US 20050278318A1

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2005/0278318 Al

Vasilik et al.

43) Pub. Date: Dec. 15, 2005

(54

(76)

@D
(22

(63)

(D)
(52)

ITERATIVE DEVELOPMENT WITH
PRIORITIZED BUILD

Inventors: Kenneth Eric Vasilik, Redmond, WA
(US); David Bau III, Gladwyne, PA
(US); Roderick A. Chavez, Kirkland,
WA (US)

Correspondence Address:

SCHWABE, WILLIAMSON & WYATT, P.C.
PACWEST CENTER, SUITE 1900

1211 SW FIFTH AVENUE

PORTLAND, OR 97204 (US)

Appl. No.: 11/142,897
Filed: May 31, 2005
Related U.S. Application Data

Continuation of application No. 10/082,795, filed on
Feb. 22, 2002, now Pat. No. 6,922,827.

Publication Classification

INt. CL7 e ssesns s GO6F 7/00
b e e ettt e ettt 707/3

(7) ABSTRACT

An iterative software development environment is provided
to perform modified dependency analyses for use in building
a target file and all the files on which it depends from one or
more source files using a set of prioritized build rules. In one
embodiment, the build rules indicate how different types of
target files can be generated from different source file types.
A given target file type may be associated with several rules,
each having a different priority, for building the target from
different source file types. In one embodiment, if more than
one source file exists that can be used to generate a given
target file, the rule with the highest priority is used. In one
embodiment, the build environment identifies how to gen-
erate a particular target file by identifying the highest
priority rule for which an associated source file type exists.
Moreover, the development environment identifies the pres-
ence of a new source file having a corresponding build rule
with a higher priority than that of the source file type(s)
previously used in the generation of the target file. In one
embodiment of the invention, the target file is rebuilt if such
a new source file is identified, or if one or more source files
previously used to build the target file are determined to
have been modified more recently than that indicated by the
build date/time of the target file itself.

APPLICATION REQUEST-

|

U

REQUEST LISTENER 102

104

REQUEST PROCESSOR

RULE SET

i

BUILD ENV 106

105 B
APPLICATION

ﬂ 107

«» META-
h DATA
109

EXECUTION ENGINE 110

Patent Application Publication Dec. 15,2005 Sheet 1 of 7 US 2005/0278318 Al
APPLICATION REQUEST"
i}7 REQUESTLBTENERjgg
REQUEST PROCESSOR -
104
[RULE SET J

%]

BUILD ENV 106

72
[Appucxmor\j 4_{ '\Sﬂﬁ J

107 109

EXECUTION ENGINE 110

FIG. 1

Patent Application Publication Dec. 15,2005 Sheet 2 of 7 US 2005/0278318 Al

Receive & Interpret 1
Request 202

'

Identify Search & Source Path 1

206

Application
Corresponding To
Request Exist?

YES

212

Rebuild
Needed?

Build Application Rebuild

RS

4

208

A 4
Run Executable L 210

FIG. 2

Patent Application Publication Dec. 15,2005 Sheet 3 of 7 US 2005/0278318 Al

08

!

Perform Modified
Dependency Analysis N
Storing Results Into 302
Persistent Data

Structure(s)

|

Compile Source File(s) To .
Generate Application 304

l

Associate Dependencies 8
With Application 306

|

Set Build Date/Time
308

FIG. 3

Patent Application Publication Dec. 15,2005 Sheet 4 of 7

!

identify Trarget File

[

A4

US 2005/0278318 Al

302

JL 401

Get Prioritized Rules for Selected Target File

L 402

Y

Select highest priority rule

YES

A 4

List

-Add to First “If_Newer”

v

Build Target Using
Selected Rule

on External Targets

Identify Dependencies

I

Addl
Target Files

| | Select Next
Target

‘—’]
413

Remaining?

L 403
v
Source File Exist
for Building
Target Using
Selected Rule?
y
Add to Second
| L 406 4085 | if Exists” List
'L 407 Add'l Rules
In List?
'L 409
Select Next Highest
Priority Rule
411 I
NO y
Generate
Error: Cannot 1414
Build Target

Patent Application Publication Dec. 15,2005 Sheet 5 of 7 US 2005/0278318 Al

12

506

Iteratively Traverse 1° Data
Structure To Determine If
Any Source Files Have
Date/Time More Recent
than Build Date/Time?

YES

iteratively Traverse 2nd
Data Structure To
Determine If
Any Source Files Of
Greater Precedence Exist?

