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ABSTRACT 

A method for detecting temperature and a work load level 
asSociated with a processor, results of the detecting being 
used for controlling power dissipation associated with the 
processor and/or apparatus and/or System employing the 
SC. 
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METHOD FOR IMPLEMENTING THERMAL AND 
POWER MANAGEMENT IN A PROCESSOR 
AND/OR APPARATUS AND/OR SYSTEM 

EMPLOYING THE SAME 

BACKGROUND OF THE INVENTION 

0001) 1. Field of the Invention 
0002 This invention relates to real-time computer ther 
mal management and power conservation, and more par 
ticularly to an apparatus and method for decreasing and 
increasing central processing unit (CPU) clock time based 
on temperature and real-time activity levels within the CPU 
of a portable computer. 
0003 2. Description of the Related Art 
0004. During the development stages of personal com 
puters, the transportable or portable computer has become 
very popular. Such portable computer uses a large power 
Supply and really represents a Small desktop personal com 
puter. Portable computers are Smaller and lighter than a 
desktop personal computer and allow a user to employ the 
Same Software that can be used on a desktop computer. 
0005 The first generation “portable” computers only 
operated from an A/C wall power. AS personal computer 
development continued, battery-powered computers were 
designed. Furthermore, real portability became possible 
with the development of new display technology, better disk 
storage, and lighter components. Unfortunately, the software 
developed was designed to run on desk top computers 
without regard to battery-powered portable computers that 
only had limited amounts of power available for short 
periods of time. No special considerations were made by the 
software, operating system (MS-DOS), Basic Input/Output 
System (BIOS), or the third party application software to 
conserve power usage for these portable computers. 
0006 AS more and more highly functional software pack 
ages were developed, desktop computer users experienced 
increased performance from the introductions of higher 
computational CPUs, increased memory, and faster high 
performance disk drives. Unfortunately, portable computers 
continued to run only on A/C power or with large and heavy 
batteries. In trying to keep up with the performance require 
ments of the desk top computers, and the new Software, 
expensive components were used to cut the power require 
ments. Even so, the heavy batteries still did not run very 
long. This meant users of portable computerS has to Settle for 
A/C operation or very short battery operation to have the 
performance that was expected from the third party Soft 
WC. 

0007 Portable computer designers stepped the perfor 
mance down to 8083- and 8086-type processors to reduce 
the power consumption. The Supporting circuits and CPU 
took less power to run and therefore, lighter batteries could 
be used. Unfortunately, the new software requiring 80286 
type instructions, that did not exist in the older slower 
8088/8086 CPUs, did not run. In an attempt to design a 
portable computer that could conserve power, thereby yield 
ing longer battery operation, Smaller units, and leSS weight, 
Some portable computer designers proceeded to reduce 
power consumption of a portable computer while a user is 
not using the computer. For example, designers obtain a 
reduction in power usage by Slowing or Stopping the disk 
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drive after Some predetermined period of inactivity; if the 
disk drive is not being used, the disk drive is turned off, or 
Simply placed into a Standby mode. When the user is ready 
to use the disk, the operator must wait until the disk drive 
Spins up and the computer System is ready again for full 
performance before the operator may proceed with the 
operation. 

0008. Other portable computer designers conserve power 
by turning the computer display off when the keyboard is not 
being used. However, in normal operation the computer is 
using full power. In other words, power conservation by this 
method is practical only when the user is not using the 
components of the System. It is very likely, however, that the 
user will turn the computer off when not in use. Neverthe 
less, Substantial power conservation while the operator is 
using the computer for meaningful work is needed. When 
the operator uses the computer, full operation of all com 
ponents is required. During the intervals while the operator 
is not using the computer, however, the computer could be 
turned off or slowed down to conserve power consumption. 
It is critical to maintaining performance to determine when 
to slow the computer down or turn it off without disrupting 
the user's work, upsetting the third party Software, or 
confusing the operating System, until operation is needed. 

0009 Furthermore, although a user can wait for the disk 
to Spin up as described above, application Software packages 
cannot wait for the CPU to “spin up” and get ready. The CPU 
must be ready When the application program needs to 
compute. Switching to full operation must be completed 
quickly and without the application program being affected. 
This immediate transition must be transparent to the user as 
well as to the application currently active. Delays cause user 
operational problems in response time and Software com 
patibility, as well as general failure by the computer to 
accurately execute a required program. 

0010. Other attempts at power conservation for portable 
computers include providing a “Shut Down” or “Standby 
Mode” of operation. The problem, again, is that the com 
puter is not usable by the operator during this period. The 
operator could just as well turned off the power Switch of the 
unit to Save power. This type of power conservation only 
allows the portable computer to “shut down” and thereby 
Save power if the operator forgets to turn off the power 
Switch, or walks away from the computer for the pro 
grammed length of time. The advantage of this type of 
power conservation over just turning the power Switch 
off/on is a much quicker return to full operation. However, 
this method of power conservation is still not real-time, 
intelligent power conservation while the computer is on and 
processing data which does not disturb the operating System, 
BIOS, and any third party application programs currently 
running on the computer. 

0011. Some attempt to meet this need was made by VLSI 
vendors in providing circuits that either turned off the clockS 
to the CPU when the user was not typing on the keyboard or 
woke up the computer on demand when a keystroke 
occurred. Either of these approaches reduce power but the 
computer is dead (unusable) during this period. Background 
operations Such as updating the System clock, communica 
tions, print Spooling, and other like operations cannot be 
performed. Some existing portable computers employ these 
circuits. After a programmed period of no activity, the 
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computer turns itself off. The operator must turn the machine 
on again but does not have to reboot the operating System 
and application program. The advantage of this circuitry is 
like the existing "shut down operations, a quick return to 
full operation without restarting the computer. Nevertheless, 
this method only reduces power consumption when the user 
walks away from the machine and does not actually extend 
the operational like of the battery charge. 
0012. Thermal over-heating, of CPUs and other related 
devices is another problem yet to be addressed by portable 
computer manufacturers. CPUs are designed to operate 
within specific temperature ranges (varies depending on 
CPU type, manufacturer, quality, etc). CPU performance 
and Speed degenerates when the limits of the operation 
temperature ranges are exceeded, especially the upper tem 
perature range. This problem is particularly acute with CPUs 
manufactured using CMOS technology where temperatures 
above the upper temperature range result in reduced CPU 
performance and Speed. Existing power Saving techniques 
Save power but do not measure and intelligently control 
CPU and/or related device temperature. 

SUMMARY OF THE INVENTION 

0013 In view of the above problems associated with the 
related art, it is an object of the present invention to provide 
an apparatus and method for real-time conservation of 
power and thermal management for computer Systems with 
out any real-time performance degradation, Such conserva 
tion of power and thermal management remaining transpar 
ent to the user. 

