Determine user identification key of user of component device

Automatically access account associated user

Receive data associated with user

Run application on system in accordance received data.

Update account

A computer system can determine a user identification key associated with a user of a component device in response to connection of the component device to the computer system. The system automatically accesses an account associated with the user by sending the user identification key to a network associated with the computer system. The system receives data associated with the user account from the network and runs a computer application in accordance with the received data. The application receives input from the component device corresponding to user manipulation of the component device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Determine user identification key of user of component device

Automatically access account associated with user

Receive data associated with user

Run application on system in accordance with received data.

Update account

FIG. 1
FIG. 6C

USER 1’s TROPHIES

USER 2’s TROPHIES

OVERALL RANKING

50,450 out of 178,927

OVERALL RANKING

972 out of 178,927
FIG. 7

PROCESSOR PROGRAM

PROGRAM INPUT DATA

I/O

P/S

CLK

CACHE

USER INTERFACE

MEMORY PROGRAM

INPUT DATA

MASS STORE

DISPLAY

NETWORK INTERFACE

FIG. 7
INSTRUCTIONS FOR ACCOUNT MANAGEMENT OF A COMPUTER GAME SYSTEM

Determining User Identification Key Instructions

Automatically Accessing Account Instructions

Receiving Data Instructions

Running Computer Game Instructions

Updating User Account Instructions

FIG. 8
ACCOUNT MANAGEMENT OF COMPUTER SYSTEM

FIELD OF THE INVENTION

[0001] Embodiments of the present invention are related to computer systems and more specifically to account management for computer systems.

BACKGROUND OF THE INVENTION

[0002] Computer game systems are widespread and can be found in numerous homes across the world. Computer game systems are currently configured such that when a person purchases a game console, the console becomes identified with him. Modifications made to game settings and achievements attained during game play become associated with the game console such that future users of the game console are subjected to those game settings and achievements by default. In other words, a friend of a user who operates the user’s console is subjected to the user’s settings and achievements by default. If the friend wishes to use more familiar settings (i.e., those saved on his console at home), he must go through the burdensome process of re-customizing those settings on the user’s console. If the friend wishes to implement game features that he unlocked during game play on his home console, he will find it impossible unless the user has previously independently unlocked those features himself. Moreover, any additional achievements or modifications made by the friend while using the user’s device would be attributed to the user rather than the friend. The settings and achievements on the friend’s console at home would remain in the same state that he left it in regardless of any achievements attained or modifications made on the user’s console.

[0003] It is within this context that embodiments of the present invention arise.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a flow diagram illustrating a method for account management in a computer game system in accordance with an embodiment of the present invention.

[0005] FIG. 2 is a schematic diagram illustrating an example of an environment implementing a method for account management of a computer game system in accordance with an embodiment of the present invention.

[0006] FIG. 3 is a schematic diagram illustrating an example of an alternative gaming environment implementing a method for account management of a computer game system in accordance with an embodiment of the present invention.

[0007] FIG. 4 is a schematic diagram illustrating an example of an alternative gaming environment implementing a method for account management of a computer game system in accordance with an embodiment of the present invention.

[0008] FIG. 5 is a schematic diagram illustrating an example of an alternative gaming environment implementing a method for account management of a computer game system in accordance with an embodiment of the present invention.

[0009] FIGS. 6A-6C are schematic diagrams illustrating examples of user-specific account data to be received from a network and subsequent running of computer games in accordance with the received user-specific account data in accordance with an embodiment of the present invention.

[0010] FIG. 7 illustrates a block diagram of a computer apparatus that may be used to implement a method for account management in a computer game system in accordance with an embodiment of the present invention.

[0011] FIG. 8 illustrates an example of a non-transitory computer readable storage medium in accordance with an embodiment of the present invention.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

[0012] FIG. 1 is a flow diagram illustrating a method for account management in a computer game system in accordance with an embodiment of the present invention. A component device associated with the computer system is initially connected to the computer game system. The component device may be any input/output device compatible with the computer game system. By way of example, and not by way of limitation, the component device may be a controller configured to facilitate interaction between a user and a computer game running on the computer system (i.e., a video game console). Also by way of example, and not by way of limitation, the component device may be a peripheral component device configured to facilitate interaction between a user and a computer game running on the computer game system such as a pair of 3-D glasses or a headset.

