Office de la Proprieté Canadian CA 2635400 C 2014/10/28

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 635 400
Un organisme An agency of

d'Industrie Canada Industry Canada (12) BREVET CANADIEN

CANADIAN PATENT
13) C

(86) Date de depot PCT/PCT Filing Date: 2006/11/30 (51) Cl.Int./Int.Cl. GO6F 77/30(2006.01)
(87) Date publication PCT/PCT Publication Date: 200/7/0/7/12 | (72) Inventeurs/Inventors:

1 . RANSIL, PATRICK W., US;
(45) Date de délivrance/lssue Date: 2014/10/28 MARTYNOV ALEKSEY V.. US:

(85) Entree phase nationale/National Entry: 2008/06/26 LARSON, JAMES S., US;

(86) N° demande PCT/PCT Application No.: US 2006/061435 COLLETTE, JAMES R., US;
o o CHU, ROBERT WAI-CHI, US;

(87) N° publication PCT/PCT Publication No.: 2007/079303 SAHA PARTHA US

(30) Priorités/Priorities: 2005/12/29 (US60/754,777);

(73) Proprietaire/Owner:
2006/03/29 (US11/392,482) AMAZON TECHNOLOGIES. INC.. US

(74) Agent: GOUDREAU GAGE DUBUC

(54) Titre : PROCEDE ET APPAREIL POUR SERVICE DE DONNEES INTERROGEABLE
54) Title: METHOD AND APPARATUS FOR A SEARCHABLE DATA SERVICE

Datz Store(s) |« Accass via locators i Cllent(s)
332 230
R 7

Quzty Resulis /
(Iocators) Service requests
(query node requesis

and storage hods
requesis)

nternet

334

(\Web Ssnvicas Interface)

Web Sarvices Platform
200

Fy
Query Service Searchable
rasylts requests Data Service

¥

Query Results .

Coordinator Node(s)
350

Query (Coardingtion Service) Storage node

node requesis (2.g.,
requests Undates, Adds,

w DE[GtﬂS, Biﬂ.}

N
Y = ¥
- -
Query TSAR Nodefs) Querias Siorage Node(s)
360 o arn
(Query Results
(Quary Subsysiem) (Storaga Subsystem)

(57) Abréegée/Abstract:

A searchable data service implementation may Include, but Is not limited to, a Web services platform (200), one or more
coordinator nodes (350), one or more query nodes, referred to as query TSAR (Top Search AggregatoR) nodes (360), and one or
more storage nodes (370). Each coordinator node (350) may include, but is not limited to, at least one instance of request router
(202). A client system (330) may submit service requests (query node requests and/or storage node requests) to the searchable
data service In accordance with the Web service interface of the Web services platform (200) via Internet (334). The VWeb services
platform (200) may route the service request (s) to a coordinator node (350). A coordinator node (350) routes the service requests
to the appropriate node(s) , collects result, and send the results back to the web services platform (200). A request router on the
coordinator node (350) may recelve the service request (s) from the Web services platform (200) and determine whether each
service request Is a storage node request or a query node reguest.

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

woO 2007/079303 A3 I D000 D00 00K PR 0 R0

CA 02635400 2008-06-26

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization [~

International Bureau

(43) International Publication Date

12 July 2007 (12.07.2007)

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:
PCT/US2006/061435

(22) International Filing Date:
30 November 2006 (30.11.2006)

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:

60/754,777
11/392,4382

English

English

29 December 2005 (29.12.2005)
29 March 2006 (29.03.2006)

US
US

(74)

(81)

(10) International Publication Number

WO 2007/079303 A3

(71) Applicants and
(72) Inventors: RANSIL, Patrick, W. [US/US]; 1200 12th Av-

enue South, Suite 1200, Seattle, WA 98144 (US). MAR-
TYNOYV, Aleksey, V. [US/US]; 1200 12th Avenue South,
Suite 1200, Seattle, Washington 98144 (US). LARSON,
James, S. [US/US]; 1200 12th Avenue South, Suite 1200,
Seattle, Washington 98144 (US). COLLETTE, James, R.
[US/US]; 1200 12th Avenue South, Suite 1200, Seattle,
WA 98144 (US). CHU, Robert, Wai-Chi [US/US]; 1200
12th Avenue South, Suite 1200, Seattle, Washington 98144
(US). SAHA, Partha [IN/US]; 1200 12th Avenue South,
Suite 1200, Seattle, Washington 98144 (US).

Agent: MEYERTONS, HOOD, KIVLIN, KOWERT &
GOETZEL, P.C.; ATTN: ROBERT C. KOWERT, P.O.
Box 398, Austin, TX 78767 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, L.C, LK, LR, LS,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR A DISTRIBUTED FILE STORAGE AND INDEXING SERVICE

Data Store(s) | Access via locators . Clieni(s)
332 230
S e
Query Resulis
(locators) Service requests
([query node reguests
and storage node
requests)
(Web Services Interface)
Web Services Platform
200
‘ N
Query | Service Searchable
results requests Data Service
- ¥
Query Resuits .
Coordinator Node(s)
350
Query (Coordination Service) Storage node
node requests {e.g.,
requests Updates, Adds,
Delefes, etc.)
|I i L —
1 ’. o]
Query TSAR Node(s) Queries Storage Node(s)
360 370
Query Results I:
(Query Subsystem) (Storage Subsystem)

(57) Abstract: A searchable data service implementation may
include, but is not limited to, a Web services platform (200), one
or more coordinator nodes (350), one or more query nodes, re-
ferred to as query TSAR (Top Search AggregatoR) nodes (360),
and one or more storage nodes (370). Each coordinator node
(350) may include, but is not limited to, at least one instance of
request router (202). A client system (330) may submit service
requests (query node requests and/or storage node requests) to
the searchable data service in accordance with the Web service
interface of the Web services platform (200) via Internet (334).
The Web services platform (200) may route the service request
(s) to a coordinator node (350). A coordinator node (350) routes
the service requests to the appropriate node(s) , collects result,
and send the results back to the web services platform (200).
A request router on the coordinator node (350) may receive the
service request (s) from the Web services platform (200) and
determine whether each service request is a storage node re-
quest or a query node request.

CA 02635400 2008-06-26

WO 2007/079303 A3

LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, ILE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CEF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

(88) Date of publication of the international search report:
23 August 2007

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

METHOD AND APPARATUS FOR A SEARCHABLE DATA SERVICE

BACKGROUND OF THE INVENTION
Field of the Invention

[{0001] This invention relates to data storage and retrieval, and, more particularly, to searchable indexes for
data stores.

Description of the Related Art

(0002] The Internet, sometimes called simply "the Net," is a worldwide system of computer networks in
which a client at any one computer may, with permission, obtain information from any other computer. The
most widely used part of the Internet is the World Wide Web, often abbreviated "WWW". which is commonly
referred to as "the Web". The Web may be defined as all the resources (e.g., Web pagesoand Web sites) and
clients on the Internet that use the Hypertext Transfer Protocol (HTTP) or variations thereof to access the
resources. A Web site is a related collection of Webd files that includes a beginning file called a home page.
From the home page, the client may navigate to other Web pages on the Web'site. A Web server program is a
program that, using the client/server model and HTTP, serves the files that form the Web pages of a Web site to

the Web clients, whose computers contain HTTP client programs (e.g., Web browsers) that forward requests

and display responses. A Web server program may host one or more Web sites.
Data Storage

[0003] Data storage, storing data objects of various types for access by various applications, is a primary
area of interest and development in computer systems and applications, networking, the Internet, and related
technical areas. Conventionally, developers have either created their own data storage solutions for storing data
objects, have leveraged off-the-shelf database products, such as an Oracle/MySQL database, to develop data
storage solutions, or have relied on third-party providers for data storage solutions. However the data storage
solution i1s provided, data objects may be stored to, and retfigwed from, the data store. Typically, a data storage
solution provides one or more types of locators that may be used to retrieve data objects from the data store. A
common “locator” is a file path-type locator, in which a client provides a file path, mcluding a particular file
name, to retrieve a particular data object (e.g., a file) from some location with a data store specified in the file
path. File paths are, however, not very flexible, as the desired data object is specifiable only by the path/file
name. File path mechanism, and other conventional “locator” mechanisms for retrieving data objects from data -
stores, typically do not provide the ﬂexibility- to retrieve data objects from a data store according to other
attributes of the desired data objects. For example, a client may wish to retrieve data objects from the data store
according to category, company, type, or any of countless other attributes that may be associated with a data
object. Conventional file paths do not provide for such flexible retrieval methods.

18004] There are “one-off” data storage solutions that may provide more flexible mechanisms for
querying/retrieving data objects from a data store according to other attributes than just a file path/file name.
Conventionally, different developers have tended to solve this same data storage problem for different
apphications over and over again in ways that do not scale to other problems, are not flexible to address other
data storage needs, and/or have based their solutions on “off-the-shelf” technologies such as Oracle/MySQL that
prove to be expensive in the short- and/or Jong-term. As the data store grows, these conventional data storage
solutions generally require a data store administrator to perfor}*n Or manage monitoring, partitioning, query

optimizations, storage procedures, additions of new hardware, crisis/emergency procedures (e.g., when a storage

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

system goes down), etc. In agfldition, for these conventional data storage solutions, if a client wants to add new
atiributes that may be used to query for a

nd retrieve data objects, table schemas have to be changed to support
the new attributes.

SUMMARY

Various embodiments of a method and apparatus for a general-purpose searchable data service are

10005]

described. In one embodiment, the searchable data service may be implemented as a Web service that allows
developers to store atfributes, expressed as {name, value} pairs, that are associated with data objects (entities)
stored in a data store. Attributes associated with entities may be automatically indexed for use in searches.
Embodiments of the searchable data service may be implemented according to an architecture that is accessible
to developers to develop search frontends to data stores for client applications, and to create and update
searchable indexes to the data stores that are reliable, fast and scalable. The implementation of the searchable
data service may be transparent to the client/developer. The client and/or developer only needs to be aware of a
minimal, externally exposed interface to the searchable data service.

[0006) Embodiments of the searchable data service may provide a searchable index to a backend data
store, and an interface to build and query the searchable index, that enables client applications to search for and
retrieve locators for stored entities in the backend data store according to a list of attributes associated with each
locator. The entities may be identified in a searchable index in the searchable data service by the locators for the
entities. Each locator may have an associated set of attributes of the entity, expressed as {name, value} pairs.
Note that the locator may itself be considered one of the attributes of the entity.

[0007] One embodiment of the searchable data service may be implemented as a Web service with a Web
service interface that exposes one or more calls to the functionalities of the searchable data service to client
applications. This Web service interface may enable developers to build search frontends for a variety of client
applications that may access the functionalities of the searchable data service via the Web service interface to
search for and retrieve locators for data entities stored in backend data stores. Applications that leverage the
searchable data service as a search frontend for a data store may be automatically scaled to any size with little or
no system administration overhead required for the scaling, and search speed may be automatically optimized
using, for example, indexes, query planﬁin g, and parallelism.

[6008] The searchable data service provides a searchable index and is not itself a data store per se.
Embodiments of the searchable data service may separate searching and indexing of data from the actual storage
of the data. A backend data store may be implemented as any type of data storage system in which a locator
may be used to locate and retrieve an entity, and may reside anywhere on a network, Local Area Network
(LAN), Wide Area Network (WAN), or on the Internet, or may even be implemented on data storage locally
attached to a computer system or systems. Embodiments of the searchable data service may be used to provide
searchable indexes to any type of data. Embodiments may be used, for example, to provide searchable indexes
to data stored in databases, and to repositories of files of various particular or mixed types including, but not
limited to, textual, digital image, and digital audio files. Note, however, that embodiments of the searchable
index may be used in applications where there may be no backend data store. In these applications, the
attributes stored as {name, value} pairs in the searchable index are the data.

[0009] Embodiments of the searchable data service may include mechanisms that enable the searchable

data service to scale easily, and to provide redundancy, reliability, and high availability of the searchable

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

indexes without requiring any knowledge or additional effort by a developer of a client application. These

mechanisms may include, but are not limited to, a mechanism for building the searchable indexes, a mechanism

for partitioning the searchable indexes, a mechanism for replicating the searchable indexes, a mechanism for
handling the failure of nodes within the searchable data service, and a mechanism for the automated monitoring
and control of nodes within the searchable data service.

10010] Embodiments of the searchable data service may be implemented as a distributed system on a
plurality of hosts, or nodes. In one embodiment, the nodes may include coordinator nodes that route requests

from client systems to appropriate nodes within the searchable data service, query nodes that handle the

processing of query requests, and storage nodes that store and manage the searchable index. In one
embodiment, communications among nodes and components in a searchable data service implementation may
be facilitated at least in part through a gossip protocol and an anti-entropy protocol.

BRIEF DESCRIPTION OF THE DRAWINGS

10011] Figure 1 is a block diagram that illustrates an exemplary system configuration that provides a Web

service interface, and shows the interaction between a Web service client and a Web service provider.
[0012] Figure 2 illustrates the relationship and dataflow between a client and the searchable data service,

according to one embodiment.

[0013] Figure 3 illustrates an exemplary high-level functional architecture for a searchable data service,

according to one embodiment.

[0014] Figure 4 illustrates an exemplary network architecture for a searchable data service according to
one embodiment.

[0015] Figures SA and 5B illustrate a method for implementing a searchable data service that processes
service requests to store searchable data service objects in a searchable index and to locate entity identifiers

(eIDs) for entities in a data store in the searchable index according to one embodimert.

10016} Figure 6 illustrates an exemplary lower-level, modular architecture for a searchable data service,

according to one embodiment.

{0017 Figure 7 illustrates a method for partitioning a searchable index in a searchable data service system

according to one embodiment.

[0018] Figure 8 illustrates a method for replicating a partition of a searchable index in a searchable data

service system according to one embodiment.

[0019] Figures 9A and 9B illustrate searchable indexes for subscribers, the segregation of data (elDs) for

each subscriber into buckets, and partitioning of the buckets, according to one embodiment of the searchable

data service.

[0020] Figure 9C illustrates data replication via replicating partitions according to one embodiment.
10021] Figure 10 illustrates the splitting of partitions in replication groups according to one embodiment.
[0022] Figuréa 11 illustrates an exemplary storage node and its components according to one embodiment.
[0023] Figure 12 illustrates various components of the searchable data service that may constitute or

interact with the query subsystem to perform the servicing of queries from clients of the searchable data service,

and further illustrates the data flow among the components, according to one embodiment.

[0024] Figure 13 illustrates an identifier circle, according to one embodiment.

CA 02635400 2008-06-26

WO 2007/079303 PCT/US2006/061435
{0025] Figure 14 illustrates an exemplary architecture for a single storage node according to one
embodiment.