0.014) Another object of the present invention is to pro 
vide an apparatus and method for predicting CPU activity 
and temperature levels and using the predictions for auto 
matic power conservation and temperature control. 
0.015 Yet another object of the present invention is to 
provide an apparatus and method which allows user modi 
fication of automatic activity and temperature level predic 
tions and using the modified predictions for automatic power 
conservation and temperature control. 
0016 A further object of the present invention is to 
provide an apparatus and method for real-time reduction and 
restoration of clock speeds thereby returning the CPU to full 
processing rate from a period of inactivity, which is trans 
parent to Software programs. 
0.017. These objects are accomplished in a preferred 
embodiment of the present invention by an apparatus and 
method which determine whether a CPU may rest (including 
any PCI bus coupled to the CPU) based upon CPU activity 
and temperature levels and activates a hardware Selector 
based upon that determination. If the CPU may rest, or sleep, 
the hardware Selector applies oscillations at a sleep clock 
level; if the CPU is to be active, the hardware selector 
applies oscillations at a high Speed clock level. 
0.018. The present invention examines the state of CPU 
activity and temperature, as well as the activity of both the 
operator and any application Software currently active. This 
Sampling of activity and temperature is performed real-time, 
adjusting the performance level of the computer to manage 
power conservation, CPU temperature and computer power. 
These adjustments are accomplished within the CPU cycles 
and do no affect the user's perception of performance. 
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0019. Thus, when the operator for the third party soft 
ware of the operating System/BIOS is not using the com 
puter, the present invention will effect a quick turn off or 
slow down of the CPU until needed, thereby reducing the 
power consumption and CPU temperature, and will 
promptly restore full CPU operation when needed without 
affecting perceived performance. This Switching back into 
full operation from the “slow down” mode occurs without 
the user having to request it and without any delay in the 
operation of the computer while waiting for the computer to 
return to a “ready” state. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0020. The novel features believed characteristic of the 
invention are set forth in the appended claims. The invention 
itself, however, as well as other features and advantages 
thereof, will be best understood by reference to the detailed 
description with follows, read in conjunction with the 
accompanying drawings, wherein: 
0021 FIG. 1 is a flowchart depicting the self-tuning 
aspect of a preferred embodiment of the present invention. 
0022 FIGS. 2a-2d are flowcharts depicting the active 
power conservation monitor employed by the present inven 
tion. 

0023 FIG. 3 is a simplified schematic diagram repre 
Senting the active power conservation associated hardware 
employed by the present invention. 
0024 FIG. 4 is a schematic of the sleep hardware for one 
embodiment of the present invention. 
0025 FIG. 5 is a schematic of the sleep hardware for 
another embodiment of the invention. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

0026 If the period of computer activity in any given 
System is examined, the CPU and associated components 
have a utilization percentage. If the user is inputting data 
from the keyboard, the time between keystrokes is very long 
in terms of CPU cycles. Many things can be accomplished 
by the computer during this time, Such as printing a report. 
Even during the printing of a report, time is still available for 
additional operations Such as background updating of a 
clock/calendar display. Even So, there is almost always Spare 
time when the CPU is not being used. If the computer is 
turned off or slowed down during this spare time, then power 
consumption is obtained real-time. Such real-time power 
conservation extends battery operation life and lowers CPU 
temperature. 

0027 According to one embodiment of the present inven 
tion, to conserve power and lower CPU temperature under 
MS-DOS, as well as other operating systems such as OS/2, 
XENIS, and those for Apple computers, requires a combi 
nation of hardware and Software. It should be noted that 
because the present invention will work in any System, while 
the implementation may vary slightly on a System-by 
System basis, the Scope of the present invention should 
therefore not be limited to computer Systems operating 
under MS/DOS. 

0028 Slowing down or stopping computer system com 
ponents reduces power consumption and lowers CPU tem 
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perature, although the amount of power Saved and CPU 
temperature reduction may vary. Therefore, according to the 
present invention, stopping the clock (where possible as 
Some CPUs cannot have their clocks stopped) reduces power 
consumption and CPU temperature more than just slowing 
the clock. 

0029. In general, the number of operations (or instruc 
tions) per second may be considered to be roughly propor 
tional to the processor clock: 

instructions/second=instructions/cycle cycles/second 

0030 Assuming for simplicity that the same instruction 
is repeatedly executed So that instructions/second is con 
Stant, the relationship can be expressed as follows: 

0.031 where Fo is instructions/second, K is constant 
equal to the instructions/cycle, and Clk equals cycles/Sec 
ond. Thus, roughly Speaking, the rate of execution increases 
with the frequency of the CPU clock. 
0.032 The amount of power being used at any given 
moment is also related to the frequency of the CPU clock 
and therefore to the rate of execution. In general this 
relationship can be expressed as follows: 

0033 where P is power in watts, K is a constant in watts, 
K is a constant and expresses the number of watt-Second/ 
cycle, and Clk equals the cycles/second of the CPU clock. 
Thus it can also be said that the amount of power being 
consumed at any given time increaseS as the CPU clock 
frequency increases. 
0034 Assume that a given time period T is divided into 
N intervals such that the power P is constant during each 
interval. Then the amount of energy E expended during T is 
given by: 

E=P(1) delta T+P(2) delta T, ... P(N) delta TN 

0035) Further assume that the CPU clock “CLK” has only 
two states, either “ON” or “OFF". For the purposes of this 
discussion, the “ON” state represents the CPU clock at its 
maximum frequency, while the “OFF' state represents the 
minimum clock rate at which the CPU can operate (this may 
be zero for CPUs that can have their clocks stopped). For the 
condition in which the CPU clock is always “ON”, each P(i) 
in the previous equation is equal and the total energy is: 

. delta TN)= 

0036) This represents the maximum power consumption 
of the computer in which no power conservation measures 
are being used. If the CPU clock is “off” during a portion of 
the intervals, then there are two power levels possible for 
each interval. The P(on) represents the power being con 
sumed when the clock is in its “ON” state, while P(off) 
represents the power being used when the clock is "OFF". 
If all of the time intervals in which the clock is “ON” are is 
Summed into the quantity “T(on)" and the "OFF" intervals 
are summed into “T(off)”, then it follows: 

