
(19) United States
(12) Reissued Patent (10) Patent Number:

USOORE37418B1

US RE37,418 E
Tindell et al. (45) Date of Reissued Patent: Oct. 23, 2001

(54) METHOD AND APPARATUS FOR 5,319,447 6/1994 Garino et al. 348/707
SYNCHRONIZING GRAPHICAL 5,452,434 9/1995 Malouf et al. 713/500
PRESENTATIONS 5,452,435 9/1995 Malouf et al. 395/550

FOREIGN PATENT DOCUMENTS
(75) Inventors: James Michael Tindell, La Honda;

Matthew L. Denman, Los Gatos, both 0239884 * 10/1987 (EP).
of CA (US) OTHER PUBLICATIONS

(73) ASSignee: Object Technology Licensing Corp., Blakowski et al., “Tool Support for the Synchronization and
Cupertino, CA (US) Presentation of Distributed Multimedia”, Computer Com

munications, V.15(10), pp. 611-618, Dec. 1992.*
(21) Appl. No.: 09/229,886 Horn et al., “On programming and Supporting Multimedia

1-1. Objecct Synchronization”, Computer journal, V36(1),
(22) Filed: Jan. 14, 1999 pp4–18, Dec. 1992.*

Related U.S. Patent Documents * cited by examiner
Reissue of:
(64) Patent No.: 5,596,696 Primary Examiner Ba Huynh

Issued: Jan. 21, 1997 (74) Attorney, Agent, or Firm Morgan & Finnegan, LLP
Appl. No.: 08/060,151 (57) ABSTRACT
Filed: May 10, 1993

A method and System for providing Synchronization of the 7
(51) Int. C. - G06F 15/00 timing of various multimedia events, including Visual

(52) U.S. Cl. 345/302; 345/328; 345/473; event is disclosed. Clock objects are defined in the Storage
345/340; 345/348; 713/500 and associated with an internal or external Source of current

(58) Field of Search 345/302, 473, time. The clock objects are able to be displayed on the
345/474, 475, 115,327, 328, 340, 348; display, but can be hidden once their linkages are defined.

713/500; 707/103, 104 One or more multimedia objects representative of audio,
Visual or other multimedia events, including an audio object,

(56) References Cited are defined and linked to a particular clock object or clock
U.S. PATENT DOCUMENTS objects. Then, a processor synchronizes the multimedia

objects, including a visual object, with the associated clock
4,692,757 : 9/1987 Tsuhara - 34.5/116 object O objects. Finally, the various multimedia eVents are

S. : Grea - - - - - - - - - - E. performed in Synchronization with their associated clockS.
2Y-- a-- ulnerIora ... - - - - The multimedia objects, including the Visual object, may

E. : 'so that r 3. include external multimedia Sources managed by the com
5,033,804 * 7/1991 Faris. 312,2233 puter System.
5,170.252 * 12/1992 Gear 348/659
5,261,041 11/1993 Susman 345/473 17 Claims, 26 Drawing Sheets

24 USER
INTERFACE
ADAPTER

32

28

DISPLAY
ADAPTER

20

IO
ADAPTER

NETWORK

34

COMMUNICATIONS
ADAPTER

U.S. Patent Oct. 23, 2001 Sheet 2 of 26 US RE37,418 E

2 A CLOCK WHOSECURRENT TIMES
1,000,000 PICOSECONDS.

1,000,000
200

FIG. 2

TIME SOURCE (2)
A-1N

SYSTEM 300
TIMER

FIG. 3

TIME SOURCE TMEsource
SMPTE TIME CODE

FIG. 4

2 C.
1,000,000 2,500,000

A 500 B 510
te=2A +500,000

FIG. 5

U.S. Patent Oct. 23, 2001 Sheet 3 of 26 US RE37,418 E

TIME SOURCE

TIME-BASEDMEDIA SEQUENCE

1H-DURATION-b

O 2 3

TIME (SECONDS)

FIG. 7

2 u-o
810 1 SECOND CLOCKS CURRENT TIME

N -1 IS ALSO THE PLAYPOSITION.
PLAYPOSITION ->

TIME-BASEDMEDIA SEQUENCE

820 0 1 2 3

TIME (SECONDS)

U.S. Patent Oct. 23, 2001 Sheet 4 of 26 US RE37,418 E

PLAYER'S CLOCK
MASTER CLOCK

Ngio FIG. 9 900

PLAYERA PLAYER B

PLAYER AS CLOCK CLOCKX

1000 t 1020
1010

FIG. 10

AUDIO SEOUENCE

VIDEO SEQUENCE

O 2 3

TIME (SECONDS)

FIG. 11

U.S. Patent Oct. 23, 2001 Sheet 5 of 26 US RE37,418 E

AUDIO PLAYER VIDEO PLAYER

tvIDEO = AUDIO
AUDIO PLAYERS MASTER VIDEOPLAYERS SLAVE. VIDEO

WILL REMAIN INSYNC WITH AUDIO.

FIG. 12

AUDIO SEQUENCE

VIDEO SEQUENCE (TWICE ASFASTASA)

O 1 2 3

TIME (SECONDS)
FIG. 13

AUDIO PLAYER

2
tAUDIO = tx

VIDEO PLAYER
CLOCKX

twiDEO-2ty-1E12
CLOCKXIS MASTER. AUDIO AND WIDEOPLAYERS ARE SLAVES,

WILL ALWAYS FOLLOW CLOCKX.

FIG. 14

U.S. Patent Oct. 23, 2001 Sheet 6 of 26 US RE37,418 E

2,
PLAYER CIS SLAVE,

WILLALWAYS FOLLOWB
(AND HENCEA).

PLAYER :

PLAYER AS MASTER

PLAYER t

PLAYERBIS BOTH
SLAVE TO AANDA
MASTER FOR C.

1500 1510 1520

FIG. 15

1610

PLAYER 1

PLAYER2

JOG/SHUTTLE
KNOB CLOCK

FIG. 17A PLAYERN

U.S. Patent Oct. 23, 2001 Sheet 7 of 26 US RE37,418 E

1744

MOUSEBUTTON
UP MOUSEBUTTON

DOWN

ISMOUSE ON
KNOB?

MOUSE CHANGED
POSITION

CALCUATE

1746

STOPPLAYER

1748

TELL PLAYERTO
SLAVE TO PLAYER'S
INTERNAL CLOCK

SET SHUTTLE CLOCKRATE
AND SHUTTLE CLOCK
CURRENTTIME TO O

1732

IS
0-802 AND BUT & 1009 RATESIGN" 1.0

FIG. 17B
RATE= SIGN" (1.4 (0.1009) 1809);

1742 SET SHUTTLE CLOCK
RATETORATE

U.S. Patent

1750

MOUSEBUTTON
DOWN

1752
S

MOUSE ON
KNOB

Y - 1754
SET JOGTIME SOURCE
CURRENT TIME TO O

1756
TIME PER

DEGREE = 2 SEC/3602

1758

TELL, PLAYERTOSLAVE
TOJOGTIME SOURCE

1760

TELLPLAYERTO
START PLAYING

1762

Oct. 23, 2001 Sheet 8 of 26

1764

MOUSE CHANGED
POSITION

1766

CALCUATE
CURRENTKNOB

POSITION

A DIFFERENCE BETWEEN
LASTKNOB POSITION AND
CURRENTKNOB POSITION,

INDEGREES

TIMEDELTA = (A1360)
TIME PER DEGREE

SET JOGTIME SOURCE
CURRENT TIME TO

TIMEDELTA

FIG. 17C

US RE37,418 E

1774

MOUSEBUTTON
UP

1776

SOPPLAYER.

