

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2008304599 B2

(54) Title
Recanalizing occluded vessels using radiofrequency energy

(51) International Patent Classification(s)
A61B 18/20 (2006.01)

(21) Application No: **2008304599** (22) Date of Filing: **2008.09.23**

(87) WIPO No: **WO09/042614**

(30) Priority Data

(31) Number **60/975,473** (32) Date **2007.09.26** (33) Country **US**

(43) Publication Date: **2009.04.02**

(44) Accepted Journal Date: **2012.11.22**

(71) Applicant(s)
RetroVascular, Inc.

(72) Inventor(s)
Ogata, Wayne;Katoh, Osamu

(74) Agent / Attorney
Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001

(56) Related Art
US 5041109
US 2007/0112342
BOLIA, A. et al., "Recanalization of Iliac Artery Occlusion by Subintimal Dissection Using the Ipsilateral and the Contralateral Approach", Clinical Radiology, 1997, Vol. (52), pages 684-687

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 April 2009 (02.04.2009)

PCT

(10) International Publication Number
WO 2009/042614 A1

(51) International Patent Classification:
A61B 18/20 (2006.01)

(74) Agents: KREBS, Robert E. et al.; Thelen Reid Brown
Raysman & Steiner LLP, P.O. Box 640640, San Jose, California 95164-0640 (US).

(21) International Application Number:
PCT/US2008/077403

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
23 September 2008 (23.09.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/975,473 26 September 2007 (26.09.2007) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): RETRO
VASCULAR, INC. [US/US]; 1121 Stoney Creek Drive,
San Ramon, California 94582 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KATOH, Osamu
[JP/JP]; 3-114-1102, Ohashi-dori, Toyohashi, Aichi 440-
0076 (JP). OGATA, Wayne [US/US]; 1121 Stoney Creek
Drive, San Ramon, California 94582 (US).

Published:
— with international search report

(54) Title: RECANALIZING OCCLUDED VESSELS USING RADIOFREQUENCY ENERGY

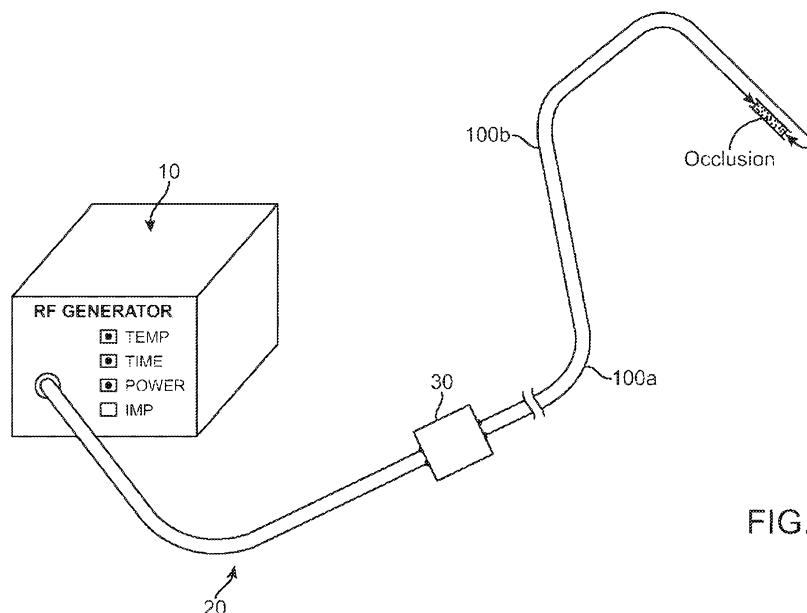


FIG. 1

(57) Abstract: A method and systems for treating chronic total occlusions (CTOs), particularly those that are difficult to treat. CTO recanalization is achieved using radiofrequency ablation directed at the occlusion between antegrade and retrograde guidewires placed on either side of the occlusion.

WO 2009/042614 A1

RECANALIZING OCCLUDED VESSELS USING RADIOFREQUENCY ENERGY

Field of the Invention

This invention relates generally to dealing with occlusions of the lumen and more specifically to apparatus and methods for crossing severe or total chronic occlusions of lumens in the body using radiofrequency energy.

