wo 2013/017998 A1 I 0 OO O 0 R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

(43) International Publication Date WO 201 3 /017998 Al
7 February 2013 (07.02.2013) WIPO I PCT
(51) International Patent Classification: (74) Agents: CAMERON, Michael, G. et al.; 6300 Legacy,

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

HO04L 12/24 (2006.01) HO04L 12/70 (2013.01)

International Application Number:
PCT/IB2012/053807

International Filing Date:

25 July 2012 (25.07.2012)
Filing Language: English
Publication Language: English
Priority Data:
13/196,717 2 August 2011 (02.08.2011) US
Applicant (for all designated States except US): TELE-

FONAKTIEBOLAGET L M ERICSSON (PUBL)
[SE/SE]; S-164 83 Stockholm (SE).

Inventors; and

Inventors/Applicants (for US only): YEDAVALLI, Kir-
an [IN/US]; 4280 Delacroix Court, San Jose, CA 95135
(US). MISHRA, Ramesh [IN/US]; 3076 Magnum Drive,
San Jose, CA 95135 (US).

(8D

(84)

MS EVR 1-C-11, Plano, TX 75024 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: PACKET BROADCAST MECHANISM IN A SPLIT ARCHITECTURE NETWORK

FIG. 3

TRACK SET OF PORTS FOR DOMAIN 301
OF CONTROLLER e
CONFIGURE FLOW SWITCHES TO FORWARD 303
SELF-GENERATED BROADCAST PACKETS TO }~_~
THE SET OF EXTERNAL PORTS
CONFIGURE EACH FLOW SWITCH WITH AN 305
EXTERNAL PORT TO FORWARD CONTROL |
BROADCAST PACKETS TO THE
CONTROLLER
307
CONFIGURE FLOW SWITCH TO FORWARD |-
RECEIVED DATA BROADCAST PACKETS TO
SET OF EXTERNAL PORTS

(57) Abstract: A method and system is implemented
in a network node that functions as a controller for a
domain in a split architecture network. The domain
comprises a plurality of flow switches, where the
plurality of flow switches implement a data plane for
the split architecture network and the controller im-
plements a control plane for the split architecture
network that is remote from the data plane. The
method and system configure the plurality of flow
switches to efficiently handle each type ot broadcast
packet in the domain of the split architecture net-
work without flooding the domain with the broad-
cast packets to thereby reduce a number of broadcast
packets forwarded within the domain.



WO 2013/017998 A1 |IWAIK 00TV VAT 0 TR A AU

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, _ before the expiration of the time limit for amending the

e ’ claims and to be republished in the event of receipt o
ML, MR, NE, SN, TD, TG) . d 1o b blished in th
Published: amendments (Rule 48.2(h))

—  with international search report (Art. 21(3))



WO 2013/017998 PCT/IB2012/053807

10

15

20

25

30

PACKET BROADCAST MECHANISM IN A SPLIT ARCHITECTURE
NETWORK

FIELD OF THE INVENTION

The embodiments of the invention are related to the broadcast of packets within
a split architecture network. Specifically, the embodiments of the invention relate to a
method and system for optimizing the use of resources in a domain when handling
packets to be broadcast by identifying external ports for the domain and programming

appropriate flows in the switches of the domain.

BACKGROUND

A split architecture network is an alternate paradigm for network architecture. A
split architecture network is composed of a number of nodes, such as routers or
switches, like a traditional network architecture. However, in this paradigm, the control
plane functionality of the network resides at a single central controller that can be in a
single node of the network as illustrated in Figure 1. This is in contrast to traditional
network architecture where the control plane functionality resides on every node in the
network. In a split architecture network, the network nodes are stripped of their control
plane functionality and provide basic data plane functionality as ‘flow switches.” A
‘domain,” as used herein, is an area of a split architecture network where the flow
switches are under the control of a single controller.

An example of a split architecture network is an OpenFlow based split
architecture network. In an OpenFlow split architecture network, a controller and the
flow switches in the data plane communicate using the OpenFlow Protocol. The
OpenFlow protocol provides message infrastructure for the controller to program the
flow switches in the data plane with appropriate flows for packet forwarding and
processing. The controller can also obtain complete network state information for the
network by querying each of the network nodes. An ‘OpenFlow domain,” as used
herein, is an area of an OpenFlow split architecture network where the flow switches
are under the control of a single logical OpenFlow controller. This single logical
OpenFlow controller can be implemented as a set or cluster of controllers responsible

for a single domain of switches.



WO 2013/017998 2 PCT/IB2012/053807

10

15

20

25

30

According to the OpenFlow protocol specification, the flow switches are
programmed by the controller using the following primitives for packet forwarding and
processing in the data plane: rules, which define matches on the packet header fields
(such as Ethernet header fields, multi-protocol label switching (MPLS) header fields,
and Internet protocol (IP) header fields); actions, which are associated with a rule
match; and a collection of statistics for the flow that matches a rule. The flow switch
applies the controller programmed rules on incoming packets and executes the
associated actions on the matched flow, collecting statistics on the flow at the same
time. Figure 1 illustrates this basic OpenFlow protocol interface between the
controller and the flow switch.

One of the main advantages of split architecture networks is that they allow
independent optimizations in the control plane and the data plane. The components,
functions or applications of the controller can be optimized independent of the
underlying network, and similarly, the underlying network flow switch capabilities can
be optimized independent of the controller components, functions and applications.

There are many situations that require a node in a network to send out a
broadcast packet. These situations can be divided into two categories: a self-generated
broadcast packet and a received broadcast packet. A node can self-generate a broadcast
packet for specific protocol applications. An important example of a self-generated
broadcast packet is the ARP REQUEST packet. Address Resolution Protocol (ARP) is
used to resolve the media access control (MAC) address of a network node (router, or
switch) given its IP address. In order to query a network node’s MAC address, the
requestor sends out an ARP REQUEST message. This message contains the query IP
address and is broadcast to all devices in the network. The device whose IP address
matches the one in the REQUEST message replies with its MAC address.

