A method for determining the presence of mycobacteria species in an organism or biological sample, the method comprising adding to the organism or biological sample a probe molecule comprising a substrate and a label, which probe molecule can be incorporated into mycobacteria, the presence of mycobacteria being determined by a detector responsive to the presence of the label, optionally after applying a stimulus; suitable probe molecules include compounds comprising a label and a substrate, which label is can be detected by a detector responsive to the presence of the label, optionally after applying a stimulus, characterised by compound being able to engage with the active site of Antigen 85B (Ag85B) such that it can form simultaneous hydrogen bonds with two or more amino acids in the active site selected from Arg 43, Trp 264, Serl26, His 262 and Leu 42, or the corresponding amino acids in Antigen 85A (Ag85A) or Antigen 85C (Ag85C), at least one of which is with Serl26.
DETECTION OF MYCOBACTERIA

This invention was made with United States Government support. The United States Government has certain rights in the invention.

This invention relates to detection of mycobacteria, more specifically to a method for attaching a detectable label to mycobacteria and compounds for use in such a method.

Tuberculosis (TB) is an infection that has plagued mankind for millennia, and remains a leading cause of death worldwide. The bacteria responsible for infections such as tuberculosis in humans and corresponding infections in other animal species, are species of Mycobacteria. These bacteria are often difficult to eradicate due to the nature of their cell envelope, which provides a significant permeability barrier.

An obstacle to the development of new diagnostics, drugs and vaccines is the lack of bacteria-specific probes that can be used to assess total burden of disease in infected patients.

One of the characteristic features of Mycobacteria, for example M. Tuberculosis (Mtb), is their synthesis of a non-mammalian sugar, trehalose (Tre) through three independent pathways, the blocking of any of which can result in bacterial death or growth defects.

Trehalose is found in the outermost portion of the mycobacterial membrane, along with the glycolipids trehalose dimycolate (TDM) and trehalose monomycolate (TMM). These are important glycolipids in Mtb, because they induce granuloma formation in an infected subject.

Mycolic acids are also present in mycobacterial membranes. These are long chain (C30 to C90) cyclopropanated lipids which are important in mycobacterial membrane structure, virulence and persistence within a host. Tre is incorporated into the mycobacterial cell wall in the form of esters of mycolic acid by the action of the extracellular enzymes, antigens 85A, 85B and 85C, henceforth Ag85A, B or C respectively, (Kilburn et al; Biochemical and biophysical research communications 108 (1), 132 (1982)), which catalyse the reversible transesterification reaction between two TMM units to generate TDM and free Tre. The reverse reaction allows for direct esterification of Tre to TMM. It has been found that knocking-out genes coding for single members of the Ag85 proteins have significant effects on mycolic acid incorporation (Harth et al; Proc Natl Acad Sci U S A 99 (24), 15614 (2002)).
Additionally, Ag85 enzymes can also covalently introduce mycolates into arabinogalactan cell wall polymers (Jackson, M. et al; Mol Microbiol 31 (5), 1573 (1999); Puech, V. et al; Mol Microbiol 35 (5), 1026 (2000)).

The highly infectious and transmittable nature of mycobacteria such as Mtb means that fast and effective diagnosis is important. Examples of tests for detecting Mtb are summarised in Health Technology Assessment, 2007, Volume 11(3), pages 4 to 9. Typically, they involve testing a specimen, for example sputum, cerebrospinal fluid, pericardial fluid, synovial fluid, ascitic fluid, blood, bone marrow, urine and faeces.

Analysis of specimens by microscopy is one of the most rapid techniques available, although is not necessarily accurate.

Culture-based techniques are more sensitive, but are comparatively slow because of the low rate of mycobacterial growth, often up to 6 to 8 weeks.

Sereological tests have been developed, to detect the appearance of certain antibodies in the blood. However, although such methods are generally low cost and rapid, they tend to suffer from poor sensitivity. Additionally, they can suffer from poor accuracy due to antibody responses often being non-specific to mycobacteria antigens.

Use of biochemical markers have also been attempted, for example the analysis of adenosine deaminase in lymphocytes, and analysis of cytokines such as interferon-γ and TNF-α. However, such tests also suffer from a lack of specificity to mycobacteria. Blood samples can be tested by adding specific mycobacterial antigens and detecting interferon-γ produced by lymphocytes. However, this often requires significant handling and processing of the blood to isolate mononuclear cells, which handling and processing must be done within in a short period of time, typically less than 12 hours from collection of the blood sample.

Nucleic amplification tests are available, in which DNA or rRNA from a micro-organism is amplified using reactions such as the polymerase chain reaction or ligase chain reaction. However, because different mycobacteria have different genetic make-up, such tests are generally only reliable for individual species.

Mycobacteriophage methods are known, in which mycobacteria are infected with a phage, exogeneous non-infecting phage killed, and any infecting phage that is amplified through reproduction in the mycobacteria is detected. One test involves use of a luciferase reporter phage, which produces quantifiable light. However, such
phage-based methods often require mycobacterial cultures, with the consequent disadvantages associated therewith.

Known ways of imaging mycobacteria in infected macrophages do not allow non-toxic imaging of bacteria in vivo (Beatty, W. L. et al; Traffic 1 (3), 235 (2000); Beatty et al; Infect. Immun. 68 (12), 6997 (2000); Thanky et al; Tuberculosis (Edinb) 87 (3), 231 (2007)). Additionally, attempts at chemically labelling mycobacteria, for example with texas red by oxidation with sodium periodate, suffer from lack of selectivity, and also can potentially cause damage to the bacterial cell wall. Fluorescently labelled vancomycin has been used to track cell division patterns of M. Smegmatis and the BCG vaccine, based on M. bovis, but it is toxic to other mycobacteria such as Mtb, which limits its use for detection thereof.

Tests that can be carried out directly on a human or animal body include the tuberculin skin test, which injects small quantities of a number of antigens shared by several mycobacteria, the presence of which gives rise to a skin reaction. However, this requires two separate visits to a practitioner, one for the injection of the antigens, and another within 48-72 hours for detection of the skin reaction. Additionally, there are further disadvantages such as difficulties associated with test administration and interpretation, the potential for painful skin inflammation and scarring, and also preclusion of the test for people with certain skin disorders.

In view of the problems associated with existing methods of detection, there remains a need for an alternative method of detecting mycobacteria.

According to the present invention, there is provided a method for determining the presence of mycobacteria species in an organism or biological sample, the method comprising adding to the organism or biological sample a probe molecule comprising a substrate molecule and a label, which probe molecule can be incorporated into mycobacteria, the presence of mycobacteria being determined by a detector responsive to the presence of the label, optionally after applying a stimulus.

The inventors have found that mycobacteria can be modified by incorporating into their structure a probe molecule comprising a substrate molecule and a label, which label can be detected directly or after applying a stimulus.

The probe molecule is able to be incorporated into mycobacteria. In a preferred embodiment, the probe molecule is able to be chemically incorporated into the mycobacterial cell wall. This can be achieved by making use of one or more of the Ag85A, B and C enzymes that are common to mycobacteria, which incorporate
the probe molecule into the mycolic acid layer of a mycobacterial cell wall. Although Ag85A, B and C typically require Tre or its mycolic acid esters as the substrate, the inventors have found that the Ag 85A, B and C enzymes can be relatively non-specific, and do not necessarily require the substrate to conform exactly to the Tre structure in order to become esterified or transesterified with mycolate. Therefore, the inventors have been able to produce probe molecules based on labelled substrates, often with significantly large labels, which are able to be reactants in the Ag 85 A, B and C catalysed reactions, enabling the probe molecule to become chemically incorporated into mycobacterial cell walls. Additionally, probe molecules have been designed which have a reactive functional group which can react with a Serine residue present in the active site of Ag85A, B and C, which chemically binds the probe molecule to the enzyme.

The probe molecule comprises a substrate and a label. Examples of labels include luminescent labels which emit radiation on exposure to an external source of radiation or other stimulus, e.g. fluorescent materials or fluorophors (which emit light when exposed to light), chemiluminescent materials (which emit light during chemical reaction), electroluminescent materials (which emit light on application of an electric current), phosphorescent materials (in which emission of light continues after exposure to light stimulus has ended) and thermoluminescent materials (which emit light once a certain temperature is exceeded). Fluorophors are often used, and examples of molecular families that can act as fluorophors include fluoresceins, xanthenes, cyanines, napthalenes, coumarins, oxadiazoles, pyrenes, oxazines, acridines, arylmethines, Alexa Fluors and tetrapyrroles. Further fluorophors include quantum dots, which emit highly specific wavelengths of electromagnetic radiation after stimulation, for example by electricity or light.

Other labels include radioactive labels, including positron emitting nuclei such as 18F, 64Cu or 124I which can be detected by imaging techniques such as positron emission topography (PET). Other radioactive labels such as 14C, 3H, or iodine isotopes such as 123I and 131I, which can be detected using autoradiographic analysis or scintillation detection for example, can also be used. In the case of gamma-emitting nuclei, imaging techniques such as single photon emission computed tomography (SPECT) can be used. Other labels include those that are NMR-active, which can be detected by magnetic resonance techniques, for example magnetic resonance imaging (MRI) or nuclear magnetic resonance (NMR) detectors, the labels
typically comprising one or more NMR-active nuclei that are not generally found in concentrated form elsewhere in the organism, biological sample or mycobacterium, examples being 13C, 2H (deuterium) or 19F. Further labels include those comprising atoms with large nuclei, for example atoms with atomic number of 35 or more, preferably 40 or more and even more preferably 50 or more, for example iodine or barium, which are effective contrast agents for X-ray photographic techniques or computed tomography (CT) imaging techniques.

Other labels include those that can bind favourably and specifically to another reagent, for example use of a biotin label. Biotin binds very specifically to avidin and streptavidin, and hence the presence of a biotin label can be detected by addition of an avidin or streptavidin-modified molecule, for example avidin and streptavidin-modified fluorescent dyes.

In one embodiment, the label is a molecule that is chemically attached to a substrate molecule to form the probe molecule. Labelling a substrate molecule to form a probe molecule can be achieved by derivatising the substrate molecule with a chemical group that can react with a corresponding group on a label molecule to produce a chemical bond that chemically links the substrate and label molecules to produce the probe molecule. Henceforth such derivative groups are termed linking groups. Thus the substrate molecule and/or the label molecule before their chemical combination can comprise one or more linking groups which react together to form a covalent bond between the label and substrate. For example, to attach a label comprising a fluorescein group to a mono- or disaccharide substrate molecule, the fluorescein is often modified with an isothiocyanate linking group, namely fluorescein isothiocyanate (FITC), which is then reacted with an amine linking group present on a modified mono- or disaccharide probe molecule resulting in a probe molecule comprising a fluorescein moiety (label) covalently bound to the mono- or disaccharide (substrate).

Other examples of linking groups, in addition to hydroxyl, include halide (such as chloride, bromide or iodide), amine, amide, azide, hydrazide, carboxyl, imides (such as carbodiimide, maleimide and succinimide), acetyl halide, thiol, nitrile groups, cyanate groups, isothiocyanate, organosilane groups and siloxane groups.

For label molecules comprising metals such as copper or barium, then the metal can be bound to the label molecule through one or more charged ligands, such
as carboxylate, or through charged or uncharged ligand polydentate ligands, for example polyethers, polyamines, porphyrins, crown ethers and cryptands.

In another embodiment, the label is an isotopically enriched analogue of the substrate molecule itself, for example being enriched with one or more isotopes that are radioactive or NMR-active, typical examples being 13C, 14C, 2H or 3H enriched substrate molecules.

An advantage of the present method of detecting mycobacteria is that in vivo imaging techniques such as PET, MRI, SPECT and CT can be employed, which are non-invasive, and can provide information not only on the presence of mycobacteria, but also where mycobacteria are concentrated within an organism's body, and additionally the metabolic state of the bacteria. The present invention also provides advantages for in vitro analysis of biological samples taken from an organism, in that the technique is relatively quick and facile, does not involve too many or too complicated processing steps, and has a smaller chance of false positives due to the specificity of the technique towards mycobacteria.

In a further embodiment of the invention, the probe molecule can comprise a functional group which can react with an amino acid residue in the enzyme, to form a chemical bond thereto. Such a functional group is henceforth referred to as a reactive group, and is preferably either a good leaving group, typically an electrophilic leaving group such as tosylate. In another embodiment, the reactive group can be an epoxide, phosphoryl fluoride, alpha-bromo, chloroester or a reactive oxoanion, such as a sulphonate, phosphate or phosphonate, which reacts with functional groups such as -OH on an amino acid residue of the enzyme to form an etheric bridge between the probe molecule and the enzyme, for example with serine residues. In a preferred embodiment, the reactive group of the probe molecule is able to react with a reactive amino acid residue present in the active site of the Ag85A, B and C enzyme molecule, preferably the Ser126 residue of Ag85B or the corresponding Ser residues in Ag85A and C, to form a chemical bond between the enzyme and the probe molecule. This provides greater specificity between the probe molecule and the Ag85 enzyme, which improves selectivity of the probe molecule towards mycobacteria.

In mycobacteria, the Ag85A, B and C enzymes use Tre, TMM and TDM as substrate molecules. The active sites of Ag85A, B and C are all structurally analogous, and hence a substrate molecule that is able to dock with the active site of one of Ag85A, B and C is capable of also docking with the corresponding active sites
of the others. In relation to Ag85B, hydrogen bonding interactions between Tre, TMM or TDM and the active site occur at residues Arg 43, Trp 264, Serl26, His 262 and Leu 42, in which hydrogen bonds between OH groups of the Tre substrate and the relevant nitrogen or oxygen group on the amino acid can be formed. It has been

found that, for a probe molecule to dock effectively into the active site, the ability to form a hydrogen bond simultaneously with at least two of these residues is important, at least one of which is preferably selected from with Serl26, and preferably at least one other with His 262. Due to the homologous nature of the active sites of Ag85A and C, then this also applies to corresponding interactions therein.

In one embodiment the probe molecule is based on a carbohydrate substrate, the carbohydrate having 1 to 6 monosaccharide units, optionally glycosidically linked, preferably 1 to 4 monosaccharide units. Carbohydrates are more preferably selected from monosaccharides and disaccharides. At least one of the monosaccharide units, typically a terminal monosaccharide unit of the carbohydrate, preferably comprises a six-membered ring. Most preferred carbohydrates are disaccharides, and even more preferred are disaccharides in which both monosaccharide units have 6-membered rings. This is generally because they are more structurally analogous to Tre, and hence are more likely to interact with more of the relevant residues in the enzyme active sites, and hence will generally provide improved selectivity for and uptake into mycobacteria.

Optionally, the carbohydrate can be derivatised. Herein, a derivative of a carbohydrate is a molecule which is based on a naturally occurring carbohydrate, with one or more of the hydroxyl or hydrogen atoms being replaced with other chemical moieties (herein derivative groups) which derivative groups do not substantially affect the ability of the probe molecule to engage with the active sites of the Ag85 A, B or C enzymes, and hence which do not prevent incorporation of the probe molecule into mycobacteria. Such derivative groups preferably do not inhibit the reactions which relate to incorporation of the probe molecule into the mycobacteria. In addition, such derivative groups are typically selected so as not to introduce instabilities into the probe molecule, for example by providing two anionic and/or nucleophilic groups on the same carbon atom, examples being two hydroxide groups, a hydroxide and ether group, or a hydroxide and halide group on the same carbon atom. Therefore, the carbohydrates or derivatives thereof preferably have no more than one such derivative
group per carbon atom of the carbohydrate substrate molecule. Examples of
derivative groups, henceforth represented by X, include:
halides, R^a groups, -Z-H groups, groups of general formula -Z-R^a, groups of
general formula $\text{WH}_{2+x}R^a_x$, groups of general formula -C(Z')Z''-H, -C(Z)-R^a,
-C(Z')Z''-R^a and $\text{-C(Z)-WH}_{i+y}R^a_y$; in which:

R^a is, at each occurrence, an optionally substituted linear or branched
alkyl, alkenyl and alkynyl group or an optionally substituted aromatic group;
R^a preferably comprises 6 carbon atoms or less; where R^a comprises one or
more substituents, such substituents are selected from halides, -ZH, Z-R,
$\text{WH}_{2+x}R^a_x$, where R^b at each occurrence is selected from optionally substituted
linear or branched alkyl, alkenyl, alkynyl and aromatic groups, preferably
comprising 6 carbons atoms or less;

Z, Z' and Z'' at each occurrence is a Group 16 element preferably
selected from O and S, and preferably at least one of Z' and Z'' is O;

W is a Group 15 element that is preferably selected from N and P;

x is 0, 1 or 2, and y is 0 or 1.

In one embodiment, the probe molecule is based on a carbohydrate
represented by Formula I:

![Diagram](image)

FORMULA I

In this formula, M is a carbohydrate or derivative thereof comprising
preferably 1 to 5 monosaccharide units, preferably 1 to 2 monosaccharide units. More
preferably M is a monosaccharide unit or derivative thereof, most preferably a
monosaccharide with a 6-membered ring. M is linked to $C_{(i)}$ through bridge group E,
in either α or β configurations;;

R^1 is selected from H, -L, -X, -CYY'L, -CYY'X;
One of \(R^2 \) and \(R^{20} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of \(R^3 \) and \(R^{30} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of \(R^4 \) and \(R^{40} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X; preferably \(R^4 \) is -H and/or \(R^{40} \) comprises a group able to form hydrogen bonds, for example -OH or -SH, which improves the extent of hydrogen bonding interaction at the Gly41 residue;

One of \(R^5 \), and \(R^{50} \) are -H, and the other is selected from CYY'L or -CYY'X;

\(X \) is optional and is as defined above; \(Y \) and \(Y' \) are independently \(H \) or \(X \), with the proviso that the carbon atom to which they are bound has no more than one directly bound \(O, Z \) and \(W \) atoms; and wherein there is at least one label group \(L \) on the substrate molecule and/or at least one carbon atom in the molecule is \(^{13}C \) or \(^{14}C \) enriched, and/or at least one hydrogen atom in the molecule is \(^2H \) or \(^3H \) enriched.

\(E \) can be one or more of (a) a Group 16 element, preferably \(O, S \) or \(Se \), or \(E \);
(b) a group comprising a Group 15 element with formula \(WH_{(x+y)}^{(y+y')} R^a L^y \) in which \(W \) is preferably \(N \) or \(P \), \(y \) and \(y' \) are independently 0 or 1, and \(y+y' \) is no more than 1;
(c) a group comprising a Group 14 element of general formula \(VX_{(y+x)}^{(y+y')} R^a L^x \) in which \(V \) is the Group 14 element, preferably \(C \) or \(Si \), \(X' \) is at each occurrence \(H, OH \) or \(X \), \(x \) and \(x' \) are individually 0, 1 or 2, \(x+x' \) being no more than 2; the bridge \(E \) between carbon \(C_{i,j} \) and \(M \) can optionally comprise more than one of (a) to (c) linked together, the bridge preferably comprising 4 or fewer bridging atoms, i.e. 4 or less (a) to (c) groups, preferably comprising 1 or 2 bridging atoms.

In another embodiment, the probe molecule is represented by Formula II;
Where;
E is a bridging group as defined above, and each of the two monosaccharides
are either α or β linked. Preferably at least one of the carbohydrates is a linked.

One of R² and R²₀ is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of R² and R²₀ is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of R³ and R³₀ is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of R³ and R³₀ is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of R⁴ and R⁴₀ is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of R⁴ and R⁴₀ is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of R⁵ and R⁵₀ is -H, and the other is selected from CYY'L or -CYY'X;

One of R⁵ and R⁵₀ is -H, and the other is selected from CYY'L or -CYY'X;
in which;

at least one of R⁴ and R⁴₀ is H and/or at least one or R⁴₀ and R⁴₀ is able to
form hydrogen bonds, for example -OH or -SH, which enables either R⁴₀ or R⁴₀ to
effectively form a hydrogen bond with the Gly41 residue;

X is optional and is as defined above;

Y and Y' are independently H or X, with the proviso that the carbon atom to

which they are bound has no more than one directly bound O, Z and W atoms; and

wherein there is either at least one label group L on the molecule and/or one or
more carbon atoms in the molecule is ¹³C or ¹⁴C enriched and/or at least one hydrogen
atom in the molecule is ²H or ³H enriched.Preferably, R¹ and R¹ are independently -H, or alkyl with less than 6 carbon atoms such as methyl; R², R²', R²₀, R²₀', R³, R³',
R³₀, R³₀', R⁴, R⁴', R⁴₀ and R⁴₀' are each independently -H, -OH or -L; and R⁵ and R⁵'
are each independently either C₃OH or C₃L.

In a preferred embodiment R¹ and R¹ are each H or methyl; R², R³₀, R⁴, R⁵₀,
R²', R³₀', R⁴ and R⁵₀' are each independently H or L; R²₀ and R²₀' are each
independently H, L or OH; R³, R⁴₀, R³' and R⁴₀' are each independently -OH or L;
and R⁵ and R⁵ are each independently CH₂OH or CH₂L. In a further embodiment, either R⁴ is -OH or L and R⁴ is H or L, or alternatively R⁴ is -OH or -L and R⁴ is H or L, at least one of R⁴ or R⁴ being H.

In preferred embodiments, where derivative groups, X, are present, they typically have an effective diameter of less than 1nm, and more preferably less than 0.5nm, to prevent excessive interference to the binding of the probe molecule with the enzyme active site.

The label, L can comprise an NMR-active nucleus, for example ¹⁹F, or ¹³C or ²H at higher than natural abundancies, a radioactive nucleus such as ¹⁴C or ³H at higher than natural abundancies, including positron emitting nuclei such as ¹⁸F or ¹²⁴I at higher than natural abundancies, or a heavy X-ray absorbing element such as iodine.

In one embodiment, L is selected from groups defined by X above, and which are isotopically enriched in one or more radioactive, NMR-active and/or positron emitting nuclei, for example isotopically enriched with one or more of, ¹³C, ¹⁴C, ²H, ³H, ¹⁸F, or ¹²⁴I.

In another embodiment, L is selected from groups defined by X above, which have at least one nucleus that can be detected using magnetic resonance imaging techniques at naturally occurring abundancies, such as F (which has a natural ¹⁹F abundance of 100%) and other X groups comprising F, for example a fluorobenzyl group (-CH₂-C₆H₄F).

In a further embodiment, L is selected from groups defined by X above, which have at least one nucleus that is large / heavy enough for detection using X-ray photographic or CT techniques, for example iodine and other X groups comprising iodine.

The label, L, can comprise a fluorophor, for example fluorophors selected from fluoresceins, xanthenes, cyanines, naphthalenes, coumarins, oxadiazoles, pyrenes, oxazines, acridines, arylmethines, Alexa Fluors, tetrapyrroles and quantum dots, the label L being the relevant portion of the label molecule that is attached to the substrate molecule after reaction therewith to produce the probe molecule.

Where L is a label such as a fluorophor that derives from a separate label molecule bound to the susbrate molecule, then it can be represented by a general formula L’L", where L’ is a connecting group and L" comprises the detectable label.

The connecting group L' can be selected from one or more of:
-Z-, -WH(i_\text{y}, R^a_{\gamma}-, C(Z)-WH(i_\text{y}, R^a_{\gamma}-, C(Z')Z^\prime-; C(Z')Z^\prime-WH(i_\text{y}, R^a_{\gamma}-, C(Z')Z^\prime- (such as carbodiimide, maleimide and succinimide), -CH(i_\text{y}, R^a_{\gamma}=N-, ZCH(i_\text{y}, R^a_{\gamma}N-, -NCH(i_\text{y}, R^a_{\gamma}Z-, NH(i_\text{y}, R^a_{\gamma}ZCN where Z, W, R^a and \gamma are as defined above. The L'' group that comprises the label comprises in one embodiment a fluorophor, for example fluorophors selected from fluoresceins, xanthenes, cyanines, naphthalenes, coumarins, oxadiazoles, pyrenes, oxazines, acridines, arylmethines, Alexa Fluors, tetrapyrroles and quantum dots, and which are chemically attached to L'.

An example of an L' and L'' combination is L' = NH and L'' is fluorescein isothiocyanate as shown in the molecular structure below (formula A);

![Molecular Structure](image)

Formula A

In this specific example, in which the probe molecule is represented by Formula II, the L group is attached to carbon C_{(2)} of the substrate, the L' (connecting) portion of the L group is NH, and the L'' label-containing portion of the L group comprises a fluorescein. This particular combination is formed from the reaction of fluorescein isothiocyanate (FITC) with an amine-modified carbohydrate. One with skill in the art will understand from this illustration that other combinations of connecting groups and label-containing groups are possible for other labels, for
example L" groups comprising other fluoresceins or other fluorophores, and L' groups comprising different connecting groups.

Where the probe molecule comprises a reactive group, which can react with an amino acid residue on the enzyme to covalently link the probe molecule and enzyme, the reactive group can optionally comprise the label, in which the label portion of the reactive group remains bound to the substrate after reaction with the enzyme. The reactive group is preferably chosen and positioned on the probe molecule such that it can chemically react with one of the active site enzymes selected from Gly41, Serl26, Asn223, Arg43 and Trp264 in the Ag85B enzyme active site, and corresponding residues in Ag85A and C. In a preferred embodiment, the reactive group is placed on or is attached to group R⁵ (Formula I) or either R⁵ or R⁵⃗ (Formula II). Thus, in one embodiment of the invention, the probe molecule comprises a reactive group, G, which can optionally comprise a label, where, in the case of compounds of Formula I or Formula II, the group G can replace an X group. G is preferably selected from groups comprising one or more of the following: a phosphate, phosphonate, phosphoryl fluoride, an organophosphate, an epoxide, a tosylate, a sulphonate alpha bromo or chloro ester.

Trehalose and derivatives thereof are preferred choices as the substrate of the probe molecule, being based on the natural substrate for the Ag85 A, B and C enzymes. Monosaccharide compounds, such as labelled glucose or arabinose, or derivatives thereof, can be used as probe molecules because they can be incorporated into a mycobacterial cell wall through the action of Ag85 enzymes, although the extent to which they are incorporated is relatively poor compared to disaccharides such as Tre or derivatives thereof. Additionally, such monosaccharides are generally less selective towards mycobacteria, and hence could provide greater chance of providing false positives when testing for mycobacteria.

Ag85A, Ag85B, and Ag85C share high sequence and structural homology (Ronning, D. R. et al; Nat Struct Biol 7 (2), 141 (2000); Anderson, D. H. et al; J Mol Biol 307 (2), 671 (2001); Ronning, D. R. et al; J Biol Chem 279 (35), 36771 (2004)), characterized by an α,β-hydrolase fold and a hydrophobic fibronectin-binding domain. Their active sites are highly conserved, and features a hydrophobic tunnel for the mycolic acid.

The inventors have found from a structural analysis that the C(2) carbon of compounds of Formula I and the C(2) and C(4)', or C(2)' and C(4), carbons of compounds
of Formula II tend to point outwards away from the Ag85 A, B or C enzyme when bound thereto. This means that the enzyme can tolerate bulky derivative or label groups on a probe molecule when bound preferably at these sites, such bulky groups being able to have diameters of greater than 10nm, or greater than 20nm, and even of the order of 100's of nanometers (for example in the case of quantum dots) without affecting the ability of the probe molecule to act as a substrate for the catalysed transesterification reaction. Therefore, although enzymes often require high substrate specificity in order to act as catalysts, it has been found that the Ag85 enzymes in mycobacteria can tolerate a lack of specificity, in particular at certain positions on a substrate molecule, such that they do not preclude the required binding at the active enzyme site. In addition, because of the position of the hydrophobic tunnel into which mycolate groups bind during the transesterification reactions, then preferably the groups R⁵ and R⁵' are CYY'O'H, in which Y and Y' are preferably hydrogen.

In a typical method for determining whether mycobacteria are present, the probe molecule is added to a biological sample taken from an organism, for example a sample of sputum, cerebrospinal fluid, pericardial fluid, synovial fluid, ascitic fluid, blood, bone marrow, urine or faeces. Alternatively, the probe molecule can be administered to the organism directly, for example an animal, in particular mammals including humans, wherein detection of mycobacteria can be carried out through imaging techniques, or by taking of a sample from the organism and testing the removed sample ex vivo for the presence of the mycobacteria-incorporated label.

An advantage of the present invention is that the test is not necessarily specific to individual mycobacteria species, and can be used to detect a number of different species or types that can affect different organisms. Additionally, the probe molecules once incorporated into the mycobacteria, are able to pass into infected cells, such as macrophages, without being damaged. A significant feature of the present invention is that, for human infections, *Mtb* can be labelled with the probe molecule, either in vivo or in vitro on a biological sample, enabling efficient detection of this damaging disease-causing bacterium. The use of the probe molecule comprising a label according to the present invention, particularly its use in detection in vivo through imaging techniques, also offers scope for understanding the progress of a mycobacterial disease, for example to track bacterial transit to the phagosome and other intracellular compartments.
An additional advantage of the present invention is the possibility of diagnosing *M. Avium*, which is an opportunistic infection often acquired by HIV-positive patients.

In the preparation of probe molecules, label groups can be attached directly to a substrate molecule to form the probe molecule. Alternatively, a precursor to the substrate can first be labelled, which precursor can then be reacted with one or more other substrate precursors to produce the probe molecule. For example, where the substrate is a monosaccharide or disaccharide, the monosaccharide or disaccharide can be reacted with the label to produce the chemically bound label. Alternatively, for example where the substrate to be labelled is a disaccharide, a labelled monosaccharide can be prepared (labelled substrate precursor) which, after reaction with another monosaccharide (another substrate precursor) to form a glycosidic link, to form the labelled disaccharide (probe molecule). In a further embodiment, as explained above, the substrate molecule or precursor thereof can be prepared with a functional group to which the label can be chemically attached.

To prepare labelled molecules of Tre or a derivative thereof such as methyltrehalose (Me-Tre), the inventors have used two approaches. One approach, outlined in Scheme I below (a), involves taking two monosaccharide precursors, one labelled and/or derivatised, and both with protected OH groups at all positions except for the carbons in the 1 position (equivalent to C(1) and C(1') in Formula II above), and forming a glycosidic bond between the two monosaccharide units. The protecting groups are then removed to produce the labelled and or derivatised disaccharide probe molecule. Glycosidic bonds can be formed using enzyme-catalysed reactions, or through non-enzymatic reactions. Known reactions include through ketoside formation (Yamanoi, Takashi et al., Tetrahedron: Asymmetry 17 (20), 2914 (2006); Namme, et al; European Journal of Organic Chemistry 2007 (22), 3758 (2007); Gomez, Ana M. et al; Tetrahedron Letters 44 (32), 6111 (2003); Griffin, Frank K et al; (2002), Vol. 2002, pp. 1305; Yang, W. B. et al, Stereochemistry in the synthesis and reaction of exo-glycals. J Org Chem 67 (11), 3773 (2002); Tiwari, P. and Misra, A. K., (2006), Vol. 71, pp. 291 1: Zhu, X., Jin, Y., and Wickham, J., (2007), Vol. 72, pp. 2670), dehydrative glycosylation (Rodriguez, Miguel Angel et al, The Journal of Organic Chemistry 72 (23), 8998 (2007)), and chemoenzymatically (Giaever, H. M.et al; J Bacteriol 170 (6), 2841 (1988); Gibson, R. P. et al, J Biol Chem 279 (3), 1950 (2004)). For derivatised molecules, the label group, for example a benzyl fluoride or
fluorescein group, is subsequently attached by reaction with the label molecule to form the final probe molecule.

Scheme I

(Bn - benzyl group; AcO and OAc = acyl group)

This scheme is also shown in Figure 1.

In another approach, also illustrated in Scheme I above (b), two labelled Tre monomer precursors are combined in a dehydration reaction to form a glycosidic bond, wherein the two monosaccharides are symmetrically labelled at the same position (corresponding to the C\(_{2}\) and C\(_{2}'\) carbons of Formula II above).

In a third approach, also in scheme I (c) above, a fluorine-labelled and phosphate-derivatised Tre precursor monosaccharide is combined with a non-functionalised or labelled Tre monomer precursor in an enzyme-catalysed reaction to produce a labelled Tre disaccharide probe molecule.

In a further approach, outlined in scheme II below, trehalose itself can be labelled, or modified with functional groups that can react further with a label-containing molecule to produce labelled Tre.

Scheme II

(also shown in Figure 1)

The invention will now be illustrated by the following non-limiting examples, with reference to the Figures in which;
Figure 1 shows Schemes I and II above;
Figure 2 illustrates the transesterification reaction of TDM and Tre to produce TMM, catalysed by Ag85 enzymes;
Figure 3(a) illustrates the binding of octylthioglucoside in Ag85C dimer
Figure 3(b-d) illustrate the binding of a trehalose substrate molecule in the active site of Ag85B;
Figure 4(a) is a graph showing uptake of 14C labelled Tre in an Mtb culture over time compared to 14C labelled glycerol;
Figure 4(b) is a graph showing uptake of 14C labelled Tre in an Mtb culture over time compared to 14C labelled glucose;
Figure 4(c) is a radiographic TLC (thin layer chromatography) of a lipid extract from Mtb, in which 14C-labelled Tre has been incorporated.
Figure 4(d) is a graph showing uptake of 14C-Tre into Mtb-infected macrophages;
Figure 4(e) illustrates the different parts of the macrophages analysed for 14C-Tre uptake;
Figure 5 shows different molecules that were tested for uptake into Mtb;
Figure 6(a) shows the structure of a FITC-labelled Tre substrate;
Figure 6(b) is a graph showing uptake of FITC-labelled Tre into live and heat-killed Mtb, as determined by fluorescence;
Figure 6(c) shows TLC plates highlighting incorporation of FITC-labelled Tre into glycolipids extracted from Mtb;
Figure 6(d) is a series of images showing fluorescence characteristics of Mtb with incorporated FITC-labelled Tre.
Figure 7 is a series of images of macrophages infected with RFP BCG vaccine or Mtb comprising FITC-labelled Tre.
Figure 8 illustrates the synthesis of a quantum dot (QD)-labelled Tre substrate (S.I.).
Figure 9 illustrates a representative synthesis of methyl-derivatised FITC-Tre (S.I.).

In Figure 1, schemes illustrating synthetic routes to providing various labelled carbohydrates, in particular labelled disaccharides are shown. They are described in further detail above. (a) represents synthesis of methyl-Tre analogues, (b) dehydrative glycosylations to produce symmetric difluoro, diodo and dideoxy Tre; (c) 2-
fluoro-Tre enzymatic synthesis with Tre-6-phosphate synthase; (d) 4- and 6-fluoro
Trehalose; (e) phosphoryl Tre derivatives, and (f) Hexanoyl and dihexanoyl Tre.

Figure 2 shows one of the transesterification reactions catalysed by Ag85
enzymes, in this case the transesterification of Tre, 1, and TDM, 2, to produce two
molecules of TMM, 3. The R group represents the mycolate group, where x is
typically 10-20, y is typically 17-20, and z is typically 25-30.

Figure 3(a) shows a dimeric molecule of Ag85C, and indicates where a
substrate carbohydrate molecule binds, in this case octyl thioglucoside.

Figure 3(b) illustrates how a Tre molecule interacts with an Ag85B enzyme.
From this view, it can be seen that the substrate carbon atoms, C_2 and C_4', point
away from the enzyme active site, which enables large label groups to be attached
thereto without substantial interference with the docking of the remainder of the
molecule with the active site. Also shown in this diagram is a hydrophobic channel or
tunnel in the enzyme, into which the mycolate group bound to carbon atom C_6
points. Figures 3(c) and 3(d) are alternative views of 3(b), highlighting amino acid
residues associated with the Ag85B active site, and bonding to the Tre-substrate.

Figure 4 demonstrates how labelled carbohydrate substrates are incorporated
into mycobacteria, specifically *Mtb*. Figure 4(a) compares the uptake of ^14^C-labelled
Tre (left) with ^14^C-labelled glycerol (right) over time, glycerol being used as a
positive control because it is known to be taken up into mycobacteria. Figure 4(b)
similarly compares uptake of two labelled carbohydrate substrates, namely ^14^C-Tre
(right) and ^14^C-glucose (left), over time showing the more efficient uptake of Tre
compared to glucose. Figure 4(c) shows a radiographic TLC plate of a lipid extract
from Mtb, showing the presence of labelled TDM (*) and TMM (**) resulting from
incorporation of the ^14^C-Tre. The solution used was 4:1 chloroform : methanol.

Figure 4(d) illustrates uptake of ^14^C-labelled Tre into tuberculosis-infected and control
macrophages. With additional reference to Figure 4(e), which shows a scheme of the
different cellular compartments evaluated, (i) represents the cytoplasm of infected
macrophages, (ii) cytoplasm of control macrophages (i.e. uninfected), (iii) floating
Mtb from infected macrophages, (iv) floating debris from control macrophages, (v)
Mtb from infected macrophages, and (vi) an extracted pellet from control
macrophages.
Figure 5 illustrates the molecules tested for uptake into *Mtb*. Molecules labelled 1 to 22 are all based on Trehalose. Molecule 23 is based on glucose, and 24 is based on arabinose. Molecules 5 and 11 are in the galacto-form.