[0013] In response to connection of the component device to the computer system, the system determines a user identification key of the user of the component device as indicated at 101. The determination of a user identification key is done automatically upon connection of the component device to the computer system, and does not require user prompting. In one embodiment, the user identification key is stored on a memory embedded in the component device. The user identification key may then be read directly from the component device upon connection. In this embodiment, the component device is unique to the user. Whenever the component device is connected to a computer system, the same user identification key is determined regardless of the owner of the computer system.

[0014] In an alternative embodiment, the user identification key is composed of one or more user characteristics determined from a sensor associated with the component device. By way of example, and not by way of limitation, the sensor may be a biometric sensor. Said biometric sensor may be configured to determine such user characteristics as a fingerprint, iris pattern, or voice of the user. These user characteristics subsequently form the user identification key.

[0015] After a user identification key has been determined, an account associated with the user of the component device is automatically accessed by sending the user identification key to a network associated with the computer system as indicated at 103.

[0016] By way of example, and not by way of limitation, the network may have access to accounts and account information for all users registered with a particular computer system. For example, in the context of a Sony PlayStation 3 gaming system, the network may have access to account information for all registered Sony PlayStation 3 users. In some embodiments, the identification key may be a rolling code key. The component device may transmit an access code that changes based on number of times there is an exchange between the component device and the computer system. A current acceptable code could be stored on a remote device that can be accessed via a network.
Once the user account has been accessed, data associated with the user is received from the network as indicated at 105. This data may include user-preferred settings associated with one or more programs or applications to be run on the computer system in conjunction with the component device. This data may include, e.g., features unlocked by the user that are associated with a game to be played on the computer gaming system. This data may also include information about the user configured to calibrate or optimize tracking of the user (e.g., user’s skin tone, head diameter, face perspective, eye color, etc.) by the computer system. This data may further include previous achievements attained by the user, e.g., during game play on the computer system. By way of example, and not by way of limitation, this data may also include games purchased by the user that are only accessible through the network (i.e., user does not own a physical copy of the game).

The computer game is then run on the computer system in accordance with the received data as indicated at 107. This may involve running the game according to user-preferred settings (e.g., inverted/non-inverted point of view, game speed, zoom, controller sensitivity, etc.). This may also include running the application (e.g., game) with features previously unlocked by the user. This may also involve running the program using information configured to calibrate or optimize tracking of the user. This may also involve running a program (e.g., game) purchased by the user that is only accessible through the network.

The user account may then be updated in accordance with new account information obtained during game play as indicated at 109. By way of example, and not by way of limitation, this may include, updating the user account to accommodate updated user settings, newly unlocked features, newly attained achievements, or updated calibration/optimization tracking information.

It is important to note that this method for account management of a computer system may be extended to multiple users simultaneously connected to a computer system such that each user has access to his/her account, is able to obtain user-specific data, and is able to update his/her account. It is further noted that embodiments of the present invention are applicable to computer programs other than game programs.

FIG. 2 is a schematic diagram illustrating an example of a gaming environment implementing a method for account management of a computer system in accordance with an embodiment of the present invention.

A first user 201 is the owner of a computer system 221. In this example, the computer system 221 is in the form of a game console. The first user 201 is also the owner of component device 205. A second user 203, who is not the owner of the game console 221, wishes to engage in game play on the first user’s game console 221 using his own component device 205. The game console 221 may be connected to a network 225 associated with the computer game system and also a display 223 configured to display images associated with a computer game running on the console 221.

By way of example, and not by way of limitation, each component device 205 may be a wireless controller 205 configured to facilitate user interaction with game console 221 during operation. By way of example, and not by way of limitation, each wireless controller 205 may include a directional pad 207 for directional user input, two analog joysticks 211 for directional user input, buttons 209 for button-controlled user input, handles 213 for holding the device, a second set of buttons 215 for additional button-controlled user input, and one or more triggers 217 for trigger-controlled user input. Each wireless controller 205 also includes a memory 219, whereby a unique user identification key is stored. Thus, the first user 201 will have a controller 205 with a user identification key unique to the first user and the second user 203 will also have a controller 205 with a user identification unique to the second user. This user identification key is tied to the controller, and remains the same regardless of which game console the game controller is connected to.