1780

TELLPLAYERTO
SLAVE TO PLAYER'S
INTERNAL CLOCK

U.S. Patent Oct. 23, 2001 Sheet 9 of 26 US RE37,418 E

TIME SOURCE

FIG. 18

1920

TIME SOURCE (2. (2.
Ana Y AN-1N

X Y

N N 1910 1900

FIG. 19

U.S. Patent Oct. 23, 2001 Sheet 10 of 26 US RE37,418 E

2000

SAVE NEWTIME
ASCURRENT TIME

2020

EWTIME

2010

2030

IFNEXT TIME
- CURRENT

TIME

BACKWARD

FORWARD

IFNEXT TIME
<- CURRENT

TIME

TICKLEWAKEUPS

FALSE

FALSE

2060

FIG. 20

U.S. Patent Oct. 23, 2001 Sheet 11 of 26 US RE37,418 E

2102

2104
CHANGED FALSE

GET FIRST WAKEUP

SWAKEUP
DUE

NO

2130 CHANGEDTRUE

GETNEXT WAKEUp.2140

FIREWAKEUp 2150

2180

GET
NEXT TIME

2170

2190
FINISHED

FIG. 21

U.S. Patent Oct. 23, 2001 Sheet 12 of 26 US RE37,418 E

GET CURRENT TIME 2200

GET TIME SOURCE FOR
CLOCKS HERARCHY

GET TIME SOURCESTIME

GET DIRECT FUNCTION

APPLY DIRECT FUNCTION TO TIME
SOURCESTIME

RESULT

2250

CURRENT TIME

FIG. 22

2220

2230

2240

U.S. Patent Oct. 23, 2001 Sheet 13 of 26 US RE37,418 E

INPUT TIME
AND RECEIVER

GET DIRECT FUNCTION

APPLY INVERSE OF
DIRECT FUNCTION

TOTIME

2300

2310

2320

2342

GET CURRENT TIME
S

DELAY FOR

NO 2344
2346

ADD CURRENT TIME
CREATEWAKEUP TOTIME
WITH TIME AND

RECEIVER

2350 2352

IS

WAKEUp DUE NO w&ist
DELAY ALARM

2354 2356

UNBLOCKTASK SEND MESSAGE

2360
REMOVEWAKEUP

2372

2370 CALL
RETURN CANCEL

TOKEN GetNext Time

2390
2380

BLOCKCALLING
YES TASK

FIG. 23 NO
2392

U.S. Patent Oct. 23, 2001 Sheet 14 of 26

2400

START

2410 IS 2420

HOLD OFFALL NO 66
SYNCNG TIME SOURC

MASTER A
SLAVE TO THE
SLAVECLOCK

NO 2454

RETURN
ERROR

2432

GET CURRENT TIME

US RE37,418 E

YES

MASTERA
SLAVE TO THE
SAVELogs

NO 2462

GET CURRENT TIME

2434

EXTRACT ALL INFORMATION
ABOUT CLOCK

2436

INSERT ALL INFORMATION
ABOUT CLOCK

2438 2464

GET MASTER CLOCKS GET MASTER CLOCKS
DIRECT FUNCTION DIRECT FUNCTION

2440 2466

CALCULATEFUNCTION CALCULATEFUNCTION
FOR SLAVE CLOCK FOR SLAVE CLOCK

N - -
TO FIG24B

FIG. 24A

U.S. Patent Oct. 23, 2001 Sheet 15 of 26 US RE37,418 E

TO FIG24A

—1 -
2442

CALCULATEDIRECT
FUNCTION

2468

CALCULATEDIRECT
FUNCTION

2444 2470

RECALCULATECLOCKS RECALCULATECLOCKS
WAKEUPS WAKEUPS

2448 2472 2474

DID DID YES FIRE ALL NNYES FIRE ALL 5. PSS) - REOs
N

REPEAT
FOREACH
DEPENDENT
CLOCK

REPEAT
FOREACH
DEPENDENT
CLOCK

DIDALLDEPENDENT CLOCKS DDALLDEPENDENT CLOCKS
2452

ALLOWSYNCING
BETWEENTIME SOURCES

2499
FINISHED

FIG. 24B

U.S. Patent Oct. 23, 2001 Sheet 16 of 26 US RE37,418 E

BUFFER HALF
EMPTY INTERRUPT ANALOG

ELECTRICAL
HOST PROCESSOR SIGNAL

AUDIO SPEAKER
AUDIO SAMPLES DAC

SEOUENCE DAC
AUDIO BUFFER

SAMPLES

AMPLFER

FIG. 25

BUFFER HALF
EMPTY INTERRUPT

DAC TIME SOURCE
AUDIO
SAMPLES

AUDIO PLAYER

FIG. 26

O O (o-e C la N. - N- l-N-

FIG. 28

HOST PROCESSOR

AUDIO
SEOUENCE

AUDIO
SAMPLES

DAC

DAC
BUFFER

U.S. Patent Oct. 23, 2001 Sheet 17 of 26 US RE37,418 E

DAC Interrupt

Wait for DAC 2700
interrupt

Get ClockTime 270

2720
Calculate clockRate

2730 2740

Y Set clockRate
to maximumRate

N

Calculate 2750
desiredPOsition

2760

ls
clockRate
TooHigh

ls 2770

de in Y Seek audio sequence
OO far f0. to desiredPOsition

actualPOSition
?

N

Read Samples 2780
from audio stream

FIG. 27

U.S. Patent Oct. 23, 2001 Sheet 18 of 26 US RE37,418 E

START
PLAYBACK

DELAY UNTILTIME
FOR NEXT GRAPHIC

GET CLOCKTIME

WRITE GRAPHICTO
OUTPUT PORT

2940

2900

2910

2920

2930

HAS
STOPMEMBER
FUNCTION BEEN

CALLED

IS
LAST FRAME

AND IS CLOCKNOT
SLAVED

FIG. 29

U.S. Patent Oct. 23, 2001 Sheet 19 of 26 US RE37,418 E

TRACK1 EVENT TIME 1

TRACK2 EVENT2 TIME 2

MIDI MIDI
SEQUENCE TRACK

TRACKN EVENTM TIMEM

FIG. 30

US RE37,418 E Sheet 20 of 26 Oct. 23, 2001 U.S. Patent

HEZISEHINÅS O|SO|W

HOSSE OOHd | SOH

U.S. Patent Oct. 23, 2001 Sheet 21 of 26 US RE37,418 E

START PLAYBACK 3200

3210

DELAY UNTIL NEXT EVENT

GETCLOCKTIME

3230 3240

<6s YES - SWITCHDIRECTION
NO

3242 3250

YES-> APPLY DEGRADATION

NO 3260

OUTPUT EVENT

E. 3270
YES 3280

STOP

FIG. 32

3220

U.S. Patent Oct. 23, 2001 Sheet 22 of 26 US RE37,418 E

N- Idit Sampledsound SoundFile Fudo Udbo Move fininnation Controlero

MOdaMala

FIG. 33

U.S. Patent Oct. 23, 2001 Sheet 23 of 26 US RE37,418 E

R. Edit sampledsound SoundFile Hudio Ulldeo Moulip Finnation/Controllers

N1,Nala

FIG. 34

U.S. Patent Oct. 23, 2001 Sheet 24 of 26 US RE37,418 E

N- Idit sampledsound soundFIle Audio Lidbo Movie Finimation Controllero
NMaMala

FIG. 35

U.S. Patent Oct. 23, 2001 Sheet 25 of 26 US RE37,418 E

N- Idit Sompledsound 5DundFIle Fiudio Udeo Movie fininnation tontrollers

MdaMa

U.S. Patent Oct. 23, 2001 Sheet 26 of 26 US RE37,418 E

N- Idit sampledsound 5DundFIle audio Ulldeo MDule fininnation controllers
MdaMalla

US RE37,418 E
1

METHOD AND APPARATUS FOR
SYNCHRONIZING GRAPHICAL

PRESENTATIONS

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifi
cation; matter printed in italics indicates the additions
made by reissue.

This application is a Reissue of application Ser: No.
08/060, 151, filed May 10, 1993, now U.S. Pat. No. 5,596,
696.

CROSS-REFERENCE TO RELATED PATENT
APPLICATIONS

This patent application is related to the patent application
entitled Object Oriented Framework System, by Debra L.
Orton, David B. Goldsmith, Christopher P. Moeller, and
Andrew G. Heninger, filed 12/23/92, and assigned to
Talligent, the disclosure of which is hereby incorporated by
reference.

1. Field of the Invention

This invention generally relates to improvements in com
puter Systems and more particularly to a System for Syn
chronizing the timing of various visual events.

2. Background of the Invention
Multimedia is perhaps the fastest growing application for

computer Systems. Increasingly, users are employing com
puters to present graphic, Sound and imaging information to
end users. Users are increasingly demanding ergonomic
interfaces for managing multimedia presentations. In the
past, the System clock was often used to commence a Sound
playback at a certain time, or present information on a
computer display at a specific time. However, tools for
Synchronizing the presentation of music or Sound with the
display of information as a multimedia presentation
unfolded was not possible were not available.

Examples of current multimedia Systems that do not have
the Synchronization capability of the Subject invention are
Apple's Quicktime and Microsoft's Video for Windows as
described in the March issue of NEWMEDIA, “It’s
Showtime", pp. 36–42 (1993). The importance of obtaining
a Solution to the Synchronization problem encountered in the
prior art is discussed in the March issue of IEEE Spectrum,
“Interactive Multimedia”, pp. 22–31 (1993); and “The Tech
nology Framework”, IEEE Spectrum, pp. 32-39 (1993). The
articles point out the importance of multimedia interoper
ability which is only effectively presented with the synchro
nization capability of the Subject invention. In particular,
audio data must be properly Synchronized with other mul
timedia events to create an aesthetic presentation.

SUMMARY OF THE INVENTION

Accordingly, it is a primary objective of the present
invention to provide a System and method for Synchronizing
various multimedia events, including visual information,
throughout the course of a multimedia presentation using a
computer with a storage and a display. Clock objects are
defined in the Storage and associated with an internal or
external Source of current time. The clock objects are able to
be displayed on the display, but can are able to be hidden
once their linkages are defined. One or more multimedia
objects representative of audio, visual, MIDI or other mul
timedia events are defined and linked to a particular clock
object or clock objects. Then, a processor Synchronizes the
multimedia objects with the associated clock object or

15

25

35

40

45

50

55

60

65

2
objects. The multimedia objects, including the Visual
information, may include external multimedia Sources man
aged by the computer System.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a personal computer System
in accordance with a preferred embodiment;

FIG. 2 is an illustration of a clock object in accordance
with a preferred embodiment;

FIG. 3 is an illustration of a System timer in accordance
with a preferred embodiment;

FIG. 4 is an illustration of an external Source for time
input to a clock object in accordance with a preferred
embodiment;

FIG. 5 is an illustration of a master clock object and a
Slave clock object in accordance with a preferred embodi
ment,

FIG. 6 is an illustration of a time source driving a
hierarchy of clock objects in accordance with a preferred
embodiment;

FIG. 7 is an illustration of a time based sequence in
accordance with a preferred embodiment;

FIG. 8 is an illustration of a time-based media player in
accordance with a preferred embodiment;

FIG. 9 is an illustration of a multimedia player that is
externally Synchronized to a master clock in accordance
with a preferred embodiment;

FIG. 10 is an illustration of a clock object that acts as a
master to another clock object which in turn acts as a master
to another clock object in accordance with a preferred
embodiment;

FIG. 11 is an illustration of an audio and Video Sequence
Synchronization in accordance with a preferred embodi
ment,

FIG. 12 is an illustration of an audio player (master),
Synchronized to a video player (slave) in accordance with a
preferred embodiment;

FIG. 13 is an illustration of an audio sequence in which
the Video Sequence is Synchronized to play twice as fast as
the audio Sequence in accordance with a preferred embodi
ment,

FIG. 14 is an illustration of a computer display in which
a Video Sequence is Synchronized to play twice as fast as the
audio Sequence in accordance with a preferred embodiment;

