Canadian Intellectual Property Office

CA 3065366 A1 2020/10/16

(21) 3 065 366

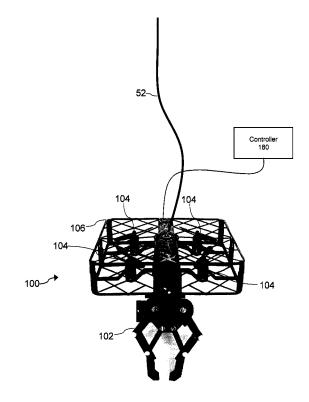
(12) DEMANDE DE BREVET CANADIEN CANADIAN PATENT APPLICATION

(13) **A1**

(22) Date de dépôt/Filing Date: 2019/12/17

(41) Mise à la disp. pub./Open to Public Insp.: 2020/10/16

(30) **Priorité/Priority:** 2019/04/16 (US62/834,439)


(51) **CI.Int./Int.CI.** *B66D 1/36* (2006.01), **B64C** *39/02* (2006.01), **B64D** *1/00* (2006.01), **B66C** *1/00* (2006.01), **B66C** *13/04* (2006.01)

(71) **Demandeur/Applicant:** ARNS, MORITZ, CA

(72) **Inventeur/Inventor:** ARNS, MORITZ, CA

(74) Agent: BHOLE IP LAW

(54) Titre: APPAREIL MOBILE SUR CABLE A ENTRAINEMENT INDEPENDANT (54) Title: INDEPENDENTLY-MOVEABLE CABLE-MOUNTED APPARATUS

(57) Abrégé/Abstract:

There is provided a cable-mounted apparatus, a proximal end of the cable mounted to a winch to extend and retract the cable, the apparatus including: a housing connected to a distal end of the cable; a manipulator located underneath the housing; one or more thrusters associated with the housing; and a controller to control actuation of the one or more thrusters to provide independent movement of the apparatus relative to the winch.

ABSTRACT

There is provided a cable-mounted apparatus, a proximal end of the cable mounted to a winch to extend and retract the cable, the apparatus including: a housing connected to a distal end of the cable; a manipulator located underneath the housing; one or more thrusters associated with the housing; and a controller to control actuation of the one or more thrusters to provide independent movement of the apparatus relative to the winch.

INDEPENDENTLY-MOVEABLE CABLE-MOUNTED APPARATUS

2 TECHNICAL FIELD

1

- 3 [0001] The following relates generally to cable structures and, more specifically, to an
- 4 independently-moveable cable-mounted apparatus.
- 5 BACKGROUND
- 6 [0002] In an example, aircraft may be required to interact with their environment, outside of the
- 7 aircraft, during flight. In an example that is becoming more common, particularly for rotorcraft,
- 8 the craft may need to drop off or retrieve cargo mid-flight without having to land. In other cases,
- 9 tools, such as grippers or manipulators, are used to interact with the environment when located
- at a distal end of a deployed cable (wire, tether, chain, etc.).
- 11 [0003] Generally, due to the nature of the cable, such interactions are limited and simple in
- 12 nature. Generally, the cable is only semi-rigid so that the cable to be retracted by a winch
- proximate the rotorcraft. However, this can then cause the cable to sway when deployed,
- particularly if the distance of the craft to the target is large, causing targeting to be difficult.
- 15 Additionally, many rotorcraft cann0ot hover in a very precise manner, which could also cause
- 16 swaying of the cable at the target.
- 17 SUMMARY
- 18 [0004] In an aspect, there is provided a cable-mounted apparatus, a proximal end of the cable
- 19 mounted to a winch to extend and retract the cable, the apparatus comprising: a manipulator
- 20 coupled to the distal end of the cable; one or more thrusters; and a controller to control
- 21 actuation of the one or more thrusters to provide independent movement of the apparatus
- 22 relative to the winch.
- 23 [0005] These and other aspects are contemplated and described herein. It will be appreciated
- 24 that the foregoing summary sets out representative aspects of the assembly to assist skilled
- readers in understanding the following detailed description.
- 26 DESCRIPTION OF THE DRAWINGS
- 27 [0006] A greater understanding of the embodiments will be had with reference to the Figures, in
- 28 which:
- 29 [0007] FIGS. 1A and 1B are a diagrammatic view of an approach to manipulation during mid-
- 30 flight;