In some embodiments, the controller 205 may include a rolling code transmitter 220, which may be implemented as part of the hardware of the controller or implemented in software running on the controller. The code transmitter 220 may transmit an identification key in the form of an access code that changes based on number of times there is an exchange between an element of the computer system 221, e.g., the console and the controller. The current acceptable code could be stored on a remote device (not shown) that can be accessed by the console 221 via the network 225. The computer system may compare the code transmitted by the controller 205 to the current acceptable code to identify the controller and obtain access to the corresponding user account if the codes match.

The game console 221 may perform account management in accordance with the method described above with respect to FIG. 1. The game console 221 reads each user’s identification key from each user’s controller 205, 205′ and sends this identification key to a network associated with the computer game system. Each user’s account is automatically accessed upon the network’s receipt of their respective identification keys. Each user account contains information regarding that particular user (e.g., user-preferred settings, unlocked features, information about the user configured to calibrate or optimize tracking of the user, and previous achievements attained by the user). Data associated with each user account is the sent from network to the game console and the game console is run in accordance with the received data.

Thus, game play may be customized for a user regardless of whose console he is using, so long as he brings his controller with his unique user identification key stored in the memory along with him every where he plays. This allows a user to bypass the burdensome task of having to re-customize his personal settings and re-attain his previous achievements for each new game console he interacts with. Additionally, updated user settings, newly unlocked features, newly attained achievements, or updated calibration/optimization tracking information accomplished/made during game play on any game console will update the user’s account information, such that this newly modified data will be available for subsequent use by the user.

FIG. 3 is a schematic diagram illustrating an example of an alternative gaming environment implementing a method for account management of a computer system in accordance with an embodiment of the present invention.

In FIG. 3, either user 201, 203 or none of the users may be the owner of the console 221. Each user 201, 203 connects a component device 305, 305′ to the console 221 to facilitate interaction between the user 201, 203 and console 221 during operation.

Each component device 305, 305′ may be a wireless controller configured to facilitate user interaction with
game console 221 during operation. By way of example, and not by way of limitation, each component device 305', 305" may be a wireless controller 305 as indicated in the inset in FIG. 3. Each wireless controller 305 may include a directional pad 307 for directional user input, two analog joysticks 311 for directional user input, buttons 309 for button-controlled user input, and one or more triggers 317 for trigger-controlled user input. Each wireless controller 305', 305" may also include a sensor 319 configured to determine a user identification key (e.g., one or more user characteristics) of the user of the wireless controller. In the example illustrated, the sensor is located on an analog joystick, but may be positioned in an alternative location depending on the application. Unlike the controllers in the previous example in FIG. 2, the controllers here are not unique to an individual user; rather they are configured to determine the identity of any user that operates them.

By way of example, and not by way of limitation, the sensor 319 may be a biometric sensor configured to read a user's fingerprint. The fingerprint serves as the user identification key; and is sent to the network 225 by the game console 221. Each user's account is automatically accessed upon the network's receipt of their respective identification keys. Each user account contains information regarding that particular user (e.g., user-preferred settings, unlocked features, information about the user configured to calibrate or optimize tracking of the user, and previous achievements attained by the user). Data associated with each user account is the sent from then network to the game console and the computer game is run in accordance with the received data.

Thus, game play may be customized for a user regardless of whose console he is using, so long as he is a registered user of the game system in accordance with an embodiment of the present invention.

By way of example, and not by way of limitation, each component device 305', 305" may be a peripheral component device configured to facilitate user interaction with game console 221 during operation. By way of example, and not by way of limitation, the peripheral component device 305', 305" may be a pair of 3-D glasses 401, 401'. In one embodiment, the 3-D glasses 401, 401' may have a memory embedded within, wherein the memory stores a unique user identification key. In this embodiment, the method for account management tracks that of the wireless controller described in FIG. 2. Thus, game play may be customized for a user regardless of whose console he is using, so long as he brings his peripheral component device (e.g., 3-D glasses) with his unique user identification key stored in the memory along with him wherever he plays.

In an alternative embodiment, the 3-D glasses 401, 401' may include a sensor embedded within rather than a memory, wherein the sensor is configured to determine one or more user characteristics representing a user identification key. By way of example, and not by way of limitation, the sensor may be a biometric sensor configured to read a user's iris. In this embodiment, the method for account management tracks that of the wireless controller described in FIG. 3, with the user identification key being the user's iris pattern. Thus, game play may be customized for a user regardless of whose console he is using, so long as he is a registered user of the game system with a unique identification key and the component peripheral device being used is configured to perform sensing of user characteristics. Unlike the first embodiment, the 3-D glasses 401, 401' in this alternative embodiment are not unique to an individual user; rather they are configured to determine the identity of any user that operates them.

