
(19) United States
US 20090144564A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0144564 A1
Beukema et al. (43) Pub. Date: Jun. 4, 2009

(54) DATA ENCRYPTION INTERFACE FOR
REDUCING ENCRYPT LATENCY MIPACT
ON STANDARD TRAFFIC

(75) Inventors: Bruce L. Beukema, Hayfield, MN
(US); Jamie R. Kuesel, Rochester,
MN (US); Robert A. Shearer,
Rochester, MN (US)

Correspondence Address:
IBM CORPORATION, INTELLECTUAL PROP
ERTY LAW
DEPT 917, BLDG. 006-1
3605 HIGHWAY 52 NORTH
ROCHESTER, MN 55901-7829 (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
ARMONK, NY (US)

(73) Assignee:

12/364,610 (21) Appl. No.:

TO2PROCCESOR CORES

118 CPUBUSINTERFACE

UNENCRYPTED
WRITE DATA

ENCRYPTED
WRITEDATA

256
NONE

ENCRYPTED

DATA 215

FLOW
CONTROL

PHYSICAL
LAYER

TOEXTERNAL DEVICES

(22) Filed: Feb. 3, 2009

Related U.S. Application Data

(63) Continuation of application No. 10/932,943, filed on
Sep. 2, 2004, now Pat. No. 7,496,753.

Publication Classification

(51) Int. Cl.
H04L 9/06 (2006.01)

(52) U.S. Cl. .. 713/193
(57) ABSTRACT

Methods and apparatus that may be utilized in Systems to
reduce the impact of latency associated with encrypting data
on non-encrypted data are provided. Secure and non-secure
data may be routed independently. Thus, non-secure data may
be forwarded on (e.g., to targeted write buffers), without
waiting for previously sent secure data to be encrypted. As a
result, non-secure data may be made available for Subsequent
processing much earlier than in conventional systems utiliz
ing a common data path for both secure and non-secure data.

SECURITY
COMPONENT 150

ENCRYPTION
ENGINE 152

ENCRYPTED
DATA DECRYPTION

ENGINE
154

BUFFER
POOL

FSBNTERFACE

0||

8||E!OV-RHEILNI STIE ERHOO

Patent Application Publication

Patent Application Publication Jun. 4, 2009 Sheet 3 of 4 US 2009/0144564 A1

ADDRESS
CONTROL DATA

270

COMMAND SECURE MUX CTRL (O)
DECODER DATA

CONTROL

FLOW
CONTROL STORE

ADDRESS
BUFFER

260
SECURE

NON
SECURE

ENCRYPTION
ENGINE

DATA
BUFFER
WRITE

CONTROL

DATA
HOLD
BUFFER

READ/WRITE CTL

REQUEST
DATA
BUFFER

RESPONSE
DATA
BUFFER

214 213

FIG. 3

US 2009/O144564 A1 Jun. 4, 2009 Sheet 4 of 4 Patent Application Publication

8kW (~1 GEdAHONE-NON
E|| []O}}

0], 7

(OXnW)

US 2009/O 144564 A1

DATA ENCRYPTION INTERFACE FOR
REDUCING ENCRYPT LATENCY IMPACT

ON STANDARD TRAFFIC

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of co-pending
U.S. patent application Ser. No. 10/932,943, filed Sep. 2,
2004, which is herein incorporated by reference in its entirety.
0002 This application is related to commonly assigned
co-pending application entitled “Low-Latency Data Decryp
tion Interface” (Atty. Docket No. ROC920040013), filed
herewith and hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

0003 1. Field of the Invention
0004. The present invention generally relates to data
encryption and, more particularly, to methods and apparatus
for reducing latency associated with selectively encrypting
portions of data.
0005 2. Description of the Related Art
0006. A system on a chip (SOC) generally includes one or
more integrated processor cores, some type of embedded
memory, Such as a cache memory, and peripheral interfaces,
Such as memory control components and external bus inter
faces, on a single chip to form a complete (or nearly complete)
system.
0007 As part of an enhanced security feature, some SOCs
encrypt some portions of data prior to storing it in external
memory. Adding Such encryption to an SOC may add valu
able benefits. Such as preventing a hacker from obtaining
instructions of a copyrighted program, Such as a video game,
or data that may be used to determine Such instructions
through reverse engineering. However, adding encryption
typically impacts system performance, as conventional
encryption schemes typically stream both data that is to be
encrypted and data that is not to be encrypted (non-encrypted
data) through a common sequential data path. As a result,
non-encrypted data is typically suffers the same latency as
encrypted data.
0008. This latency may add significant delay to the storing
of non-encrypted data. In addition, this latency may prevent
the Subsequent storage of non-encrypted data while previous
data is being encrypted. Accordingly, what is needed is a
mechanism to minimize performance impacts on non-en
crypted data caused by encryption latency.