0037 Now the energy being used during period T can be 
written: 
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0038 Under these conditions, the total energy consumed 
may be reduced by increasing the time intervals T(off). 
Thus, by controlling the periods of time the clock is in its 
“OFF' state, the amount of energy being used may be 
reduced. If the T(off) period is divided into a large number 
of intervals during the period T, then as the width of each 
interval goes to Zero, energy consumption is at a maximum. 
Conversely, as the width of the T(off) intervals increase, the 
energy consumed decreases. 
0039) If the “OFF" intervals are arranged to coincide with 
periods during which the CPU is normally inactive, then the 
user cannot perceive any reduction in performance and 
overall energy consumption is reduced from the E(max) 
state. In order to align the T(off) intervals with periods of 
CPU inactivity, the CPU activity and temperature levels are 
used to determine the width of the T(off) intervals in a closed 
loop. FIG. 1 depicts such a closed loop. The activity level 
of the CPU is determined at Step 10. If this level is a 
decrease over an immediately previous determination (Step 
22), the present invention increases the T(off) interval (Step 
20) and returns to determine the activity level of the CPU 
again. If, on the other hand, this activity level is an increase 
over an immediately previous determination (Step 22), a 
determination is made as to whether or not the temperature 
of the CPU is a concern (Step 24). If CPU temperature is not 
a concern, the present invention decreases the T(off) interval 
(Step 30) and proceeds to again determine the activity level 
of the CPU. If, on the other hand, CPU temperature is a 
concern, a determination is made as to whether or not the 
CPU is processing critical I/O, a critical function or a critical 
real-time event (Step 26). If critical I/O or critical function 
or a critical real-time event are being processed, the present 
invention decreases the T(off) interval (Step 30) and pro 
ceeds to again determine the activity level of the CPU. If no 
critical I/O is being processed, the present invention 
increases the T(off) interval (Step 20) and proceeds again to 
determine the activity level of the CPU. Thus the T(off) 
intervals are constantly being adjusted to match the System 
activity level and control the temperature level of the CPU. 
0040. Management of CPU temperature (thermal man 
agement) is necessary because CPUs are designed to operate 
within a specific temperature range. CPU performance and 
Speed deteriorates when the Specified high operating tem 
perature of a CPU is exceeded (especially in CMOS process 
CPUs where temperatures above the high operating tem 
perature translate into slower CPU speed). The heat output 
of a CPU is directly related to the power consumed by the 
CPU and heat it absorbs from devices and circuitry that 
immediately Surround it. CPU power consumption increases 
with CPU clock speed and the number of instructions per 
second to be performed by the CPU. As a result, heat related 
problems are becoming more common as faster and increas 
ingly complex CPUs are introduced and incorporated into 
electronic devices. 

0041. In any operating System, two key logic points exist: 
an IDLE, or “do nothing, loop within the operating System 
and an operating System request channel, usually available 
for Services needed by the application Software. By placing 
logic inline with these logic points, the type of activity 
request made by an application Software can be evaluated, 
power conservation and thermal management can be acti 
Vated and Slice periods determined. A Slice period is the 
number of T(on) vs. T(off) intervals over time, computed by 
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the CPU activity and thermal levels. An assumption may be 
made to determine CPU activity level: Software programs 
that need Service usually need additional Services and the 
period of time between Service requests can be used to 
determine the activity level of any application Software 
running on the computer and to provide Slice counts for 
power conservation according to the present invention. 
Another assumption that may be made is that each CPU has 
a temperature coefficient unique to that CPU-CPU tempera 
ture rise time, CPU maximum operating temperature, CPU 
temperature fall time and intervention time required for 
thermal control. If this information is not provided by the 
CPU manufacturer, testing of the CPU being used (or 
another of the same make and type tested under Similar 
conditions) is required to obtain accurate information. 
0042. Once the CPU is interrupted during a power con 
servation and thermal management slice (T(off)), the CPU 
will Save the interrupted routine's State prior to vectoring to 
the interrupt Software. Off course, Since the power conser 
Vation and thermal management Software was operating 
during this Slice, control will be returned to the active power 
conservation and thermal management loop (monitor 40) 
which simply monitors the CPU's clock to determine an exit 
condition for the power conservation and thermal manage 
ment mode thereby exiting from T(off) to T(on) state. The 
interval of the next power conservation and thermal man 
agement State is adjusted by the activity level monitor, as 
discussed above in connection with FIG. 1. Some imple 
mentations can create an automatic exit from T(off) by the 
hardware logic, thereby forcing the power conservation and 
thermal management loop to be exited automatically and 
executing an interval T(on). 
0.043 More specifically, looking now at FIGS. 2a-2d, 
which depict the active power conservation and thermal 
management monitor 40 of the present invention. The CPU 
installs monitor 40 either via a program stored in the CPU 
ROM or loads it from an external device Storing the program 
in RAM. Once the CPU has loaded monitor 40, it continues 
to INIT 50 for system interrupt initialization, user configu 
rational Setup, and System/application Specific initialization. 
IDLE branch 60 (more specifically set out in FIG. 2b) is 
executed by a hardware or software interrupt for an IDLE or 
“do nothing function. This type of interrupt is caused by the 
CPU entering either an IDLE or a “do nothing” function. 
This type of interrupt is caused by the CPU entering either 
an IDLE or a "do nothing loop (i.e., planned inactivity). 
The ACTIVITY branch 70 of the flow chart, more fully 
described below in relation to FIG. 2d, is executed by a 
Software or hardware interrupt due to an operating System or 
I/O Service request, by an application program or internal 
operating System function. An I/O Service request made by 
a program may, for example, be a disk I/O, read, print, load, 
etc. Regardless of the branch Selected, control is eventually 
returned to the CPU operating system at RETURN 80. The 
INIT branch 50 of this flowchart, shown in FIG. 2a, is 
executed only once if it is loaded via program into ROM or 
is executed every time during power up if it is loaded from 
an external device and stored in the RAM. Once this branch 
of active power and thermal management monitor 40 has 
been fully executed, whenever control is yielded from the 
operating System to the power conservation and thermal 
management mode, either IDLE 60 or ACTIVITY 70 
branches are selected depending on the type of CPU activity: 
IDLE branch 60 for power conservation and thermal man 
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agement during planned inactivity and ACTIVITY branch 
70 for power conservation and thermal management during 
CPU activity. 

0044) Looking more closely at INIT branch 50, after all 
System interrupt and variables are initialized, the routine 
continues at Step 90 to set the Power level equal to 
DEFAULT LEVEL. In operating systems where the user 
has input control for the Power level, the program at Step 
100 checks to see if a User level has been selected. If the 
User level is less than Zero or greater than the MAXIMUM 
LEVEL, the system used the DEFAULT LEVEL. Other 

wise, it continues onto Step 110 where it modifies the 
Power level to equal the User level. 
0045 According to the preferred embodiment of the 
present invention, the system at Step 120 sets the variable 
Idle tick to zero and the variable Activity tick to zero. Under 
an MS/DOS implementation. Idle tick refers to the number 
of interrupts found in a “do nothing loop. Activity tick 
refers to the number of interrupts caused by an activity 
interrupt which in turn determines the CPU activity level. 
Tick count represents a delta time for the next interrupt 
Idle tick is a constant delta time from one tick to another 
(interrupt) unless overwritten by a Software interrupt. A 
Software interrupt may reprogram delta time between inter 
rupts. 