Either embodiment allows the user to bypass the burdensome task of having to re-customize his personal settings and re-attain his previous achievements for each new game console he interacts with. Additionally, updated user settings, newly unlocked features, newly attained achievements, or updated calibration/optimization tracking information accomplished/made during game play on any game console will update the user's account information, such that this newly modified data will be available for subsequent use by the user.

FIG. 5 is a schematic diagram illustrating another example of an alternative gaming environment implementing a method for account management of a computer game system in accordance with an embodiment of the present invention.

In FIG. 5, each user 201, 203 connects a component device 501, 501' to the console 221 to facilitate interaction between the user 201, 203 and console 221 during operation. Each component device 501, 501' is a peripheral component device configured to facilitate user interaction with game console 221 during operation. By way of example, and not by way of limitation, the peripheral component device 501, 501' may have a headset. In one embodiment, the headset 501, 501' may have a memory embedded within, wherein the memory stores a unique user identification key. In this embodiment, the method for account management tracks that of the wireless controller described in FIG. 2. Thus, game play may be customized for a user regardless of whose console he is using, so long as he brings his peripheral component device 501, 501' (e.g., headset) with his unique user identification key stored in the memory along with him wherever he plays.

In an alternative embodiment, the headset 501, 501' may have a sensor embedded within rather than a memory, wherein the sensor is configured to determine one or more user characteristics representing a user identification key. By way of example, and not by way of limitation, the sensor may be a biometric sensor configured to recognize a user's voice. In this embodiment, the method for account management tracks that of the wireless controller described in FIG. 3, with the user identification key being the user's voice. Thus, game play may be customized for a user regardless of whose console he is using, so long as he is a registered user of the game.
sysstem with a unique identification key and the component peripheral device (e.g., headset) being used is configured to perform sensing of user characteristics. Unlike the first embodiment, the headsets 501, 501' in this alternative embodiment are not unique to an individual user; rather they are configured to determine the identity of any user that operates them.

[0041] Either embodiment allows the user to bypass the burdensome task of having to re-customize his personal settings and re-attain his previous achievements for each new game console he interacts with. Additionally, updated user settings, newly unlocked features, newly attained achievements, or updated calibration/optimization tracking information accomplished/made during game play on any game console will update the user’s account information, such that this newly modified data will be available for subsequent use by the user.

[0042] FIGS. 6A-6C are schematic diagrams illustrating examples of user-specific account data to be received from a network and subsequent running of computer games in accordance with the received user-specific account data.

[0043] FIG. 6A illustrates a gaming environment in which multiple users are able to participate in the same multi-player game using their own personalized settings in accordance with an embodiment of the invention. In FIG. 6A, a first user (i.e., user 1) and a second user (i.e., user 2) are both playing the same game on the computer game system. By way of example, and not by way of limitation, the computer game may be a multi-player shooting game. Each user is identified by their user identification key using any of the methods described above. The computer game system then receives data associated with each user using their user identification key and runs the computer game in accordance with the received data.

[0044] In this particular example, the received data for each user includes user-specific preferred settings for the game running on the computer game system. By way of example, and not by way of limitation, such user-specific preferred settings may be the preferred perspective by which the user plays the game. For example, user 1 may prefer to play the game from a 3rd person perspective as illustrated, wherein the graphical perspective is rendered such that the player character is visible on-screen. User 2, on the other hand, may prefer to play the game from a 1st person perspective as illustrated, wherein the graphical perspective is rendered from the viewpoint of the player character.

[0045] Thus, both users are able to participate in the same game, using their own personalized settings using the method of account management described above with respect to FIG. 1.

[0046] FIG. 6B illustrates a gaming environment in which multiple users are connected to a gaming system, and each user is able to access games purchased (and only accessible through the network) by any other connected user in accordance with an embodiment of the invention. In FIG. 6B, a first user (i.e., user 1) and a second user (i.e., user 2) are both connected to the same computer game system. Each user is identified by their user identification key using any of the methods described above. The computer game system then receives data associated with each user using their user identification key and runs the computer game in accordance with the received data.