- 1 [0008] FIG. 2 is a diagrammatic view of another approach to manipulation during mid-flight;
- 2 [0009] FIGS. 3A and 3B are a diagrammatic view of an apparatus, according to an
- 3 embodiment, illustrating a delivery of an item from an aircraft;
- 4 [0010] FIGS. 4A and 4B are a diagrammatic view of the apparatus of FIGS. 3A and 3B
- 5 illustrating a retrieval of the item using the aircraft; and
- 6 [0011] FIG. 5 is a perspective view of the apparatus of FIGS. 3A and 3B.
- 7 DETAILED DESCRIPTION
- 8 [0012] Embodiments will now be described with reference to the figures. For simplicity and
- 9 clarity of illustration, where considered appropriate, reference numerals may be repeated
- among the Figures to indicate corresponding or analogous elements. In addition, numerous
- 11 specific details are set forth in order to provide a thorough understanding of the embodiments
- 12 described herein. However, it will be understood by those of ordinary skill in the art that the
- 13 embodiments described herein may be practised without these specific details. In other
- 14 instances, well-known methods, procedures and components have not been described in detail
- 15 so as not to obscure the embodiments described herein. Also, the description is not to be
- 16 considered as limiting the scope of the embodiments described herein.
- 17 [0013] Various terms used throughout the present description may be read and understood as
- 18 follows, unless the context indicates otherwise: "or" as used throughout is inclusive, as though
- written "and/or"; singular articles and pronouns as used throughout include their plural forms,
- and vice versa; similarly, gendered pronouns include their counterpart pronouns so that
- 21 pronouns should not be understood as limiting anything described herein to use,
- implementation, performance, etc. by a single gender; "exemplary" should be understood as
- 23 "illustrative" or "exemplifying" and not necessarily as "preferred" over other embodiments.
- 24 Further definitions for terms may be set out herein; these may apply to prior and subsequent
- instances of those terms, as will be understood from a reading of the present description.
- 26 [0014] Any module, unit, component, server, computer, terminal, engine or device exemplified
- 27 herein that executes instructions may include or otherwise have access to computer readable
- 28 media such as storage media, computer storage media, or data storage devices (removable
- and/or non-removable) such as, for example, magnetic disks, optical disks, or tape. Computer
- 30 storage media may include volatile and non-volatile, removable and non-removable media
- 31 implemented in any method or technology for storage of information, such as computer
- 32 readable instructions, data structures, program modules, or other data. Examples of computer

- 1 storage media include RAM, ROM, EEPROM, flash memory or other memory technology, CD-
- 2 ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape,
- 3 magnetic disk storage or other magnetic storage devices, or any other medium which can be
- 4 used to store the desired information and which can be accessed by an application, module, or
- 5 both. Any such computer storage media may be part of the device or accessible or connectable
- 6 thereto. Further, unless the context clearly indicates otherwise, any processor or controller set
- 7 out herein may be implemented as a singular processor or as a plurality of processors. The
- 8 plurality of processors may be arrayed or distributed, and any processing function referred to
- 9 herein may be carried out by one or by a plurality of processors, even though a single processor
- may be exemplified. Any method, application or module herein described may be implemented
- 11 using computer readable/executable instructions that may be stored or otherwise held by such
- 12 computer readable media and executed by the one or more processors.
- 13 [0015] In embodiments of the present disclosure, there is provided an apparatus that is
- 14 connected to an aircraft for manipulation of a tool mid-flight, providing better control during
- deployment. Advantageously, the apparatus is independently-moveable such that the apparatus
- 16 can make adjustments and movements of the tool without necessarily requiring movement of
- the aircraft. The aircraft could be an airplane, drone, rotorcraft or other similar device, and is
- 18 preferable a drone or rotorcraft operable to perform a hovering operation, even if the hovering
- 19 operation is not entirely precise.
- 20 [0016] FIGS. 1A and 1B illustrate an example embodiment 30 of an approach to manipulation
- 21 during mid-flight. In this example, as shown in FIG. 1A, a cable 52 is deployed and suspended
- below an aircraft 20 via a winch 54 at the proximal end of the cable 52. At the distal end of the
- cable 52 is an item 60 attached to the cable 52. As shown in FIG. 1B, when the aircraft 20
- 24 approaches a target 70 for item delivery, the winch 54 releases the cable to attempt to have the
- item 60 land at or near the target 70.
- 26 [0017] FIG. 2 illustrates an example embodiment 50 of another approach to manipulation during
- 27 mid-flight. In this example, a cable 52 is deployed and suspended below the aircraft 20 via a
- 28 winch 54 at the proximal end of the cable 52. At the distal end of the cable 52 is a gripper tool
- 29 56 to release a gripped item 60. In this example, the gripper tool 56 attempts to release the item
- 30 60 at or near a target 70.
- 31 [0018] In the example embodiments 30 and 50, due to relying on the imprecise movements of
- 32 the aircraft which is located sufficiently remote from the target 70, there is high imprecision with