Figure 6(a) shows the molecular structure of FITC-Tre probe molecule, i.e. *Tre* substrate labelled with an FITC molecule. Figure 6(b) graphically illustrates the uptake of FITC-Tre into live [(iii) and (iv)] versus heat-killed [(i) and (iii)] *Mtb* over time. (i) and (ii) are after two hours, (iii) and (iv) are after 24 hours. (v) represents auto-fluorescence of untreated *Mtb*. Figure 6(c) are TLC plates, in which (i) is a plate of FITC-Tre and (ii) is a plate of a lipid extract from FITC-Tre treated *Mtb* after fluorescence excitation at 486nm. (iii) is a radio-TLC of a lipid extract from ¹⁴C-Tre treated *Mtb*. Images (ii) and (iii) are of the same plate, which was co-spotted with the ¹⁴C-Tre labelled *Mtb* extract FITC-Tre labelled *Mtb* extract, and show that differently labelled Tre probe molecules are incorporated into mycobacteria in a similar way. Figure 6(d) shows images of FITC-Tre labelled *Mtb*, in which (i) is a fluorescence image showing the presence of a fluorescein, (ii) is a transmitted light differential interference contrast (DIC) image, and (iii) is an overlay of the fluorescence and DIC images, highlighting the correspondence between the *Mtb* bacteria and the presence of the FITC-Tre probe molecule.

Figure 7 shows images of macrophages infected with RFP BCG vaccine (Red Fluorescent Protein-labelled Bacillus Calmette-Guerin vaccine) or *Mtb*. (a) Fluorescence image of *Mtb* labelled with FITC-Tre (green); (b) DIC image showing the macrophages with *Mtb* bacteria indicated by white arrows; (c) is an overlay of the DIC and fluorescence images, showing correspondence between the bacteria and the FITC-Tre label; (d) is a fluorescence image of FITC-Tre labelled Mtb-infected macrophages, in which the DNA of the macrophages has been stained blue using DAPI (4',6-diamidino-2-phenylindole); (e) labelling at a lower concentration of 1 µM FITC-Tre, (gain on microscope increased); (f) zoomed out image of labelled infected macrophages; (g) image taken within 1 hour of adding the probe molecule; (h) overlay of 1 hour label with RFP; (i) FITC-Tre *Mtb* (green) treated with *anti-Mtb* antibody; (j) Overlay of FITC-Tre and antibody signal (antibody labelled with Alexa-594 fluorescent dye) shows colocalization of FITC-Tre and antibody; (k) FITC-Tre maximum projection through the cell; (l) RFP BCG maximum projection through cell (red); (m) overlay of maximum projections; (n) (i-vi) stack through cell (1 µm between slices).
In Figure 8(a) to (c) are shown, fluorescence (a), DIC (c) and overlay (b) images of *Mtb*-infected macrophages, where *Mtb* is modified with QD-Tre probe molecule. The QD excitation was at 562 nm, with emission at 585nm - 634 nm. Arrows identify *Mtb* in the DIC plot as highlighted by the fluorescent emission.

In Figure 8(d), the synthesis of a QD (quantum dot)-labelled Tre is shown. The QD label is bound to multiple Tre molecules, and hence in one embodiment of the invention a label can be shared with a plurality of substrate molecules. In this specific QD-label embodiment the QD comprised up to 110 Tre molecules.

Experimental

Images of stained cells were obtained by confocal microscopy (Leica SP2, Leica Microsystems, Exton, PA) using a 63x oil immersion objective NA 1.4. All data were processed with Leica LAS software and Adobe Illustrator to compile images.

Protein concentrations were calculated using standard BCA assay or with a Labtek ND- 1000 Nanodrop.

High Performance Liquid Chromatography was conducted on a Dionex UltiMate 3000 HPLC system at ambient temperature, with an in line variable UV absorbance detector, or a Varian PLS400 Evaporative Light Scattering detector (ELSD) parallel to the main flow path.

Hydrogenations were either performed manually or with a Thales Nano H Cube®.

Protein purification was performed on an AKTA Prime FPLC system (GE Healthcare).

Fluorescence and radioactivity of lipid extractions was read on a Phosphorimagier: Typhoon 9410 Variable Mode Imager by GE Healthcare Bio-Sciences.

Scintillation counting was conducted on an LS 6500 Multi-purpose scintillation counter by Beckman Coulter.

Fluorescence readings of *Mtb* were conducted on a FLUOstar Optima by BMG Labtech.

Images of stained cells were obtained by confocal microscopy (Leica SP2, Leica Microsystems, Exton, PA) using a 63x oil immersion objective NA 1.4. All data were processed by Leica LAS AF Lite and Adobe Illustrator Software.
Optical rotations were measured on a Perkin-Elmer 241 polarimeter with a path length of 1.0 dm and are reported with implied units of \(10^{-1}\) deg cm\(^2\) g\(^{-1}\). Concentrations (c) are given in g/100mL.

Melting points (m.p.) were recorded on a Leica Galen III hot stage microscope equipped with a Testo 720 thermocouple probe and are uncorrected.

Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker DPX400 (400 MHz), a Bruker AV400 (400 MHz) or a Bruker AVII500 (500 MHz) spectrometer, as indicated. NMR Spectra were fully assigned using COSY, HSQC, HMBC and DEPT 135. All chemical shifts are quoted on the \(\delta\) scale in ppm using residual solvent as the internal standard (1H NMR: \(\text{CDCl}_3 = 7.26, \text{CD}_3\text{OD} = 4.87\); DMSO-d6 = 2.50 and \(^1\text{C NMR}: \text{CDCl}_3 = 77.0; \text{CD}_3\text{OD} = 49.0;\) DMSO-d6 = 39.5).

Coupling constants (J) are reported in Hz with the following splitting abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, and a = apparent.

Infrared (IR) spectra were recorded on a Bruker Tensor 27 Fourier Transform spectrophotometer using thin films on NaCl plates for liquids and oils and KBr discs for solids and crystals. Absorption maxima (\(\nu_{\text{max}}\)) are reported in wavenumbers (cm\(^{-1}\)) and classified as strong (s) or broad (br).

Low resolution mass spectra (LRMS) were recorded on a Waters Micromass LCT Premier TOF spectrometer using electrospray ionization (ESI) and high resolution mass spectra (HRMS) were recorded on a Bruker MicroTOF ESI mass spectrometer. Nominal and exact m/z values are reported in Daltons.

Thin layer chromatography (TLC) was carried out using Merck aluminium backed sheets coated with 60F254 silica gel. Visualization of the silica plates was achieved using a UV lamp (\(\lambda_{\text{max}} = 254\) nm), and/or acid dip (1:1 MeOH/H\(_2\)O, 10% H\(_2\)SO\(_4\)) and/or ammonium molybdate 5% in 2M H\(_2\)SO\(_4\), and/or potassium permanganate (5% KMnO\(_4\) in 1M NaOH with 5% potassium carbonate). Column chromatography was carried out using BDH PROLAB® 40-63 mm silica gel (VWR). Mobile phases are reported in ratio of solvents (e.g. 4:1 petrol/ ethyl acetate).

Anhydrous solvents were purchased from Fluka or Acros with the exception of dichloromethane and THF, which were dried over Alumina cartiges. All other solvents were used as supplied (Analytical or HPLC grade), without prior purification.
Distilled water was used for chemical reactions and Milli-Q™ purified water for protein manipulations. Reagents were purchased from Sigma Aldrich and used as supplied, unless otherwise indicated.

Trehalose was purchased from Fluka. 'Petrol’ refers to the fraction of light petroleum ether boiling in the range 40-60 °C. All reactions using anhydrous conditions were performed using flame-dried apparatus under an atmosphere of argon or nitrogen. 3A and 4A molecular sieves were activated by heating in a 400 °C furnace and were also employed for anhydrous reactions.

Basic alumina refers to basic aluminum oxide and was utilized during some hydrogenation reactions.

Brine refers to a saturated solution of sodium chloride. Anhydrous magnesium sulfate (MgSC\(^\wedge\)) or sodium sulfate (Na\(_2\)SO\(_4\)) were used as drying agents after reaction workup, as indicated.

DOWEX 50WX8 (H\(^+\) form) was conditioned as follows: 100 g of the commercial resin was placed in a 500 mL sintered filter funnel and allowed to swell with 200 mL of acetone for 5 minutes. The solvent was removed by suction and the resin was washed successively with 800 mL of acetone, 500 mL methanol, 500 mL 5M HCl, and then 1 L of water or until the pH of filtrate was ~ 7, as indicated by pH paper. The resin was partially dried on the filter and then stored and used as needed.

In addition to those specified above, the following abbreviations, designations, and formulas are used throughout:

\[
\text{Ar} = \text{Argon}, \quad \text{MeOH} = \text{methanol}, \quad \text{H}_2\text{O} = \text{water}, \quad \text{Et}_2\text{O} = \text{diethyl ether}, \quad \text{EtOH} = \text{ethanol}, \quad \text{TFA} = \text{trifluoroethanol}, \quad \text{EtOAc} = \text{ethyl acetate}, \quad \text{CH}_2\text{Cl}_2 = \text{DCM}, \quad \text{CHCl}_3 = \text{chloroform}, \quad \text{Ac} = \text{acetyl}, \quad \text{TBDPS} = \text{tert-butyldiphenylsilyl}, \quad \text{TBAF} = \text{tetra-n-butylammonium fluoride}, \quad \text{DAST} = \text{diethylaminosulfur trifluoride}, \quad \text{DMAP} = 4\text{-Dimethylaminopyridine}, \quad \text{PBS} = \text{phosphate buffered saline}, \quad \text{TEA} = \text{triethanolamine}, \quad \text{DAPI} = 4',6\text{-diamidino-2-phenylindole} \text{ is a fluorescent stain that binds strongly to DNA, DIC = differential interference contrast image.}
\]
Protein Mass Spectrometry (LC-MS) was performed on a Micromass LCT (ESITOF-MS) coupled to a Waters Alliance 2790 HPLC using a Phenomenex Jupiter C4 column (250x4.6 mm-5μm) Water: acetonitrile, 95:5 (solvent A) and acetonitrile (solvent B), each containing 0.1% formic acid, were used as the mobile phase at a flow rate of 1.0 mL min\(^{-1}\).

The gradient was programmed as follows: 95% A (5 min isocratic) to 100% B after 15 min then isocratic for 5 min. The electrospray source was operated with a capillary voltage of 3.2 kV and a cone voltage of 25 V. Nitrogen was used as the nebulizer and desolvation gas at a total flow of 600 L h\(^{-1}\). Spectra were calibrated using a calibration curve constructed from a minimum of 17 matched peaks from the multiply charged ion series of equine myoglobin obtained at a cone voltage of 25 V.

Total mass spectra were reconstructed from the ion series using the MaxEnt algorithm preinstalled on MassLynx software (v. 4.0 from Waters) according to the manufacturer's instructions.

Selected syntheses of examples of compounds according to the present invention are now described. The identities of those compounds referred to by number can be found further on in the description, under the heading "Schemes, Synthesis and Characterization".

Synthesis of Fluorescein-labelled trehalose (FITC-Tre), compound 9.

Compound 30 (1.75 g, 3.17 mmol, 1) and compound 27 (1.54 g, 3.5 mmol, 1.1 equi) were dried under reduced pressure for 1 hour and then dissolved in anhydrous CH\(_2\)Cl\(_2\) (50 mL) and added to a dry flask in the presence of molecular sieves (ca. 1 g). The mixture was stirred with molecular sieves for 30 minutes at room temperature and then was cooled to -40 °C. To this was added trimethylsilyl trifluoromethanesulfonate (TMSOTf) (100 μl, 0.54 mmol. 0.15 equi) at -40 °C under an Ar atmosphere. The resulting mixture was stirred for 1 hour until thin layer chromatography (TLC), using 1.5:1 petrol/ethyl acetate (by volume), revealed the production of two new products (Rf 0.6 and Rf 0.35) and incomplete consumption of starting material (Rf 0.35 and Rf 0.05). An additional portion of TMSOTf (100 μl, 0.54 mmol. 0.15 equi) was added to the reaction and reaction stirred for a further 1.5 hours, for a total 2.5 hours reaction time. The reaction was then quenched by the addition NEt\(_3\) (0.1 ml), filtered through celite and concentrated. The crude product was purified by column chromatography (5:2 petrol/ethyl acetate by volume) to yield the desired compound 43 α,α (1.065 g) as
well as the 44 α,β (212 mg) for a net yield (46%, 5:1 α,α: α,β) as well as recovered compound 30 (184 mg, 10%) and recovered compound 27 (288 mg, 20%).

Compound 43 (578 mg, 0.59 mmol, 1 equi) was dissolved in anhydrous methanol (15 ml). To this was added sodium methoxide (25 mg, 0.46 mmol, 0.94 equi) and the reaction mixture was stirred for 1 hour, upon which time full conversion to product was detected by TLC (ethyl acetate) (Rf 0.75) and disappearance of starting sugar (Rf 1). The reaction mixture was neutralized with DOWEX 50WX8 (H+ form) cation exchange resin (ca 50 mg). The DOWEX was removed by filtration and the filtrate was concentrated under reduced pressure to yield the deacetylated product (507 mg, 100%). This product was split into two portions and used without further purification. Each portion was dissolved in 20 ml (1:1 trifluoroethanol/water) with formic acid (50 μi) and cycled through a ThalesNano H Cube® over a Pd/C cartridge for 10 hours. Upon completion product was detected by TLC (1:2:2 water/isopropanol/ethyl acetate volume) (Rf 0.05) with complete disappearance of starting sugar (Rf 1). The reaction mixtures were concentrated under reduced pressure, redissolved in water and lyophilized to yield the desired product compound 7 as a brownish, amorphous solid, which was further purified, utilizing a C18 sep-pak cartridge (221 mg, 93%).

Compound number 7 (1mg, 0.03 mmol, 1 equi) and fluorescein isothiocyanate (17 mg, 0.044 mmol, 1.4 equi) were dissolved in 75mM NaHCO$_3$ buffer at pH 9 (1ml) with acetonitrile (0.5 ml). The mixture was heated to 50 °C for 2 hours upon which time Product (Rf 0.3) was detected by TLC (1:2:2 water/isopropanol/ethyl acetate - volume) with near complete disappearance of fluorescein starting material (Rf 0.8). Reaction mixture was purified without concentration, utilizing the preparatory Synergi Hydro C18 column and a 4%/min acetonitrile gradient. Lyophilization yielded the desired product (FITC-Tre), 9, as a yellow solid (16 mg, 72%).

Synthesis of Quantum Dot-labelled Tre (QD-Tre), compound 66.

(1-Deoxy-a-D-glucopyranosyl 2-N-isothiocyanate-2-deoxy-a-D-glucopyranoside)

Compound 7 (2.5 mg, 0.007 mmol, 1 eq) was dissolved in 75 mM NaHCO$_3$ buffer pH 9 (200 μi). To this was added thiophosgene as a solution (20 μi of thiophosgene into 1 mL of chloroform). 100 μi of thiophosgene solution was added to
reaction (3 mg, 0.26, 4.2 eq). The resulting biphasic mixture was stirred at room
temperature for 3 hours upon which TLC (5 ethanol : 3 NH₄OH : 1 water) showed
complete consumption of starting material (Rf 0.2) and conversion to a single product
(Rf 0.65). Excess thiophosgene and chloroform were removed in vacuo and crude
product 64 was used without further purification.

An 8 µM solution of CdSe-ZnS (50 µї) core-shell quantum dots (emission
λ_max 655nm) in borate buffer at pH 8 (Invitrogen) was buffer exchanged into water
by repeated (x5) centrifugal filtration through a 10 kDa cutoff spin filter. The
quantum dots were then resuspended in water. 50 µї of this 8 µM quantum dot
solution was then added to the solution of 64, and the total volume made up to 1.0 mL
with 75 mM NaHCO₃ buffer at pH 9.0 (pH electrode). Reaction mixture was shaken
at 4 °C for 14 hours. Excess sugar and salt was removed from the reaction mixture by
size exclusion chromatography (PD 10 column, Amershams) with water as the mobile
phase. The quantum dot solution was concentrated to 1 mL, using 10 Kda spin filter,
and the concentration determined using previously reported procedures [22] to be 0.44
µM (ε350 = 3880000 M⁻¹cm⁻¹). The modification of the quantum dots was confirmed
using an agarose gel.

The carbohydrate loading on the quantum dots was determined using the
phenol sulphuric acid method. An aliquot of the quantum dot solution (50 µї) was
treated with concentrated sulphuric acid (75 µї) and aqueous phenol (5% w/w, 10 µї)
and heated to 90 °C. After 5 minutes the sample was cooled to room temperature and
A490 measured, referenced to a solution of carbohydrate modified quantum dots and
acid. The concentration of trehalose was determined by comparison to a standardised
curve. The carbohydrate content per dot was calculated from the ratio of trehalose
concentration to the concentration of ZnS-CdSe quantum dots and was found to be
~110 sugars/dot.

Experiment 1 - Activity as substrate for Ag85 A, B and C transesterase reactions.

Mono and dihexanoyl esters of Tre were used to probe the rate of
transesterification with the labelled and optionally derivatised Tre probe molecules
(herin Tre*) in the presence of Ag85 enzymes. The rate was compared to that of the
reaction of the mono/dihexanoyl Tre ester with unlabelled and undervatised Tre.
Products were analysed by Mass Spectrometry (MS).
MS Kinetic Parameter Determination:

A Waters QuattroMicro-MS with electrospray ionization operating in negative mode (ESI-) was interfaced with a Waters 1525 µ HPLC system and Waters 2777 sampler fitted with a 4-port injector module. MS analysis was under the control of Micromass Masslynx 4.1 software, and data were processed using Masslynx4.1, QuantLynx, Microsoft Excel 2003 SigmaPlot 11.0 and Origin 7.5. The HPLC/auto-sampler control was divided into two stages: a) injection of the internal standard into valve 1 and b) injection of the analyte solution into valve 2. Both valves were switched simultaneously and the analyte and standard mixed in a 186 µL peek loop before elution directly onto the source. Mobile phase was CH₃CN : H₂O (50 : 50 volume); flow rate: 0.2 mL/min; isocratic method for 3 min; injection volume: 10.0 µL, electrospray negative; ESI- (single ion monitoring) for 3 min; Single ion peaks monitored.

Typical procedure for standard curve determination

All reactions were performed in TEA (triethanolamine) buffer (ImM, pH 7.2) at 37 °C. Eight samples were analysed with one containing 20 µM n-acetyl-glucosamine (GlcNAc) in TEA buffer only, and the other seven containing fixed concentrations of trehalose (5, 10, 20, 40, 80, 120 and 160 µM), di-hexanoyl ester (X) (5, 10, 20, 40, 80, 120 and 160 µM), mono-hexanoyl ester (0.5, 1, 2, 4, 8, 12 and 16 µM) and hexanoic acid (0.5, 1, 2, 4, 8, 12 and 16 µM) in 1 mM TEA, pH 7.2. The samples were injected as described above. The total ion count peak area was measured for each compound after normalisation for ionization efficiency using the standard. Plots were constructed using QuantLynx of response against concentration and the slope was used to obtain concentration information during subsequent reactions.

Typical procedure for kinetic parameter determination

Eight vials were prepared, one containing 20µM GlcNAc (ImM TEA, pH 7.2), the others containing fixed final concentrations of di-hexyl trehalose (500µM) with varying final concentrations of trehalose (10, 15, 25, 50, 75, 100, 250µM). Ag85C (20µL) was added to a vial to a final concentration of 50 nM and the concentrations of substrates and products were monitored. Initial rates were calculated and the data were fit to the relevant rate equation using "Origin 7.5".
Typical procedure for substrate screen

Upon initiation of reactions by addition of enzyme (or buffer in the case of control wells), each well in a 96-well plate contained 500 µM di-Hexanoyl ester, 500 µM substrate and 100 nM Ag85 (A, B or C) in 1mM TEA buffer (pH 7.2). Plates were incubated at 37°C for timed intervals and the formation of products was determined by MS analysis (continuum scan from 100-900 Da). The ratio of peak intensity of substrate to product was used as a qualitative indication of activity. In all cases control solutions without enzyme were used to evaluate the presence of uncatalysed background reaction. Results are shown in Table 1 below.

Experiment 2 - Uptake of 14C-labelled Tre

14C-sugar uptake into Mtb

H37Rv Mtb cells were grown in 7H9 media and were harvested at an OD600 of 0.5 by centrifugation (1250 g at 4°C for 10 min), washed once with buffer (Hepes 25mM and .05M Tween at pH 7.2) and then resuspended in the same buffer. Radio-labelled 14C-trehalose (0.1 ^Ci/ml, obtained from ARC chemicals), glycerol (^Ci/ml), and corresponding nonlabelled sugars (50mM) were mixed and added to the 16ml cell suspension. Trehalose was used at a tenfold lower concentration of radioactivity (0.5 ^Ci/ml) relative to glucose and arabinose (^Ci/ml) whose uptake was also separately studied. 1ml aliquots were removed in at 15, 30, 45, 60 and 120 minutes and were filtered through GA-4 Metricel filter membranes (diameter, 2.54 cm; pore size, 0.8 µm; Gelman Instrument Co., Ann Arbor, Mich.) The membranes were washed 3x2ml with hepes/tween buffer and 1x2ml LiCl 0.1M. Filter papers were then placed in ultimax gold scintillation fluid. Scintillation counting was conducted for 2 minutes each vial. All experiments were conducted in triplicate and samples without sugar were used as control. Uptake experiment was repeated over a 24 hour time period with 14C-glucose (0.9 ^Ci/ml) 14C-Trehalose (0.6 ^Ci/ml) in 7H9 media, which contain 10mM glucose. No unlabeled trehalose was added to the experiment. 1ml aliquots were removed and counted as before with time points at 40, 90 mins, 4 and 24 hours.

Compounds 1 to 24 are as shown in Figure 5. Results represent the ratio of the peak height of mono-hexanoyl ester of labelled or derivatised trehalose to the peak height of labelled or derivatised Tre.
Table 1: Relative substrate response towards transesterification.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ag85A</th>
<th>Ag85B</th>
<th>Ag85C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>13</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
<td>1415</td>
<td>102</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>7</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>13</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>76</td>
</tr>
<tr>
<td>7</td>
<td>47</td>
<td>56</td>
<td>91</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>14</td>
<td>81</td>
</tr>
<tr>
<td>9</td>
<td>229</td>
<td>38</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>16</td>
<td>129</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>148</td>
<td>54</td>
<td>166</td>
</tr>
<tr>
<td>13</td>
<td>66</td>
<td>24</td>
<td>98</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>35</td>
<td>82</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>37</td>
<td>24</td>
<td>113</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>17</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>37</td>
<td>13</td>
<td>64</td>
</tr>
<tr>
<td>19</td>
<td>102</td>
<td>92</td>
<td>99</td>
</tr>
<tr>
<td>20</td>
<td>149</td>
<td>412</td>
<td>91</td>
</tr>
<tr>
<td>21</td>
<td>229</td>
<td>412</td>
<td>91</td>
</tr>
<tr>
<td>22</td>
<td>115</td>
<td>156</td>
<td>274</td>
</tr>
<tr>
<td>23</td>
<td>18</td>
<td>19</td>
<td>45</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>28</td>
<td>8</td>
</tr>
</tbody>
</table>

\(^{14}C\) uptake into infected macrophages

Murine J774 Macrophage cells grown in HMEM media were split into two bottles and allowed to adhere for two days, upon which time confluence was determined. Cells were at 5 x 10^7 density. Media was exchanged for fresh and one bottle of cells was infected with 5 x 10^8 H37Rv bacteria. After three hours, cells were washed with HMEM and allowed to incubate at 37 °C overnight. Following 24 hours
of incubation, media was exchanged for fresh media and 14C-Trehalose 10 µCi in 100 µl ethanol was added to both infected and uninfected cultures. Cells were allowed to incubate with trehalose for 24 hours. Upon completion media was removed and pelleted by centrifugation, as it contained floating Mtb. Macrophages were gently washed with HMEM media and lysed with SDS 0.1% in 10ml of media. Cells were further washed with 2 x 5ml PBS buffer 10 give a final concentration of 0.05 % SDS and lysate was collected in falcon tubes. Lysate was vortexed for ca 1 min. Once the solution was clear, lysate was centrifuged at 3600 rpm for 20 minutes and supernatant was poured off and collected for scintillation counting. Additionally, floating Mtb, pelleted Mtb, as well as controls, were treated to the same following conditions. Pellet (or pellets made from floating Mtb) was resuspended and transferred to a 1.5 ml screw top ependorf in 1 ml tween and treated with four wash cycles of pelleting and resuspension in 800µlITween. Finally, pellet was resuspended in a minimal amount of buffer (200 µl) and added to scintillation fluid.

14C-Tre lipid extractions
Lipid extractions from bacteria treated with 14C-trehalose and were conducted as reported by Slayden et al (2001), Vol. 54, pp. 229 and analyzed by radiographic TLC.

Experiment 3 - Uptake of FITC-Tre
FITC-Tre uptake into Mtb
To 2 x 0.5 ml Mtb in Middlebrook 7H9 media in eppendorf tubes at an OD600 of 0.6 was added FITC-Tre in ethanol, at a final concentration of 400µM. Probe (FITC-Tre) was also added to 2 x 0.5 ml heat killed bacteria. Mtb was incubated at 37 °C. At 2 hours, one of each live and heat killed samples were pelleted 1 minute at 12000 rpms and resuspended 4 times in order to remove any free probe. Upon washing, bacteria was resuspended in 200 µl media. 2 x 80 µl of this was added to two wells on a black 96 well plate and fluorescence excitation at 480 nm and emission at 520 nm was read. 24 hour timepoints were treated analogously.

FITC-Tre lipid extractions
These were carried out in the same way as for the 14C-Tre lipid extractions. FITC-Tre lipid extractions were cospotted with 14C-Tre extracts in order to compare retention values of FITC and 14C labeled glycolipids.
FITC-Tre uptake into infected macrophages and microscopy.

Antibody fixing: 1774 Macrophages were grown to confluency on coverslips and then were infected with H37Rv Mtb (2-3 bacteria/macrophage). After 4 hours infection time, macrophages were washed to remove free bacteria and FITC-Tre was added in ethanol to desired concentrations (1µM, 10 µM, 50 µM, 100 µM). Quantum dots (QDs) were treated in an analogous fashion and were added to a concentration of dots of (7 nm) with roughly 110 sugars/dot (1 µM effective sugar concentration) Uncoated QDs were utilized as a control. RFP expressing BCG was also treated in an identical fashion.

Cells were fixed at different timepoints utilizing the following procedure: Media was removed and cells were washed in PBS Buffer. Cells were then fixed in an aqueous solution of 5% formalin is phosphate buffered saline (PBS) for 15 minutes and then washed again using two 2-minute treatments with PBS (0.5 ml) for 2min. Cells were permeabilized with 0.1% triton X-100 in PBS for 5 minutes at room temperature. Triton was washed way using 3 separate 2 minute treatments with PBS (0.5 ml). Non-specific protein interactions were blocked with protein blocker (1 ml) with 1 drop goat serum for 1 hour at RT. Primary Mycobacterium tuberculosis antibody (ab905) was obtained from abeam and was labeled utilizing Zenon Rabbit Polyclonal IgG labeling kit from Molecular Probes. Antibody and zenon Fab fragments were prepared according to kit specifications and was diluted to 1 ml in PBS with goat serum. Coverslips were incubated with antibody solution for 30 minutes at 37 °C, were then washed with PBS and 0.1% tween 20 (3 x 5 min) and were fixed in 5% formalin for 15 minutes. Coverslips were drained and mounted in anti-fade media (VECTASHIELD® Mounting Medium).

Cells treated with FITC-Tre and no antibody were exposed to the same mounting procedure, except second fixation step was omitted. For cells labeled with DAPI (4’,6-diamidino-2-phenylindole), a 0.1 mg/ml stock solution of DAPI was made up in PBS buffer and cells were incubated with ^g/ml DAPI solution for 5 minutes immediately prior to mounting.

Microscopy
Images of stained cells were obtained by confocal microscopy (Leica SP2, Leica Microsystems, Exton, PA) using a 63× oil immersion objective NA 1.4. Multiple
fields were sampled, and representative images were recorded. Fluorescein was excited using a 496 nm resulting in emission at 502nm - 565nm. RFP Alexa 594-labeled Mtb antibody and Quantum dots were excited using a 556 nm laser, with emission at 594nm - 665nm. Images were gathered sequentially and stacked when DAPI was used to label cell so as to minimize cross-talk between channels. DAPI was first excited at 405 nm and emission spectrum was recorded (416nm - 482nm) before the other fluorochromes were excited and emission spectrums recorded. Essential Sequential Z sections of stained cells were also recorded for generation of stacked images through cell. All data were processed with Leica LAS AF Lite and compiled in Adobe Illustrator.

Schemes, Synthesis and Characterization

Ketoside trehalose synthesis

Ketoside trehalose analogues are numbered in the supplementary information in the following manner. This numbering follows the precedent of analog number set by IUPAC nomenclature for ketosides. In the main text, for clarity, compounds are referred to as methyl-trehalose and are numbered according to the convention for unmodified trehalose.

Compound routes shown in Schemes S2-S23: 25, 27, 28, 29, 30, 31, 32, 33, 45, 46, 48, 51, 53, 54, and 55 and were synthesized as has been recorded previously and their characterization matched previously reported spectroscopic data.

Scheme S2. Methyl ketoside glycosylation
Table SI: Glycosylation conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Donor mmol</th>
<th>Acceptor mmol</th>
<th>Catalyst</th>
<th>T °C</th>
<th>Time</th>
<th>Yield</th>
<th>α,α: α,β</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33</td>
<td>0.3</td>
<td>29</td>
<td>0.58</td>
<td>1</td>
<td>30 min</td>
<td>30%</td>
</tr>
<tr>
<td>2</td>
<td>31</td>
<td>0.04</td>
<td>29</td>
<td>0.09</td>
<td>3</td>
<td>30 min</td>
<td>95%</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.24</td>
<td>25</td>
<td>0.25</td>
<td>2</td>
<td>30 min</td>
<td>93%</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>0.14</td>
<td>26</td>
<td>0.22</td>
<td>2</td>
<td>2 h</td>
<td>82%</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>0.32</td>
<td>25</td>
<td>0.42</td>
<td>3</td>
<td>30 min</td>
<td>88%</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>0.14</td>
<td>26</td>
<td>0.16</td>
<td>2</td>
<td>1 h</td>
<td>90%</td>
</tr>
<tr>
<td>7</td>
<td>30</td>
<td>0.21</td>
<td>28</td>
<td>0.18</td>
<td>3</td>
<td>3 h</td>
<td>52%</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>0.31</td>
<td>27</td>
<td>0.38</td>
<td>3</td>
<td>15 min</td>
<td>81%</td>
</tr>
</tbody>
</table>

Scheme S3. Reagents and conditions. (a) TMSOTf, 4Å molecular sieves, anhydrous DCM, -40 °C, 3 h (b) NaOMe, anhydrous MeOH, RT, 1 h (c) H₂, Pd(OH)₂/C, basic alumina, RT, 72 h.

2,3,4, 6-Tetra-0-benzyl-d-eoxy-a-D-gluco-hept-2-ulopyanosyl-(2 →l)-2,3,4, 6-tetra-O-acetyl-a-D-glucopyranoside (34)
30 10 (134 mg, 0.24 mmol, 1 eq) and 25 6 (87 mg, 0.25 mmol, 1.05 eq) were dried in vacuo for 1 hour and then dissolved in anhydrous CH\textsubscript{2}Cl\textsubscript{2} (7 mL) and added to a dry flask in the presence of molecular sieves (ca. 100 mg). To this was added 5 TMSOTf (1O\textsubscript{4}M, 0.054 mmol, 0.2 eq) at -40 °C in the under an Ax atmosphere. The resulting mixture was stirred for 3 h. (2.5:1 petrol/ethyl acetate) revealed the production of two new product spots (R\textsubscript{f} 0.3) and (R\textsubscript{f} 0.25) and complete consumption of starting material. The reaction was then quenched by the addition of O.OlmL triethylamine, filtered through Celite ® and concentrated. The crude product was purified by column chromatography (5:2 petrol/ethyl acetate) to give colorless oil (189.5 mg, 93%) as a mixture of \(\alpha,\alpha\) and \(\alpha,\beta\) products (7:1) that were separated during a second round of column chromatography (3:1 petrol/ethyl acetate) to afford pure the desired compound (162 mg, 85.6 %) as a clear oil.

\([\alpha]_{D}23 + 80.9 (c = 1 in CHCl\textsubscript{3}); \text{H NMR} (400 MHz, CHLOROFORM-J) \delta ppm\)

146 (3 H, s, C-1'), 1.96 (3 H, s, 1 x OCOCH\textsubscript{3}), 2.01 (6 H, s, 2 x OCOCH\textsubscript{3}), 2.05 (3 H, s, 1 x OCOCH\textsubscript{3}), 3.32 (1 H, d, J\textsubscript{3',4'} = 9.6 Hz, H-3'), 3.56 - 3.64 (3 H, m, H-7\textsubscript{a}, H-7\textsubscript{b}, H-5'), 3.82 (1 H, dd, J\textsubscript{6\textsubscript{a},6\textsubscript{b}} = 12.4 Hz, J\textsubscript{5',6\textsubscript{a}} = 1.9 Hz, H-6\textsubscript{a}), 3.88 (1 H, ddd, J\textsubscript{5',6\textsubscript{a}} = 10.1 Hz, J\textsubscript{6\textsubscript{a},7\textsubscript{a}} = 3.8 Hz, J\textsubscript{6\textsubscript{a},7\textsubscript{b}} = 2.5 Hz, H-6\textsubscript{b}), 4.05 - 4.1 (2 H, m, H-4\textsubscript{a}, H-4\textsubscript{b}), 4.33 (1 H, ddd, J\textsubscript{5',6\textsubscript{a}} = 10.4 Hz, J\textsubscript{5',6\textsubscript{b}} = 4.3 Hz, J\textsubscript{5',6\textsubscript{b}} = 2.0 Hz, H-5), 4.48 (1 H, d, J = 12.3 Hz, 1 x OCH\textsubscript{2}P(1)), 4.56 (1 H, d, J = 12.4 Hz, 1 x OCH\textsubscript{2}Ph), 4.56 (1 H, d, J = 11.0 Hz, 1 x OCH\textsubscript{2}P(1)), 4.62 (1 H, d, J = 11.3 Hz, 1 x OCH\textsubscript{2}Ph), 4.85 (1 H, d, J = 11.1 Hz, 1 x OCH\textsubscript{2}Ph), 4.92 (1 H, d, J = 10.9 Hz, 1 x OCH\textsubscript{2}Ph), 4.95-5.07 (4 H, m, H-4, 2 x OCH\textsubscript{2}Ph, H-2), 5.37 (1 H, d, J\textsubscript{1,2} = 3.6 Hz, H-1), 5.55 (1 H, at, J\textsubscript{2,3} = J\textsubscript{3,4} = 9.7 Hz, H-3), 7.08 - 7.40 (20 H, m, Ar-H); 13C NMR (126 MHz, CHLOROFORM-J) \delta ppm

20.6, 20.6, 20.7, 20.7, (4 x OCOCH\textsubscript{3}) 22.6 (C-1'), 61.6 (C-6), 67.1 (C-5), 68.1 (C-7), 68.6 (C-4), 70.2 (C-2), 70.7 (C-3), 72.0 (C-6'), 73.5 (OCH\textsubscript{2}Ph), 74.8 (OCH\textsubscript{2}Ph), 75.5 (2 x OCH\textsubscript{2}Ph), 78.3 (C-5'), 82.6 (C-4'), 84.5 (C-3'), 89.2 (C-1), 101.4 (C-2'), 127.5, 127.6, 127.7, 127.9, 128.3, 128.4, 128.8, 130.8 (4 x OCH\textsubscript{2}Ph), 138.0, 138.2, 138.3, 138.5 (4 x C, 4 x OCH\textsubscript{2}Ph), 169.6, 169.8, 170.2, 170.5 (4 x C=O); IR (thin
(M+NH₄⁺); HRMS (ESI⁺) calcd. for C₄₇H₄₃O₁₃ (M+Na⁺): 907.3517. Found: 907.3512.