SUMMARY OF THE INVENTION

0009. The present invention generally provides a method
and apparatus that can improve the performance of systems
with encrypted memory regions while ensuring that
encrypted and non-encrypted data are correctly written to
their respective memory locations.

BRIEF DESCRIPTION OF THE DRAWINGS

0010. So that the manner in which the above recited fea
tures, advantages and objects of the present invention are
attained and can be understood in detail, a more particular
description of the invention, briefly summarized above, may
be had by reference to the embodiments thereof which are
illustrated in the appended drawings.
0011. It is to be noted, however, that the appended draw
ings illustrate only typical embodiments of this invention and

Jun. 4, 2009

are therefore not to be considered limiting of its scope, for the
invention may admit to other equally effective embodiments.
0012 FIG. 1 illustrates an exemplary system including a
central processing unit (CPU), in which embodiments of the
present invention may be utilized.
0013 FIG. 2 is a block diagram of components of the
CPU, according to one embodiment of the present invention.
0014 FIG.3 is a block diagram of the encryption data path
of the CPU, according to one embodiment of the present
invention.
0015 FIG. 4 is a flow diagram of exemplary operations for
reducing latency associated with data encryption according to
one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0016 Embodiments of the present invention may be uti
lized in systems to reduce the impact that latency associated
with encrypting data has on processing non-encrypted data.
Rather than route both secure (to be encrypted) and non
secure (not to be encrypted) data along a common data path,
secure and non-secure data may be routed independently.
Thus, non-secure data may be forwarded on (e.g., to targeted
write buffers), without waiting for previously sent secure data
to be encrypted. As a result, non-secure data may be made
available for Subsequent processing much earlier than in con
ventional systems utilizing a common data path for both
secure and non-secure data.
0017. In the following description, reference is made to
embodiments of the invention. However, it should be under
stood that the invention is not limited to specific described
embodiments. Instead, any combination of the following fea
tures and elements, whether related to different embodiments
or not, is contemplated to implement and practice the inven
tion. Furthermore, in various embodiments the invention pro
vides numerous advantages over the prior art. However,
although embodiments of the invention may achieve advan
tages over other possible solutions and/or over the prior art,
whether or not a particular advantage is achieved by a given
embodiment is not limiting of the invention. Thus, the fol
lowing aspects, features, embodiments and advantages are
merely illustrative and, unless explicitly present, are not con
sidered elements or limitations of the appended claims

An Exemplary System

0018 Referring now to FIG. 1, an exemplary computer
system 100 including a central processing unit (CPU) 110 is
illustrated, in which embodiments of the present invention
may be utilized. As illustrated, the CPU 110 may include one
or more processor cores 112, which may each include any
number of different type function units including, but not
limited to arithmetic logic units (ALUs), floating point units
(FPUs), and single instruction multiple data (SIMD) units.
Examples of CPUs utilizing multiple processor cores include
the PowerPC(R) line of CPUs, available from International
Business Machines (IBM) of Armonk, N.Y.
0019. As illustrated, each processor core 112 may have
access to its own primary (L1) cache 114, and may optionally
share a larger secondary (L2) cache 116. In general, copies of
data utilized by the processor cores 112 may be stored locally
in the L2 cache 116, preventing or reducing the number of
relatively slower accesses to external main memory 140.
Similarly, data utilized often by a processor core 112 may be

US 2009/O 144564 A1

stored in its L1 cache 114, preventing or reducing the number
of relatively slower accesses to the L2 cache 116.
0020. The CPU 110 may communicate with external
devices, such as a graphics processing unit (GPU) 130 and/or
a memory controller 136 via a system or frontside bus (FSB)
128. The CPU 110 may include an FSB interface 120 to pass
data between the external devices and the processing cores
112 (through the L2 cache) via the FSB 128. An FSB interface
132 on the GPU 130 may have similar components as the FSB
interface 120, configured to exchange data with one or more
graphics processors 134, input output (I/O) unit 138, and the
memory controller 136 (illustratively shown as integrated
with the GPU 130).
0021. As illustrated, the FSB interface 120 may include a
physical layer 122, link layer 124, and transaction layer 126.
The physical layer 122 may include hardware components for
implementing the hardware protocol necessary for receiving
and sending data over the FSB 128. The physical layer 122
may exchange data with the link layer 124 which may format
data received from or to be sent to the transaction layer 126.
As illustrated, the transaction layer 126 may exchange data
with the processor cores 112 via a core bus interface (CBI)
118.