- 1 respect to placing the item at the target 70. Additionally, such embodiments can only practically
- 2 drop-off items; and cannot reliably pick-up items from the ground to bring up to the aircraft.
- 3 [0019] FIGS. 3A to 5 illustrate a deployable independently-moveable apparatus 100 for aircraft.
- 4 according to an embodiment. In this embodiment, a cable 52 is deployed and suspended below
- 5 the aircraft 20 via a winch 54 at the proximal end of the cable 52. The winch 54 is located on or
- 6 in the aircraft 20. Connected at the distal end of the cable 52 is the apparatus 100.
- 7 [0020] The apparatus 100 includes a manipulator 102 and one or more thrusters 104. The
- 8 manipulator 102 can be any suitable tool to interact with objects or aspects of the environment.
- 9 In this example embodiment, the manipulator 102 is a gripper tool that can grip and release the
- 10 item 60. The thrusters 104 advantageously allow for independent movement of the apparatus
- 100. In this embodiment, the thrusters 104 are a plurality of air thrusters or propellers. In a
- 12 particular embodiment, the thrusters 104 can be embodied as a secondary rotorcraft with
- enough thrust to effect relative planar (parallel to the ground) movement of the distal end of the
- 14 cable relative the aircraft to provide targeting. It will be understood that in the previous sentence,
- 15 the plane parallel to the ground can be considered the XY plane and that movement of the distal
- end will cause a pendulum movement of the cable, which has a Z component. In cases where
- 17 the target is not perfectly centered below the rotorcraft, thrust in the XY plane toward the target
- would also lift the distal end of the cable along the Z axis away from the target. This movement
- may be compensated by the winch further extending the cable to reach the target.
- 20 [0021] FIGS. 3A and 3B illustrates an example of a delivery of the item 60 to the target 70 using
- 21 the apparatus 100. In this example, large scale movements are achieved by the aircraft 20 to
- get the item 60 near the target 70. Once the aircraft 20 is sufficiently close to the target 70, such
- as close enough to be within range of the length of the cable 52, the winch 54 extends the
- cable; lowering the apparatus 100 as the manipulator 102 grips the item 60. As the apparatus
- 25 100 is lowered by the winch 54, the one or more thrusters 104 provide independent movement
- 26 along the plane parallel to the ground by adjustment of the thrusting force of the respective
- 27 thrusters 104. This movement can be automatically controlled by a controller 180 or can be
- 28 manually controlled via the controller 180. The controller 180 can include one or more
- 29 processors and a data storage. Automatic control or manual control can be aided by including
- 30 telemetric sensors such as position sensors, accelerometers and gyroscopes within the
- 31 controller 180 so that the controller 180 can react to changes in position and orientation of the
- 32 apparatus 100.