0046. After setting the variables to Zero, the routine 
continues on to Setup 130 at which time any application 
Specific configuration fine-tuning is handled in terms of 
System-Specific details and the System is initialized. Next the 
routine arms the interrupt I/O (Step 140) with instructions to 
the hardware indicating the hardware can take control at the 
next interrupt. INIT branch 50 then exits to the operating 
System, or whatever called the active power and thermal 
management monitor originally, at RETURN 80. 

0047 Consider now IDLE branch 60 of active power and 
thermal management monitor 40, more fully described at 
FIG. 2b. In response to a planned inactivity of the CPU, 
monitor 40 (not specifically shown in this Figure) checks to 
see if entry into IDLE branch 60 is permitted by first 
determining whether the activity interrupt is currently busy. 
If Busy A equals BUSY FLAG (Step 150), which is a 
reentry flag, the CPU is busy and cannot now be put to sleep. 
Therefore, monitor 40 immediately proceeds to RETURNI 
160 and exits the routine RETURN I 160 is an indirect 
vector to the previous operating System IDLE Vector inter 
rupt for normal processing Stored before entering monitor 
40. (I.e., this causes an interrupt return to the last chained 
vector.) 
0048 If the Busy A interrupt flag is not busy, then 
monitor 40 checks to see if the Busy Idle interrupt flag, 
Busy I, equals BUSY FLAG (Step 170). If so, this indi 
cates the system is already in IDLE branch 60 of monitor 40 
and therefore the system should not interrupt itself. If 
Busy I=BUSY FLAG, the system exits the routine at 
RETURN I indirect vector 160. 
0049) If, however, neither the Busy Areentry flag or the 
Busy I reentry flag have been Set, the routine sets the 
Busy I flag at Step 180 for reentry protection (Busy I= 
BUSY FLAG). At Step 190 Idle tick is incremented by 
one. Idle tick is the number of T(on) before a T(off) interval 
and is determined from IDLE interrupts, Setup interrupts and 
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from CPU activity and temperature levels. Idle tick incre 
ments by one to allow for Smoothing of events, thereby 
letting a critical I/O activity control Smoothing. 
0050. At Step 200 monitor 40 checks to see if Idle tick 
equals IDLE MAXTICKS. IDLE MAXTICKS is one of 
the constants initialized in Setup 130 of INIT branch 50, 
remains constant for a System, and is responsible for Self 
tuning of the activity and thermal levels. If Idle tick does 
not equal IDLE MAXTICKS, the Busy I flag is cleared at 
Step 210 and exits the loop proceeding to the RETURN I 
indirect vector 160. If, however, Idle tick equals 
IDLE MAXTICKS, Idle tick is set equal to IDLE START 
TICKS (Step 220). IDLE START TICKS is a constant 
which may or may not be Zero (depending on whether the 
particular CPU can have its clock stopped). This step 
determines the self-tuning of how often the rest of the sleep 
functions may be performed. By setting IDLE START 
TICKS equal to IDLE MAXTICKS minus one, a continu 
ous T(off) interval is achieved. At Step 230, the Power level 
is checked. If it is equal to Zero, the monitor clears the 
Busy I flag (Step 210), exits the routine at RETURNI 160, 
and returns control to the operating System So it may 
continue what it was originally doing before it entered active 
power monitor 40. 
0051) If, however, the Power level does not equal zero at 
Step 240, the routine determines whether an interrupt mask 
is in place. An interrupt mask is Set by the System/applica 
tion Software, and determines whether interrupts are avail 
able to monitor 40. If interrupts are NOT AVAILABLE, the 
Busy I reentry flag is cleared and control is returned to the 
operating System to continue what it was doing before it 
entered monitor 40. Operating Systems, as well as applica 
tion Software, can Set T(on) interval to yield a continuous 
T(on) state by Setting the interrupt mask equal to 
NOT AVAILABLE. 
0.052 Assuming an interrupt is AVAILABLE, monitor 40 
proceeds to the SAVE POWER subroutine 250 which is 
fully executed during one T(off) period established by the 
hardware state. (For example, in the preferred embodiment 
of the present invention, the longest possible interval could 
be 18 ms, which is the longest time between two ticks or 
interrupts from the real-time clock.) During the SAVE 
POWER subroutine 250, the CPU clock is stepped down to 
a sleep clock level. 
0053) Once a critical I/O operation forces the T(on) 
intervals, the IDLE branch 60 interrupt tends to remain 
ready for additional critical I/O requests. As the CPU 
becomes busy with critical I/O, less T(off) intervals are 
available. Conversely, as critical I/O requests decrease, and 
the time intervals between them increase, more T(off) inter 
vals are available. IDLE branch 60 is a self-tuning system 
based on feedback from CPU activity and temperature 
interrupts and tends to provide more T(off) intervals as the 
activity level slows and/or the CPU temperature becomes a 
concern. As soon as monitor 40 has completed SAVE 
POWER subroutine 250, shown in FIG.2c and more fully 
described below, the Busy I reentry flag is cleared (Step 
210) and control is returned at RETURNI 160 to whatever 
operating System originally requested monitor 40. 

0.054 Consider now FIG.2c, which is a flowchart depict 
ing the SAVE POWER subroutine 250. Monitor 40 deter 
mines what the I/O hardware high speed clock is at Step 260. 
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It sets the CURRENT_CLOCK RATE equal to the relevant 
high speed clock and saves this value to be used for CPUs 
with multiple level high Speed clockS. Thus, if a particular 
CPU has 12 MHZ and 6 MHz high speed clocks, monitor 40 
must determine which high speed clock the CPU is at before 
monitor 40 reduces power so it may reestablish the CPU at 
the proper high speed clock when the CPU awakens. At Step 
270, the Save clock rate is set equal to the CURRENT 
CLOCK RATE determined. Save clock rate 270 is not 

used when there is only one high speed clock for the CPU. 
Monitor 40 now continues to SLEEPCLOCK 280, where a 
pulse is sent to the hardware selector (shown in FIG. 3) to 
put the CPU clock to sleep (i.e., lower or stop its clock 
frequency). The I/O port hardware sleep clock is at much 
lower oscillations than the CPU clock normally employed. 
0055. At this point either of two events can happen. A 
System/application interrupt may occur or a real-time clock 
interrupt may occur. If a System/application interrupt 290 
occurs, monitor 40 proceeds to interrupt routine 300, pro 
cessing the interrupt as Soon as possible, arming interrupt 
I/O at Step 310, and returning to determine whether there 
has been an interrupt (Step 320). Since in this case there has 
been an interrupt, the Save clock rate is used (Step 330) to 
determine which high speed clock to return the CPU to and 
SAVE POWER subroutine 250 is exited at RETURN 340. If, 
however, a System/application interrupt is not received, the 
SAVE POWER Subroutine 250 will continue to wait until a 
real-time clock interrupt has occurred (Step 320). Once such 
an interrupt has occurred, SAVE POWER subroutine 250 
will continue to wait until a real-time clock interrupt has 
occurred (Step 320). Once such an interrupt has occurred, 
SAVEPOWER subroutine 250 will execute interrupt loop 
320 several times. If however, control is passed when the 
Sleep clock rate was Zero, in other words, there was no clock, 
the SAVE POWER subroutine 250 will execute interrupt 
loop 320 once before returning the CPU clock to the 
Save clock rate 330 and exiting (Step(340)). 
0056 Consider now FIG.2d which is a flowchart show 
ing ACTIVITY branch 70 triggered by an application/ 
System activity request via an operating System Service 
request interrupt. ACTIVITY branch 70 begins with reentry 
protection. Monitor 40 determines at Step 350 whether 
Busy I has been set to BUSY FLAG. If it has, this means 
the system is already in ACTIVITY branch 70 and cannot be 
interrupted. If Busy I=BUSY FLAG, monitor 40 exits to 
RETURNI 160, which is an indirect vector to an old activity 
vector interrupt for normal processing, via an interrupt 
vector after the operating System performs the requested 
Service. 