4
Rebuild Needed

Rebuild Not
Needed L5512

FIG. 5

Patent Application Publication Dec. 15,2005 Sheet 6 of 7 US 2005/0278318 Al

[]

—> — 601
y REQUEST ===

WEB SERVER 615

SERVLET CONTAINER 602

SERVLET 604

RULE SET -

605
B

APPLICATION META-
DATA

EXECUTION ENGINE 610

FIG. 6

US 2005/0278318 Al

Patent Application Publication Dec. 15,2005 Sheet 7 of 7

L'9Old
s8|ny piing
o1z 207 ‘AUg JuawdojnaeQqg
LNEWNOD sFomnaa o 90/ 3IOVHOLS SSYIN
rA%]
s8|ny piing
‘aug juswdojers(20/
p— SHOSSIO0Hd
0.
AHOW3IW WILSAS
00/

US 2005/0278318 Al

ITERATIVE DEVELOPMENT WITH PRIORITIZED
BUILD

BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention

[0002] The present invention generally relates to the field
of software development environments. More specifically,
the present invention relates to an environment for iterative
software development in which targets can be built from any
one of a prioritized list of source files.

[0003] 2. Background Information

[0004] With software companies struggling to beat one
another to market with the “latest and greatest” software
products and technologies, the need for reduced develop-
ment times has never been greater. During a typical software
development lifecycle, a software development team may go
through the steps of analysis, design, construction, and
testing before the resulting software application may be
successfully deployed. Often times, developers are required
to perform numerous iterations of code construction, modi-
fication and testing of a design before the product can be
deployed. It is often useful for the developer to view and test
the results of each incremental software change as it is
completed before proceeding to the next change. However,
in compiled language environments, the process of rebuild-
ing, deploying and testing complex software projects can be
tedious and time consuming. When a large number of
iterations is required, the accumulated build and deploy time
becomes significant, possibly delaying the release of the
software product in a business where short development
times are necessary in order to remain competitive.

[0005] Accordingly, a number of mechanisms have been
employed to speed software generation by reducing devel-
opment time. For example, integrated development environ-
ments (IDE) provide developers with various software
development tools for tasks such as editing, compiling,
debugging, and so forth. Although IDEs may simplify
software development, it is useful to provide iterative soft-
ware development capabilities at a lower-level, so they are
available both inside the IDE and from the command line,
where some experienced programmers prefer to work with-
out the overhead often accompanied with IDEs.

[0006] Advanced compilers have also been introduced
that automate the analysis of complex dependencies between
source files in a software project, and that rebuild the
minimum subset of the project based on which source files
have changed. However, these compilers only work for a
single type of source file (e.g., C++ or Java), must be
manually activated each time compilation is needed and
don’t have any way to rapidly determine whether rebuild is
needed without performing a dependency analysis.

[0007] Therefore, further improvements in the area of
iterative software development are desired.

BRIEF DESCRIPTION OF DRAWINGS

[0008] The present invention will be described by way of
exemplary embodiments, but not limitations, illustrated in
the accompanying drawings in which like references denote
similar elements, and in which:

Dec. 15, 2005

[0009] FIG. 1 is a block diagram illustrating one embodi-
ment of the present invention;

[0010] FIG. 2 is a flow diagram illustrating an overview
of an application generation/regeneration process in accor-
dance with one embodiment;

[0011] FIG. 3 is a flow diagram illustrating a more
detailed view of the build process of FIG. 1, in accordance
with one embodiment;

[0012] FIG. 4 illustrates a more detailed view of the
modified dependency analysis process of FIG. 3, in accor-
dance with one embodiment;

[0013] FIG. 5 illustrates one embodiment of the process
used to determine whether a rebuild of the application is
needed;

[0014] FIG. 6 is a block diagram illustrating an alternative
embodiment of the present invention; and

[0015] FIG. 7 illustrates an example computer system
suitable for practicing the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0016] In the following description, various aspects of the
present invention will be described. However, it will be
apparent to those skilled in the art that the present invention
may be practiced with only some or all aspects of the present
invention. For purposes of explanation, specific numbers,
materials and configurations are set forth in order to provide
a thorough understanding of the present invention. However,
it will also be apparent to one skilled in the art that the
present invention may be practiced without the specific
details. In other instances, well-known features are omitted
or simplified in order not to obscure the present invention.

