.077 D flip flops 680, 730, 740 are synchronizing flip
flops; 680, 730 were not shown in the simplified sleep
hardware of FIG. 2. These flip flops are used to ensure the
clock Switch occurs only on clock edge. AS can be seen in
FIG. 4, as with flip flop 500 of FIG. 2, the output of flip flop
740 either activates OR gate 750 or OR gate 760, depending
upon whether the CPU is to sleep (“FASTEN) or awaken
(“SLOWEN).
0078) OR gates 750, 760 and AND gate 770 are the
functional equivalents to the AND/OR selector of FIG. 2.
They are responsible for selecting either the “slowclk” (slow
clock, also known as SLEEP CLOCK) or high speed clock
(designated as 32 MHz on the incoming line). In this
implementation, the Slow clock is either 4 MHz or 5 MHz,
depending upon jumper J1, and the high Speed clock is 32
MHz. The output of AND gate 770 (ATUCLK) establishes
the rate of the CPU clock, and is the equivalent of CPU
CLOCK of FIG. 2. (If the device includes a PCI bus, the
output of AND gate 770 may also be coupled to the PCI bus
if it is to utilize the clock signal.)
0079 Consider now FIG.5, which depicts a schematic of
another actual Sleep hardware implementation for a System
such as the Intel 50286 (CPU can have its clock stopped).
The Western Digital FE3600 VLSI is used for the speed
Switching with a special external PAL 780 to control the
interrupt gating which wakes up the CPU on any interrupt.
The Software power conservation according to the present
invention monitors the interrupt acceptance, activating the
next P(i)deltaTi interval after the interrupt.
0080) Any interrupt request to the CPU will return the
system to normal operation. An interrupt request (“INTRO”)
to the CPU will cause the PAL to issue a Wake Up signal on
the RESCPU line to the FE3001 (not shown) which in turn
enables the CPU and the DMA clocks to bring the system
back to its normal state. This is the equivalent of the
“INterrupt of FIG.2. Interrupt Request is synchronized to

US 2005/0223255 A1

avoid confusing the state machine so that Interrupt (INT.
DET) will only be detected while the cycle is active. The
rising edge of RESCPU will wake up the FE 3001 which in
turn releases the whole system from the Sleep Mode.
0081) Implementation for the 386SX is different only in
the external hardware and Software power conservation
loop. The software loop will set external hardware to Switch
to the high Speed clock on interrupt prior to Vectoring the
interrupt. Once return is made to the power conservation
Software, the high Speed clock cycle will be detected and the
hardware will be reset for full clock operation.
0082 Implementation for OS/2 uses the “do nothing”
loop programmed as a THREAD running in background
operation with low priority. Once the THREAD is activated,
the CPU sleep, or low speed clock, operation will be
activated until an interrupt occurs thereby placing the CPU
back to the original clock rate.
0.083 Although interrupts have been employed to wake
up the CPU in the preferred embodiment of the present
invention, it should be realized that any periodic activity
within the System, or applied to the System, could also be
used for the same function.

0084. While several implementations of the preferred
embodiment of the invention has been shown and described,
various modifications and alternate embodiments will occur
to those skilled in the art. Accordingly, it is intended that the
invention be limited only in terms of the appended claims.

Computer Programs Listing
0085 1) Interrupt 8 Timer interrupt service-pages 27 to
32. Interrupt 8 Timer interrupt service is loaded onto the
CPUROM or an external RAM and is an interrupt mask that
may be called at Step 240 of IDLE loop 60 or at Step 460
of ACTIVITY loop 70.
0086) 2) CPU Sleep Routine-page 33. CPU Sleep Rou
tine is loaded onto the CPU ROM or an external RAM and
is a file that may be called at Step 250 of IDLE loop 60 or
ACTIVITY loop 70.
0087 3) FILE=FORCE5. ASM-pages 34 to 38. FILE=
FORCES.ASM is a PCI multiple sleep program that is
loaded onto the CPU ROM or an external RAM and is a file
that may be called at Step 250 of IDLE loop 60 or ACTIV
ITY loop 70.
0088) 4) FILE=Thermal.EQU-listed on page 39. FILE=
Thermal.EOU is loaded onto the CPU ROM or an external
RAM and is a file that may be called at STEP 240 of IDLE
loop 60 or at Step 460 of ACTIVITY loop 70.