2,3,4,6-Tetra-O-benzyl-l-deoxy-a-D-gluco-hept-2-ulopyranosyl-(2 →l)-2,3,4,6-tetra-O-acetyl-fi-D-glucopyranoside (35)

The titled compound was purified as the lower spot by TLC (2:1 petrol/ethyl acetate) (R₄ 0.25) from the reaction between 30 (134.4 mg, 0.242 mmol, 1 eq) and 10 25⁶ (87.2 mg, 0.25 mmol, 1.05 eq) to produce 35 as a clear oil. (27 mg, 14.3 %)

[α]D²¹ + 17.7 (c = 1 in CHCl₃); H NMR (500 MHz, CHLOROFORM-J) δ ppm

1.43 (3 H, s, C-1’), 1.96 (1 H, s, 1 x OCOCH₃), 2.00 (5 H, s, 5 x OCOCH₃), 2.03 (5 H, m, 5 x OCOCH₃), 2.04 (1 H, s, 1 x OCOCH₃), 3.34 (1 H, d, J₃’,₄’ = 9.6 Hz, H-3’), 3.61 (1 H, ddd, J₉ = 12.4 Hz, J₅,₆a = 7.3 Hz, J₅,₆b = 2.5 Hz, H-5), 3.59-3.62 (1H, m, H-7’t), 3.69-3.73 (2H, m, H-5’ H-7’a’), 4.03-4.07 (2H, m, H-4’, H-6’a), 4.12 (1H, dd, J₆a,₆b = 12.4 Hz, J₅a,₆b = 4.8 Hz, H-6’b), 4.18 (1H, ddd, J₅,₆a = 6.6 Hz, J₅a,₇a’ = 3.0 Hz, J₆,₇a’ = 2.0 Hz, H-6’), 4.48 (1H, d, J = 11.9 Hz, 1 x OCH₂Ph), 4.53 (1H, d, J = 10.9 Hz, 1 x OCH₂Ph), 4.59 (1H, dd, J = 11.4 Hz, 1 x OCH₂Ph), 4.61 (1H, dd, J = 12.3 Hz, 1 x OCH₂Ph), 4.84 (1H, d, J = 10.86 Hz, 1 x OCH₂Ph), 4.89 (1H, d, J = 8.2 Hz)

CHLOROFORM-J δ ppm 20.6, 20.8, 20.9, 20.9 (4 x OCOCH₃), 22.1 (C-1’), 62.0 (C-6), 68.4 (C-4), 68.5 (C-7’), 70.9 (C-2), 72.0 (C-6’ or C-5), 72.4 (C-6’ or C-5), 72.9 (C-3), 73.4 (OCH₂Ph), 74.9 (OCH₂Ph), 75.5 (OCH₂Ph), 75.5 (OCH₂Ph), 78.2 (C-5’), 82.5 (C-4’), 84.5 (C-3’), 94.6 (C-1), 102.4 (C-2’), 127.5, 127.5, 127.6, 127.6, 127.8, 128.3, 128.3, 128.4 (4 x OCH₂Ph), 138.1, 138.2, 138.4, 138.6 (4 x C=1, 4 x OCH₂Ph), 169.0, 169.4, 170.3, 170.6 (4x C=0); IR (thin film): ν = 3029, 2931, 1755 (C=0), 1496, 1454, 1366, 1230, 1211, 1038, 908, 737 cm⁻¹; MS mlz (ESI⁺) 902.4 (M+NH₄⁺); HRMS (ESI⁺) calcd. for C₄₇H₄₃O₁₃ (M+Na⁺): 907.3517. Found: 907.3512.
l-Deoxy-α-D-gluco-hept-2-ulopyranosyl-(2→1)-α-D-glucopyranoside (2)

34 (120 mg, 0.13 mmol) was dissolved in 15 mL methanol with NaOMe (30 mg, 0.55mmol, 4 eq) and stirred at room temperature for 1 hour until complete disappearance of starting material (Rf 0.55) and appearance of a new spot (Rf 0.05) was observed by TLC (1:1 petrol/ethyl acetate) and deacetylated sugar was detected by ESI+ m/z (M+Na+): 741.3. Reaction was neutralized with DOWEX 50WX8 (H+ form) ion exchange resin and concentrated in vacuo. The clear oil was redissolved in ethanol (15 mL) and to this was added basic alumina (70.1 mg) and 20% Pd(OH)2/C (80 mg) and palladium was activated by repeat purge flush cycles with hydrogen. Reaction was stirred under hydrogen atmosphere (balloon) at room temperature. After 72 h reaction was filtered through filter paper and filtrate was evaporated and purified by column chromatograph (9:5 ethyl acetate/methanol) to give the desired, fully deprotected sugar, as a clear oil (40 mg, 83%).

[α]D +121.2 (0.32 in MeOH); [Lit. α]D +140.0 (c = 0.83 in MeOH)] 20;

H NMR (400 MHz, DEUTERIUM OXIDE) δ ppm 1.47 (3 H, s, C-1'), 3.24 (1 H, dJ,3,4 9.9 Hz, H-3'), 3.35 (2H, at, J4,5 = J5,6 = 9.6 Hz, H-5', H-4), 3.53 (1 H, ddJ,2,3 = 10.0 Hz, J1,2 = 3.7 Hz, H-2), 3.59 (1 H, ddJ,6,6b = 12.3 Hz, J5,6a = 5.5 Hz), 3.61 (1 H, dd, J7a,7b = 11.8 Hz, J6,7a = 5.1 Hz, H-7a), 3.67 (1 H, at, J3,4 = J4,5 = 10.8 Hz, H-4), 3.73 - 3.83 (5 H, m, H-6b, H-5, H-3, H-4' H-7b'), 3.99 (1 H, dddJ,5,6 = 10.1 Hz, J6,7a = 5.3 Hz, J6,7b = 2.3 Hz, H-6'), 5.22 (1 H, d, J1,2 = 3.8 Hz, H-1); 13C NMR (126 MHz, DEUTERIUM OXIDE) δ ppm 22.5 (C-1'), 60.5 (C-6), 60.5 (C-7), 69.8 (C-4), 69.9 (C-5'), 71.4 (C-5), 71.8 (C-2), 72.3 (C-6'), 72.5 (C-3), 72.8 (1 C-4'), 76.4 (C-3'), 91.5 (C-1), 101.0 (C-2'); MS m/z (EST) 379.2 (M+Na+); Spectroscopic data matches previously reported data20
Scheme S4. Reagents and conditions, (a) TMSOTf, 4 Å molecular sieves, anhydrous DCM, -40 °C, 2 h (b) NaOMe, anhydrous MeOH, RT, 3 h (c) H₂, Pd(OH)₂/C, basic alumina, RT, 48 h.

2,3,4,6-Tetra-0-benzyl-l-deoxy-a-D-gluco-hept-2-ulopyranosyl-(2→l)-3,4,6-tri-0-acetyl-2-deoxy-2-fluoro-a-D-glucopyranoside (36)

30 (81 mg, 0.15 mmol, 1 eq) and 26 (69 mg, 0.22 mmol, 1.5 eq) were dried in vacuo for 1 hour and then dissolved in anhydrous CH₂Cl₂ (7 mL) and added to a dry flask in the presence of molecular sieves (ca. 100 mg). To this was added TMSOTf (10 µL, 0.054 mmol, 0.3 eq) at -40 °C under an Ar atmosphere. The resulting mixture was stirred for 2 h upon which time TLC (2.5:1 petrol/ethyl acetate) revealed the production of two very close new product spots (Rf 0.3) and (Rf 0.27) and complete consumption of starting material. The reaction was then quenched by the addition of 0.01 mL triethylamine, filtered through Celite® and concentrated to produce. The crude product was purified by column chromatography (2:1 etrol/ethyl acetate) to give the desired compound as a colorless oil (104 mg, 82%) and a 6:1 mixture of α,α (89.1 mg) to α,β. None of the α,β product was obtained to purity.

[α]D 34 + 65.5 (c = 1.0 in CHCl₃); H NMR (500 MHz, CHLOROFORM-d₅) δ ppm 1.48 (3 H, s, C-l'), 2.01 (3 H, s, 1 x OCOCH₃), 2.06 (3 H, s, 1 x OCOCH₃), 2.08
(3 H, s, 1 x OCOCH₃), 3.35 (1H, d, J₃,₄ = 9.4 Hz, H-3'), 3.62 (1H, m, J₇₆,₇₇ = 11.0 Hz, J₆,₇₆ = 1.6 Hz, H-7b), 3.65 (1H, at, J₅,₆ = J₄,₅ = 9.8 Hz, H-5'), 3.71 (1H, d, J₇₆,₇₇ = 11.3 Hz, J₆,₇₆ = 4.1 Hz, H-7a), 3.83 (1H, dd, J₆₈,₆₆ = 12.5 Hz, J₆₈,₆₅ = 2.0 Hz, H-6b), 3.97 (1H, ddd, J₅,₅' = 9.9 Hz, J₆,₇₆' = 2.0 Hz, J₆,₇₇' = 1.7 Hz, H-6'), 4.06 (1H, at, J₅,₄ = J₄,₅ = 9.4 Hz, H-4'), 4.08 (1H, dd, J₆₆,₆₇ = 12.3 Hz, J₆₆,₆₇ = 4.5 Hz, H-6a), 4.33 (1H, d, J = 10.4 Hz, J₅,₆ = 4.7 Hz, J₅,₆ = 2.2 Hz, H-5), 4.49 (1H, d, J = 12.3 Hz, 1 x OCH₂Ph), 4.54 (6H, ddd, J₂F = 48.0 Hz, J₂,₃ = 9.8 Hz, J₁,₂ = 3.8 Hz, H-2), 4.57 (1H, d, J = 11.1 Hz, 1 x OCH₂Ph), 4.60 (1H, d, J = 12.3 Hz, 1 x OCH₂Ph), 4.62 (1H, d, J = 10.4 Hz, 1 x OCH₂Ph), 4.83 (1H, d, J = 10.9 Hz, 1 x OCH₂Ph), 4.93 (1H, d, J = 11.4 Hz, 1 x OCH₂Ph), 4.96 (1H, d, J = 12.3 Hz, 1 x OCH₂Ph), 4.99 (1H, d, J = 11.4 Hz, 1 x OCH₂Ph), 4.99 (1H, dt, J₄,₅ = J₃,₄ = 9.6 Hz, J₄,₅ = 3.0 Hz), 5.46 (1H, d, J₁,₂ = 3.9 Hz, H-l), 5.61 (1H, dt, J₃,₄ = 12.2 Hz, J₃,₄ = 9.4 Hz, J₂,₃ = 9.4 Hz H-3), 7.16 - 7.37 (20H, m, Ar-H); ¹³C NMR (126 MHz, CHLOROFORM-δ) δ ppm 20.6, 20.6, 20.8 (3 x OCOCH₃), 22.9 (C-1'), 61.6 (C-6), 67.0 (C-5), 68.2 (C-4), 68.5 (C-7'), 71.3 (1C, d, J₃,₃' = 26.5 Hz, C-3) 71.3 (C-6'), 73.1 (OCH₂Ph), 74.6 (OCH₂Ph), 75.5 (OCH₂Ph), 75.5 (OCH₂Ph), 78.2 (C-5'), 82.6 (C-4'), 84.5 (C-3'), 87.2 (1C, d, J₃,₃' = 195.5 Hz, C-2), 88.8 (1C, d, J₄,₄' = 21 Hz, C-1), 101.5 (C-2'), 127.5, 127.5, 127.6, 127.7, 127.8, 127.9, 128.2, 128.3, 128.4(4 x OCH₂Ph), 138.2, 138.4, 138.6 (4 x 1C, 4 x OCH₂Ph), 169.7, 170.1, 170.5 (3 x C=O); ¹⁹F NMR (1H) (377 MHz, CHLOROFORM-δ) δ ppm -197.5; ν = 3064, 3030, 2940, 1754 (C=0), 1605, 1540, 1497, 1454, 1366, 1223, 1132, 1089, 1064, 974, 949, 912, 872, 751, 737 cm⁻¹; MS m/z (ESI⁺) 844.35 (M+NH₄⁺); HRMS (ESI⁺) calcd. for C₄₇H₅₃FOi₃ (M+Na⁺) 867.3365. Found: 867.3362.
Scheme S5. Reagents and conditions, (a) Tebbe reagent, -40 °C, 1 h (b) TMSOTf, 4 Å molecular sieves, anhydrous DCM, -78 °C, 30 min.

2,3,4,6-Tetra-0-benzyl-l-deoxy-a-D-gluco-hept-2-ulopyranosyl-(2→1)-3,4,6-tri-0-acetyl-2-deoxy-2-fluoro-fi-D-glucopyranoside (37)

Following the procedure in Li, 20011 a solution of 31 (24 mg, 0.045 mmol, 1 eq) and 29 (29 mg, 0.094 mmol, 2 eq) and molecular sieves 4Å (MS 4Å) (100 mg) in dry CH₂Cl₂ (5 mL) was stirred under nitrogen atmosphere at room temperature for 30 min. The solution was cooled to -78 °C and TMSOTf (5 µL, 0.027mmol, 0.5 eq) was added. The reaction mixture was stirred at -78 °C for 30 minutes. The reaction was monitored by TLC (2.5:1 petrol/ethyl acetate) and upon completion one broad product spot was visible (R⁰ 0.3) with disappearance of starting glycal 31 (R⁰ 0.8) and reaction was quenched with triethylamine (20 µl) and passed through Celite®. After the removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (2.5:1 petrol/ ethyl acetate) as the eluent to afford the products (35 mg, 95%) 1:1 mixture of the α,α and α,β and gluco and manno sugars. From these only the titled compound could be isolated to purity as a clear oil (10 mg, 28%).

[α]_D\text{^24} + 39.7 (c = 0.37 in CHCl₃); H NMR (500 MHz,CHLOROFORM-δ) δ ppm 1.42 (3 H, C-1'), 2.02 (3 H, s, 1 x OCOCH₃), 2.05 (3 H, s, 1 x OCOCH₃), 2.09 (3 H, 1 x OCOCH₃), 3.40 (1 H, d, J₃,₃' = 9.8 Hz, H-3'), 3.59 (1 H, ddd, Jₗ₅,₅' = 10.0 Hz,
$J_{5,6a} = 5.1$ Hz, $J_{5,6b} = 2.5$ Hz, H-5), 3.63-3.70 (3H, m, H-7a', H-7b', H-5'), 4.99-4.11 (2H, m, H-6b, H-4'), 4.09 (1H, dd, $J_{4.6a} = 11.8$ Hz, $J_{6a.6b} = 5.5$ Hz, H-6a), 4.21 (1H, ddd, $J_{F.2} = 10.1$ Hz, $J_{6.7a} = 3.9$ Hz, $J_{6.7b} = 1.42$ Hz, H-6'), 4.37 (1H, ddd, $J_{F.2} = 50.0$ Hz, $J_{5.3} = 9.1$ Hz, $J_{1.2} = 8.2$ Hz, H-2). 4.50 (1H, d, $J = 12.0$ Hz, 1 x OCH$_2$Ph), 4.54 (1H, d, $J = 10.7$ Hz, 1 x OCH$_2$Ph), 4.59 (1H, d, $J = 12.0$ Hz, 1 x OCH$_2$Ph), 4.71 (1H, d, $J = 11.7$ Hz, 1 x OCH$_2$Ph), 4.85 (1H, d, $J = 11.0$ Hz, 1 x OCH$_2$Ph), 4.87 (1H, d, $J = 11.0$ Hz 1 x OCH$_2$Ph), 4.91 (1H, d, $J = 13.3$ Hz, 1 x OCH$_2$Ph) 4.94-4.98 (2H, m, H-4, 1 x OCH$_2$Ph), 5.01 (1H, dd, $J_{1,2} = 7.7$ Hz $J_{1.3} = 2.4$ Hz, H-l), 5.30 (1H, dt, $J_{3,4} = 14.2$ Hz, $J_{3,4} = 9.2$ Hz, H-3), 7.16 - 7.34 (20H, m, Ar-H); 13C NMR (126 MHz, CHLOROFORM-d) δ ppm 22.3, 22.6, 23.1 (3 x OCOCH$_3$), 28.8 (CH$_3$), 61.9 (C-6), 68.2 (1C, d, $J_{C.4} = 5.0$ Hz, C-4), 68.6 (C-7), 72.1 (C-5), 72.6 (C-6'), 73.0 (1C, d, $J_{C.3} = 18.9$ Hz, C-3), 73.1 (OCH$_2$Ph), 73.5 (OCH$_2$Ph), 75.0 (OCH$_2$Ph), 75.5 (OCH$_2$Ph), 78.2 (C-5'), 82.7 (C-4'), 84.2 (C-3'), 88.9 (1C, d, $J_{C.2} = 189$ Hz, C-2), 94.0 (1C, d, $J_{C.1} = 23.9$ Hz, C-1), 102.6 (C-2'), 127.5, 127.6, 127.7, 127.8, 127.8, 128.0, 128.3, 138.1, 138.6 (4 x OCH$_2$Ph), 169.4, 170.13, 170.5 (3 x C=O); 19F NMR (377 MHz, CHLOROFORM-d) δ ppm -198.52; IR (thin film): v = 2921, 1754 (C=O), 1586, 1549, 1513, 1495, 1453, 1366, 1242, 1196, 1100, 1055, 1029, 735, 698 cm$^{-1}$; MS m/z (ESI$^+$) 844.35 (NH$_4^+$); HRMS (ESI$^+$) calcd. for C$_{47}$H$_{53}$FO$_3$(M+Na$^+$) 867.3365. Found: 867.3362.

l-Deoxy-a-D-glucopyranosyl(2 \rightarrow l)-2-deoxy-2-fluoro-a-D-glucopyranoside (3)

36 (66.6 mg, 0.078 mmol, 1 eq) was dissolved in 15 mL methanol with NaOMe (20 mg, 0.37 mmol, 4.8 eq) and stirred at room temperature for 3 hours until complete disappearance of starting material (R$_f$ 0.55) and appearance of a new spot (R$_f$ 0.05) was observed by TLC (1:1 petrol/ethyl acetate) and deacetylated sugar was detected by ESI$^+$ m/z (M+Na$^+$): 741.3. Reaction was neutralized with DOWEX 50WX8 (H$^+$ form) ion exchange resin and concentrated in vacuo. The clear oil was redissolved in methanol (10 mL) and to this was added basic alumina (5.7 mg) and 20%
Pd(OH)$_2$/C (112 mg) and reaction was stirred under hydrogen atmosphere (balloon) at room temperature. After 48 h, reaction was filtered through filter paper and filtrate was evaporated and purified by column chromatograph (7:3 ethyl acetate/methanol) and Isolute SPE C18 cartridge to give the desired, fully deprotected sugar, as a clear oil (27 mg, 98%).

$[\alpha]_D^{23} + 95.5$ (c = 0.42 in MeOH); 1H NMR (500 MHz, DEUTERIUM OXIDE) δ ppm 1.45 (3 H, s, C-1'), 3.24 (1 H, d, $J_{3',4'} = 9.8$ Hz, H-3'), 3.33 (1 H, at, $J_{6a,6b} = J_{5,6} = 10.1$ Hz, H-5'), 3.40 (1 H, at, $J_{3,4} = J_{4,5} = 9.6$ Hz, H-4), 3.63 (1 H, dd, $J_{6a,6b} = 11.8$ Hz, $J_{5,6a} = 5.8$ Hz, H-6a), 3.66 (1 H, dd, $J_{7a,7b} = 11.9$ Hz, $J_{6,7a} = 5.7$ Hz, H-7a'), 3.67 (1 H, t, $J = 9.5$ Hz, H-4'), 3.72 - 3.79 (3 H, m, H-6b, H-7b', H-6'). 3.80 (1 H, dd, $J_{6a,6b} = 10.1$ Hz, $J_{5,6a} = 5.0$ Hz, $J_{6b,7b} = 2.4$ Hz, H-5), 4.02 (1 H, dt, $J_{3'F} = 12.9$, $J_{3,F} = 9.4$ Hz, $J_{3',3} = 9.4$ Hz, H-3), 4.36 (1 H, ddd, $J_{2,F} = 49.5$ Hz, $J_{2',3} = 9.8$ Hz, $J_{1,2} = 3.8$ Hz, H-2), 5.45 (1 H, d, $J_{1,2} = 4.1$ Hz, H-1); 13C NMR (126 MHz, DEUTERIUM OXIDE) δ ppm 22.27 (C-1'), 60.31 (C-6), 60.59 (C-7), 69.2 (1 C, d, $J_{C,F} = 7.5$ Hz, C-4), 69.8 (C-5'), 71.2 (1 C, d, $J_{C,F} = 17.6$ Hz, C-3), 71.9 (C-5), 72.5 (C-6'), 72.9 (C-4'), 76.1 (C-3'), 88.8 (C-1), 89.7 (1 C, d, $J_{C,2F} = 189$ Hz, C-2), 101.1 (C-2'); 19F NMR (377 MHz, DEUTERIUM OXIDE) δ ppm -197.2 (dt, $J_{2,F} = 49.3$ Hz, $J_{1,F} = J_{3,F} = 12.6$ Hz); MS m/z (ESI$^+$) 381.2 (M+Na$^+$); HRMS (ESI$^+$) calcd. for Cl$_3$H$_{23}$F Oio (M+Na$^+$): 381.1 173. Found: 381.1 167.

Scheme S6. Reagents and conditions, (a) TMSOTf, molecular sieves, anhydrous DCM, -40 °C, 30 min (b) NaOMe, anhydrous MeOH, RT, 1 h (c) H_2, Pd(OH)$_2$/C, basic alumina, RT, 72 h.
2,3,4,6-Tetra-O-benzyl-l-deoxy-a-D-galacto-hept-2-ulopyranosyl-(2 →1)-2,3,4,6-tetra-O-acetyl-a-D-glucopyranoside (38)

![Chemical Structure](image)

5 32 (176.1 mg, 0.317 mmol, 1 eq) and 25 (146.2 mg, 0.419 mmol, 1.3 eq) were dried in vacuo for 1 hour and then dissolved in anhydrous CH$_2$Cl$_2$ (8 mL) and added to a dry flask in the presence of molecular sieves (ca. 100 mg). To this was added TMSOTf (10μl, 0.54 mmol, 0.17 eq) at -40 °C in the under an Ar atmosphere. The resulting mixture was stirred for 30 min until TLC (2.5:1 petrol/ethyl acetate) revealed the production of two new product spots (R$_f$ 0.3) and (R$_f$ 0.27) and complete consumption of starting material. The reaction was then quenched by the addition 0.1 mL triethylamine, filtered through Celite® and concentrated to produce. The crude product was purified by column chromatography (5:2 petrol/ethyl acetate) to give as a colorless oil (246 mg, 88%) as a mixture of α,α and α,β products (5:1) that were separated during further chromatography (3:1 petrol/ethyl acetate) to yield the desired compound as exclusively α,α (180.7 mg, 65%) [α]$_D^{24}$ + 72.0 (c = 1.0 in CHCl$_3$; H NMR (500 MHz, CHLOROFORM-J) δ ppm 1.46 (3 H, s, C-l'), 1.94 (3H, s, 1x OCOCH$_3$) 2.01 (6 H, s, 2 x OCOCH$_3$), 2.04 (3 H, s, 1 x OCOCH$_3$), 3.40 (1 H, dd, J$_{	ext{7a-7b}}$ 8.9 Hz, J$_{6\gamma-6\delta}$ 5.3 Hz, H-7b), 3.56 (1 H, dd, J$_{6\gamma-6\delta}$ = 8.4, J$_{6\gamma-6\delta}$ = 8.4 Hz, H-7a), 3.75 (1 H, dd, J$_{6\alpha-6\delta}$ = 12.5 Hz, H$_{5\delta}$ = 2.2 Hz, H-6b), 3.83 (1 H, d, J$_{9\delta}$ = 9.9 Hz, H-3'), 4.01 (1 H, Br s, H-5'), 4.02 (1 H, dd, J$_{6\alpha-6\beta}$ = 12.2 Hz, J$_{5\delta}$ = 4.2 Hz, H-6a), 4.07 (1 H, ddd, J = 9.9, J$_{S\delta-6\delta}$ = 2.6 Hz, H-5'), 4.10 (1 H, ddd, J = 7.2, 4.3, 1.2 Hz, H-6') 4.34 (1 H, d, J = 11.8 Hz, 1 x OCH$_2$Ph), 4.38 (3 H, ddd, J$_{3\beta}$ = 10.4 Hz, J$_{5\delta}$ = 4.3 Hz, J$_{5\delta}$ = 2.2 Hz, H-5), 4.40 (1 H, d, J = 11.6 Hz, 1 x OCH$_2$Ph), 4.57 (1 H, d, J = 11.6 Hz, 1 x OCH$_2$Ph), 4.61 (1 H, d, J = 11.1 Hz, 1 x OCH$_2$Ph), 4.82 (1 H, Br s, 1 x OCH$_2$Ph), 4.95 (1 H, d, J = 11.4 Hz, 1 x OCH$_2$Ph), 4.99 (1 H, dd, J$_{2\beta}$ = 10.2 Hz, J$_{1,2}$ = 3.6 Hz, H-2), 5.02 (1 H, at, J$_{1,2}$ = J$_{2,3}$ = 10.1, H-2), 5.04 (2 H, d, J = 10.41 Hz, 1 x OCH$_2$Ph), 5.06 (1 H, d, J = 10.2 Hz, 1 x OCH$_2$Ph), 5.33 (3 H, d, J$_{1,2}$ = 3.6 Hz, H-1), 5.53 (1 H, at, J$_{2,3}$ = J$_{5,4}$ = 9.8 Hz, H-3), 6.85 - 7.64 (20 H, m, Ax-H); 13C NMR (126 MHz,
CHLOROFORM-J) δ ppm 20.3, 20.6, 20.6, 20.7 (4 x OCOCH₃), 22.4 (C-1'), 61.6 (C-6), 67.0 (C-5), 68.4 (C-4), 68.4 (C-7) 70.5 (C-2), 70.5 (2 C, s, C-4 and C-6'), 72.6 (OCH₂Ph), 73.5 (OCH₂Ph), 74.2 (C-5'), 74.5 (OCH₂Ph), 75.6 (OCH₂Ph), 80.1 (C-4'), 80.86 (C-3'), 89.3 (C-I), 102.3 (C-2'), 127.5, 127.5, 127.6, 127.7, 127.8, 127.9, 128.1, 128.2, 128.3, 128.4(4 x OCH₂Ph), 137.6, 138.4, 138.6, 138.7 (4 x C-1, 4 x OCH₂Ph), 169.6, 169.9, 170.2, 170.6 (4 x C=0) IR (thin film): ν = 3030.3, 2932.1, 2867.8, 1752.36 (C=0), 1497.0, 1454.4, 1368.0, 1221.2, 1139.1, 1100.0, 1038., 963.61, 922.4, 877.3, 845.4, 772.3, 753.5 cm⁻¹; MS m/z (ESI⁺) 902.4 (M+NH₄⁺); HRMS (ESI⁺) calcd. for C₄₇H₇₃O₁₃Na (M+Na⁺): 907.3517. Found: 907.351 1

l-Deoxy-α-D-galacto-hept-2-ulopyranosyl-(2→l)-α-D-glucopyranoside (4)⁰

38 (163.2 mg, 0.184 mmol, 1 eq) was dissolved in 15 mL methanol with NaOMe (46.2 mg, 0.855 mmol) and stirred at room temperature for 1 hour until complete disappearance of starting material (Rf 0.55) and appearance of a new spot (Rf 0.05) was observed by TLC (1:1 petrol/ethyl acetate) and deacetylated sugar was detected by ESI⁺ m/z (M+Na): 739.2. Reaction was neutralized with DOWEX 50WX8 (H⁺ form) ion exchange resin and concentrated in vacuo. The resulting clear oil was redissolved in ethanol (15mL) and solution was degassed with nitrogen. To this was added basic alumina (50 mg) and 20% Pd(OH)₂/C (70.6 mg) and reaction was stirred under hydrogen atmosphere (balloon) at room temperature. After 72 h, reaction was filtered through filter paper and filtrate was evaporated and purified by column chromatography (9:5 ethyl acetate/methanol) to give the desired, fully deprotected sugar, as a clear oil. (23 mg, 32%).

[a]D²⁰⁺ 156.5 (0.46 in MeOH); [Lit. [α]²⁺+164.9 (c = 0.64 in MeOH)]²₀; H NMR (500 MHz, CHLOROFORM-J) δ ppm 1.51 (3 H, s, C-1'), 3.38 (1 H, at, J₉,₄ = 9.6 Hz, H-4), 3.65 (1 H, d, J₉,₄ = 10.1 Hz, H-3'), 3.56 (1 H, dd, J₁,₂ = 10.1 Hz, J₄,₅ = 3.8 Hz, H-2), 3.66 (1 H, dd, J₉,₂₇ = 12.0 Hz, J₆,₇ = 5.4 Hz, H-7b'), 3.69 (1 H, dd, J₆,₇ = 12.0 Hz, J₇,₁₂ = 7.7 Hz, H-7a), 3.71 (1 H, dd, J₆,₁₂ = 12.6 Hz, J₅,₆ = 5.4
Hz, H-6a), 3.77 - 3.85 (3 H, m, H-3, H-5, H-6b), 3.94 (1 H, dd, J_{4,5} = 3.5 Hz, J_{5,6} = 1.1 Hz, H-5'), 3.95 (1 H, dd, J_{4,5} = 10.7 Hz, J_{4,5} = 3.5 Hz, H-4'), 4.22 (1 H, ddd, J_{6,7a} = 7.1 Hz, J_{6,7b} = 5.0 Hz, J_{5,6} = 1.4 Hz, H-6'), 5.26 (1 H, d, J_{1,2} = 3.8 Hz, H-1); 13C NMR (126 MHz, CHLOROFORM-d$_6$) δ ppm 25.2 (C-1'), 63.0 (C-6), 63.6 (C-7'), 71.8 (C-5'), 72.0 (C-4'), 72.4 (C-4), 73.8 (C-6'), 73.9 (C-2), 74.2 (C-5), 75.0 (C-3), 75.9 (C-3'), 94.0 (C-1), 103.7 (C-2'); MS mlz (ESI+) 379.2 (M+Na$^+$). Spectroscopic data matches with that previously reported.

Scheme S7. Reagents and conditions, (a) TMSOTf, molecular sieves, anhydrous DCM, -40 °C, 1 h (b) NaOMe, anhydrous MeOH, RT, 3 h (c) H$_2$, Pd(OH)$_2$/C, basic alumina, RT, 96 h.

2,3,4,6-Tetra-O-benzyl-1-deoxy-a-D-galacto-hept-2-ulopyranosyl-(2→1)-3,4,6-tri-0-acetyl-2-deoxy-2-fluoro-a-D-glucopyranoside (39)

32 (88.7 mg, 0.16 mmol, 1.15 eq) and 26 (44.1 mg, 0.14 mmol, 1 eq) were dried in vacuo for 1 hour then dissolved in anhydrous CH$_2$Cl$_2$ (7 mL) and added to a dry flask in the presence of molecular sieves (ca. 100 mg). To this was added TMSOTf (5µL, 0.027 mmol, 0.18 eq) at -40 °C under an Ax atmosphere. The resulting mixture was stirred for 1 hour upon which time TLC (2.5:1 petrol/ethyl acetate)
revealed the production of two new product spots (R$_f$ 0.3) and (R$_f$ 0.27) and complete consumption of starting material. The reaction was then quenched by the addition of 0.0 lmL triethylamine, filtered through Celite® and concentrated. The crude product was purified by column chromatography (2:1 petrol/ethyl acetate) to give a 6:1 mixture of the α,α and α,β products (106 mg, 90%). Further purification in (3:1 petrol/ethyl acetate) yielded the desired compound (70.7 mg, 60%) as a colorless oil. α,β product was not obtained through this method.

$$\text{[e]$_{D}$}^{25} = +46.6$ (c = 0.78, CHCl$_3$); H NMR (500 MHz, CHLOROFORM-d) δ ppm 1.47 (3 H, s, C-1'), 2.01 (3 H, s, 3 x OCOCH$_3$), 2.06 (3 H, s, 3 x OCOCH$_3$), 2.09 (3H, s, 3 x OCOFb), 3.52 (2 H, ad, J 6.6 Hz, H-7a', H-7b'), 3.83 (2 H, dd, J$_{6a,6b}$ 12.5 Hz, J$_{5.6b}$ 2.4 Hz, H-6b), 3.84 (1H, d, J$_{3.4}$ = 9.8 Hz, H-3'), 3.98 (1 H, dd, J$_{4.5}$ = 2.7 Hz, J$_{5.6}$ = 1.4 Hz, H-5'), 4.05 (1 H, dd, J$_{3.4}$ = 9.9 Hz, J$_{4.5}$ = 2.7 Hz, H-4'), 4.08 - 4.15 (2 H, m, H-6', H-6a), 4.33 (1 H, ddd, J$_{4.5}$ = 10.3 Hz, J$_{5.6a}$ = 4.8 Hz, J$_{5.6b}$ = 2.2 Hz, H-5), 4.42 (1 H, d, J = 12.0 Hz, 1 x OCH$_2$Ph), 4.47 (1 H, d, J = 11.9 Hz, 1 x OCH$_2$Ph), 4.53 (1 H, ddd, J$_{2.3}$ = 50.8 Hz J$_{2.3}$ = 9.6 Hz, J$_{1.2}$ = 3.9 Hz, H-2), 4.58 (1 H, d, J = 11.3 Hz, 1 x OCH$_2$Ph), 4.63 (1 H, d, J = 11.3 Hz, 1 x OCH$_2$Ph), 4.76 (1 H, d, J = 11.9 Hz, 1 x OCH$_2$Ph), 4.79 (1 H, d, J = 12.0 Hz, 1 x OCH$_2$Ph), 4.93 (1 H, d, J = 11.3 Hz, 1 x OCH$_2$Ph), 5.00 (2 H, t, J = 9.7 Hz, H-4), 5.02 (1 H, d, J = 11.3 Hz, 1 x OCH$_2$Ph), 5.44 (1 H, d, J$_{1.2}$ = 4.1 Hz, H-1), 5.61 (1 H, adt, J$_{3.4}$ = 12.3 Hz, J$_{3.4}$ = J$_{2.3}$ = 9.5 Hz, H-3), 6.87 - 7.54 (20 H, m, Ar-H), 7.30; 13C NMR (126 MHz, CHLOROFORM-d) δ ppm 20.6, 20.6, 20.8 (3 x OCOCH$_3$), 22.7 (C-1'), 61.63 (C-6), 67.0 (C-5) 68.0 (1 C, d, J$_{C-4F}$ = 7 Hz, C-4), 68.7 (C-7'), 71.1 (1 C, d, J$_{C-5F}$ = 18.9 Hz, C-3), 71.1 (C-6'), 72.6 (OCH$_2$Ph), 73.1 (OCH$_2$Ph), 74.4 (OCH$_2$Ph or C-5'), 74.5 (OCH$_2$Ph or C-5'), 75.5 (OCH$_2$Ph), 80.1 (C-4'), 80.6 (C-3') 87.5 (1 C, d, J$_{C-2F}$ 194 Hz, C-2), 88.7 (1 C, d, J$_{C-1F}$ = 21 Hz, C-1), 102.0 (C-2'), 127.5, 127.5, 127.6, 127.7, 127.7, 128.0, 128.2, 128.3, 128.4 (4 x OCH$_2$Ph), 138.1, 138.4, 138.7, 138.7 (4 x C, 4 x OCH$_2$Ph), 169.7, 170.1, 170.5 (3 x C=O); 19F NMR (1H) (377 MHz, CHLOROFORM-d) δ ppm -197.6; IR (thin film): ν = 2922, 2852, 2408, 1747 (C=O), 1496, 1453, 1367, 1220, 1055, 772 cm$^{-1}$; MS m/z (ESI$^+$) 882.3 (NH$_4^+$); HRMS (ESI$^+$) calcd. for C$_{47}$H$_{53}$FOi$_3$ (M+Na$^+$) 867.3365. Found: 867.3362.
Scheme S8. Reagents and conditions (a) Tebbe reagent, -40 °C, 1 h (b) TMSOTf, 4Å molecular sieves, anhydrous DCM, -78 °C, 30 min.