FIG. 15 is an illustration of a player object acting as a
master and a slave in accordance with a preferred embodi
ment,

FIG. 16 is an illustration of a jog/shuttle knob in accor
dance with a preferred embodiment;

FIG. 17A is an illustration of a jog/shuttle knob object
acting as a master over a plurality of multimedia objects in
accordance with a preferred embodiment;

FIG. 17B and 17C are flowcharts of a shuttle and jog knob
in accordance with a preferred embodiment;

FIG. 18 is an illustration of a clock hierarchy as it would
appear on a computer display in a preferred embodiment;

FIG. 19 is an illustration of a clock that is indirectly
connected to a time Source through another clock in accor
dance with a preferred embodiment;

FIG. 20 is a detailed flowchart setting forth the logic of a
SetTime function in accordance with a preferred embodi
ment,

FIG.21 is a detailed flowchart setting forth the logic of the
TickleWakeups function in accordance with a preferred
embodiment;

US RE37,418 E
3

FIG.22 is a detailed flowchart setting forth the logic of the
Get Current Time operation in accordance with a preferred
embodiment;

FIG. 23 is a detailed flowchart setting forth the logic of
delay and alarm processing in accordance with a preferred
embodiment;

FIG. 24 is a A-B are detailed flowchart flowcharts
Setting forth the logic of Sync To Keep My Time processing
in accordance with a preferred embodiment;

FIG.25 is an illustration of an audio player in accordance
with a preferred embodiment;

FIG. 26 is an illustration of an audio player as a master in
accordance with a preferred embodiment;

FIG. 27 is a flowchart illustrating an audio player slaving
to a clock in accordance with a preferred embodiment;

FIG. 28 is an illustration of a Sequence of images of a
Sunrise in accordance with a preferred embodiment;

FIG. 29 is a flowchart setting forth the logic associated
with a graphic player in accordance with a preferred
embodiment;

FIG. 30 is an illustration of a MIDI sequence and a MIDI
Track format in accordance with a preferred embodiment;

FIG. 31 is an illustration of a MIDI player playing a
Sequence through a driver in accordance with a preferred
embodiment;

FIG. 32 is a flowchart setting forth the detailed logic of a
MIDI player in accordance with a preferred embodiment;

FIG. 33 is an illustration of an empty desktop display in
accordance with a preferred embodiment;

FIG. 34 is an illustration of a selected clock object
definition display in accordance with a preferred embodi
ment,

FIG. 35 is an illustration of various clock objects and
multimedia objects in accordance with a preferred embodi
ment,

FIG. 36 is an illustration of various clock objects linked
together and multimedia objects in accordance with a pre
ferred embodiment; and

FIG. 37 is an illustration of a visual object synchronized
with an audio object in accordance with a preferred embodi
ment.

DETAILED DESCRIPTION OF THE
INVENTION

The invention is preferably practiced in the context of an
operating System resident on a personal computer Such as
the IBM(R) PS/2(R) or Apple(R) Macintosh(R) computer. A
representative hardware environment is depicted in FIG. 1,
which illustrates a typical hardware configuration of a
WorkStation in accordance with the Subject invention having
a central processing unit 10, Such as a conventional
microprocessor, and a number of other units interconnected
via a system bus 12. The workstation shown in FIG. 1
includes a Random Access Memory (RAM) 14, Read Only
Memory (ROM) 16, an I/O adapter 18 for connecting
peripheral devices Such as disk units 20 to the bus, a user
interface adapter 22 for connecting a keyboard 24, a mouse
26, a speaker 28, a microphone 32, and/or other user
interface devices Such as a touch screen device (not shown)
to the bus, a communication adapter 34 for connecting the
WorkStation to a data processing network and a display
adapter 36 for connecting the bus to a display device 38. The
WorkStation has resident thereon an operating System Such as
the Apple System/7(E) operating System.

5

15

25

35

40

45

50

55

60

65

4
In a preferred embodiment, the invention is implemented

in the C++ programming language using object oriented
programming techniques. AS will be understood by those
skilled in the art, Object-Oriented Programming (OOP)
objects are Software entities comprising data Structures and
operations on the data. Together, these elements enable
objects to model virtually any real-world entity in terms of
its characteristics, represented by its data elements, and its
behavior, represented by its data manipulation functions. In
this way, objects can model concrete things like people and
computers, and they can model abstract concepts like num
bers or geometrical concepts. The benefits of object tech
nology arise out of three basic principles: encapsulation,
polymorphism and inheritance.

Objects hide, or encapsulate, the internal Structure of their
data and the algorithms by which their functions work.
Instead of exposing these implementation details, objects
present interfaces that represent their abstractions cleanly
with no extraneous information. Polymorphism takes encap
Sulation a step further. The idea is many shapes, one inter
face. A Software component can make a request of another
component without knowing exactly what that component
is. The component that receives the request interprets it and
figures out determines according to its variables and data,
how to execute the request. The third principle is
inheritance, which allows developers to reuse pre-existing
design and code. This capability allows developerS to avoid
creating Software from Scratch. Rather, through inheritance,
developers derive subclasses that inherit behaviors, which
the developer then customizes to meet their particular needs.
A prior art approach is to layer objects and class libraries

in a procedural environment. Many application frameworks
on the market take this design approach. In this design, there
are one or more object layerS on top of a monolithic
operating System. While this approach utilizes all the prin
ciples of encapsulation, polymorphism, and inheritance in
the object layer, and is a Substantial improvement over
procedural programming techniques, there are limitations to
this approach. These difficulties arise from the fact that
while it is easy for a developer to reuse their own objects, it
is difficult to use objects from other systems and the devel
oper Still needs to reach into the lower non-object layers with
procedural Operating System (OS) calls.

Another aspect of object oriented programming is a
framework approach to application development. One of the
most rational definitions of frameworks come from Ralph E.
Johnson of the University of Illinois and Vincent F. Russo of
Purdue. In their 1991 paper, Reusing Object-Oriented
Designs, University of Illinois tech report UIUCDCS91
1696 they offer the following definition: “An abstract class
is a design of a set of objects that collaborate to carry out a
Set of responsibilities. Thus, a framework is a Set of object
classes that collaborate to execute defined Sets of computing
responsibilities.” From a programming Standpoint, frame
Works are essentially groups of interconnected object classes
that provide a pre-fabricated Structure of a working appli
cation. For example, a user interface framework might
provide the Support and “default” behavior of drawing
windows, Scrollbars, menus, etc. Since frameworks are
based on object technology, this behavior can be inherited
and overridden to allow developers to extend the framework
and create customized Solutions in a particular area of
expertise. This is a major advantage over traditional pro
gramming Since the programmer is not changing the original
code, but rather extending the Software. In addition, devel
operS are not blindly working through layers of code
because the framework provides architectural guidance and

US RE37,418 E
S

modeling but at the same time frees them to then Supply the
Specific actions unique to the problem domain.
From a busineSS perspective, frameworks can be viewed

as a way to encapsulate or embody expertise in a particular
knowledge area. Corporate development organizations,
Independent Software Vendors (ISV)s and systems integra
tors have acquired expertise in particular areas, Such as
manufacturing, accounting, or currency transactions as in
our example earlier. This expertise is embodied in their code.
Frameworks allow organizations to capture and package the
common characteristics of that expertise by embodying it in
the organization's code. First, this allows developers to
create or extend an application that utilizes the expertise,
thus the problem gets Solved once and the busineSS rules and
design are enforced and used consistently. Also, frameworks
and the embodied expertise behind the frameworks have a
Strategic asset implication for those organizations who have
acquired expertise in Vertical markets Such as
manufacturing, accounting, or bio-technology would have a
distribution mechanism for packaging, reselling, and
deploying their expertise, and furthering the progreSS and
dissemination of technology.

Historically, frameworks have only recently emerged as a
mainstream concept on personal computing platforms. This
migration has been assisted by the availability of object
oriented languages, Such as C++. Traditionally, C++ was
found mostly on UNIX systems and researchers
WorkStations, rather than on Personal Computers in com
mercial Settings. It is languages Such as C++ and other
object-oriented languages, Such as Smalltalk and others, that
enabled a number of university and research projects to
produce the precursors to today's commercial frameworks
and class libraries. Some examples of these are InterViews
from Stanford University, the Andrew toolkit from
Carnegie-Mellon University and University of Zurich's
ET++ framework.

There are many kinds of frameworks depending on what
level of the system you are concerned with and what kind of
problem you are trying to Solve. The types of frameworks
range from application frameworks that assist in developing
the user interface, to lower level frameworks that provide
basic System Software Services Such as communications,
printing, file Systems Support, graphics, etc. Commercial
examples of application frameworks are MacApp (Apple),
Bedrock (Symantec), OWL (Borland), NeXTStep App Kit
(NEXT), and Smalltalk-80 MVC (ParcPlace) to name a few.

Programming with frameworks requires a new way of
thinking for developerS accustomed to other kinds of SyS
tems. In fact, it is not like "programming at all in the
traditional Sense. In old-style operating Systems. Such as
DOS or UNIX, the developer's own program provides all of
the Structure. The operating System provides Services
through System calls-the developer's program makes the
calls when it needs the Service and control returns when the
Service has been provided. The program Structure is based
on the flow-of-control, which is embodied in the code the
developer writes.
When frameworks are used, this is reversed. The devel

oper is no longer responsible for the flow-of-control. The
developer must forego the tendency to understand program
ming tasks in term of flow of execution. Rather, the thinking
must be in terms of the responsibilities of the objects, which
must rely on the framework to determine when the tasks
should execute. Routines written by the developer are acti
vated by code the developer did not write and that the
developer never even sees. This flip-flop in control flow can

15

25

35

40

45

50

55

60

65

6
be a significant psychological barrier for developerS expe
rienced only in procedural programming. Once this is
understood, however, framework programming requires
much less work than other types of programming.