Description of the Related Art

Chronic total occlusion (CTO) is the complete blockage of a vessel and usually has serious consequences if not treated in a timely fashion. The blockage could be due to atheromatous plaque or old thrombus. One of the common procedures for treating CTOs of the coronary arteries is percutaneous transluminal coronary angioplasty (PTCA). During a PTCA procedure, a small incision is, typically, made in the groin. A guiding catheter over a guide wire is introduced into the femoral artery and advanced to the occlusion. Frequently, with gentle maneuvering, the guidewire is able to cross the occlusion. Then, a balloon-tipped angioplasty catheter is advanced over the guide wire to the occlusion. The balloon is inflated, separating or fracturing the atheroma. Some of the common steps involved in the PTCA procedure are the simultaneous injection of a contrast agent in the contra-lateral vessel, getting backup force or stabilization for a guide wire (which could invoke additional personnel to handle the catheter), puncturing the plaque, drilling or rotating the guide wire to push it through the dense plaque, etc. Because of the stiff resistance sometimes offered by dense plaque, one could be forced to use stiff wires. Occasionally, the wires could puncture the vessel wall calling for remedial measures.

The most common percutaneous coronary intervention (PCI) failure mode for CTOs is inability to successfully pass a guidewire across the lesion into the true lumen of the distal vessel. To date, there is no consensus on how best to treat CTO after attempts with conventional guidewires have failed. Different strategies and specific devices for CTOs have been developed including the subintimal tracking and reentry with side branch technique, parallel wire technique, IVUS guided technique, retrograde approach, etc.

Mechanical and energy based techniques have also been proposed for passing guidewires through hard calcified occlusions, such as mechanical cutting or oscillation and laser or ultrasound or radiofrequency (RF) energy ablation. Most of these devices work by locally applying energy at the tip of the guidewire or catheter device to cause ablation of the

occlusion, which is carefully carried out to create a channel through the occlusion. Once a channel is created, the guidewire is used to guide the balloon catheter in place.

RF energy is widely used to coagulate, cut or ablate tissue. In both modalities, monopolar and bipolar, conductive electrodes contact the tissue to be treated. In the 5 monopolar mode, the active electrode is placed in contact with the tissue to be treated and a return electrode with a large surface area is located on the patient at a distance from the active electrode. In the bipolar mode, the active and return electrodes are in close proximity to each other bracketing the tissue to be treated. Sometimes an array of electrodes is used to provide better control over the depth of penetration of the RF field and hence control over the 10 temperatures to which the tissue is heated. There are many disadvantages with each mode. For example, in the monopolar arrangement, because of the large physical separation between the electrodes there are frequent reports of local burning at the electrode sites. This would clearly be undesirable where one of the electrodes will be inside a blood vessel. The other serious issue is the likelihood of forming blood clots. The tissue that is in contact with the 15 electrodes can be coagulated or ablated. In the case of the electrodes being present inside a blood vessel the chances of forming dangerous blood clots is quite high.

In an attempt to overcome the issues described above, various device and electrode configurations are described in the following patents. US Patent Numbers 5,366,443 and 5,419,767 describe the use of RF electrodes on a catheter to cross a lesion. These patents 20 describe a bipolar electrode assembly at the distal tip of a catheter that is in contact with the occlusion, and patentees claim that application of RF energy ablates the occlusion and renders the occlusion susceptible for the guidewire to penetrate. This method has the drawback that careful tracking of the occlusion and the ablation process is necessary to avoid trauma to the vessel walls or healthy tissue, since the possibility of short-circuiting of current through 25 healthy tissue instead of the occlusion is high. US Patent Number 5,419,767 overcomes this limitation to a certain extent through the use of a multiple electrode array. However, this device requires a channel to be pre-created through the occlusion so that the device can be passed through a guidewire traversing this channel, which is not always easy.

US Patent Number 5,514,128 to Hillsman et al. describes a laser catheter device that 30 enables ablation of an occlusion in the vasculature. This system has similar drawbacks to the ones described above—need for a guidance system, potential for healthy tissue to be ablated, complexity (and hence cost) of the device, etc.