[0026] Figure 15 is a flowchart of a stress management method for a searchable data service system,

according to one embodiment.

[0027] Figure 16 illustrates the life cycle of a replication group in a searchable data service according to
one embodiment.

[0028] Figure 17 illustrates a method for monitoring group membership and health in a searchable data
service system according to one embodiment.

[0029] Figure 18 illustrates a high-level architecture for an administrative console in a searchable data
service system according to one embodiment.

[0030] Figure 19 illustrates an implementation of a searchable data service in a networked environment
according to one embodiment.

[0031] Figure 20 is a block diagram illustrating ‘an exemplary embodiment of a computer system on
which embodiments may be implemented.

[0632] While the iInvention is described herein by way of example for several embodiments and

illustrative drawings, those skilled in the art will recognize that the invention is not limited to the embodiments

or drawings described. It should be understood, that the drawings and detailed description thereto are not
intended to limit the invention to the particular form disclosed, but on the contrary, the intention. is to cover all
modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined
by the appended claims. The headings used herein are for organizational purposes only and are not meant to be
used to limit the scope of the description or the claims. As used throughout this application, the word "may" is
used in a permissive sense (i.e., meaning having the potentiai to), rather than the mandatory sense (i.e., meaning
must). Similarly, the wordsq“include”, “including”, and “includes” mean including, but not limited to.
DETAILED DESCRIPTION OF EMBODIMENTS

[0033] Various embodiments of a method and apparatus for a general-purpose searchable data service are

described. In one embodiment, the searchable data service may be implemented as a Web service that allows
developers to store atiributes, expressed as {name, value} pairs, that are associated with data objects (entities) in
a data store. Atiributes associated with entities may be automatically indexed for use in searches. Search
expressions may perform logical and arithmetic operations on attributes to find and retrieve data objects, or
enfities, 1dentified by locators (also referred to as entity identifiers, or eIDs) for the entities. Embodiments of
the searchable data service may be implemented according to an architecture as described herein that is
accessible to developers via a Web service interface to provide search frontends for client applications to data
stores that are easy to implement, and to create and update searchable indexes to the data stores that are reliable,
fast and scalable.

[0034] Embodiments of the searchable data service may provide a searchable index to a backend data
store and an interface to build and query the searchable index that enable client applications to search for and
retrieve locators for stored data (units of data, or data objects, in a data store may be referred to herein as
entities) in the backend data store according to a list of attributes associated with each locator. The backend
_data store may be implemented as any type of data storage system in which a locator may be used to locate and

retrieve an entity, and may store any type of data object (entity). The entities may be described in the

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

searchable dataf service by locators for the entities in the data store, which may be referred to as entity
Identifiers, or eIDs. Each locator, or eID, may have an associated set of attributes of the entity, expressed as
{name, value} pairs. Note that the locator, or elD, may itself be considered one of the attributes of the entity in
the data store. A query interface and protocol may be provided which may be used to query for and receive lists
of elDs from the searchable data service according to one or more of the attributes associated with the elDs.

[0035] The conventional Web model allows clients to access Web resources (e.g., applications, services,
and data) via an HTTP client program, such as a Web browser. A technology referred to as Web services may
be used to provide programmatic access to Web resources. Web services may be used to provide Web software
developers programmatic access to Web resources’ including technology platforms (e.g., applications and
services) and data (e.g., product catalogs and other databases) hosted on Web-connected computers such as Web

server systems via a Web service interface. Generally speaking, a Web service interface may be configured to

provide a standard, cross-platform API (Application Programming Interface) for communication between a
client requesting some service to be performed and the service provider. In some embodiments, a Web service
interface may be configured to support the exchange of documents or messages Including information
describing the service request and response to that request. Such documents, or messages, may be exchanged
using standardized Web protocols, such as the Hypertext Transfer Protocol (HTTP), for example, and may be
formatted in a platform-independent data format, such as eXtensible Markup Language (XML), for example.

[0036] Figure 1 is a block diagram that illustrates an exemplary system configuration that provides a Web
service interface, and shows the interaction between a Web service client and a Web service provider. Iﬁ this
example, a Web service interface 106 may be implemnented on a server 130 coupled to Internet 100. This server
130 may be referred to as a Web service provider. Server 130, or alternatively one or more other servers
coupled to server 130, may include one or more applications or services 108. Server 130 may be coupled to
data storage 140 for storing information in database 142. Database 142 may include any type of data.

10037} Server 120 may be coupled to Internet 100. Server 120 may host a Web service client 124. Web
service client 124 may be configured to programmatically access application or service 108 of server 130 and/or
database 142 via Web service interface 106. Note that Web service interface does not provide a Web browser
interface, but instead provides a programmatic interface via an API through which at least some functionality of
application or service 108 and/or at least some data in database 142 may be programmatically accessed by Web
service client 124. Also note that server 120 may provide a Web site accessible to client(s) 122 via Web
browsers, and Web service client 124 may be configured to access at least some functionality of application or
service 108 and/or at least some data in database 142 of server 130 via Web service interface 106 to provide
access to at least some functionality of application or service 108 and/or at least some data in database 142 via
the Web site provided by server 120, Further, note that Web service client 124 may itself be another Web

service.

10038] To access an application, service or data provided by the Web service provider 130, Web service

client 124 may send a request message to Web service interface 106 via Internet 100. This request message

-

goes through the network and Internet infrastructures; through the Web service client 124’s local network
routers, switches, firewalls, etc., through the Internet backbone, to the Web service provider’s local network, to
Server 130, and then to Web service interface 106. Web service provider 130 may then process the request, for

example by performing an indicated function(s) of application or service 108 or accessing indicated data in

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

database 142. Web service interface 106 may then return results of the processing to the Web service client 124

in a response message via Internet 100, back through the local networks and Internet backbone.

[0039] One embodiment of the searchable data service may be implemented as a Web service with a Web
service interface that exposes one or more Web service calls to the functionalities of the searchable data service
to client applications. This Web service interface may enable developers to easily build search frontends for a
variety of client applications that access the functionalities of the searchable data service via the Web service
interface to search for and retrieve various types of data stored in the backend data stores. Applications that
leverage the searchable data service to implement a search frontend for a data store may be automatically scaled
to any size with [ittle or no system administration overhead required for the scaling, and search speed may be

automatically optimized using, for example, indexes, query planning, and parallelism.

[0040] Embodiments of the searchable data service may provide an inexpensive, easy to implement, and
easy to maintain searchable index and interface to the searchable index that may be leveraged to provide a
search frontend to data stores that may satisfy the search requirements for a wide variety of applications. The
searchable data service provides a searchable index and is not itself a data store per se. Embodiments of the
searchable data service may separate searching and indexing of data from the actunal storage of the data. A
backend data store may be implemented as any type of data storage system in which a locator may be used to

locate and retrieve an entity, and may reside anywhere on a network, Local Area Network (LAN), Wide Area

Network (WAN), or on the Intemet, or may even be implemented on a local data storage locally attached to a
computer system or systems. Note, however, that embodiments of the searchable index may be used in
applications where there may be no backend data store. In these applications, the attributes stored as {name,
value} pairs in the searchable index are the data.

[0041] Embodiments of the searchable data service may enable developers to put the data store anywhere
they want; the developers then provide the locators (elDs) to the searchable data service, along with a set of
attributes, expressed as {name, value} pairs, for the elDs, for which a searchable index is constructed, and the
searchable data service may then be queried to return lists of elDs from the searchable index that satisfy the
queries. These lists of elDs may then be used to access the data entities stored on the backend data store. As
mentioned, one embodiment may provide a Web service interface that provides one or more Web service calls
through which the deveIOpers‘may add the elDs and associated atiributes, update the searchable index (e.g., by
modifying, replacing or deleting elDs and attributes in the searchable index), and query the searchable data
service tc obtain lists of eIDs. |

[0042] Embodiments of the searchable data service may be used to provide searchable indexes to any type
of data. Embodiments may be used, for example, to provide searchable indexes to data stored in databases, and
to repositories of files of various particular or mixed types including, but not limited to, texinal, digital image,
and digital audio files. For example, the searchable data service may be used to provide a searchable index to a
digital image repository. Through a Web service interface to the searchable data service, clients on the Internet
may open an account, store digital images, and provide indexing information for the digital images.

(0043} In one embodiment, an implementation of the searchable data service may provide the data store as
well as a searchable index to the data store. In one embodiment, through a Web service or other interface to the
searchable data service, clients may store entities to a data store and provide the elDs and associated attributes

for the entities, which are used to create the searchable index for the data store. The clients may then query the

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

searchable index via the interface to the searchable data service, and use the results of the queries to access the
data store via the interface to the searchable data service,

[0044] Note that, while embodiments of the searchable data service are generally referred to herein as

providing a searchable index to a backend data store, embodiments may be used in applications where there may
be no backend data store. In these applications, the atiributes stored as {name, value} pairs in the searchable
index are the data. In these applications, there are no “entities” stored in a backend data store; in a sense, the
entities are the attributes in the searchable index. In one embodiment, through a Web service or other interface
to the searchable data service, clients may provide their data as {name, value} pairs, which are used to create the
searchable mdex. The clients may then query the searchable index via the interface to the searchable data
service to obtain desired data. Examples of applications for which the searchable data service may be nsed and

in which there 1s no backend data store may include, but are not limited to, product catalogs and phone
directories.

j0045] Embodiments of the searchable data service may include mechanisms that enable the searchable

data service to scale easily, and to provide redundancy, reliability, and high availability of the searchable
Indexes without requiring any knowledge or additional effort by a developer leveraging the searchable data
service to provide a search frontend to a backend data store. These mechanisms may include, but are not limited
to, a mechanism for building the searchable indexes, a mechanism for partitioning the searchable indexes, a
mechanism for replicating the searchable indexes, a mechanism for handling the failure of nodes within the
searchable data service, and a mechanism for the automated monitoring and contro! of nodes within the
searchable data service.

[0046] Some embodiments of the searchable data service may be implemented as a distributed system

with a Web services frontend, with various nodes in the system configured to perform various functions. For

example, in one embodiment, there may be one or more coordinator nodes that coordinate the routing of
requests from client systems to one or more other appropriate nodes, for example routing clients’ query (read)
requests recelved via a Web service interface to one or more appropriate query nodes and clients’ storage (write)
requests received via a Web service interface to one or more appropriate storage nodes; one or more query
nodes that handle the processing of query requests including the routing of query requests to appropriate storage
ncdes, and one or more storage nodes that manage the storage of elDs and associated attributes in response to
storage requests and the retrieval of stored elDs in response to query requests received from the query nodes.

{0047] The various nodes in the distributed system may communicatively cooperate to ensure that the
searchable indexes are scalable, consistent, available, and durable. In one embodiment, communications among
nodes in a searchable data service implementation may be facilitated at least in part through a gossip protocol.

In one embodiment, communications among nodes in a searchable data service implementation may be

facilitated at least in part through an anti-entropy protocol. In one embodiment, communications among nodes
in a searchable data service implementation may be facilitated at least in part through a gossip protocol and an
anti-entropy protocol. In one embodiment, two or more nodes in a searchable data service implementation may
participate in groups according to a group communications protocol that uses the gossip protocol and/or the anti-
entropy protocol to facilitate the cooperative performance of various functions among the nodes within the

group, such as the cooperative movement of partitions or the cooperative replication of partitions within groups
of storage nodes.

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0048] In one embodiment, a searchable index (also referred to as ‘a domain, or bucket) created by a

subscriber may be initially created as one partition, and that partition (and any subsequently created partitions)

may be repartitioned on a storage node, and one of the resulting new partitions may then be cooperatively
moved to another storage node within a data center or in another data center, to allow the searchable index to
grow beyond the storage limits of one node or even one data center. Partitioning may also be used to improve
performance by allowing client storage (write) requests to be distributed among two or more nodes.

[0049] Partitions of a domain may be replicated to other storage nodes, within a data center or across data
centers, to provide redundancy of data, which may help to ensure that the searchable index remains available
and 1s durable. Replication may also be used to improve performance by allowing client query (read) requests
to be distributed among two or more nodes. In one embodiment, replication may be performed using anti-
entropy to copy the partition from one storage node to another storage node, and then using the gossip protocol
to bring the replicated partition up-to-date. The storage nodes that store replicas of a particular partition may
cooperatively participate in a replication group, and group communications may be used within the group to
propagate updates to the partition. In one embodiment, writes to a replicated partition may initially be directly
applied on one or more storage nodes within the replication group, and then propagated to the other storage
nodes within the replication group using the gossip' protocol.

[0050] Group communications may be used to monitor the health and status of various nodes,
components, and other resources within the searchable data service implementation, and may enable the
automatic addition of new resources to replace existing resources that fail or become unavaijlable for any reason.
For example, group communications may be used to automatically recruit a new storage node into a storage

node group (e.g., a replication group) if one of the existing storage nodes goes offline.

f0051] Embodiments of the searchable data service may use key-value pair storage to store the eIDs and
associated other attributes (expressed as {name, value} pairs) of entities in an eID store. Note that the eIDs may

be considered as one of the attributes of the associated entities, and may be stored in the eID store as a key-value

pair. In one embodiment, the key-value pair storage may be implemented according to an associative dictionary

database architecture to store the elDs and associated other attributes. The associative dictionaries used to store

attributes 1n embodiments may be capable of high throughput, especially when reading, at relatively little CPU

cost. The associative dictionaries are simple, which may aid in maintaining reliability, in ease of use, and in

tlexibility. Further, the associative dictionaries may be inexpensive when compared to alternatives like
relational databases.

[0052}) ‘In one embodiment, the eID store may be implemented in accordance with a Berkeley Database.
The Berkeley Database is an open source embedded database system that uses key-value pairs, and that may be
used to create indexes to tables and other data structures. Unlike relational databases, a Berkeley Database does
not support SQL queries. All queries and data analyses are instead performed .by the application through a
Berkeley Database application programming interface (API). Note that other embodiments may use other
database structures for the elD store, |

10053] Embodiments of the searchable data service may make indexed search available on the Web using
Web services. Embodiments may make it easy for developers to add search capabilities to their applications.
Developers of applications that need to access data objects stored in a data store may need or desired to enable

the application to retrieve data objects based on one of several attributes or a combination of attributes. By

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

combining associative dictionaries with search indexes, and making indexed search available through a Web

service interface, embodiments of the searchable data service may allow developers to leverage the searchable
data service to inexpensively and easily implement a searchable index frontend for such applications that

provides the speed and query power needed or desired for many such applications to retrieve locators for data

objects stored in data stores based on one attribute or a combination of attributes.

[0054] Note that the implementation of the searchable data service, including the various mechanisms,

subsystems, and components of the searchable data service described herein, may be transparent to the
client/developer. The client and/or developer may only need to be aware of a minimal. externally exposed
interface to the searchable data service, which may be provided through a Web service interface, that allows the
client/developer to build and update a searchable index (domain) and to query the searchable data service for
lists of elDs from the searchable index.