A node can also receive a packet that needs to be broadcast. A network node
needs to broadcast the broadcast packet it receives on all active ports including the
controller port. If the network node is configured with virtual local area networks
(VLANS), it should broadcast the packet on all the active ports within the VLAN.
Since the intelligence to forward packets resides in the controller in the OpenFlow
domain, the controller needs to program the underlying flow switches appropriately for

broadcast packets. The basic implementation of this configuration is to set the



WO 2013/017998 3 PCT/IB2012/053807

10

15

20

25

30

forwarding tables of each flow switch to blindly forward broadcast packets on all active

ports for the flow switch.

SUMMARY

A method is implemented in a network node that functions as a controller for a
domain in a split architecture network. The domain comprises a plurality of flow
switches, where the plurality of flow switches implement a data plane for the split
architecture network and the controller implements a control plane for the split
architecture network that is remote from the data plane. The method configures the
plurality of flow switches to efficiently handle each type of broadcast packet in the
domain of the split architecture network without flooding the domain with the
broadcast packets to thereby reduce a number of broadcast packets forwarded within
the domain. The method comprising the steps of tracking a set of external ports for the
domain, where each external port connects one of the plurality of flow switches to a
device outside the domain, configuring each of the plurality of flow switches in the
domain to forward a self generated broadcast packet to each flow switch having at least
one external port in the set of external ports for the domain without flooding the
domain with the self generated broadcast packet, configuring each of the plurality of
flow switches having at least one external port from the set of external ports for the
domain to forward a received control broadcast packet to the controller of the domain
without flooding the domain with the received control broadcast packet, and
configuring the plurality of flow switches in the domain to forward a received data
broadcast packet to the set of external ports for the domain without flooding the domain
with the received data broadcast packet.

A network node functions as a controller for a domain in a split architecture
network. The domain comprises a plurality of flow switches, where the plurality of
flow switches implement a data plane for the split architecture network and the
controller implements a control plane for the split architecture network that is remote
from the data plane. The network node configures the plurality of flow switches to
efficiently handle each type of broadcast packet in the split architecture network
without flooding the domain with broadcast packets to thereby reduce a number of

broadcast packets forwarded within the domain. The network node comprises an



WO 2013/017998 4 PCT/IB2012/053807

10

15

20

25

30

external port tracking module to track a set of external ports for the domain, where each
external port connects one of the plurality of flow switches to a device outside the
domain, a broadcast configuration module communicatively coupled to the external
port tracking module, the broadcast configuration module configured to configure each
of the plurality of flow switches in the domain to forward a self generated broadcast
packet to each flow switch having at least one external port in the set of external ports
for the domain without flooding the domain with the self generated broadcast packet.
The broadcast configuration module is configured to configure each of the plurality of
flow switches having at least one external port from the set of external ports for the
domain to forward a received control broadcast packet to the controller of the domain
without flooding the domain, and configured to configure the plurality of flow switches
for the domain to forward a received data broadcast packet to the set of external ports

for the domain without flooding the domain with the received data broadcast packet.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings in which like references
indicate similar elements. It should be noted that different references to "an" or "one"
embodiment in this disclosure are not necessarily to the same embodiment, and such
references mean at least one. Further, when a particular feature, structure, or
characteristic is described in connection with an embodiment, it is submitted that it is
within the knowledge of one skilled in the art to effect such feature, structure, or
characteristic in connection with other embodiments whether or not explicitly
described.

Figure 1 is a diagram of one embodiment of an example configuration for a
simple split architecture OpenFlow network.

Figure 2 is a diagram of one embodiment of controller in a control plane and
flow switch of a data plane in a split architecture network.

Figure 3 is a flowchart of one embodiment of a process for configuring the split
architecture network for efficient handling of broadcast packets.

Figure 4 is a flowchart of one embodiment of the process of tracking external

ports.



WO 2013/017998 5 PCT/IB2012/053807

10

15

20

25

30

Figure 5 is a flowchart of one embodiment of a process for handling self-
generated broadcast packets.

Figure 6 is a diagram of an example split architecture network where a
controller is processing a self-generated packet.

Figure 7 is a diagram of one embodiment of a process for configuring and
processing received broadcast packets.

Figure 8 is a diagram of one embodiment of a domain and controller processing
a received control broadcast packet.

Figure 9 is a diagram of one embodiment of a domain and controller processing
a received data broadcast packet.

Figure 10 if a flowchart of one embodiment of a process for implicit external
port identification.

Figure 11 is a diagram of one embodiment of implicit external port
determination using neighbor discovery protocols.

Figure 12 is a diagram of one embodiment of implicit external port
determination using switch level discovery protocols.

Figure 13 is a flowchart of one embodiment of an explicit process for external

port identification.

DETAILED DESCRIPTION

In the following description, numerous specific details are set forth. However,
it i1s understood that embodiments of the invention may be practiced without these
specific details. In other instances, well-known circuits, structures and techniques have
not been shown in detail in order not to obscure the understanding of this description.
It will be appreciated, however, by one skilled in the art, that the invention may be
practiced without such specific details. Those of ordinary skill in the art, with the
included descriptions, will be able to implement appropriate functionality without

undue experimentation.
The operations of the flow diagrams will be described with reference to the

exemplary embodiments of Figures 2, 6, 8, 9, 11 and 12. However, it should be

understood that the operations of the flow diagrams in Figures 3-5, 7, 10 and 13 can be



WO 2013/017998 6 PCT/IB2012/053807

10

15

20

25

30

performed by embodiments of the invention other than those discussed with reference
to Figures 2, 6, 8, 9, 11 and 12 and the embodiments discussed with reference to
Figures 2, 6, 8, 9, 11 and 12 can perform operations different than those discussed with

reference to the flow diagrams of Figures 3-5, 7, 10 and 13.