0022. As previously described, as part of an enhanced
security feature, the CPU 110 may encrypt some portions of
data, referred to herein as secure data, prior to storing it in
main memory 140 (such encrypted portions of data are illus
tratively shown as protected data 142 in main memory 140).
Accordingly, the CPU 110 may include a security component
150 used to encrypt such data prior to transmission over the
FSB 128 by the FSB interface 120. Upon later retrieval of the
encrypted data, the security component 150 may also be used
to decrypt the encrypted data prior to passing it into the L2
cache 116 for use by one or more of the processor cores 112.
As will be described in greater detail below, for some embodi
ments, the CPU 110 may include data flow control circuit
configured to independently route secure data, to be
encrypted prior to storage in main memory 140, to the Secu
rity component 150 for encryption, while routing non-secure
data around (bypassing) the security component
0023. As shown in FIG. 2, a number of data streams (also
referred to as virtual channels) may be established to
exchange data between the processor cores 112 and external
devices. Establishing the separate streams may improve over
all system performance, for example, allowing one process
ing core to transfer data while another processes data (and is
not transferring data). As illustrated, the streams may share a
common buffer pool 210, with each stream utilizing its own
portion of the buffer pool 210, in effect establishing separate
bufferS 211-217.

0024 For some embodiments, data may be sent over the
FSB as packets. Therefore, the link layer 124 may contain
circuitry. Such as a packet encoder 233 configured to encode
into packets or “packetize” data received from the transaction
layer 126 and a packet decoder 234 to decode packets of data
received from the physical layer 122. As shown, the physical
layer 122 may include a serializer 243 and a de-serializer 244
for generating and receiving Such packets, respectively. Typi
cally, the packet decoder 234 will include a packet validation
component 235 configured to check a received data packet for
data transfer errors, for example, by comparing a checksum
calculated on the received data with a checksum contained in
the data packet.

Jun. 4, 2009

0025. The packet decoder 234 may forward received data
to one or more receive buffers 215-217. As illustrated, some
of the data, such as data request and response commands sent
to buffers 215 and 216, may be non-encrypted and may,
therefore, be passed directly to cache 116. Response data, on
the other hand, may include both encrypted and non-en
crypted data. While the non-encrypted data can be passed
directly to cache 116, encrypted data 251 must first be
decrypted. Therefore, the encrypted data 251 may be routed
to the decryption engine 154.
0026. The decryption engine 154 may decrypt the
encrypted data 251 and pass back decrypted data 252. As
illustrated, the decrypted data 252 may be merged with the
non-encrypted data and passed to the cache 116 using a mul
tiplexor circuit 253. For example, the decryption engine 154
may assert a signal to the multiplexor circuit 253 when
decrypted data 252 is available to be passed to the cache 116.
For some embodiments, the transaction layer 126 may
include logic configured to pipeline received encrypted data
251 to the decryption engine 154 prior to receiving and vali
dating the entire data packet. Such logic is described in detail
in the commonly assigned and co-pending application
entitled “Low-Latency Data Decryption Interface' (Atty.
Docket No. ROC920040013), filed herewith and hereby
incorporated by reference in its entirety.

Reducing Encrypt Latency Impact on Standard
Traffic

0027. As previously described, secure data is encrypted
prior to storing it externally, for example, in main memory
140. Accordingly, as shown in FIG. 2, the FSB transaction
layer 126 may include data flow control circuit 260 config
ured to route unencrypted secure data 254 to an encryption
engine 152. The encryption engine 152 may then return
encrypted data 256 that the data flow control circuit 260 may
then forward to write buffers 213. The packet encoder 233
may then access the encrypted data from the write buffers 213
and generate data packets to be sent out over the FSB via
serializer 243.
0028. The data flow control circuit 260 may be configured
to receive and route both secure and non-secure data. While
encryption operations may involve significant latency, the
data flow control circuit 260 may be configured to route the
secure and non-secure data independently in an effort to
reduce the impact of encryption latency on the non-secure
data. As illustrated, the data flow control circuit 260, in effect,
provides different data paths from the CBI to the write buffers
213, with secure data routed along a first path (through the
encryption engine 152) and non-secure data routed along a
second path.
0029 FIG. 3 illustrates one embodiment of the data flow
control circuit 260 that may be utilized to independently route
both secure and non-secure data via an arrangement of mul
tiplexors 262-265 (MUX0-3). As illustrated, the data flow
control circuit 260 may receive data from the CBI, for
example, involved in Store instructions issued by the proces
Sor cores. As illustrated, address and command data may be
received by other components, such as a command decoder
270, secure data control circuit 272, and data buffer write
control 273, that illustratively control operation of the data
flow control circuit 260 (e.g., via signals that control the
multiplexors 262-265).
0030 Operation of the data flow control circuit 260 via the
multiplexors 262-265 may be described with simultaneous