- 1 [0022] These movements can be similar in nature to steering of a drone or rotorcraft. In this
- 2 way, adjustment along the plane parallel to the ground allows the apparatus 100 to accurately
- 3 place the item 60 at the target 70, as shown in FIG. 3B. In further cases, the thrusters 104 can
- 4 also move along an axis perpendicular to the ground; for example, to place the package at a
- 5 target 70 with a specific elevation. When the item 60 arrives at the target 70, the manipulator
- 6 102 can release the item 60 for delivery.
- 7 [0023] FIGS. 4A and 4B illustrate an example of a retrieval of the item 60 from the target 70
- 8 using the apparatus 100. In this example, large scale movements are achieved by the aircraft
- 9 20 to get the apparatus 100 near the target 70. Once the aircraft 20 is sufficiently close to the
- target 70, such as close enough to be within range of the length of the cable 52, the winch 54
- extends the cable; lowering the apparatus 100 to the height of the item 60. As the apparatus
- 12 100 is lowered by the winch 54, the one or more thrusters 104 provide independent movement
- along the plane parallel to the ground by adjustment of the thrusting force of the respective
- 14 thrusters 104. This movement can be automatically controlled by a controller 180 or can be
- manually controlled via the controller 180. These movements can be similar in nature to steering
- of a drone or rotorcraft. In this way, adjustment along the plane parallel to the ground allows the
- apparatus 100 to accurately pick up and grasp the item 60 located at the target 70. When the
- manipulator 102 of the apparatus 100 arrives at the item 60, the manipulator 102 grasps the
- item 60. As shown in FIG. 4B, the winch 54 can then retract the cable 52, bringing the item 60
- 20 to, or into, the aircraft. In further cases, the thrusters 104 can also move along an axis
- 21 perpendicular to the ground; for example, to grasp the package at a target 70 with a specific
- 22 elevation; however, in most cases, the lifting force for retrieving the item 60 is provided by the
- 23 winch 54.
- 24 [0024] As shown in greater detail in FIG. 5, in an embodiment, the apparatus 100 can include
- 25 four horizontally-oriented air thrusters 104 located inside a housing 106. Attached to the bottom
- of the housing is the manipulator 102, in this case, a gripper. Attached to the top of the housing
- 27 is the distal end of the cable 52. The actuation of the thrusters 104 and the manipulator is
- 28 controlled by the controller 180.
- 29 [0025] In some cases, the apparatus 100 may also include sensors, such as a camera system,
- attached to the housing 106. The sensors can be used for various suitable tasks; for example,
- 31 identifying the target, identifying the height of the target, identifying the distance to the target,
- 32 identifying the item, identifying the shape of the item, or the like. In these cases, the information

- can be fed back to the controller 180 to control the thrusters 104 of the apparatus 100 or to
- 2 provide information to a manual operator of the apparatus 100.
- 3 [0026] In some cases, the apparatus 100 can be fed power from the aircraft via the cable 52. In
- 4 other cases, the apparatus 100 can include a battery to power the thrusters 104 and the
- 5 manipulator 102. In some cases, the battery can be recharged when the apparatus 100 is at the
- 6 aircraft during retraction of the cable 52.
- 7 [0027] While the present embodiments illustrate the apparatus 100 having a gripper as the
- 8 manipulator 102, it is understood that any suitable tool can be used. Other examples of
- 9 manipulator 102 can include a grabber, magnet, hook, suction gripper, a winch, a welder, a
- 10 container with an openable floor, or the like. In some cases, the manipulator 102 may also be in
- communication with the controller 180 such that the controller 180 can instruct actuation of the
- manipulator 102; for example, opening and closing of the gripper, or winding and unwinding of
- the winch. Advantageously, manipulation of the manipulator 102 allows the apparatus 100 to
- 14 accomplish a variety of useful tasks, such as moving items around a warehouse, delivering
- items to a residence, detailed retrieval at typically inacceptable locations, or the like. In further
- examples, the apparatus 100 can be used to paint or conduct inspections of various kinds; for
- example, using ultrasonic sensors as the manipulator 102. In further embodiments, the
- manipulator 102 can include a further assembly for finer movements; for example, a three-
- degrees-of-freedom "delta robot" positioned underneath the housing 106.
- 20 [0028] While the present embodiments illustrate the apparatus 100 having air thrusters as the
- 21 thrusters 104, it is understood that any suitable thruster can be used. Other examples of
- 22 thrusters 104 can include thrusting turbines, jet thrusters, heated gas thrusters, or the like. The
- 23 thrusters 104 are suitable if they provide enough thrust to be able to provide precision and
- 24 accuracy of moving the distal end of the cable, given the weight and geometry of the cable, the
- 25 apparatus, and the item (if there). Additionally, while the present embodiments illustrate the
- 26 apparatus 100 having thrusters 104 in a horizontally-oriented dual or quad-copter orientation, it
- 27 is understood that any suitable orientation can be used; for example, vertically or angled-
- oriented thrusters, or having more or less thrusters than exemplified.
- 29 [0029] The apparatus 100 of the present embodiments provides substantial advantages to
- 30 manipulators deployed from aircraft. There is generally minimum extra weight added due to the
- 31 apparatus as the manipulator and thrusters can be, for example, less than 300g. The apparatus
- 32 100 allows for pickup and drop off from any suitable height. In these embodiments, in contrast to
- 33 a pure drone package retrieval system, there are no significant weight limitations since the