[0047] In this particular example, the received data for each user includes games purchased by the user which are only accessible through the network. By way of example, and not by way of limitation, User 1 and User 2 may have vastly different collections of games, as illustrated. However, once each user has been uniquely identified, each user’s set of accessible games becomes available for the other user to play. In other words, after all users have been identified, and their respective accounts accessed, all gaming titles owned by any user is available for any of the other users to play. This parallels the situation where a friend brings over his collection of games to play on another friend’s console, only now no physical copy is actually transported.

[0048] Thus, both users are able to access the other user’s purchased gaming titles using the method of account management described above with respect to FIG. 1.

[0049] FIG. 6C illustrates a gaming environment in which multiple users are able to access their own previous achievements in accordance with an embodiment of the invention. In FIG. 6C, a first user (i.e., user 1) and a second user (i.e., user 2) are both playing the same game on the computer game system. Each user is identified by their user identification key using any of the methods described above. The computer game system then receives data associated with each user using their user identification key and runs the computer game in accordance with the received data.

[0050] In this particular example, the received data for each user includes user-specific achievements for the game running on the computer game system. By way of example, and not by way of limitation, such user-specific achievements may be the number of trophies attained or the user’s overall ranking in the game. For example, User 1 may have received fewer trophies than User 2, and User 2 may have a higher overall ranking than User 1. Because User 2 is more decorated that User 1, he may have access to additional features (e.g., unlocked levels, unlocked weapons, unlocked characters, etc.) unavailable to User 1. By implementing the account management method of FIG. 1, both users are able to participate in the same game, using their own personalized achievements, rather than having to play using the achievements of the owner of the game console. Moreover, newly unlocked features and newly attained achievements accomplished during game play on another user’s game console will still update the user’s account information, such that the newly modified data will be available for subsequent use by the user.

[0051] FIG. 7 illustrates a block diagram of a computer apparatus that may be used to implement a method for account management in a computer game system according to an embodiment of the present invention. The apparatus 700 generally may include a processor module 701 and a memory 705. The processor module 701 may include one or more processor cores.

[0052] The memory 705 may in the form of an integrated circuit, e.g., RAM, DRAM, ROM, and the like. The memory 705 may also be a main memory that is accessible by all of the processor modules. In some embodiments, the processor module 701 may have local memories associated with each core. A program 703 may be stored in the main memory 705 in the form of processor readable instructions that can be executed on the processor modules. The program 703 may be configured to perform account management of a computer game system, as described above with respect to FIGS. 1-6. The program 703 may be written in any suitable processor readable language, e.g., C, C++, JAVA, Assembly, MATLAB, FORTRAN, and a number of other languages. Input data 707 may also be stored in the memory. Such input data 707 may
include each user's user identification key, user characteristics determined by a biometric sensor, and data associated with the user (e.g., game play settings, achievements, etc.). During execution of the program 703, portions of program code and/or data may be loaded into the memory or the local stores of processor cores for parallel processing by multiple processor cores.

[0053] The apparatus 700 may also include well-known support functions 709, such as input/output (I/O) elements 711, power supplies (P/S) 713, a clock (CLK) 715, and a cache 717. The apparatus 700 may optionally include a mass storage device 719 such as a disk drive, CD-ROM drive, tape drive, or the like to store programs and/or data. The device 700 may also optionally include a display unit 721 and user interface unit 725 to facilitate interaction between the apparatus 700 and a user. The display unit 721 may be in the form of a cathode ray tube (CRT) or flat panel screen that displays text, numerals, graphical symbols, or images. The user interface 725 may include a keyboard, mouse, joystick, light pen, controller, or other device that may be used in conjunction with a graphical user interface (GUI). The apparatus 700 may also include a network interface 723 to enable the device to communicate with other devices over a network, such as the internet.

[0054] One or more biometric sensors 733 may be connected to the processor module 701 via the I/O elements 711. As discussed above, the biometric sensors 733 may be configured to determine one or more user characteristics (e.g., fingerprint, iris pattern, etc.), which serve as a user identification key.

[0055] The components of the system 700, including the processor 701, memory 705, support functions 709, mass storage device 719, user interface 725, network interface 723, and display 721 may be operably connected to each other via one or more data buses 727. These components may be implemented in hardware, software, firmware, or some combination of two or more of these.