2,3,4,6-Tetra-O-benzyl-d-deoxy-a-D-galacto-hept-2-ulopyranosyl-(2→l)-3,4,6-tri-O-acetyl-2-deoxy-2-fluoro-β-D-glucopyranoside (40)

Following the procedure in Li, 2001\[1\]. A solution of 33 (168 mg, 0.31 mmol, 1 eq), and a 29 (178 mg, 0.58 mmol, 1.6 eq) and molecular sieves 4Å (ca.100 mg) in dry CH$_2$Cl$_2$ (5 mL) was stirred under nitrogen atmosphere at room temperature for 30 min. The solution was cooled to -78 °C and TMSOTf (5µL, 0.027 mmol, 0.05 eq.) was added. The reaction mixture was stirred at -78 °C for 30 minutes. The reaction was monitored by TLC (2.5:1 petrol/ethyl acetate) and upon completion, the appearance of one broad spot (R$_f$ 0.3) and disappearance of starting glycal (R$_f$ 0.8) was detected. Reaction was quenched with triethylamine (20 µl) and passed through Celite® and concentrated. The residue was applied on a silica gel column chromatography (2:1 petrol/ethyl acetate) to afford the products as a 1:2 mixture of the α,α and α,β and gluco and manno sugars (75 mg, 30%). From these only the titled compound could be isolated to purity as a clear oil (57 mg, 22%). [α]$_D^{24}$ + 18.7 (c = 1.0 in CHCl$_3$); H NMR (500 MHz, CHLOROFORM-J) δ ppm 1.41 (3 H, s, C-1'), 2.00 (6 H, s, 2 x OCOCH$_3$) 2.05 (3 H, s, 1 x OCOCH$_3$), 2.08 (3 H, s, 1 x OCOCH$_3$), 3.41 (1 H, dt, J$_{4,5}$ = 10.1 Hz, J$_{5,6a}$ = 3.2 Hz, J$_{5,6b}$ = 3.2 Hz H-5), 3.45 (1 H, dd, J$_{5b,7b}$ = 5.9 Hz, J$_{6,7b}$ = 3.1 Hz, H-7 b'), 3.50 - 3.55 (1 H, m, H-7 a'), 3.90 (1 H, d, J$_{3,4}$ = 9.8 Hz, H-3).
3'), 3.96 (2 H, dd, J = 5.9 Hz, J = 3.0 Hz, H-6a, H-6b), 3.99 (1 H, at, J4,5 = J5,6 = 1.0 Hz, H-5'), 4.02 (1 H, d, J = 9.8 Hz, 1 x OCH2Ph), 4.45 (1 H, d, J = 11.3 Hz, 1 x OCH2Ph), 4.63 (1 H, d, J = 11.7 Hz, 1 x OCH2Ph), 4.72 (1 H, d, J = 11.3 Hz, 1 x OCH2Ph), 4.76 (2 H, s, 2 x OCH2Ph), 4.93 - 4.97 (3 H, m, H-1, 2 x OCH2Ph), 4.99 (1 H, dd, J4,5 = 7.2 Hz J3,4 = 4.9 Hz, H-4), 5.25 (1 H, dt, J3,F = 14.1 Hz, J2,3 = 9.2 Hz, H-3), 7.19 - 7.44 (20 H, m); 13C NMR (126 MHz, CHLOROFORM-d8) δ ppm 20.4, 20.5, 20.6 (3 x OCOCH3), 22.3 (C-1'), 61.4 (C-6), 67.9 (1 C), d, Jc',xF = 7.6 Hz, C-4), 69.9 (C-7), 71.8 (C-6'), 71.9 (C-5), 72.8 (OCH2Ph), 73.3 (1 C), d, Jc',xF = 20.1 Hz, C-3), 73.7 (OCH2Ph), 74.3 (C-5'), 74.6 (OCH2Ph), 75.6 (OCH2Ph), 80.1 (C-3'), 80.4 (C-4') 88.8 (C-2,d, Jc-2,F = 190.8 Hz), 93.6 (C-1), d, Jc,F = 22.9 Hz), 103.1 (C-2), 127.4, 127.5, 127.6, 127.7, 128.1, 128.1, 128.2, 128.2, 128.3, 128.4 (4 x OCH2Ph) 138.0, 138.3, 138.5, 138.6 (4 x C, 4 x OCH2Ph), 170.1, 170.5, 171.1 (3 x C=0); 19F NMR (377 MHz, CHLOROFORM-d8) δ ppm -198.73; IR (thin film): ν = 3063, 3030, 2923, 2857, 1752 (C=0), 1604, 1548, 1496, 1454, 1367, 1230, 1212, 1139, 1100, 1054, 919, 808, 736 cm⁻¹; MS m/z (ESI+) 862.3 (M+NH4⁺); HRMS (ESI+) calcd. for C47H53O13 (M+Na⁺) 867.3365. Found: 867.3383.

l-Deoxy-a-D-galacto-hept-2-ulopyranosyl-(2→l)-2-deoxy-2-fluoro-a-D-glucopyranoside (5)

[Diagram of the molecule]

39 (42 mg, 0.05 mmol, 1 eq) was dissolved in 20 mL methanol with NaOMe (31 mg, 0.6 mmol, 12 eq) and stirred at room temperature for 3 hours until complete disappearance of starting material (Rf 0.55) and appearance of a new spot (Rf 0.05) was observed by TLC (1:1 petrol/ethyl acetate) and deacetylated sugar was detected by ESI+ m/z (M+Na): 741.3. Reaction was neutralized with DOWEX 50WX8 (H⁺ form) ion exchange resin and concentrated in vacuo. The resulting clear oil was re-dissolved in methanol (10mL) and solution was degassed with nitrogen. To this was added basic alumina (31.0 mg) and 20% Pd(OH)₂/C (73 mg) and reaction was stirred under hydrogen atmosphere (balloon) at room temperature. After 96 h, reaction
was filtered through filter paper and filtrate was evaporated. Further purification was
obtained utilizing Isolute SPE C18 cartridge to give the desired, fully deprotected sugar, as a clear oil (20 mg, 100%).

\[
\delta \text{ppm } 1.47 \text{ (3 H, s, C-1'), 3.39 (1 H, at, } J_{3,a} = J_{4,b} = 9.5 \text{ Hz, H-4), 3.52 (1 H, d, } J_{3,d} = 10.4 \text{ Hz, H-3'), 3.61 (1 H, dd, } J_{3,a} = 12.0 \text{ Hz, } J_{6,a} = 5.4 \text{ Hz, H-7'), } 3.64 \text{ (1 H, dd, } J_{7,a} = 12.0 \text{ Hz, } J_{6,a} = 7.3 \text{ Hz, H-7a), 3.66 (1 H, dd, } J_{6,a} = 12.6 \text{ Hz, } J_{5,a} = 5.4 \text{ Hz, H-6b), 3.76 (1 H, dd, } J_{6,a} = 12.3 \text{ Hz, } J_{6,b} = 2.2 \text{ Hz, H-6b), 3.79 (1 H, dd, } J_{7,a} = 10.1 \text{ Hz, } J_{5,a} = 4.8 \text{ Hz, } J_{5,b} = 2.6 \text{ Hz, H-5'), 3.83 (1 H, dd, } J_{7,a} = 10.1 \text{, } J_{7,b} = 3.2 \text{ Hz, H-4'), 3.90 (1 H, dd, } J_{7,a} = 3.1 \text{ Hz, } J_{7,b} = 1.0 \text{ Hz, H-5'), 3.97 (1 H, ddd, } J_{6,a} = 7.1 \text{, } J_{6,b} = 5.5 \text{ Hz, } J_{6,b} = 1.0 \text{ Hz, H-6'), 4.02 (1 H, dt, } J_{7,F} = 13.0 \text{ Hz, } J_{3,a} = 9.2 \text{ Hz, H-3'), 4.37 (1 H, m, } J_{2,F} = 49.5 \text{ Hz, } J_{2,a} = 9.5 \text{ Hz, } J_{1,a} = 3.8 \text{ Hz, H-2), 5.46 (1 H, d, } J_{1,a} = 3.8 \text{ Hz, H-1); } ^{13} \text{C NMR (126 MHz, DEUTERIUM OXIDE) } \delta \text{ppm 22.44 (C-1'), 60.3 (C-6), 61.3 (C-7), 69.3 (1 C, d, } J_{C-4,F} = 7.5 \text{ Hz, C-4'), 69.3 (C-5'), 69.6 (C-4'), 71.2 (1 C, d, } J_{C-3,F} = 17.6 \text{ Hz, C-3), 71.6 (1 C, } J_{C-5,F} = 6.3 \text{ Hz, C-5), 71.8 (C-6'), 73.2 (C-3'), 88.8 (1 C, d, } J_{C-7,F} = 21.4 \text{ Hz, C-1), 89.9 (1 C, d, } J_{C-2,F} = 189 \text{ Hz, C-2), 101.34 (C-2'); } ^{19} \text{F NMR (1H) (377 MHz, DEUTERIUM OXIDE) } \delta \text{ppm -197.5 (dt, } J_{2,F} = 51.6 \text{, } J_{1,F} = 14.9 \text{ Hz); MS m/z (EST) 381.2 (M+Na+); HRMS (EST) calcd. for C13H23FO10 (M+Na+): 381.1173. Found: 381.1165.}

Scheme S9. Reagents and conditions. (a) acetic anhydride, pyridine, RT. (b) hydrazine acetate, DMF, RT (c) TMSOTf, 4 Å molecular sieves, DCM, -40 ºC, 5.5 h.
(d) NaOMe, anhydrous MeOH, RT, 1.5 h (e) H Cube Pd/C cartridge at 70 bar, 25 °C, 1 hr.

3,4,6,7-Tetra-0-benzyl-l-deoxy-a-D-gluco-hept-2-ulopyranosyl-(2→l)-2,4,6-tri-0-acetyl-3-deoxy-3-fluoro-a-D-glucopyranoside (41)

30 (116 mg, 0.21 mmol, 1.16 eq) and 28 (56 mg, 0.18 mmol, 1 eq) were dried under reduced pressure for one hour and then dissolved in anhydrous DCM (8 mL) and added to activated molecular sieves (ca 100 mg). Sugars were stirred with sieves at RT for 1 hour and were then cooled to -40 °C. TMSOTf (10 µl, 0.054 mmol, 0.3 eq) was added and 1 hour later additional TMSOTf (10 µl, 0.054 mmol, 0.3 eq) was added to the reaction. Reaction was stirred for 5.5 h, upon which time conversion was detected by TLC (2:1 petrol/ethyl acetate) with conversion to product α,α (Rf 0.5) and α,β (Rf 0.48) and disappearance of starting sugars (Rf 0.6) and (Rf 0.05). Reaction was then quenched with 1 drop triethylamine, filtered through Celite® to remove molecular sieves, concentrated under reduced pressure and purified by column chromatography (2.5:1 petrol/ethyl acetate). The desired product was obtained as a clear oil (79 mg, 52%) α,α (63 mg) and α,β (16 mg) (4:1 α,α:α,β) as well as recovered 28 (10 mg).

[α]D\text{25}^{25} = 66.3 (c = 1.0, CHCl3); H NMR (400 MHz, CHLOROFORM-J) δ ppm
1.47 (3 H, s, C-1’), 2.02 (3 H, s, 1 x OOC\text{CH}_3), 2.04 (3 H, s, 1 x OOC\text{CH}_3), 2.13 (3 H, s, 1 x OOC\text{CH}_3), 3.33 (1 H, d, J = 9.6 Hz, H-3’), 3.58 - 3.70 (3 H, m, H-7a’,H-7b’, H-5’), 3.81 (1 H, dd, J = 12.4 Hz, J = 1.6 Hz, H-6b), 3.90 (1 H, ddd, J = 10.1 Hz, J = 4.0 Hz, J = 2.3 Hz, H-6’), 4.02 (1 H, at, J = 4.5 Hz, H-4’),
4.05 (1 H, dd, J = 12.9 Hz, J = 4.5 Hz, H-6a), 4.25 (1 H, ddd, J = 10.2 Hz, J = 4.2 Hz, J = 2.0 Hz, H-5), 4.50 (1 H, d, J = 12.1 Hz, 1 x OCH\text{2}_2Ph), 4.58 (1 H, d, J = 9.3 Hz, 1 x OCH\text{2}_2Ph), 4.60 (1 H, d, J = 12.1 Hz, 1 x OCH\text{2}_2Ph), 4.64 (1 H, d, J = 11.4 Hz, 1 x OCH\text{2}_2Ph), 4.87 (1 H, d, J = 10.9 Hz, 1 x OCH\text{2}_2Ph), 4.90 (1 H, dt, J = 54.0 Hz, J = 9.4 Hz, J = 9.4 Hz, H-3), 4.92 (2 H, m, 2 x OCH\text{2}_2Ph), 4.99 (1 H, d, J =
= 11.1 Hz, 1 x OCH₂Ph), 5.08 (1 H, ddd, J₂,3 = 9.9 Hz, J₁₂ = 3.5 Hz, H-2), 5.21 (1 H, ddd, J₄,F = 13.6 Hz, J₄,₅ = 10.4 Hz, J₃,₄ = 9.1 Hz, H-4), 5.39 (1 H, at, J₁₂ = 3.4 Hz, H-1b), 7.08 - 7.44 (20 H, m, Ar-H); i³C NMR (126 MHz, CHLOROFORM-J) δ ppm 20.6, 20.6, 20.7 (3 x OCOCH₃), 22.5 (C-1'), 61.5 (C-6), 67.1 (1 C, d, J₅,F = 6.3 Hz, C-5), 68.3 (1 C, d, J₅,F = 17.4 Hz, C-4), 68.5 (C-7), 70.7 (1 C, d, J₅,F = 16.4 Hz, C-2) 72.1(C-6), 73.5 (OCH₂Ph), 74.8 (OCH₂Ph), 75.5 (OCH₂Ph), 75.5 (OCH₂Ph), 78.2 (C-5'), 82.74 (C-4'), 84.5 (C-3'), 89.6 (1C = d, J₅,F = 8.8 Hz H-1), 89.6 (1 C, d, J₅,F = 189 Hz, C-3), 101.4 (C-2'), 127.5, 127.6, 127.7, 127.7, 127.9, 127.9, 128.2, 128.3, 128.4 (4 x OCH₂Ph), 137.8, 138.2, 138.4, 138.6 (4 x C, 4 x OCH₂Ph), 169.3, 169.7, 170.5 (3 x C=0) ; ¹⁹F NMR (1H) (377 MHz, CHLOROFORM-J) δ ppm -199.9 (1 F, s); IR (thin film): v = 3062.8, 3030.0, 2923.4, 2863.6 (C=CH), 1751 (C=O), 1496, 1453, 1367, 1219, 1131, 1089, 1067, 1038, 736; MS m/s (ESI⁺) 903.3 (M+MeCN+ NH₄⁺); HRMS (ESI⁺) calcd. for C₄₇H₃₅FOi₃ (M+NH₄⁺) 867.3362 Found: 867.3338.

3,4,6,7-Tetra-0-benzyl-1-deoxy-a-D-glucopyranosyl-(2→1)-2,4,6-tri-0-acetyl-3-deoxy-3-fluoro-6-D-glucopyranoside (42)

42 was isolated as the lower spot TLC (2:1 petrol/ethyl acetate) (Rf 0.45) of the reaction between 30 and 28 as a clear oil (16 mg, 10%).

[a]D° = 12.4 (c = 1.0, CHCl₃); H NMR (500 MHz, CHLOROFORM-J) δ ppm 1.43 (3 H, s, C-1'), 2.04 - 2.20 (9 H, m, 3 x OCOCH₃), 3.34 (1 H, d, J₃,₄ = 9.8 Hz, H-3'), 3.52 (1 H, adt, J₄,₅ = 9.9 Hz, J₅,₆a = J₅,₆b = 3.3 Hz, H-5), 3.59 (1 H, dd, J₇a,₇b = 10.7, J₆b,₇b = 1.9 Hz, H-7b'), 3.69 (1 H, at, J₄,₅ = J₄,₆ = 9.5 Hz, H-5'), 3.70 (1 H, dd, J₇a,₇b = 10.4 Hz, J₆a,₆b = 3.8 Hz, H-7a'), 4.06 (2 H, at, J₃,₄ = J₄,₅ = 9.5 Hz, H-4'), 4.07 (2 H, dd, J₆a,₆b = 12.1 Hz, J₅,₆b = 2.2 Hz, H-6b), 4.12 (2 H, dd, J₆a,₆b = 12.3 Hz, J₅,₆a = 4.7 Hz, H-6a), 4.16 (1 H, ddd, J₅,₆ = 10.2 Hz, J₆a,₇a = 3.5 Hz, J₆b,₇b = 2.0 Hz, H-6'), 4.51 (1 H, dt, J₃,₄ = 53.0 Hz, J₃,₅ = 9.1 Hz, J₃,₄ = 9.1 Hz H-3'), 4.47 (1 H, d, J = 12.0 Hz, 1 x OCH₂Ph), 4.53 (1 H, d, J = 11.0 Hz, 1 x OCH₂Ph), 4.59 (1 H, d, J = 12.3 Hz,
1 H, d, J = 11.3 Hz, 1 x OCH$_2$Ph), 4.60 (1 H, d, J$_{1,2}$ = 7.9 Hz, H-1), 4.84 (1 H, d, J = 10.7 Hz, 1 x OCH$_2$Ph), 4.86 - 4.90 (2 H, m, 2 x OCH$_2$Ph), 4.94 (1 H, d, J = 11.3 Hz, 1 x OCH$_2$Ph), 5.14 (2 H, m, H-4, H-2), 7.21 - 7.37 (20 H, m, Ar-H); 13C NMR (126 MHz, CHLOROFORUM-v) δ ppm 20.4, 20.5, 20.6 (3 x OCOCH$_3$), 22.0 (C-1'), 61.9 (C-6), 68.4 (1 C, d, J$_{C-4,F}$ = 12.6 Hz, C-4), 68.5 (C-7') 70.9 (1 C, d, J$_{C-2,F}$ = 18.9 Hz, C-2), 71.2 (1 C, d, J$_{C-5,F}$ 7.5 Hz C-5), 72.4 (H-6'), 73.4 (OCH$_2$Ph), 74.9 (OCH$_2$Ph), 75.5 (OCH$_2$Ph), 75.6 (OCH$_2$Ph), 78.1 (H-5'), 82.5 (C-4'), 84.5 (C-3'), 91.7 (1 C, d, J$_{C-2,F}$ = 191.5 Hz, C-3), 94.2 (1 C, d, J$_{C-7,F}$ = 12.6 Hz, C-1), 102.4 (C-2'), 127.5, 127.6, 127.6, 127.6, 128.3, 128.3, 128.4, 128.4 (4 x OCH$_2$Ph), 138.2, 138.2, 138.4, 138.6 (4 x 1 C, 4 x OCH$_2$Ph), 168.8, 169.15, 170.6 (3 x C=O); IR (thin film): ν = 3062, 3030, 2923, 2855 (C=CH), 1752 (C=O), 1496, 1453, 1368, 1218, 1151, 1126, 1063, 1043. 737; MS m/z (ESI$^+$) 903.3 (M+MeCN+ NH$_4^+$); HRMS (ESI$^+$) calcd. for C$_{47}$H$_{53}$FO$_3$ (M+NH$_4^+$): 867.3362, Found: 867.3338.

15 l-Deoxy-a-D-gluco-hept-2-ulopyranosyl-(2→l)-3-fluoro-3-deoxy-a-D-glucopyranoside (6)

\[\text{O} \quad \text{OH} \quad \text{F} \quad \text{OH} \quad \text{OH} \]

41 (42 mg, 0.049 mmol, 1 eq) was dissolved in anhydrous methanol (10 mL) to this was added sodium methoxide (20 mg, 0.37 mmol, 7.5 eq) and reaction was stirred under argon atmosphere for 1.5 hours until complete conversion to product was detected by TLC (2:1 petrol/ ethyl acetate) (R$_f$ 0.0) with dissappearance of starting sugar (R$_f$ 0.5). Reaction was neutralized with DOWEX 50WX8 (H$^+$ form) cation exchange resin. Resin was removed by filtration and filtrate was concentrated under reduced pressure and redissolved in ethanol (10 mL). Reaction mixture was circulated through a Thales Nano H Cube® Pd/C cartridge at 70 bar, 25 °C for 1 hour. Near complete deprotection was detected by TLC (1:1 methanol/ethyl acetate) (R$_f$ 0.45). Reaction mixture was partitioned between water and DCM and aqueous layer was lyophilized. Further purification was obtained utilizing Isolute SPE C18 cartridge to yield the desired product (15.6 mg, 87%) as a white, amorphous solid.
$[\alpha]_{D}^{25} = 108.2$ (c = 0.22, MeOH); 1H NMR (500 MHz, DEUTERIUM OXIDE) δ ppm 1.44 (3 H, s, C-l'), 3.23 (1 H, d, J$_{3,4}$ = 9.8 Hz, C-3'), 3.34 (1 H, at, J$_{4,5}$ = J$_{5,6}$ = 9.6 Hz, C-5'), 3.62 - 3.75 (6 H, m, H-6a, H-6b, H-7a, H-7b, H-4, H-4'), 3.79 (1 H, ddd, J$_{2F}$ = 16.4 Hz, J$_{2,3}$ = 9.0 Hz, J$_{1,2}$ = 3.6 Hz, H-2), 3.80 (3 H, ddd, J$_{4,5}$ = 11.7 Hz, J$_{5,6a}$ = 6.3 Hz, J$_{5,6b}$ = 3.5 Hz, H-5'), 3.97 (2 H, ddd, J$_{5,6}$ = 10.1 Hz, J$_{6,7A}$ = 5.4 Hz, J$_{6,7B}$ = 2.2 Hz, H-6'), 4.68 (1 H, dt, J$_{3F}$ = 55.0 Hz, J$_{3,4}$ = 9.1 Hz, J$_{2,3}$ = 9.1 Hz, H-3), 5.26 (2 H, at, J = 3.6 Hz, H-1); 13C NMR (126 MHz, DEUTERIUM OXIDE) δ ppm 22.4 (C-1'), 60.1 (C-6), 60.5 (C-7'), 68.1 (1 C, d, J$_{C,F}$ = 16.4 Hz, C-4), 69.8 (C-5'), 69.9 (1 C, d, J$_{C,2F}$ = 16.4 Hz, C-2), 71.3 (1 C, d, J$_{C,5F}$ = 7.5 Hz, C-5), 72.3 (C-6') 72.8 (C-4'), 76.3 (C-3'), 91.7 (1 C, d, J$_{C,3F}$ = H.3 Hz, C-1), 94.5 (1 C, d, J$_{C,5F}$ = 180.1 Hz, C-3), 101.1 (C-2'); 19F NMR (377 MHz, DEUTERIUM OXIDE) δ ppm -199.2 (83 F, dtt, J$_{3,F}$ = 55.1, J$_{2,F}$ = J$_{4,F}$ = 14.9 Hz, J$_{1,F}$ = J$_{S,F} = 3.4$ Hz); MS mlz (EST) 357.1 (M-H); HRMS (ESI+) calcd. for C$_{13}$H$_{23}$F$_{3}$O$_{10}$ (M-H+): 357.1205. Found: 357.1197.

Scheme S10. Reagents and conditions. (a) anisaldehyde, 1M NaOH, RT, 10 min, 0 °C, 1 h (b) acetic anhydride, anhydrous pyridine, RT, 24 h (c) 5M HCl, acetone, 10 min. (d) Benzyl Chloroformate, Na$_2$CO$_3$, DCM, RT, 1.5 h (e) Benzylamine, THF, RT,
72 h (f) TMSOTf, molecular sieves, anhydrous DCM, -40 °C, 15 mins (g) NaOMe, anhydrous MeOH, RT, 1 h. (h) H Cube®, Pd/C cartridge, 70 bar, 10 h. (i) Fluorescein-isothiocyanate, 1:1 MeCN/NaHC0₃ buffer (pH 9), 50 °C, 2 h.

5 3,4,6,7-Tetra-0-benzyl-dideoxy-a-D-glucopyranosyl-(2→1)-3,4,6-tetra-0-acetyl-2-deoxy-2-benzylcarbamate-a-D-glucopyranoside (43)

30 (173.8 g, 0.31 mmol, 1 eq) and 27 (168.0 mg, 0.38 mmol, 1.2 eq) were dried under reduced pressure for 1 hour and then dissolved in anhydrous DCM (10 mL) and added to a dry flask in the presence of molecular sieves (ca. 100 mg). Mixture was stirred with molecular sieves for 30 minutes at room temperature and then was cooled to -40 °C. To this was added TMSOTf (10 μl, 0.054 mmol, 0.15 eq) at -40 °C in the under an Ar atmosphere. The resulting mixture was stirred for 15 minutes until TLC (1.5:1 petrol/ethyl acetate) revealed the production of two new products (Rₚ 0.6 and Rₚ 0.35) and consumption of starting material (Rₚ 0.35 and Rₚ 0.05). The reaction was then quenched by the addition triethylamine (0.1 mL), filtered through Celite® and concentrated. The crude product was purified by column chromatography (5:2 petrol/ethyl acetate) to yield the desired compound α,α(214 mg) as well as the αβ (32 mg) for a net yield (81%, 6:1 α,α: α,β) as well as recovered 30 (14.5 mg, 8%).

[δ]D25 = 67.3 (c = 0.94, CHCl₃).1H NMR (500 MHz, CHLOROFORM-J) δ ppm 1.48 (3 H, s, C-1'), 1.96 (3 H, s, 1 x OCOHj), 2.01 (3 H, s, 1 x OCOH₁), 2.04 (3 H, s, 1 x OCOCH₃), 3.33 (1 H, d, Jₖ₆₄ = 9.4 Hz, C-3'), 3.43 (1 H, dd, Jₗ₆₇₆₇ = 10.9 Hz, Jₖ₆₇ = 1.42 Hz, H-7b'), 3.53 (1 H, dd, Jₖ₆₇₆₇ = 11.03 Hz, Jₖ₆₇ = 2.8 Hz, H-7a'), 3.68 - 3.79 (3 H, m, H-5', H-6b, H-6'), 3.97 (1 H, at, Jₖ₆₅ = Jₖ₅₆ = 9.1 Hz, H-4'). 4.04 (2 H, dd, Jₖ₅₆ = 12.6 Hz, Jₖ₆₅ = 4.41 Hz, H-6α), 4.05 (1 H, dd, Jₖ₅₆ = 10.7 Hz, Jₖ₅₆ = 3.8 Hz, H-2), 4.26 (1 H, ddd, Jₖ₅₆ = 10.3 Hz, Jₖ₅₆ = 4.5 Hz, Jₖ₅₆ = 2.21 Hz, H-5), 4.38 (1 H, d, J = 12.3 Hz, 1 x OCH₂Ph), 4.53 (1 H, d, J = 12.3 Hz, 1 x OCH₂Ph), 4.56 (1 H, d, J = 11.0 Hz, 1 x OCH₂Ph), 4.61 (1 H, d, J = 11.4 Hz, 1 x OCH₂Ph), 4.82 (1 H, d, J =
11.0 Hz, 1 x OCH$_2$Ph), 4.91 (1 H, d, $J = 11.9$ Hz, 1 x OCH$_2$Ph Cbz), 4.93 (1 H, d, $J = 10.9$ Hz, 1 x OCH$_2$Ph), 4.95 (1 H, d, $J = 12.6$ Hz, 1 x OCH$_2$Ph), 4.97 (1 H, d, $J = 11.4$ Hz, 1 x OCH$_2$Ph Cbz), 5.05 (1 H, d, $J = 12.0$ Hz, 1 x OCH$_2$Ph), 5.08 (1 H, at, $J_{3',4'} = J_{4',5} = 9.1$ Hz, H-4), 5.30 (1 H, dd, $J_{2',3'} = 10.7$ Hz, $J_{3',4'} = 9.4$ Hz, H-3), 5.36 (1 H, d, $J_{1',2'} = 3.5$ Hz, H-1), 6.98 - 7.41 (25 H, m, Ar-H); 1H NMR (126MHz, CHLOROFORM-d)

δ ppm 20.6, 20.7 (3 x OCOCH$_3$), 23.1 (C-1'), 54.6 (C-2), 61.7 (C-6), 67.0 (OCH$_2$Ph Cbz), 67.2 (C-5), 68.1 (C-7'), 68.3 (C-4), 70.9 (C-3), 72.3 (C-5'), 73.4 (OCH$_2$Ph), 74.9 (OCH$_2$Ph), 75.5 (OCH$_2$Ph), 77.5(OCH$_2$Ph), 77.9 (C-6'), 82.8 (C-4'), 84.7 (C-3'), 90.7 (C-1), 101.6 (C-2), 127.6, 127.6, 127.6, 127.8, 127.8, 128.1, 128.3, 128.4, 128.5 (5 x OCH$_2$Ph), 136.0, 138.1, 138.2, 138.3, 138.5 (5 x C=0). IR (thin film): ν = 3345.5, (br. Amide), 3088.8, 2924.1, 2863.6 (C=CH), 1745.4 (C=0), 1720.0 (C=0), 1564.1, 1529.7, 1453.7, 1365.4, 1230.0, 1153.1, 1028.1, 736.6; MS m/z (ESI$^+$) 993.4 (M+NH$_4^+$); HRMS (ESI$^+$) calcd. for C$_{55}$H$_{61}$NO$_5$(M+NH$_4^+$): 993.4379. Found: 993.4377.

3,4,6,7-Tetra-0-benzyl-l-deoxy-a-D-gluco-hept-2-ulopyranosyl(2→l)-3,4,6-tri-0-acetyl-2-deoxy-2-benzylcarbamate-fi-D-glucopyranoside (44)

44 was isolated at the lower spot (R$_f$ 0.15) of the reaction between 30 and 27

(212 mg, 7%). [α]$^2_{D}$ = 37.7 (c = 1.0, CHCl$_3$).1H NMR (500 MHz, CHLOROFORM-d)

δ ppm 1.36 (3 H, s, C-1'), 1.94 (3 H, s, 1 x OCOCH$_3$), 2.00 (3 H, s, 1 x OCOCH$_3$), 2.01 (3 H, s, 1 x OCOCH$_3$), 3.35 (1 H, d, $J_{3',4'} = 9.5$ Hz, H-3'), 3.46 (1 H, br. s., H-2), 3.62 (2 H, adt, $J_{4',5} = 10.7$ Hz , $J_{5',6a} = J_{5,6b} = 1.1$ Hz, H-5, H-7b'), 3.71 (2 H, at, $J_{4',5} = J_{4',5} = 9.8$ Hz, H-5'), 3.74 (1 H, dd, $J_{6a,7a} = 10.7$ Hz, $J_{6',7a} = 3.2$ Hz, H-7a'), 3.99 (1 H, at, $J_{3',4'} = J_{4',5} = 9.5$ Hz, H-4'), 4.05 (1 H, dd, $J_{6a,6b} = 12.3$ Hz, $J_{6b,6a} = 2.2$ Hz, H-6b), 4.12 (1 H, dd, $J_{6a,6b} = 12.0$ Hz, $J_{5,6a} = 4.7$ Hz, H-6a), 4.17 (1 H, ddd, $J_{5,6} = 10.7$ Hz, $J_{6,7a} = 3.3$ Hz, $J_{6,7b} = 2.0$ Hz, H-6'), 4.49 (1 H, d, $J = 12.3$ Hz, 1 x OCH$_2$Ph), 4.56 (1 H, d, $J = 10.7$ Hz, 1 x OCH$_2$Ph), 4.60 (1 H, d, $J = 10.7$ Hz, 1 x OCH$_2$Ph), 4.61 (1 H, d, $J = 12.3$ Hz, 1 x OCH$_2$Ph), 4.77 - 4.85 (3 H, m, 1 x OCH$_2$Ph Cbz, 2 x OCH$_2$Ph), 4.88 (2 H, d, $J = 11.0$ Hz, 1 x OCH$_2$Ph), 4.95 (1 H, at, $J_{3',4'} = J_{4',5} = 9.8$ Hz, H-4), 5.06 - 5.18
(2 H, m, H-1, 1 x OCH₂Ph Cbz), 5.46 (1 H, at, J₂,₃ = J₃,₄ = 9.6 Hz H-3), 7.14 - 7.37 (35 H, m, Ar-H); ¹³C NMR (126MHz, CHLOROFORM-d) δ ppm 20.6, 20.7, 21.0 (3 x OCOCH₃), 22.1 (CH₃), 56.5 (C-2), 62.4 (C-6), 66.9 (OCH₂Ph Cbz), 68.4 (C-4), 68.8 (C-7), 71.85 (C-3), 72.0 (C-5), 72.3 (C-6), 73.5 (OCH₂Ph), 74.9 (OCH₂Ph), 75.4 (OCH₂Ph), 75.8(OCH₂Ph), 78.2 (C-5'), 82.8 (C-4'), 84.7 (C-3'), 94.6 (C-1), 102.3 (C-2'), 127.5, 127.6, 127.6, 127.7, 127.8, 127.9, 128.0, 128.1, 128.3, 128.4, 128.5 (5 x OCH₂Ph), 136.2, 137.9, 138.2, 138.3, 138.7 (5x 1C. 5 x OCH₂Ph), 155.5 (1 x C=0 Cbz), 169.6, 170.4, 170.6 (3 x C=0); IR (thin film): v = 3356.2 (Br. Amide), 3031.3, 2939.0 (C=CH), 1747.9 (C=0), 1586.5, 1454.1, 1367.1, 1230.5, 1043.1, 739.3; MS m/z (ESI⁺) 993.4 (M+ NH₄⁺); HRMS (ESI⁺) calcd. for C₅₅H₆₆NO₁₅ (M+Na⁺): 998.3905. Found: 998.3905

l-Deoxy-a-D-gluco-hept-2-ulopyranosyl-(2→l)-2-amino-2-deoxy-a-D-glucopyranoside (7)

43 (578 mg, 0.59 mmol, 1 eq) was dissolved in anhydrous methanol (15 mL). To this was added sodium methoxide (25 mg, 0.46 mmol, 0.94 eq) and reaction was stirred for 1 hour, upon which time full conversion to product was detected by TLC (ethyl acetate) (Rᵋ 0.75) and disappearance of starting sugar (Rᵋ 1). Reaction was neutralized with DOWEX 50WX8 (H⁺ form) cation exchange resin (ca 50 mg). DOWEX was removed by filtration and reaction was concentrated under reduced pressure to yield the deacetylated product (507 mg, 100%). This product was split into two portions and each portion was dissolved in 20 mL (1:1 trifluoroethanol/water) with formic acid (50 µL) and cycled through the Thales Nano H Cube® over a Pd/C cartridge at 70 bar for 10 hours. Upon completion product was detected by TLC (1:2:2 water/isopropanol/ethyl acetate) (Rᵋ 0.05) with complete disappearance of starting sugar (RF 1). Reactions were concentrated under reduced pressure, redissolved in water and lyophilized to yield the desired product as a brownish, amorphous solid as the formate salt. Amine was further purified by a 10 mL column of DOWEX 50WX8 (H⁺ form) cation exchange resin. Amine was loaded onto resin, washed with water (20
ml), 0.1% NH₄OH (20 ml) and eluted with 5% NH₄OH (20 ml) to yield the desired product as a white amorphous solid (221 mg, 93%).

\[
\left[\alpha\right]_{D}^{25} = 83.8 \text{ (c = 0.21, MeOH)}; \ \text{H} \ \text{NMR (500 MHz, DEUTERIUM OXIDE) } \delta \text{ ppm 1.48 (3 H, s, C-1'), 2.74 (1 H, d, } J = 10.4 \text{ Hz, H-2)}, 3.23 \text{ (1 H, d, } J_{3,4} = 9.7 \text{ Hz, H-3')}, 3.35 \text{ (2 H, atd, } J = 9.6, 5.7 \text{ Hz, H-5, H-6')}, 3.60 - 3.83 \text{ (8 H, m, H-7a', H-7b', H-6a, H-6b, H-4', H-5', H-3, H-4), 5.24 \text{ (1 H, d, } J_{1,2} = 3.2 \text{ Hz, H-1)}}; \ \text{\^{13}C} \ \text{NMR (126 MHz, DEUTERIUM OXIDE) } \delta \text{ ppm 22.9 (C-1'), 55.5 (C-2), 60.5 (C-6), 60.6 (C-7'), 69.7 (C-5 or C-6'), 69.8 (C-5 or C-6'), 72.1 (C-4), 72.6 (C-4' or C-5'), 72.7 (C-4' or C-5'), 73.5 (C-3) 76.4 (C-3'), 91.95 (C-1), 101.3 (C-2'); MS } m/z \text{ (EST) 378.1 (M+Na+); HRMS (EST) calcd. for } C_{37}H_{25}NO_{10}(M+Na+) 378.1371 \text{ Found: 378.1361.}

\text{1-Deoxy-}\alpha\text{-D-gluco-hept-2-ulopyranosyl-(2→1)-2-N-fluorescein-2-deoxy-}\alpha\text{-D-glucopyranoside (9)}

7 (11 mg, 0.03 mmol, 1 eq) and fluorescein isothiocyanate (17 mg, 0.044 mmol, 1.4 eq) were dissolved in 75 mM NaHCO₃ buffer at pH 9 (1 ml) with acetonitrile (0.5 ml). Reaction was heated to 50 °C for 2 upon which time product (Rₜ 0.3) was detected by TLC (1:2:2 water/isopropanol/ethyl acetate) with near complete disappearance of fluorescein starting material (Rₜ 0.8) and starting amine (Rₜ 0.05). Reaction mixture was purified by HPLC with a Phenomenex Synergi Hydro C18 column (150 mm x 21.2 mm, 4 μm) and a acetonitrile gradient with 1% aqueous TFA, as shown in Figure 10. Lyophilization yielded the desired product as a yellow solid (16 mg, 72 %). \[\left[\alpha\right]_{D}^{25} = 72.2 \text{ (c = 0.18, MeOH)}; \ \text{H} \ \text{NMR (500 MHz, DEUTERIUM OXIDE) } \delta \text{ ppm 1.48 (3 H, s, C-1'), 3.26 (1 H, d, } J_{3,4} = 9.8 \text{ Hz, H-3')}, 3.49 (3 H, m,
H4’, H-5’, H-4), 3.74 (6 H, m, H5, H-6’, H-6a, H-6b, H-7a’, H-7b’), 4.00 (1 H, at, $J_{23} = J_{34} = 9.8$ Hz, H-3), 4.41 (1 H, dd, $J_{23} = 10.9$ Hz, $J_{12} = 2.9$ Hz, H-2), 5.59 (1 H, d, $J_{12} = 3.6$ Hz, H-1). 6.84 (4 H, t, $J = 0.9$ Hz), 7.12 - 7.18 (3 H, m), 7.68 (1 H, dt, $J = 7.7, J = 0.9$ Hz), 8.00 (1 H, d, $J=1.0$ Hz); 1H NMR (126 MHz, DEUTERIUM OXIDE) δ ppm 22.79 (C-1’), 58.8 (C-2), 60.0 (C-7’), 60.56 (C-6), 68.9 (C-4), 70.4 (C-3, C-4’), 71.9 (C-6’), 72.8 (C-5), 72.8 (C-5’), 76.3 (C-3’), 89.6 (C-1), 101.5 (C-2’), 102.5 (C-isothiourea), 113.9, 115.1, 117.1, 117.4, 128.3, 130.2, 131.4, 140.4, 156.2, 162.8, 163.1, 166.0, 170.2, 181.6; MS m/z (ESI⁺) 743.2 (M-H); HRMS (ESI⁺) calcd. for C$_{34}$H$_{36}$NOi$_5$S (M-H) 743.1758 Found: 743.1754.