0057) If however, the Busy I flag does not equal BUSY 
FLAG, which means ACTIVITY branch 70 is not being 

accessed, monitor 40 determines at Step 360 if the BUSY A 
flag has been set equal to BUSY FLAG. If so, control will 
be returned to the system at this point because ACTIVITY 
branch 70 is already being used and cannot be interrupted. 
If the Busy A flag has not been set, in other words, Busy A 
does not equal BUSY FLAG, monitor 40 sets Busy Aequal 
to BUSY FLAG at Step 370 so as not to be interrupted 
during execution of ACTIVITY branch 70. At Step 380 the 
Power level is determined. If Power level equals zero, 
monitor 40 exits ACTIVITY branch 70 after clearing the 
Busy Areentry flag (Step 390). If however, the Power level 
does not equal zero, the CURRENT CLOCK RATE of the 
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I/O hardware is next determined. As was true with Step 270 
of FIG. 2C, Step 400 of FIG. 2d uses the CURRENT 
CLOCK RATE if there are multiple level high speed 

clocks for a given CPU. Otherwise, CURRENT_CLOCK 
RATE always equals the CPU high speed clock. After the 
CURRENT CLOCK RATE is determined (step 400), at 
Step 410 Idle tick is set equal to the constant START 
TICKS established for the previously determined CUR 
RENT CLOCK RATE. T(off) intervals are established 
based on the current high Speed clock that is active. 
0.058 Monitor 40 next determines that a request has been 
made. A request is an input by the application Software 
running on the computer, for a particular type of Service 
needed. At Step 420, monitor 40 determines whether the 
request is a CRITICAL I/O. If the request is a CRITICAL 
I/O, it will continuously force T(on) to lengthen until the 
T(on) is greater than the T(off), and monitor 40 will exit 
ACTIVITY branch 70 after clearing the Busy Areentry flag 
(Step 390). If, on the other hand, the request is not a 
CRITICALI/O, then the Activity tick is incremented by one 
at Step 430. It is then determined at Step 440 whether the 
Activity tick now equals ACTIVITY MAXTICKS. Step 
440 allows a smoothing from a CRITICAL I/O, and makes 
the system ready from another CRITICAL I/O during 
Activity tick T(on) intervals. ASSuming Activity tick does 
not equal ACTIVITY MAXTICKS, ACTIVITY branch 70 
is exited after clearing the Busy Areentry flag (Step 390). 
If, on the other hand, the Activity tick equals constant 
ACTIVITY MAXTICKS, at Step 450 Activity tick is set to 
the constant LEVEL MAXTICKS established for the par 
ticular Power level determined at Step 330. 
0059) Now monitor 40 determines whether an interrupt 
mask exists (Step 460). An interrupt mask is set by system/ 
application software. Setting it to NOT AVAILABLE cre 
ates a continuous T(on) state. If the interrupt mask equals 
NOT AVAILABLE, there are no interrupts available at this 
time and monitor 40 exits ACTIVITY branch 70 after 
clearing the Busy Areentry flag (Step 390). If, however, an 
interrupt is AVAILABLE, monitor 40 determines at Step 470 
whether the request identified at Step 420 was for a SLOW 
I/O INTERRUPT Slow I/O requests may have a delay until 
the I/O device becomes “ready'. During the “make ready” 
operation, a continuous T(off) interval may be set up and 
executed to conserve power. Thus, if the request is not a 
SLOW I/O INTERRUPT, ACTIVITY branch 70 is exited 
after clearing the Busy. A reentry flag (Step 390). If, how 
ever, the request is a SLOW I/O INTERRUPT, and time yet 
exists before the I/O device becomes “ready”, monitor 40 
then determines at Step 480 whether the I/O request is 
COMPLETE (i.e., is I/O device ready?). If the I/O device is 
not ready, monitor 40 forces T(off) to lengthen, thereby 
forcing the CPU to wait, or sleep, until the SLOW I/O device 
is ready. At this point it has time to Save power and 
ACTIVITY branch 70 enterS SAVE POWER Subroutine 250 
previously described in connection with to FIG. 2C. If, 
however, the I/O request is COMPLETE, control is returned 
to the operating System Subsequently to monitor 40 exiting 
ACTIVITY branch 70 after clearing Busy. A reentry flag 
(Step 390). 
0060 Self-runing is inherent within the control system of 
continuous feedback loops. The Software of the present 
invention can detect when CPU activity is low and/or CPU 
temperature is high enough to be of concern and therefore 
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when the power conservation and thermal management 
aspect of the present invention may be activated. To detect 
when CPU temperature is high enough to be of concern, the 
power and thermal management Software monitors a ther 
mistor on the PWB board adjacent the CPU (or mounted 
directly on or in the CPU if the CPU includes a thermistor). 
In one embodiment of the present invention, the Software 
monitors the thermistor 18 timeS/sec through an A/D con 
verter. If no power is being conserved and the temperature 
of the thermistor is within acceptable parameters, then 
monitoring continues at the same rate. If, however, the 
temperature of the thermistor is rising, a Semaphore is Set to 
tell the system to start watching CPU temperature for 
possible thermal management action. Each CPU has a 
temperature coefficient unique to that specific CPU. Infor 
mation on how long it takes to raise the temperature and at 
what point intervention must occur to prevent performance 
degradation must be derived from information Supplied with 
the CPU or through testing. 
0061 According to one embodiment of the invention, a 
counter is Set in hardware to give an ad hoc interrupt 
(counter is based on coefficient of temperature rise). The 
thermal management System must know how long it takes 
CPU temperature to go down to minimize temperature 
effect. If the counter is counting down and receives an active 
power interrupt, the ad hoc interrupt is turned off because 
control has been regained through the active power and 
thermal management. The result is unperceived operational 
power Savings. The ad hoc interrupt can be overridden or 
modified by the active power interrupt which checks the 
type gradient i.e., up or down, checks the count and can 
adjust the up count and down count ad hoc operation based 
on what the CPU is doing real time. If there are no real time 
interrupts, then the timer interval continually comes in and 
monitors the gradual rise in temperature and it will adjust the 
ad hoc counter as it needs it up or down. The result is 
dynamic feedback from the active power and thermal man 
agement into the ad hoc timer, adjusting it to the dynamic 
adjustment based on what the temperature rise or fall is at 
any given time and how long it takes for that temperature to 
fall off or rise through the danger point. This is a different 
concept that just throwing a timer out ad hoc and letting it 

. 