[0055] Figure 2 illustrates the relationship and dataflow between a client and the searchable data service,
according to one embodiment. A data store 332 may include data entities that are accessible via locators. A
searchable data service 340 implementation may expose an API via a Web service interface 350. A client 330
may have access to the functionalities of the searchable data service 340 via the Web service interface. A

developer of an application (e.g., client 330) may leverage the searchable data service 340, via the calls provided

by the Web service interface 350, to provide a frontend search service to the data store 332.

[0056} The client 330 may provide locators (eIDs) and associated attributes (which may be described by
{name, value} pairs) for at least some of the entities in data store 332 to the searchable data service 340 via Web
service interface 350. Searchable data service 340 may store the eIDs and associated attributes in buckets as
described above, and may build indexes for the atiributes, to generate searchable index 342. Client 330 may
then query the searchable data service 340 via Web service interface 350. Searchable data service 340 executes
the queries against the searchable index 342 to locate eIDs that satisfy the queries. Searchable data service 340

may return query results including lists of elDs that satisfy the queries to the client 330.

[0057] The following are definitions for some terms used herein to describe aspects of embodiments of the
searchable data service: |

e Entity: An entity refers to any data object or entity, which may be stored in a data store 332 of some
type, to which the developer wants to associate atiributes.

« Entity identifier (eID): a string (e.g., a UTF-8 encoded string) that a developer may use to uniquely

| identify an entity to their application. An eID may also be referred to as a locator. In some use cases,

an elD may be used to locate a blob-like entity. In one embodimeﬁt, the searchable data service may be

opacue to the storage solution used by the developer. In one embodiment, UTF-8 encoding may be used

for elDs to support features that require orderiﬁg of elDs. Note that, in one embodiment, an elDD may

be an arbitrary sequence of bytes (but unique within the domain or bucket).

» Attribute: refers to {name, value} pairs, which may be expressed as strings, which are associated with
elDs, and based on which the eIDs may be indexed and queried. In one embodiment, attributes may be

UTF-8 encoded strings so that the atiributes may readily be used in UTF-8 encoded query expression
strings.

 Index: Each of the attributes associated with an eID may have or may be given an index that may be

queried to retrieve the list of eIDs that satisfy the query expression.

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

Sequence 1D: A searchable data service-generated unique identifier that acknowledges receipt of an
update request and allows the status of the update to be tracked. In one embodiment, the sequence ID may
be used in ordering and in maintaining the consistency of update requests; a request with a higher

sequence D globally supercedes a request with a lower sequence ID. Note that, in one embodiment,
the sequence ID may not be exposed to the client.

e Client (e.g., client 330 in Figure 2): The term client may be used to represent any application, script,

piece of software, etc., developed by a searchable data service subscriber who would like to use the
searchable data service system.

e Subscriber: A searchable data service subscriber may be uniquely identified by a subscriber identifier
for billing, metering, and possibly other purposes. Each searchable data service subscriber may have
more than one client accessing their data in searchable data service using the same subscriber identifier.
The subscriber identifier may be used within the searchable data service to locate the subscriber’s eID
data stored in the searchable data service. A subscriber may be the owner of one or more buckets. A
subscriber may also be referred to as a customer.

» Searchable data service request: refers to a call (including the data) that the client sends to the
searchable data service, via the Web service interface, to perform one or more of the searchable data

service operations described herein.

e Secarchable data service response; refers to a response that the searchable data service sends back to the client
once it has processed the searchable data service request sent by the client.

e Bucket: refers to a group of searchable data service objects that the subscriber may wish to keep
together for semantic or other reasons. A query is applied across one bucket. A bucket may also be
referred {0 as a domain or as a searchable index. Each bucket may be identified by a bucket identifier.
In one embodiment, each subscriber identifier may be associated with one or more bucket identifiers, but
a bucket identifier may be associated with one and only one subscriber identifier.

{0058] The following illustrates the relationship between a subscriber, a bucket, and an entity identifier
(elD):

subscriber -> bucket -> elD

[0059] In one embodiment, the searchable data service logically maintains an elD->attributes table for

every subscriber bucket. The following is a representation of an exemplary eID->attributes table:

elD Attributes

K1 {name, value}}, {{name, value}}, ...

k2 | {{name, value}}, {{name, vélue}},

k3 {{name, vaiue}}, {{name, value}}, ...
[0060] In one embodiment, every elD 1s unique in the table (within a bucket); an eID may thus be viewed
as a subscriber-provided entity key. In one embodiment, an eID may be composed of printable characters.
[0061] Concerning the relationship between attributes and {name, value} pairs, attributes may typically be

represented by one {name, value} pair. However, in one embodiment, it is possible to have more than one

{name, value} pair with the same name on any row in the table above, indicating a multi-valued attribute of that

i0

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

name. For example, the following exemplary row from an elD->Attributes table illustrates that the keywords
attribute is multi-valued for the particular URL specified as the elD.

elD . Attributes
<url> (name="keywords", value="xxx"), (name="keywords", value="yyy"), ...
[0062] In one embodiment, all values in {name, value} pairs are expressed as strings. To have comparison

operators for strings return the same truth-value as numbers, the numbers may be zero-padded. For example,
"21% > "100" is true when ">" 1s comparing strings, but false when 1t is comparing numbers; however, "021" and
"100" have the same truth-value when compared as strings or numbers. In one embodiment, a format such as

ISO 8601 may be used to allow date-time values to be compared correctly as strings.

[0063] In one embodiment, each row of an elD->Attributes table may be considered a searchable data

service object. A searchable data service object may be expressed as:

Subscriber -> Bucket -> elD -> {Attributes list}

[0064] Searchable data service objects may be created when a subscriber wishes to.build indexes that may
be used to search for entities in a data store used by a client application and identified by an entity identifier
(eID). When creating a searchable data service object, the subscriber may provide at least the following mputs:

e Subscriber ID

e Bucket identifier - identifies the domain

e ¢clD

e Attributes list - a list of {name, value} pairs associated with the entity
[0065] In one embodiment, the searchable data service may automatically provide one or more other
attributes, also expressed as {name, value} pairs, for a searchable data service object. These other atiributes
may be indexed and searched in addition to the list of attributes provided by the subscriber. These attributes

may be referred to as basic attributes. In one embodiment, all searchable data service objects in all domains and

for all subscribers may include these basic attributes. In another embodiment, one or more of these basic

atiributes may be optional. Basic atiributes may include one or more of, but are not limited to:
e Creation time/date - a timestamp that indicates when the searchable data service object was created.

e Last modified time/date - a timestamp that indicates when the searchable data service object was last

modified. Initially, may be the same as the creation time/date.

e Last accessed time/date - a timestamp that indicates when the searchable data service object was last

accessed.

» Created by - indicates a particular user/client that created this searchable data service object.

¢ Last modified by - indicates a particular user/client that last modified this searchable data service

object.

e Size - indicates a size (e.g., in bytes) of this searchable data service object.
» Access rights - indicates access rights for this searchable data service object.

[0066] A searchable data service object may be considered successfully created when all atiributes
specified by the subscriber, and the basic attributes, are indexed, and the elD 1s persistently stored. When a

searchable data service object is not created successfully, an error code and message may be returned to the

subscriber that may indicate a reason or reasons why an object could not be created.

11

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0067] In one embodiment, a subscriber may read a searchable data service object and the basic attributes

associated with the object by the searchable data service. In one embodiment, a searchable data service object may
be read from the searchable data service by specifying the subscriber identifier, bucket identifier, and eID of the
searchable data service object.

[0068] In one embodiment, a subscriber may update searchable data service objects by providing the
subscriber identifier, bucket 1dentifier, and elD of the searchable data service object to be updated, along with
update information. In one embodiment, a subscriber may add or delete eIDs, add or delete attributes for an
elD, and modify the values associated with existing attributes. In one embodiment, the subscriber may not be
allowed to add, delete, or modify at least some of the basic attributes. However, when the subscriber modifies a
searchable data service object, one or more of the basic atiributes associated with object modification may be
updated.

[0069] In one embodiment, a searchable data service object may be considered successfully updated only
when all the elDs and atiributes that the subscriber wishes to modify as specified in a request message have been
updated, including the indexes associated with the attributes. In one embodiment, partial updates may not be
allowed. For example, if a request specifies multiple attributes that need to be modified, and one of the
modifications cannot be performed, the entire update request may be failed, with none of the modifications

performed. When a searchable data service object is not updated successfully, an error code and message may

be returned to the subscriber that may indicate a reason or reasons why the object could not be updated.

[0070] In one embodiment, a subscriber may delete existing searchable data service objects from a domain
by providing the subscriber identifier, bucket identifier, and el of the object(s) to be deleted. In one
embodiment, a searchable data service object 1s successtully deleted only when there 1s no longer a guarantee
that the object can be accessed with the eID associated with the object and when the object is no longer
searchable. In one embodiment, after the deletion of a searchable data service object, there might be a period
when the eID may still be used to access the object. Additionally it is possible that the object may be searchable
for a period. If a searchable data service object and its associated indexes cannot be deleted, the delete request
fails, and the subscriber may be notified of the failure via an error code and message. In one embodiment, once a
searchable data service object is deleted from a domain, the eID may be reused by the subscriber within the domain.

[0071] In one embodiment, a subscriber may request listings of the subscriber’s domains (buckets), indexed

attributes, searchable data service objects, and elDs. Along with the searchable data service objects and the

subscriber-provided attributes, subscribers may also have access to the basic atiributes provided by the searchable

data service when listing searchable data service objects. In one embodiment, a subscriber may perform one or

more of, but not imited to, the following list operations:

e Listall the searchable data service objects and/or eIDs that match a specified prefix.

e List all the domains (buckets) associated with the subscriber and identified by a unique subscriber

1dentifier.

¢ List all attributes indexed under a domain (in a bucket).

e List all searchable data service objects and/or eIDs under a domain.

e« List all attributes indexed by a specified client.

e List all searchable data service objects and/or eIDs for a customer across all domains.

e List all searchable data service objects and/or elDs that have a specified attribute.

12

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0072] Gtiven that a large number of domains, attributes, searchable data service objects or locators may
be returned in response to a list request, the searchable data service may paginate list results. The client may
retrieve the list in pieces (pages) via multiple requests.

[0073] In one embodiment, a subscriber may search the searchable data service objects and eIDs via a query

request exposed via the Web service interface. Subscribers may perform queries on one or more of the attributes of

searchable data service objects within a single domain (bucket) to obtain a list of elDs that satisfy the query
expression. In one embodiment, the searchable data service may support one or more of, but not limited to, the
following operators on attributes in the query expressions. These operators may be used in combination:

e Boolean (e.g.,, AND, OR, NOT)

e Arithmetic (e.g., <, >, =, [=, <= >= <)

» Contains (an attribute contains a specified string)

» Starts with (an attribute starts with a specified string) .

[0074) A query operation may return the elDs of the searchable data service objects that satisfy the query
expression. In one embodiment, the complete searchable data service objects may be optionally returned. In one
embodiment, the results of a query may be sorted in either ascending or descending order based on a sort
specification provided by the subscriber in the query message. Given that a large number of eIDs may be returned
in response to a query, the searchable data service may paginate query results. The client may then retrieve the
list of eIDs in pieces (pages) over multiple requests. In one embodiment, the client may provide a page length
specification in the query message that specifies the number of entries (eIDs) on a page.

[0075] In one embodiment, a subscriber may delete a domain (bucket), if desired. A domain may be
considered successfully deleted only if all of the indexes associated with attributes in the domain and searchable
data service objects in the domain are deleted. Ifthe searchable data service objects and their associated indexes in
the domain cannot be deleted, the delete request fails, and the subscriber may be notified of the failure via an error

code and message.

[0076]) In one embodiment, a subscriber may delete an index within a domain. An index may be considered
successtully deleted if all the attributes within the index are successfully deleted. If the index in the domain cannot
be deleted, the delete request fails, and the subscriber may be notified of the failure via an error code and
message. |

[0077] One embodiment of the searchable data service may provide a mechanism whereby a subscriber

may submit at least some operations to be performed on a bucket in batch mode. A batch mode mechanism

may be used, for example, by subscribers that may have large datasets that they would like to upload to the
searchable data service. An exemplary batch mode mechanism may, for example, allow a subscriber to submit a

file in which each line represents one operation, for example an operation to add a searchable data service object.

An exemplary line from such a file may include, but is not limited to:

e Bucket identifier - identifies the domain

 Operation - indicates the operation to be performed. For example, ADD, DELETE, or MODIFY.
e« elD |

o Attributes list

13

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

Exemplary Searchable Data Service API

[0078) This section describes an exemplary API for a searchable data service 340 that may be exposed to
developers and clients as a Web service via a Web service interface 350 according to one embodiment. In one

embodiment, the API may be provided to developers and clients through a Web services platform via Fully

REpresentational State Transfer (REST) and/or Simple Object Access Protocol (SOAP) over HTTP/HTTPS.

Other embodiments may use other protocols. The provided Web service interface 350 may be application-
agnostic.

{0079] The following describes exemplary requests that may be made by a client to the searchable data
service via the Web service interface 350 according to one embodiment. Note that these descriptions are
exemplary, and are not intended to be limiting. Other embodiments may include other requests, and/or may

include variations of the described requests.

[0080] In one embodiment, the following types of client operations may be allowed by the searchable data

service. These operations may be exposed to the client via the Web service interface:

 Update: An operation to update the eID-attributes bucket. E.g., add, replace, and delete operations.
 List-Attributes: Given an elD and a bucket identifier, this operation lists the eID’s attributes. This may

be visualized as going from left to right in the table above - for example, if given “k1” as an argument,

all of the {name, value} pairs on the right of “k1> are returned.

* Query-elD Given a query expression, return all eIDs from a bucket that satisfy that expression. This
may be visualized as going from right to left in the table above. In one embodiment, a query expression
1s a collection of predicates combined using Boolean operators (e.g., NOT, AND, OR). A predicate

expresses a condition that must hold true for the name and/or value fields of the attribute list.

Update Operations

[0081] These searchable data service operations may be invoked by the client via the Web service interface
to update the elD-attributes bucket of a subscriber.

[0082] In one embodiment, a replace operation may create an attribute if the attribute does not exist.
Subsequent invocations of the replace operation may revise (update) the value, and may ensure that there is only
one value for that atiribute at any given time. Updates of unique valued attributes should use this operation. In
one embodiment, a client request to invoke the replace operation may include one or more of, but is not limited

to, the following information:

 Bucket identifier: A string that identifies a bucket of the subscriber. If a bucket does not exist, one
may be created.
e ¢elD: A string that may be used by the client to locate entities in a data store.

e Name: A string that represents the name of an attribute.
e Value: A string that represents the value of an attribute.