Scheme SI1. Reagents and conditions (a) 4-fluoro-benzaldehyde, MeOH, RT, 10 min. (b) sodium borohydride, MeOH, RT, 10 min.

l-Deoxy-a-D-gluco-hept-2-ulopyranosyl-(2→l)-2-N-parafluorobenzoyl-2-deoxy-a-D-glucopyranoside trifluoroacetic acid salt (8)

7 (11 mg, 0.03 mmol, 1 eq) was dissolved in methanol (1 mL). 4-F-benzaldehyde (9.5 µL, 0.06 mmol, 2 eq) was added to the reaction. After 10 minutes, complete conversion to imine was detected by TLC (2:1 ethyl acetate/methanol) product (R_f 0.4). To this was added NaBH$_4$ (15.2 mg, 0.4 mmol, 13.1 eq) and
reaction was allowed to stir for a further 10 minutes, upon which time reductive
amination was detected by ESI mass spec as well as TLC (1:2:2
water/isopropanol/ethyl acetate) product (Rᵢ 0.3). Upon conversion, reaction was
purified by HPLC with a HPLC with a Phenomenex Synergi Hydro C18 column (150
mm x 21.2 mm, 4 µm) and an MeCN/H₂O gradient (5%/min) with 0.1% NH₄OH, as
shown in Figure 11. Lyophilization yielded the desired compound as an off-white
amorphous solid as the TFA salt. (8.4 mg, 59%).

\[\alpha \]D = 32.4 (c = 0.29, MeOH); H NMR (500 MHz, DEUTERIUM OXIDE) δ
ppm 1.47 (3 H, s, C-1'), 2.63 (1 H, dt, J₂,₃ = 10.4 Hz, J₁,₂ = 2.8 Hz, J₂,₅ = 2.8 Hz,
H-2), 3.22 (1 H, d, J₅,₄ = 9.8 Hz, H-3'), 3.29 (1 H, at, J₄,₅ = J₅,₆ = 9.5 Hz, H-5'), 3.36
(1 H, at, J₃,₄ = J₄,₅ = 9.6 Hz, H-4), 3.59 (1 H, dd, J₇₆,₇₅ = 12.3 Hz, J₆,₇₅ = 5.0 Hz, H-
7a'), 3.65 (1 H, dd, J₆₆,₆₈ = 12.3 Hz, J₅,₆₈ = 5.0 Hz, H-6a), 3.67 (1 H, dd, J₆₆,₆₈ = 12.6
Hz, J₅,₆₈ = 2.5 Hz, H-6b), 3.71 - 3.77 (3 H, m, H-7b', H-6', H-4'), 3.79 - 3.86 (3 H, m,
H-3, 2 x NCFbPh), 3.86 (1 H, ddd, J₄,₅ = 9.8 Hz, J₅,₆₈ = 4.4 Hz, J₅,₆₈ = 2.2 Hz, H-5),
5.36 (1 H, d, J₁,₂ = 2.8 Hz, H-l), 7.05 (2 H, at, Jortho-META = Jortho-META = 9.0 Hz, Ar-H ofb'),
7.30 (2 H, dd, Jortho-meta = 8.4 Hz, Jortho-meta = 5.8 Hz, Ar-H meta); 13C NMR (126 MHz,
DEUTERIUM OXIDE) δ ppm 22.5 (C-1'), 50.0 (NCH₂Ph-F), 60.3 (C-2), 60.6 (C-6),
60.7 (C-7'), 69.6 (C-4), 70.4 (C-5'), 71.8 (C-4'), 72.4 (C-3), 72.6 (C-6'), 72.7 (C-5),
76.5 (C-3'), 90.5 (C-1), 101.4 (C-2'), 115.1, 115.2, 115.3, 117.3, 117.5, 119.8, 129.7,
129.8 (Ar-C), 162.8, 162.9 (C=0, TFA); 19F NMR (1H) (377 MHz, CHLOROFORM-
de) δ ppm -75.6 (TFA), -116.3 (F-Benzyl); MS m/z (ESI⁺) 486.2 (M+Na⁺); HRMS
Scheme S12. (a) TBDPSCI, imidazole, RT, 24 h, 55% (b) BnBr, NaH, RT, 18 h. (c) TBAF, 60 °C, 3 hrs, yields for individual compounds based on (2:1) ratios of starting materials (d) Pyridine, hexanoyl chloride, RT, 30 mins, 91% (e) H2, Pd/C, ethanol, RT, 16 h, 55%.

6,6'-0-Di-tertbutyldiphenylsilyl-2,3,4,2',3',4'-hexa-0-benzyl- α,α'-D-trehalose (56)

To a stirred suspension of D-trehalose (2 g, 5.85 mmol, 1 eq) and imidazole (0.39 g, 5.29 mmol, 0.9 eq) in dry DMF (10 mL) was added tert-butyl diphenylchlorosilane (TBDPS-Cl) (3 mL, 11.5 mmol, 2.0 eq) at RT. After stirring for 36 hours, TLC (2:1 ethyl acetate/methanol), indicated the complete consumption of starting materials and the formation of the product (Rf 0.35) as well as the mono TBDPS-trehalose (Rf 0.2). The reaction mixture was concentrated in vacuo and purification attained via silica gel chromatography (2:1, ethyl acetate/isopropanol) to give the desired product as a mixture of mono and di-TBDPS protected compounds and a white solid. (2.3 g, 55%), which were used without further purification. This
mixture was dissolved in anhydrous DMF (25 mL), and sodium hydride (60% dispersed in mineral oil) (700 mg, 29.1 mmol) was added portionwise for a period of 10 min at 0 °C. Benzyl bromide (2 mL, 11.6 mmol, 6 eq) was then added dropwise and the mixture left to stir under an atmosphere of argon at room temperature. After an 18 h period, TLC (5:1 petrol/ethyl acetate) indicated the formation of product (Rf 0.9) with complete consumption of the starting material (Rf 0). The reaction mixture was quenched by the slow addition of methanol (150 mL) and stirred for 30 min, at which point the resulting solution was concentrated in vacuo. The residue was dissolved in DCM (800 mL), washed with water and brine, filtered and concentrated in vacuo. Purification by column column chromatography (petrol/ethyl acetate, 10:1) afforded 56 and 57 as a 2:1 mixture of products (by NMR), which were not fully separated (2.987 g, 41% over two steps) as a viscous clear oil. Further column chromatography yielded the titled compound (300 mg, 5% over two steps); [α]D25 + 23.6 (c = 1.0 in CHCl3); H NMR (400 MHz, CHLOROFORM-d): δ ppm 1.28 (18 H, s, 2 x C(CH3)3), 3.75 (2 H, dd, J2,3 = 9.8 Hz, J1,2 = 3.8 Hz, H-2, H-2'), 3.79 (2 H, dd, J6a,6b = 10.5 Hz, J5,6b = 1.8 Hz, H-6b, H-6b'), 3.92 (2 H, dd, J6a,6b = 10.6 Hz, J5,6a = 2.8 Hz, H-6a, H-6a'), 4.03 (2 H, at, J3,4 = J4,5 = 9.6 Hz, H-4, H-4'), 4.18 - 4.28 (4 H, m, H-5, H-5', H-3, H-3'), 4.72 (2 H, d, J = 11.8 Hz, 2 x OCH2Ph), 4.80 (2 H, d, J = 11.9 Hz, 2 x OCH2Ph), 4.89 (2 H, d, J = 10.9 Hz, 2 x OCH2Ph), 5.04 (2 H, d, J = 10.6 Hz, Hz, 2 x OCH2Ph), 5.10 (2 H, d, J = 10.6 Hz, 2 x OCH2Ph), 5.15 (2 H, d, J = 10.6 Hz, 2 x OCH2Ph), 5.39 (2 H, d, J1,2 = 3.5 Hz, H-1, H-1'), 7.13 - 7.63 (40 H, m, Ar-H) 7.79 - 7.93 (10 H, m, Ar-H); 13C NMR (101 MHz, CHLOROFORM-d): δ ppm 19.5 (6 C, s, 3 x C(CH3)3), 27.0 (2 C, s, 2 x C(CH3)3), 65.6 (2 C, C-6, C-6'), 71.7 (2 C, C-5, C-5'), 72.9 (2 C, OCH2Ph), 75.3 (2 C, OCH2Ph), 76.0 (2 C, OCH2Ph), 77.7 (2 C, C-4, C-4'), 80.3 (2 C, C-2, C-2'), 82.1 (2 C, C-3, C-3'), 94.2 (2 C, C-l, C-l'), 126.1, 127.0, 127.2, 127.4, 127.7, 127.7, 127.8, 127.9, 128.0, 128.1, 128.3, 128.3, 128.6, 128.9, 129.2, 129.8, 129.9, 133.5, 133.6, 133.7, 135.6, 135.8, (6 x OCH2Ph, 4 x OTBDPS), 137.9, 138.2, 138.4, 138.7, 138.9, (10 C, 6 x 1 C, OCH2Ph, 4 x 1 C, OTBDPS); IR (thin film): ν = 3069.3, 2930.1, 2856.3 (C=CH), 1537.3, 1427.6, (C=C), 1219.4, 1112.2, 1069.3, 1027.4, 824.0, 772.5 cm⁻¹ m/z (ES+) 1376.6 (M + NH4⁺). Isotopic distribution: Species observed (M+Na⁺), peaks observed 1381.59 (91.5%), 1382.59 (100%), 1383.59 (48.3%), 1384.59 (17.8%), 1385.60 (5.8%),
1386.59 (1.7%) peaks calculated 1381.62 (95.5%), 1382.62 (100%), 1383.62 (59.8%), 1384.62 (25.3%), 1385.63 (8.0%).

2,3,4,2',3',4'-Hexa-0-benzyl- α, α-D-trehalose (58)

The 2:1 mixture of 56 and 57 (1.0 lg, 0.83 mmol) was dissolved in DMF (10 mL) and to this was added TBAF dropwise (70% in H2O) (1 mL, 2.87 mmol, 3.5 eq). Reaction was stirred for 3 h at 60 °C. TLC (2:1 petrol/ethyl acetate) indicated products (Rf 0.4) and (Rf 0.05) and complete consumption of starting material (Rf 1.0). Crude product was washed with satd brine and NaHCO3, extracted into dichloromethane and concentrated in vacuo. Purification by column chromatography (2:1 petrol/ethyl acetate followed by 1:1 petrol/ethyl acetate and ethyl acetate) yielded 58 (202.5 mg, 36%, based on 2:1 ratio of starting material) as a clear oil and 59 (156 mg, 58% based on 2:1 ratio of starting material) and recovered starting material (130 mg, 7%). Combined yield of both products was 61%.

[8]15 + 88.1 (c = 1.0 in CHCl3) [Lit. [8]15 +104 (c = 1.6 in CHCl3)12; H NMR (400 MHz, CHLOROFORM-J) δ ppm 3.55 (2 H, dd, J2,5 = 9.8 Hz, J1,2 = 3.1 Hz, H-2, H-2'), 3.59-3.64 (6 H, m, H-6a, H-6b, H-6b'), 3.61 (2 H, at, J3,4 = J4,5 = 10.1 Hz, H-3, H-5'), 4.05 - 4.13 (4 H, m, H-3, H-3', H-5, H-5'), 4.67 (2 H, d, J = 10.9 Hz, 2 x OCH2Ph), 4.68 (2 H, d, J = 11.9 Hz, 2 x OCH2Ph), 4.73 (2 H, d, J = 11.9 Hz, 2 x OCH2Ph), 4.90 (2H, d, J =10.9 Hz, 2 x OCH2Ph), 4.91 (2 H, d, J =11.4 Hz, 2 x OCH2Ph), 5.02 (2 H, d, J =10.8 Hz, 2 x OCH2Ph), 5.16 (2 H, d, J =11.4 Hz, H-1, H-1'), 7.15 - 7.52 (30 H, m, Ar-H); 13C NMR (101 MHz, CHLOROFORM-J) δ ppm 61.4 (2 C, C-6, C-6'), 71.4 (2 C, C-5, C-5'), 72.9 (2 C, 2 x OCH2Ph), 75.0 (2 C, 2 x OCH2Ph), 75.6 (2 C, 2 x OCH2Ph), 76.7 (2 C, s, C-4, C-4'), 79.4 (2 C, C-2, C-2'), 81.6 (2 C, C-3, C-3'), 93.9 (2 C, C-1, C-1'), 123.8, 127.5, 127.6, 127.7, 127.9, 128.1, 128.4, 128.5 (6 x OCH2Ph), 138.0, 138.2, 138.7 (6 x 1 C, 6 x OCH2Ph); MS m/z (ESI+) 900.4 (M + NH4+)
6,6'-Dihexanoyl-0-2,3,4,2',3',4'-hexa-0-benzyl-a,a-D-trehalose (61)

58 (1 g, 1.13 mmol, 1 eq) was dissolved in anhydrous pyridine (2 mL) and to this was added hexanoyl chloride (0.5 mL, 3.8 mmol, 3.3 eq). Reaction was stirred for 30 min at RT upon which time TLC (2:1 petrol/ethyl acetate) indicated complete conversion from starting material (R_f 0.05) to product (R_f 0.9). Reaction was washed with satd. NaHCO_3 solution and concentrated in vacuo. Column chromatography (10:1 petrol/ethyl acetate, 1% triethylamine) yielded the desired product as a clear oil (1.12 g, 91%). [alpha]_D^23 + 75.6 (c = 0.39 in CHCl_3); \(\text{H NMR (400 MHz, CHLOROFORM-J)} \)

\delta ppm 0.86 (6H, t, J = 6.9 Hz, 2 x OCO(CH_2)_2CH_3), 1.23 - 1.29 (8 H, m, 2 x OCO(CH_2)_2(CH_2)_2CH_3), 1.54 - 1.65 (8 H, m, 2 x OCO(CH_2)_2(CH_2)_2CH_3), 3.54 (4 H, at, J_{6,6'} = J_{5,5'} = 9.6 Hz, H-4, H-4'), 3.57 (4 H, dd, J_{2,3} = 9.6 Hz, J_{1,2} = 3.5 Hz, H-2, H-2'), 4.06 (4 H, at, J_{2,3} = J_{3,4} = 9.3 Hz, H-3, H-3'), 12.3 Hz, J_{5,6a} = 2.0 Hz, H-6a, H-6a'), 4.16 (2 H, dd, J_{6a,6b} = 1.23 Hz, J_{5,6b} = 3.3 Hz H-6b, H-6b'), 4.24 (2 H, ddd, J_{5,5'} = 10.0 Hz, J_{5,6b} = 3.4 Hz, J_{6a,6b} = 2.0 Hz, H-5, H-5'), 4.53 (2 H, d, J = 10.6 Hz, OCH_2Ph), 4.69 (2 H, d, J = 12.1 Hz, OCH_2Ph), 4.73 (2 H, d, J = 11.9 Hz, OCH_2Ph), 4.88 (4 H, d, J = 10.6 Hz, OCH_2Ph), 4.88 (3 H, d, J = 10.9 Hz, OCH_2Ph), 5.02 (2 H, d, J = 10.6 Hz, OCH_2Ph), 5.18 (2 H, d, J_{1,2} = 3.5 Hz, H-1', H-1'), 7.04 - 7.51 (40 H, m, Ar-H); \(\text{^13C NMR (101 MHz, CHLOROFORM-J)} \)

\delta ppm 13.9 (2 C, OCO(CH_2)_2CH_3), 22.3 (2 C, OCO(CH_2)_2CH_2CH_3), 24.5 (2 C, OCO(CH_2)_2CH_2CH_2CH_3), 31.3 (2 C, OCOCH_2CH_2(CH_2)_2CH_3), 34.0 (2 C, OCOCH_2(CH_2)_2CH_3), 62.5 (2 C, C-6, C-6'), 69.1 (2 C, C-5, C-5'), 72.9 (2 C, OCH_2Ph), 75.2 (4 C, 2 x OCH_2Ph), 75.7 (2 C, OCH_2Ph), 77.4 (2 C, C-4, C-4'), 79.2 (2 C, C-2, C-2'), 81.6 (2 C, C-3, C-3'), 94.0 (2 C, C-1, C-1'), 127.5,
127.7, 127.8, 127.9, 128.1, 128.4, 128.4 (6 x OCH₂Ph); 137.8, 137.8, 138.5 (6 x C = 6 x OCH₂Ph); 173.5 (2 C, 2 x C=0); IR (thin film): ν = 3419 br (OH), 2956, 2925, 2854 (C=CH), 1733 (C=0), 1637, 1456 (C=C), 1219, 1177, 1150, 1078, 1053, 1026, 990, 772 cm⁻¹; MS m/z (ESI⁺) 1096.5 (M+NH₄⁺); Isotopic distribution: Species observed (M+Na⁺), peaks observed 1101.53 (100%), 1102.53 (72.8%), 1103.54 (28.8%), 1104.54 (8.1%), 1105.54 (1.8%), peaks calculated 1101.52 (100%), 1102.52 (74.4%), 1103.53 (30.0%), 1104.53 (8.3%), 1105.53 (1.9%), 1105.49 (1.4%).

6,6'-0-dihexanoyl -α,α-D-trehalose (60)

61 (474 mg, 0.44 mmol) was dissolved in 20 mL ethanol and the solvent was degassed under alternating reduced pressure and argon. 10% Pd/C (300 mg) was added to the solution, which was then activated through repeated vacuum, flush cycles with 2 hydrogen balloons. Reaction was stirred at RT for 16 h, upon which time ESI mass spec showed complete conversion to the desired product. TLC (2:1 ethyl acetate/methanol) indicated complete conversion from starting material (Rf 1) to product (Rf 0.6). Reaction was concentrated in vacuo to produce the desired product as a crystalline white solid (120.0 mg, 55%). M.p. = 157.7-159.0 °C; [α]D 10 = 152.3 (c = 0.13 in H₂O); H NMR (500 MHz, DEUTERIUM OXIDE) δ ppm 0.78 (6 H, t, J = 6.9 Hz, 2 x OCO(CH₂)₄CH₃), 1.11 - 1.29 (8 H, m, 2 x OCO(CH₂)₂(CH₂)₂CH₃), 1.53 (4 H, quin, J = 7.3 Hz, 2 x OCOCH₂(CH₂)₂(CH₂)CH₃), 2.33 (4 H, t, J = 7.3 Hz, 2 x OCOCH₂(CH₂)₂CH₃), 3.39 (2 H, at, J₆,₇ = J₄,₅ = 9.6 Hz H-4, H-4'), 3.54 (2 H, dd, J₂₂ = 9.8 Hz, J₈,₉ = 3.8 Hz, H-2, H-2'), 3.76 (2 H, at, J₂₂ = J₅,₆ = 9.5 Hz, H-3, H-3'), 3.92
(2 H, ddd, J_{4,5} = 10.1 Hz, J_{5,6a} = 5.0 Hz, J_{5,6b} = 2.2 Hz, H-5, H-5'), 4.21 (2 H, dd, J_{\alpha,\beta} = 12.3, J_{5,6a} = 5.4 Hz, H-6a), 4.33 (2 H, ddd, J_{6a,6b} = 12.3 Hz, J_{5,6b} 2.2 Hz, H-6b), 5.05 (2 H, d, J_{1,2} = 3.8 Hz, H-1, H-1'); 13C NMR (126 MHz, DEUTERIUM OXIDE) \delta ppm 13.1 (2 C, 2 x OCO(CH\textsubscript{2})\textsubscript{4}CH\textsubscript{3}), 21.6 (2 C, 2 x OCO(CH\textsubscript{2})\textsubscript{3}CH\textsubscript{2}CH\textsubscript{3}), 24.0 (2 C, 2 x OCO(CH\textsubscript{2})\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}), 30.5 (2 C, 2 x OCO CH\textsubscript{2}CH\textsubscript{2}(CH\textsubscript{2})\textsubscript{2}CH\textsubscript{3}), 33.8 (2 C, 2 x OCOCH\textsubscript{2}(CH\textsubscript{2})\textsubscript{4}CH\textsubscript{3}), 62.9 (2 C, C-6, C-6'), 69.7 (2 C, C-5, C-5'), 70.0 (2 C, C-4, C-4'), 70.92 (2 C, C-2, C-2'), 72.4 (2 C, C-3, C-3'), 93.3 (2 C, C-1, C-1'), 176.8 (2 C, 2 x C=O); MS m/z (ESI+) 561.3 (M+Na+); HRMS (ESI+) calcd. for C\textsubscript{24}H\textsubscript{12}O\textsubscript{13} (M+Na+): 561.2523. Found: 561.2513.

\textbf{Scheme S13.} Reagents and conditions. (a) TBDPSCI, imidazole, RT, 36 hrs (b) BnBr, NaH, RT, 24 hrs (c) acetyl chloride, anhydrous MeOH, RT, 48 hrs (d) DCM, pyridine, Hexanoyl chloride, RT, 16 hrs (e) Pd/C cartridge, H-CubeTM, 80 bar, 45 °C, 3 hrs

6-0-tertbutyldiphenylsilyl-2,3,4,2,3',4' 6-hepta-0-benzyl-\alpha,\alpha-D-trehalose (57)

D-trehalose (7.4 g, 21.75 mmol, 1 eq) was dissolved in anhydrous DMF (40 mL). To this was added tert-butyl diphenylchlorosilane (TBDPS-C1) (5 mL, 18 mmol,
0.9 eq) and imidazole (1.4 g, 21 mmol, 0.95 eq). Solution was stirred at RT under Ar atmosphere for 18 h. TLC (2:1 petrol/ethyl acetate) indicated primarily starting material (Rf 0.1) and a small amount of the mono-TBDPS-trehalose. Additional TBDPS-C1 was added (2.5 mL, 9 mmol, 0.45 eq) and reaction was left for a further 18 hours. NaH (8 g, 339 mmol, 15 eq) and benzyl bromide (25 mL, 145 mmol, 7 eq) were added in situ. Reaction was stirred for a further 24 hours under argon, until the desired product could be detected by TLC (5:1 petrol/ethyl acetate) (Rf 0.85). Column chromatography yielded the desired product as a slightly yellow oil. (4.83 g, 19% over two steps).

$\delta_{\mathrm{D}}^{13} + 16.13$ (c = 0.88 in CHCl$_3$); H NMR (400 MHz, CHLOROFORM-J) δ ppm 1.14 (9 H, s, 3 x C(CH$_3$)$_3$), 3.47 (1 H, dd, J$_{6,6b}$ = 10.2 Hz, J$_{5,6b}$ = 1.8 Hz, H-6b'), 3.60 (1 H, dd, J$_{6,6b}$ = 10.2 Hz, J$_{5,6a}$ = 2.7 Hz, H-6a'), 3.64 (1 H, dd, J$_{2,3}$ = 7.7 Hz, J$_{1,2}$ = 4.2 Hz, H-2), 3.67 (1 H, dd, J$_{2,3}$ = 7.8 Hz, J$_{1,2}$ = 3.8 Hz, H-2), 3.72 (1 H, dd, J$_{6a,6b}$ = 9.7 Hz, J$_{5,6a}$ = 3.7 Hz, H-6a), 3.78 (1 H, at, J$_{3,4}$ = J$_{4,5}$ = 9.4 Hz, H-4'), 3.87 (1 H, dd, J$_{6a,6b}$ = 10.4 Hz, J$_{5,6b}$ = 2.3 Hz, H-6b), 3.97 (1 H, at, J$_{3,4}$ = J$_{4,5}$ = 9.5 Hz, H-4), 4.13-4.17 (3 H, m, H-5, H-3, H-3'), 4.27 (1 H, ddd, J$_{4,5}$ = 10.0 Hz, J$_{5,6a}$ = 2.8, J$_{5,6b}$ = 2.7 Hz, H-5'), 4.47 (1 H, d, J = 11.9 Hz, 1 x OCH$_2$Ph), 4.52 (1 H, d, J = 10.6 Hz, 1 x OCH$_2$Ph), 4.57 (1 H, d, J = 12.6 Hz, 1 x OCH$_2$Ph), 4.58 (1 H, d, J = 12.1 Hz, 1 x OCH$_2$Ph), 4.87 (1 H, d, J = 12.1 Hz, 1 x OCH$_2$Ph), 4.90 (1 H, d, J = 11.1 Hz, 1 x OCH$_2$Ph), 4.94 (1 H, d, J = 9.3 Hz, 1 x OCH$_2$Ph), 4.96 (1 H, d, J = 11.6 Hz, 1 x OCH$_2$Ph), 4.99 (1 H, d, J = 9.6 Hz, 1 x OCH$_2$Ph), 5.01 (1 H, d, J = 9.6 Hz, 1 x OCH$_2$Ph), 5.04 (1 H, d, J = 12.2 Hz, 1 x OCH$_2$Ph), 5.07 (1 H, d, J = 11.0 Hz, 1 x OCH$_2$Ph), 5.09 (1 H, d, J = 10.6 Hz, 1 x OCH$_2$Ph), 5.28 (1 H, d, J$_{1,2}$ = 3.8 Hz, H-l'), 5.37 (1 H, d, J$_{1,2}$ = 3.8 Hz, H-l), 7.00 - 7.61 (45 H, m, Ar-H); 13C NMR (101 MHz, CHLOROFORM-d^5) δ ppm 20.7 (3 x C(CH$_3$)$_3$), 28.1 (1 x C(CH$_3$)$_3$), 62.2 (C-6), 68.2 (C-6'), 70.6 (C-5'), 71.69 (C-5), 72.8 (OCH$_2$Ph), 72.9 (OCH$_2$PH), 73.6 (OCH$_2$Ph), 75.1 (OCH$_2$Ph), 75.3 (OCH$_2$Ph), 75.7 (OCH$_2$Ph), 75.9 (OCH$_2$Ph), 77.70 (C-4 or C-4'), 77.7 (C-4 or C-4'), 79.5 (C-2'), 80.1 (C-2), 81.9 (C-3 or C-3'), 81.9 (C-3 or C-3'), 94.2 (2 C, C-l, C-l'), 126.0, 126.3, 126.4, 127.1, 127.2, 127.3, 127.4, 127.5, 127.6, 127.7, 127.8, 127.9, 128.0, 128.0, 128.1, 128.2, 128.4, 128.4, 128.5, 128.5, 128.6, 128.9, 129.1, 129.5, 129.7 (7 x OCH$_2$Ph), 138.0, 138.4, 138.5, 138.6, 138.9, 139.0, 139.6 (7 x 1 C, 7 x OCH$_2$Ph); IR (thin film): v = 2925, 2875 (C=CH), 1454, 1444 (C=C), 698 cm$^{-1}$; MS m/z (ESI$^+$) 1228.6 (M+NH$_4^+$); Isotopic distribution: Species observed...
(M+Na\(^+\)) peaks observed 1233.53 (100%), 1234.53 (86.6%), 1235.53 (43.1%), 1236.53 (14.5%), 1237.53 (4.0%), 1238.54 (1.1%) peaks calculated 1233.55 (100.0%), 1234.55 (89.7%), 1235.55 (45.2%), 1236.56 (16.0%), 1237.56 (4.2%), 1238.56 (0.6%)

2,3,4,6,2',3',4'-hepta-O-benzyl-\(\alpha\)\(\alpha\) -D-trehalose (59)

\[
\text{HO} \quad \text{O} \quad \text{Bn} \\
\text{Bn} \quad \text{O} \quad \text{Bn} \\
\text{O} \quad \text{Bn} \quad \text{O} \\
\text{O} \quad \text{Bn} \quad \text{O}
\]

57 (4 g, 3.3 mmol, 1 eq) was dried under reduced pressure for 1 hour and dissolved in anhydrous methanol (20 mL). To this was added acetyl chloride (5 ml), generating acetic acid in situ. Reaction was stirred in acid for 48 hours, upon which time TLC (2:1 petrol/ethyl acetate) indicated product (R\(_f\) 0.4) and complete consumption of starting material (R\(_f\) 0.95). Reaction was quenched with water and poured into a satd. NaHC03 satn. When gas ceased to evolve, reaction was extracted into DCM and concentrated in vacuo. Column chromatography (10: 1 to 1:1 petrol/ethyl acetate) yielded the desired product (1.1 g, 30%, 9% over three steps).

\[\delta_{29}^{55}\] ppm CHCl\(_3\); H NMR (500 MHz, CHLOROFORM-J) \(\delta\) ppm 3.38 (1 H, dd, J\(_{6a,6b}\) = 10.7, J\(_{5,6a}\) = 2.2 Hz, H-6b), 3.51 (1 H, dd, J\(_{6a,6b}\) = 10.4 Hz, J\(_{5,6a}\) = 3.2 Hz, H-6a), 3.52 (1 H, dd, J\(_{6a,6b}\) = 9.6 Hz, J\(_{5,6a}\) = 3.6 Hz, H-6a'), 3.57 - 3.61 (4 H, m, H-2', H-2, H-4, H-6b'), 3.68 (1 H, at, J\(_{3,4}\) = J\(_{4,5}\) = 9.6 Hz, H-4'), 4.03 (1 H, at, J\(_{2,3}\) = J\(_{3,4}\) = 9.5 Hz, H-3), 4.06 (1 H, at, J\(_{2,3}\) = J\(_{3,4}\) = 9.3 Hz, H-3'), 4.05 - 4.09 (1 H, m, H-5'), 4.15 (1 H, ddd, J\(_{4,3}\) = 10.0 Hz, J\(_{5,6a}\) = 3.5 Hz, J\(_{5,6b}\) = 2.4 Hz, H-5), 4.38 (1 H, d, J = 12.0 Hz, 1 x OCH\(_2\)Ph), 4.46 (1 H, d, J = 11.0 Hz, 1 x OCH\(_2\)Ph), 4.54 (1 H, d, J = 12.0 Hz, 1 x OCH\(_2\)Ph), 4.65 (1 H, d, J = 11.0 Hz, 1 x OCH\(_2\)Ph), 4.69 (2 H, d, J = 10.0 Hz, 2 x OCH\(_2\)Ph), 4.71 (2 H, d, J = 2 x OCH\(_2\)Ph), 4.82 (1 H, d, J = 10.7 Hz, 1 x OCH\(_2\)Ph), 4.87 (1 H, d, J = 11.0 Hz, 1 x OCH\(_2\)Ph), 4.88 (2 H, d, J = 10.7 Hz, 2 x OCH\(_2\)Ph), 4.99 (1 H, d, J = 11.0 Hz, 1 x OCH\(_2\)Ph), 5.00 (1 H, d, J = 10.7 Hz, 1 x OCH\(_2\)Ph), 5.18 (1 H, d, J\(_{1,2}\) = 3.5 Hz, H-l), 5.19 (1 H, d, J\(_{1,2}\) = 3.8 Hz, H-l'), 7.25-2.40 (35 H, m, Ar-H); \(\text{^13C}\) NMR (126 MHz, CHLOROFORM-A) \(\delta\) ppm 61.5 (C-6), 68.12 (C-5'), 70.6 (C-5), 71.1 (C-5'), 72.1 (OCH\(_2\)Ph), 72.8 (OCH\(_2\)Ph), 72.8 (OCH\(_2\)Ph), 73.5
(OCH$_2$Ph), 75.0 (OCH$_2$Ph), 75.5 (2 C, 2 x OCH$_2$Ph), 77.0 (C-4'), 77.6 (C-4), 79.3 (C-2 or C-2'), 79.5 (C-2 or C-2'), 81.5 (C-3), 81.7 (C-3'), 94.1 (C-1 or C-1'), 94.3 (C-1 or C-1'), 127.4, 127.5, 127.6, 127.7, 127.8, 127.9, 128.1, 128.3, 128.3, 128.4, 128.4 (7 x OCH$_2$Ph), 134.6, 137.7, 138.1, 138.1, 138.3, 138.7, 138.8 (7 x 1 C, 7 x OCH$_2$Ph). MS m/z (ES$^+$) 990.4(M + NH$_4^+$)

6-0-Hexanoyl-2,3,4,2',3',4,6'-hepta-0-benzyl-a,a-D-trehalose (62)

59 (116 mg, 0.119 mmol, 1 eq) was dissolved in anhydrous DCM (10 mL) with anhydrous pyridine (2 mL) and to this was added hexanoyl chloride (0.02 mL, 0.15 mmol, 1.25 eq), which, upon addition caused the reaction mixture to yellow. Reaction was stirred for 16 h at RT upon which time TLC (2:1 petrol/ethyl acetate) indicated incomplete conversion from starting material (R$_f$ 0.1) to product (R$_f$ 0.6). An additional portion of hexanoyl chloride (0.05 mL, 0.375 mmol, 3.125 eq) was added and reaction was left at RT for an additional 24 h. Reaction was washed with satd NaHC0$_3$ solution and concentrated in vacuo. Column chromatography yielded the desired product as a clear oil (52.1 mg, 40%).