0062 For example, assume that the CPU being used has 
a maximum Safe operating temperature of 95 degrees C. 
(obtained from the CPU spec sheet or from actual testing). 
Assume also that a thermistor is located adjacent the CPU 
and that when the CPU case is at 95 degrees C., the 
temperature of the thermistor may be lower Since it is spaced 
a distance from the CPU (such as 57 degrees C.). A deter 
mination should be made as to how long it took the CPU to 
reach 95 degrees. If it took an hour, the System may decide 
to sample the thermistor every 45 minutes. Once the CPU is 
at 95 degrees, CPU temperature may need to be sampled 
every minute to make Sure the temperature is going down, 
otherwise, the temperature might go up, i.e., to 96 degrees. 
If 5 minutes are required to raise CPU temperature from 95 
to 96 degrees, CPU temperature Sampling must be at a 
period less than 5 minutes-i.e., every 3 or 1 minutes. If the 
temperature is not going down, then the length of the rest 
cycles should be increased. Continual evaluation of the 
thermal read constant is key to knowing when CPU tem 
perature is becoming a problem, when thermal management 
intervention is appropriate and how much time can be 
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allowed for other things in the system. This decision must be 
made before the target temperature is reached. Once CPU 
temperature Starts to lower, it is O.K. to go back to the 
regular thermal constant number because 1) you have 
Selected the right slice period, or 2) the active power portion 
of the active power and thermal management has taken over, 
So the Sampling rate can be reduced. 

0.063 Examples of source code that can be stored in the 
CPU ROM or in an external RAM device, according to one 
embodiment of the invention, are listed in the COMPUTER 
PROGRAMS LISTING section under: 1) Interrupt 8 Timer 
interrupt Service-listed on pages tO ; 2) 
CPU Sleep Routine-listed on pages to ; 3) 
FILE=FORCE5. ASM-listed on pages tO 
and 4) FILE=Thermal.EQU-listed on pages to 

0064. Utilizing the above listed source code, and assum 
ing that Interrupt 8 Timer interrupt Service is the interrupt 
mask called at Step 240 of IDLE loop 60 or at Step 460 of 
ACTIVITY loop 70, the procedure for thermal management 
is set up “Do Thermal Management if needed” after which 
the System must decide if there is time for thermal manage 
ment “Time for Thermal Management?”. If there is time for 
thermal management, the System calls the file “force sleep” 
if there is time to sleep (which also sleeps any PCI bus 
coupled to the CPU), or alternatively, could do a STI nop 
and a halt-which is an alternate way and does not get PCI 
devices and does not have a feedback loop from the power 
and temperature management Systems. The “force sleep” 
File gets feedback from other power Systems. Force sleep 
does a jump to force5.asm, which is the PCI multiple sleep 
program. Are there speakers busy in the System'? Is there 
Something else in the System going on from a power 
management point of View? Are DMAS running in the 
System'? Sleeping may not be desirable during a Sound cycle. 
It needs to know what is going on in the System to do an 
intelligent sleep. The thermal management cares about the 
CPU and cares about all the other devices out there because 
collectively they all generate heat. 

0065. There are some equations in the program that are 
running-others that may or may not be running. “tk” is the 
number of interrupts per Second that are Sampled times the 
interval that is Sampled over. “it represents a thermal read 
constant and the thermal read constant in the present 
embodiment is 5. In the code, the thermal read constant is 
dynamically adjusted later depending on what the tempera 
ture is. Thus, this is the Starting thermal read interval, but as 
the temperature rises, reading should be more often and the 
cooler it is, reading should be less often than 5 minutes 
e.g., 10 minutes. The thermal read constant will adjust. TP1 
or TP2 represents what percentage of the CPU cycles do we 
want to sample at-for example, TP7 set at 50=the number 
of interrupts that have to occur over Some period of time 
Such that if we take that number that going to represent every 
So many clock cycles that go by before we sample and Sleep 
the CPU. These equations are variable. Other equations can 
also be used 

0.066 Thus, one concept of the present invention is that 
there are various levels of temperature that require testing in 
relationship to the hottest point to be managed. The Sample 
period will change based on temperature and active feed 
back. Active feedback may be required even though thermal 
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management has determined that the CPU temperature is too 
high and should be reduced (by slowing or stopping the CPU 
clock). CPU clock speed may not be reduced because other 
System things are happening-the result is intelligent feed 
back. The power conservation and thermal management 
Systems asks the CPU questions Such as are you doing 
Something now that I cannot go do? If not, please Sleep. If 
yes, don't Sleep and come back to me So that I can reset my 
count. The result is a graduated effect up and graduated 
effect down and the thermal read constant time period 
adjusts itself in response to CPU temperature. Performance 
taken away from the user during power conservation and 
thermal management control is balanced against critical I/O 
going on in the System. 

0067 Active power and thermal management cooperates 
with Standard CPU power management So that when Stan 
dard power management gets a chance to take over the 
active feedback can Start degrading even though the tem 
perature has not. Existing power/thermal management Sys 
tems turn on and Stay on until the temperature goes down. 
Unfortunately, this preempts things in the System Such is not 
the case in the environment of the present invention. The 
Same Sleep manager works in conjunction with power con 
Servation and thermal management-the sleep manager has 
global control. As a example, while CPU temperature may 
be rising or have risen to a level of concern, the System may 
be processing critical I/O, Such as a wave file being played. 
With critical I/O, the system of the present invention will 
play the wave file without interruption even though the 
result may be a higher CPU temperature. CPUs do not 
typically overheat all at once. There is a temperature rise 
gradient. The System of the present invention takes advan 
tage of the temperature rise gradient to give a user things that 
affect the user time Slices and take it away from him when 
its not affected. 

0068 Thermal management can be also be achieved 
using a prediction mode. Prediction mode utilizes no Sensors 
or thermistors or even knowledge as to actual CPU tem 
perature. Prediction mode uses a guess-i.e. that the System 
will need the ad hoc interrupt once every 5 seconds or 50 
times/second (=constant) and then can take it up or down 
based on what the System is doing with the active power and 
thermal management. The prediction theory can also be 
combined with actual CPU temperature monitoring. 