In the Same way that an application framework provides
the developer with prefab functionality, System frameworks,
Such as those included in a preferred embodiment, leverage
the same concept by providing System level Services, which
developers, Such as System programmers, use to Subclass/
override to create customized Solutions. For example, con
sider a multi-media framework which could provide the
foundation for Supporting new and diverse devices Such as
audio, video, MIDI, animation, etc. The developer that
needed to Support a new kind of device would have to write
a device driver. To do this with a framework, the developer
only needs to Supply the characteristics and behavior that is
Specific to that new device.
The developer in this case Supplies an implementation for

certain member functions that will be called by the multi
media framework. An immediate benefit to the developer is
that the generic code needed for each category of device is
already provided by the multi-media framework. This means
leSS code for the device driver developer to write, test, and
debug. Another example of using Systems framework would
be to have separate I/O frameworks for SCSI devices,
NuBuS cards, and graphics devices. Because there is inher
ited functionality, each framework provides Support for
common functionality found in its device category. Other
developerS could then depend on these consistent interfaces
to all kinds of devices.

A preferred embodiment takes the concept of frameworks
and applies it throughout the entire System. For the com
mercial or corporate developer, Systems integrator, or OEM,
this means all the advantages that have been illustrated for
a framework Such as MacApp can be leveraged not only at
the application level for Such things as text and user
interfaces, but also at the System level, for Services Such as
graphics, multimedia, file Systems, I/O, testing, etc.

Application creation in the architecture of a preferred
embodiment will essentially be like writing domain-specific
puzzle pieces that adhere to the framework protocol. In this
manner, the whole concept of programming changes.
Instead of writing line after line of code that calls multiple
API hierarchies, software will be developed by deriving
classes from the preexisting frameworks within this
environment, and then adding new behavior and/or overrid
ing inherited behavior as desired.

Thus, the developer's application becomes the collection
of code that is written and shared with all the other frame
work applications. This is a powerful concept because
developers will be able to build on each other's work. This
also provides the developer the flexibility to customize as
much or as little as needed. Some frameworks will be used
just as they are. In Some cases, the amount of customization
will be minimal, So the puzzle piece the developer plugs in
will be Small. In other cases, the developer may make very
extensive modifications and create Something completely
CW.

In a preferred embodiment, as shown in FIG. 1, software
clocks are responsible for providing the timebase, while
multiple media players resident in the RAM 14, and under
the control of the CPU 10, or externally attached via the bus
12 or communications adapter 34, are responsible for fol
lowing the clock. No central player is necessary to coordi
nate or manage the overall processing of the System. This
architecture provides flexibility and provides for increased

US RE37,418 E
7

extensibility as new media types are added. The following
features are enabled by the innovative system and method of
a preferred embodiment of the invention.

PlayerS check with the clock as often as necessary to
maintain Synchronization to whatever level of precision the
application demands.

Multiple clockS can be Synchronized to each other, and
linear time relationships between clocks can be used to
Specify offset and Speed of Sequences relative to each other.

Multiple time Sources. Any clock (and hence any player)
can be Synchronized not only to the System clock but to
external time sources (timecode from Videotape, for
example) or to user actions (such as moving a Software
Shuttle knob, jog knob, or other controllers).

Clocks can travel backwards in increment or decrement
time.

ClockS can span multiple address Spaces.
DEFINITION OF TERMS

What is a Software clock?
A Software clock, an illustration of which appears in FIG.

2, is an object that performs the following functions:
A clock has a current time, represented by a time object

200. A time object is a floating point number that measures
a point in time, measured in picoSeconds. Member functions
are provided for Setting and getting the current time. A
member function is a function for acting upon an object. The
current time can increase in value, in which case the clock
is said to be going forward. The current time can also
decrease in value, in which case the clock is said to be going
backward.

delay: A clock can block a thread until a certain time,
called the delay time, is reached. If the clock is going
forward, the thread is unblocked when the clock's current
time is equal to or greater than the delay time. If the clock
is going backward, the thread is unblocked when the clock's
current time is less than or equal to the delay time.

alarms: a clock can send an IPC (Interprocess
Communication) message to a port when a certain time,
called the alarm time, is reached. If the clock is going
forward, the IPC message is sent when the clock's current
time is equal to or greater than the alarm time. If the clock
is going backward, the IPC message is sent when the clock's
current time is less than or equal to the alarm time.

multiple time Sources: Normally, a clock's time advances
in real-time based upon a System timer. The System timer is
represented by a time source object 300 in FIG. 3. However,
a clock can also be Synchronized to another time Source,
such as Society of Motion Picture and Television Engineers
(SMPTE) Time Code entering the computer from a video
tape recorder (VTR) as illustrated in FIG. 4. The clock's
current time will follow the timecode coming in from the
VTR. As the VTR speeds up, the clock will speed up in
lockstep. As the VTR slows down, the clock will slow down
in lockstep. When the VTR goes backwards, the clock will
go backwards in lockStep. The clock always remains Syn
chronized with the VTR.
A time Source has a current time, just like a clock. A linear

function can be used to Specify the relationship between the
time Source's current time and the clock's current time:

telock-a-timesource+b; where:

t is the clock's current time t is the time
Source's current time

a is a floating point value that determines the rate of the
clock's current time relative to the time Source's current
time.

tinnesotarce

5

15

25

35

40

45

50

55

60

65

8
b is a time object that determines the offset of the clock's

current time relative to the time Sources current time.
This function is called a clock function.
Synchronization: ClockS can also be Synchronized to each

other. Given two clocks, a master clock and a Slave clock, a
clock function can be specified, just as with a time Source:

tsia-artmastert-b; where:

t is the slave clock's current time
t is the master clock's current time
a is a floating point value that determines the rate of the

Slave clock's current time relative to the master clock's
current time.
b is a time object that determines the offset of the slave

clock's current time relative to the master clock's current
time.

For example, in FIG. 5, clock 510 (the slave) is synchro
nized to clock 500 (the master). A slave clock can also be a
master to another clock. One clock can be master to any
number of slave clockS. Because of these two rules, arbitrary
tree structures of clocks can be created. FIG. 6 illustrates a
time Source driving a hierarchy of Software clockS.
Two clock member functions are provided for synchro

nizing clocks together. They are called on the slave clock.
One, called SyncTo(), allows the client to specify the master
clock, the rate, and the offset. The Second, Sync Tokeep
MyTime(), allows the client to specify the master clock and
a rate, but calculates the offset Such that the Slave clock's
current time does not change value at the instant of Syn
chronization.

In addition, a member function SetRate() can be used to
directly Set the rate of a Slave clock relative to its master.

Instances of Clock objects and time Source objects in
different address Spaces can be Synchronized together.

Start & Stop: A clock can be stopped, in which case its
current time does not change, regardless of whether or not
its master is changing. A Stopped clock can be restarted,
which causes the clock to continue to follow its master. The
rate is unchanged. It remains the same as it was prior to the
clock Stopping. The offset is changed Such that at the instant
the clock is Started, its current time is the same as when the
clock was stopped.

Set rate: The rate of a clock's function can be set to any
floating point value. When the rate is changed, the offset is
changed Such that the clock's current time does not change.
What is a time-based media Sequence'?
A time-based media Sequence is an abstract base class that

can be used to represent a clip of audio, Video, animation, or
Musical Instrument Digital Interface (MIDI) data, or any
other data that varies over time. It starts at time 0 and has a
duration represented by a time object. FIG. 7 is an example
of a time based Sequence that is three Seconds in duration.
Subclasses of the time-based media Sequence are used to
implement audio, Video, animation and MIDI Sequences.
What is a time-based media player'?
A time-based media player (hereafter referred to as a

player) is an abstract base class that can be used to play or
record a time-based media Sequence. This class can be
subclassed to create players for audio, video, and MIDI.
FIG. 8 shows an example of a time-based media player. A
player has an associated Software clock object. The current
time 800 of the Software clock represents the playback
position 810 of the player. Playback position 810 is analo
gous to a play head on a tape recorder. Ordinarily, a player's
clock is Synchronized to a default clock or time Source Such
as the System timer. Such a player is Said to be internally
Synchronized. However, the player's clock can also be

US RE37,418 E
9

Synchronized to another time Source or clock, including
another player's clock. Such a player is Said to be externally
Synchronized.

In FIG. 9, the player 900 is externally synchronized to the
master clock 910. The master clock 910 determines the play
position of the player 900 according to its synchronization to
the Slave clock.

For Example: The player's clock is synchronized to the
master clock Such that:

player pase

If the master clock slows down, playback of the layer slows
down in lock Step. If the master clock Speeds up, the player
Speeds up. In all cases the player remains Synchronized to
the master.
When externally synchronized, it is the responsibility of

the player to insure that its play position always reflects its
clock's current time during playback. The Same is true for
recording.
A player's clock can also be used as a master clock to an

external clock, which could in turn be a master to another
clock. In FIG. 10, player A's clock 1000 acts as the master
to the clock X 1010, which in turn acts as a master to player
B’s clock 1020. When a player A1000 is playing, both clock
X 1010 and player B 1020 follow player A's clock. When
the player A is stopped, its clock doesn't move and neither
will clock X or player B's clock. It is the responsibility of
a player, when internally Synchronized, to insure that its
clock's current position always reflects the play position.

Synchronizing Time Based Media Sequences

Master and slave players
To Synchronize audio and Video Sequences together as

illustrated in FIG. 11, the clocks of the two players would be
synchronized together as shown in FIG. 12. The video player
will always follow the audio player. If the audio player
Speeds up, the Video player will Speed up. If the audio player
slows down, the video will slow down. If the audio stops, the
Video will Stop. If the audio starts going backwards, the
Video will go backwards in lockStep. Any two time-based
media playerS could be Synchronized in this way, not just
audio and Video.