The techniques shown in the figures can be implemented using code and data
stored and executed on one or more electronic devices (e.g., an end station, a network
clement, server or similar electronic devices). Such electronic devices store and
communicate (internally and/or with other electronic devices over a network) code and
data using non-transitory machine-readable or computer-readable media, such as non-
transitory machine-readable or computer-readable storage media (e.g., magnetic disks;
optical disks; random access memory; read only memory; flash memory devices; and
phase-change memory). In addition, such electronic devices typically include a set of
one or more processors coupled to one or more other components, such as one or more
storage devices, user input/output devices (e.g., a keyboard, a touch screen, and/or a
display), and network connections. The coupling of the set of processors and other
components is typically through one or more busses and bridges (also termed as bus
controllers). The storage devices represent one or more non-transitory machine-
readable or computer-readable storage media and non-transitory machine-readable or
computer-readable communication media. Thus, the storage device of a given
electronic device typically stores code and/or data for execution on the set of one or
more processors of that electronic device. Of course, one or more parts of an
embodiment of the invention may be implemented using different combinations of

software, firmware, and/or hardware.

As used herein, a network element or network node (e.g., a router, switch,
bridge, or similar networking device.) is a piece of networking equipment, including
hardware and software that communicatively interconnects other equipment on the
network (e.g., other network elements or nodes, end stations, or similar networking
devices). Some network elements or network nodes are “multiple services network
elements” or “multiple services network nodes” that provide support for multiple
networking functions (e.g., routing, bridging, switching, Layer 2 aggregation, session

border control, multicasting, and/or subscriber management), and/or provide support



WO 2013/017998 7 PCT/IB2012/053807

10

15

20

25

30

for multiple application services (e.g., data collection). The terms network elements and
network nodes are used herein interchangeably.

The embodiments of the present invention provide a method and system for
avoiding the disadvantages of the prior art. The naive implementation of handling
broadcast packet forwarding is to blindly forward broadcast packets on all active ports
in each node of the network. However, this is inefficient as many packets forwarded
using this implementation are unnecessary to reach all the intended recipients. For both
self-generated and received broadcast packet scenarios the broadcast packet needs only
to be sent out on all external ports for the domain. External ports are defined as the
ports of the domain (e.g., an OpenFlow domain) that are connected to network nodes or
devices that are not under the control of the domain’s controller.

Existing split architecture networks including OpenFlow split architecture
networks do not provide an efficient mechanism for sending out self-generated
broadcast packets out of the domain. For received broadcast packets, the flow switches
are pre-programmed by the controller to flood the broadcast packets on all the active
ports on all the switches in the domain. This simple mechanism is very inefficient in
terms of the unnecessary usage of network resources to forward broadcast packets. For
example, if an OpenFlow domain network has m links and » external ports, ideally a
received broadcast packet should be sent out only on the » external ports. Using the
current technology, it would be sent at least on all the m links and the n external ports.
All the switch forwarding resources used to flood the packet on all the m links leads to
inefficient use of network resources. In a typical network, m could be orders of
magnitude larger than #, in this scenario, the resource usage inefficiency could be much
higher.

The embodiments of the invention overcome these disadvantages of the prior
art. The embodiments of the invention include packet broadcast method and system
that provides an efficient way to broadcast self-generated broadcast packets and an
optimized solution for the handling of received broadcast packet scenario. The
embodiments of the invention provide mechanisms to broadcast packets in multiple
scenarios: self-generated broadcast packet, received control broadcast packet, and
received data broadcast packet. These mechanisms are much more efficient than the

standard implementation of blind forwarding described above.



WO 2013/017998 8 PCT/IB2012/053807

10

15

20

25

30

For example, using the current technology, any broadcast packet would be
flooded on all the ports on all the switches within the domain, leading to inefficient use
of valuable network resources. The embodiments of the invention provide mechanisms
for broadcasting packet handling that use network resource only in the required
proportions, leading to major savings in network resources.

In one embodiment, the controller configures the flow switches of a domain to
forward the broadcast packets directly to the relevant external ports without wasting the
resources of other flow switches in the domain. The controller identifies external ports
and programs appropriate flows in the underlying flow switches for packet forwarding.

Figure 2 is a diagram of one embodiment of a controller and flow switch in a
split architecture network with efficient broadcast packet handling. The controller 103
and flow switch 133 are implemented by network nodes 101, 131, respectively. These
network nodes can be any type of networking element including routers, switches and
similar devices. The network nodes 101, 131 can be in communication over any type
of network including a local area network (LAN), a wide area network (WAN), such as
the Internet, or over a similar network. The network can be composed of any
combination of wired or wireless devices. The controller 103 can be in communication
and be assigned to control any number of flow switches 133. For sake of clarity, a
single flow switch is illustrated.

In one embodiment, the controller 103 and flow switch 133 are an OpenFlow
controller and OpenFlow switch, respectively. OpenFlow is a system and protocol

defined in the OpenFlow switching specification hosted at www.opentlow.org. In other

embodiments, other similar split architecture enabling protocols or systems are utilized
to separate control plane functionality and data plane functionality.

In one embodiment, the controller 103 can be composed of a set of applications,
a distributed network middleware 119 and an operating system 121. The distributed
network middleware 119 provides a set of functions and data structures that support
communication between the controller and other network nodes. The operating system
121 manages the resources of the network node 101 such as processor and memory
resources. Any distributed network middleware and operating system can be utilized

that provide these services.