« Subscriber identifier: Identifies a searchable data service subscriber, and may be used to bill and
authenticate the subscriber. In one embodiment, credentials for the subscriber may also be included.

(0083] In one embodiment, an add operation creates an attribute if the attribute does not exist. A

subsequent invocation of the add operation with the same name and a different value may add another value to

the attribute, and thus allows creation of multi-valued attributes. In one embodiment, a client request to invoke

the add operation may include one or more of, but is not limited to, the following information:

14

CA 02635400 2008-06-26

WO 2007/079303 PCT/US2006/0614335

[0084)

Bucket identifier: A string that identifies a bucket of the subscriber. If the bucket does not exist, one
may be created.

elD: A string that may be used by the client to locate entities in a data store.

Name: A string that represents the name of an attribute.

Value: A string that représents the value of an attribute.

Subscriber identifier: Identifies a searchable data service subscriber, and may be used to bill and
authenticate the subscriber. In one embodiment, credentials for the subscriber may also be included.

In one embodiment, a delete operation may invoke one of the following, depending on whether an

optional name and/or a {name, value} pair is specified:

[0085]

Without either the name or value specified, the delete operation may delete all attributes associated
with the given eID. In one embodiment, the eID becomes a candidate for garbage collection after a
time interval if no new attributes are introduced with add or replace operations. In one embodiment,
buckets with no eIDs may become candidates for garbage collection. In one embodiment, attributes
may be marked as deleted and no active garbage collection is performed.

With just the name but no value specified, the delete operation may delete the attribute with that name

and associated with the given eID. The attribute may either have a unique value or be multi-valued.

With both the name and value specified, the delete operation may delete that {name, value} pair

associated with the given eID. This allows the client to delete one particular value in a multi-valued
attribute.

In one embodiment, a client request to invoke the delete operation may include one or more of, but

1s not limited to, the following information:

L

(0086]

Bucket identifier: A string that identifies a bucket of the subscriber.

elD: A string that may be used by the client to locate entities in a data store.

Name: A siring that represents the name of an attribute.

Value: A string that represents the value of an attribute.

Subscriber identifier: Identifies a searchable data service subscriber, and may be used to bill and
authenticate the subscriber. In one embodiment, credentials for the subscriber may also be included.

Each of the elD-attributes bucket update operations described above may generate an update

response to the client which includes update results. In one embodiment, the update response may be forwarded

to the client via the Web service interface to the searchable data service. In one embodiment, an update

response may be sent to the client to inform the client of the results of the update both for update operations that

were successful to notify the client that the update operation was successful, and in cases where the update

operation could not be performed for some reason to notify the client that the update operation failed. In one

embodiment, each of the update operations described above may use a similar response structure. The

following illustrates information that may be included in an exemplary response to an update operation request.

Note that this is exemplary and not intended to be limiting:

Status: Erther "OK" or "ERROR" If the update is correctly formed and can be applied, the status

is OK; otherwise, the response may explain the problem(s) in the error message.

Error message: information that further explains any problem(s) encountered with the update operation
request. E.g., "Request ill-formed."

I3

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

Batched Update Requests

[0087] One embodiment may provide a mechanism via which update requests may be batched, or
submitted as a batch operation. A batched update request may include a sequence of two or more update
requests as described above, and a response to the batched update request may contain a sequence of update
statuses corresponding to the batched update requests. In one embodiment, to sequentially process the update
operations specified in a batched update request in real-time, there may be a limit on the number of update

operations that may be submitted in a single batch update request. Alternatively, the updates in a batched update

request may be performed asynchronously.

L ist-Attribute Operation

[0088] One embodiment may provide a list-attributes operation that may be invoked by a client via the
Web service interface. A list-attributes operation may return a list of attributes associated with a specified eID.

The following illustrates information that may be included in an exemplary list-attributes operation request.
Note that this is exemplary and not intended to be limiting:

e Bucket identifier: A string that identifies a bucket of the subscriber.

« elD: A string that may be used by the client to locate entities in a data store.

» Filter expression: A string expression that may be used to filter the attributes returned for the eID. If
no filter expression is specified, all the attributes associated with the eID are returned. The syntax of
the filter follows the one used for "Query-eID" as described below. This parameter may be optional.

e Subscriber identifier: Identifies a searchable data service subscriber, and may be used to bill and
authenticate the subscriber. In one embodiment, credentials for the subscriber may also be included.

[0089] The following illustrates information that may be included in an exemplary list-attributes operation

response to the client:

» Attribute list: List of {name, value} pairs that match the filter expression, if any. All attributes for the

specified ¢ID may be returned if there is no filter expression given in the request. If there is no error,

this is the expected return.

» Error message: Information that explains any problem(s) encountered with the list-attributes operation

request. E.g., "Unknown Entity Identifier”, "Unknown Bucket", or "Filter expression has incorrect

syntax”.

Query-elD Operation

[0090]) One embodiment may provide a query-elD operation, or simply query operation, that may be
invoked by a client via the Web service interface. The query-eID operation returns a list of eIDs that match the
criteria specified through a query expression. A query expression is a siring that may follow a set of rules given

below in the section titled Query Syntax and Search Expressions. Some embodiments of the searchable data

service, however, may accept unnormalized search expressions with implicit syntax and reduce the statements to

the canonical form using one or more normalization rules (see the section titled Unnormalized Search

Expressions). Note that a query-eID operation request may be referred to herein as a query, a query request, or a

query node request.

[0091] The following illustrates information that may be included in an exemplary query-elD operation

request. Note that this is not intended to be limiting:

* Bucket identifier: A string that identifies a bucket of the subscriber.

16

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

 Query expression: A string expression, according to which a list of eIDs may be located and returned.

e MoreToken: An opaque object (e.g., a cookie) that may have been returned to the client in a previous

query-elD operation request. If a token is returned from an earlier query-elD operation, the token may

be provided in a subsequent query-elD operation request to request that the next page in a list of elDs

located in response to the previous query-elD operation request be returned. This is an optional
parammeter.
« Subscriber identifier: Identifies a searchable data service subscriber, and may be used to bill and
authenticate the subscriber. In one embodiment, credentials for the subscriber may also be included.
{0092] The following illustrates information that may be included in an exemplary query-elD operation
response to the client. |
e Entity identifier list: A list of eIDs that match the search criteria specified in the query request. This is
the expected return unless there is an error, in which one or more error messages may be returned.
» MoreToken: A string; in one embodiment, MoreToken is opaque to the client. If the list of elDs to
satisfy a query request is too large to be returned in one i‘esponse, the list may be returned in "pages".
The MoreToken "cookie" may indicate the "last page seen”. The More Token cookie may be included
in a subsequent query reqﬁest to retrieve the next page of elDs.
e Error rt;essage: Information that explains any problem(s) encountered with the query-eID operation

request. E.g., "Unknown bucket", " Query expression does not have right syntax", or "Invalid
MoreToken".

Searchable Data Service Architecture

[0093] The previous sections described an exemplary Web services API exposed to developers/clients for -
embodiments of the searchable data service. In the following sections, an exemplary architecture for
implementations of a searchable data service, and various subsystems and components that may be included in
an implementation of a searchable data service, are described.

[0094] Figure 3 illustrates an exemplary high-level functional architecture for a searchable data service,'
according to one embodiment. In this embodiment, the searchable data service may include one or more of, but
is not limited to, the following major components and subsystems: a Web services platform 200, a request
router 202, a query subsystem 204, and a storage subsystem 206. Note that other embodiments may have other

components and/or subsystems, or combinations or numbers of components and/or subsystems, at this

architectural level.

[0095] The Web services platform 200 may include one or more Web servers that serve as a front-end to

the searchable data service. The Web services platform 200 may perform one or more of, but is not limited to,

the following functions:

» Through request-interceptors, the Web servers may interact with one or more other services for the

metering, billing, authentication, and access rights to the searchable data service.
« The Web servers may provide one or more Fully REpresentational State Transfer (REST) and/or

Stmple Object Access Protocol (SOAP) APIs that are exposed to developers and clients for submitting

data to or retrieving data from the searchable data service. Note that other embodiments may use one
or more other protocols or combinations of protocols. These APIs allow the receipt and storage of

entity locators (¢IDs) and attributes associated with the entities in an entity ID (eID) store. Indexes for

17

[0096]

[0097]

CA 02635400 2008-06-26

WO 2007/079303 PCT/US2006/0614335

the attributes may be built from the elD Store. In one embodiment, the APIs may provide one or more

of, but are not limited to, the following API calls dealing with e€IDs and attributes (which may be

referred to as storage node requests or storage requests): .

e add - add an attribute (a {name, value} pair) for an entity. Used primarily for attributes with
multiple values, such as an attribute like "keywords", that may have two or more values.

. delete - remove an attribute.

e replace - replace an existing attribute. May primarily be used with attributes that have a single
value.

e list attributes - list all {name, value} pairs for an entity.
The Web servers may provide one or more REST and/or SOAP APIs for submitting query requests to

the searchable data service. Note that other embodiments may use one or more other protocols or

combinations of protocols. In one embodiment, there is one query API call (query-eID). Query

requests may also be referred to as query node requests,
The request router 202 may perform one or more of, but is not limited to, the following functions:
The request router 202 may receive a service request from the Web services platform 200 and

determine whether the service request is a storage node request (e.g., a request to add, delete or replace

one or more elDs and associated atiributes) or a query node request (a request to retrieve one or more
stored elDs and/or associated attributes).

If the service request is a storage node request, request router 202 queries a storage node locator to map

the elD and bucket specified in the request to an appropriate. storage node. In one embodiment,

searchable data service indexing data may be segregated into buckets. Buckets define the limits of data

that may be considered in a single query.

If the service request is a query node request, request router 202 queries a query node locator to map

the bucket and query expression to an appropriate query node.

The request router 202 routes the service request to the appropriate node, collects results, and sends the

results back to the Web services platform 200.

The query subsystem 204 (which .may also be referred to as a query service) may perform one or

more of, but is not limited to, the following functions:

Processes queries.

Services queries from query caches maintained by the query subsystem 204, if possible.

Sends queries not satisfied from a query cache to one or more storage nodes on storage subsystem 206

for execution. For a small domain (bucket), a query typically may run on a single storage node. Larger

buckets may be partitioned across multiple storage nodes, requiring queries to be executed on one

storage node for each partition. Similar to the request router 202, the query subsystem 204 may use a

local instance of a storage node locator to find appropriate storage nodes.

Aggregates query results received from two or more storage nodes, and soris query results, if
necessary. '

Returns the query results to the querying client via the Web service interface provided by the Web

services platform 200. In one embodiment, paginates the results if necessary.

18

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0098] The storage subsystem 206 may include one or more storage nodes. The storage nodes may be
located in one or more data centers. Storage nodes may perform one or more of, but are not limited to, the

following functions:

o On a storage node, a local eID store may serve as the authoritative store for eIDs and their attributes.
 Indexes may be built from the elD store that may index all attributes for eIDs on the local storage node.

e A local query processor may run queries against the local elD Store.

e An elD update service may apply storage node requests (add, replace, delete, etc.) to the local eID
Store.

e A local partition manager may observe the use of local resources (disk space, CPU load, network
bandwidth, etc.) for each storage node and manage the partitioning of buckets accordingly, and may
cooperatively communicate with other storage nodes to move partitions. Partitions may be moved, for
example, to maintain available storage space within a comfort zone on a storage node, and/or to

provide load balancing.

e May cooperatively communicate with other storage nodes to replicate partitions across storage nodes,
for example to provide redundancy of data.

[099] In one embodiment, Web services platform 200 is the first point of contact when a client makes an
APl call to the searchable data service. Web services platform 200 may, for example, provide authentication,
access control, logging, metering, and billing services for the searchable data service. Service requests from
clients to the searchable data service API provided by Web services platform 200 may be broken into two
categories: write requests to the storage subsystem 206, which may be referred to herein as storage node
requests or storage requests, and read requests to the query subsystem 204, which may be referred to herein as
query node requests, query requests or simply queries. Storage node requests may include, but are not himited
to, requests to add, replace or delete locators (eIDs) and their associated attributes in a bucket in storage

subsystem 206. In addition, one embodiment may provide a construct API call that allows a client to request

that a new domain (bucket) be. created, to which elDs and associated attributes may be added. Query node

requests are queries to obtain lists of locators (elDs) from a bucket in storage subsystem 206 according to a
query expression in the query node request. |

[0100] Web services platform 200 forwards incoming requests from clients to a request router 202, which
in one embodiment may be instantiated on a coordinator. node of the searchable data service. In one
embodiment, there may be two or more coordinator nodes and/or request routers 202 to distribute load and to
provide redundancy by guarding against a single point of failure. Request router(s) 202 and one or more other
associated components, which may reside on one or more coordinator nodes, may constitute a coordination

subsystem or coordination service. Request router 202 examines an incoming service request to determine if the

request is a storage node request or a query node request, determines an appropriate node (e.g., storage node or
query node) to receive the request, and forwards the request to the determined node in the searchable data
service implementation.

[0101] If the request is a storage node request, the client is requesting a write operation (e.g., add, delete,
or replace) to indexing information stored in a bucket. Note that a storage node request may also be a list
attributes request. Buckets define the limits of data that may be considered m a single query. In one

embodiment, a bucket may be partitioned into one or more partitions, which may be stored on different storage

19

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

nodes. Note, however, that a storage node may store more than one partition. Partitioning may allow clients of

the searchable data service to store and maintain larger searchable indexes than can otherwise fit on a single

storage node. ‘Thus, distinct partitions of a bucket may reside on different storage nodes. Partitions may be

replicated across storage nodes. Replication of partitions across storage nodes (and potentially across data
centers) may provide redundancy of data, and thus durability, reliability, and avaitlability of a client’s searchable
index, in the searchable data service. Partitioning and Replication mechanisms for the searchable data service
are further described later in this document.

j0102] In one embodiment, if the request is a storage node request, request router 202 may query a local
storage node locator to map a bucket and elD specified in the storage node request to a particular storage node
In storage subsystem 206. Request router 202 may also query the storage node locator to determine if the
sp;aciﬁed bucket has one partition or more than one partition. From the information received from the storage

node locator, request router 202 determines a particular storage node in storage subsystem 206, and then

forwards the storage node request to the determined storage node. In the storage subsystem 206, the storage
node performs the operation specified in the storage node request on its local eD store. The storage node may
then propagate the storage node request to other storage nodes in the storage subsystem 206 that store replicas of
partitions of the bucket, if necessary.

[0103] If the request is a query node request, the client is requesting a read operation, or query on
indexifmg information stored in a bucket. In one embodiment, if the request is a query node request, request
router 202 may query a local query node locator to map the bucket and query expression specified by the request
to an appropriate query node in query subsystem 204. The request router 202 then forwards the query node
request to the determined query node in query subsystem 204.