One major problem with the existing devices is the potential for the ablation energy to damage the walls of the vasculature, in the absence of a mechanism to track the orientation

11 Oct 2012
2008304599

and position of the energy delivery member. Several devices exist in the prior art that address the issue of tracking and steering of the energy delivery element. US Patent Number 6,911,026 to Hall et al. describes a magnetic steering and guidance system to direct an ablation device that delivers RF energy at the tip in a unipolar configuration where the return electrode is placed externally in contact with the body or in a bipolar configuration where the return electrode is a ring surrounding the central wire electrode.

US Patent Number 6,416,523 to Lafontaine discusses a mechanical cutting device where the guidance is provided by measuring impedance of the tissue in contact. The guidance system senses the difference in impedance between the stenotic tissue and the vessel wall and directs the cutting element to the occlusion.

However, none of these alternate strategies have provided satisfactory results for the most challenging of the CTOs. In case of hard calcified occlusions, the revascularization procedure can be tedious and time consuming. Therefore, there is a need for improved methods of ablating or disrupting the occlusive material that are safe, efficacious and fast. It would be beneficial to have alternate techniques and devices that would recanalize a CTO without the shortcomings of the current techniques.

CTOs that are hard to recanalize, either because of the tortuous anatomy of the diseased vessel, or because the proximal end of the stenosis is too hard for the guide wire to penetrate, or other characteristics of the CTO that would make the standard procedure vulnerable to failure would benefit from newer approaches to recanalize CTOs. Recently a combined antegrade-retrograde approach has been proposed for recanalizing chronic occlusions (US Application Serial Number 11/706,041). The method disclosed in the co-pending application would benefit from the use of energy for crossing CTOs.

SUMMARY OF THE INVENTION

In one aspect, the present invention provides a method of recanalizing a vessel having an occlusion having a proximal end and a distal end, comprising:

advancing a first longitudinal member having a distal end provided with a first conductive electrode in an antegrade fashion to the proximal end of the occlusion;

advancing a second longitudinal member having a distal end provided with a second conductive electrode in a retrograde fashion to the distal end of the occlusion;

applying radio frequency energy between the first and second conductive electrodes to provide a bipolar arrangement between the electrodes that ablates the occlusion; and recanalizes the vessel through the occlusion.

In another aspect, this invention provides a system for use with a radio frequency generator to recanalize a vessel having an occlusion with a proximal end and a distal end, comprising:

5 at least one coupler adapted to electrically couple to the radio frequency generator;

an antegrade longitudinal member with a proximal end and a distal end, wherein the distal end of the antegrade longitudinal member includes a first conductive electrode and the proximal end of the antegrade longitudinal member is configured to be electrically coupled to the at least one coupler; and

0 a retrograde longitudinal member with a proximal end and a distal end, wherein the distal end of the retrograde longitudinal member includes a second conductive electrode and the proximal end of the retrograde longitudinal member is configured to be electrically coupled to the at least one coupler;

5 the antegrade longitudinal member being configured for antegrade advancement so that the first conductive electrode is at the proximal end of the occlusion and the retrograde longitudinal member being configured for retrograde advancement so that the second conductive electrode is at the distal end of the occlusion whereby the radio frequency generator supplies radio frequency energy through the at least one coupler to at least one of the first and second 0 conductive electrodes to provide a bipolar arrangement between the electrodes that ablates the occlusion.

Other aspects of the invention include methods or systems corresponding to the method and system described above.

25

BRIEF DESCRIPTION OF THE DRAWINGS

The invention has other advantages and features which will be more readily apparent from the following detailed description of the invention and the appended claims, when taken in conjunction with the accompanying drawings, in which:

30 Figure 1 is a schematic showing an RF generator connected to the longitudinal members.

Figure 2 shows the features of the longitudinal members.

Figures 3A and 3B show the steps involved in recanalizing a CTO using bipolar RF and combined antegrade and retrograde approach.

Figure 4 shows an example embodiment of a longitudinal member comprising an embolic protection mechanism.