[0017] Parts of the description will be presented in terms
of operations performed by a processor based device, using
terms such as receiving, determining, generating, and the
like, consistent with the manner commonly employed by
those skilled in the art to convey the substance of their work
to others skilled in the art. As well understood by those
skilled in the art, the quantities take the form of electrical,
magnetic, or optical signals capable of being stored, trans-
ferred, combined, and otherwise manipulated through
mechanical and electrical components of the processor
based device; and the term processor include microproces-
sors, micro-controllers, digital signal processors, and the
like, that are standalone, adjunct or embedded.

[0018] Various operations will be described as multiple
discrete steps in turn, in a manner that is most helpful in
understanding the present invention, however, the order of
description should not be construed as to imply that these
operations are necessarily order dependent. In particular,
these operations need not be performed in the order of
presentation. Further, the description repeatedly uses the
phrase “in one embodiment”, which ordinarily does not refer
to the same embodiment, although it may.

OVERVIEW

[0019] The present invention may be advantageously
employed to reduce iterative software development cycles.
In one embodiment of the invention, a build environment is

US 2005/0278318 Al

provided to perform modified dependency analyses for use
in building an application and all the files on which it
depends from one or more source files using a set of
prioritized build rules. In one embodiment, the build rules
indicate how different types of target files can be generated
from different source file types (e.g., a “.class” file can be
built from a “java” file using the java compiler). A given
target file type may be associated with several rules, each
having a different priority, for building the target from
different source file types. In one embodiment, if more than
one source file exists that can be used to generate a given
target file, the rule with the highest priority is used. In one
embodiment, the build environment identifies how to gen-
erate a particular target file by identifying the highest
priority rule for which an associated source file type exists.
Moreover, the build environment identifies the presence of
a new source file having a corresponding build rule with a
higher priority than that of the source file type(s) previously
used in the generation of the target file. In one embodiment
of the invention, the target file is rebuilt if such a new source
file with a higher priority is identified, or if one or more
source files previously used to build the target file are
determined to have been modified more recently than that
indicated by the build date/time of the target file itself.

[0020] FIG. 1 is a block diagram illustrating one embodi-
ment of the present invention. In FIG. 1 request processor
104 is equipped to receive application requests provided via
request listener 102. Request listener may be e.g., an inter-
active command shell, a graphical operating system, an
HTTP server, etc. Request listener 102 verifies that requests
are syntactically valid based upon e.g. the configuration and
capabilities of request processor 104. In one embodiment of
the invention, request processor 104 determines whether an
application exists within a designated search path to satisfy
the request. In one embodiment of the invention, if an
application corresponding to the received request does not
exist within a designated search path, request processor 104
invokes build environment 106 to automatically generate
such an application without further human interaction.
Accordingly, a developer can be freed from having to
manually initiate the build process in response to one or
more error conditions that would otherwise have been
returned by the prior art.

[0021] To build the requested application, request proces-
sor 104 invokes build environment 106 passing the name of
the application as the build target. Build environment 106
represents a build environment advantageously modified
with the teachings of the present invention to perform
modified dependency analysis during the generation of a
target file. During the modified dependency analysis pro-
cess, build environment 106 finds the source file associated
with the target using a designated source path and examines
the external dependencies (e.g., via well-known variable
type analysis techniques) of the source file to identify
external target files on which the source file depends. The
source path is used to find source files to build targets while
the search path is used to find requested applications. In
some environments, the source path may be the same as the
search path or it may differ from the search path. In turn,
build environment 106 recursively examines the dependen-
cies of each external target file, until all external dependen-
cies are identified (i.e., the transitive closure of application
dependencies).