WO 2013/017998 9 PCT/IB2012/053807

10

15

20

25

30

The applications or components of the controller can include an external port
tracking module 105, a broadcast configuration module 107, a broadcast processing
module 109, a boarder gateway protocol (BGP) module 111, an open shortest path first
(OSPF) module 113, a neighbor discovery protocol (NDP) module 115 and similar
components. The BGP module 111 maintains a table of prefixes that designate network
reachability among autonomous systems. The OSPF module 113 calculates a shortest
path across a network topology. The NDP module 115 can advertise the capabilities
and characteristics of a network node to its neighbors to enable communication
between the network nodes. Similarly, the NDP module 115 discovers neighbors by
receiving advertisements from these neighbors over connecting links between domains.
In another embodiment, the switches implement NDP and report the discovered
neighbors and links to the NDP module 115 of the controller. Examples of NDP are
link layer discovery protocol (LLDP) and CISCO discovery protocol (CDP) by CISCO
SYSTEMS, Inc.

An external port tracking module 105 creates and maintains a list of all external
ports for a domain of the controller. The function of the external port tracking module
105 is to determine a set of external ports for the domain. The external port tracking
module 105 functions in conjunction with other modules such as the NDP module to
communicate with the flow switches to identify their external ports. This process is
described in further detail in regard to Figures 11-13. The external port tracking
module 105 can also track internal ports and all active ports separately or as a part of
the process of tracking external ports.

The broadcast configuration module 107 manages the configuration of flow
switches in the domain to properly handle received and self generated broadcast
packets. The process of configuring the flow switches is described in further detail in
regard to Figures 3-7. The broadcast processing module 109 handles broadcast packets
received by or self generated by the controller 103. The controller 103 can generate
packets to be broadcast or can receive broad cast packets forwarded by the flow
switches in its domain. The broadcast processing module 109 can function in
conjunction with other modules such as the BGP module to process received broadcast
packets. The processing of the broadcast packets is described in further detail in regard

in further detail herein below.



WO 2013/017998 10 PCT/IB2012/053807

10

15

20

25

30

The operating system 121 and distributed network middleware 119 can facilitate
the communication between the controller 103 and the flow switches 133 by providing
a secure communication channel 127 over which control plane signaling protocols can
be transmitted. In onc embodiment, the controller 103 and the flow switch 133
communicate using the OpenFlow protocol.

The flow switch 133 is provided by a network node 131. The network node 131
and flow switch 133 can be connected to any number of other network nodes or similar
devices. Each of these connections is through a separate communication port, herein
referred to simply as ‘ports.” These ports 135 can be connections with other network
nodes within the same domain or with network nodes or devices outside the domain.
The ports 135 that are connected with network nodes within the domain are referred to
herein as ‘internal ports.” The ports 135 that are connected with nodes outside of the
domain are referred to herein as ‘external ports.’

The flow switch 133 can receive, generate and/or forward data packets
including broadcast packets. A forwarding table 137 or similar data structure defines a
set of rules that determine how the flow switch handles each of the data packets. The
forwarding table 137 can be an OpenFlow forwarding table or similar type of
forwarding table that includes a set of rules for identifying and taking action on a
variety of differing types of data packets. The controller 103 configures this
forwarding table 137 to manage the forwarding behavior of the flow switch 133, for
example by establishing rules for handling broadcast packets.

Figure 3 is a flowchart of one embodiment of a process for configuring the split
architecture network for efficient handling of broadcast packets. This process is
performed by the components of a controller to configure a set of flow switches in its
domain to efficiently handle various types of broadcast packets. The controller tracks a

set of external ports for its domain within the split architecture network (Block 301). A

¢ 2

set,” as used herein refers to any whole number of items including one item. The
external ports can be tracked in any type of data structure such as a list, table or similar
data structure. The process of identifying external ports is discussed herein below in
further detail with regard to Figures 11-13.

The process continues by configuring all flow switches with external ports in

the domain to forward self-generated broadcast packets to each of the set of external



WO 2013/017998 11 PCT/IB2012/053807

10

15

20

25

30

ports that have been identified (Block 303). The configuration can be carried out using
a control plane protocol to configure the forwarding rules for each flow switch in the
domain. A self-generated broadcast packet is a broadcast packet created by a flow
switch within the domain. This self-generated broadcast packet (e.g., an ARP message)
need only be sent to network nodes outside of the domain, because the flow switches
share a controller, which already has access to the information needed to configure the
flow switches within the domain. Therefore, it is a waste of resources to flood internal
ports of the domain with these self-generated messages. These self-generated broadcast
messages are created at the controller which directly sends the message to each external
port of the domain based on its maintained external port list.

The process configures each flow switch in the domain with an external port to
forward received control broadcast packets to the controller (Block 305). Received
control broadcast packets are received by flow switches with external ports from
devices external to the domain. The information within the received control broadcast
packet is only relevant to the controller. Thus, the flow switches are configured to send
this information to the controller instead of flooding internal ports with this received
control broadcast packet, which isn’t needed by the other flow switches in the domain.
An example of a received control broadcast packet is an ARP message received from a
device external to the domain of the controller. The controller will then forward this
received control broadcast packet on all external ports, similar to a self-generated
packet. The controller can also process the information of the received control
broadcast packet that has been forwarded by the flow switch.

The controller configures the flow switches in its domain to forward received
data broadcast packets to the set of external ports for the domain (Block 307). These
data broadcast packets do not require control plane processing and do not need to be
forwarded to the controller. The controller configures a set of flows between all sets of
external ports such that each data broadcast packet that is received on an external port
is forwarded across the domain to each other external port. The use of established
flows to perform this processing avoids blindly forwarding the received data broadcast
packet on all internal ports within the domain, which wastes resources. The flows
ensure that the received data broadcast packet reaches each external port without the

use of flooding. The flows can also be established to ensure that each flow switch



WO 2013/017998 12 PCT/IB2012/053807

10

15

20

25

30

receives the data broadcast packets without using flooding. Flows enable the
forwarding of these packets such that the data packets are directed to each external port
with a shortest path or similar configured path set by the controller.