Figures 5A-C show a longitudinal member structurally configured along at least part of the length of the catheter to enable advancement or alignment of the longitudinal member 5 through a narrow diameter blood vessel or occlusion.

DETAILED DESCRIPTION

Although the detailed description contains many specifics, these should not be construed as limiting the scope of the invention but merely as illustrating different examples 10 and aspects of the invention. It should be appreciated that the scope of the invention includes other embodiments not discussed in detail above. Various other modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus of the present invention disclosed herein without departing from the spirit and scope of the invention as described here.

15 The present embodiments combine the use of RF energy delivered through antegrade and retrograde members for recanalizing occluded lumens, particularly chronic total occlusions. The methods and systems described herein recanalize difficult to cross occlusions by taking advantage of an antegrade and retrograde approach to establish a bipolar electrode arrangement across the occlusion. This approach minimizes the potential of the vessel wall 20 becoming perforated or injured, as may otherwise occur in a conventional bipolar RF treatment approach, where both RF electrodes are on the same side of the occlusion. Because the electrodes are distributed on opposite sides of the occlusion, the tissue that is ablated by the RF treatment (i.e., the occlusion) is well contained between the electrodes. This also allows the user to localize the treatment to the occlusion.

25 As disclosed in the co-pending US Patent Application Serial Number 11/706,041 by the same inventors, which is incorporated herein in its entirety, in the controlled antegrade and retrograde tracking (CART) technique the retrograde approach takes advantage of an intercoronary channel. Such a channel may be an epicardial channel, an inter-atrial channel, an intra-septal channel (also referred to as septal collateral), or a bypass graft. The basic concept 30 of the CART technique is to create a channel through an occlusion, preferably with limited dissections, by approaching the occlusion both antegrade and retrogradely.

While the combined antegrade and retrograde approach has been effective in crossing difficult to cross lesions, it has been observed that using energy, for example RF energy, to ablate or alter the tissue in a controlled fashion is beneficial in crossing hard to cross lesions.

Such controlled energy deployment is achieved using a bipolar arrangement of the electrodes, where one electrode is located on the antegrade element and the other electrode that constitutes the bipolar arrangement is located on the retrograde element. These electrodes can also be referred to as the return and active electrodes. They are also referred to as the anode and cathode, respectively. The electrodes could also be arranged in an array (multiple electrodes), where the electrode arrangement provides better control over the depth of penetration of the RF field and thereby provides the ability to control the tissue temperature.

Figure 1 shows a system for recanalizing occluded vessels using RF energy. The system comprises longitudinal members **100a** and **100b** for delivering RF energy to an occlusion. As indicated in Figure 1, longitudinal member **100a** serves as an antegrade member and longitudinal member **100b** serves as a retrograde member. An RF generator **10** (also referred to as a controller) serves as the source of RF energy to be provided to longitudinal members **100a** and **100b**. Longitudinal members **100a** and **100b** may be guidewires, catheters, micro-catheters, or dilating catheters. In a preferred embodiment, longitudinal members **100a** and **100b** are guidewires. Thus, while in the following description the term “guidewire” is used to refer to a longitudinal member **100a** or **100b**, it is understood that the term “guidewire” as used herein is intended to include any other type of longitudinal member.

To provide RF energy from the RF generator **10** to the guidewires **100a** and **100b**, a pigtail **20** connects at its proximal end to the RF generator **10** and terminates at its distal end in a connector **30**. Connector **30** is a standard connector that couples the input and output signals of the RF generator **10** to the guidewires **100a** and **100b**.

Guidewires **100a** and **100b** are configured to have sufficient torsional rigidity and longitudinal flexibility to advance through an occlusion, and to align their electrodes in a direction away from the vessel wall, towards the other longitudinal member, or any combination thereof.

As shown in Figure 2, the antegrade and retrograde guidewires **100a** and **100b** have conductive electrodes **105a** and **105b**, respectively, at their distal ends. In one embodiment, the electrodes **105a** and **105b** are located on one side of their respective guidewires **100a** and **100b**, thereby providing the operating physician with the freedom to allow the electrode-free side of the guidewire to touch the vessel wall (if needed) while still directing the RF energy away from the vessel wall. Additionally, this allows the configuration to direct the RF energy away from the vessel wall, thereby minimizing potential RF injury to the vessel wall. In one embodiment, one or more of the guidewires comprises a plurality of electrodes arranged in an array.