US 2009/O 144564 A1

reference to FIG. 3 and FIG. 4 which illustrates exemplary
operations 400 for independently routing secure and non
secure data. To facilitate understanding, the multiplexor(s)
shown in FIG. 3 involved in one of the operations shown in
FIG. 4 are listed below the operation. The operations 400
begin, at step 402, by receiving data involved in a store
instruction. As illustrated, the data flow control circuit 260
may include latch circuitry 261 at various locations, to tem
porarily hold data received, until a required resource is avail
able.
0031. At step 404, a determination is made as to whether
the data received is secure or non-secure. Any Suitable tech
nique may be utilized to determine if the data is secure. For
example, a specific address range may be reserved for secure
data. Accordingly, the secure data control 272 may identify
secure data by examining the address of the instruction in
which the data is involved. As another example, secure data
may be identified by one or more bit settings in a page table
entry, for example, indicating a corresponding cache line is
SCU.

0032. If the data is secure, the data is routed through the
encryption engine, at step 406. As illustrated in FIG.3, secure
data may be routed to the encryption engine via MUXO 262,
which may be controlled by a signal generated by the Secure
data control circuit 272. In other words, in response to iden
tifying the data as secure (e.g., based on the address to which
the data is to be written), the secure data control circuit 272
may generate the muX control signal to route the data to the
encryption engine 152. In some cases, optional latch circuitry
261 may be included to support an encryption engine whose
latency is greater than the time to transfer a data packet.
0033. Once the encrypted data is returned from the
encryption engine 152, if a write buffer 213 targeted by the
store instruction containing the secured data is available (i.e.,
that buffer is not already being written to), as determined at
step 408, the encrypted data is routed to the available write
buffer, at step 412. In other words, the arrays used for buff
ering typically only have a single write port. As a result, only
one set of write data may get through at any given time. As
illustrated, encrypted data from the encryption engine 152
may be routed directly to a write buffer 213 via MUX2 264
and MUX 3265. In other words, regardless of the amount of
latency involved in the encryption process, the encrypted data
may be merged back in with the standard (e.g., unencrypted)
data flow with little or no impact on the standard data flow.
0034. However, if a targeted write buffer 213 is not avail
able (i.e., that buffer is currently being written to), the
encrypted data may be routed to a hold buffer 274, at step 410.
where it may be maintained until a write buffer 213 is avail
able. A targeted write buffer 213 may not be available because
the data flow control circuit 260 may be routing other
encrypted data or non-encrypted data to the targeted write
buffer 213. Encrypted data may be routed from the encryption
engine 152 to the data hold buffer 274 via MUX1 263. As
illustrated, signals to control MUXs 1-3 262-264 may be gen
erated by the data buffer write control circuit 273, which may
monitor the availability of the write buffers 213. In other
words, the data buffer write control circuit 273 may maintain
the encrypted data in the hold buffer 274 until a gap in traffic
to the write buffers is detected. Once this gap is detected, data
in the hold buffer 274 may be written to the write buffers 213.
0035) Referring back to step 404, if the data received by
the data flow control circuit 260 is non-secure, at step 418, the
non-secure data may be routed directly to a targeted write

Jun. 4, 2009

buffer 213 if available, as determined at step 414. As illus
trated, non-encrypted data may be routed directly to write
buffers 213 via MUX2 264 and MUX 3 265. If a targeted
write buffer 213 is not available, the non-secure/non-en
crypted data may be routed to the hold buffer 274, at step 416,
where it may be maintained until a write buffer 213 is avail
able. As previously described, data may be routed from the
data hold buffer 274 to the write buffers 213 via MUX 3 265.