0069. Once the power conservation and thermal manage 
ment monitor is activated, a prompt return to full speed CPU 
clock operation within the interval is achieved So as to not 
degrade the performance of the computer. To achieve this 
prompt return o full Speed CPU clock operation, the pre 
ferred embodiment of the present invention employs Some 
asSociated hardware. 

0070 Looking now at FIG. 3 which shows a simplified 
Schematic diagram representing the associated hardware 
employed by the present invention for active power conser 
vation and thermal management. When monitor 40 (not 
shown) determines the CPU is ready to sleep, it writes to an 
I/O port (not shown) which causes a pulse on the SLEEP 
line. The rising edge of this pulse on the SLEEP line causes 
flip flop 500 to clock a high to Q and a low to Q. This 
causes the AND/OR logic (AND gates 510, 520, OR late 
530) to select the pulses travelling the SLEEP CLOCK line 
from SLEEP CLOCK Oscillator 540 to be sent to and used 
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by the CPU CLOCK. SLEEP CLOCK oscillator 540 is a 
slower clock than the CPU clock used during normal CPU 
activity. The high coming from the Q of flip flop 500 ANDed 
(510) with the pulses coming from SLEEP CLOCK oscil 
lator 540 is ORed (530) with the result of the low on the Q 
of flip flop 500 ANDed (520) with the pulse generated along 
the HIGH SPEED CLOCK line by the HIGH SPEED 
CLOCKoscillator 550 to yield the CPU CLOCK. When the 
I/O port designates SLEEP CLOCK, the CPU CLOCK is 
then equal to the SLEEP CLOCKoscillator 540 value. If, on 
the other hand, an interrupt occurs, an interrupt-value 
clears flip flop 500, thereby forcing the AND/OR selector 
(comprising 510,520 and 530) to choose the HIGH SPEED 
CLOCK value, and returns the CPU CLOCK value to the 
value coming from HIGH SPEED CLOCK oscillator 550. 
Therefore, during any power conservation and/or thermal 
management operation on the CPU, the detection of any 
interrupt within the system will restore the CPU operation at 
full clock rate prior to Vectoring and processing the interrupt. 

0071. It should be noted that the associated hardware 
needed, external to each of the CPUs or any given System, 
may be different based on the operating System used, 
whether the CPU can be stopped, etc. Nevertheless, the 
scope of the present invention should not be limited by 
possible System Specific modifications needed to permit the 
present invention to actively conserve power and manage 
CPU temperature in the numerous available portable com 
puter Systems. For example two actual implementations are 
shown in FIGS. 4 and 5, discussed below. 

0.072 Many VSLI designs today allow for clock Switch 
ing of the CPU speed. The logic to Switch from a null clock 
or slow clock to a fast clock logic is the same as that which 
allows the user to change Speeds by a keyboard command. 
The added logic of monitor 40 working with Such Switching 
logic, causes an immediate return to a fast clock upon 
detection of any interrupt. This simple logic is the key to the 
necessary hardware Support to interrupt the CPU and 
thereby allow the processing of the interrupt at full Speed. 

0073. The method to reduce power consumption under 
MS-DOS employs the MS-DOS IDLE loop trap to gain 
access to the “do nothing” loop. The IDLE loop provides 
Special access to application Software and operating System 
operations that are in a state of IDLE of low activity. Careful 
examination is required to determine the activity level at any 
given point within the System. Feedback loops are used from 
the interrupt 21H service request to determine the activity 
level. The prediction of activity level is determined by 
interrupt 21H requests, from which the present invention 
thereby sets the slice periods for “sleeping” (slowing down 
or stopping) the CPU. An additional feature allows the user 
to modify the Slice depending on the activity level of 
interrupt 21H. The method to produce power conservation 
under WINDOWS employs real and protect modes to save 
the power interrupt which is called by the operating System 
each time WINDOWS has nothing to do. 
0.074 Looking now at FIG. 4, which depicts a schematic 
of an actual sleep hardware implementation for a System 
such as the Intel 50386 (CPU cannot have its clock stopped). 
Address enable bus 600 and address bus 610 provide CPU 
input to demultiplexer 620. The output of demultiplexer 620 
is sent along SLEEPCS- and provided as input to OR gates 
630, 640 The other inputs to OR gates 630, 640 are the I/O 
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write control line and the I/O read control line, respectively. 
The outputs of these gates, in addition to NOR gate 650, are 
applied to D flip flop 660 to decode the port. “INTR” is the 
interrupt input dorm the I/O port (peripherals) into NOR 
gate 650, which causes the logic hardware to Switch back to 
the high speed clock. The output of flip flop 660 is then fed, 
along with the output from OR gate 630, to tristate buffer 
670 to enable it to read back what is on the port. All of the 
above-identified hardware is used by the read/write I/O port 
(peripherals) to select the power saving “Sleep' operation. 
The output “SLOW is equivalent to “SLEEP” in FIG. 2, 
and is inputted to flip flop 680, discussed later. 

0075) The output of SLEEP CLOCK oscillator 690 is 
divided into two slower clocks by D flip flops 700, 710. In 
the particular implementation shown in FIG. 4, 16 MHz 
sleep clock oscillator 690 is divided into 4 MHZ and 8 MHz 
clocks. Jumper J1 selects which clock is to be the “SLEEP 
CLOCK. 