Conductive wires (not shown) connect the electrodes **105a** and **105b** to connector **30** to deliver RF energy from the RF generator **10** to the electrodes **105a** and **105**. The exterior of the guidewires are covered by non-conductive layers **115a** and **115b**, respectively, that sandwich the conductive wires between the guidewires and the non-conductive layers. In one 5 embodiment, the non-conductive layers **115a** and **115b** comprise a sheath or a coating.

In one embodiment, and as further shown in Figure 2, the guidewires **100a** and **100b** comprise temperature measuring elements **110a** and **110b** at the distal tip of the antegrade and retrograde guidewires, respectively. In one embodiment, the temperature measuring elements **110a** and **110b** comprise thermocouples or thermistors that are connected to the connector **30**.

10 In another embodiment, pressure measuring elements are placed on the distal ends of the guidewires to detect a change in pressure upon activation of the RF energy.

RF generator **10** is configured to allow the user to set a maximum temperature, a treatment time period, a level of RF power, or a combination of these control parameters. The treatment time period indicates the period of time over which the RF energy will flow between 15 the electrodes. The maximum temperature setting serves as a threshold temperature for the tissue that is in contact with the electrodes, and the RF generator **10** can be set to reduce or shut off power to one or both electrodes when one or more of the temperature measuring elements **110a** and **110b** indicate a tissue temperature at or near the threshold.

20 In one embodiment, the generator **10** is capable of measuring the impedance of the tissue between the two electrodes **105a** and **105b**. Based on the type of the occlusion (i.e., the nature of the calcified material), the user can choose the appropriate combination of temperature, treatment time, and the amount of RF energy to be provided to the tissue to achieve a safe and effective treatment. Alternatively, the treatment may proceed with the user 25 manually controlling the parameters during the recanalization procedure, with the user treating the occlusion until recanalization is achieved.

The sequence of the recanalization treatment steps are illustrated in Figures 3A and 3B. As shown in diagram A of Figure 3A, the antegrade guidewire **100a** and retrograde guidewire **100b** are advanced to the proximal and distal ends **310a** and **310b** of the occlusion **310**, respectively. This can be accomplished using standard angioplasty techniques. As described 30 in the above referenced co-pending US Patent Application Serial Number 11/706,041, the retrograde guidewire can be advanced to the distal end of the occlusion **310b** using collaterals such as the septals.

Once the user has confirmed that the guidewires **100a** and **100b** are in contact with the occlusion **310** and are not touching the vessel wall **300**, the RF treatment is initiated.

Alternatively, the guidewires are advanced as deep into the occlusion as possible to minimize the distance between the electrodes and, consequently, minimize the length of the ablation zone. Confirmation that the guidewires **100a** and **100b** are in an appropriate position can be generated by impedance measurements and/or by using any of the standard imaging techniques employed during interventional procedures, such as fluoroscopy or intravascular ultrasound (IVUS), in which transducers are placed on the distal ends of the guidewire. When using tissue impedance measurements, the calcified occlusion **310** generally exhibits significantly higher impedance than the vessel wall **300**. If an impedance measurement indicates a low impedance value, it is likely that one or both guidewires are in contact with the vessel wall **300**, and appropriate repositioning of the guidewires may be warranted.

Upon initiating the recanalization RF treatment, the occlusion **310** is ablated from the ends **310a** and **310b** of the occlusion **310** to the interior of the occlusion **310**, as shown in Figure 3A diagram B. The user then slowly and carefully advances one or both guidewires **100a** and **100b** until a channel or path is created in the occlusion **310**, as shown in Figure 3A diagram C. As shown in Figure 3A, the antegrade guidewire **100a** may be kept stationary and the retrograde guidewire **100b** may be advanced through the occlusion **310**. Once a channel has been created, the retrograde guidewire **100b** may be withdrawn and the antegrade guidewire **100a** may be advanced through the occlusion **310**, as shown in Figure 3A diagram D, and standard interventional procedures, such as balloon angioplasty, can be performed.