Instruction Ordering
0036. As described herein, by independently routing
secure and non-secure data, even if secure data from a previ
ously sent store instruction is being encrypted by the encryp
tion engine 152, the non-secure data may be routed to the
write buffers, with little or no impact due the encryption
latency. Utilizing the circuitry described herein, encrypted
data may be merged back in the standard traffic flow regard
less of the number of latency cycles required for the encryp
tion.
0037. As a result, however, data may flow out of the data
flow control circuitry 260 in a different order than it flows into
the flow control circuitry 260. In other words, a subsequently
issued store instruction involving non-secure data may exit
the flow control circuitry prior to a previously issued store
instruction involving secure data that must first be encrypted.
For some embodiments, these instructions may be processed
out of order while, for other embodiments, strict ordering
may be enforced.
0038. In any case, addresses for store instructions involv
ing data passed to the encryption engine may be maintained to
ensure proper system order checking for Store and load
instructions involving a common address (e.g., an address
collision). In other words, if a store instruction to modify data
at an address is followed by a load instruction to read data
from the same address, logic may be configured to ensure the
store instruction is issued prior to the load instruction to
prevent the load instruction from reading invalid data. For
some embodiments, the data buffer write control 273 may be
configured to detect address collisions and signal the com
mand decoder which may, for example, reschedule the load
instruction.
0039. Depending on the embodiment, the flow control
logic described herein may be configured to process a differ
ent number of store commands before the first set of
encrypted data is returned. For some embodiments, the flow
control logic may be simplified to allow only one store
instruction at a time through the encryption path, which may
simplify the logic (e.g., requiring Smaller buffers) and may be
acceptable for applications with low bandwidth requirements
for the encryption. For other embodiments, more complex
circuitry may allow for a larger number of store instructions to
be routed through the encryption path, which may serve to
more fully isolate upstream logic from the performance limi
tations of the encrypt path.

CONCLUSION

0040. By independently routing secure data (to be
encrypted) and non-secure data (that is not to be encrypted),
secure data involved in a store instruction may be routed to an
encryption engine without holding up non-secure data
involved in a Subsequently issued store instruction. The
encrypted secure data returned from the encryption engine
may be later merged back with non-secure data. As a result,

US 2009/O 144564 A1

the latency impact on non-secure data associated with con
ventional encryption mechanisms may be reduced.
0041 While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:
1. A method of reducing the impact of latency associated

with encrypting secure data on storing non-secure data in
memory, comprising:

receiving first data to be stored in memory;
if the first data is secure, routing the first data to an encryp

tion engine for encryption prior to storing the first data in
memory; and

if the first data is not secure, routing the first data to
memory bypassing the encryption engine, regardless of
whether the encryption engine is encrypting data
received prior to the first data.

2. The method of claim 1, wherein the first data is secure
and the method further comprises:

receiving second data to be stored after receiving the first
data;

determining the second data is non-secure;
routing the second data to memory; and
Subsequently receiving the first databack from the encryp

tion engine in an encrypted form.
3. The method of claim 2, wherein the first data is secure

and the method further comprises:
receiving third data to be stored after receiving the second

data;
determining the third data is non-secure; and
routing the third data to memory prior to receiving the first

data back from the encryption engine in an encrypted
format.

Jun. 4, 2009

4. The method of claim 1, further comprising determining
if the first data is secure if a first store address corresponding
to the first data is in a predetermined address range reserved
for secure data.

5. A method of reducing the impact of latency associated
with encrypting secure data on storing non-secure data in
memory, comprising:

receiving secure data contained in a first one or more
instructions to be stored in memory;

routing the secure data to an encryption engine for encryp
tion;

Subsequent to receiving the secure data, receiving non
secure data contained in a second one or more instruc
tions to be stored in memory; and

prior to receiving the secure data back from the encryption
engine in encrypted form, routing the non-secure data to
memory, bypassing the encryption engine.

6. The method of claim 5, wherein routing the non-secure
data to memory comprises routing the non-secure data to a
write buffer.

7. The method of claim 6, further comprising:
receiving the secure data back from the encryption engine

in encrypted form; and
routing the secure data, in encrypted form, to the write

buffer.
8. The method of claim 7, further comprising:
determining if the write buffer is available to receive the

secure data; and
if not, routing the secure data, in encrypted form, to a hold

buffer prior to routing the secure data, in encrypted form,
to the write buffer.

9. The method of claim 8, further comprising:
determining if the write buffer is available to receive the

non-secure data; and
if not, routing the non-secure data to the hold buffer prior to

routing the non-secure data to memory.
c c c c c