[0104] On a query node in query subsystem 204, some preprocessing (e.g., normalization) of a query
request may be performed, for example to normalize a query expression specified in the query requést. In one
embodiment, a local query cache may be examined to determine if the query can be satisfied from the query
cache. If the query can be satisfied from the local query cache, the query subsystem 204 returns query results
from the query cache to the client via the Web services platform 200. If the query cannot be satisfied from the
query cache, a local instance of a storage node locator may be queried to locate one or more storage nodes in

storage subsystem 206 to which the query is to be forwarded.

[0105] For a small domain (bucket), a query may run on a single storage node. Large domains (buckets)
may be partitioned across multiple storage nodes, which may require queries to be executed on one storage node
for each partition. The storage node(s) return results (lists of eIDs) to the query node in query subsystem 204.
In one embodiment, a query aggregator on the query node in the query subsystem 204 may aggregate results
received from two or more storage nodes according to specifications in the query node request. Query
subsystem 204 then returns the query results received from the storage node(s) to the client via the Web services
platform 200. In one embodiment, query subsystem 204 may paginate the query results as necessary or desired.
On a query node, query results received from the storage subsystem 206 may be written to the local query cache.
[0106] As mentioned above, the request router 202 may query a local storage node locator and a local
query node locator to locate storage nodes that are to receive storage node requests and query nodes that are to

receive query node requests, respectively. In addition, a local storage node locator on a query node may be

queried to locate storage nodes to receive query requests. The storage node locator tracks what storage nodes

20

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

are 1n the storage subsystem 206, and the query node locator tracks what query nodes are in the query subsystem
204. Both node locators may use a table or database to record information on the respective nodes being
fracked. In one embodiment, this table may be built in accordance with a Berkeley database. In one
embodiment, when there is a change in the storage subsystem 206, for example when a bucket is repartitioned, a
partition is replicated, new storage nodes are added, new entries are added to 2 bucket, etc., the change may be
communicated to the various node locators. Changes to the query subsystem 206, such as additions or removals
of query nodes, may be communicated to the query node locators. In one embodiment, one local node locator
may be initially updated in response to a change, and the change may then be propagated from that node locator
to other node locators on other nodes in accordance with the gossip protocol.

[0107] The searchable data service may include a communication mechanism among the various nodes
and components that, for example, allows the storage and query node locators to monitor changes in the
searchable data service implementation (e.g., added or removed nodes, replications, partitioning, writes to the
storage subsystem 206, etc.) and to thus update the information stored in their respective tables according to the
communicated update information. In one embodiment, the communication mechanism may be implemented in
accordance with a gossip, or epidemic, protocol. This communication mechanism may allow the propagation of
changes on one node to all nodes and components of the searchable data service implementation that may
require the mmformation. In one embodiment, the communication mechanism provides weakly consistent
updating; the communication mechanism propagates information, and so does not provide immediate updates to
- all nodes. However, the communication system may propagate updates sufficiently fast to maintain weak
consistency among various nodes and components that may be tracking the information. In one embodiment,
the communication mechanism propagates update information so that the communicated information does not
overwhelm the communications bandwidth of the system. In one embodiment, this may be accomplished by
piggybacking at least some update information on other inter-component or inter-node communications.

[0108] In one embodiment, an entity ID (eID) store in storage subsystem 206 may be implemented as a

table of entity locators (elDs) and, for each elID, a set of attributes, expressed as Lname, value} pairs, that are

associated with the entity. The elID store is the authoritative store of information in the searchable data service.
When a chent application of the searchable data service writes information into the searchable data service via a
storage node request 1o the Web service interface provided by Web services platform 200, the storage node
request is' routed to a particular storage node in the storage subsystem 206 by request router 202, and on the
storage node the information is written to the local elD store. Note that the information may be written to a
particular bucket associated with the particular application, and that the bucket information may be provided in
the storage node request. Thus, information for different client applications may be written into different
buckets. In one embodiment, when a subscriber to the searchable data service initiates the creation of a
searchable index for a particular application, the subscriber may provide a bucket identifier for that searchable
index (bucket). When a request (e.g., a query) is made for that searchable index, the request references the
bucket identifier of the searchable index. Note that the subscriber may be provided with a unique subscriber
identifier that may be used to distinguish among multiple subscribers to the searchable data service. In one
embodiment, the Web services platform may assign the subscriber identifier to the subscriber. A particular
subscriber may have more than one searchable index, each assigned a bucket and given a bucket identifier.

Thus, a particular subscriber identifier and a particular bucket identifier specify a domain in the searchable data

21

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

service. Note that a bucket may be distributed across two or more local eID stores on two or more different
storage nodes. A particular storage node eID store to which a storage node request or query node request is
routed may be determined by the subscriber identifier, bucket identifier and elD specified in the request.

[0109] Once information is added to an eID store, indexes for the eID store may be built. As described
above, each eID in the eID store has an associated set of atiributes stored as {name, value} pairs. Each name
corresponds to an index, and each index corresponds to a particular name for a {name, value} pair. In one
embodiment, the indexes (each row in the index) may be sorted by the values associated with the names. In one
embodiment, the indexes may be stored in a local query index store associated with the local elD store. Note
that the indexes are specific to the particular bucket. In one embodiment, however, indexes may be
concatenated across buckets to avoid having many small data structures if there are many small buckets.

[0110] As an example, an elD store, and associated index, may be constructed for a database of
information (the data store) on articles of merchandise for sale, for example books at an online commercial
website that offers the books for sale. One attribute of the articles may be the sale price of the article. Thus,
elDs for the information on the articles in the database may be provided and added to the eID store. Each eID
may have an associated set of {name, value} pairs that represent names and values for various attributes of the
associated article. For example, one of these {name, value} pairs for the articles may be “Sale Price - <dollar
amount>". Thus, an index may be created for the attribute name “Sale Price”. This index may be sorted by the
value of “Sale Price”. A client may submit a query request that includes a query expression that indicates that
the client is requesting eIDs for al] articles with a certain “Sale Price” value, with a “Sale Price” value less than
a specified amount, and so on. The indexes may then be used to find which article(s) in the data store have a
“Sale Price” value that satisfies the query expression. All eIDs for articles in the data store that have a “Sale
Price”™ value that satisfies the query may be returned in the query results to the querying client.

[0111] In one embodiment, the storage subsystem 206 may initialize a bucket as one partition. As
information is added to the bucket, the bucket may eventually grow until the bucket is at or nea.r the point of
being too large to fit on one storage node. At some point before the available slorage space on the storage node
becomes critically low (in other words, while available storage space on the storage node is still in a comfort
zone), the bucket may be repartitioned into two (or more) partitions, and one (or more) of the partitions may
then be moved onto another storage node so that the bucket can continue to grow. This repartitioning of the
bucket may be performed transparently to the client application. Note that partitioning may also be performed
tor other reasons, for example to provide load-balancing for service requests. A partitioning mechanism for the
searchable data service is further described Iater in this document.

0112} Embodiments of the searchable data service may provide an interface that allows clients to delete
entries that were previously added to a bucket. In one embodiment, these entries may be marked as deleted in
an elD store, but are not removed from disk. In another embodiment, these entries may be marked for deletion,
and the searchable data service may provide a mechanism that periodically or aperiodically performs garbage
collection to remove any entries that have been marked for deletion from disk. In one embodiment, if a bucket
has been previously repartitioned to create two or more partitions, and subsequently entries have been deleted
from the bucket, the searchable data service may provide a mechanism that may merge two or more partitions

into one partition, if there is sufficient disk space on a storage node to store the siﬁgle, merged partition.

22

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0113] Repartitioning of a bucket may be performed when the bucket (or a partition of the bucket) is at or
near the point of being too large to fit on a single storage node. Thus, repartitioning of buckets as described

herein may allow a bucket to grow as the storage requirements of the client grow. Replication of partitions
across two or more stora;

2e nodes, on the other hand, may be performed, for example, to provide redundancy,

data durability, data availability and load sharing among the storage nodes and/or across data centers.

Replication of a partition to two or more storage nodes within a data center or across data
performed even for a bucket that has only one partition.
[0114]

centers may be

Note that, in one embodiment, a searchable data service may be implemented on nodes, or hosts,

that physically reside in two or more data centers. Each data center may mclude two or more nodes that

participate in the searchable data service implementation. Searchable data service nodes in a data center may

include, but are not limited to, one or more coordinator nodes (nodes that host an instance of the request router
202), one or more query nodes, and one or more storage nodes. A partition on a storage node within a data
center may be replicated to one or more other storage nodes within that data center, and/or may be replicated to
one or more other storage nodes in one or more other data centers. Replication within a data center may protect
against node failures within the data center and may provide load-balancing among nodes within the data center.
Replication across data centers may protect against data center-level fatlures, and may provide load-balancing
across data centers.

[0115] In one embodiment where the searchable data service is implemented across two or more data
centers, a bucket with a single partition may have at least four replicas of the partition. In any particular data
center where this bucket resides, the partition may be replicated to at least two storage nodes, and may also be
replicated to at least one other data center. In the other data center(s), the partition may be replicated to at least
two storage nodes within the data center(s). If the bucket has more than one partition, each partition may be
similarly replicated across storage nodes within a data center and/or may be replicated to storage nodes across
data centers.

(0116] In one embodiment, a lazy replication mechanism may be used in the replication of partitions. In
one embodiment, when replicating a partition, there may be two types of communication among nodes that are
performed. In one embodiment, replication of partitions may be performed at least in part using a gossip
protocol-based communication mechanism among searchable data service nodes and components within and
across data centers, in combination with an gnti-entropy-based communication mechanism. The anti-entropy
protocol may provide faster communication than a gossip protocol. Using the anti-entropy protocol, the entire
data structure of the partition may be replicated to another storage node to ensure initial consistency. In the

meantime, however, updates may be received and applied to the original partition. Therefore, updates to the

original partition that are received on the original storage node while the anti-entropy replication is occurring

may be propagated to the new replica on the other storage node using the gossip protocol. The replica of the
partition that is replicated via anti-entropy gets progressively older as time passes. However, any updates that
are received are gossiped to the new replica. When the anti-entropy replication of the partition is completed and
the new replica is ready to come on-line, the new replica may be up-to-date because of the gossiped updates.

[0117] In one embodiment, the searchable data service may attempt to provide as close to 24/7 availability
and reliability of searchable indexes to clients as possible, and may provide a mechanism through which

searchable indexes are ensured to be available and up-to-date with any additions or modifications if a storage

23

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

node or even an entire data center becomes unavailable for some reason. Replication of partitions across storage
nodes both within data centers and across data centers is part of this mechanism. To help ensure that available
replicas are up-to-date, in one embodiment, when an entry for an entity in a data store is added to or modified in
a local elD store on a storage node, the change made to the local eID store on the storage node may be made to

one or more other eID stores on other storage nodes by an update service of the storage subsystem 206. In one

embodiment, an instance of an elD update manager component on each storage node may implement the

functionality of the update service on the storage node. In one embodiment, the update service ensures that each

update is applied to two or more replicas on other storage nodes, but not necessarily to all replicas. The gossip

protocol among the storage nodes may then be used to propagate the update to all replicas.

[OT18] In one embodiment, when an update to a local eID store on a storage node in a data center is made,

and before a response is returned to the client indicating that the update was successful, the update service of the
storage subsystem 206 may act to ensure that the update has been made to at least one other local eID store on a
storage node in the data center and to at least one other local eID store on a storage node in another data center.
In one embodiment, when there is an initial update made in a local eID store on a storage node within a data
center, the update service of the storage subsystem 206 waits for confirmation that the update has been
successfully made to at least two local storage nodes and to at least one storage node in another data center
before a response is sent to the client that the update was successful. Thus, if the original storage node or even
the entire data center goes offline for some reason, an up-to-date replica may be available on another storage
node In the same data center and/or on another storage node located in a different data center. Note that the
update may be propagated to other storage nodes not updated by the update service using the gossip protocol so
that all replicas of the partition are weakly maintained as consistent, even though the client may be informed that
the update has been successfully made before the update has been propagated to all storage nodes that host

replicas of the partition.

[0119] The storage nodes that replicate a particular partition or partitions of a bucket may be considered a

replication group. The storage nodes in a replication group may have identical, or nearly identical, copies or
replicas of the partitions. In one embodiment, updates to the partition(s) may be propagated to the storage nodes
within the replication group using the gossip protocol. Therefore, “identical” may be subject to the limitations
of the gossip protocol, which provides weak consistency. At any given point in time, the partitions within a
replication group are not necessarily identical, but converge to be identical as the updates are propagated via the
gossip protocol. |

[0120] in one embodiment, the number of replicas of a partition that are maintained in a replication group
may be dependent on monitored availability and reliability statistics of the hardware within the data center. If
the searchable data service detects that the hardware is not particularly reliable or available, more replicas may
be created within a replication group. More reliable and available hardware may allow fewer replicas to be

maintained. In one embodiment, there may be at least four and up to six replicas of a partition in a replication

group. Note that this pertains to replicas created and maintained to provide durability, reliability, and
availability of the data. In one embodiment, the number of replicas of a partition that are maintained in a
replication group may be dependent on monitored availability and reliability statistics of the hardware across
two or more data centers, for example if the replication group extends across two or more data centers. In one

embodiment, the number of replicas of a partition that are maintained in a replication group may also be at least

24

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

in part a function of the operational characteristics of a network. In this embodiment, for example, data

redundancy may be increased based on factors that may include one or more of, but are not limited to, failure

modes on a network, response times on the network, error rates for data retrieval on the network, or on one or
more other factors or combinations thereof,

[0121] In one embodiment, replication of partitions may also be performed in situations where a particular
partition or a particular replica of a partition is detected to be very read active, with large numbers of reads
(query messages) being received for the partition or for 2 particular replica within the replication group, by a
group membership and health component of the searchable data service. The searchable data service, upon
detecting that the partition or replica is receiving queries to the extent that it is approaching being out of ‘a
comfort zone for reads, may create one or more additional replicas of the partition to distribute the queries
across more replicas and thus to provide load-balancing of the read (query) load across additional storage nodes.
[0122] If a high write load to a bucket (e.g., messages irom the client to add or update entries in the
bucket) is detected, creating additional replicas of a partition or partitions within the bucket may not help.
Instead, creating additional replicas may be counterproductive, since updates are propagated to replicas using
the gossip protocol, and more replicas tends to generate more gossip within a replication group. Therefore, in
one embodiment, if a bucket is detected to be write active by the searchable data service to the point that at least
some storage nodes may be nearing the boundary of their comfort zone, the searchable data service may
repartition the bucket, rather than creating more replicas of partitions, so that the data in the bucket is spread

across more storage nodes, and thus the write load may be load-balanced across more storage nodes.