Alternatively, the retrograde guidewire **100b** can be kept stationary during the RF treatment and the antegrade guidewire **100a** can be advanced through the occlusion **310**. This is illustrated in Figure 3B diagrams A – D.

Optionally, the catheter comprises a means for removing or withdrawing debris resulting from the RF ablation. For example, a mechanism could be provided to capture and retrieve the debris, or a suction device could be provided to actively remove the debris near the ablation area. Examples of such embolic protection mechanisms are disclosed in the above referenced co-pending US Patent Application Serial Number 11/706,041. Figure 4 shows an example embodiment of a longitudinal member **400** comprising an embolic protection mechanism **410**. The embolic protection mechanism **410** comprises filter, mesh, net, or similar element, for capturing and retrieving ablation debris. As another example, the embolic protection may comprise a balloon for occluding the vessel and preventing the debris from circulating, and for subsequent aspiration of the debris through a longitudinal member. As another example, if a sheath is provided, such sheath may also be configured to be or to include a debris capture and retrieval mechanism or a suction device. In one embodiment, a

longitudinal member may be retracted, and the remaining sheath may be used as a capture and retrieval mechanism or a suction device to remove ablation debris. In another embodiment, the longitudinal member comprises an ablating wire housed in the lumen of a dilating catheter. Upon ablation, the ablating wire may be retracted and the dilating catheter may be used to 5 remove the debris. Alternatively, the system comprises a separate catheter to provide suction, or otherwise capture and remove the debris from the ablation site.

Optionally, the device may be coupled to an electrocardiogram (EKG) machine to aid in timing energy emissions. For example, the rate of blood flow through the coronary arteries typically varies during the cardiac cycle. During systole when the heart is contracting, flow 10 through the arteries is generally lower than during diastole. In one embodiment, energy emission is timed during diastole, for example using an algorithm to detect the R-wave of an EKG, and energy emission is timed to occur when flow is highest, thereby maximizing the cooling effect provided by blood flow and consequently minimizing the heat exposure to the vessel. Additionally, coronary artery dimensions can vary during the cardiac cycle and energy 15 emission can similarly be timed to take advantage of this fact.

Optionally, the device comprises a mechanism for detecting or estimating the distance between the electrodes, and for decreasing the amount of delivered RF energy as the distance between the electrodes decreases, thereby minimizing potential RF injury to the vessel wall.

In another embodiment, the device is an ablation catheter comprising a longitudinal member having a distal end, a proximal end, and a guidewire shaft there-between comprising a guidewire lumen. The longitudinal member is a dilating catheter and is structurally configured along at least part of the length of the catheter to enable advancement or alignment of the longitudinal member through a narrow diameter blood vessel or occlusion. Advancement is achieved, for example, by turning or twisting the longitudinal member. Figures 5A-C show 20 such an embodiment of the present invention. For example, as shown in Figure 5A, the longitudinal member 500 may comprise a helical exterior 501 that advances through the vessel and dilates the vessel as the member is being twisted or rotated. Helical exterior 501 comprises a plurality of grooves 502 carved into the outer body of the longitudinal member 500. The distal tip of longitudinal member 500 optionally comprises a radiopaque marker 510. An 25 electrode 520 is located at or near the distal end of the catheter. Another example is shown in Figure 5B, the cross section of which is shown in Figure 5C. The longitudinal member 550 may comprise a plurality of wires 551 and 552 wound around a liner 565. In one embodiment, the wires 551 and 552 comprise at least two different diameters. Longitudinal member 550 30 optionally terminates at a marker 570. An electrode 580 is located at or near the distal end of

the longitudinal member 550. The ablation catheter additionally and optionally comprises conductive wires for transmitting energy between the electrode and an external energy source. Alternatively, the plurality of wires may be configured to act as the electrode or conductive wires. Additionally and optionally, the catheter comprises an insulating sheath 5 560 which is optionally retractable.