[a]$_D^{25}$ + 30.4 (c = 0.56 in CHC1$_3$); H NMR (500 MHz, CHLOROFORM-J) δ ppm 0.86 (3 H, t, J = 6.8 Hz, OCO(CH$_2$)$_4$CH$_3$), 1.20 - 1.30 (2 H, m OCO(CH$_2$)$_3$CH$_2$CH$_3$), 2.16 - 2.31 (4 H, m, OCOCH$_2$(CH$_2$)$_2$CH$_2$CH$_3$), 2.24 (2 H, t, J = 7.3 Hz, OCO OCOCH$_2$(CH$_2$)$_3$CH$_3$), 3.38 (1 H, dd, J$_{6a,6b}$ = 10.7 Hz, J$_{5,6b}$ = 1.6 Hz, H-6b), 3.52 (1 H, dd, J$_{6a,6b}$ = 10.8 Hz, J$_{5,6a}$ = 3.7 Hz, H-6a), 3.53 (1 H, at, J$_{3,4}$ = J$_{4,5}$ = 9.2 Hz, H-4), 3.56 (1 H, dd, J$_{2,3}$ = 9.4 Hz, J$_{1,2}$ = 3.5 Hz, H-2), 3.60 (1 H, dd, J$_{2,3}$ = 9.8 Hz, J$_{1,2}$ = 3.8 Hz, H-2'), 3.68 (1 H, at, J$_{2,3}$ = J$_{3,4}$ = 9.2 Hz, H-3), 4.06 (1 H, at, J$_{2,3}$ = J$_{3,4}$ = 8.8 Hz, H-3'), 4.06 (1 H, dd, J$_{6a,6b}$ = 10.8 Hz, J$_{5,6b}$ = 2.2 Hz, H-6b), 4.11 - 4.18 (2 H, m, H-6a', H-5'), 4.25 (1 H, ddd, J$_{5,6b}$ = 9.9 Hz, J$_{5,6b}$ = 3.4 Hz, J$_{5,6a}$ = 2.2 Hz, H-5), 4.38 (1 H, d, J = 12.3 Hz, 1 x OCH$_2$Ph), 4.46
(1 H, d, $J = 10.7$ Hz, 1 x OCH$_2$Ph), 4.52 (1 H, d, $J = 11.0$ Hz, 1 x OCH$_2$Ph), 4.54 (1 H, d, $J = 12.0$ Hz, 1 x OCH$_2$Ph), 4.68 (2 H, d, $J = 11.7$ Hz, 2 x OCH$_2$Ph), 4.72 (2 H, d, $J = 12.0$ Hz, 2 x OCH$_2$Ph), 4.81 (1 H, d, $J = 10.7$ Hz 1 x OCH$_2$Ph), 4.86 (3 H, d, $J = 11.1$ Hz, 3 x OCH$_2$Ph), 4.99 (1 H, d, $J = 10.8$ Hz, 1 x OCH$_2$Ph), 5.01 (1 H, d, $J = 10.7$ Hz, 1 x OCH$_2$Ph), 5.20 (1 H, d, $J = 3.3$ Hz, H-l), 5.21 (1 H, d, $J = 3.2$ Hz, H-l'), 7.21 - 7.35 (35 H, m, Ar-H); 13C NMR (126 MHz, CHLOROFORM-d) δ ppm 13.9 (OCO(CH$_2$)$_4$CH$_3$), 22.2 (1 C, 1 x OCO(CH$_2$)$_3$CH$_2$CH$_3$), 24.5 (1 C, 1 x OCO(CH$_2$)$_2$CH$_2$CH$_2$CH$_3$), 31.2 (1 C, OCO(CH$_2$)$_2$CH$_2$CH$_2$CH$_3$), 62.5 (C-6'), 68.1 (C-6), 69.0 (C-5), 70.7 (C-5'), 72.7 (C-6'), 72.9 (OCH$_2$Ph), 73.5 (OCH$_2$Ph), 75.1 (OCH$_2$Ph), 75.6 (OCH$_2$Ph), 75.7 (OCH$_2$Ph), 77.5 (C-4 or C-4'), 77.6 (C-4 or C-4'), 79.2 (C-2 or C-2'), 79.4 (C-2 or C-2'), 81.6 (C-3 or C-3'), 81.8 (C-3 or C-3'), 94.0 (C-l or C-l'), 94.4 (C-l or C-l'), 127.3, 127.5, 127.5, 127.6, 127.6, 127.7, 127.8, 127.9, 127.9, 128.1, 128.3, 128.4, 128.4, 128.5 (7 x OCH$_2$Ph), 137.7, 137.9 (2 C), 138.0, 138.3, 138.6, 138.8, 173.5 (C=0); IR (thin film): v = 3063, 3031, 2925, 2855 (C=CH), 1735 (C=0), 1586, 1496, 1454, 1360 (C=C), 1262, 1219, 1156, 1100, 772 cm$^{-1}$; MS m/z (ESI$^+$) 1093.4 (M+Na$^+$); Isotopic distribution: species observed (M+Na), peaks observed 1093.47 (100%), 1094.48 (73.7 %) 1095.49 (27.4 %), 1096.50 (6.4%) peaks calculated 1093.50 (100%), 1094.52 (73.8%), 1096.51 (8.1%)

6-O-Hexanoyl-α,α-D-trehalose (63)

62 (6.2 mg, 0.019 mmol) was dissolved in 20 mL ethanol and circulated through a Pd/C cartridge in the H-Cube™ at 80 bar, 45 °C and 1 mL/min. Reaction was monitored by mass spec and after 3 hours TLC (2:1 ethyl acetate/methanol) indicated complete conversion from starting material (R$_f$ 1) to product (R$_f$ 0.4). Reaction was
concentrated in vacuo and purified via column chromatography (3:1 ethyl acetate : methanol) to produce 63 as a white crystalline solid (2.6 mg, 93%). M.p. = 135-137 °C;

[off = 111.3 (c = 1.0, MeOH). H NMR (500 MHz, DEUTERIUM OXIDE) δ ppm 0.79 (3 H, t, J = 6.9 Hz, OCO(CH$_2$)$_2$CH$_2$), 1.17 - 1.26 (4 H, m, OCOCH$_2$CH$_2$(CH$_2$)$_2$CH$_3$), 1.54 (2 H, quin, J = 7.3 Hz, OCOCH$_2$CH$_2$(CH$_2$)$_2$CH$_3$), 2.35 (2 H, t, J = 7.4 Hz, OCOCH$_2$CH$_2$(CH$_2$)$_2$CH$_3$), 3.36 (1 H, at, J$_{3,4}$ = J$_{6,5}$ = 9.5 Hz, H-4), 3.41 (1 H, at, J$_{3,4}$ = J$_{6,5}$ = 9.6 Hz, H-5'), 3.55 (1 H, dd, J$_{2,3}$ = 9.9 Hz, J$_{1,2}$ = 3.8 Hz, H-2), 3.57 (1 H, dd, J$_{2,3}$ = 10.1 Hz, J$_{1,2}$ = 3.8 Hz, H-2'), 3.66 - 3.82 (5 H, m, H-6a, H-6b, H-5, H-3, H-3'), 3.94 (2 H, dddd, J$_{4,5}$ = 10.2 Hz, J$_{5,6a}$ = 4.8 Hz, J$_{5,6b}$ = 2.0 Hz, H-5'), 4.22 (2 H, dd, J$_{6a,6b}$ = 12.3 Hz, J$_{5,6a}$ = 5.0 Hz, H-6a'), 4.35 (2 H, dddd, J$_{6a,6b}$ = 12.3 Hz, J$_{8,6b}$ = 2.2 Hz, H-6b'), 5.07 (1 H, d, J$_{1,2}$ = 3.9 Hz, H-1), 5.10 (1 H, d, J$_{1,2}$ = 3.8 Hz, H-1'); 13C NMR (126 MHz, DEUTERIUM OXIDE) δ ppm 13.1 (1 C, OCO(CH$_2$)$_2$CH$_3$), 21.6 (1 C, OCO(CH$_2$)$_3$CH$_2$CH$_3$), 30.5 (1 C, OCO(CH$_2$)$_2$CH$_2$(CH$_2$)$_2$CH$_3$), 33.7 (1 C, OCO(CH$_2$)$_3$(CH$_2$)$_2$CH$_3$), 60.5 (C-6), 62.9 (C-6'), 69.6 (C-5'), 69.6 (C-4 or C-4'), 69.9 (1 C-4 or C-4'), 70.9 (C-2 or C-2'), 70.9 (C-2 or C-2'), 72.2 (C-5), 72.3 (C-3 or C-3'), 72.6 (C-3 or C-3'), 93.2 (C-1'), 93.4 (C-1), 176.8 (C=0); MS m/z (EST) 475.2 (M+Cl); HRMS (EST) calcd. for C$_8$H$_{32}$O$_x$Na$_2$ (M+Na$^+$): 463.1791. Found: 463.1793.

Trehalose Quantum Dots

Scheme S14. 75mM NaHCO$_3$ pH9, RT, 14 h.
l-Deoxy-α-D-gluco-hept-2-ulopyranosyl 2-N-isothiocyanate-2-deoxy-α-D-glucopyranoside (64)

7 (2.5 mg, 0.007 mmol, 1 eq) was dissolved in 75 mM NaHCO₃ buffer pH 9 (200 µl). To this was added thiophosgene as a solution (20 µl of thiophosgene into 1 mL of chloroform). 100 µl of thiophosgene solution was added to reaction (3 mg, 0.26, 4.2 eq). The resulting biphasic mixture was stirred at room temperature for 3 hours upon which TLC (5 ethanol : 3 NH₄OH : 1 water) showed complete consumption of starting material (Rₜ 0.2) and conversion to a single product (Rₜ 0.65).

Excess thiophosgene and chloroform were removed in vacuo and crude product was used without further purification.

Trehalose Quantum Dots (66)

An 8 µM solution of CdSe-ZnS (50 µl) core-shell quantum dots (emission λₘₐₓ 655nm) in borate buffer at pH 8 (Invitrogen) was buffer exchanged into water by repeated (x5) centrifugal filtration through a 10 kDa cutoff spin filter. Dots were then resuspended in water. 50 µl of this 8 µM quantum dot solution was then added to the solution of 64, and the total volume made up to 1.0 mL with 75 mM NaHCO₃ buffer.
at pH 9.0 (pH electrode). Reaction mixture was shaken at 4 °C for 14 hours. Excess sugar and salt was removed from the reaction mixture by size exclusion chromatography (PD 10 column, Amersham) with water as the mobile phase. The quantum dot solution was concentrated to 1 mL, using 10 Kda spin filter, and the concentration determined using previously reported procedures to be 0.44 µM (ε_{50} = 3880000 M⁻¹cm⁻¹). The modification of the quantum dots was confirmed using an agarose gel, as shown in Figure 12, which shows a standardised curve for determining trehalose concentration on modified quantum dots using the phenol-sulphuric acid method. Shown is the absorbance at 490nm after reaction with phenol and sulphuric acid against standardized concentrations of trehalose.

The carbohydrate loading on the quantum dots was determined using the phenol sulphuric acid method. An aliquot of the quantum dot solution (50 µl) was treated with concentrated sulphuric acid (75 µl) and aqueous phenol (5% w/w, 10 µl) and heated to 90 °C. After 5 minutes the sample was cooled to room temperature and A_{490} measured, referenced to a solution of carbohydrate modified quantum dots and acid. The concentration of trehalose was determined by comparison to a standardised curve (Figure 13). The carbohydrate content per dot was calculated from the ratio of trehalose concentration to the concentration of ZnS-CdSe quantum dots and was found to be ~110 sugars/dot.

Synthesis of Trehalose-6-Phosphates

![Synthesis of Trehalose-6-Phosphates](image)

Scheme S15. Reagents and conditions. (a) diphenylchlorophosphate, pyridine, RT, 18 h. (b) H₂, Pt0₂, ethanol, acetic acid, RT, 5 h. (c) ammonium hydroxide (28% in H₂O), RT, 18 h.
6-O-(diphenoxyphosphoryl)-D-trehalose (67)

To a suspension of D-trehalose (7.50 g, 21.9 mmol, 1 eq) in anhydrous pyridine (100 mL) was added dropwise diphenylchlorophosphate (4.54 mL, 21.9 mmol, 1 eq). TLC (1:4:4, water/isopropanol/ethyl acetate) after 18 hours showed the presence of two products (desired product Rf 0.7). The reaction was quenched with methanol (10 mL). The reaction mixture was concentrated in vacuo, and the residue co-evaporated with toluene to remove pyridine. Silica gel chromatography (1:3:13 water/isopropanol/ethyl acetate) allowed separation of the two products. Lyophilization yielded the desired compound (3.02 g, 24%) as a white amorphous solid.

[a]$_{D}^{2} +63.9$ (c = 1.0 in MeOH); H NMR (500 MHz, METHANOL-d) δ ppm 3.34 (1 H, at, $J_{3,4} = 9.1$ Hz, $J_{5,6} = 9.1$ Hz, H-4'), 3.38 (1 H, at, $J_{3,4} = J_{5,6} = 9.1$ Hz, H-4'), 3.43 (1 H, dd, $J_{2,3} = 9.8$ Hz, $J_{1,2} = 3.5$ Hz, H-2'), 3.48 (1 H, dd, $J_{2,3} = 9.8$ Hz, $J_{1,2} = 3.5$ Hz, H-2'), 3.70 (1 H, dd, $J_{6a,b} = 12.0$ Hz, $J_{5a} = 5.4$ Hz, H-6a'), 3.80 (1 H, at, $J_{2,3} = J_{3,4} = 9.5$ Hz, H-3'), 3.81 (1 H, t, $J_{2,3} = J_{3,4} = 9.1$ Hz, H-3), 3.80-3.86 (2 H, m, H-6b', H-5'), 4.09 (1 H, dt, $J_{4,5} = 10.1$ Hz, $J_{5,6} = 2.1$ Hz, $J_{5,6} = 2.1$ Hz, H-5), 4.48 (1 H, ddd, $J_{6a} = 6.5$ Hz, $J_{5,6} = 7.1$ Hz, $J_{5,6} = 3.5$ Hz, H-6a'), 4.55 (1 H, ddd, $J_{6a} = 11.5$ Hz, $J_{6a} = 6.8$ Hz, $J_{5,6} = 1.9$ Hz, H-6b), 5.09 (1 H, d, $J_{1,2} = 3.8$ Hz, H-1', 5.10 (1 H, d, $J_{1,2} = 3.8$ Hz, H-1), 7.21-7.31 (3 H, m, Ar-H ortho, Ar-H para), 7.40-7.43 (2 H, m, Ar-H meta); 13C NMR (126 MHz, METHANOL-d) δ ppm 62.6 (C-6'), 69.8 (1 C, d, $J_{P,C} = 6.7$ Hz, C-6), 71.2 (C-4'), 71.9 (C-4), 72.0 (1 C, d, $J_{P,C} = 6.7$ Hz, C-5), 73.0 (C-5'), 73.2 (C-2'), 73.9 (C-2), 74.4 (C-3'), 74.6 (C-3), 95.2 (C-L), 95.3 (C-I), 121.4 (2 C, d, $J_{P,C} = 4.8$ Hz, Ar-Cortho), 126.8 (Ar-C para), 131.1 (Ar-C meta), 151.9 (1 C, d, $J_{P,C} = 7.6$ Hz, Ar-Cipso), 151.9 (1 C, d, $J_{P,C} = 7.6$ Hz, Ar-Cipso); 31P (1H) NMR (162 MHz, METHANOL-d) δ ppm -11.9; IR (KBr disc): ν = 1287 (p=0), 3271 br (OH) cm$^{-1}$; (ESI$^+$) m/z 596.74 (M+Na$^+$); HRMS (ESI$^+$) m/z calcd. for C$_{24}$H$_{32}$O$_{10}$P (M+Na$^+$): 596.1344. Found: 596.1357.
Trehalose-6-phosphate (15)²³

A suspension of 67 (50 mg, 0.072 mmol, 1 eq) and PtO₂ (5 mg, 0.02 mmol, 0.3 eq) in 75% aqueous ethanol (5 mL) with 0.5% glacial acetic acid (25 μL) was repeatedly degassed under high vacuum and the reaction vessel flushed with hydrogen. The reaction was maintained at RT with aggressive stirring under an atmospheric pressure of hydrogen for 5 hours after which TLC (1:4:4, water/isopropanol/ethyl acetate) showed the complete consumption of the starting material (R₁ 0.7) and the formation of a single product (R₁ 0). The reaction mixture was filtered through Celite® and the solvent was removed in vacuo. The crude solid was taken up in water (30 mL) and washed with ethyl acetate (2 x 20 mL). The aqueous layer was lyophilized and the compound purified using HPLC on an Applied Biosystems, Poros® HQ strongly basic anion exchange purification column (10 mm x 100 mm, 50 μηl). A gradient from 0 mM to 500 mM aqueous NH₄HCO₃ was used as the mobile phase at a flow rate of 20 mL/min and eluents were detected with an Evaporative Light Scattering (ELSD) detector, as shown in Figure 14. Fractions containing the product were pooled and repeated lyophilization to removed residual NH₄HCO₃ afforded the title compound as a white amorphous solid (28.6 mg, 94%>).

[a]⁰ + 150.3 (c = 1.0 in H₂O), [lit. [a]⁺|₁ + 151.2 (c = 0.8 in H₂O)]²³; H NMR (500 MHz, DEUTERIUM OXIDE) δ ppm 3.36 (1 H, at, J₃₄ = J₄₅ = 9.5 Hz, H-4'), 3.50 (1 H, at, J₃₄ = J₄₅ = 9.6 Hz, H-4), 3.56 (1 H, dd, J₂₃ =10.1 Hz, J₁₂ = 3.8 Hz, H-2), 3.59 (1 H, dd, J₂₃ = 9.8 Hz, J₁₂ = 3.8 Hz, H-2'), 3.67 (1 H, dd, J₅₆ = J₆₇ = 11.8 Hz, J₅₆ = 5.4 Hz, H-6a'), 3.71-3.83 (5 H, m, H-3, H-3', H-5', H-6b', H-5), 3.86 (1 H, ddd, J₆₇ = 12.1 Hz, J₅₆ = 5.4 Hz, J₅₆ = 4.1 Hz, H-6a), 3.94 (1 H, ddd, J₆₇ = 12.1 Hz, H-6b), 5.09 (1 H, d, J₃₄ = 4.1 Hz, H-1'), 5.12 (1 H, d, J₁₂ = 3.8 Hz, H-1); ¹³C NMR (126 MHz, DEUTERIUM OXIDE) δ ppm 60.5 (C-6'), 63.0 (d, J₅₆ = 4.8 Hz, C-6), 69.1 (C-4'), 69.7 (C-4), 70.9 (C-2), 71.1 (C-2'), 71.6 (1 C, d, J₅₆ = 6.7 Hz, C-5), 72.1 (C-5'), 72.2 (C-3), 72.4 (C-3'), 93.3 (C-1), 93.4 (C-1');
31P(1H) NMR (202 MHz, DEUTERIUM OXIDE) δ ppm 3.63; MS (EST) m/z 421.5 (M-H$^+$).

4.6-(monohydrogen)phosphoryl-D -trehalose (17)

A solution of 67 (30 mg, 0.05 mmol, 1 eq) and ammonium hydroxide (28% in H$_2$O, 30 μL, 0.2 mmol, 4 eq) in water (4 mL) was stirred at RT for 14 hours after which TLC (1:1:1, water/isopropanol/ethyl acetate) showed the formation of a single product (R$_f$ 0.3). The solvent and ammonium hydroxide were removed in vacuo. The crude solid was taken up in water (25 mL) and washed with DCM (3 x 10 mL). The aqueous layer was retained and the water removed under reduced pressure. The compounds were separated using silica gel chromatography (1 water : 2 isopropanol : 2 ethyl acetate). Lyophilization gave the title compound as an amorphous white solid (17 mg, 81%).

[a]$^0 + 52.6$ (c = 1.0 in H$_2$O); H NMR (500 MHz, DEUTERIUM OXIDE) δ ppm 3.37 (1 H, at, $J_{3d4} = J_{4p5} = 9.5$ Hz, H-4'), 3.56 (1 H, dd, $J_{2d3} = 10.1$ Hz, $J_{1d2} = 3.8$ Hz, H-2'), 3.67 (1 H, dd, $J_{2d3} = 9.2$ Hz, $J_{1d2} = 3.8$ Hz, H-2), 3.68 (1 H, at, $J_{6d6b} = J_{5b6} = 6.0$ Hz, H-6'b), 3.73-3.80 (3 H, m, H-3', H-5', H-6'a), 3.89 (1 H, ddd, $J_{4d5} = 9.5$ Hz, $J_{5,6ax} = 9.0$ Hz, $J_{5,6eq} = 0.9$ Hz, H-5), 3.92 (1 H, at, $J_{2d3} = J_{3d4} = 9.1$ Hz, H-3), 4.01 (1 H, td, $J_{5,6ax} = 8.4$ Hz, $J_{6ax6eq} = 8.4$ Hz, $J_{p6ax} = 1.7$ Hz, H-6ax), 4.02 (1 H, at, $J_{3d4} = J_{4p5} = 9.5$ Hz, H-4), 4.13 (1 H, ddd, $J_{p,6eq} = 22.3$ Hz, $J_{6ax6eq} = 8.4$ Hz, $J_{5b6eq} = 3.8$ Hz, H-6eq), 5.10 (1 H, d, $J_{1d2} = 3.8$ Hz, H-1'), 5.13 (1 H, d, $J_{1d2} = 4.1$ Hz, H-1); 13C NMR (126 MHz, DEUTERIUM OXIDE) δ ppm 60.4 (C-6'), 64.0 (d, $J_{p4} = 4.8$ Hz, C-4), 66.5 (d, $J_{p4} = 5.7$ Hz, C-6), 69.6 (C-4'), 70.4 (d, $J_{p3} = 8.6$ Hz, C-3), 70.8 (d, $J_{p2} = 1.9$Hz, C-2), 71.0 (C-2'), 72.2 (C-3'), 72.5 (C-5'), 78.2 (d, $J_{p5} = 4.8$ Hz, C-5), 93.7 (C-1'), 94.0 (C-1); 31P(1H) NMR (162 MHz, DEUTERIUM OXIDE) δ ppm -2.46; IR (KBr disc): v = 1139 (P=O), 3407 br (OH) cm$^{-1}$; MS (EST) m/z 403.5 (M-H$^+$); HRMS (EST) m/z calcd. for C$_2$H$_2$IO$_3$P (M-H$^+$): 403.0647, Found: 403.0649.
Scheme S16. Reagents and conditions. (a) dimethylchlorophosphate, pyridine, RT, 18 h (b) TMSBr, dioxane, RT, 18 h.

6-0-(dimethoxyphosphoryl)-D-trehalose (68)

To a suspension of D-trehalose (0.25 g, 0.73 mmol, 1 eq) in anhydrous pyridine (10 mL) was added dropwise dimethylchlorophosphate (79 µL, 0.73 mmol, 1 eq). TLC (1 water : 2 isopropanol : 4 ethyl acetate) after 18 hours showed the presence of several products (desired product Rf 0.12). The reaction was quenched with methanol (5 mL). The reaction mixture was concentrated in vacuo, and the residue co-evaporated with toluene to remove pyridine. Silica gel chromatography (1:2:4, water/isopropanol/ethyl acetate) allowed isolation of the desired product as a white amorphous solid (43 mg, 13%).

[a]⁺⁺⁺⁺ 83.3 (c = 1.0 in H₂O); \(\text{H NMR} \) (500 MHz, DEUTERIUM OXIDE) δ ppm 3.36 (1 H, at, \(J_{\text{p4}} = J_{\text{p5}} = 9.5 \text{ Hz, H-4'} \)), 3.43 (1 H, dd, \(J_{\text{p4}} = 10.1 \text{ Hz, J}_{\text{p5}} = 9.1 \text{ Hz, H-4} \)), 3.56 (1 H, dd, \(J_{\text{23}} = 10.4 \text{ Hz, J}_{1,2} = 3.8 \text{ Hz, H-2} \)), 3.57 (1 H, t, \(J_{\text{23}} = 10.4 \text{ Hz, H-2} \)), 3.67 (1 H, dd, \(J_{\text{6a,b}} = 11.5 \text{ Hz, J}_{\text{5a}} = 5.0 \text{ Hz, H-6a'} \)), 3.72 (1 H, m, H-3'), 3.75 (3 H, d, \(J_{\text{pH}} = 11.0 \text{ Hz, OMe} \)), 3.75-3.81 (3 H, m, H-3, H-5', H-6b'), 3.76 (3 H, d, \(J_{\text{pH}} = 11.0 \text{ Hz, OMe} \)), 3.91 (1 H, dt, \(J_{\text{p5}} = 10.1 \text{ Hz, J}_{\text{5a}} = J_{\text{5b}} = 2.6 \text{ Hz, H-5} \)), 4.25-4.29 (2 H, m, H-6a, H-6b), 5.10 (1 H, d, \(J_{\text{5a}} = J_{\text{5b}} = 3.8 \text{ Hz, H-5} \)), 5.13 (1 H, d, \(J_{\text{i2}} = 3.8 \text{ Hz, H-l} \)); \(\text{i}^3\text{C NMR} \) (126 MHz, DEUTERIUM OXIDE) δ ppm 55.1 (d, \(J_{\text{p6}} = 8.8 \text{ Hz, 2 x OMe} \)), 60.5 (C6'), 66.7 (d, \(J_{\text{p5}} = 5.7 \text{ Hz, C-6} \)), 69.0 (C-4), 69.6 (C-4'), 70.5 (d, \(J_{\text{p5}} = 6.7 \text{ Hz, C-5} \)), 70.9 (C-2), 71.0 (C-2'), 72.2 (C-5'), 72.4 (C-3), 72.5 (C-4')}
(C-3'), 93.4 (C-I), 93.5 (C-I'); IR (KBr disc): v = 1260 (P=0), 3486 br (OH) cm⁻¹;
MS (ESI⁺) m/z 451.1 (M+H⁺), 473.1 (M+Na⁺), MS (ESI⁻) m/z 449.6 (M-H⁻); HRMS (ESI⁺) calcd. for C₁₄H₂₇O₁₅P (M+Na⁺): 473.1031, Found: 473.1027.

6-O-monomethoxyphosphoryl-D-trehalose (16)

A suspension of 68 (11 mg, 25 µmol, 1 eq) in dioxane was briefly sonicated for 5 minutes. TMSBr (33 µL, 0.25 mmol, 10 eq) was added to this mixture at RT. The reaction was monitored by mass spectrometry (EST) and TLC (1 water : 2 isopropanol : 2 ethyl acetate) and after 3 hours, two deprotected analogues were detected (desired product Rᵣ 0.1). The reaction was quenched by the addition of water (1 mL) and the solvents removed in vacuo. The crude mixture was taken up in water (3 mL) and washed with ethyl acetate (3 x 1 mL). The aqueous layer was concentrated in vacuo and the products were separated by HPLC through an Applied Biosystems, Poros® HQ strongly basic anion exchange column (10 mm x 100 mm, 50 µm). A gradient from 0 mM to 500 mM aqueous NH₄HCO₃ was used as the mobile phase at a flow rate 20 mL/min and eluants were detected with an Evaporative Light Scattering (ELSD) detector. The title compound was not retained on the column and was immediately eluted whereas 15 was eluted at approximately 4.5 minutes (see previous chromatogram). Repeated lyophilization gave 16 (5.7 mg, 52%) and 15 (1.2 mg, 11%) as white amorphous solids.

[a]⁺ = 38.8 (c = 0.24 in H₂O); ¹H NMR (500 MHz, DEUTERIUM OXIDE) δ ppm 3.36 (1 H, t, J₁₂ = 9.3 Hz, J₁₂₋₃ = 9.3 Hz, H-4'), 3.45 (1 H, t, J₁₂₋₃ = 9.5 Hz, J₁₂₋₄ = 9.5 Hz, H-4), 3.52 (3 H, d, J₁₂₋₃ = 11.0 Hz, OMe), 3.57 (1 H, dd, J₁₂₋₃ = 8.3 Hz, H₁₋₂₋₃), 3.59 (1 H, dd, J₁₂₋₃ = 9.3 Hz, J₁₂₋₃ = 3.8 Hz, H-2), 3.68 (1H, dd, J₁₂₋₃ = 11.2 Hz, J₁₂₋₃₋₄ = 3.9 Hz, H-6'b), 3.72 (1 H, m, H-5'), 3.76 (2 H, t, J₁₂₋₃ = 9.5 Hz, J₁₂₋₃₋₄ = 9.5 Hz, H-3, H-3), 3.76 (1 H, m, H-6'a), 3.96 (1 H, m, H-5), 4.01 (2 H, m, H-6a, H-6b), 5.11 (1 H, d, J₁₋₂₋₃ = 4.1 Hz, H-l'), 5.12 (1 H, d, J₁₋₂₋₃ = 4.4 Hz, H-l); ¹³C NMR
(126 MHz, DEUTERIUM OXIDE) δ ppm 52.9 (d, J PC = 5.7 Hz, OMe), 60.5 (C-6'), 64.1 (d, J P6 = 1.9 Hz, C-6), 69.2 (C-4), 69.7 (C-4'), 70.9 (C-2), 71.0 (C-2'), 71.7 (C-5), 72.1 (C-5'), 72.4 (C-3), 72.4 (C-3'), 93.3 (C-1), 93.4 (C-1'); IR (KBr disc) ν = 1137 (P=0), 3440 br (OH) cm⁻¹; (EST) m/z 435.1 (M-H⁺); HRMS (EST) calcd. for C₁₃H₂₀O₄P (M-H⁺): 435.0909, Found: 435.0923.

Synthesis of Trehalose-6-Azide

![Synthesis Scheme](image)

Scheme S17. Reagents and conditions. (a) Benzoyl chloride, pyridine, RT, 15 h. (b) Sodium azide, DMF, 90 °C, 18 h. (c) Sodium methoxide, methanol, RT, 13 h.

6-0-diphenoxypyosphoryl,2,2',3,3',4,4',6'-0-benzoyl-D-trehalose (69)

To a solution of 67 (100 mg, 0.18 mmol, 1 eq) in dry pyridine (5 mL) at RT was added dropwise benzooyl chloride (0.22 mL, 1.93 mmol, 11 eq). The reaction mixture was stirred for 15 hours after which TLC (1:1 petrol/ethyl) showed full consumption of starting material (Rₜ 0) and the formation of a single product (Rₜ 0.5). The reaction was quenched with methanol (1 mL) and the mixture was concentrated under reduced pressure. The resultant residue was partitioned between ethyl acetate (25 mL) and water (25 mL) and the aqueous layer was extracted with ethyl acetate (2 x 25 mL). The combined organics were washed with 1M HCl (3 x 25 mL), saturated
NaHCO₃ (25 mL), brine (25 mL), dried over MgSO₄ and concentrated in vacuo. Silica
gel chromatography (1:1 petrol/ethyl) yielded the target compound as a colourless oil
(0.09 lg, 40 %).

[a]D¹⁹ +148.2 (c = 0.46 in CHCl₃); H NMR (400 MHz, CHLOROFORM-J) δ

ppm 3.78 (1 H, ddd, J_{α,β} = 11.4 Hz, J_{p6} = 6.9 Hz, J_{S6a} = 4.0 Hz, H-6a), 3.87 (1 H,
m, H-6b), 3.91 (1 H, dd, J_{α,β} = 12.3 Hz, J_{p6} = 4.6 Hz, H-6a'), 4.03 (1 H, dd, J_{α,β} =
12.6 Hz, J_{α,β} = 2.7 Hz, H-6b'), 4.14 (1 H, m, H-5), 4.28 (1 H, dd, J_{α,β} = 10.1 Hz, J_{S6a}
= 4.3 Hz, J_{α,β} = 2.9 Hz, H-5'), 5.31 (1 H, dd, J_{2,3} = 10.2 Hz, J_{1,2} = 3.8 Hz, H-2), 5.48
(1 H, dd, J_{2,3} = 10.2 Hz, J_{1,2} = 3.8 Hz, H-2'), 5.58 (1 H, at, J_{p4} = J_{p5} = 9.9 Hz, H-4),

5.62 (1 H, d, J_{1,2} = 3.8 Hz, H-1), 5.65 (1 H, d, J_{2,3} = 3.8 Hz, H-1'), 5.69 (1 H, at, J_{p4} =
J_{p5} = 9.9 Hz, H-4'), 6.24 (1 H, at, J_{2,3} = J_{3,4} = 9.5 Hz, H-3), 6.29 (1 H, at, J_{2,3} = J_{3,4} =
9.9 Hz, H-3'), 7.12-7.60 (31 H, m, Ar-H), 7.80, 7.81, 8.08 (3 x 2 H, 3 x d, J_{ortho-meta} =
7.2 Hz, Bz Ar-H_{ortho}), 7.94 (4 H, d, J_{ortho-meta} = 8.2 Hz, Bz Ar-H_{ortho}), 8.00, 8.12 (2 x 2
H, 2 x d, J_{ortho-meta} = 7.3 Hz, Bz Ar-H_{ortho}); ¹³C NMR (101 MHz, CHLOROFORM-J) δ

ppm 61.9 (C-6'), 65.6 (d, J_{p6} = 6.4 Hz, C-6), 67.7 (C-4'), 68.5 (C-4), 68.6 (C-5'),
68.7 (d, J_{p5} = 6.4 Hz, C-5), 70.3 (2C, C-3, C-3'), 71.0 (C-2'), 71.2 (C-2), 92.4 (C-1'),
92.4 (C-1), 120.1 (d, J_{PC} = 4.8 Hz, P-OPh Ar-C_{ortho}), 125.4 (d, J_{PC} = 7.2 Hz, P-OPh
Ar-C_{ortho}), 128.4-129.9 (m, Ar-C), 133.2, 133.3, 133.3, 133.5, 133.6, 133.7, 133.8 (7 x
Bz Ar-C_{ortho}), 150.3 (d, J_{PC} = 7.2 Hz, P-OPh Ar-C_{ortho}), 150.4 (d, J_{PC} = 6.4 Hz, P-OPh
Ar-Cipso), 164.6, 164.9, 165.2, 165.2, 165.6, 165.6, 165.9 (7 x C=0); IR (thin film) ν
1640 (C=0) cm⁻¹; (ESI) m/z 1320.4 (M+NH₄⁺), 1325.3 (M+Na⁺); Isotopic
distribution: species observed (M+Na⁺), peaks observed 1325.27 (100%), 1326.28
(74%), 1327.28 (29%), 1328.29 (8%), 1329.29 (2%) peaks calculated 1325.32
(100%), 1326.32 (80%), 1327.32 (36%), 1328.32 (12%), 1329.33 (3%).

6-Azido-2,2',3,3',4,4'-O-benzoyl-D-trehalose (70)

![6-Azido-2,2',3,3',4,4'-O-benzoyl-D-trehalose](image)
A solution of 69 (90 mg, 0.069 mmol, 1 equi) in DMF (3 mL) was heated to 90 °C with sodium azide (9 mg, 0.14 mmol, 2 equi). The reaction mixture was maintained at this temperature with aggressive stirring for 18 hours after which TLC (1:1 petrol/ethyl acetate) showed complete consumption of starting material (Rf 0.5) and the formation of a product (Rf 0.4). The reaction mixture was concentrated in vacuo and the residue partitioned between ethyl acetate (30 mL) and water (20 mL). The aqueous layer was extracted with ethyl acetate (2 x 20 mL) and the combined organics washed with brine (3 x 25 mL), dried over MgSO₄ and the solvent removed in vacuo. The compound was purified by silica gel chromatography (3:2 petrol/ethyl acetate) to afford the desired compound as a colourless oil (52 mg, 69%).

$$[\alpha]_D^{20}+210.4 \ (c=1.0 \ in \ CHC_1_3); \ H \ NMR \ (400 \ MHz, \ CHLOROFORM-d) \ \delta$$

ppm 2.89-2.91 (2 H, m, H-6a, H-6b), 3.88 (1 H, dd, $J_{6a,6b}=12.5 \ Hz$, $J_{6b,6a}=4.7 \ Hz$, H-6'a), 4.03 (1 H, dd, $J_{6a,6b}=12.6 \ Hz$, $J_{5b,6b}=2.5 \ Hz$, H-6'b), 4.14 (1 H, ddd, $J_{2,5}=9.8 \ Hz$, $J_{2a,6a}=7.6 \ Hz$, $J_{5,6a}=3.0 \ Hz$, H-5), 4.32 (1 H, ddd, $J_{4,5}=10.4 \ Hz$, $J_{5,6a}=4.3 \ Hz$, $J_{5,6b}=2.8 \ Hz$, H-5'), 5.50 (2 H, dd, $J_{2,3}=J_{2,5}=10.1 \ Hz$, $J_{1,2}=J_{1,2}=3.8 \ Hz$, H-2, H-2'), 5.57 (1 H, at, $J_{3,4}=J_{4,5}=9.9 \ Hz$, H-4), 5.70 (1 H, at, $J_{3,4}=J_{4,5}=10.0 \ Hz$, H-4'), 5.76 (1 H, d, $J_{1,2}=4.0 \ Hz$, H-l'), 5.78 (1 H, d, $J_{1,2}=4.0 \ Hz$, H-l'), 6.26 (1 H, at, $J_{2,3}=J_{3,4}=9.9 \ Hz$, H-4), 6.30 (1 H, at, $J_{2,3}=J_{3,4}=10.0 \ Hz$, H-3'), 7.32-7.60 (21 H, m, Ar-H), 7.83, 7.85 (2 x 2 H, 2 x dd, $J_{ortho-meta}=8.2 \ Hz$, $J_{ortho-ortho}=1.3 \ Hz$, Ar-Hortho), 7.93, 7.94 (2 x 2 H, 2 x dd, $J_{ortho-meta}=8.7 \ Hz$, $J_{ortho-ortho}=1.5 \ Hz$, Ar-Hortho), 7.96 (2 H, dd, $J_{ortho-meta}=8.2 \ Hz$, $J_{ortho-ortho}=1.0 \ Hz$, Ar-Hortho), 8.08, 8.14 (2 x 2 H, 2 x dd, $J_{ortho-meta}=7.4 \ Hz$, $J_{ortho-ortho}=1.3 \ Hz$, Ar-Hortho); 13C NMR (101 MHz, CHLOROFORM-d) \ \delta

ppm 50.0 (C-6), 61.9 (C-6'), 68.5 (C-5'), 68.6 (C-4'), 69.1 (C-4), 69.7 (C-5), 70.1 (C-3'), 70.2 (C-3), 71.1 (C-2'), 71.3 (C-2), 92.6 (C-1), 92.7 (C-1'), 128.4, 128.4, 128.7, 128.7 (4 x as, Ar-C,m'), 128.5, 128.7, 128.8, 128.9, 129.0, 129.0, 129.4 (Ar-Cip), 129.8, 129.8, 129.9, 129.9 (4 x as, Ar-Cortho), 133.1, 133.3, 133.3, 133.5, 133.6, 133.7, 133.8 (Ar-Cpara), 164.9, 164.9, 165.2, 165.5, 165.5, 165.6, 165.8 (C=0); IR (thin film) \ \nu = 1732 \ (C=0), 2107 \ (N=) \ cm^{-1}; \ (ESI^+ \ m/z \ 1113.4 \ (M+NH_4^+), 1118.4 \ (M+Na^+); Isotopic distribution: peaks observed: (M+Na^+) peaks 1118.30 (100%), 1119.30 (66%), 1120.31 (24%), 1121.31 (7%), 1122.32 (2%) peaks calculatedl 118.30 (100%), 1119.30 (68%), 1120.30 (26%), 1121.30 (7%), 1122.31 (2%).
6-Azido-D-trehalose (18)\(^2\)⁴

To a stirring solution of 70 (52 mg, 0.047 mmol, 1 equi) in methanol (3 mL) was added sodium methoxide (2.5 mg, 0.047 mmol, 1 equi). The reaction mixture was stirred for 13 hours at which point TLC (1:4:4 water/isopropanol/ethyl acetate) indicated complete consumption of the starting material (Rf 0) and the formation of a single product (Rf 0.3). The reaction was quenched with Dowex 50WX8 100-200 mesh (H⁺ form), filtered and the solvent removed in vacuo. The compound was purified by silica gel chromatography (1:4:4 water/isopropanol/ethyl acetate).