Dec. 15, 2005

[0022] In accordance with one embodiment of the inven-
tion, as build environment 106 recursively identifies all
external dependencies of the original target file, build envi-
ronment 106 builds missing target files using prioritized
build rules within rule set 105 and populates two data
structures, named rebuildIfNewer and rebuildIfExists, with
meta-data 109, to record the list of dependencies. In one
embodiment, rule set 105 describes a prioritized list of
candidate rules, one for each source file type that can be used
to generate the target file. In one embodiment, the prioritized
list of rules is sorted by priority. The rule priorities may be
assigned by a developer depending upon the functionality
enabled by each source file type and the desired function-
ality for the target file. Of course, the set of rules can be
arranged in any order so long as the relative priority of each
rule is preserved. In one embodiment, build environment
106 iterates through each of the rules in rule set 105
associated with the current target type in priority order. For
each rule, build environment 106 determines whether the
rule can be used to build the target file by searching the
source path for a source file of the type required by the rule
and a name matching that of the target file. If an appropriate
source file is found, the rule is used to build the target, and
the source file location (name and path) is stored within the
rebuildifNewer data structure before the rule search ends.
However, if an appropriate source file is not found, the
expected source file location (name and path) is stored
within the rebuildIfExists data structure, and the rule search
process continues with the next highest priority rule. This
process continues until a rule has been identified for building
each required target file from the set of available source files.
If the build process cannot determine an appropriate rule to
build one of the required target files, the build process exits
with an error. Once application 107 is generated, build
environment 106 associates metadata 109, including the
rebuildIfNewer and rebuildIfExists data structures contain-
ing dependencies, with application 107 and passes applica-
tion 107 to execution engine 110 for execution. In one
embodiment, application 107 contains a reference to the
location of metadata 109, whereas in an alternative embodi-
ment, metadata 109 is itself embedded within application
107. In one embodiment metadata 109 is stored in persisted
data structures. By storing the metadata in data structures
that are persisted, the metadata can be used in association
with subsequent rebuilds of the application without requir-
ing the build environment to perform additional dependency
analyses, thereby expediting the build process and further
decreasing the development time.

[0023] The above description is based upon the assump-
tion that the requested application did not exist within a
designated search path. However, in accordance with one
embodiment of the invention, if it is determined that an
application corresponding to the request does exist, request
processor 104 makes a determination based upon one or
more criteria, as to whether a rebuild of the application is
needed prior to the application being executed. In one
embodiment, a determination as to whether a rebuild of the
application is needed is based upon whether the source files
listed in the rebuildifNewer data structure of meta-data 109
have been modified more recently than the most recent build
date/time of the application. In one embodiment, the build
date/time of each source file listed in the rebuildifNewer
data structure is compared against the most recent applica-
tion build date/time, and if any of the corresponding source

US 2005/0278318 Al

files have a date/time that is more recent than the application
build date/time, the application is rebuilt. Similarly, in one
embodiment a search of the designated source path is
performed to determine if any source files listed in the
rebuildIfExists data structure of meta-data 109 (i.e. those
source files having a higher priority than the source files
used to build the application) now exist in the designated
source path. If so, a rebuild of the application is automati-
cally triggered.

[0024] FIG. 2 is a flow diagram illustrating an overview
of an application generation/regeneration process in accor-
dance with one embodiment. To begin, a request is received
and interpreted e.g. by request listener 102, (block 202). In
accordance with the teachings of the present invention, the
request can assume numerous forms including but not
limited to that of a command entered directly by a user
through a command line interface, or that of one or more
data packets received from a remote client via a network
connection. Next, a search path and source path are identi-
fied for locating the application and various source files to be
used in generating the application respectively (block 204).
In one embodiment, the request is an HTTP based message
identifying a URL that identifies the location of meta-data
used to derive the search and source paths. Next, a deter-
mination is made as to whether an application corresponding
to the request exists within the search path (block 206). If the
application is not present within the search path, the build
environment proceeds to build the application (block 208),
which is eventually executed (block 210). However, if the
application is present within the search path, a further
determination is made regarding whether a rebuild of the
application is needed (block 212). If so, the application is
rebuilt (block 214) and then executed (block 210). If a
rebuild of the application is not needed (block 212), the
existing application is merely executed (block 210) without
being rebuilt.

[0025] FIG. 3 is a flow diagram illustrating one embodi-
ment of the build process of FIG. 1. To begin, build
environment 106 performs a modified dependency analysis
in which dependencies are stored into two data structures,
named rebuildIlfNewer and rebuildIfExists, that are persisted
(302). In one embodiment, the rebuildIfNewer data structure
is a list used to identify which source files were last used to
build the application, whereas the rebuildIfExists data struc-
ture is a list used to identify source files having a greater
priority than those source files used to build the application
(i.e. those source files appearing in the rebuildifNewer array)
(block 304). After the modified dependency analysis has
been performed, one or more source files (as e.g. determined
through the dependency analysis) are compiled to generate
the application (block 304). Once the application has been
generated, the dependencies stored in each of the lists are
associated with the application (block 306), such that the
dependencies can be recalled at a later time without requir-
ing build environment 106 to recursively open and analyze
the source files again after the initial dependency analysis. In
one embodiment, the dependencies stored in each of the lists
are stored as metadata within the application. At the end of
the build process, a system build date/time is stored with
meta-data 109 to reflect the time at which the application
was last built (block 308).