Figure 4 is a flowchart of one embodiment of the process of tracking external
ports. This process is performed by the controller. The controller uses either an
explicit process or an implicit process to determine the external ports. The explicit
process and implicit process are discussed in further detail in regard to Figures 11-13.
The process first identifies all active ports for the flow switches within the domain of
the controller (Block 401). Optionally, the controller may identify the internal ports
within the active port list (Block 403). Depending on the implementation of the split
architecture network and the control plane protocol the controller may need to
determine the internal ports to deduce the set of external ports. In other embodiments,
the controller can directly determine the set of external ports. The controller
determines the set of external ports and uses this for the configuration of the flow
switches to efficiently handle broadcast packets (Block 405).

Figure 5 is a flowchart of one embodiment of a process for handling self-
generated broadcast packets. This process relies on the tracking of the external ports as
described above in regard to Figure 4 and further described below in regard to Figures
11-13 (Block 501). The self-generated packet is created by the controller (Block 503).
An example of a self-generated packet is an ARP message. The controller uses the
external port list to direct the forwarding the packet to the flow switches with external
ports (Block 505). The controller uses a flow or secure channel established with each
flow switch to forward the self-generated packet.

Figure 6 is a diagram of an example split architecture network where a
controller is processing a self-generated packet. The domain is identified with a dashed
line 603. All flow switches on or within the dashed line 603 are part of the domain of
the controller 601. External ports are labeled with circles 605. The self-generated
packet is forwarded from the controller to each flow switch with an external port 605.
The solid black arrow lines 607 show the forwarding of the self-generated packets. The
dotted lines 609 shows the control communication channel or secured channel
established to allow control protocol communications between the controller 601 and

all flow switches. The self-generated packets can be forward over these control



WO 2013/017998 13 PCT/IB2012/053807

10

15

20

25

30

communication channels or through other similar paths to the external ports 605. The
self-generated packets are not flooded over the internal ports of the domain, thereby
reducing the resources needed to properly forward the self-generated packet.

Figure 7 is a diagram of one embodiment of a process for configuring and
processing received broadcast packets. Received broadcast packets are broadcast
packets received through an external port of a flow switch in the domain of the
controller. The received broadcast packets are therefore received from a network node
or device that is external to the domain.

This process also relies on the availability of an external port list and assumes
that this external port list is being created and maintained as described above in regard
to Figure 4 and herein below in regard to Figures 11-13 (Block 701). The controller
executes this process or directs the execution of this process. The controller programs
cach flow switch in its domain that has an external port to establish a flow from that
flow switch to the controller (Block 703). This flow is designed to limit the forwarding
of these control packets to only forward them from the flow switch where these
messages are received from an external device to the controller. The received control
packet is not broadcast on the internal ports of the domain thereby conserving resources
in the split architecture network

In one embodiment, the flow switches with external ports are programmed to
analyze incoming packets to look for matches on the destination MAC address that
indicate the incoming packet is a broadcast packet. For example, the MAC addressed
FF:FF:FF:FF:FF:FF can be utilized to identify a broadcast packet. For each detected
broadcast packet, the ethertype of the incoming packet is examined to determine if the
packet is a control packet. The flow switches are configured with an action to forward
any packets that have a destination indicating a broadcast packet and an ethertype that
indicates a control packet. For example, an ARP request packet can be received that
has the FF:FF:FF:FF:FF:FF MAC address and an ethertype indicating a control packet.
Those packets that meet these criteria are then programmed to be forwarded to the
controller using a rule or similar configurable action within the flow switch.

The controller then calculates a set of flows from each flow switch in the
domain that has an external port to each other flow switch with an external support

(Block 705). The flows can be shortest paths between external ports or similar paths



WO 2013/017998 14 PCT/IB2012/053807

10

15

20

25

30

across the domain. The controller can calculate these paths using its knowledge of the
topology of its domain.

After the set of flows are calculated, the controller programs each flow switch
along a flow to forward data broadcast packets toward an external port associated with
the flow (Block 707). In other embodiments, the flows can also be established to
ensure efficient dissemination of the data broadcast packets to all flow switches in the
domain without flooding the data broadcast packets within the domain. The flows can
be either unicast or multicast paths or any combination thereof. These paths can be
shortest paths as determined by an shortest path algorithm, such as Dijkstra’s algorithm
or similar processes. In one embodiment, the flow switches are programmed to analyze
the received data broadcast packets to determine whether they are broad cast packets
(e.g., matching on a MAC address of FF:FF:FF:FF:FF:FF). An ecthertype is also
analyzed for the packets to determine whether they are control or data packets. If the
received data packet is a data broadcast packet, then the flow switch is configured to
forward it along a set of associated flows. This avoids blind forwarding of these packets
and avoids forwarding these packets to the controller.

After the flow switches are properly configured, the processing of broadcast
packets commences. The controller’s role in the processing of the broadcast packets
includes processing received control broadcast packets from the flow switches and then
forwarding them to each flow switch with an external port to be forwarded on each
external port of the domain (Block 709).

Figure 8 is a diagram of one embodiment of a domain and controller processing
a received control broadcast packet. A control broadcast packet 803 is received at an
external port 805. The flow switch with external port 805 has been configured to
forward 807 the received control broadcast packet to the controller 801. The flow
switch does not flood the domain with the received control broadcast packet.

The controller 801 processes the packet as necessary and forwards the control
broadcast packet 809 to each flow switch with an external port. Each of these flow
switches then forwards the control broadcast packet on the associated external ports.
This ensures the proper dissemination of the received control broadcast packet, while
avoiding unnecessarily flooding the internal ports and links of the domain with the

received control broadcast packet.



WO 2013/017998 15 PCT/IB2012/053807

10

15

20

25

30

Figure 9 is a diagram of one embodiment of a domain and controller processing
a received data broadcast packet. A data broadcast packet 903 is received at an external
port 905. The flow switch with external port 905 has been configured to forward 907
the received data broadcast packet along a set of flows configured by the controller.
The flows direct the forwarding of the received data broadcast packet to each of the
other external ports 909. The flow switches associated with the other external ports
909 received the data broadcast packet and forward the pack on the external ports.
Thus, the received data broadcast packet is forwarded through the domain to each
external port without flooding the internal links and without forwarding the packet to
the controller.