[0123] In one embodiment, a storage node that has a partition that needs to be replicated may
communicate this information to one or more other storage nodes, for example using the gossip protocol. One
or more of the other storage nodes, within the data center or in another data center, may then volunteer to
receive a replica of the partition. Information on the actual replication to another storage node may be
communicated to other components on nodes of the searchable data service (for example, to storage node
locators on coordinator nodes and query nodes) so that the status of replicas within 2 domain (within a bucket)
of the searchable data service may be tracked.

[0124] Infermation on the repartitionin‘g of a partition on a storage node may be similarly communicated
to other components on other nodes so that the status of partitions within a domain of the searchable data service
may be tracked. If a partition needs to be moved ffom one storage node to another storage node, this
information may be communicated to one or more other storage nodes, and storage nodes that receive this
information may then volunteer to receive the partition. The storage node that needs to move a partition may
then select a best candidate storage node to receive the partition. An exemplary stress management mechanism
that implements a stress management algorithm for managing disk load on storage nodes in one embodiment of
a searchable data service system, and that may be used to select a best candidate storage node from among two

or more candidate storage nodes to receive a partition, is described later in this document in the section titled

Stress Management.

[0125] [nstead of repartitioning or replicating a partition as a reactionary response to problems or crises,
the searchable data service may provide one or more mechanisms that enable nodes to monitor the use and
health of various resources on the nodes, Including storage resources on storage nodes within the storage

subsystem 206, to share the health information among nodes within the searchable data service, and to

25

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

proactively work to avoid potential high stress or load on various resources within the searchable data service.
In one embodiment, comfort zones may be defined for various resources in the searchable data service, and the

searchable data service may proactively work to keep the resources within their respective comfort zones.

[0126] The searchable data service may perform a particular action or actions when it is detected that a

resource is getting near the edge of its comfort zone. For storage nodes In storage subsystem 206, these actions
may include, but are not limited to, replicating and repartitioning. The searchable data service may monitor the
use and health of the storage nodes, as well as other types of resources such as query nodes and coordinator
nodes, and may attempt to perform an action (e.g., repartitioning or replication for storage nodes) in advance of
a potential crisis (i.e., when the resource is still within the comfort zone), as opposed to waiting until the
resource is already under stress. If the system were to wait until a resource is already under stress to perform
some action in an attempt to relieve the stress, such as repartitioning or replication, the resource may already be
being overloaded with internal and external requests, making it more difficult to perform the action. Thus, the
searchable data service provides a proactive approach to health management to support the availability and
reliability of resources within the system as opposed to a reactive approach.,

[0127] In one embodiment, each node in the searchable data service may include an instance of a node

manager component that may serve as a control and monitoring agent for the node. The node manager

component may serve as a self-monitoring agent that may monitor health information for various resources on
the node, which may include, but is not limited to, disk space usage, bandwidth usage, CPU usage, read and/or

write load, etc.

[0128] In one embodiment, a stress manager component on each node in the searchable data service may
detect if a health metric for a resource on the node, collected by the node manager, 1s at or near the limits of its

comfort zone, and may, in response to said detection, initiate an appropriate action. The stress manager may

implement one or more algorithms that may be used to determine an action or actions to be taken when a
resource Is at or near the limit of its comfort zone. For example, when the available storage space on a storage
node 1s nearing the edge of its comfort zone, the stress manager may initiate repartitioning on the node so that a
newly-created partition may be moved to another storage node, thus freeing disk space on the storage node.
Note that repartitioning would actually be performed under the control of a local partition manager.

[0129] The node manager component may enable the nodes to participate in monitoring and maintaining
the global health of the searchable data service implementation. The node manager component monitors the
health of resources on a particular node. In one embodiment, another component may monitor the health of
other nodes in a local neighborhood or node group to compare the health of the node to other nodes.

[0130] In one embodiment, each node in the searchable data service may have an instance of a group
membership and health component. In one embodiment, the group membership and health components on the
various nodes may allow health information collected]ocaliy on nodes to be communicated to other nodes
within a local neighborhood or node group of the searchable data service. In one embodiment, the group
membership and health component allows other components of the searchable data service to identify sets of
nodes to be monitored, and to then query for automatically refreshed health information about those nodes. The
group membership and health component may serve, for example, as a failure detection mechanism. The oTOUp

membership and health component may also allow a node to compare Its local health with other nodes in its

neighborhood or group.

26

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0131] In one embodiment, each node in the searchable data service may make local decisions based on

the health of its local resources and the health messages that it receives from other nodes within its
neighborhood or node group through the group membership and health mechanism. This may distribute health
monitoring and management of resources of the searchable data service among the local nodes and node groups,
rather than relying on a central controller. Thus, in one embodiment, there may be no central controller that
monitors the health of the entire searchable data service implementation and attempts to optimize resources, and
thus no single point of failure. Since health monitoring and maintenance is performed locally on nodes and
cooperatively within node groups instead of by a central controllef, a global list of health information does not
have to be maintained, and less health information has to be communicated globally across the entire searchable
data service implementation.

[0132] Through a local node manager, each node tracks its own resource usage and health. Each node
may also monttor the health of other nodes within a local neighborhood or group. A local stress manager
accesses the resource usage and health information coliected by the node manager. If the stress manager on a
storage node determines that the node needs to repartition its data, the storage node does not force another
storage node to accept the newly-created partition. Instead, this information may be shared with other local
storage nodes, for example through the group membership and health mechanism. Other local storage nodes
that have available disk space (again, locally monitored by the node manager) may look for other storage nodes
that need to repartition in the health information shared through the group membership and health mechanism.
If a storage node that has available disk space finds another storage node that needs to move a partition, the
storage node may voluntarily decide to accept the partition.

10133] Thus, storage nodes in a particular group may agree among themselves on the repartitioning of
data. This may not be necessarily performed as a group decision in which all nodes participate. Instead, two
storage nodes may agree to cooperate to repartition data, with one of the nodes voluntarily accepting the new
partition. Note that this group communication and cooperation may occur among nodes within a particular data
center, but may also occur among nodes across data centers.

[0134] Initially, when a bucket is created, the bucket includes one partition. The partition may be

replicated across two or more storage nodes, which form a replication group. When the replicated partition is

repartitioned to form two or more new partitions, each new partition becomes a replication group. Initially, the
newly created partitions remain on the same storage nodes. Thus, each storage node may be a member in one or
more replication groups. Repartitioning of the partition is performed on all of the storage nodes in the

replication group; there is still one bucket; and initially all of the data remains in the same place. Half of the

data, however, is in partition 4, and the other half is in partition B. Potential storage space problems on any of
the storage nodes have not been solved by repartitioning, however, because the replicas are still on the same
storage nodes. Each storage node, if nearing the limits of its available storage space comfort zone, may decide
to move a partition to another storage node, if possible. In one embodiment, another storage node, which in one
embodiment may be located via a gossip protocol, may voluntarily decide to receive the partition. Copying the
partition to the other storage node may be performed using an anti-entropy mechanism to replicate the partition,
with a gossip protocol used to apply any updates to the replica of the partition. This moving of partitions may

be performed proactively, while available storage space 1s still within the comfort zone, to help avoid crisis

situations.

27

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0135] As mentioned above, one type of node group is a replication group. Each storage node in a
replication group stores a replica of a particular partition. As the partition grows, any one of the storage nodes
in the replication group may detect that available storage space on the node is nearing the limits of its comfort
zone, and thus the local replica may need to be partitioned. In one embodiment, ifa partition is getting too large
for any one of the storage nodes within a replication group, the partition may be repartitioned on alil of the

storage nodes within the replication group, even if there is disk space available on the other storage nodes. The

newly created partitions may each constitute a separate replication group, though initially all the partitions may

remain on the same set of storage nodes. Thus, repartitioning a replicated partition also generates two

replication groups where formerly there was one replication group. One of the storage nodes that is at or near
the limits of its comfort zone for available storage space may then move its replica of one of the newly created
partitions to another storage node that volunteers to receive the partition. For example, another node may join
or be added to the replication group, and may voluntarily receive the partition. Other storage nodes in the
replication group(s) may have enough disk space, and so may not move a partition.

[0136] Figure 4 illustrates an exemplary network architecture for a searchable data service according to

one embodiment. A searchable data service implementation may include, but is not limited to, a Web services

platform 200, one or more coordinator nodes 350, one or more query nodes, referred to as query TSAR (Top
Search AggregatoR) nodes 360, and one or more storage nodes 370. Each coordinator node 350 may include,
but is not limited to, at least one instance of request router 202.

|0137]) Note that the high-level, functional query subsystem 204 and storage subsystem 206 described in
Figure 3 may, but do not necessarily map directly onto query TSAR nodes 360 and storage nodes 370,
respectively. Each of the Subsystems may include several components, which are further described below in
reference to Figure 6. In one embodiment, components of the query subsystem 204 reside on the query TSAR
nodes 360, and components of the storage subsystem 206 map onto the storage nodes 370. Alternatively;
particular components that may be viewed as functionally part of one of the Subsystems may physically reside
on a coordinator node 350, a query TSAR node 360, or a storage node 370. For example, each storage node 370
may Include an instance of a local query processor 228 of Figure 6, which may be, but is not necessarily,
functionally viewed as a component of the query subsystem 204. In addition, some components of the
searchable data service illustrated in Figure 6 may have local instances on different ones of the nodes. For
example, in one embodiment, there may be a local instance of storage node locator 216 on each coordinator
node 350 and on each query TSAR node 360.

[0138] Data store 332 represents a data storage system in which units of data (entities) may be stored.
Data store 332 may be implemented in accordance with any type of storage system in which locators may be
used to locate and retrieve entities. An application may be implemented on client system 330 that leverages the
searchable data service as a search frontend to the backend data store 332. In one embodiment, the application
may be configured to access the functionalities of the searchable data service in accordance with a Web service
interface of the Web services platform 200 to search for and retrieve data in the backend data store 337,

[0139] An application that leverages the searchable data service as a search frontend to a backend data
store 332 may be referred to as a subscriber to the searchable data service. Note that a searchable data service
implementation may have two or more subscribers. In other words, a searchable data service implementation

may provide searchable indexes to two or more backend data stores. Also note that an application may leverage

28

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

a searchable data service implementation as a search frontend to two or more backend data stores 332. An
application that leverages the searchable data service as a search frontend to two or more backend data stores
332, and for which there are thus two or more searchable indexes implemented in the searchable data service
implementation, may be identified separately and uniquely as a subscriber for each searchable index. A unique
subscriber identifier may be assigned for each subscription to the searchable data service, and the subscriber
identifiers may be used to uniquely identify particular searchable indexes to particular data stores 332. Note that
two or more client systems 330 may access a particular searchable index in a searchable data service
implementation using an associated unique subseriber identifier.

[0140] In one embodiment, a client system 330 may submit service requests (query node requests and/or
storage node requests) to the searchable data service in accordance with the Web service interface of the Web
services platform 200 via Internet 334. The Web services platform 200 may route the service request(s) to a
cqordina.tor node 350. A coordinator node 350 routes the service requests to the appropriate node(s), coliects
results, and sends the results back to the Web services platform 200. A request router on the coordinator node
350 may receive the service request(s) from the Web services platform 200 and determine whether each service
request is a storage node request or a query node request. If a service request is a storage node request, the
request router queries a storage node locator to map the elD and bucket specified in the request to the
appropriate storage nbde(s) 370. Ifthe service request is a query node request, the request router queries a query
node locator to map the bucket and query expression to an appropriate query TSAR node 360. In one
embodiment, the storage node locator and the query node locator may be components of the searchable data
service with instances located on each coordinator node 350.

[0141] Upon recetving a query node request from a coordinator node 350, a query TSAR node 360 may
perform processing of the query before forwarding the query to one or more storage nodes 370. The query
TSAR node 360 may forward the query to appropriate storage node(s) 370 for execution of the query. For a

small domain, a query typically may run on a single storage node 370. Larger domains may be partitioned

across muliiple storage nodes 370, requiring queries to be executed on one storage node 370 for each partition.
Partitioning is further described later in this document. The query TSAR node 360 may use a local instance of a
storage node locator to locate appropriate storage node(s) 370 for the query. The query TSAR node 360 may
aggregate and sort query results received from storage node(s) 370. The query TSAR node 360 may then return
the query results to the coordinator node 350. In one embodiment, the query TSAR node 360 may paginate the
query results, it necessary or desired.

[0142] On a storage node 370, an elD store may serve as the authoritative store for elDs and their
attributes. Indexes may be built from the elD store that may index all atiributes for eIDs on the local storage
node 370. A local query processor may run queries received from query TSAR node(s) 360 against the indexes
on the storage node 370. An elD update service may receive storage node requests from a coordinator node
350 and update the elD store accordingly. A local partition manager may observe the use of local resources
(e.g., disk space, CPU load, network bandwidth, etc.) for the storage node 370, and may communicate with

other partition managers on other storage nodes 370 to redistribute partitions when necessary.

[0143] Figures 5A and 5B illustrate a method for implementing a searchable data service that processes

0

service requests to store searchable data service objects in a searchable index and to locate entity identifiers

(elDs) for entities 1n a data store in the searchable index according to one embodiment. Each searchable data

29

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

service object may specify two or more atiributes of a particular entity in the data store. Each attribute may be
expressed as a {name, value} pair, and the attributes may include a unique entity identifier (eID) for locating a
particular entity in the data store.

10144] A searchable data service system may be implemented on a plurality of nodes. The nodes may be
located in one data center or may be dispersed across two or more data centers. The data centers may be
geographically dispersed. In one embodiment, the searchable data service may include at least a coordination
subsystem, a query subsystem and a storage subsystem. In one embodiment, the plurality of nodes may include
one or more coordinator nodes that implement the coordination subsystem, one or more query nodes (also
referred to as query TSAR nodes) that implement the query subsystem, and one or more storage nodes that
implement the storage subsystem. In one embodiment, a Web services platform may provide a Web service
interface to the searchable data service that provides one or more interface calls to client applications of the
searchable data service.

[0145] In Figure 5A, the Web services platform may receive service requests from a client application in
accordance with the Web service interface to the searchable data service, as indicated at 1000. The Web
services platform may then forward the service requests to a coordinator node of the searchable data service, as
indicated at 1002. In one embodiment, the Web services platform may provide one or more other services that
perform metering, billing, authentication, and access control of subscribers to the searchable data service.

[0146) As indicated at 1004, the coordinator node may determine if the service request i1s a query node
request (a read operation to the searchable index) or a storage node request (a write operation to the searchable
index, or a list attributes request). In one embodiment, a request router component of the searchable data service
may perform said determining. At 1004, if the service request is a storage node request, the coordinator node
may locate a storage node to receive the storage node request, as indicated at 1006. In one embodiment, a
request router component of the searchable data service may consult a local storage node locator component of
the searchable data service to locate a storage node to receive the storage node request. As indicated at 1008,
the coordinator node may then forward the storage node request to the determined storage node.