[0026] FIG. 4 illustrates a more detailed view of the
modified dependency analysis process of FIG. 3, in accor-

Dec. 15, 2005

dance with one embodiment. To begin, build environment
106 identifies the requested target file to be built (block 401).
Build environment 106 then accesses prioritized rule set 105
to retrieve prioritized rules for building the requested target
file based on the target file type (block 402). In one embodi-
ment, build environment 106 iterates through the list of rules
in priority order to identify the highest priority rule that can
be used to build the target file based on the existence of a
source file of the type associated with the rule (block 403).
For each rule, build environment 106 determines whether a
source file exists for building the target using that rule (block
404). If so, the source file location (name and path) is stored
into the rebuildifNewer data structure (block 406), the target
is built using the selected rule (block 407), and dependencies
on external targets are then determined (block 409). If there
are additional target files remaining to be built (block 411),
another target is selected (block 413) and the process
repeats. However, if all target files have been built, including
the application, the build process completes successfully.

[0027] 1If the source file required to build the target with
the selected rule does not exist (block 404), the expected
location (name and path) of the missing source file is stored
into the rebuildIfExists data structure (block 408). If there
are additional rules remaining in rule set 105 that have not
been selected (block 410), the rule with the next highest
relative priority (i.e. the highest priority remaining) is
selected and the process continues (block 412). If no rules
are remaining, the build process terminates and generates an
error indicating it was not able to build the requested target
using the rules provided and available source files (block
414). In one embodiment, this process continues until all
external dependencies are identified and built or the build
environment identifies a target that cannot be built.

[0028] FIG. 5 illustrates one embodiment of the process
used to determine whether a rebuild of the application is
needed. In determining whether a rebuild of the application
is necessary, the rebuildifNewer data structure is iteratively
traversed to determine if any of the modification dates/times
of the source files identified in the rebuildifNewer data
structure are more recent than the system build date/time
(block 506). If the answer is “no”, then the rebuildIfExists
data structure is iteratively traversed and a determination is
made as to whether any of the source files identified by the
rebuildIfExists data structure are present within a designated
source path (block 508). If none of the source files identified
by the rebuildIfExists data structure are present within a
designated source path, then a rebuild is not needed (block
512). However, if any of the modification dates/times of the
source files identified in the rebuildifNewer data structure
are more recent than the system build date/time, or if any of
the source files identified by the rebuildIfExists data struc-
ture are present within a designated source path, then a
rebuild is needed (block 510).

EXAMPLE APPLICATION

[0029] FIG. 6 is a block diagram illustrating one embodi-
ment of the present invention. In FIG. 6, remote client 601
sends HTTP based requests over network 600 to web server
615, incorporating the teachings of the present invention.
Web server 615 represents a host of one or more Java based
web services that are made publicly accessible to remote
clients such as client 601. In one embodiment, the request
provides a URL that indicates a publicly accessible resource

US 2005/0278318 Al

on web server 615. In one embodiment, the URL is used to
identify the name of an application used to implement the
web service of the illustrated embodiment and a deployment
descriptor containing a search path and source path.

[0030] In one embodiment, the request is received by
servlet container 602 and processed by servlet 604. In one
embodiment, servlet 604 represents a servlet designed to
receive web service requests and parse the requests to
identify the application required to respond to the request. In
one embodiment, servlet 604 determines whether an appli-
cation corresponding to the indicated URL exists within the
search path and dispatches the request according to the
result. For example, if a corresponding application does
exist within the search path, servlet 604 first determines
whether the application needs to be rebuilt as described
above (see e.g. FIG. 5). If the application does not need to
be rebuilt, servlet 604 dispatches the application to execu-
tion engine 610 whereupon it is executed. However, if the
application does need to be rebuilt, servlet 604 provides the
name of the application to build environment 606, which
then proceeds with the build process. Likewise, if the
application does not exist within the search path, servlet 604
provides the name of the application to build environment
606 to generate an application, which is then automatically
executed.