Figure 10 if a flowchart of one embodiment of a process for implicit external
port identification. In this process, the external ports are identified by eliminating
internal ports from the list of active ports. In one embodiment, the OpenFlow protocol
can be utilized to obtain a list of all the active ports for all the flow switches in a
domain. In other embodiments, link level or switch level discovery protocols are
utilized to determine active and internal ports in the domain.

The process is initiated by the controller querying all of the flow switches in the
domain to generate an active port list for each flow switch (Block 1001). In one
embodiment, the query is carried out by use of the OpenFlow protocol. As answers to
the query are received from each flow switch in the domain, the lists of active ports are
compiled into a list of active ports for the domain (Block 1003). Once the active port
list has been compiled, the controller uses NDP, such as LLDP, to determine which of
the active ports are internal ports of the domain (Block 1005). As the lists of internal
ports are received, the controller compiles them into a list of internal ports for the
domain (Block 1007).

The external ports from the domain can then be determined by a comparison of
the internal port list of the domain and the active port list of the domain (Block 1009).
All active ports that are not listed as internal ports are deduced to be external ports. An
external port list can then be maintained for use in broadcast packet handling. This can
be an ongoing process with the active port list, internal port list and external port list

being continuously or periodically updated or recalculated.



WO 2013/017998 16 PCT/IB2012/053807

10

15

20

25

30

Figure 11 is a diagram of one embodiment of implicit external port
determination using a neighbor discovery protocol. The controller sends out an NDP
message 1103A on each of its ports. This NDP message 1103A is forwarded by the
receiving network element on its ports 1103B. The NDP message 1103C then returns
to the controller 1101, thereby enabling the controller 1101 to determine that the route
of the NDP message 1103B is an internal route covering internal links of the domain.
Once all internal links are determined, external ports can be deduced from this
information and the list of all active ports.

Figure 12 is a diagram of one embodiment of implicit external port
determination using switch level discovery protocols.  The controller 1201
communicates with each flow switch 1203A, C in the domain to initiate the sending of
switch level discover protocol messages 1203B between the flow switches. The flow
switches then report there link information to the controller, such that the controller can
determine that the links and ports are either internal or external.

Figure 13 is a flowchart of one embodiment of an explicit process for external
port identification. In this embodiment, the external ports are identified using a
neighbor discover protocol (NDP) such as link level discovery protocol (LLDP) or a
similar protocol. This embodiment requires that external devices communicating with
the flow switches and controller of the domain support the same NDP as the controller.
External ports are recognized when NDP messages are received from devices that are
not part of the domain. The ingress port for the message is recorded as an external port.

This process for external port list maintenance can be initiated in response to
receiving an NDP message from another network node at a flow switch (Block 1301).
This NDP message is a control message that is forwarded by the flow switch to the
controller. The controller examines the received NDP message to determine the source
of the message (Block 1303). The source can be determined from the source address in
the NDP message. The source network node is compared to the list of known network
nodes in the domain of the controller (Block 1305). If the source network node is not
within the domain of the controller, then the port of the flow switch through which the
NDP message was received is added to the list of external ports for the domain (Block

1307). The identification of this port can be provided when the NDP message is



WO 2013/017998 17 PCT/IB2012/053807

forwarded or in response to a query of the controller to the flow switch that forwarded

the NDP message to the controller.
Thus, a method, system and apparatus for optimizing the handling of broadcast
packets in a split architecture network is provided. It is to be understood that the above
5  description is intended to be illustrative and not restrictive. Many other embodiments
will be apparent to those of skill in the art upon reading and understanding the above
description. The scope of the invention should, therefore, be determined with reference
to the appended claims, along with the full scope of equivalents to which such claims

are entitled.



WO 2013/017998 18 PCT/IB2012/053807

10

15

20

25

30

CLAIMS

What is claimed is:

1. A method implemented in a network node that functions as a controller for a
domain in a split architecture network, the domain comprising a plurality of flow
switches, where the plurality of flow switches implement a data plane for the split
architecture network and the controller implements a control plane for the split
architecture network that is remote from the data plane, the method to configure the
plurality of flow switches to efficiently handle each type of broadcast packet in the
domain of the split architecture network without flooding the domain with the
broadcast packets to thereby reduce a number of broadcast packets forwarded within
the domain, the method comprising the steps of:

tracking a set of external ports for the domain, where each external port
connects one of the plurality of flow switches to a device outside the domain;

configuring each of the plurality of flow switches in the domain to forward a
self generated broadcast packet to each flow switch having at least one external port in
the set of external ports for the domain without flooding the domain with the self
generated broadcast packet;

configuring each of the plurality of flow switches having at least one external
port from the set of external ports for the domain to forward a received control
broadcast packet to the controller of the domain without flooding the domain with the
received control broadcast packet; and

configuring the plurality of flow switches in the domain to forward a received
data broadcast packet to the set of external ports for the domain without flooding the

domain with the received data broadcast packet.

2. The method of claim 1, wherein tracking the set of external ports further

comprises the step of identifying each active port of each flow switch in the domain.

3. The method of claim 2, wherein tracking the set of external ports further
comprises the step of identifying whether each active port is an internal port, the
internal port connecting a first flow switch in the domain to a second flow switch in the

domain.



WO 2013/017998 19 PCT/IB2012/053807

10

15

20

25

30

4. The method of claim 3, wherein tracking the set of external ports further
comprises the step of identifying each external port of the domain by comparing the
internal ports of the domain to the active ports of the domain, each external port being

an active non-internal port of the domain.