Synchronizing players to a common clock
To start a Video Sequence one Second after an audio

Sequence in which the Video Sequence plays twice as fast as
the audio Sequence, as shown in FIG. 13, two playerS must
be created and their clockS must be Synchronized to a single
master clock as illustrated in FIG. 14. Any number of
time-base media Sequences can be Synchronized to a single
master clock.

Daisy chaining players
It is possible for a player to be both a master and a slave

as shown in FIG. 15. Such a player is externally
Synchronized, and therefore must behave like a slave. Acting
like a master is accomplished at the same time with no extra
effort. A slave 1520 can simply connect to the master/slave
player's 1510 clock. A plurality of players can be daisy
chained together.

Implementing a Software Jog/Shuttle knob rate
controller

AJog/Shuttle knob is a circular Software device that can
be used to control the rate of playback of a collection of

15

25

35

40

45

50

55

60

65

10
time-based media Sequences. When in Shuttle mode, the
position of the knob controls the rate of playback. When in
jog mode, the knob controls the play position. A Software
jog/shuttle knob can be implemented using a Software clock.
A pictorial representation of the jog/shuttle knob can be
drawn on the computer Screen, as shown in FIG. 16, and
controlled with a mouse. When in jog mode, the position of
the controller knob 1610 on the screen can be translated to
a time position in the Sequence. A time Source is used to
represent the time position. Every time the knob is Set to a
new position, the time Source's current time is Set to the
corresponding time position in the Sequence.
A clock object is Slaved to the time Source. Then, by

Synchronizing one or more players to the clock object, they
will follow the position determined by the knob as illustrated
in FIG. 17A. When in shuttle mode, the clock object is
slaved to the system time source. The position of the knob
on the Screen can be translated to a rate of playback. Each
time the user changes the knob position on the Screen the
corresponding rate is set on the clock. Setting the rate of the
clock will then cause all Synchronized players to change
their rates accordingly.

FIG. 17B is a flowchart of the detailed logic associated
with Shuttle control operation in accordance with a preferred
embodiment. When the mouse button is depressed as
detected in function block 1700, a test is performed at
decision clock 1702 to determine if the mouse cursor is
positioned over the knob on the shuttle controller as shown
in FIG. 16 at 1610. If the cursor is so positioned, then at
function block 1704 the shuttle clock rate is set to zero and
the Shuttle clock is Set equal to a current time of Zero. Then,
at function block 1706, the player is slaved to the shuttle
clock, the player is started at function block 1708, and
processing is completed at terminal 1710.
When the mouse position changes as detected at function

block 1720, the angle between the 12 o'clock noon and knob
position is calculated in degrees at function block 1722 and
a test is performed to determine if the angle is negative at
decision block 1724. If so, then at function block 1728, the
Sign is Set to -1, angle b=-6 and control is passed to decision
block 1730. If the test fails at function block 1726, then sign
is set to 1. Then, at decision block 1730, a test is performed
to determine if Ö is >=0 degrees and <80 degrees, then rate
is Set equal to sign Ö/80 degrees and control is passed to
function block 1742 to set the shuttle clock rate equal to rate.
If not, then another test is performed at decision block 1736
to determine if 8 is >=80 degrees and <100 degrees, then rate
is Set equal to sign * 1.0 and control is passed to function
block 1742 to set the shuttle clock rate equal to rate. If not,
then rate is set equal to sign 1+(8-100 degrees)/80 degrees
and control is passed to function block 1742 to set the shuttle
clock rate equal to rate.
When the mouse button is up at function block 1744, then

the player is stopped at function block 1746 and the player
is slaved to the players internal clock at function block
1748.

FIG. 17C is a flowchart of the detailed logic of the jog
mode operation in accordance with the Subject invention. If
the mouse button is down as detected at function block 1750,
then a test is performed at decision block 1752 to determine
if the mouse cursor is on the knob. If not, then processing is
aborted at terminal 1762. If the mouse is on a knob, then at
function block 1754 the jog time source current time is set
equal to Zero, the last knob position is Set equal to noon; the
time per degree is Set equal to 2 Seconds/360 degrees at
function block 1756, the player is slaved to the jog time

US RE37,418 E
11

Source at function block 1758, and the player is started at
function block 1760.

If the mouse button has changed position at function
1764, then the current knob position is calculated at function
block 1766, the delta between the last knob position and the
current knob position is calculated at function block 1768,
the time delta is calculated at function block 1770, and the
jog time Source current time is Set equal to the time delta in
function block 1772.

When the mouse button is up at function block 1774, then
at function block 1776, the player is stopped, and the player
is Set to Slave the players internal clock at function block
1780.

Implementation Of Time Sources and Clock
Objects

Time Source Implementation

A time Source and the Set of all clockS Synchronized to it
is called a clock hierarchy. FIG. 18 is an illustration of a
clock hierarchy as it appears on a computer display in a
preferred embodiment. The time source must be able to
provide it's current time and implement alarms and delayS.
Alarms and delays are called wakeupS. Sending an IPC
message (an alarm) or unblocking a thread (a delay) is called
firing a wakeup. The time Source is responsible for firing any
and all wakeups Set on any clock in its clock hierarchy.

For each clock in the clock hierarchy, the time Source
maintains a direct function that is used to convert from the
time Source's current time to the clock's current time. The
direct function is of the form

telockatimesource+b:

where t is the clock's current time t is the time
Source's current time

a is a floating point value that determines the rate of the
clock's current time relative to the time Source's current
time.
b is a time object that determines the offset of the clock's

current time relative to the time Source's current time.
The inverse direct function is used to convert in the other

direction-from a clock's current time to the time Sources
current time:

tinnesotarce

timesource-(clock-b)/a

When a clock is indirectly connected to a time Source
through one or more other clocks, the direct function can
Still be calculated by algebraic Substitution. For example,
consider clock Y 1900 in FIG. 19. Clock X 1910 is a
function relative to the time source 1920 having the equa
tion:

clockaxtimesource by

Clock Y's 1900 function relative to Clock X 1910 is:

'clockay'tclock by

Clock Y's 1900 direct function can be calculated by
Substitution:

telocky Fay (ax timesource + bx) + by

= (ay ax) timesource + (ay bx + by)

5

15

25

35

40

45

50

55

60

65

12
-continued

= a timesource +b

where

a=aya,

b=ayb, +b,

Setting the Current Time of a Time Source
There are two types of time Sources, driven and non

driven. A driven time Source is continually updated by a
client Setting its current time. This is accomplished by
calling the driven time source's SetTime() member func
tion. The implementation of SetTime() is shown in the
flowchart appearing in FIG. 20. Processing commences at
terminal 2000 where the parameter “new time” is passed
into SetTime() at function block 2010 which saves the new
current time.

The direction of the time source is determined by com
paring "new time' to the time Source's old current time at
decision block 2020. If it is greater, the time Source is going
forward, and control is passed to decision block 2040. If it
is Smaller, then the time Source is going backwards, and
control is passed to decision block 2030. If equal, the
direction of the time Source remains unchanged. "Next time”
is the time that the next wakeup needs to be fired. If the time
Source is going forward, a wakeup is late if “next time” is
less than or equal to the current time. If the time Source is
going backward, a wakeup is late if "next time' is greater
than or equal to the current time. The function block 2050
marked "ticklewakeups' fires all alarms and delays that are
late. Firing wakeups is explained in more detail in the
section below called The Time Source's Wakeup List. Pro
cessing is completed at terminal block 2060.
A non-driven time Source does not need to be constantly

be told what it's current time is. It is used for time sources
Such as the System timer where the underlying Operating
System keeps track of the current time. A non-driven time
Source knows how to find its current time, and it has a
member function, GetNextTime(), that returns the next time
that an alarm or delay should be fired. GetNextTime() is
called whenever a new alarm or delay is added to the time
Source. When a new alarm or delay needs to be fired, the
time source's TickleWakeUpS() member function can be
called which will fire any wakeups that are late. This allows
the implementor to create a time Source that does not require
constant SetTime() calls, as are required by a driven time
SOCC.

Getting the Current Time of a Time Source
A time Source can get it's current time very quickly

because in the case of a driven time Source, it has the value
Stored in an internal data Structure, or in the case of a
non-driven time Source, it can query the underlying operat
ing System.

Handling Wakeups
Both kinds of wakeups-delays and alarms-are handled

Similarly by the time Source. The time Source gets a request
from a clock for a wakeup to be fired at a certain time, called
the wakeup time. The wakeup time is converted from the
requesting clock's timebase to the time Source's local time
base using an inverse direct function. The time Source
checks to see if the wakeup is late and needs to be fired. If

US RE37,418 E
13

the wakeup is late, the time Source fires it, otherwise the time
Source adds the wakeup to a time-ordered list of wakeups,
called the wakeup list.

The Time Source's Wakeup List
Whenever the wakeuplist changes because a wakeup has

been removed or added, the time source's GetNextTime()
method is called and it calculates the next time that a wake
up needs to be fired. If the time source is a driven time
source, its Set Time () member function calls
TickleWakeups() whenever one or more wakeups are late.
TickleWakeups() goes through the wakeuplist and fires all
of the wakeups that are late. When a wakeup is fired it is also
removed from the list. The GetNextTime() member func
tion of a non-driven time Source can be overridden to find
out what time it next needs to call TickleWakeUps() and
then set a timer to go off at that time. When the timer goes
off, the time source calls TickleWakeups().

FIG. 21 sets forth the detailed logic of the
TickleWakeups() function. Processing commences at ter
minal 2102 and immediately passes to function block 2104
where the variable changed is Set equal to false. Then, at
function block 2120, the first wakeup is obtained and a test
is performed at decision block 2160 to determine if a
wakeup is due. If a wakeup is due, then the wakeup is fired
at function block 2150, the next wakeup is obtained at
function block 2140, the variable changed is set equal to
TRUE, and control is returned to decision block 2160 to
await the next wakeup.

If a wakeup is not due at decision block 2160, then the
variable changed is tested at decision block 2170. If the
variable changed is TRUE, then get next time at function
block 2180. If FALSE, then control is passed to terminal
2190 for finishing.