1-23. (canceled)
24. A method, comprising the Steps of:
determining temperature and a workload level associated

with a processor, and
using results of Said determining for reducing power

consumption associated with Said processor as Said
work load level decreases.

25. The method of claim 24, wherein an amount of Said
reducing power consumption is proportional to the decrease
of Said work load level.

26. The method of claim 24, wherein said reduction in
power consumption is accomplished in incremental StepS.

Oct. 6, 2005

27. The method of claim 24, wherein said reduction in
power consumption continues until no decrease in workload
level is detected over a previous determination of work load
level.

28. The method of claim 24, wherein said reducing power
consumption continues until one of: a) no decrease in work
load level is detected over a previous determination of work
load level; b) said processor has reached its minimum power
consumption level; and c) said temperature is at and/or
above a reference temperature.

29. The method of claim 24, wherein said power con
Sumption is reduced by lowering a clock frequency.

30. The method of claim 29, wherein said clock frequency
is lowered in incremental StepS.

31. The method of claim 24, wherein said power con
Sumption is accomplished by lowering a clock Speed.

32. The method of claim 31, wherein said clock speed is
lowered in incremental Steps.

33. The method of claim 24, wherein said reduction in
power consumption is accomplished while Said processor is
processing data.

34. The method of claim 33, wherein said data is part of
a program being run on Said processor.

35. A method, comprising the Steps of:
determining temperature and a workload level associated

with a processor, and
using results of Said determining for increasing power

consumption associated with Said processor as said
work load level increases.

36. The method of claim 35, wherein an amount of Said
increasing power consumption is proportional to the
increase of Said work load level.

37. The method of claim 36, wherein said power con
Sumption is accomplished in incremental StepS.

38. The method of claim 35, wherein said increasing
power consumption continues until no increase in work load
level is detected over a previous determination of work load
level.

39. The method of claim 35, wherein said increasing
power consumption continues until one of: a) no increase in
work load level is detected over a previous determination of
workload level; b) said processor has reached its maximum
power consumption level; and c) said temperature is at
and/or above a reference temperature.

40. The method of claim 35, wherein said power con
Sumption is accomplished by raising a clock frequency.

41. The method of claim 40, wherein said clock frequency
is raised in incremental Steps.

42. The method of claim 35, wherein said power con
Sumption is accomplished while Said processor is processing
data.

43. The method of claim 42, wherein said data is part of
a program being run on Said processor.

44. A method, comprising the Steps of:
determining temperature and a workload level associated

with a processor, and
using results of Said determining for reducing power

consumption associated with Said processor as Said
work load level decreases and/or said temperature is at
and or above a reference temperature and increasing
power consumption associated with Said processor as
Said work load level increases.

US 2005/0223255 A1

45. A method, comprising the Steps of:
determining temperature associated with a processor,
determining processing demand on Said processor, and
using results of Said determining temperature and deter

mining processing demand for reducing power con
Sumption associated with Said processor.

46. A method, comprising the Steps of:
determining temperature associated with a processor,
determining processing demand on Said processor, and
using results of Said determining temperature and deter

mining processing demand for increasing power con
Sumption associated with Said processor as Said pro
cessing demand increases.

10
Oct. 6, 2005

47. A method, comprising the Steps of:

determining temperature associated with a processor,

determining processing demand on Said processor, and

using results of Said determining temperature and deter
mining processing demand for reducing power con
Sumption associated with Said processor as Said pro
cessing demand decreases and/or said temperature is at
and or above a reference temperature and increasing
power consumption associated with Said processor as
Said work load level increases.