EXAMPLE HOST COMPUTER SYSTEM

[0031] FIG. 7 illustrates an example computer system
suitable for hosting the software development environment
of the present invention. As shown, computer system 700
includes one or more processors 702, and system memory
704. Additionally, computer system 700 includes mass stor-
age devices 706 (such as diskette, hard drive, CDROM and
so forth), input/output devices 708 (such as keyboard, cursor
control and so forth) and communication interfaces 710
(such as network interface cards, modems and so forth). The
elements are coupled to each other via system bus 712,
which represents one or more buses. In the case of multiple
buses, they are bridged by one or more bus bridges (not
shown). Each of these elements performs its conventional
functions known in the art. In particular, system memory
704 and mass storage 706 are employed to store a working
copy and a permanent copy of the programming instructions
implementing the present invention. The permanent copy of
the programming instructions may be loaded into mass
storage 706 in the factory, or in the field, through e.g. a
distribution medium (not shown) or through communication
interface 710 (from a distribution server (not shown). The
constitution of these elements 702-712 are known, and
accordingly will not be further described

CONCLUSION AND EPILOGUE

[0032] Thus, it can be seen from the above description, an
environment for iterative software development with priori-
tized build rules has been described. While the present
invention has been described referencing the illustrated and
above enumerated embodiments, the present invention is not
limited to these described embodiments. Numerous modi-
fication and alterations may be made, consistent with the
scope of the present invention as set forth in the claims to
follow. Thus, the above-described embodiments are merely
illustrative, and not restrictive on the present invention.

Dec. 15, 2005

1-36. (canceled)
37. A computing device implemented method comprising:

determining by a computing device whether an applica-
tion corresponding to a received request is present
within a designated search path; and

generating by a computing device the application by
compiling one or more source files, if it is determined
that the application is not present within the designated
search path.

38. The method as recited in claim 37, further comprising
determining by a computing device whether regeneration of
the application is needed, if it is determined that the appli-
cation is present within the designated search path.

39. The method as recited in claim 38, further comprising
regenerating by a computing device the application by
compiling the one or more source files, if it is determined
that the application is present and regeneration is needed.

40. A computing device implemented method comprising:

identifying by a computing device a target file corre-
sponding to an application identified by a request;

accessing by a computing device a compilation rule
associated with the identified target file, the compila-
tion rule identifying at least a source file type for use in
generating the associated target file; and

generating by a computing device the identified target file.

41. The method of claim 40, wherein said accessing
comprises

selecting by a computing device the compilation rule from
an ordered set of compilation rules.
42. The method of claim 40, wherein the generating
comprises

determining by a computing device whether a source file
corresponding to the source file type of the compilation
rule exists within a designated search path.

43. The method as recited in claim 40, further comprising
storing by a computing device a representation of the source
file in a persistent data structure, if a source file correspond-
ing to the source file type of the selected compilation rule
exists within a designated search path.

44. The method as recited in claim 40, further comprising
storing by a computing device a derived source file repre-
sentation in a persistent data structure, if a source file
corresponding to the source file type of the selected com-
pilation rule does not exist within the designated search path.

45. An apparatus comprising:

a Processor; and

a module operated by the processor and adapted to enable
the apparatus to

determine whether an application corresponding to a
received request is present within a designated
search path; and

generate the application by compiling one or more
source files, if it is determined that the application is

not present within the designated search path.
46. The apparatus of claim 45, wherein the module is
further adapted to enable the apparatus to determine whether

US 2005/0278318 Al

regeneration of the application is needed, if it is determined
that the application is present within the designated search
path.

47. The apparatus of claim 46, wherein the module is
further adapted to enable the apparatus to regenerate the
application by compiling the one or more source files, if it
is determined that the application is present and regeneration
is needed.

48. An apparatus comprising:

a Processor; and

a module operated by the processor and adapted to enable
the apparatus to

identify a target file corresponding to an application
identified by a request;

access a compilation rule associated with the identified
target file, the compilation rule identifying at least a
source file type for use in generating the associated
target file; and

generate the identified target file.

Dec. 15, 2005

49. The apparatus of claim 48, wherein the module is
further adapted to enable the apparatus to select the compi-
lation rule from an ordered set of compilation rules.

50. The apparatus of claim 48, wherein the module is
further adapted to enable the apparatus to determine whether
a source file corresponding to the source file type of the
compilation rule exists within a designated search path.

51. The apparatus of claim 48, wherein the module is
further adapted to enable the apparatus to store a represen-
tation of the source file in a persistent data structure, if a
source file corresponding to the source file type of the
selected compilation rule exists within a designated search
path.

52. The apparatus of claim 48, wherein the module is
further adapted to enable the apparatus to store a derived
source file representation in a persistent data structure, if a
source file corresponding to the source file type of the
selected compilation rule does not exist within the desig-
nated search path.