Software Clock Implementation

Getting the Current Time of a Software Clock
To get the current time for a clock, the clock procedure

first obtains the current time from the time source for its
clock hierarchy. It then gets the direct function and converts
the time Source's current time to the clock's current time as
detailed in the flowchart appearing in FIG. 22. Processing
commences at 2200 and proceeds immediately to function
block 2210 to get time source for the clock's hierarchy.
Then, at function block 2220, the time Source's time is
obtained, and at function block 2230, the direct function is
obtained.

Finally, at function block 2240, the direct function is
applied to the time Source's time resulting in the current time
returned at terminal 2250.

Because the clock and the time Source may be in different
address Spaces, both the time Source's current time and the
clock's direct function are Stored in memory shared between
the two address Spaces. A Semaphore is used to insure that
the direct function and time Source's time don’t change
when they are being read from shared memory.

Setting a Delay on a Software Clock
There are two types of delays. One, a member function of

a clock called Delay Until(), will block the client's task until
the clock's current time reaches a Specified value. The
Second, a member function of a clock called Delay For(),
blocks the clients task until the a Specified amount of time
has elapsed. This Second form of delay is actually identical

15

25

35

40

45

50

55

60

65

14
to calling the first form, Specifying a value equivalent the
clock's current time plus the desired amount of elapsed time.
To delay on a clock, the clock Sends the time it wants to

delay until (or for) to the time source for it’s clock hierarchy.
The time Source uses the inverse direct function for the clock
to translate it to a time local to the time Source (and adds the
current time if it is a delay for and not delay until). The
request is added to the wakeuplist (as already discussed in
the Handling Wakeups section), and the caller is blocked
until the wakeup is fired.

Setting an Alarm on a Software Clock
Setting an alarm on a clock is the same as Setting a delay

on a clock except that the caller isn’t blocked, a message is
sent to a specified port instead. FIG. 23 is a flowchart
showing how both delays and alarms are implemented.
Processing commences at 2300 where the input time and
receiver are input. Then, at function block 2310, the direct
function is obtained, the inverse of the direct function is
applied at function block 2320, and a test is performed at
decision block 2340 to determine if the delay is a delay for.
If So, then the current time is obtained at function block
2342, the current time is added to the time, and control
passes to function block 2346.

If not a delay for, then at function block 2346 a wakeup
is created with the time and receiver. Then, at decision block
2350, another test is performed to determine if wakeup is
due. If not, then the wakeup is added to the wakeup list at
function block 2352, get next time is executed at 2372, and
control is passed back with a cancel token at terminal 2370.
Processing is completed at terminal 2392. If a wakeup is due
at decision block 2350, then if the wakeup is a delay, then
the task is unblocked at function block 2354, the wakeup is
removed at function block 2360, and processing is com
pleted at terminal 2392. If the wakeup is an alarm, then a
message is Sent at function block 2356, the wakeup is
removed at function block 2360, and processing is com
pleted at terminal 2392.

Synchronization of Clocks
Synchronization of clocks is implemented both in the

Software clock and the time Source. Two Software clock
member functions are used by clients to Synchronize clockS.
Both are called on the slave clock in order to synchronize it
to a master. One member function, called SyncTo(), allows
the client to Specify the master clock or time Source, the rate,
and the offset. The second, SyncTokeepMyTime(), allows
the client to Specify the master clock and a rate, but
calculates the offset Such that the Slave clock's current time
does not change value at the instant of Synchronization.

SYNCTOKEEPMYTIME()
SyncToKeepMyTime() allows the client to specify the

master clock and a rate, but calculates the offset Such that the
Slave clock's current time does not change value at the
instant of synchronization. FIG. 24 presents the detailed
logic of SyncToKeepMyTime(). Processing commences at
2400 and immediately passes to decision block 2420 to
determine if the master clock is in the same clock hierarchy.
If not, then at function block 2410, all subsequent synchro
nization between time Sources is placed on hold and a test is
performed at decision block 2430 to determine if the master
is currently a Slave to the slave clock. If So, then an error is
returned via function block 24.54 and control is passed to
terminal 2499.

If not, then at function block 2432 the current time is
obtained for the Slave clock, all information is extracted

US RE37,418 E
15

about the clock at function block 2434, the new master time
Source is updated at 2436, the master clock's direct function
is obtained at function block 2438, the function is calculated
for the Slave clock based on the current time and Supplied
rate at function block 2440, the direct function is calculated
based on master's direct function at function block 2442,
clock Wakeups are recalculated at 2444, and a test is
performed at decision block 2446 to determine if a direction
change has occurred. If So, then all wakeupS are fired at
function block 2448. If not, then processing is passed to
2450 to repeat the processing for each Slave clock, and a
function block 2452 synchronizing is provided between time
Sources before processing is completed at terminal 2499.

If the master clock is in the same time Source in decision
block 2420, then another test is performed at decision block
2460 to determine if the master is currently a slave to the
slave clock. If not, then the current time is obtained for the
slave clock at function block 2462, the master clock's direct
function is obtained at function block 2464, the function is
calculated for Slave clock based on current time and Supplied
rate at function block 2466, the direct function is calculated
at function block 2468, clock wakeups are recalculated at
function block 2470, and a test is performed at decision
block 2472 to determine if the direction has changed. If so,
then all wake-ups are fired at function block 2474. If not,
then processing is repeated for all Slave clocks at function
block 2476 before processing is finished at terminal 2499.

The new clock function is calculated as follows:

Slave clock's function prior to Synchronizing to master:

original nasier sia-e original

Slave clock's function after Synchronizing to master with
neW rate a.

Fee sia-e pase al Fee

Where b, is such that t =t i.e. rewsial-esia-'e

bnet-master (a.a.net)+boriginal

SYNCTO()
SyncTo(), allows the client to specify the master clock or

time Source, the rate, and the offset. Processing is very
similar to the logic set forth in FIG. 24. The clocks new
function is calculated as follows in the SyncTo() case:

Slave clock's function prior to Synchronizing to master:

original nasier sia-e original

Slave clock's function after Synchronizing to master with
new rate a, and offset be:

Feb 'pasie sia-e al Fee

A clock can Synchronize to any other clock, even clockS
in different clock hierarch/ies.

Audio player implementation
An audio Sequence object comprises a Segment of digi

tized Sound Samples. It has member functions to retrieve and
Store audio Samples.
An audio player plays back an audio Stream So that it can

be heard over a speaker. It does this by periodically reading
data from the audio Stream and writing it to an audio output
port.

The read period is determined by a Digital to Analog
Converter (DAC). ADAC converts digital audio samples to

15

25

35

40

45

50

55

60

65

16
an analog electrical signal that can be converted to Sound by
an audio amplifier connected to a Speaker. It converts N
digital audio Samples per Second. N is called the Sample rate
of the DAC. The DAC has an internal buffer of audio
Samples awaiting conversion. The audio player, executing in
the host processor, fills the DAC's buffer with samples read
from an audio sequence. When this buffer is half empty, the
DAC interrupts the host processor. The audio player then
fills the buffer again with the next batch of audio samples
read from the audio Sequence. This process is illustrated in
FIG. 25.

An illustration of an audio player as a Master is presented
in FIG. 26. The Audio Player has a clock that can act as a
master to another clock. This is accomplished by insuring
that the audio player's clock always reflect the time of the
Sample currently being reproduced by the Speaker. For
example, if at a point T in time the 88200th sample from the
beginning of the audio Sequence is being played on the
Speaker, and the Sample rate of the DAC and audio Sequence
are both 44,100 Samples per Second, then the audio player's
clock must be at time 2 Seconds. This is accomplished by
creating a time source which is driven by the DAC. Every
time the DAC outputs a buffer full of samples, it interrupts
the host processor. The host processor will then increment
the time Source's current time by a time equivalent to the
amount of Samples converted Since the last interrupt. This is
determined by:

<increment times=<samples since last interruptcf-DAC sample
rated

The Audio Player synchronizes its software clock to the
DAC time source. The linear function obeys the following
formula.

taudioplayerclock-1tpac time source+b

where b is Set So that when playback of the Sequence Starts,
t=0. This is accomplished using the SetTime
function of the clock.

Audio Player as Slave
The audio player can Synchronize to an external clock. In

this case, the audio player must insure that the Sample being
reproduced by the Speaker corresponds to the current time of
the external clock. For example, if at a given instant in time
the external clock object's current time is two Seconds, then
the 88,200th sample in the audio sequence should at that
instant be reproduced by the Speaker, assuming a 44,100
Sample rate for audio Sequence. This processing is accom
plished as follows. The audio player waits for an interrupt
from the DAC, indicating that more audio data is needed.
The player then examines the current time of its clock,
determining if it needs to Speed up or slow down the
playback rate or jump to a new position in the audio
Sequence in order to insure that the correct Samples are being
played from the Speaker. It then uses a digital Signal pro
cessing algorithm to convert the rate of the audio Sequence
Samples to the Sample rate of the DAC before outputting the
Samples.
The detailed logic associated with Slaving an audio player

is presented in FIG. 27 in accordance with a preferred
embodiment. Processing commences at 2700 where a wait
state is entered until a DAC interrupt occurs. When a DAC
interrupt occurs, control passes to function block 2710
where the clock time is obtained. Then, at function block
2720 the clock rate is calculated relative to the DAC rate,
and a test is performed at 2730 to determine if the clockRate

US RE37,418 E
17

is too high. If So, ten the clock rate is Set to the maximum
rate. If not, then the desired position is calculated at function
block 2750. Function block 2750 requires more explanation
because its processing is more involved. That is the calcu
lation of the desired position of the audio stream. This
position determines the next Sample that the player will
output. The calculation of this value is non-trivial because of
the delay introduced by the DAC. When the player outputs
a sample to the DAC, it enters the DAC's internal buffer. The
Sample is not reproduced at the Speaker until all of the
samples already in the DAC's buffer are emptied.
Fortunately, this delay can be calculated. It is:

delay Pac=<samples in internal buffer pace/sampleRatepac

The audio Sequence Samples will be output at a rate
determined by clockRate. This is the derivative of the
external clock position relative to the DAC clock position.
To determine the desired position, the DAC delay is
subtracted, but before doing so it must be converted to the
time base of the audio stream. This is done as follows:

delay, sequence=(delay Pac'clockRate)

The desired position of the audio Stream is then calculated
as follows:

desiredPosition=<position of next sample in sequenced-elayaudio
sequence

Then, at decision block 2760, the desired position is
compared to the actual position to determine if it is too far
from the actual position. If So, then the audio Sequence is
sought to the desired position at function block 2770. In any
case, then the samples are read from the audio stream,
converted to clock rate, and written to the output buffer at
function block 2780.