[0056] According to another embodiment, instructions for implementing a method for account management of a computer game system may be stored in a computer readable storage medium. By way of example, and not by way of limitation, FIG. 8 illustrates an example of a non-transitory computer readable storage medium 800 in accordance with an embodiment of the present invention. The storage medium 800 contains computer-readable instructions stored in a format that can be retrieved, interpreted, and executed by a computer processing device. By way of example, and not by way of limitation, the computer-readable storage medium 800 may be a computer-readable memory, such as random access memory (RAM) or read only memory (ROM), a computer readable storage disk for a fixed disk drive (e.g., a hard disk drive), or a removable disk drive. In addition, the computer-readable storage medium 800 may be a flash memory device, a computer-readable tape, a CD-ROM, a DVD-ROM, a Blu-Ray, HD-DVD, UMD, or other optical storage medium.

[0057] The storage medium 800 contains instructions for account management of a computer game system 801 configured to implement a method for account management of a computer game system. The instructions for account management of a computer game system 801 may be configured to implement a method for account management of a computer game system in accordance with the method described above with respect to FIG. 1. In particular, the instructions for account management of a computer game system 801 may include determining user identification key instructions 803 that are used to determine a user identification key associated with a user of the component device. The user identification key may be stored on the component device or extracted from user characteristics recognized by a biometric sensor located on the component device as discussed above.

[0058] The instructions for account management of a computer game system 801 may further include automatically accessing account instructions 805 that are used to automatically access an account associated with the user by sending the user identification key to a network associated with the computer game system.

[0059] The instructions for account management of a computer game system 801 may further include receiving data instructions 807 that are used to receive data associated with the user from the network. Such data may include user-preferred settings, features unlocked by the user, previous achievements attained by the user, and information about the user configured to calibrate or optimize tracking of the user as discussed above.

[0060] The instructions for account management of a computer game system 801 may also include running computer game instructions 809 that are used to run a computer game in accordance with the data received from the network. Games may be run according to user-preferred settings, unlocked features, or calibration/optimization tracking information as discussed above.

[0061] The instructions for account management of a computer game system 801 may additionally include updating user account instructions 811 that are used to update a user account in accordance with new account information obtained during game play. The update may include updated user settings, newly unlocked features, newly attained achievements, or updated calibration/optimization tracking information as discussed above.

[0062] We were talking about this idea more and Tim Moss came up with the idea of using a rolling code transmitter as part of the hardware. Like a RF car key the code changes based on number of times there is an exchange between a PS3 and the controller. The current acceptable code would be stored in the cloud.

[0063] While the above is a complete description of the preferred embodiment of the present invention, it is possible to use various alternatives, modifications, and equivalents. Therefore, the scope of the present invention should be determined not with reference to the above description, but should, instead be determined with reference to the appended claims, along with their full scope of equivalents. Any feature described herein, whether preferred or not, may be combined with any other feature described herein, whether preferred or not. In the claims that follow, the indefinite article “A” or “An” refers to a quantity of one or more of the item following the article, except where expressly stated otherwise. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly received in a given claim using the phrase “means for.”

What is claimed is:
1. A method for account management of a computer system, comprising:
 a) with the computer system, determining a user identification key associated with a user of a component device in response to connection of the component device to the computer system;
b) with the computer system, automatically accessing an account associated with the user by sending the user identification key to a network associated with the computer system;

c) with the computer system, receiving data associated with the user account from the network;

d) running a computer application on the computer system in accordance with the received data, wherein the computer application receives input from the component device corresponding to user manipulation of the component device.

2. The method of claim 1, wherein determining the user identification key in a) includes reading the user identification key from a memory of the component device, the user identification key being unique to the component device.

3. The method of claim 1, wherein determining the user identification key in a) involves determining one or more characteristics of the user through a sensor located on the component device, the one or more characteristics of the user forming the user identification key.

4. The method of claim 3, wherein the sensor is a biometric sensor.

5. The method of claim 4, wherein the one or more characteristics of the user includes a fingerprint of the user.

6. The method of claim 4, wherein the one or more characteristics of the user includes an iris pattern of the user.

7. The method of claim 4, wherein the one or more characteristics of the user includes the user's voice.

8. The method of claim 1, wherein the computer system is a game system and the component device associated with the computer system is a controller.

9. The method of claim 1, wherein the computer system is a game system and wherein the component device associated with the computer system is a peripheral component device associated with the computer game system.

10. The method of claim 9, wherein the peripheral component device is a pair of 3-D glasses.

11. The method of claim 9, wherein the peripheral component device is a headset.

12. The method of claim 1, wherein the data received in c) includes user-preferred settings associated with a game to be played on the computer system.