5. The method of claim 3, wherein identifying the internal ports further comprises

the step of identifying internal ports using a neighbor discovery protocol.

6. The method of claim 1, further comprising the steps of:
receiving a neighbor discover protocol (NDP) message from a network node
outside the domain; and

comparing a source of the NDP message to a set of controlled flow switches.

7. The method of claim 6, further comprising the step of adding an ingress port for
a flow switch through which an NDP message from external source was received to the

external port list.

8. The method of claim 1, further comprising the step of forwarding received
control packets by the controller to each flow switch having an external port in the set
of external ports, each flow switch to forward the control packet through each external

port.

9. The method of claim 1, further comprising the steps of:

calculating a set of flows from each flow switch with an external port to each
other flow switch with an external port; and

programming each flow switch in a path of the set of flows to forward received

data broadcast packets according to the set of flows.

10. A network node that functions as a controller for a domain in a split architecture
network, the domain comprising a plurality of flow switches, where the plurality of

flow switches implement a data plane for the split architecture network and the



WO 2013/017998 20 PCT/IB2012/053807

10

15

20

25

30

controller implements a control plane for the split architecture network that is remote
from the data plane, the network node to configure the plurality of flow switches to
efficiently handle each type of broadcast packet in the split architecture network
without flooding the domain with broadcast packets to thereby reduce a number of
broadcast packets forwarded within the domain, the network node comprising:

an external port tracking module to track a set of external ports for the domain,
where each external port connects one of the plurality of flow switches to a device
outside the domain;

a broadcast configuration module communicatively coupled to the external port
tracking module, the broadcast configuration module configured to configure each of
the plurality of flow switches in the domain to forward a self generated broadcast
packet to each flow switch having at least one external port in the set of external ports
for the domain without flooding the domain with the self generated broadcast packet,
the broadcast configuration module configured to configure each of the plurality of
flow switches having at least one external port from the set of external ports for the
domain to forward a received control broadcast packet to the controller of the domain
without flooding the domain, and configured to configure the plurality of flow switches
for the domain to forward a received data broadcast packet to the set of external ports

for the domain without flooding the domain with the received data broadcast packet.

11.  The network node of claim 10, further comprising a broadcast processing
module communicatively coupled to the broadcast configuration module, the broadcast
processing module configured to forward received broadcast packets to the flow

switches having the set of external ports.

12. The network node of claim 10, wherein the external port tracking module is

configured to identify each active port of each flow switch in the domain.

13.  The network node of claim 12, wherein the external port tracking module is
configured to identify whether each active port is an internal port, the internal port

connecting a first flow switch in the domain to a second flow switch in the domain.



WO 2013/017998 21 PCT/IB2012/053807

10

15

20

25

14.  The network node of claim 13, wherein the external port tracking module is
configured to identify each external port of the domain by comparing the internal ports
of the domain to the active ports of the domain, each external port being an active non-

internal port of the domain.

15.  The network node of claim 13, wherein the external port tracking module is

configured to identify internal ports using a neighbor discovery protocol.

16.  The network node of claim 11, wherein the external port tracking module is
configured to receive a neighbor discover protocol (NDP) message from a network
node outside the domain, and to compare a source of the NDP message to a set of

controlled flow switches.

17.  The network node of claim 16, wherein the external port tracking module is
configured to add an ingress port for a flow switch through which an NDP message

from external source was received to the external port list.

18.  The network node of claim 11, wherein the broadcast processing module is
configured to forward received control packets by the controller to each flow switch
having an external port in the set of external ports, each flow switch to forward the

control packet through each external port.

19.  The network node of claim 10, wherein the broadcast configuration module is
configured to calculate a set of flows from each flow switch with an external port to
each other switch with an external port, and is configured to program each flow switch
in the set of flows to forward received data broadcast packets according to the set of

flows.



WO 2013/017998 PCT/IB2012/053807
111

Secure —_
’v/v channel ¢ >

Flow
table OpenFlow Controller

FIG. 1



WO 2013/017998 PCT/IB2012/053807
2/11
NETWORK NODE
101
PROCESSOR
125
CONTROLLER (OPENFLOW)
103
APPLICATIONS | EXTERNAL || BROADCAST || BROADCAST
PORT TRACKING||CONFIGURATION|| PROCESSING
MODULE MODULE MODULE
105 107 109
BGP OSPF NDP
MODULE| | MODULE | | MODULE
111 113 115
DISTRIBUTED NETWORK MIDDLEWARE 119
AN
OPERATING SYSTEM N
CONTROL PLANE  ——— ) 127
__ SIGNALNGPROTOCOL 9 o CONTROLPLANE
RELIABLE/SECURE DATA PLANE
CONTROLLER CONNECTION
FLOW SWITCH (OPENFLOW)
133
PORTS PORTS
135 135
FORWARDING
TABLE
137
NETWORK NODE
131

FIG. 2



WO 2013/017998 PCT/IB2012/053807
3/11

TRACK SET OF PORTS FOR DOMAIN 301
OF CONTROLLER e
CONFIGURE FLOW SWITCHES TO FORWARD 303

SELF-GENERATED BROADCAST PACKETS TO {—~_~/
THE SET OF EXTERNAL PORTS

!