Lyophilization gave the title compound as a white amorphous solid (16 mg, 92 %).

[\text{off} + 167.3 (c = 0.26 in H₂O)] [\text{[lit.} \[\delta\] \text{d] + 149 (c = 0.81 in MeOH)\]²⁴ ;\text{H NMR} (500 MHz, DEUTERIUMOXIDE) \(\delta\) ppm 3.35 (1 H, at, \(J_{3,4} = 4.5, 9.3\) Hz, H-4'), 3.37 (1 H, at, \(J_{3,4} = 4.5, 9.5\) Hz, H-4), 3.47 (1 H, dd, \(J_{6a,6b} = 13.6\) Hz, \(J_{5,6a} = 5.7\) Hz, H-6a'), 3.56 (1 H, dd, \(J_{2,3} = 10.4\) Hz, \(J_{1,2} = 3.8\) Hz, H-2'), 3.58 (1 H, dd, \(J_{2,3} = 10.1\) Hz, H-2), 3.59 (1 H, dd, \(J_{6a,6b} = 11.7\) Hz, \(J_{5,6a} = 5.0\) Hz, H-6a), 3.88 (1 H, ddd, \(J_{4,5} = 10.1\) Hz, \(J_{5,6a} = 3.8\) Hz, \(J_{5,6b} = 2.2\) Hz, H-5'), 5.10 (1 H, d, \(J_{1,2} = 4.2\) Hz, H-l), 5.11 (1 H, d, \(J_{1,2} = 4.7\) Hz, H-l); \text{i}³\text{C NMR} (126MHz, DEUTERIUMOXIDE) \(\delta\) ppm 50.8 (C-6'-azide), 60.4 (C-6), 69.6 (C-4'), 70.4 (C-4), 70.9 (C-2'), 70.9 (C-2), 70.9 (C-5), 72.2 (C-5'), 72.3 (C-3'), 72.5 (C-3), 93.4 (C-1'), 93.6 (C-1); IR (KBr disc) \(\nu = 2110\) (N₃), 3456 br (OH); (EST) \(m/z\) 390.1 (M+Na⁺).

\textit{Synthesis of Symmetric Trehalose analogues: dehydrative glycosylations}

\begin{align*}
71,71 & \\
73,74,75 & \\
12,13,14 &
\end{align*}
Scheme SI8. Reagents and conditions. (a) Ph$_2$SO, Tf$_2$O, TTBP, CH$_2$Cl$_2$, 4 AMS (b) 0.1M NaOMe, MeOH, 0 °C

Scheme SI9. Reagents and conditions. (a) Ph$_2$SO, Tf$_2$O, TTBP, CH$_2$Cl$_2$, 4 AMS (b) Bu$_3$SnH, Et$_3$B, toluene (c) H$_2$, 10% Pd/C, 9:1 MeOH/AcOEt.

Precursors 73,74,75,78 and 79 were prepared as described in the literature and their synthesis will be reported in due course.

2'-Deoxy-a-D-arabino-hexopyranosyl-(1→1)-2-deoxy-a-D-arabino-hexopyranoside (10)

A solution of 78 (100 mg, 0.091 mmol, 1 eq), Bu$_3$SnH (151 µL, 0.544 mmol, 6 eq), and 1 M Et$_3$B in hexane (54 µL, 0.054 mmol, 0.6 eq) in dry toluene (910 µL) was stirred at room temperature for 5 h. The reaction was monitored by TLC (3:1 petrol/ethyl acetate) and upon completion (R_f 0.22) was filtered through a short path of silica and concentrated under reduced pressure. The crude yellowish syrup was dissolved in 9:1 methanol/ethyl acetate (9.1 mL) at room temperature and subjected to hydrogenolysis (1 atm) using 10% Pd/C (725 mg). After stirring at the same temperature for 10 h, TLC (7:2:1 ethyl acetate/methanol/water) analysis indicated the presence of a highly polar compound (R_f 0.20). The reaction mixture was filtered through Celite® and concentrated under reduced pressure. The residue was purified by column chromatography (7:2 ethyl acetate/methanol) to afford the titled compound (26.7 mg, 95% over two steps) as a white fluffy solid.
1H NMR (400 MHz, DEUTERIUM OXIDE) δ ppm 1.64 (2 H, ddd, $J_{2ax,2eq} = 13.2$ Hz, $J_{1,2ax} = 12.5$ Hz, $J_{2ax,5} = 3.3$ Hz, H-2ax, H-2ax'), 2.07 (2 H, ddd, $J_{2ax,2eq} = 13.2$ Hz, $J_{1,2ax} = 12.5$ Hz, $J_{2ax,5} = 3.3$ Hz, H-2ax, H-2ax'), 1.87 (2 H, ddd, $J_{2ax,2eq} = 13.2$ Hz, $J_{2ax,2eq} = 13.2$ Hz, $J_{1,2ax} = 12.5$ Hz, H-2eq, H-2eq'), 3.28 (2H, dd, $J_{3,4} = J_{3,5} = 9.5$ Hz, H-3, H-3'), 3.55 (2 H, ddd, $J_{3,6a} = 9.5$ Hz, $J_{S,6b} = 2.2$ Hz, $J_{5,5a} = 5.5$ Hz, H-5, H-5'), 3.66 (2 H, dd, $J_{6a,6b} = 12.1$ Hz, $J_{S,6b} = 2.2$ Hz, H-6a, H-6a'), 3.75 (2 H, dd, $J_{6a,6b} = 12.1$ Hz, $J_{S,6b} = 2.2$ Hz, H-6b, H-6b'), 3.88 (2 H, ddd, $J_{2ax,2eq} = 12.5$ Hz, $J_{3,4} = 9.5$ Hz, $J_{2eq,3} = 5.1$ Hz, H-3, H-3'), 5.15 (2 H, d, $J_{1,2ax} = 3.3$ Hz, H-1, H-1'); 13C NMR (101 MHz, DEUTERIUM OXIDE) δ ppm 37.0 (2 C, C-2, C-2'), 61.3 (2 C, C-6, C-6'), 68.8 (2 C, C-3, C-3'), 71.6 (2 C, C-4, C-4'), 73.4 (2C, C-5, C-5'), 93.1 (2 C, C-1, C-1'); MS (EST) m/z 333.1 (M+Na$^+$. HRMS (ESI$^+$) calcd. for C$_2$H$_{22}$NaO$_9$ (M+Na$^+$): 333.1162. Found: 333.1156; Spectroscopic data are in agreement with those reported.26

2-Deoxy-a-D-lyxo-hexopyranosyl-(l→l)-2-deoxy-a-D-lyxo-hexopyranoside (11)

A solution of 7925 (200 mg, 0.18 mmol, 1 eq), Bu$_3$SnH (302 μT, 1.09 mmol, 6 eq), and 1M Et$_3$B in hexane (109 μL, 0.11 mmol, 0.6 eq) in dry toluene (1.8 mL) was stirred at room temperature for 24 h. The reaction was monitored by TLC (3:1 petrol/ethyl acetate) and upon completion (R$_f$ 0.38) was filtered through a short path of silica and concentrated under reduced pressure. The crude yellowish syrup was dissolved in 9:1 methanol/ethyl acetate (18.1 mL) at room temperature and subjected to hydrogenolysis (1 atm) using 10% Pd/C (1.4 g). After stirring at the same temperature for 22 h, TLC (7:2:1 ethyl acetate/methanol/water) analysis indicated the presence of a highly polar compound (R$_f$ 0.15). The reaction mixture was filtered through Celite® and concentrated under reduced pressure. The residue was purified by column chromatography (7:2 ethyl acetate/methanol) to afford the titled compound (50.7 mg, 90% over two steps) as a white fluffy solid.

$[\alpha]_D^{25} + 151.8$ (c = 0.40 in MeOH); 1H NMR (400 MHz, DEUTERIUM OXIDE) δ ppm 1.79 (2 H, ddd, $J_{2ax,2eq} = 13.2$ Hz, $J_{2ax,5} = 11.7$ Hz, $J_{1,2ax} = 4.4$ Hz, H-2ax, H-2ax'), 1.87 (2 H, ddd, $J_{2ax,2eq} = 13.2$ Hz, $J_{2ax,5} = 4.1$ Hz, $J_{2eq,3} = 1$ Hz, H-2eq,
2'-Deoxy-2'-iodo-a-D-mannopyranosyl-(1→1)-2-deoxy-2-iodo-a-D-mannopyranoside (12)

73 (20 mg, 0.025 mmol) was treated with 0.1M NaOMe in methanol (175 µL) at 0 °C. The reaction mixture was stirred at the same temperature for 15 minutes and neutralized with DOWEX 50WX8 (H+ form) cation exchange resin. The resin was filtered off and washed with methanol. TLC (7:1 ethyl acetate/methanol) analysis indicated the presence of a polar compound (Rf 0.30). The resulting solution was concentrated under reduced pressure to afford XX (13.5 mg, 98%) as a white fluffy solid.

$[\alpha]_{D}^{1} +97.1$ (c = 0.7 in MeOH); δ NMR (METHANOL-$^\wedge$, 500 MHz) δ ppm

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>3.68-3.59</td>
<td>3.68-3.59</td>
<td>3.76</td>
<td>3.81</td>
</tr>
<tr>
<td>3.69-3.65</td>
<td>4.1 Hz, H-3, H-3'</td>
<td>4.44</td>
<td>4.44</td>
<td></td>
</tr>
<tr>
<td>3.84</td>
<td>14.1 Hz, J.5.6a = 5.3 Hz, H-6a, H-6a'</td>
<td>2924, 2924, 1594, 1436 cm(^{-1}); MS mlz (EST) 584.9 (M+Na(^+)); HRMS (ESI(^+)) calcd. for C({22})H({22})NaO(_9) (M+Na(^+)): 584.9094, Found: 584.9089.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2'-Deoxy-2'-fluoro-\(\alpha\)-D-mannopyranosyl-(1\(\rightarrow\)1)-2-deoxy-2-fluoro-\(\alpha\)-D-
mannopyranoside (13)

74 (20 mg, 0.033 mmol, 1 eq) was treated with 0.1M NaOMe in methanol (234 \(\mu\)L, 0.02 mmol, 0.6 equi) at 0 °C. The reaction mixture was stirred at the same temperature for 15 minutes and neutralized with DOWEX 50WX8 (H\(^+\) form) cation exchange resin. The resin was filtered off and washed with methanol. TLC (7:1 ethyl acetate/methanol) analysis indicated the presence of a polar compound (\(R_f\) 0.27). The resulting solution was concentrated under reduced pressure to afford the titled compound (10.6 mg, 91%) as a white fluffy solid.

\([\alpha]_D^{21}\) +109.9 (c = 0.16 in MeOH); \(\text{H NMR (METHANOL-}^\text{D}, 500 MHz) \delta\) ppm 3.57-3.77 (8 H, m, H-3, H-3', H-4, H-4', H-5, H-5', H-6b, H-6b'), 3.76 (2 H, d, \(J_{6a,6b} = 11.7\) Hz, H-6a, H-6a'), 4.64 (2 H, d, \(J_{2,F} = 50.1\) Hz, H-2, H-2'), 5.34 (2 H, d, \(J_{1,F} = 7.6\) Hz, H-1, H-1'); \(\text{1}^3\text{C NMR (METHANOL-}^\text{D}, 126 MHz) \delta\) ppm 62.8 (2 C, C-6, C-6'), 68.7 (2 C, C-4, C-4'), 71.6 (2 C, d, \(J_{3,F} = 13.4\) Hz, C-3, C-3'), 76.0 (2 C, C-5, C-5'), 91.0 (2 C, d, \(J_{1,F} = 175.5\) Hz, C-2, C-2'), 94.4 (2 C, d, \(J_{2,F} = 30.5\) Hz, C-1, C-1'); \(\text{19F NMR (METHANOL-}^\text{D}, 470 MHz) \delta\) ppm -206.5 (ddd, \(J_{2,F} = 50.1\) Hz, \(J_{3,F} = 30.5\) Hz, \(J_{1,F} = 7.6\) Hz); IR (KBr): \(\nu = 3355, 2926, 2855, 1417, 1066\) cm\(^{-1}\); MS \(m/z\) (ESI\(^+\)) 369.1 (M+Na\(^+\)); MS \(m/z\) (ESI\(^+\)) 369.1 (M+Na\(^+\)); HRMS (ESI\(^+\)) calcd. for \(\text{C}_1\text{H}_{2}\text{O}_6\text{F}_2\text{Na}^+\) 369.0973, Found: 369.0968.

2'-Deoxy-2'-fluoro-\(\alpha\)-D-mannopyranosyl-(1\(\rightarrow\)l)-2-deoxy-2-fluoro-\(\beta\)-D-
mannopyranoside (14)

75 (12.7 mg, 0.021 mmol, 1 eq) was treated with 0.1M NaOMe in methanol (149 \(\mu\)L, 0.014 mmol, 0.7 eq) at 0 °C. The reaction mixture was stirred at the same temperature for 15 minutes and neutralized with DOWEX 50WX8 (H\(^+\) form) cation exchange resin. The resin was filtered off and washed with methanol. TLC (7:1 ethyl acetate/methanol) analysis indicated the presence of a polar compound (\(R_f\) 0.27). The resulting solution was concentrated under reduced pressure to afford the titled compound (10.6 mg, 91%) as a white fluffy solid.

\([\alpha]_D^{21}\) +109.9 (c = 0.16 in MeOH); \(\text{H NMR (METHANOL-}^\text{D}, 500 MHz) \delta\) ppm 3.57-3.77 (8 H, m, H-3, H-3', H-4, H-4', H-5, H-5', H-6b, H-6b'), 3.76 (2 H, d, \(J_{6a,6b} = 11.7\) Hz, H-6a, H-6a'), 4.64 (2 H, d, \(J_{2,F} = 50.1\) Hz, H-2, H-2'), 5.34 (2 H, d, \(J_{1,F} = 7.6\) Hz, H-1, H-1'); \(\text{1}^3\text{C NMR (METHANOL-}^\text{D}, 126 MHz) \delta\) ppm 62.8 (2 C, C-6, C-6'), 68.7 (2 C, C-4, C-4'), 71.6 (2 C, d, \(J_{3,F} = 13.4\) Hz, C-3, C-3'), 76.0 (2 C, C-5, C-5'), 91.0 (2 C, d, \(J_{1,F} = 175.5\) Hz, C-2, C-2'), 94.4 (2 C, d, \(J_{2,F} = 30.5\) Hz, C-1, C-1'); \(\text{19F NMR (METHANOL-}^\text{D}, 470 MHz) \delta\) ppm -206.5 (ddd, \(J_{2,F} = 50.1\) Hz, \(J_{3,F} = 30.5\) Hz, \(J_{1,F} = 7.6\) Hz); IR (KBr): \(\nu = 3355, 2926, 2855, 1417, 1066\) cm\(^{-1}\); MS \(m/z\) (ESI\(^+\)) 369.1 (M+Na\(^+\)); MS \(m/z\) (ESI\(^+\)) 369.1 (M+Na\(^+\)); HRMS (ESI\(^+\)) calcd. for \(\text{C}_1\text{H}_{2}\text{O}_6\text{F}_2\text{Na}^+\) 369.0973, Found: 369.0968.
exchange resin. The resin was filtered off and washed with methanol. TLC (7:1 ethyl acetate/methanol) analysis indicated the presence of a polar compound (R_f 0.11). The resulting solution was concentrated under reduced pressure to afford the titled compound (6.8 mg, 93%) as a white fluffy solid.

$$\left[\alpha\right]_{D}^{20} +62.7 \text{ (c = 0.11 in MeOH); } \text{H NMR (METHANOL-}^\text{d}, 500 \text{ MHz)} \delta \text{ ppm}$$

3.31 (1 H, overlapped, H-5'), 3.70-3.46 (5 H, m, H-3, H-4, H-6b, H-4',H-6b'), 3.80 (1 H, dd, $J_{3,F} = 31.0$ Hz, $J_{3,F} = 12.3$ Hz, $J_{3,F} = 2.5$ Hz, H-3'), 3.89 (1 H, d, $J_{6o,F} = 12.9$ Hz, H-6a), 3.91 (1 H, d, $J_{6o,F} = 11.7$ Hz, H-6a'), 3.98 (1H, dd, $J_{5,F} = 8.8$ Hz, H-5'), 4.65 (1 H, dd, $J_{2,F} = 49.3$ Hz, $J_{2,F} = 2.5$ Hz, H-2'), 4.69 (1 H, dd, $J_{2,F} = 53.9$ Hz, $J_{2,F} = 2.2$ Hz, H-2), 4.86 (1 H, overlapped, H-1), 5.28 (1 H, d, $J_{1,F} = 7.1$ Hz, H-1');

1H NMR (METHANOL-^d, 125.8 MHz) δ ppm 63.2 (C-6'), 63.3 (C-6), 68.8 (C-4'), 69.1 (C-4), 71.6 (d, $J_{3,F} = 18.1$ Hz, C-3'), 71.6 (d, $J_{3,F} = 18.1$ Hz, C-3), 75.5 (C-5), 79.0 (C-5'), 90.9 (1 C, d, $J_{2,F} = 174.5$ Hz, C-2'), 91.9 (1 C, d, $J_{2,F} = 184.1$ Hz, C-2), 99.7 (1 C, d, $J_{1,F} = 30.5$ Hz, C-1'), 99.9 (1 C, d, $J_{1,F} = 15.3$ Hz, C-1');

1F NMR (METHANOL-^d, 377 MHz) δ ppm -206.9 (ddd, $J_{2,F} = 49.3$ Hz, $J_{5,F} = 31.0$ Hz, $J_{1,F} = 7.1$ Hz, F-2'), -222.9 (ddd, $J_{2,F} = 53.9$ Hz, $J_{3,F} = 29.8$ Hz, $J_{1,F} = 19.5$ Hz, F-2').

IR (KBr): ν = 3355, 2926, 2855, 1417, 1066 cm$^{-1}$; MS m/z (ESI$^+$) 369.1 (M+Na$^+$); HRMS (ESI$^+$) calcd. for C$_i$H$_{20}$F$_2$NaO$_9$ (M+Na$^+$): 369.0973. Found: 369.0968.

Enzymatic synthesis of 2-F-Trehalose-6P

Scheme S20. Reagents and conditions, (a) Trehalose-6-phosphate synthase, Hepes buffer, pH 7.4, MgCl$_2$ 30 °C, 16 h. (b) Alkaline phosphatase, pH 8.0, 37 °C, 2 h.
a-D-Glucopyranosyl 2-deoxy-2-fluoro-a-D-glucopyranose-6-phosphate (82)

80 was prepared by the known procedure 27 was dissolved in 0.2 M, pH 7.4 Hepes buffer containing 10 mM MgCl₂ in the presence of 95 mg of 81. To this mixture added trehalose-6-phosphate synthase cloned and expressed from E. coli28 to a final concentration of 21.6 μM and pH was adjusted to 7.4. Total volume was 3 mL. The reaction mixture was incubated at 30 °C overnight. After confirming the reaction was completed by electrospray ionization mass spectrometer (ESI MS), the mixture was filtered using centrifugal concentrator Viva spin 500 (Sartorius) of nominal molecular weight cutoff 10,000 to remove proteins. Typically, overnight reaction was conducted to confirm the completion of the reaction. The filtrate was divided into three volumes and purified by the HPLC (Dionex Ultimate 3000) using a strong anion exchange column Applied Biosystems, Poros® HQ (10 mm x 100 mm, 50 µm). The HPLC was eluted with gradient of 0 - 500 mM ammonium bicarbonate at a flow rate of 20 mL/min and eluants were detected with an evaporative light scattering detector (ELSD). The product was eluted at retention time of 5.11 minutes, as shown in Figure 15. Collected fractions were pooled and concentrated under reduced pressure, yielding a white solid (25 mg, 63%).

H NMR (400 MHz, DEUTERIUM OXIDE) δ ppm 3.29 (1 H, at, J₃,₄ = J₄,₅ = 9.55 Hz, H-4'), 3.52 (1 H, dd, J₂,₃ = 10.0 Hz, J₃,₄ = 3.8 Hz, H-2'), 3.55 (1 H, at, J₃,₄ = J₄,₅ = 9.85 Hz, H-4) 3.61 - 3.90 (7 H, m, H-5, H-6a, H-6b, H-3', H-5', H-6a', H-6b'), 3.98 (1 H, dt, J₃,₆ = 13.1 Hz, J₂,₃ = J₃,₄ = 9.3 Hz, H-3), 4.41 (1 H, ddd, J₂,₃ = 49.0 Hz, J₁,₂ = 4.2, J₂,₃ = 9.5 Hz, H-2), 5.09 (1 H, d, J₁,₂ = 3.8, H-1'), 5.28 (d, 1 H, J₁,₂ = 4.2 Hz, H-1), ¹³C NMR (126 MHz, DEUTERIUM OXIDE) δ ppm 60.5 (C-6'), 62.2 (1 C, d, J₆,₆ = 3.8 Hz, C-6), 68.4 (C-4), 69.5 (C-4'), 70.7 (1 C, d, J₅,₆ = 16.1 Hz, C-3), 70.9 (C-2'), 71.9 (1 C, d, J₅,₆ = 6.7 Hz, C-5), 72.2 (C-5'), 72.5 (C-3'), 89.6 (d, J₆,₆ = 187.9 Hz, C-2), 91.4 (1 C, d, J₅,₆ = 22.2 Hz, C-1), 94.0 (C-1'); ³¹P(1H) NMR (376 MHz, DEUTERIUM OXIDE) δ ppm -201.2, ³¹P(1H) NMR (162 MHz, DEUTERIUM

a-D-Glucopyranosyl 2-deoxy-2-fluoro-a-D-glucopyranose (22)

![Chemical Structure](image)

5 mg (12 μmol) of 82 (2-fluoro-trehalose-6-phosphate) was dissolved in water and pH was adjusted to 8.0 with 1m NaOH. 3 Units of alkaline phosphatase (Sigma) was added to initiate the reaction. The reaction mixture was incubated at 37 °C and the reaction progress was monitored by ESI MS. Typically, reaction was completed within 2 hours. After confirming the reaction was completed, the mixture was filtered using the centrifugal concentrator Viva spin 500 (Sartorius) of nominal molecular weight cutoff 10,000 to remove proteins. The filtrate was loaded onto a column packed with anion exchange resin DEAE cellulose (Sigma) and the fraction eluted with water was collected and concentrated under reduced pressure. The resulting syrup was loaded onto the Phenomenex Luna NH2 HPLC column (250 x 21.2 mm, 5 μm) on Dionex UltiMate 3000 system. Eluants were detected with an evaporative light scattering detector (ELSD). The product was eluted at 7.8 minutes of retention time by an isocratic elution with 30/70 water/acetonitrile at a flow rate of 18.0 mL/min, as shown in Figure 16. Fractions containing the product was pooled and concentrated under reduced pressure, yielding a colorless wax (4.0 mg, 99%).

H NMR (400 MHz, DEUTERIUM OXIDE) δ ppm 3.36 (1H, at, J3,4 = J4,5 = 9.0 Hz, H-4'), 3.42 (1H, at, J3,4 = J4,5 = 9.7 Hz, H-4), 3.56 (1H, dd, J1,2 = 3.7 Hz, J2,3 = 9.9 Hz, H-2'), 3.58 - 3.81 (7H, m, H-5, H-6a, H-6b, H-3', H-5', H-6a', H-6b'), 3.97 (1H, dt, J2,F = 13.2 Hz, J2,3 = J3,4 = 9.6 Hz, H-3), 4.36 (1H, ddd, J2,F = 48.7 Hz, H-1,2 = 4.0 Hz, J2,3 = 9.6 Hz, H-2), 5.07 (1H, d, J1,2 = 3.7 Hz, H-1'), 5.29 (1H, d, J1,2 = 4.0 Hz, H-1); 13C NMR (126 MHz, DEUTERIUM OXIDE) δ ppm 60.3 (C-6 or C-6'), 60.5 (C-6 or C-6'), 69.0 (C-4), 69.1 (C-4'), 69.6 (C-3'), 70.9 (C-2'), 72.2 (C-5 or C-5'), 72.6 (C5 or C-5'), 71.1 (d, J4,F = 15.8 Hz, C-3), 89.5 (d, J4,F = 188.1 Hz, C-2), 91.2 (d, JF2,ci = 22.0 Hz, C-1), 94.0 (C-1'); 19F(1H) NMR (376 MHz, DEUTERIUM
OXIDE), δ ppm -201.2; MS m/z (ESI') 379.1 (M+Cl); HRMS (ESI'): calcd. for C12H20FO10 (M-H)+ 343.1035, Found: 343.1040.

4 and 6 Modified Trehalose

Scheme S21. Reagents and conditions (a) TBDMSCl, imidazole, RT, 20 min (b) Pyridine, acetic anhydride, 0 °C to RT, 16 h.

6-Tert-butyldimethylsilyl-2,3,4-tri-0-acetyl-a-D-glucopyranosyl 2,3,4,6-tetra-O-acetyl-a-D-glucopyranoside (83)

Anhydrous trehalose (3.42 g, 10.0 mmol, 1 eq) was added to 150mL of dry DMF at 50 °C. The solution was cooled down to room temperature and imidazole (1.36g, 20.0 mmol, 2 eq) and TBDMSCl (1.66 g, 11 mmol, 1.1 eq) were added. After 20 minutes, DMF was evaporated under high vacuum to give 8.53 g of yellow oil. This oil was dissolved in pyridine (100 mL) and DMAP (122 mg, 1.0 mmol, 0.1 eq) was added then the mixture was cooled to 0 °C and acetic anhydride (9.27 mL) was added slowly. The solution was stirred overnight at room temperature, upon which time TLC (4:1 chloroform/ethyl acetate) revealed the appearance of three new spots (Rf 0.6), (Rf 0.5) and (Rf 0.4) then 100 mL of water was added and the solution extracted with ethyl acetate (3 x 100 mL). The organic layer was dried with MgSO4, filtered and evaporated to give 7.46g of a yellow oil. This oil was purified by silica column chromatography (pure chloroform then 9:1 chloroform/ethyl acetate then 5:5
chloroform/ethyl acetate) to give 1.05g of pure 84 and 5.38g of a mixture of silyl trehalose acetates. This mixture was purified by a second by silica column chromatography (95:5 chloroform/ethyl acetate then 9:1 chloroform/ethyl acetate then 5:5 chloroform/ethyl acetate) to give 84 (280 mg, 15% combined yield) followed by 83 (2.63g, 35% yield) and 85 (2.0g, 29% yield).

\[[\text{CHCl}_3] + 158 \text{ (c = 1.0 in CHCl}_3) \; \text{H NMR (400 MHz CHLOROFORM-J)} \]
\[\delta \text{ ppm 0.01 (3 H, s, 1 x CH}_3), 0.03 (3 H, s, 1 x CH}_3), 0.86 (9 H, s, 1 x C(CH}_3)_3), 2.03 (3 H, s, 1 x OCOCH}_3), 2.03 (3 H, s, 1 x OCOCH}_3), 2.04 (3 H, s, 1 x OCOCH}_3), 2.05 (3 H, s, 1 x OCOCH}_3), 2.08(3 H, s, 1 x OCOCH}_3), 2.09 (3 H, s, 1 x OCOCH}_3), 2.09 (3 H, s, 1 x OCOCH}_3), 3.63 (2 H, m, H-6a and H-6b CH}_2OTBS), 3.93 (1H, ddd, J_{5,4} = 10.0 Hz, J_{5,6b} = 3.2 Hz, H-5), 4.00 (1 H, dd, J_{6b,6a} = 12.0 Hz, J_{6b,5b} = 2.0 Hz, H-6b' OCOCH}_3), 4.07 (1 H, ddd, J_{5,6b} = 10.0 Hz, J_{5,6a} = 5.6 Hz, J_{5,6b} = 2.0 Hz, H-5'), 4.24 (1 H, dd, J_{6b,6a} = 12.0 Hz, J_{6a,5b} = 5.6 Hz, H-6a' CH}_2OAc), 4.99 (1 H, dd, J_{2,3} = 10.0 Hz, J_{2,1} = 3.6 Hz, H-2), 5.05 (1 H, dd, J_{4,3} = 10.0 Hz, J_{4,4} = 9.6 Hz, H-4'), 5.05 (1 H, dd, J_{4,3} = 10.0 Hz, J_{4,4} = 9.6 Hz, H-4'). \]

6-tert-Butyldimethylsilyl-2,3,4-tri-O-acetyl-a-D-glucopyranoside (84)

![Image of a molecule with molecular structure]
84 was isolated as the upper spot (R_f 0.6) TLC (4:1 chloroform/ethyl acetate) of the reaction of D-Trehalose with TBDMS-C1. (280 mg, 15%).

$[\alpha]_D^{25} + 157$ (c = 1.0 in CHC1_3); 1H NMR (400 MHz CHLOROFORM-d) δ ppm 0.02 (6 H, s, 2 x CH_3), 0.02 (6 H, s, 2 x CH_3), 0.87 (18 H, s, 2 x C(CH3)_3), 2.02 (6 H, 2 x OCOCH_3), 2.04 (6 H, 2 x OCOCH_3), 2.08 (6 H, 2 x OCOCH_3), 3.63 (4 H, m, H-6a and H-6b CH_2OTBS), 3.93 (2 H, dd, J_5,6 = 10.0 Hz, J_5,6a = 4.4 Hz, J_5,6b = 3.2 Hz, H-5), 5.03 (2 H, dd, J_2,3 = 10.4 Hz, J_2,4 = 4.0 Hz, H-2), 5.07 (2 H, dd, J_4,5 = 10.0 Hz, J_4,3 = 9.6 Hz, H-4), 5.25 (2 H, d, J_1,2 = 4.0 Hz, H-1), 5.47 (2 H, dd, J_3,2 = 10.4 Hz, J_3,4 = 9.6 Hz, H-3); 13C NMR (101 MHz CHLOROFORM-d) δ ppm -5.5 (2 C, 2 x CH_3), -5.5 (2 C, 2 x CH_3), 18.3(2 C, 2 x C(CH_3)_3), 20.7, 20.7, 20.8 (6 C, 6 x OCOCH_3), 25.9 (2 C, 2 x C(CH_3)_3), 61.9 (2 C, C-6, C-6'), 68.8 (2 C, C-4 C-4'), 69.8 (2 C, C-2, C-2'), 70.5 (2 C, C-5 C-5'), 70.6 (2 C, C-3, C-3'), 92.2 (2 C, C-1, C-1'), 169.5, 169.6, 170.2 (6 x C=O); IR (thin film): v = 2955.0, 2857.9, 1755.83 (C=O), 1368.7, 1221.4, 1144.5, 1036.0, 837.1, 780.1, cm⁻¹; MS (ESI⁺) m/z 840.3 (M+NH₄⁺), 846.3 (M+Na⁺); HRMS (ESI⁺) calcd. for C₃₆H₆₂O₁₇Si₂ (M+Na⁺): 845.3418, Found: 845.3401.

Scheme S22. Reagents and conditions. (a) HCl in MeOH RT, 140 min. (b)DAST, DMAP, CH₂Cl₂ RT, 18 h, 69%. (c) NaOMe, MeOH, RT, 18 h, 46%.

2,3,4-tri-O-acetyl-a-D-glucopyranosyl 2,3,4,6-tetra-O-acetyl-a-D-glucopyranoside (86)
In a 200 mL round-bottomed flask was placed 86 (1.54 g, 2.06 mmol, 1 eq), dry methanol (62 mL) and dry dichloromethane (20 mL), and the solution was cooled to 0 °C. Acetyl chloride (293 µL, 4.12 mmol, 2 eq) was added and conversion was monitored by TLC every 10 minutes for 140 minutes. Upon completion, TLC (1:1 ethyl acetate/chloroform) showed disappearance of starting material (R_f 0.7) and appearance of a single product (R_f 0.5). Satd. NaHC03 solution (2 mL) was added, and the mixture was evaporated to dryness to give 1.33 g of oil. This oil was purified by silica column chromatography (99:1 chloroform/ethanol to 98:2 to 97:3 to 95:5) to the titled compound as a white solid (654 mg, 50%).

[a]_D^[25] + 164 (c, 1.0 in CHC13); [Lit. [α]_D^[25] + 167.5 (c = 0.7 in CHCl3)]^29; H NMR (400 MHz CHLOROFORM-δ, δ ppm) 2.03 (3 H, 1 x OCOCH3), 2.03 (3 H, 1 x OCOCH3), 2.04 (3 H, 1 x OCOCH3), 2.05 (3 H, 1 x OCOCH3), 2.08 (3 H, 1 x OCOCH3), 2.09 (3 H, 1 x OCOCH3), 2.09 (3 H, 1 x OCOCH3), 3.60 (2 H, m, H-6a and H-6b CH2OH), 3.91 (1 H, ddd, J = 10.0 Hz, J = 4.6 Hz, J = 2.6 Hz, H-5), 3.99 (1 H, dd, J = 169.6, J = 10.4 Hz, J = 2.0 Hz, H-6b' CH2OAc), 4.10 (1 H, ddd, J = 169.6, J = 10.0 Hz, J = 6.8 Hz, J = 2.0 Hz, H-5'), 4.27 (1 H, dd, J = 6.8 Hz, J = 12.0 Hz, J = 5.0 Hz, H-6a', CH2OAc), 5.01 (1 H, dd, J = 10.0 Hz, J = 3.6 Hz, H-2), 5.02 (1 H, dd, J = 10.0 Hz, J = 6.8 Hz, J = 4.0 Hz, H-2'), 5.02 (1 H, dd, J = 10.0 Hz, J = 9.6 Hz, H-4), 5.06 (1 H, dd, J = 10.0 Hz, J = 9.6 Hz, H-4'), 5.29 (1 H, d, J = 3.6 Hz, H-1), 5.30 (1 H, d, J = 4.0 Hz, H-1'), 5.50 (1 H, dd, J = 10.0 Hz, J = 9.6 Hz, H-3'), 5.53 (1 H, dd, J = 10.0 Hz, J = 9.6 Hz, H-3), 6.53 (1 H, dd, J = 10.0 Hz, J = 9.6 Hz, H-3), 13C NMR (101 MHz CHLOROFORM-δ, δ ppm) 20.6, 20.6, 20.6, 20.6, 20.7, 20.7, 20.7, 7.7 (7 x OCOCH3), 60.9 (C-6 OH), 61.7 (C-6 OCOCH3), 68.1 (C-4'), 68.4 (C-2'), 68.8 (C-4), 69.7 (C-5'), 69.9 (C-2, C-2 and C-3'), 70.0 (C-3), 70.4 (C-5), 92.9 (C-1'), 93.0 (C-1), 169.6, 169.6, 169.9, 169.9, 170.0, 170.4, 170.6 (7x C=O acetates); IR (thin film): ν = 3524.5, 3026.3, 2960.7, 1751.2, (C=0) 1370.0, 1221.7, 1164.2, 1036.8, 900.9, 756.8 cm⁻¹; MS (ESI⁺) m/z 653.2 (M+NH4⁺), 659.2 (M+Na⁺), 695.2 (M+CH3CN+NH4⁺); HRMS (ESI⁺) calcd. for C26H36O1Na [M+Na⁺]: 659.1794. Found: 659.1814.
2,3,4-tri-O-acetyl-6-deoxy-6-fluoro-D-glucopyranosyl 2,3,4,6-tetra-O-acetyl-D-glucopyranoside (87) 50

In a 10 mL tube, \textbf{86} (111 mg, 0.174 mmol, 1 eq) was dissolved in dry dichloromethane (5 mL). DMAP (44.7 mg, 0.366 mmol, 2.1 eq) and DAST (46 \mu L, 0.348 mmol, 2.0 eq) were added and the solution was stirred overnight upon which time TLC (1:1 dichloromethane/ethylacetate) revealed complete conversion to product (R\textsubscript{f} 0.7) and dissappearance of starting material (R\textsubscript{f} 0.5). The mixture was evaporated to dryness and the obtained oil was purified by silica column chromatography (pure chloroform then 95:5 chloroform/ethanol) to give 76.2 mg of the desired compound as a colorless oil (76 mg, 69%).