- 1 winch lifts up the package to a large aircraft. The present embodiments are generally safe
- 2 because the apparatus is small and the housing can cage the thrusters. The present
- 3 embodiments allow for precise pickup and drop off of items; and precise use of manipulators
- 4 more generally. The present embodiments also allow for the reuse of the cable.
- 5 [0030] In further embodiments, the apparatus 100 of the present embodiments can be used for
- 6 any application in which the winch is located substantially above a desired target. For example,
- 7 at a distal end of a cable line from a crane to the ground, at a distal end of a cable line from a
- 8 roof of a building to the ground, or the like.
- 9 [0031] Although the foregoing has been described with reference to certain specific
- 10 embodiments, various modifications thereto will be apparent to those skilled in the art without
- departing from the spirit and scope of the invention as outlined in the appended claims.

CLAIMS

1. A cable-mounted apparatus, a proximal end of a cable mounted to a winch to extend and retract the cable, the apparatus comprising:

a manipulator coupled to a distal end of the cable;

one or more thrusters; and

a controller to control actuation of the one or more thrusters to provide independent movement of the manipulator relative to the winch.

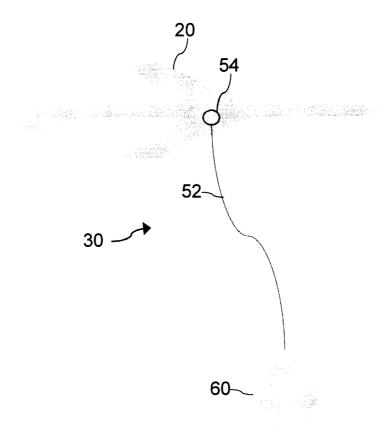
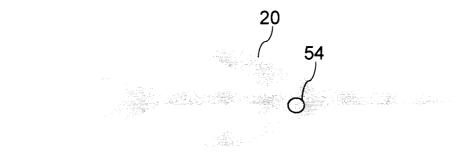