13. The method of claim 1, wherein the data received in c) includes unlocked features associated with a game to be played on the computer system.

14. The method of claim 1, wherein the data received in c) includes information about the user configured to calibrate or optimize tracking of the user.

15. The method of claim 1, wherein the data received in c) includes previous achievements attained by the user.

16. The method of claim 1, wherein d) involves running a computer program in accordance with a set of user-preferred settings.

17. The method of claim 1, wherein d) involves running the computer program with one or more unlocked features associated with the user.

18. The method of claim 1, further comprising e) updating the account associated with the user in accordance with new account information obtained during game play.

19. The method of claim 1, wherein a) includes transmitting an access code to a console, wherein the access code changes based on number of times there is an exchange between the computer system and the component device.

20. The method of claim 19, wherein a current acceptable value of the access code is stored remotely and can be accessed by the computer system via a network.

21. An apparatus for account management of a computer system, comprising:

- a processor;
- a memory; and
- computer coded instructions embodied in the memory and executable by the processor, wherein the computer coded instructions are configured to implement a method for account management of a computer system, comprising:

a) with the computer system, determining a user identification key associated with a user of a component device in response to connection of the component device to the computer system;

b) with the computer system, automatically accessing an account associated with the user by sending the user identification key to a network associated with the computer system;

c) with the computer system, receiving data associated with the user account from the network;

d) running a computer application on the computer system in accordance with the received data, wherein the computer application receives input from the component device corresponding to user manipulation of the component device.

22. The apparatus of claim 21, wherein the component device includes a memory and determining the user identification includes reading the user identification key from a memory of the component device, the user identification key being unique to the component device.

23. The apparatus of claim 21, wherein the component device includes a sensor located on the component device and determining the user identification key involves determining one or more characteristics of the user through the sensor, the one or more characteristics of the user forming the user identification key.

24. The apparatus of claim 23, wherein the sensor is a biometric sensor.

25. The apparatus of claim 24, wherein the sensor is a fingerprint sensor and the one or more characteristics of the user includes a fingerprint of the user.

26. The apparatus of claim 24, wherein the one or more characteristics of the user includes an iris pattern of the user.

27. The apparatus of claim 24, wherein the sensor includes one or more microphones and wherein the one or more characteristics of the user includes the user's voice.

28. The apparatus of claim 21, wherein the computer system is a game system and the component device associated with the computer system is a controller.

29. The apparatus of claim 21, wherein the computer system is a game system and wherein the component device associated with the computer system is a peripheral component device associated with the computer game system.

30. The apparatus of claim 29, wherein the peripheral component device is a pair of 3-D glasses.

31. The apparatus of claim 29, wherein the peripheral component device is a headset.

32. The apparatus of claim 21, wherein the data received in c) includes user-preferred settings associated with a game to be played on the computer system.
33. The apparatus of claim 21, wherein the data received in c) includes unlocked features associated with a game to be played on the computer system.

34. The apparatus of claim 21, wherein the data received in c) includes information about the user configured to calibrate or optimize tracking of the user.

35. The apparatus of claim 21, wherein the data received in c) includes previous achievements attained by the user.

36. The apparatus of claim 21, wherein d) involves running a computer program in accordance with a set of user-preferred settings.

37. The apparatus of claim 21, wherein d) involves running the computer program with one or more unlocked features associated with the user.

38. The apparatus of claim 21, wherein the computer coded instructions further comprise instructions configured to update the account associated with the user in accordance with new account information obtained during game play.

39. The apparatus of claim 21, further comprising a transmitter configured to transmit an access code from the component device to a console, wherein the access code changes based on number of times there is an exchange between the console and the component device.

40. The apparatus of claim 39, wherein a current acceptable value of the access code is stored remotely and can be accessed by the console via a network.

41. A computer program product comprising:
a non-transitory, computer-readable storage medium having computer readable program code embodied in said medium for detecting irrelevant speech of a user, said computer program having:
a) computer readable instructions configured to determine a user identification key associated with a user of a component device in response to connection of the component device to the computer system;
b) computer readable instructions configured to automatically access an account associated with the user by sending the user identification key to a network associated with the computer system;
c) computer readable instructions configured to receive data associated with the user account from the network;
d) computer readable instructions configured to run a computer application on the computer system in accordance with the received data, wherein the computer application receives input from the component device corresponding to user manipulation of the component device.

* * * * *