Graphic player implementation
A graphic Sequence object is a collection of graphic

objects. The graphic objects in a graphic Sequence may be
digitized video frames, rendered frames of an animation, or
any other graphic objects related by time. A graphic
Sequence has member functions that acceSS individual
graphics for Storage and retrieval. Each graphic has a
duration; therefore, the Sequence has a duration that is the
Summation of the duration of the component graphic
objects. A graphic Sequence also provides a member func
tion that maps a time within the duration of the Sequence to
a particular graphic objects. An example of a Sequence to a
particular graphic objects. An example of a Sequence of
images of a Sunrise is presented in FIG. 28 with the duration
of each graphic object presented below the frame.
A graphic player plays a graphic Sequence through its

graphic output port, which may be connected to a graphic
input port. The player has a Software clock that may drive
other clocks (as a master) or be driven (as a slave). The
player Sequences through the graphic objects in a graphic
Sequence in accordance with the time on its clock. The clock
is limited to a range from time Zero to a time equal to the
duration of the graphic Sequence being played. The player
delays until the duration of the current frame has elapsed on
the clock. The player then checks the current time on the
clock, gets the graphic objects in the Sequence that maps to
that time, and writes the graphic objects to the output port.

The player always uses the current time on the clock when
Selecting the graphic objects to be written to the output port.
This provides automatic degradation if performance is Slow:

1O

15

25

35

40

45

50

55

60

65

18
if writing a graphic object takes longer than its duration, one
or more frames is effectively skipped. Changes in the clock's
direction are similarly accounted for. The detailed logic
asSociated with the graphic player is presented via a flow
chart in FIG. 29. Processing commences at terminal 2900
and immediately flows to function block 2910 to enter a
delay until time for the next graphic object. Then, after the
delay, the clock time is obtained at function block 2920, the
graphic object is written to an output port at function block
2930, and a test is performed at decision block 2940 to
determine if the stop member function has been called. If so,
then processing is terminated at terminal 2960. If not, then
a test is performed at decision block 2950 to determine if the
last frame and the clock are not Slaved. If not, then control
passes to function block 2910. If so, then processing is
terminated at terminal 2960.

Note that if the player's clock is synchronized to another
clock, then the display loop continues to execute until the
player is explicitly stopped. However, if the clock is not
Synchronized, the loop exits when the last graphic in the
Sequence is written.

MIDI player implementation
A midi sequence object is a collection of MIDI events. Its

member functions control playback and access time-ordered
tracks of MIDI events. A MIDI Sequence and MIDI Track
format is presented in FIG. 30.
A midi player plays a midi Sequence through its output

port, which may be connected to any input port, including
that of a MIDI driver for eventual output on a MIDI
synthesizer. The player follows it software clock to output
events as they become current. The processing performs
well with both forward and backward flow of time and takes
into account degradation policy should the host processor
fall behind. FIG. 31 is an illustration of a MIDI Player
playing a Sequence through a driver to a Synthesizer
The MIDI player can serve either as a slave or master or

both in a Synchronization relationship, by using the Sync To
and SyncToSelf member functions inherited from its base
class, Time-Based Media Player. The implementation details
do not change, and follow a simple time-ordered event loop
with two special cases. The first Special case handles time
Switching direction. Normally the player proceeds by delay
ing until the next event becomes current. After the delay end,
the player checks the time to determine if a special case has
occurred. The first Special case arises when the delay is
early. This is represented by the first decision point in the
main loop of the flowchart below. When detected, the player
will Switch direction, so that “next' becomes the opposite of
what it was. The Second special case concerns processor
overload. When the host processor can no longer keep up, a
degradation policy is applied. The player Stops when the end
of the Sequence is reached, either at the last event in the
forward case or at the first event in the backward case.
A flowchart of the MIDI Player detailed logic is presented

in FIG. 32. Processing commences at terminal 3200 and
immediately passes to function block 3210 to enter a delay
until the next MIDI event. When the next MIDI event is
ready to execute, then the clock time is obtained at function
block 3220, and a test is performed at decision block 3230
to determine if the event is early. If so, then the direction is
Switched and control is passed to function block 3210. If not,
then another test is performed at decision block 3242 to
determine if the event is late. If the event is late, then
degradation is applied to catch up, and control is passed back
to function block 3210. If the event is not late, then the event

US RE37,418 E
19

is output at function block 3260, and a test is performed at
decision block 3270 to determine if the last event has been
performed and the clock object is not slaved. If the last event
has been performed and the clock is not slaved, then
processing is terminated at terminal 3280. If there are more
events, then control is passed to function block 3210 to
process the next event.

Display Screens
FIGS. 33 to 37, are illustrations of displays in accordance

with a preferred embodiment. FIG.33 is an illustration of an
empty desktop display that a user is presented with to
commence the definition of a Software clock and Synchro
nize the same with a multimedia object. FIG. 34 is an
illustration of a Selected clock object definition display in
accordance with a preferred embodiment. A user Selects the
clock object definition from menu bar of information 3410.
In particular, the clock menu item 3420 is Selected using a
mouse as shown in FIG. 1 and a pull down menu as shown
in FIG. 3420. FIG. 35 is an illustration of various clock
objects and multimedia objects, defined using the menu
selection described in FIG. 34, in accordance with a pre
ferred embodiment. A slider bar object 3510, Jog/Shuttle
controller 3520, clock object 3530, and an animation mul
timedia object 3540 are all shown as they would appear in
an actual multimedia presentation.

FIG. 36 is an illustration of various clock objects linked
together and multimedia objects in accordance with a pre
ferred embodiment. The linkages are created using a cursor
to rubber band a geometric figure, Such as a line Segment, to
join up a clock object 3610 to another clock object 3620, or
multimedia objects 3630 and 3640. FIG.37 is an illustration
of a visual object synchronized with an audio object in
accordance with a preferred embodiment. The Visual clock
object 3710 is synchronized with the audio clock object
3720 to control the associated multimedia presentation of
music and displays represented by the animation multimedia
object 3730.

While the invention has been described in terms of a
preferred embodiment in a specific System environment,
those skilled in the art recognize that the invention can be
practiced, with modification, in other and different hardware
and Software environments within the Spirit and Scope of the
appended claims.

Having thus described our invention, what we claim as
new, and desire to Secure by Letters Patent is:

1. A computer System for Synchronizing multimedia
graphic presentations, the System comprising:

(a) a storage;
(b) a display;
(c) a clock object in the Storage and including means for

providing a current time value,
(d) a graphical sequence object in the storage containing

a plurality of graphic objects, each of the plurality of
graphic objects having image data and duration
attribute;

(e) a presentation object in the Storage and having means,
cooperating with the graphic Sequence object and
responsive to the current time value, for Selecting one
of the plurality of a graphic objects and means, respon
Sive to the Selected graphic object, for presenting the
image data of the Selected graphic object on the dis
play;

(f) means, responsive to the Selected graphic object, for
blocking the Selection means for a time period equal to
the duration attribute of the Selected graphic object;

1O

15

25

35

40

45

50

55

60

65

20
(g) a master clock object in the Storage and having means

for generating a master current time value: and wherein
the clock object includes means responsive to the
master time value for determining the current time
value as a function of the master time So that the master
clock object and the clock object operate in Synchro
nism;
wherein the clock object further includes:
means for Storing a rate value and an offset value,

and
means, responsive to the master time signal, for

computing the current time value as a predeter
mined function of the master time signal, the rate
value, and the offset value; and

(h) clock Synchronizing means, responsive to a synchro
nization request, for Synchronizing the clock object to
the master time signal to keep the current time value of
the clock object unchanged, while changing the rate
value of the clock object, the clock Synchronizing
means comprising:
means for receiving a new rate value;
means for computing a new offset value based on the

master time signal and the new rate value Such that
the predetermined function yields a current time
value that is unchanged with the new rate value and
the new offset value; and

means for providing the new rate value and the new
offset value to the clock object.

2. The computer System as recited in claim 1 wherein the
blocking means comprises:

(i) means cooperating with the presenting means for
issuing a wakeup request having a wakeup time when
image data from one of the plurality of graphic objects
is being presented on the display;

(j) wakeup handling means, responsive to the wakeup
request, for firing a wakeup message, when the wakeup
time is late in comparison to the current time value; and

(k) means responsive to the wakeup message for unblock
ing the Selection means.

3. The computer System as recited in claim 1, wherein the
wakeup time is a Sum of the current time value and a
duration attribute of the one graphic object.

4. The computer System as recited in claim 1 wherein the
predetermined function computes the current time value as
the Sum of an offset value and a multiplicative product of a
rate value and a master time Signal.

5. The System of claim 1 further comprising a graphical
user interface with means for connecting iconic representa
tions of the clock object and the master clock object,
including means for informing the clock object of the iconic
connection So that the means for determining of the clock
object may respond to the master time value of the master
clock object.