FIG. 1A

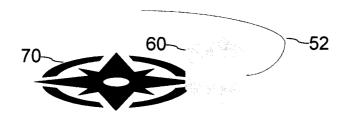


FIG. 1B

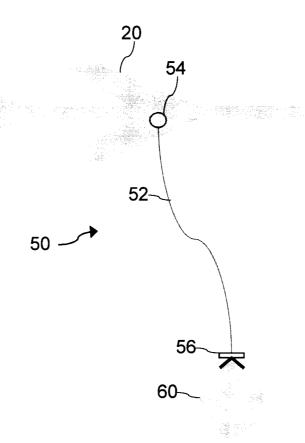


FIG. 2

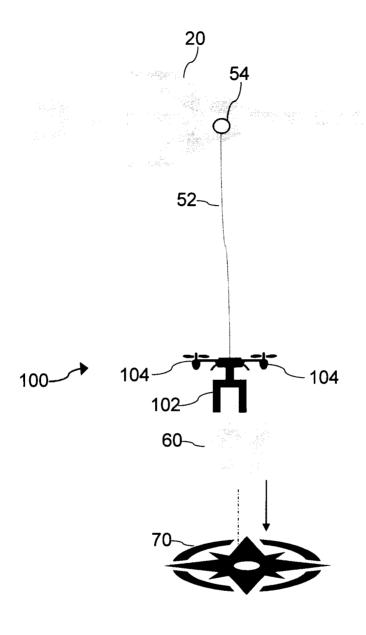


FIG. 3A

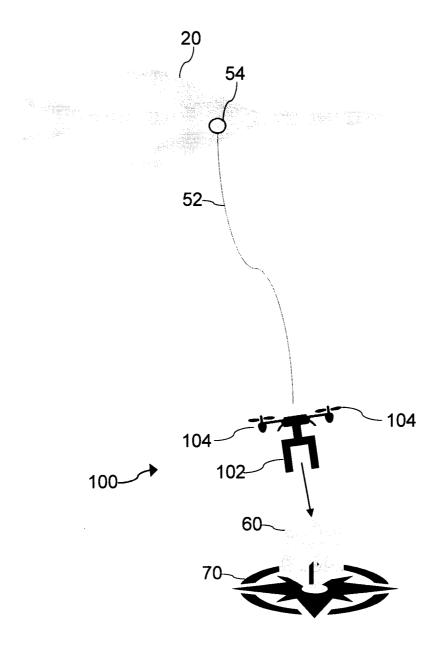


FIG. 3B

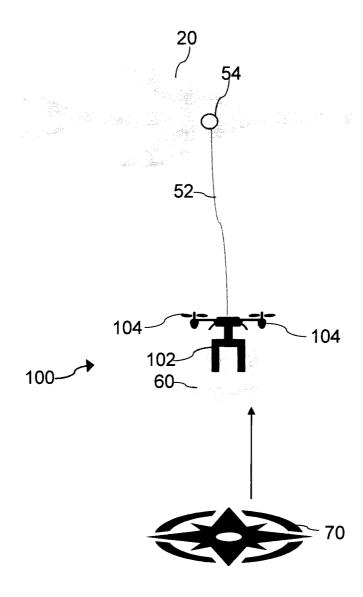


FIG. 4A

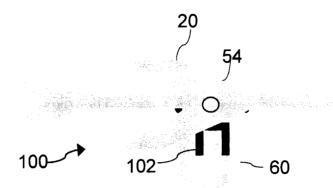


FIG. 4B

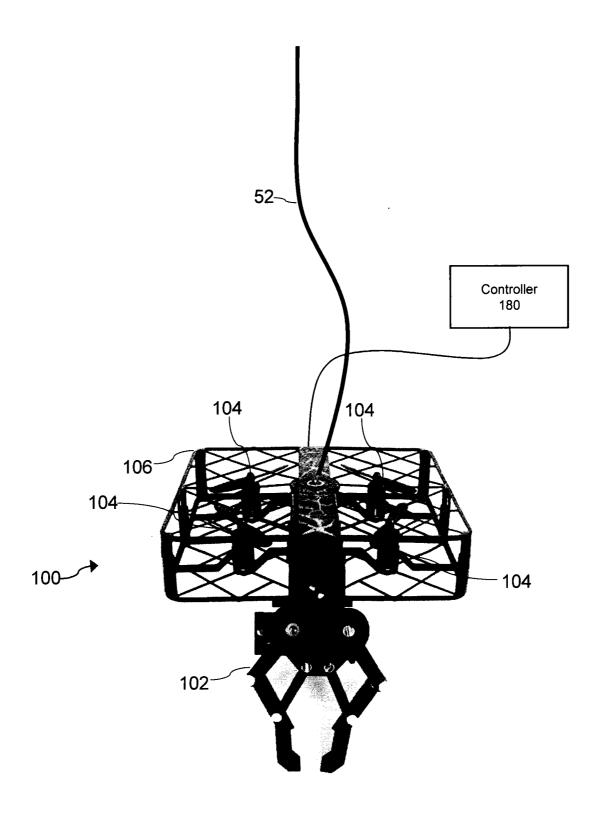
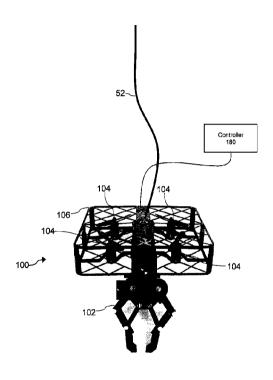



FIG. 5