10147 Upon receiving the storage node request, the storage node may modify a partitton of a searchable

index in accordance with the storage node request, as indicated at 1010. In one embodiment, the storage node

may:
* add asearchable data service object specified in the storage request to the searchable index;

* modify a searchable data service object stored in the searchable index as speciiled in the storage

request,;

e delete a searchable data service object from the searchable index as specified in the storage request; or
* compile and return a list of all {name, value} pairs for an entity if the storage node request is a list
attributes request. Note that a list attributes request may not result in modification of the partition.
014 8] As Indicated at 1012, changes to the partition may be propagated to one or more other storage
nodes that store a replica of the modified partition. In one embodiment, the changes may be propagated to other
Sstorage nodes in accordance with a gossip protocol. In one embodiment, an anti-entropy protocol may also be
used to propagate changes to other replicas of the partition. As indicated at 1014, a response indicating success

or fatlure of the storage node request may be returned to the client application in accordance with the Web

service interface.

30

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0149] At 1004, if the service request is a query node request, the coordinator node may locate a query

node to receive the query node request, as indicated at 1016. In one embodiment, a request router component of
the searchable data service may consult a local query node locator component of the searchable data service to
locate a query node to receive the query node request. As indicated at 1018, the coordinator node may then

forward the query node request to the determined query node. Item 1020 indicates that the flowchart is
continued in Figure 5B.

[0150] In Figure 5B, the query node receives the query node request from the coordinator node and

processes the query node request. In one embodiment, the query node may perform some preprocessing of the
query node request, for example normalization of an unnormalized query expression specified in the query node
request. As indicated at 1022, the query node may determine if the query expression specified in the query node
request can be satisfied from a local query cache that caches results from previous query node requests. At
1024, if the query node can be satisfied from the local query cache, then, as indicated at 1026, the query node
may return query results retrieved from the local query cache to the client application in accordance with the
Web service interface.

[0151] At 1024, if the query node request cannot be satisfied from the local query cache, then, as
Indicated at 1028, the query node may locate one or more appropriate storage nodes to receive and process the

query node request. In one embodiment, the query node may consult a local storage node locator component of

the searchable data service to locate the one or more storage nodes to receive the storage node request. As
indicated at 1030, the query node may then forward the query node request to the determined storage node(s).

10152] As indicated at 1032, each storage node that receives the query node request from the query node
may search a local partition of the searchable index to locate searchable data service objects that satisfy the
query expression specified by the query node request. As indicated at 1034, each of the storage nodes may then
return query results that satisfy the query expression to the query node. In one embodiment, the query results
may be cached in a local query cache, as indicated at 1036. The query node may merge, sort, and/or paginate

the query results, as necessary or desired, as indicated at 1038. If query results are received from more than one

storage node, then the query results may need to be merged. If the query results exceed a page limit, then the
query results may be paginated, and then may be returned to the client application in two or more response
messages. In one embodiment, the query results may be sorted according to a sort criteria specified in the qUETY
node request. In one embodiment, the query results may include at least the entity identifiers (elDs) from each
searchable data service object in the searchable index that satisfied the query expression specified in the query
node request. As indicated at 1040, the query node may return the query results received from the storage

node(s) to the client application in accordance with the Web service interface.

[0153} Figure © illustrates an exemplary lower-level, modular architecture for a searchable data service,
according to one embodiment. This Figure shows the data flow through various modules, or components, of the
searchable data service. In this embodiment, the searchable data service may include one or more of, but is not
limited to, the components shown. Note that an implementation of the searchable data service may include two

or more of at least some of the illustrated components.

[0154] The following describes exemplary data flow in an embodiment of the searchable data service

when new information is submitted to the searchable data service using an add request (a type of storage node

request) to a Web services AP1 provided by the Web services platform 200. The REST or SOAP request comes

31

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

to the Web services platform 200 where it is authenticated, time-stamped and passed on to the request router

202. The request router 202 asks the storage node locator 216 for a list of one or more storage nodes 270 that

may store the data, and sends the data to one node on that list. The entity ID update manager 230 on the storage

node 270 receives the data, stores the data on its local entity ID store 236, and sends the data to at least one more

local storage node 270 and at least two storage nodes 270 in another data center. When all these storage nodes
have stored the data, the REST or SOAP call returns a "success" result.

[0155] The following describes exemplary data flow in an embodiment of the searchable data service
when processing a query node request, or query. The REST or SOAP request comes to the Web services
platform 200, where it is authenticated and passed on to the request router 202. The request router 202 asks the
query node locator 220 for a list of query TSARSs (Top Search AggregatoRs) 212 that can process the query, and
routes the query to one node (query TSAR 212) on that list. The query TSAR 212 first determines if the query
can be satisfied from query cache 214. If so, it returns the query response to the request router 202, which
forwards the query response back to the Web services platform 200, from where the query response may be

returned to a client application that initiated the query in accordance with the Web service interface.

[0156] If the query cannot be answered out of query cache 214, the query TSAR 212 asks a local storage

node tocator 216 for a set of partitions of a bucket, and the storage node hosts that store replicas of those

partitions. The query TSAR 212 may then send the query to the local query processor 228 of one storage node
host from each partition. The local query processors 228 may find all the eIDs that satisfy the query. These lists
are then returned to the query TSAR 212, where the lists are aggregated. The aggregated list may be sorted and
returned to the querying client.

[0157] Embodiments of a searchable data service may run on large distributed systems with high
availability and reliability requirements. In these environments, embodiments of the searchable data service
may monitor and manage the system resources to meet the high availability and reliability requirements. In one
embodiment, a group membership and health component 226 may x:un on each node, and may communicate
local health information about CPU, disk, memory, network utilization, and other local system metrics to one or
more other nodes. Group health 226 component may track membership in replication groups, and may also track
when nodes enter and leave the searchable data service system environment.

[0158] The partition manager 232 handles the assignment of storage node hosts to replication groups, and
the splitting of buckets into multiple partitions. This enables nodes that are running low on disk space to
partition datasets so that some of the data may be moved to another node. An exemplary algorithm for deciding
when and how to split and move data is described later in this document.

[0159] In one embodiment, all searchable data service nodes may use the group communication
component 222 to communicate with other searchable data service nodes. In one embodiment, the group
communication component 222 may provide epidemic (gossip) and anti-entropy inter-node communication.
[0160] In one embodiment of the searchable data service, to order updates to the data store, for each
update request, the request router 202 may generate a sequencing token and pass it back with the reply to the
client. The sequencing token may capture an ordering ID and possibly other system information. The client
may, if desired, extract the ordering ID from the sequencing token. In one embodiment, the searchable data

service may apply requests in the order given by this ordering ID. Note that other embodiments may use other

methods to order updates.

32

CA 02635400 2008-06-26

WO 2007/079303 PCT/US2006/0614335

j0161] In one embodiment, ordering IDs may be generated by a request router 202 based on its local NTP

synchronized time. Other embodiments may use other bases for generating ordering IDs. Note that NTP

]

synchronized time is an imperfect synchronization system and that there may be iimes where update order may

be inverted due to clock skew. However, in one embodiment using NTP synchronized time as a basis for

generating ordering IDs, the client may determine the order in which the updates are applied and resubmit an
update if they disagree with this order.

[0162] In one embodiment, the client may be requested to send the last sequencing token received by the
client with its next request to the searchable data service. In one embodiment, the searchable data service may

use the received last sequencing tokens to collect data regarding clock skew and ordering. In one embodiment,

the searchable data service may use the last sequencing token supplied by the client to affect the ordering of
updates, if necessary as determined by the collected data.

Data Partitioning and Replication

[0163] Embodiments of the searchable data service may provide one or more mechanisms for data
partitioning and replication of indexing data in the storage subsystem 206. Data partitioning may allow chients of
the searchable data service to store and maintain larger searchable indexes than can otherwise fit on a single
storage node. Data replication may provide redundancy in the searchable index for the durability, reliability,
and availability of the searchable index to a subscriber’s data store stored and made accessible for queries from
client applications via the searchable data service.

[0164] An aspect of data partitioning and data replication in embodiments of the searchable data service 1s
that there is no central controller that controls data partitioning and data replication. Instead, data partitioning

and data replication tasks may be distributed among various nodes and components in the searchable data

service systen.

[0165] Figure 7 illustrates a method for partitioning a searchable index in a searchable data service system
according to one embodiment. A searchable data service system may be implemented on a plurality of nodes.
The nodes may be located in one data center or may be dispersed across two or more data centers. The data
centers may be geographically dispersed. In one embodiment, the searchable data service may include at least a
coordination subsystem, a query subsystem and a storage subsystem. In one embodiment, the plurality of nodes
may include one or more coordinator nodes that implement the coordination subsystem, one Or more query
nodes (also referred to as query TSAR nodes) that implement the query subsystem, and one or more storage
nodes that implement the storage subsystem. In one embodiment, a Web services platform may provide a Web
service interface to the searchable data service that provides one or more interface calls to client applications of

the searchable data service.

[0166] As indicated at 1050, the searchable data service may initialize a searchable index for a data store

as a single partition stored on a single storage node. As indicated at 1052, over time, the partition may grow.
For example, the partition may grow as storage requests are received from a client application to add searchable
data service objects to the searchable index. At some point, the searchable data service may detect that the
available disk space on the storage node is at or near the limits of a comfort zone for available disk space on the
storage node.

10167] To allow the searchable index to continue to grow, the partition may be repartitioned to generate

two or more new partitions, as indicated at 1054. Each of the new partitions may include a different subset of

33

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

the searchable data service objects in the searchable index. One or more of the new partitions may then be

moved to one or more other storage nodes, thus freeing up storage space on the storage node, as indicated at

1056. In one embodiment, another node may cooperatively volunteer to receive and store a new partition. In

one embodiment, the storage node that needs to move a partition may broadcast a message within a group of
storage nodes indicating that the storage node needs to move the partition. One or more of the storage nodes
that receive the message may then volunteer to store the partition. The storage node may then select a best
storage node from the volunteers to store the partition, and may then cooperate with the selected storage node to
move the partition to the other storage node. Note that the different partitions stored on the two nodes may
continue to grow, and thus may be repartitioned to generate new partitions that may then be moved to other
Storage nodes if necessary. Repartitioning and moving partitions to other storage nodes thus allows partitions of
a searchable index to grow beyond the storage limits of a single storage node. An exemplary stress management
mechanism that implements a stress management algorithm for managing disk load on storage nodes in one
embodiment of a searchable data service system, and that may be used to select a best storage node from among

two or more volunteer storage nodes to receive a partition, is described later in this document in the section
titled Stress Management.

[0168] Note that repartitioning a partition to create two or more new partitions and moving one or more
partitions from a storage node to one or more other storage nodes may also be performed to load-balance write
load to the searchable index. If a storage node detects that write load to the partition is at or near the limit of a
comiort zone for writes to the storage node, the storage node may repartition the partition and cooperatively
move at least one of the new partitions to another storage node, as described above, to move some of the write
load to the other storage node,

[0169] Figure 8 illustrates a method for replicating a partition of a2 searchable index in a searchable data
service system according to one embodiment. Data replication may provide redundancy in the searchable index
tor the durability, reliability, and availability of the searchable index. Replicatiqn of a partition may also be
performed to load-balance one or more usage metrics for a resource of the storage node. In one embodiment,
replication of a iaartition may be performed to load-balance read load to the partition if the storage node detects
that read load to the partition is at or near the limit of a comfort zone for reads to the storage node. In one
embodiment, replication of a partition may be performed to load-balance CPU load on the storage node if the
storage node detects that CPU load on the storage node is at or near the limit of a comfort zone for CPU load o
the storage node.

[0170] To replicate a partition stored by the storage node, a storage node may locate another storage node
to recerve a replica of the partition, as indicated at 1100. In one embodiment, the other node cooperatively
volunteers to receive and store the replica. In one embodiment, the storage node that wants to replicate a
partition may broadcast a message within a group of storage nodes indicating that the storage node is seeking a
volunteer to receive the replica. One Or more of the storage nodes that receives the message may then volunteer
to store the replica. The storage node may then select a best storage node from the volunteers to store the
replica, and cooperate with the selected storage node to replicate the partition to the other storage node,

[0171] As indicated at 1102, the storage nodes may then cooperatively replicate the partition to the other
storage node using an anti-entropy protocol. Note that the partition may potentially be updated during the

replication as storage node requests for the searchable index are received and processed. To obtain consistency

34

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

between the partition and the replica, in one embodiment, the replica may be updated with received updates to
the partition using a gossip protocol to propagate the updates to the other storage node, as indicated at 1104.

Note that the gossip protocol may provide weak consistency between replicas of the partition. Also note that

updates to replicas of a partition may continue to be performed using the gossip protocol to thus maintain weak
consistency between the replicas.

[0172] The storage node to which the partition is replicated may be within the same data center as the
storage node that stores the partition or may be in another storage center. In one embodiment, the searchable

data service may create and maintain at least two replicas of a partition within a data center and at least two
replicas of the partition within at least one other data center.

Data Partitioning

[0173] Figures 9A and 9B illustrate searchable indexes for subscribers, the segregation of data (elDs) for
each subscriber 250 into buckets, and partitioning of the buckets, according to one embodiment of the
searchable data service. Searchable data service data, for each subscriber 250, is segregated into buckets, which
define the limits of data that may be considered in a single query. In Figure 9A, when a searchable data service
client (or subscriber) adds data to the searchable index that is identified by subscriber 250A, the client submits a
locator (elD), with attributes, into buckets 252. Each bucket 252 initially resides on a single storage node. Since
datasets may grow indefinitely, partitions may exceed the physicai capacity of a disk on a storage node. To
allow for this possibility, in one embodiment, the data in a bucket may be split across two or more partitions
254, as illustrated in Figure 9B. In Figure 9B, the buckets 252 of Figure 9A are shown have been split to form
partitions 254, For example, bucket 252A has been split into partitions 254A., 2548 and 254C. Note that, iIn one

embodiment, each partition 254 resides on a single storage node. However, more than one partition 254 may

reside on a single storage node.

[0174] As partitions 254 grow, a disk may run out of space, requiring that one or more partitions 254 be
moved to another storage node. In one embodiment, a stress manager component of the searchable data service
may perform at least part of the task of managing the movement of partitions 254 among storage nodes. Data

partitioning in embodiments of the searchable data service is further described below in reference to the
partition manager 232 component and the stress manager component.