[\text{off} + 164 (c = 1.0 in CHCl\textsubscript{3})] [Lit. \delta\textsubscript{H} 2 \text{DCH} = 166 (c = 0.65 in CHCl\textsubscript{3})] 10; \text{H NMR} (400 MHz CHLOROFORM-J) \delta ppm 2.04 (3 H, 1 x OCOCH\textsubscript{3}), 2.05 (3 H, 1 x OCOCH\textsubscript{3}), 2.06 (3 H, 1 x OCOCH\textsubscript{3}), 2.08 (3 H, 1 x OCOCH\textsubscript{3}), 2.09 (3 H, 1 x OCOCH\textsubscript{3}), 3.99 (1 H, dd, J\textsubscript{6b,6a} = 12.0 Hz, J\textsubscript{6a,6b} = 2.0 Hz, H-6b' OCOCH\textsubscript{3}), 4.10 (1 H, ddd, J\textsubscript{5,4} = 10.3 Hz, J\textsubscript{5,6a} = 5.6 Hz, J\textsubscript{5,6b} = 2.0 Hz, H-5'), 4.14 (1 H, ddd, J\textsubscript{5F} = 21.5 Hz, J\textsubscript{5,4} = 10.3, J\textsubscript{5,6a} = 5.0 Hz, J\textsubscript{5,6b} = 2.8 Hz, H-5), 4.27 (1 H, dd, J\textsubscript{6a,6b} = 12.0 Hz, J\textsubscript{6a,6b} = 5.6 Hz, H-6a' OCOCH\textsubscript{3}), 4.39 (1 H, ddd, J\textsubscript{6b,F} = 47.1 Hz, J\textsubscript{6b,6a} = 10.4 Hz, J\textsubscript{6b,6b} = 2.8 Hz, H-6b CH\textsubscript{2}F), 4.42 (1 H, ddd, J\textsubscript{6,F} = 47.1 Hz, J\textsubscript{6a,6b} = 10.4 Hz, J\textsubscript{5,6a} = 5.0 Hz, H-6a CH\textsubscript{2}F), 5.02 (1 H, dd, J\textsubscript{4,5} = 10.3 Hz, J\textsubscript{4,6} = 9.5 Hz, H-4), 5.02 (1 H, dd, J\textsubscript{2,3} = 10.3 Hz, J\textsubscript{2,1'} = 3.9 Hz, H-2'), 5.06 (1 H, dd, J\textsubscript{2,3} = 10.3 Hz, J\textsubscript{2,4} = 3.9 Hz, H-2), 5.07 (1 H, dd, J\textsubscript{4,6} = 10.3 Hz, J\textsubscript{4,3} = 9.5 Hz, H-4'), 5.28 (1 H, d, J\textsubscript{1,2} = 3.9 Hz, H-1), 5.29 (1 H, d, J\textsubscript{1,2} = 3.9 Hz, H-1'), 5.48 (1 H, dd, J\textsubscript{2,4} = 10.3 Hz, J\textsubscript{3,4} = 9.5 Hz, H-3), 5.50 (1 H, dd, J\textsubscript{2,3} = 10.3 Hz, J\textsubscript{3,4} = 9.5 Hz, H-3'); 13C NMR (125 MHz CHLOROFORM-J) \delta ppm 20.5, 20.6, 20.6, 20.6, 20.7, 20.7 (7 x OCOCH\textsubscript{3}), 61.7 (C-6' OCOCH\textsubscript{3}), 68.4 (C-2'), 68.7 (1 C, d, J\textsubscript{C-4,F} = 7.0 Hz C-4), 69.0 (1 C, d, J\textsubscript{C-5,F} = 19 Hz C-5), 69.7 (C-5'), 69.8 (2 C, C-3 and C-3'), 70.0 (C-2), 81.3 (1 C, d, J\textsubscript{C-6,F} = 175 Hz, C-6), 92.9 (C-1'), 93.1 (C-1), 169.5, 169.5, 169.6, 169.7, 169.9, 170.0, 170.6 (7x C=0); 19F NMR (376.5MHz
|CHLOROFORM-J| δ ppm: -230.6, dt, J\(_{6,F}\) = 47.1 Hz, J\(_{5,F}\) = 21.5 Hz; IR (thin film): ν = 2959, 1752, 1643, 1558, 1435, 1370, 1219, 1039, 803 cm\(^{-1}\); MS (ESI\(^+\)) m/z 661.2 (M+Na\(^+\)); HRMS (ESI\(^+\)) calcd. for C\(_{26}\)H\(_{35}\)O\(_i\)F (M+Na\(^+\)): 661.1750. Found: 661.1742.

6-deoxy-6-fluoro-a-D-glucopyranosyl-a-D-glucopyranoside (20) \(^\text{31}\)

\[
\begin{align*}
\text{HO} & \quad \text{OH} & \quad \text{OH} \\
\text{O} & \quad \text{OH} & \quad \text{OH}
\end{align*}
\]

In a 25 mL flask, 87 (44.5 mg, 0.069 mmol, 1 eq) was dissolved in dry methanol (10mL). Dry sodium methoxide (21.6 mg, 0.4 mmol, 6 eq) was added and the solution stirred overnight upon which time TLC (1:4:4 water:isopropanol:ethyl acetate) showed complete conversion to a single product (R\(_f\) 0.4) and disappearance of starting material (R\(_f\) 1). Reaction was neutralized with DOWEX 50WX8 (H\(^+\) form) cation exchange resin and then was filtered and evaporated to dryness to give 20.0 mg of a solid. This solid was purified by silica column chromatography (pure EtOAc then 1:4:4 water:isopropanol:ethyl acetate) to give a yellow compound that was discolored with activated charcoal, filtered and evaporated to afford the desired compound as a white, amorphous solid (11 mg, 46%) yield.

\([\alpha]_D^{35} + 124 \text{ (c = 0.2 in H}_2\text{O) } [\text{Lit. } [\alpha]_D^{31} + 174.2 \text{ (c = 1.0 in MeOH)}] ^{31}\) H NMR (400 MHz DEUTERIUM OXIDE) δ ppm: 3.32 (1 H, dd, J\(_{4',5'}\) = 10.4 Hz, J\(_{4',3'}\) = 9.2 Hz, H-4'), 3.43 (1 H, dd, J\(_{4',5'}\) = 10.0 Hz, J\(_{4',3'}\) = 9.6 Hz, H-4), 3.55 (1 H, dd, J\(_{2',3'}\) = 9.8 Hz, J\(_{2',4'}\) = 4.0 Hz, H-2'), 3.58 (1 H, dd, J\(_{2',3'}\) = 9.8 Hz, J\(_{2',1}\) = 4.0 Hz, H-2), 3.67 (1 H, dd, J\(_{6B',5'}\) = 12.0 Hz, J\(_{6B',5'}\) = 5.0 Hz, H-6b'), 3.73 (1 H, m, H-5'), 3.75 (1 H, dd, J\(_{3',2'}\) = 9.8 Hz, J\(_{3',4'}\) = 9.2 Hz, H-3'), 3.76 (1 H, dd, J\(_{6A',6B'}\) = 12.0 Hz, J\(_{6A',5'}\) = 2.6 Hz, H-6a'), 3.78 (1 H, dd, J\(_{5',2}\) = 9.8 Hz, J\(_{5',4}\) = 9.6 Hz, H-3'), 3.88 (1 H, dddd, J\(_{5',2}\) = 28.7 Hz, J\(_{5',4}\) = 10.0 Hz, J\(_{5',6a}\) = 3.0 Hz, J\(_{5B,6B}\) = 1.8 Hz, H-5), 4.59 (1 H, ddd, J\(_{6B,F}\) = 47.6 Hz, J\(_{6B,6a}\) = 10.8 Hz, J\(_{6B,5}\) = 1.8 Hz, H-6b), 4.65 (1 H, ddd, J\(_{6A,F}\) = 47.6 Hz, J\(_{6A,6B}\) = 10.8 Hz, J\(_{6A,5}\) = 3.0 Hz, H-6a), 5.05 (1 H, d, J\(_{1',2'}\) = 4.0 Hz, H-1'), 5.09 (1 H, d, J\(_{1',2}\) = 4.0 Hz, H-1), \(^{13}\)C NMR (101 MHz DEUTERIUM OXIDE) δ ppm 60.8 (C-6'), 68.1 (C-4'), 68.9 (1, C, d, J\(_{C-4,F}\) = 6.2 Hz, C-4), 70.0 (C-4'), 71.2, 71.2 (C-2 and C-2'), 71.4 (1
C, d, J_C-5,F = 12.0 Hz, C-5), 72.6 (C-5'), 72.7 (C-3), 72.8 (C-3'), 82.4 (1 C, d, J_C-6,F = 168 Hz, C-6-F), 93.8 (C-1 or C-1'), 93.9 (C-1 or C-1'); 1^3F NMR (377 MHz DEUTERIUM OXIDE) δ ppm: -235.6 (dt, J_6,F = 47.6 Hz, J_5,F= 28.7 Hz). IR (KBr): ν = 3421 (OH), 2925, 1683, 1600, 1472, 1261, 1150, 1106, 1077, 1030, 990 cm⁻¹; MS (ESI+) m/z 367.1 (M+Na⁺); MS (ESI-) m/z 343.1 (M-H); HRMS (ESI⁺) calcd. for C₁₂H₂₀O₁₀F (M-H): 343.1046, Found: 343.1045

Scheme S23. Reagents and conditions. (a)TBAF, CH₃COOH, THF, RT, 48 hrs
(b) OAST, DMAP, CH₂Cl₂, RT, 64 h, 40%
(c) NaOMe, MeOH, RT, 18 h, 99%.

2,3,6-tri-O-acetyl-a-D-glucopyranosyl 2,3,4,6-tetra-O-acetyl-a-D-glucopyranoside (88)

In a 100 mL flask was dissolved 83 (1.5 g, 2.01 mmol, 1 eq) in dry THF (20 mL). Glacial acetic acid (230 µL, 4.0 mmol, 2 eq) was added followed a 1M TBAF solution in THF (4.0 mL, 4.03 mmol, 2 eq). After 24 h TLC (1:1 dichloromethane/ethyl acetate) showed some starting material (Rₜ 0.8) remaining and reaction is completed after 48 hours (Rₜ 0.5). The mixture was evaporated and dried under high vacuum to give 4.0 g of oil. This oil was purified by silica column chromatography (98:2 chloroform/ethanol) to give the titled compound as an amorphous white solid (1.1 g, 85%).

[α]_D^25 + 150 (c = 1.0 in CHCl₃); H NMR (400 MHz CHLOROFORM-J) δ ppm
2.03 (3 H, 1 x OCOCH₃), 2.05 (3 H, 1 x OCOCH₃), 2.08 (3 H, 1 x OCOCH₃), 2.09 (3 H, 1 x OCOCH₃), 2.10 (3 H, 1 x OCOCH₃), 2.11 (3 H, 1 x OCOCH₃), 2.14 (3 H, 1 x OCOCH₃), 3.56 (1 H, dd, J_5,6= 10.0 Hz, J_4,3= 9.2 Hz, H-4 OH), 3.91 (1 H, ddd, J_5,4=...
10.0 Hz, \(J_{5,6a} = 5.6\) Hz, \(J_{5,6b} = 2.0\) Hz, H-5), 4.01 (1 H, dd, \(J_{6b',6a'} = 12.0\) Hz, \(J_{6b',5} = 2.0\) Hz, H-6b'), 4.06 (1H, ddd, \(J_{6a'}-6b' = 12.0\) Hz, \(J_{6a',5} = 2.0\) Hz, H-6b'), 4.05 (1H, dd, \(J_{6a',6b'} = 12.0\) Hz, \(J_{6a',5} = 5.6\) Hz, H-6a') 4.41 (1 H, dd, \(J_{6a,6b} = 12.0\) Hz, \(J_{6a,5} = 5.6\) Hz, H-6a) 5.00 (1 H, dd, \(J_{3,2} = 10.4\) Hz, \(J_{2,1} = 3.6\) Hz, H-2), 5.02 (1 H, dd, \(J_{3,2} = 10.4\) Hz, \(J_{2,1} = 4.0\) Hz, H-2'), 5.04 (1 H, dd, \(J_{4,3} = 10.0\) Hz, \(J_{4,4} = 9.2\) Hz, H-4'), 5.24 (1 H, d, \(J_{1,2} = 3.6\) Hz, H-1), 5.30 (1 H, d, \(J_{1,2} = 4.0\) Hz, H-1'), 5.31 (1 H, dd, \(J_{3,2} = 10.4\) Hz, \(J_{3,4} = 9.2\) Hz, H-3), 5.49 (1 H, dd, \(J_{3,2} = 10.4\) Hz, \(J_{3,4} = 9.2\) Hz, H-3'); \(^{13}\)C NMR (101 MHz CHLOROFORM-J) δ ppm 20.6, 20.6, 20.6, 20.7, 20.7, 20.9 (7x OCOCH₃), 61.7 (C-6'), 62.6 (C-6), 68.1 (C-4'), 68.5 (C-2'), 69.5 (2 C, C-2 and C-5'), 69.8 (C-5), 69.9 (C-3'), 70.8 (C-3), 73.1 (C-4 OH), 91.9 (C-l), 92.2 (C-l'), 169.6, 169.6, 169.7, 170.0, 170.6, 171.3, 172.1 (7 x C=O acetates); IR (thin film): ν = 3568, 3305, 3025, 2959, 1748, (C=O), 1370, 1223, 1161, 1039, 902, 757 cm⁻¹; MS (ESI+) m/z 695.2 (M+CH₃CN+NH₄⁺); HRMS (ESI⁺) calcd. for C_{26}H_{56}O_{18} (M+Na⁺): 659.1794, Found: 659.1788.

2,3,6-tri-0-acetyl-4-deoxy-4-fluoro-a-D-galactopyranosyl 2,3,4,6-tetra-O-acetyl-a-D-glucopyranoside (89)²

In a 10 mL tube, 88 (87.2 mg, 0.137 mmol, 1 eq) and DMAP (35.1 mg, 0.288 mmol, 2.1 eq) were dissolved in anhydrous dichloromethane (3 mL). The solution was cooled to -20 °C and DAST (36 μL, 0.274 mmol, 2 eq) was added. After 64 h, TLC (1:1 CH₂Cl₂:EtOAc) showed conversion to product (R₉ = 0.72). The mixture was concentrated under reduced pressure and purified by silica column chromatography (98:2 CHCl₃:EtOH followed by 95:5 and 90:10) to give the desired compound (34.5 mg, 40%) as a clear oil.

[δ off + 138 (c = 0.5 in CHCl₃) [Lit. [α]₁₀₀^D^2 = 168 (c = 1.0 in CHCl₃)]²³]; H NMR (400 MHz CHLOROFORM-J) δ ppm 2.04, 2.05, 2.06, 2.08, 2.09, 2.09 (7x 3H, s, OCOCH₃), 4.01 (1 H, dd, \(J_{6b,6a} = 12.0\) Hz, \(J_{6a,5} = 2.0\) Hz, H-6b'), 4.05 (1
H, ddd, J₅,₄ = 10.0 Hz, J₅',₆₆ = 5.6 Hz, J₅',₆₅ = 2.0 Hz, H-5'), 4.15 (2 H, m, H-5, H-6b), 4.24 (1 H, dd, J₆₆,₆₅ = 12.0 Hz, J₆₆',₆₅ = 5.6 Hz, H-6a'), 4.30 (1 H, m, H-6a), 5.02 (1 H, dd, J₄,₁F = 50.2 Hz, J₄,₃ = 2.4 Hz, H-4 F), 5.03 (1 H, dd, J₂,₃ = 10.0 Hz, J₁',₂ = 4.0 Hz, H-2'), 5.04 (1 H, app t, J₄',₅ = J₄',₃ = 10.0 Hz, H-4'), 5.25 (1 H, ddd, J₃,₁ = 25.7 Hz, J₃,₂ = 10.0 Hz, H-3'), 5.29 (1 H, d, J₁,₂ = 4.0 Hz, H-1'), 5.35 (3 H, d, J₃,₂ = 3.8 Hz, H-1), 5.37 (1 H, dd, J₂,₃ = 10.0 Hz, J₂,₁ = 3.8 Hz, H-2), 5.47 (1H, dd, J₃,₂ = 10.0 Hz, J₃',₄ = 10.0 Hz, H-3'), 13C NMR (125 MHz CHLOROFORM-Δ)
δ ppm: 20.5, 20.6, 20.6, 20.6, 20.6, 20.6, 20.8, (7x CH₃ acetates), 61.6 (1 C, d, J_C₆F = 6.3 Hz C-6), 61.7 (C-6'), 66.7 (C-2), 67.5 (1 C, d, J_C₃F = 18 Hz, C-5), 68.2 (C-4'), 68.3 (1 C, d, J_C₄F = 185 Hz, C-4, CH-F), 92.5 (C-1'), 92.9 (C-1), 169.5, 169.7, 170.0, 170.3, 170.3, 170.6 (7x C=0 acetates), 69.7 (C-2'), 69.8 (C-3'), 86.4 (1 C, d, J_C₄F = 185 Hz), 94.7 (C-1), 99.0, 100.0, 103.8 (7x CH₃ acetates), 147.6 (C-3'), 153.9 (C-1'), 161.9, 1645.0, 1653.9, 1434.6, 1371.5, 1224.7, 1038.1, 733.6 cm⁻¹; MS (ESI⁺) m/z 697.2 (M+CH₃CN+NH₄⁺); HRMS (ESI⁺) calcd. for C₃₀H₃₀O₁₇F (M+Na⁺): 661.1750, Found: 661.1765.

4-deoxy-4-fluoro-α-D-galactopyranosyl a-D-glucopyranoside (21)²²

89 (16.2 mg, 0.047 mmol, 1 eq) was dissolved in dry methanol (5mL) and dry sodium methoxide (10.8 mg, 0.28 mmol, 6 eq) was added. After stirring overnight, TLC (4:4:1 ethyl acetate:isopropanol:water) showed the formation of a single compound (Rₚ 0.28). Reaction was neutralized with DOWEX 50WX8 (H⁺ form) cation exchange resin and the solution was filtered and evaporated to give 4-deoxy-4-fluoro-α-D-galactopyranosyl a-D-glucopyranoside as a clear oil (10.3 mg, 100%).

[α]D³⁵ + 176 (c = 0.1 in H₂O) [Lit. [α]D³⁵ + 172.6 (C = 0.5 in CH₃OH)]³²; H NMR (400 MHz DEUTERIUM OXIDE) δ ppm: 3.33 (1 H, dd, J₄,γ = 10.0 Hz, J₄,₃ = 9.2 Hz, H-4'), 3.53 (1 H, dd, J₂,₃ = 10.0 Hz, J₁,₂ = 4.0 Hz, H-2'), 3.67 (1H, dd,
$J_{6a',6b'} = 12.0 \text{ Hz, } J_{6b',5'} = 5.6 \text{ Hz, } H-6b'$, 3.72 (2 H, m, H-6a and H-6b), 3.75 (1 H, dd, $J_{3',2'} = 10.0 \text{ Hz, } J_{3',4'} = 9.2 \text{ Hz, } H-3'$), 3.75 (1H, m, H-5'), 3.76 (1 H, dd, $J_{6a',6b'} = 12.0 \text{ Hz, } J_{6a',5'} = 2.2 \text{ Hz, } H-6a'$), 3.85 (1 H, dd, $J_{2,3} = 10.4 \text{ Hz, } J_{1,2} = 4.0 \text{ Hz, } H-2$), 4.00 (1 H, ddd, $J_{3,2} = 10.4 \text{ Hz } J_{3,4} = 2.8 \text{ Hz, } H-3$), 4.04 (1 H, dt, $J_{5,F} = 32.2 \text{ Hz, } J_{5,6a} = J_{5,6b} = 6.4 \text{ Hz, } H-5$), 4.80 (1 H, dd, $J_{4,F} = 50.5 \text{ Hz, } J_{4,3} = 2.8 \text{ Hz, } H-4$), 5.08 (1 H, d, $J_{1,2} = 4.0 \text{ Hz, } H-1$), 5.15 (1 H, d, $J_{1,2} = 4.0 \text{ Hz, } H-1$); 13C NMR (101 MHz DEUTERIUM OXIDE) δ ppm: 60.4 (d, $J_{C-5,F} = 5.8 \text{ Hz C-6}$), 60.8 (C-6), 68.1 (d, $J_{C-5} = 17 \text{ Hz C-3}$), 68.2 (C-2), 70.0 (C-4'), 70.5 (d, $J_{C-5F} = 18 \text{ Hz C-5}$), 71.3 (C-2'), 72.5 (C-5'), 72.8 (C-3'), 90.7 (d, $J_{C-F} = 177 \text{ Hz C-4-F}$), 93.8 (2x C-1); 19F NMR (377 MHz DEUTERIUM OXIDE) δ ppm: -219.7, ddd, $J_{F-H4} = 50.5 \text{ Hz, } J_{F-H5} = 32.2 \text{ Hz, } J_{F-H3} = 30.0 \text{ Hz}; IR (KBr): ν = 3430 (OH), 2928, 1635.98, 1419, 1350, 1260, 1151, 1102, 1077, 1050, 1013 cm$^{-1}; MS (EST) m/z 367.1 (M+Na$^+$), MS (ESI-) m/z 343.1 (M-H$^-$); HRMS (EST) calcld. for $C_{12}H_{21}O_i_{10}F$ (M+Na$^+$): 367.1011 Found: 367.1008.

6-deoxy-6-bromo-a-D-glucopyranosyl-a-D-glucopyranoside (19) 33,34

![Chemical structure](image)

The compound was synthesized according to the literature 33. In a 50 mL flask, anhydrous d-trehalose (1.52 g, 4.43 mmol, 1 eq) was dissolved in dry DMF (15mL). Triphenylphosphine (2.32 g, 8.87 mmol, 2 eq) was added followed by NBS (1.57 g, 8.87 mmol, 2 eq). The mixture was stirred overnight at room temperature and 24 h at +60 °C and evaporated to give 5.00g of a yellow oil containing a mixture of expected compound along with unreacted trehalose and corresponding dibromo. This oil was purified by column chromatography using (EtOAc: MeOH 100:0, 90:10 and 80:20) to give (408.3 mg, 20%) and the titled compound as a brownish, amorphous solid (594.0 mg, 33%).

$[\alpha]_D^{21} + 134 \text{(c = 1 in (H$_2$O)) [Lit. } [\alpha]_D^{21} + 180.8 \text{(C = 0.7 in CH$_3$OH)}]$ 34; H NMR (400 MHz DEUTERIUM OXIDE) δ ppm: 3.33 (1 H, app t, $J_{4',5'} = J_{4',3} = 9.8 \text{ Hz, } H-4$'), 3.38 (1 H, app t, $J_{4,5} = J_{4,3} = 9.8 \text{ Hz, } H-4$), 3.53 (1 H, dd, $J_{2,3} = 9.8 \text{ Hz, } J_{2,1} =$...
3.8 Hz, H-2'), 3.56 (1 H, dd, J_6b:6a = 9.8 Hz, J_5:6a = 3.8 Hz, H-2'), 3.56 (1 H, dd, J_6b:6a = 11.4 Hz, J_6b:5' = 5.0 Hz, H-6b' CH_2OH), 3.68 (1 H, dd, J_6b:6a = 11.4 Hz, J_6a:5' = 2.8 Hz, H-6a CH_2Br), 3.70 (1H, app t, J_3:2' = J_3:4' = 9.8 Hz, H-3'), 3.73 (1 H, dd, J_6a:6b' = 11.4 Hz, J_5:5' = 2.6 Hz, H-6a'), 3.73 (1 H, m, H-5'), 3.75 (1 H, app t, J_3:2 = J_5:4 = 9.8 Hz, H-3), 3.87 (1 H, ddd, J_3:4 = 9.8 Hz, J_5:6b = 5.4 Hz, J_5:6a = 2.8 Hz, H-5), 5.09 (1 H, d, J_1:1' = 3.8 Hz, H-1'), 5.10 (1 H, d, J_1:2 = 3.8 Hz, H-1); \(^{13}\)C NMR (126 MHz DEUTERIUM OXIDE) \(\delta\) ppm 34.1 (C-6 CH_2Br), 60.8 (C-6' CH_2OH), 69.9 (C-4'), 71.0 (C-4), 71.2, 71.2 (C-2 and C-2'), 71.9 (C-5), 72.4 (C-3), 72.5 (C-5'), 72.8 (C-3'), 93.6 (C-1), 93.8 (C-1'); IR (KBr): \(v = 3421, 2925, 1653, 1636, 1419, 1261, 1149, 1103, 992, 939\) cm\(^{-1}\); MS (ESI-) \(m/z\) 403.0 and 405.0 (M-H)\(^{-}\); HRMS (ESI) calced. for \(\text{C}_2\text{H}_{12}\text{O}_6\text{Br}\) (M-H)\(^{-}\): 403.0245, Found: 403.0241, calcd. for \(\text{C}_2\text{H}_{12}\text{O}_6\text{Br}\) (M-H)\(^{-}\): 405.0227, Found: 405.0219.

15 References

10. Shelling, Judith G. et al, 2'-Fluoromaltose: Synthesis and properties of 4-O-(2'-deoxy-2-fluoro-[alpha]-glucopyranosyl)glucopyranose, and the crystal

Wang, Min et al., [alpha], [alpha]-Trehalose derivatives bearing guanidino groups as inhibitors to HIV-1 Tat-TAR RNA interaction in human cells. Bioorganic & Medicinal Chemistry Letters 14 (10), 2585 (2004).

Claims

1. A compound for labelling mycobacteria, which compound comprises a label and a substrate, which label can be detected by a detector responsive to the presence of the label, optionally after applying a stimulus, characterised by the compound being able to engage with the active site of Antigen 85B (Ag85B) such that it can form simultaneous hydrogen bonds with two or more amino acids in the active site selected from Arg 43, Trp 264, Serl26, His 262 and Leu 42, or the corresponding amino acids in Antigen 85A (Ag85A) or Antigen 85C (Ag85C), at least one of which is with Serl26.

2. A compound as claimed in claim 1, in which the substrate is a carbohydrate or derivative thereof comprising 1 to 6 monosaccharide units.

3. A compound as claimed in claim 2, in which the carbohydrate is a mono or disaccharide or derivative thereof.

4. A compound as claimed in claim 2 or claim 3, with Formula I:

\[
\begin{align*}
&\text{FORMULA I} \\
&C_{(4)} \quad R^4 \\
&C_{(5)} \quad R^5 \\
&\vdots \\
&C_{(1)} \quad R^1 \quad M \\
&C_{(2)} \quad R^2 \\
&C_{(3)} \quad R^3 \\
&C_{(30)} \quad R^{30} \\
&C_{(40)} \quad R^{40} \\
\end{align*}
\]

in which;

- M is a carbohydrate or derivative thereof comprising 1 to 5 monosaccharide units, linked to C(i) through bridge group E, in either α or β configurations;

- \(R^1 \) is selected from H, -L, -X, -CYY'L, -CYY'X;

- One of \(R^2 \) and \(R^{20} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;
One of R^3 and R^{30} is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of R^4 and R^{40} is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;

One of R^5, and R^{50} are -H, and the other is selected from CYY'L or -CYY'X:

X is an optional derivative group, and is selected from halides, R^a groups, -Z-H groups, groups of general formula -Z-Ra, groups of general formula WH$_{2-x}$R$_x$, groups of general formula -C(Z')Z"-H, -C(Z)-Ra, -C(Z')Z"-Ra and -C(Z)-WH$_{1-y}$R$_y$; in which;

R^a is, at each occurrence, an optionally substituted linear or branched alkyl, alkenyl and alkynyl groups or an optionally substituted aromatic group; R^a preferably comprises 6 carbon atoms or less; where R^a comprises one or more substituents, such substituents are selected from halides, -ZH, Z-Rb, WH$_{2-x}$R$_x$; where Rb at each occurrence is selected from optionally substituted linear or branched alkyl, alkenyl, alkynyl and aromatic groups, preferably comprising 6 carbons atoms or less;

Z, Z' and Z'' at each occurrence is a Group 16 element preferably selected from O and S, and preferably at least one of Z' and Z'' is O;

W is a Group 15 element that is preferably selected from N and P; x is 0, 1 or 2, and y is 0 or 1;

E is selected from one or more of (a) a Group 16 element, preferably O, S or Se; (b) a group comprising a Group 15 element with formula WH$_{(i-}$ \((y+y')\)RaL$_y$ in which W is preferably N or P, y and y' are independently 0 or 1, and y+y' is no more than 1; (c) a group comprising a Group 14 element of general formula VX'$_{(2+x+x')}$RaL$_x$ in which V is the Group 14 element, preferably C or Si, X' is at each occurrence H, OH or X, x and x' are individually 0, 1 or 2, x+x' being no more than 2.

Y and Y' are independently H or X, with the proviso that the carbon atom to which they are bound has no more than one directly bound O, Z and W atoms;

wherein there is at least one label group L on the substrate molecule and/or at least one carbon atom in the molecule is 13C or 14C enriched, and/or at least one hydrogen atom in the molecule is 2H or 3H enriched.
5. A compound as claimed in claim 3 or claim 4, of Formula II;

![Formula II](image)

Where:

- E is a bridging group as defined in claim 4, and each of the two monosaccharides are either α or β linked.
- \(R^1 \) and \(R^1' \) are independently selected from H, -L, -X, -CYY'L, -CYY'X;
- One of \(R^2 \) and \(R^{20} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;
- One of \(R^{2'} \) and \(R^{20'} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;
- One of \(R^3 \) and \(R^{30} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;
- One of \(R^{3'} \) and \(R^{30'} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;
- One of \(R^4 \) and \(R^{40} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;
- One of \(R^{4'} \) and \(R^{40'} \) is -H and the other is selected from -OH, -L, -X, -CYY'L, -CYY'X;
- One of \(R^5 \) and \(R^{50} \) is -H, and the other is selected from CYY'L or -CYY'X;
- One of \(R^{5'} \) and \(R^{50'} \) is -H, and the other is selected from CYY'L or -CYY'X;
at least one of R₄ and R_{4'} is H and/or at least one or R₄₀ and R_{40'} is able to form hydrogen bonds, for example -OH or -SH;

X is optional and is as defined in claim 4;

Y and Y' are independently H or X, with the proviso that the carbon atom to which they are bound has no more than one directly bound O, Z and W atoms; and

wherein there is either at least one label group L on the molecule and/or one or more carbon atoms in the molecule is ¹³C or ¹⁴C enriched and/or at least one hydrogen atom in the molecule is ²H or ³H enriched.

6. A compound as claimed in claim 5, in which R₁ and R_{1'} are independently -H, or alkyl with less than 6 carbon atoms such as methyl; R₂, R_{2'}, R₂₀, R_{20'}, R₃, R_{3'}, R₃₀, R_{30'}, R₄, R_{4'}, R₄₀ and R_{40'} are each independently selected from -H, -OH or -L; and R₅ and R_{5'} are each independently selected from C₃OH or C₃L.

7. A compound as claimed in any one of claims 1 to 6, in which the label is luminescent, radioactive, detectable by nuclear magnetic resonance (NMR) techniques, or detectable by X-ray photographic techniques.

8. A compound as claimed in any one of claims 1 to 7, in which the label is detectable by an in vivo imaging technique such as PET, MRI, CT and SPECT.

9. A compound as claimed in any one of claims 1 to 8, in which the label comprises a fluorophor, one or more positron emitting nuclei selected from ¹⁸F, ⁶⁴Cu and ¹²⁴I, one or more radioactive isotopes selected from ¹⁴C, ³H, ¹²³I and ¹³¹I, one or more NMR-detectable isotopes selected from ¹³C, ²H or ¹⁹F, or an X-ray detectable heavy element with an atomic number of at least 35.

10. A compound as claimed in claim 9, in which the fluorophor is selected from fluoresceins, xanthenes, cyanines, naphthalenes, coumarins, oxadiazoles, pyrenes, oxazines, acridines, arylmethines, Alexa Fluors, tetrapyrroles, and quantum dots.
11. A compound as claimed in any one of claims 1 to 10, in which the label is an isotopically enriched analogue of the substrate, being enriched with one or more isotopes selected from ^{13}C, ^{14}C, ^2H or ^3H.

12. A method for determining the presence of mycobacteria species in an organism or biological sample, the method comprising adding to the organism or biological sample a probe molecule comprising a substrate and a label, which probe molecule can be incorporated into mycobacteria, the presence of mycobacteria being determined by a detector responsive to the presence of the label, optionally after applying a stimulus.

13. A method as claimed in claim 12, in which the probe molecule is capable of being incorporated into the mycolic acid layer of the cell wall of mycobacteria by the action of trehalose transesterase enzymes secreted by the mycobacteria, for example one or more of Ag85A, Ag85B and Ag85C.

14. A method as claimed in claim 12 or 13, in which the probe molecule is a compound according to any one of claims 1 to 11.

15. A method as claimed in any one of claims 12 to 14, in which the probe molecule is added to an organism, and the label is detectable by and detected by an in vivo imaging technique such as PET, MRI, CT and SPECT.

16. A method as claimed in any one of claims 12 to 14, in which the probe molecule is added to a biological sample selected from sputum, cerebrospinal fluid, pericardial fluid, synovial fluid, ascitic fluid, blood, bone marrow, urine and faeces.

17. A method as claimed in any one of claims 12 to 16, in which the mycobacteria are of the species *Mycobacteria Tuberculosis*.
FIGURE 1
FIGURE 3
7/20

(c)

FIGURE 4c

TDM

TMM
Scheme S3. Reagents and conditions. (a) TMSOTf, 4Å molecular sieves, anhydrous DCM, –
40 °C, 3 h; (b) NaOMe, anhydrous MeOH, RT, 1 h; (c) H₂, Pd(OH)₂/C, basic alumina, RT, 72
h.
Quantum dots run on an agarose gel, 100 Volts, 2 h. (i) modified (ii) unmodified (iii) DNA ladder

FIGURE 12
Standardised curve for determining trehalose concentration on modified quantum dots using the phenol-sulphuric acid method.

FIGURE 13
INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2010/051519

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61K31/351 A61K49/06 A61K51/00 C07D309/Q2 C07H3/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K C07D C07H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, BEILSTEIN Data, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>HORLACHER R ET AL: "Improved method for the preparation of trehalose of high specific activity by Escherichia coli." APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 62, no. 10, October 1996 (1996-10), pages 3861-3863, XP009140819 ISSN: 0999-2240 abstract; figure 3 ----- -/ -</td>
<td></td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier document but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

Date of the actual completion of the international search
10 January 2011

Date of mailing of the international search report
04/02/2011

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer
Vogt, Titus

Form PCT/ISA/210 (second sheet) (April 2008)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, P</td>
<td>KONG YING ET AL: "Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 107, no. 27, 6 July 2010 (2010-07-06), pages 12239-12244, ISSN: 1091-6490 abstract; figures 2, 4, 5</td>
<td>12, 15, 17</td>
</tr>
<tr>
<td>Category</td>
<td>Citation of document, with indication, where appropriate, of the relevant passages</td>
<td>Relevant to claim No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>uti one" MICROBE, vol. 3, no. 6, 2008, pages 285-292, XP002608393 Imagining }</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biomarkers page 291 - page 292; figure 5</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>WELLING MICK M ET AL: "Current Status of Imagining Infections with Radiolabeled</td>
<td>1-17</td>
</tr>
<tr>
<td></td>
<td>Anti-Infective Agents" ANTI-INFECTIVE AGENTS IN MEDICINAL CHEMISTRY, vol. 8, no.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3, July 2009 (2009-07), pages 272-287, XP009140829 the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>ANDERSON D H ET AL: "An interfacial mechanism and a class of inhibitors inferred</td>
<td>1-17</td>
</tr>
<tr>
<td></td>
<td>from two crystal structures of the Mycobacterium tuberculosis 30 kDa major</td>
<td></td>
</tr>
<tr>
<td></td>
<td>secretory protein (antigen 85B), a mycolyl transferase" JOURNAL OF MOLECULAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LONDON, GB ISSN: 0022-2836 DOI: 10.1006/JMBI.2001.4461 the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>RONNING DONALD R ET AL: "Mycobacterium tuberculosis antigen 85A and 85C</td>
<td>1-17</td>
</tr>
<tr>
<td></td>
<td>structures conferring binding orientation and conserved substrate specificity"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pages 36771-36777, XP009140823 AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOLOGY, INC, US ISSN: 0021-9258 DOI: 10.1074/JBC.M400811200 [retrieved on</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004-06-10] the whole document</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>DE 19611449 A1</td>
<td>25-09-1997</td>
<td>NONE</td>
</tr>
</tbody>
</table>