0076. In this particular implementation, high speed clock 
oscillator 720 is a 32 MHz oscillator, although this particular 
Speed is not a requirement of the present invention. The 32 
MHz oscillator is put in series with a resistor (for the 
implementation shown, 33 ohms), which is in series with 
two parallel capacitors (10 pF). The result of such oscilla 
tions is tied to the clocks of D flip flops 730, 740. 
0.077 D flip flops 680, 730, 740 are synchronizing flip 
flops; 680, 730 were not shown in the simplified sleep 
hardware of FIG. 2. These flip flops are used to ensure the 
clock Switch occurs only on clock edge. AS can be seen in 
FIG. 4, as with flip flop 500 of FIG. 2, the output of flip flop 
740 either activates OR gate 750 or OR gate 760, depending 
upon whether the CPU is to sleep (“FASTEN ) or awaken 
(“SLOWEN ). 
0078) OR gates 750, 760 and AND gate 770 are the 
functional equivalents to the AND/OR selector of FIG. 2. 
They are responsible for selecting either the “slowclk” (slow 
clock, also known as SLEEP CLOCK) or high speed clock 
(designated as 32 MHz on the incoming line). In this 
implementation, the Slow clock is either 4 MHz or 5 MHz, 
depending upon jumper J1, and the high Speed clock is 32 
MHz. The output of AND gate 770 (ATUCLK) establishes 
the rate of the CPU clock, and is the equivalent of CPU 
CLOCK of FIG. 2. (If the device includes a PCI bus, the 
output of AND gate 770 may also be coupled to the PCI bus 
if it is to utilize the clock signal.) 
0079 Consider now FIG.5, which depicts a schematic of 
another actual Sleep hardware implementation for a System 
such as the Intel 50286 (CPU can have its clock stopped). 
The Western Digital FE3600 VLSI is used for the speed 
Switching with a special external PAL 780 to control the 
interrupt gating which wakes up the CPU on any interrupt. 
The Software power conservation according to the present 
invention monitors the interrupt acceptance, activating the 
next P(i)deltaTi interval after the interrupt. 
0080) Any interrupt request to the CPU will return the 
system to normal operation. An interrupt request (“INTRO”) 
to the CPU will cause the PAL to issue a Wake Up signal on 
the RESCPU line to the FE3001 (not shown) which in turn 
enables the CPU and the DMA clocks to bring the system 
back to its normal state. This is the equivalent of the 
“INterrupt of FIG.2. Interrupt Request is synchronized to 
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avoid confusing the state machine so that Interrupt (INT. 
DET) will only be detected while the cycle is active. The 
rising edge of RESCPU will wake up the FE 3001 which in 
turn releases the whole system from the Sleep Mode. 
0081) Implementation for the 386SX is different only in 
the external hardware and Software power conservation 
loop. The software loop will set external hardware to Switch 
to the high Speed clock on interrupt prior to Vectoring the 
interrupt. Once return is made to the power conservation 
Software, the high Speed clock cycle will be detected and the 
hardware will be reset for full clock operation. 
0082 Implementation for OS/2 uses the “do nothing” 
loop programmed as a THREAD running in background 
operation with low priority. Once the THREAD is activated, 
the CPU sleep, or low speed clock, operation will be 
activated until an interrupt occurs thereby placing the CPU 
back to the original clock rate. 
0.083 Although interrupts have been employed to wake 
up the CPU in the preferred embodiment of the present 
invention, it should be realized that any periodic activity 
within the System, or applied to the System, could also be 
used for the same function. 

0084. While several implementations of the preferred 
embodiment of the invention has been shown and described, 
various modifications and alternate embodiments will occur 
to those skilled in the art. Accordingly, it is intended that the 
invention be limited only in terms of the appended claims. 

Computer Programs Listing 
0085 1) Interrupt 8 Timer interrupt service-pages 27 to 
32. Interrupt 8 Timer interrupt service is loaded onto the 
CPUROM or an external RAM and is an interrupt mask that 
may be called at Step 240 of IDLE loop 60 or at Step 460 
of ACTIVITY loop 70. 
0086) 2) CPU Sleep Routine-page 33. CPU Sleep Rou 
tine is loaded onto the CPU ROM or an external RAM and 
is a file that may be called at Step 250 of IDLE loop 60 or 
ACTIVITY loop 70. 
0087 3) FILE=FORCE5. ASM-pages 34 to 38. FILE= 
FORCES.ASM is a PCI multiple sleep program that is 
loaded onto the CPU ROM or an external RAM and is a file 
that may be called at Step 250 of IDLE loop 60 or ACTIV 
ITY loop 70. 
0088) 4) FILE=Thermal.EQU-listed on page 39. FILE= 
Thermal.EOU is loaded onto the CPU ROM or an external 
RAM and is a file that may be called at STEP 240 of IDLE 
loop 60 or at Step 460 of ACTIVITY loop 70. 

1-23. (canceled) 
24. A method, comprising the Steps of: 
determining temperature and a workload level associated 

with a processor, and 
using results of Said determining for reducing power 

consumption associated with Said processor as Said 
work load level decreases. 

25. The method of claim 24, wherein an amount of Said 
reducing power consumption is proportional to the decrease 
of Said work load level. 

26. The method of claim 24, wherein said reduction in 
power consumption is accomplished in incremental StepS. 
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27. The method of claim 24, wherein said reduction in 
power consumption continues until no decrease in workload 
level is detected over a previous determination of work load 
level. 

28. The method of claim 24, wherein said reducing power 
consumption continues until one of: a) no decrease in work 
load level is detected over a previous determination of work 
load level; b) said processor has reached its minimum power 
consumption level; and c) said temperature is at and/or 
above a reference temperature. 

29. The method of claim 24, wherein said power con 
Sumption is reduced by lowering a clock frequency. 

30. The method of claim 29, wherein said clock frequency 
is lowered in incremental StepS. 

31. The method of claim 24, wherein said power con 
Sumption is accomplished by lowering a clock Speed. 

32. The method of claim 31, wherein said clock speed is 
lowered in incremental Steps. 

33. The method of claim 24, wherein said reduction in 
power consumption is accomplished while Said processor is 
processing data. 

34. The method of claim 33, wherein said data is part of 
a program being run on Said processor. 

35. A method, comprising the Steps of: 
determining temperature and a workload level associated 

with a processor, and 
using results of Said determining for increasing power 

consumption associated with Said processor as said 
work load level increases. 

36. The method of claim 35, wherein an amount of Said 
increasing power consumption is proportional to the 
increase of Said work load level. 

37. The method of claim 36, wherein said power con 
Sumption is accomplished in incremental StepS. 

38. The method of claim 35, wherein said increasing 
power consumption continues until no increase in work load 
level is detected over a previous determination of work load 
level. 

39. The method of claim 35, wherein said increasing 
power consumption continues until one of: a) no increase in 
work load level is detected over a previous determination of 
workload level; b) said processor has reached its maximum 
power consumption level; and c) said temperature is at 
and/or above a reference temperature. 

40. The method of claim 35, wherein said power con 
Sumption is accomplished by raising a clock frequency. 

41. The method of claim 40, wherein said clock frequency 
is raised in incremental Steps. 

42. The method of claim 35, wherein said power con 
Sumption is accomplished while Said processor is processing 
data. 

43. The method of claim 42, wherein said data is part of 
a program being run on Said processor. 

44. A method, comprising the Steps of: 
determining temperature and a workload level associated 

with a processor, and 
using results of Said determining for reducing power 

consumption associated with Said processor as Said 
work load level decreases and/or said temperature is at 
and or above a reference temperature and increasing 
power consumption associated with Said processor as 
Said work load level increases. 
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45. A method, comprising the Steps of: 
determining temperature associated with a processor, 
determining processing demand on Said processor, and 
using results of Said determining temperature and deter 

mining processing demand for reducing power con 
Sumption associated with Said processor. 

46. A method, comprising the Steps of: 
determining temperature associated with a processor, 
determining processing demand on Said processor, and 
using results of Said determining temperature and deter 

mining processing demand for increasing power con 
Sumption associated with Said processor as Said pro 
cessing demand increases. 
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47. A method, comprising the Steps of: 

determining temperature associated with a processor, 

determining processing demand on Said processor, and 

using results of Said determining temperature and deter 
mining processing demand for reducing power con 
Sumption associated with Said processor as Said pro 
cessing demand decreases and/or said temperature is at 
and or above a reference temperature and increasing 
power consumption associated with Said processor as 
Said work load level increases. 