Data Replication

[0175] Figure 9C 1llustrates data replication via replicating partitions according to one embodiment. In
one embodiment, for data durability and fault tolerance, data sets (bucket partitions 254) may be replicated
across several storage nodes. In Figure 9C, the partitions 254 of Figure 9B have been replicated to form
replication groups 256. For example, in Figure 9C, partitions 254A, 254B, and 254C of bucket 252A have been
replicated to form replication groups 256A, 256B, and 256C. Replication may allow embodiments of the
searchable data service to distribute query load across replication groups 256, and thus may be necessary or

desired as a response to sustained "read stress" on the searchable data service. In addition, as one or more

storage nodes may fail, embodiments of the searchable data service may provision new storage nodes to keep

the replication group(s) 256 populated. The details of forming replication groups is further described below in

reference to the group membership and health component.

35

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

Partition Manager

[0176] In one embodiment, a partition manager 232 component of the searchable data service is
responsible for making decisions and performing actions to reconfigure the searchable data service system to
alleviate hot spots which may occur as a result of a shortage of disk (storage) space and/or from a high
processing load. The partition manager 232 component may perform as a distributed computation (distributed
across hosts or nodes) that tends towards balancing the stress on hosts or nodes in the searchable data service

system.

[0177] In one embodiment, the partition manager 232 may perform one or more of, but not limited to, the
following actions:

* A host (storage node) may be added to a replication group 256.

* A host (storage node) may be removed from a replication group 256.
e A partition 254 may be split.

e A partition 254 may be merged with another partition.

{0178] In one embodiment, the partition manager 232 performs these actions in accordance with group

health information collected by and received from the group membership and health component 226.

Partitions

[0179] In one embodiment, partitions 254 may be formed based on a hash of the entity ID (eID). The
following is an exemplary function that returns a Boolean (irue or false) indicating whether a provide elD is

within a particular partition:

bool inPartition(String elD, int mask, int value)

{
int h = hash(elD);
return {(h & mask) == value;
}
[0180] Any of a variety of hash functions may be used in various embodimenis. In one embodiment, the

hash function may be specified explicitly to support cross-platform implementations of the searchable data
service. In one exemplary embodiment, CRC32, as defined in ISO 3309, may be used as the hash function for
determining partitions. CRC32 may generate a smooth distribution for just about anything except intentionally
malicious input. In one embodiment, the possibility of malicious input may be avoided by using a
cryptographically-secure hash, with a tradeoff of greater computational expense.

Splitting and Merging Partitions

{0181} Searchable data service data is segregated into buckets 252, which define the limits of data that

may be considered in a single query. In one embodiment, buckets 252 which are queried may be replicated

beyond the minimum number required for fault-tolerance so that arbitrary amounts of query-processing power

may be added to a bucket 252. However, a bucket 252 may become too large to be stored on hosts within the
searchable data service system, and/or may receive an excessive number of updates from client systems.
Replicating buckets 252 may not address problems which may result from these potential situations. In one

embodiment, to address these potential situations, buckets 252 may be divided into separate partitions 254 of
data.

36

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

10182] In one embodiment, updates to the data store need only be sent to a member of the partition 254

containing the entity to be updated. Queries, however, are made to all partitions 254 in a bucket 252; the results
of a query are then merged by a query aggregator in the query subsystem 204. Therefore, the number of
partitions 254 may be determined by the storage requirements of the bucket 252, while the number of hosts in

each replication group 256 may be driven by the number of queries for the bucket 252.

[0183] Embodiments of the searchable data service may provide a mechanism, similar to extensible

hashing, that allows the incremental scaling of a bucket 252 by adding single, potentially heterogeneous, hosts

to a replication group 256. This mechanism may allow a searchable data service system to take advantage of

heterogeneous machines, and may enable the partitioning for a bucket 252 to be dynamically changed, among

other benefits. In one embodiment, an algorithm for partitioning searchable daia service entities may be

{

employed in which the entity identifier (eID) is hashed to an interger, and the least significant bits of that Integer

are examined to determine a partition 254. In one embodiment, the number of significant bits that are examined
may vary between partitions 254. |

[0184] Figure 10 illustrates the splitting of partitions in replication groups according to one embodiment.
In this embodiment, the number of partitions 254 in a bucket 254 may be increased by splitting partitions 254 in
a replication group 256. The replication group 256 for the given hash suffix becomes two partitions (two
replication groups) corresponding to the two suffixes that may be formed by adding one more bit to the suffix.
In the example illustrated in Figure 10, the replication group 256N of the hash suffix 10 has been split into two

partitions (replication group 256N_0 and replication group 256N__1) that are identified by the suffixes 010 and
110,

[0185] Using this mechanism, the initial membership of the two new replication groups 256N 0 and
256N_1 may be exactly the same as the membership of the split replication group 256N. No data migration
initially happens, and queries and updates may be distributed as before the split. However, when a new storage
node is added to one of the split replication groups 256 (in this example, replication group 256N 0), the
replication group has more than the required number of members. A siressed host may then leave the

replication group 256N_0 (while remaining in the replication group 256N _1), in this case by deleting half of its

data (the half in replication group 256N_0), thus alleviating the stress on the host. Thus, adding a single node to

a bucket 252 may alleviate at least some stress on the storage subsystem.
[0186] Note that, if all hosts have the same amount of disk space (i.e., are homogeneous in regards to disk
space), and if the data are more-or-less evenly divided among the partitions 254, then all hosts in the bucket 252

may tend to run out of space at about the same time, which may require the number of hosts in the bucket 252 to
double each time the bucket needs to repartition.

[0187] To help avoid having to double the hosts in a bucket 252 each time the bucket needs to partition
when using homogeneous hosts, embodiments of the searchable data service may use one or more mechanisms

that may add hosts more or less randomly, with the probability of hosts being added to a stressed replication

group 256 increasing in proportion to the measured stress on that replication group 256. Using these

mechanisms, splitting of a replication group 256 may be performed before the storage stress on the replication
group becomes critical. One or more new hosts may be added to the split replication groups 256 early, when

stress is lower, with new hosts added more frequently as the measured stress level grows.

37

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

Partition Manager Interfaces

[0188] In one embodiment, the partition manager 232 may interact with the eID update manager 230 in

accordance with an API. The following is an exemplary API that may be used by the partition manager 232 and

that may include one or more of, but 1s not limited to, the described exemplary calls and callbacks.
setpartitions(Subscriber, Bucket, AcceptPartitionList, DropPartitionList)
[0189] AcceptPartitionList and DropPartitionList are arrays of strings in which each string represents a

partition mask. The elD update manager 230 remembers the new accept partition list and uses the list to filter

incoming operations. The eIlD update manager 230 may then walk the data store to remove items whose hashed
eID matches the patterns in the drop partition list. Either the accept partition list or the drop partition list may be

empty. When a storage node boots, its accept partition list may be empty, and may be initialized using this call
from the partition manager 232.

empty(subscriber identifier, bucket identifier)

[0190] This callback indicates that the specified bucket has become empty locally, and that the partition
manager 232 should thus consider merging or deleting it.
hint(subscriber identifier, bucket identifier, mask)

[0191] This peer-to-peer call may serve as a hint that another storage node should consider joining the

named partition.

[0192] In one embodiment, the partition manager 232 may be a client of the group health 226 component.
for determining the load of nodes within replication groups through an API to the group membership and health

226 component. In one embodiment, the partition manager 232 may also query the storage node locator 216 to.

look for underutilized storage nodes.

[0193] In one embodiment, the splitting and merging of partitions may be driven only by stress on disk
storage. In particular, once local disk usage gets beyond a certain threshold, locally-hosted partitions may be
split. Other embodiments may use other architectures and mechanisms for dividing entities among a set of
available hosts. For example, in one embodiment, consistent hashing (or Distributed Hash Tables (DHT's)) may
be used to spread entity replicas semi-randomly among the available hosts. This embodiment may make adding
or deleting hosts in the system relatively simple, but may tend to make querying inefficient, as queries may need
to be sent to almost all hosts serving the bucket. Therefore, scaling the query-processing power for a bucket
would be difficult in this embodiment. In another exemplary embodiment, entities may be distributed based
upon their attributes, but note that this embodiment may make query planning and execution more complex.

This embodiment may also increase the complexity of adding and removing hosts, and may make it more

difficult to react to changing data distributions,

Storage Nodes

[0194] Figure 11 illustrates an exemplary storage node and its components according to one embodiment.

Note that the partition manager 232 and associated components were described above in the section titled

Partition Manager, and the local query processor 228 is further described below in the section titled Query

Service. The following description of Figure 11 focuses on the elD store 236 and its associated components: the
elD update manager 276 and the query indexes 234 compiled on the eID store 236. Also note that, in one

embodiment, instances of the illustrated components may reside on every storage node 270 in a searchable data

service implementation.

38

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0195] In one embodiment, a local elD store 236 and a local eID update manager 230 may function
together to provide one or more of, but not limited to, the following functionalities:

* Support a list atiributes API: After clients submit updates, the clients may read back the attributes
associated with elDs.

» Support creation and re-creation of query indexes 234: The eID store 236 may be used as an

authoritative store for creation of query indexes 274. If these indexes 234 are lost, they may be
regenerated using the local elD store 236.

* Support query subsystem 204 requirement for a chunk request whereby a list of eIDs is submitted for
which the attributes for each are to be returned.
[0196] In one embodiment, the instances of an eID store 236 on the various storage nodes 270 within a

searchable data service implementation may collectively provide one or more of, but not limited to, the

following functionalities:

e Durability: When a client is told that an update has been accepted, the client may require a high level of

confidence that the replicated elD store 236 will not lose the data.

« Consistency: Replicas exhibit eventual consistency within a specified Service Level Agreement (SLA)

with a customer.

e Reliability, availability, scalability: a searchable data service implementation may be required to
support these as needed to enable the overall system to meet particular SLAS.

{0197] In one embodiment, to provide the durability and consistency functionalities, the instances of eID

store 236 may communicate using a gossip mechanism, as further described later in this document. The partition

manager 232, through interactions with the group health 226 component and a stress manager component, may

manage the disk usage of the elD stores 236 through dynamic partitioning, and durability of the elD stores 236

through new replica creation when nodes fail.

elD Update Manager

[0198] In one embodiment, the elD update manager 230 may receive updates and list-attribute requests,
for example via TCP, on a épeci’ﬁed port. The eID update manager 230 may also communicate with its local
partition manager 232 to report problems and status, and to receive directions on which bucket partitions 254 the
e[D update manager 230 should maintain, and which it should get rid of, if any.

{01991} Note that a storage node 270 may include one or more bucket partitions 254. In one embodiment,

partitioning decisions are outside the scope of the €ID update manager 230. However, the elD update manager

230 is informed of partitioning decisions and abides by them.
elD Store

[0200] In one embodiment, the elD store 236 may be implemented as a Berkeley database (BDB). Note
that other embodiments may use other mechanisms to implement the elD store 236. A BDB provides the
capacity to find all the attributes given a subscriber identifier, a bucket identifier, and an entity identifier (eID)

within it. A BDB stores information as Key-value pairs; the key may be referred to herein as a BDB-key, and

the value as BDB-value. In one embodiment, the BDB-key and BDB-value may be formed as follows:
« BDB-key = Key(subscriber identifier, bucket identifier, elD)
o BDB-value = { updates-for-the-elD-above }

39

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

[0201] Key(subscriber identifier, bucket identifier, elD) is a function that forms a unique key using
the specified arguments. For example, in one emobdiment, this function may form the BDB-key by
concatenating the subscriber identifier, the bucket identifier, and the eID strings. Continuing the example, to list
all eIDs given a bucket identifier, the function may prefix the concatenated subscriber 1dentifier, bucket
Identifier, and eID strings with some delimiting information. For example, a BDB-key may be formed as
"p12_clientlbucketl/photos/xy.jpg", which indicates that the subscriber identifier ("client1") concatenated with

one of the subsriber’s buckets ("bucket1™) is 12 characters long, and whatever follows after 12 characters is the

elD string: "/photos/xy.jpg". Depending on which lookup functionalities are desired (equality lookup on
subscriber identifier, bucket identifier, and elD; equality lookup on subscriber identifier and bucket but range
and equality lookup for eID; etc), the Key(...) may be implemented in various ways in embodiments.

[0202] In one embodiment, the BDB-value may include a collection of update operations (e.g., replace,
add, and/or delete) and their corresponding sequencelDs that help make up the attributes for the eID in the

BDB-key. In one embodiment, a new update operation on an attribute supercedes an existing update operation

in the eID store if its sequence ID is higher. For example, given an eID, a replace operation on an attribute with
a sequence ID higher than a replace on that attribute in the eID store 236 removes the latter from the eID store

236. As another example, an overall delete operation with a certain sequence ID makes all update operations

with lower sequence IDs irrelevant.
[0203] To illustrate the above, consider the following exemplary BDB-value at a particular eID:

{ {(op=replace, name=n1, value=v1, ts=t1), (op=replace, name=n2, value=v2, ts=12),
(op=add,name=n2, value=v3, ts=t3) }

where op indicates operation and 7s indicates a sequence ID. Assume for this example that 14 > 3 > 2 > t]. At
“this moment” in the example, the attributes implied by the BDB-value are:
1(n1,v1),(n2,v2),(n2,v3)}

where »2 is multiple-valued. Now consider updates via one of the following exemplary scenarios at the same
elD: ‘

First scenario:

(op=replace, name=n2, value=v4, ts=t4)
This causes the BDB-value to contain:

{ (op=replace, name=n1, value=v1, ts=t1), (op=replace, name=n2, value=v4, ts=t4) }
Thus:

(op=replace, name=n2, value=v2, ts=t2), (op=add,name=n2, value=v3,is=t3)
are jettisoned from the list of updates, as they are superceded by the new update.

Second scenario:

(op=delete, ts=t4)
This causes the BDB=value to contain only:
{(op=delete, ts=t4)}

All of the other operations are removed, as they are all superceded by this new operation.

Third scenario:

(op=add, name=n1, value=v5, is=t4)

This causes the BDB-value to contain:

40

CA 02635400 2008-06-26
WO 2007/079303 PCT/US2006/061435

{ (op=replace, name=n1, value=v1, ts=t1), (op=add, name=n1, value=v5, ts=t4), (op=replace,
name=nz2, value=v2, ts=i2), (op=add,name=n2,value=v3,ts=t3) }
In this scenario, no update needs to be thrown out. Two attributes, »7 and 72, are multi-valued.

Query Indexes

[0204] In one embodiment, the query indexes 234 may be implemented as a Berkeley database (BDB).
Note that other embodiments may use other mechanisms to implement the query indexes 234. In one
embodiment, given a bucket 252, the query indexes 234 allow a mapping from {name, value} pairs to elDs.
Thus, for query indexes 234

BDB-key = Key(subscriber identifier, bucket identifier, name, value)