CONFIGURE EACH FLOW SWITCH WITH AN 305
EXTERNAL PORT TO FORWARD CONTROL L
BROADCAST PACKETS TO THE
CONTROLLER

307
CONFIGURE FLOW SWITCH TO FORWARD L~

RECEIVED DATA BROADCAST PACKETS TO
SET OF EXTERNAL PORTS

FIG. 3

IDENTIFY ALL ACTIVE PORTS 401
FOR FLOW SWITCHES CONTROLLED BY |
CONTROLLER
PITTTITTIIIIIIEI IO 40

| IDENTIFY WHICH ACTIVE PORTS r~_/
' ARE INTERNAL PORTS
]

405
IDENTIFY WHICH ACTIVE PORTS -~/
ARE EXTERNAL PORTS

FIG. 4



WO 2013/017998

PCT/IB2012/053807
4/11
TRACK EXTERNAL PORT LIST FOR 501
CONTROLLED FLOW SWITCHES I~
¥
CONFIGURE FORWARDING FLOW SWITCHES 502
WITH EXTERNAL PORTS -~/
v
503
GENERATE PACKET AT CONTROLLER Ny
v
FORWARD PACKET TO EACH SWITCH WITH 505
AN EXTERNAL PORT -

FIG. 5



WO 2013/017998 PCT/IB2012/053807
5/11

FIG. 6

CONTROLLER




WO 2013/017998

PCT/1IB2012/053807
6/11
701
TRACK EXTERNAL PORT LIST FOR CONTROLLED L~/
SWITCHES
v

PROGRAM FLOW SWITCHES WITH EXTERNAL PORTS TO 703
ESTABLISH FLOW FROM THE FLOW SWITCHTOTHE [
CONTROLLER FOR FORWARDING CONTROL
PACKETS

v

CALCULATE A SET OF FLOWS FROMEACHFLOW | 700
SWITCH WITH AN EXTERNAL PORT TO EACH OTHER
SWITCH WITH AN EXTERNAL PORT

v 707

PROGRAM EACH FLOW SWITCH IN A FLOW FOR -/
FORWARDING DATA PACKETS TOWARD AN
EXTERNAL PORT

y 709
FORWARD BY CONTROLLER RECEIVED CONTROL ~_/

PACKETS TO EACH SWITCH WITH AN EXTERNAL FLOW
TO FORWARD THROUGH EXTERNAL PORT

FIG. 7



PCT/IB2012/053807

WO 2013/017998

7/11

W)
R %)

HITIOHLINOD




PCT/IB2012/053807

WO 2013/017998

8/11

606

H3TI0HINOD

G06




WO 2013/017998

PCT/IB2012/053807

9/11
QUERY ALL FLOW SWITCHES IN DOMAIN 1001
VIA OPENFLOW PROTOCOL L/
TO OBTAIN ACTIVE PORT LIST FOR
EACH FLOW SWITCH
‘ 1003

COMPILE RECEIVED ACTIVE PORT /\/
LISTS FROM EACH FLOW SWITCH

IDENTIFY INTERNAL PORTS OF 1005

EACH FLOW SWITCH USING NEIGHBOR —~_/
DISCOVERY PROTOCOL

1007

COMPILE INTERNAL PORT UIST —~_"
FROM EACH SWITCH

IDENTIFY EXTERNAL PORTS BY 1009

—~_/

COMPARISON OF ACTIVE PORT LIST
AND INTERNAL PORT LIST

FIG. 10



WO 2013/017998 PCT/IB2012/053807

10/11
CONTROLLER
3111 sirae 1101
iﬁﬂll!nﬂ’“\//
1103A
N 1103C
NDP N
NDP
/,/ \\\ =
[ N
1 1
‘ S ] EXTERNAL NODE
< NDP 7
£ 11038 0077 \\\
INTERNAL SPLIT
EXTERNAL NODE ARCHITECTURE
NODES
CONTROLLER
1201
wit ||
NEIGHBOR
NEIGHBOR
INFORMATION 'NFORMﬁE;E
1203A —~
N B O -
//, \\\ =,
! -
[} !
\ = ] EXTERNAL NODE
. NDP ot
£ 1203B ”“*---—*":\\‘
INTERNAL SPLIT
EXTERNAL NODE ARCHITECTURE
NODES

FIG. 12



WO 2013/017998

PCT/IB2012/053807

11/11
RECEIVE NEIGHBOR DISCOVERY PROTOCOL 1301
(NDP) MESSAGE FROM ANOTHER NETWORK [/
NODE
v 1303
IDENTIFY SOURCE OF NDP MESSAGE -
v 1305
COMPARE SOURCE TO SET OF CONTROLLED [/
FLOW SWITCHES
ADD INGRESS PORT FOR A FLOW SWITCH 1307
THROUGH WHICH A NDP MESSAGE FROMAN [/

EXTERNAL SOURCE WAS RECEIVED TO
EXTERNAL PORT LIST

FIG. 13



INTERNATIONAL SEARCH REPORT

International application No

PCT/1B2012/053807
A. CLASSIFICATION OF SUBJECT MATTER
INV. HO4L12/24 HO4L12/70
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X CASADO M ET AL:
Network Control",
IEEE / ACM TRANSACTIONS ON NETWORKING,
IEEE / ACM, NEW YORK, NY, US,

vol. 17, no. 4, 1 August 2009 (2009-08-01)
, pages 1270-1283, XP011270675,

"Rethinking Enterprise 1-19

ISSN: 1063-6692, DOI:
10.1109/TNET.2009.2026415

paragraph E

page 1271 - page 1273, paragraph II
page 1274, paragraph C - page 1275,

AP US 2011/299537 Al (SARAIYA NAKUL PRATAP
[US] ET AL) 8 December 2011 (2011-12-08)
paragraph [0003] - paragraph [0005]
paragraph [0029] - paragraph [0030]

1-19

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

7 December 2012

Date of mailing of the international search report

14/12/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Garcia Bolds, Ruth

Form PCT/ISA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2012/053807

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

Nick McKeown ET AL: "OpenFlow: Enabling
Innovation in Campus Networks",

14 March 2008 (2008-03-14), pages 1-6,
XP55002028,

Retrieved from the Internet:
URL:http://www.openflow.org/documents/open
flow-wp-Tatest.pdf

[retrieved on 2011-07-05]

the whole document

1-19

Form PCT/ISA/210 (continuation of second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/1B2012/053807
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2011299537 Al 08-12-2011  NONE

Form PCT/ISA/210 (patent family annex) (April 2005)



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report
	Page 37 - wo-search-report