6. A computer-implemented method for Synchronizing
multimedia graphic presentations on a computer having a
Storage and a display, the method comprising the Steps of:

(a) creating a clock object in the storage, which clock
object includes a means for providing a current time
value including creating a master clock object having
means for computing a master time value as a prede
termined function of the master time value, a rate value
and an offset value; and creating a clock object having
a mechanism for computing the current time value as a
predetermined function of the master time value;

(b) creating a a graphical Sequence object in the Storage,
containing a plurality of graphic objects, each of the

US RE37,418 E
21

plurality of graphic objects having image data and a
duration attribute;

(c) obtaining the current time value from the clock object;
(d) providing the current time value to the graphical

Sequence object to Select one of the plurality of graphic
objects,

(e) presenting the image data of the Selected graphic
object on the display,

(f) blocking re-execution off steps (c) through (e) for a
time duration equal to the duration attribute of the
Selected graphic object;

(g) re-executing steps (c) through (f) to present the image
data in graphic objects in the graphical Sequence object;
and

(h) in response to a Synchronization request, Synchroniz
ing the clock object to the master time value to keep the
current time value of the clock object unchanged, while
changing the rate value of the clock object.

7. The method as recited in claim 6 wherein step (f)
comprises the Steps of:

(f1) issuing a wakeup request having a wakeup time when
image data from one of the plurality of graphic objects
is being presented on the display;

(f2) firing a wakeup message, when the wakeup time is
late in comparison to the current time value; and

(f3) re-executing steps (c) through (e) in response to the
Wakeup message.

8. The method as recited in claim 6 wherein step (I)
comprises the Steps of:

(I.1) receiving a new rate value;
(I.2) computing a new offset value based on the master

time value and the new rate value Such that the prede
termined function yields a current time value that is
unchanged with the new rate value and the new offset
value; and

(I.3) providing the new rate value and the new offset value
to the clock object.

9. The method as recited in claim 6 wherein step (a)
comprises the Step of

(a.3) creating a clock object which computes the current
time value as a Sum of an offset value and a multipli
cative product of a rate value and a master time value.

10. A synchronization framework for controlling time
relationships in a graphic presentations application operat
ing on a computer System with a storage and a presentation
device, the Synchronization framework comprising:

(a) data defining a time Source class stored in the storage,
the time Source class having a master time value
attribute for Storing a master time Signal value and a get
member function for retrieving the master time Signal
value;

(b) data defining an application-Subclassable clock class
Stored in the Storage, the clock class having a current
time attribute, an offset value attribute, a rate value
attribute, a member function for calculating the current
time attribute value of a clock object as a predeter
mined function of a master time Signal value, a member
function for handling a wakeup request having a
wakeup time, by firing a wakeup message, when the
wakeup request is late in comparison to the current time
value and a member function for Synchronizing the
clock object to the master time signal value to keep the
current time value of the clock object unchanged, while
changing the rate value of the clock object, the clock

1O

15

25

35

40

45

50

55

60

65

22
Synchronizing member function including an attribute
for receiving a new rate value, a member function for
computing a new offset value based on the master time
Signal and the new rate value Such that the predeter
mined function yields a current time value that is
unchanged with the new rate value and the new offset
value: and a member function for providing the new
rate value and the new offset value to the clock object;

(c) data identifying a graphic Sequence class Stored in the
Storage, the graphic Sequence class comprising a mem
ber function for Selecting a corresponding graphic
object from a plurality of graphic objects on the basis
of a received time value, each graphic object having
image data and a duration attribute;

(d) data defining a presentation object class in the storage,
the presentation object class comprising a member
function for obtaining the current time value from a
clock object created from the clock class, a member
function for providing the obtained current time value
to a graphical Sequence object, created from the graphic
Sequence class, to Select a corresponding graphic
object, a member function for presenting the image
data of the Selected graphic object on the presentation
device, a member function for issuing a wakeup request
having a desired wakeup time Set to the obtained
current time plus the duration attribute of the Selected
graphic object, and a member function for blocking the
presentation object from further execution until a
wakeup message has been fired to the presentation
object.

11. Apparatus for Synchronizing multimedia graphic
presentations, the apparatus being operable in a computer
System having a storage and a display and comprising:

(a) a time Source clock object in the storage and including
means for generating a master current time value, and
wakeup handling means, responsive to a wakeup
request having a wakeup time and a target, for firing a
wakeup message to the target, when the wakeup request
is late in comparison to the master current time value;

(b) a graphic clock object in the Storage and including
means, responsive to the master current time value, for
providing a graphic clock current time value, wakeup
request issuing means, responsive to a wakeup request
having a desired wakeup time, for issuing to the time
Source clock object a wakeup request having the
desired wakeup time Set as the wakeup time and the
presentation object Set as the target, means for Synchro
nizing the clock object to the master time Signal value
to keep the current time value of the clock object
uncharged unchanged, while changing the rate value
of the clock object, the clock Synchronizing means
including means for receiving a new rate value, means
for computing a new offset value based on the master
time Signal and the new rate value Such that the
predetermined function yields a current time value that
is unchanged with the new rate value and the new offset
value; and means for providing the new rate value and
the new offset value to the clock object;

(c) a graphical sequence object in the storage and includ
ing a plurality of graphic objects, each graphic object
having image data and a duration attribute, and the
graphical Sequence object including means, responsive
to a time value, for Selecting a corresponding graphic
object from the plurality of graphic objects, and

(d) a presentation object for presenting a graphical
Sequence on the display, the presentation object includ

US RE37,418 E
23

ing clock value obtaining means for obtaining the
graphic clock current time value, graphic object obtain
ing means, responsive to the clock value obtaining
means, for providing the graphic clock current time
value to the graphical Sequence object to Select a
corresponding graphic object, presentation means,
responsive to the Selected graphic object, for presenting
the image data of the Selected graphic object on the
display, means, responsive to the presentation means,
for issuing to the graphic clock object a wakeup request
having a desired wakeup time Set to the graphic clock
current time plus the duration attribute of the Selected
graphic object, blocking means, responsive to the
means for issuing, for blocking the presentation object
from further execution until a wakeup message has
been fired to the presentation object.

12. A method for enabling the Synchronization of a
graphical multimedia presentation by a computer having a
Storage, a display and an Operating System, comprising the
Steps of

a) providing class libraries for retention in the Storage of
the computer from which
(1) a clock Object may be instantiated having

a current time value attribute,
an Offset value attribute,
a rate value attribute,

a member function for calculating the current time value
as a predetermined function of a master time Signal
value, and

a member function for Synchronizing the clock Object to
the master time Signal value by changing the rate value
while keeping the current time value unchanged, and
(2) a graphic Sequence Object may instantiated having

a member function for receiving a time value,
a member function for Selecting, from a plurality of

graphic Objects each having image data and a
duration value attribute, a graphic Object corre
Sponding to the received time value, and

(3) a presentation Object may be instantiated having
a member function for obtaining the current time

value from a clock Object,
a member function for providing the obtained cur

rent time value to a graphical Sequence Object and
for receiving therefrom a Selected graphic object,

a member function for presenting the image data of
the Selected graphic object to the display, and

(b) providing a run-time environment to
(1) Support the instantiation of the clock, graphic

Sequence and presentation Objects and
(2) selectively cause the transfer by the operating

System of the image data to a Specific display.
13. The method as recited in claim 12 wherein: the clock

object further includes
an attribute for receiving a new rate value,
a member function for computing a new Offset value based
On the master time signal and the new rate value Such
that the predetermined function yields an unchanged
current time value with the new rate value and the new
Offset value, and

a member function for handling a wakeup request having
a wakeup time value by initiating a wakeup message
responsive to a comparison of the wakeup request time
value with the current time value, and

the presentation object further includes
a member function for issuing a wakeup request having a

wakeup time value corresponding to the Obtained cur

5

15

25

35

40

45

50

55

60

65

24
rent time value plus the duration value of the Selected
graphic Object, and

a member function for blocking presentation object
method execution until a wakeup message is received
thereby.

14. A computer program product for enabling the Syn
chronization of multimedia graphic presentations On a com
puter having a Storage and a display, Said computer pro
gram product including a computer-useable means for
Storing therein computer-readable code comprising:

(a) program code for creating a clock Object in the
Storage that includes means for accepting a Synchro
nization request having a master time value attribute
and means for providing a current time value corre
Sponding to a predetermined function of a rate value
and an Offset value,

(b) program code for creating a graphical Sequence
Object in the Storage that includes a plurality of graphic
Objects each having image data and a duration value
attribute,

(c) program code for Obtaining the current time value
from the clock Object,

(d) program code for providing the obtained current time
value to the graphical Sequence Object and for Selecting
a corresponding One of the plurality of graphic Objects,

(e) program code for presenting the image data of the
Selected graphic Object On the display,

(f) program code for blocking execution of program codes
(c) through (e) for a time duration corresponding to the
duration value attribute of the Selected graphic object,

(g) program code for Synchronizing the clock object to the
master time value of a Synchronization request by
changing the rate value and the Offset value such that
the current time value remains unchanged.

15. The computer program product as recited in claim 14
wherein program code (f) comprises.

(f1) program code for issuing a wakeup request having a
wakeup time value responsive to the presentation to the
display of image data from One of the plurality of
graphic Objects,

(f2) program code for initiating a wakeup message
responsive to a comparison of the wakeup time and
current time values, and

(f3) program code for unblocking program codes (c)
through (e) responsive to the wakeup message.

16. The computer program product as recited in claim 14
further comprising:

(h. 1) program code for receiving a new rate value,
(h.2) program code for computing a new Offset value from

the master time value and the new rate value Such that
the predetermined function yields an unchanged cur
rent time value with the new rate value and the new
Offset value, and

(h.3) program code for changing the clock object
attributes to correspond to the new rate and offset
values.

17. The computer program product as recited in claim 14
wherein program code (a) further comprises:
program code for causing the predetermined function to

compute a current time value corresponding to the Sum
of the Offset value and a multiplicative product of the
rate value and the master time value.