The guidewires and electrodes may be made from any one or more suitable materials as is commonly known in the art. Examples of such suitable materials include stainless steel, Nitinol, Elgiloy, platinum, iridium, tantalum, titanium, cobalt, chromium, or any combinations thereof. In one embodiment, one or more of the guidewires may be made of a 10 polymer, with an electrically conductive core for transmitting electrical energy to the respective electrodes.

While the above embodiments refer to the use of RF energy for the purpose of ablation, it should be noted that other energy modalities may be used as well, for example 15 ultrasound energy. In one embodiment, one or more longitudinal members of the recanalization systems of the present invention comprise one or more ultrasound transducers, instead of or in addition to RF electrodes. The ultrasound transducers provide ultrasound energy for ablating an occlusion. In one embodiment, both the antegrade and the retrograde longitudinal members comprise ultrasound transducers and ablate the lesion from an antegrade as well as a retrograde direction. Other energy modalities could include microwave and laser.

20 It should be noted that the combined antegrade and retrograde energy delivery techniques described above could also be used as an adjunct technique to crossing CTOs in combination with using conventional methods. The technique could be used to sufficiently soften or weaken the occlusion, thereby allowing a guidewire or catheter to cross the occlusion.

25 While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.

30 In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word “comprise” or variations such as “comprises” or “comprising” is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

It is to be understood that, if any prior art publication is referred to herein, such

reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

2008304599
11 Oct 2012WHAT IS CLAIMED IS:

1. A method of recanalizing a vessel having an occlusion having a proximal end and a distal end, comprising:

5 advancing a first longitudinal member having a distal end provided with a first conductive electrode in an antegrade fashion to the proximal end of the occlusion;

advancing a second longitudinal member having a distal end provided with a second conductive electrode in a retrograde fashion to the distal end of the occlusion;

0 applying radio frequency energy between the first and second conductive electrodes to provide a bipolar arrangement between the electrodes that ablates the occlusion; and

recanalizes the vessel through the occlusion.

2. The method of claim 1, further comprising coupling the first and second

5 longitudinal members to a radio frequency generator.

3. The method of claim 2, wherein the coupling step includes coupling the first and second longitudinal members to the radio frequency generator by means of at least one coupler.

4. The method of claim 1, further comprising: timing the applying to occur when blood flow is highest, thereby maximizing the cooling effect of blood flow and minimizing heat exposure to the vessel.

25 5. The method of claim 1, further comprising: timing the applying with an electrocardiogram (EKG) signal.

6. The method of claim 5, wherein the timing comprises detecting an R-wave of the electrocardiogram (EKG) signal.

30 7. A system for use with a radio frequency generator to recanalize a vessel having an occlusion with a proximal end and a distal end, comprising:

at least one coupler adapted to electrically couple to the radio frequency generator;

11 Oct 2012

2008304599

an antegrade longitudinal member with a proximal end and a distal end, wherein the distal end of the antegrade longitudinal member includes a first conductive electrode and the proximal end of the antegrade longitudinal member is configured to be electrically coupled to the at least one coupler; and

5 a retrograde longitudinal member with a proximal end and a distal end, wherein the distal end of the retrograde longitudinal member includes a second conductive electrode and the proximal end of the retrograde longitudinal member is configured to be electrically coupled to the coupler;

10 the antegrade longitudinal member being configured for antegrade advancement so that the first conductive electrode is at the proximal end of the occlusion and the retrograde longitudinal member being configured for retrograde advancement so that the second conductive electrode is at the distal end of the occlusion whereby the radio frequency generator supplies radio frequency energy through the at least one coupler to at least one of the first and second conductive electrodes to provide a bipolar arrangement between the 15 electrodes that ablates the occlusion.

8. The system of claim 7, wherein the longitudinal members comprise an internal guidewire lumen.

20 9. The system of claim 7, wherein the longitudinal members are guidewires or catheters or micro-catheters or dilating catheters.

10. The system of claim 7, wherein the longitudinal members have sufficient torsional rigidity and longitudinal flexibility to advance through an occlusion and to align the 25 electrodes away from the vessel wall and towards each other.

11. The system of claim 7, wherein the electrodes are mounted on one side of the longitudinal members.

30 12. The system of claim 7, wherein the electrodes are arranged in an array.

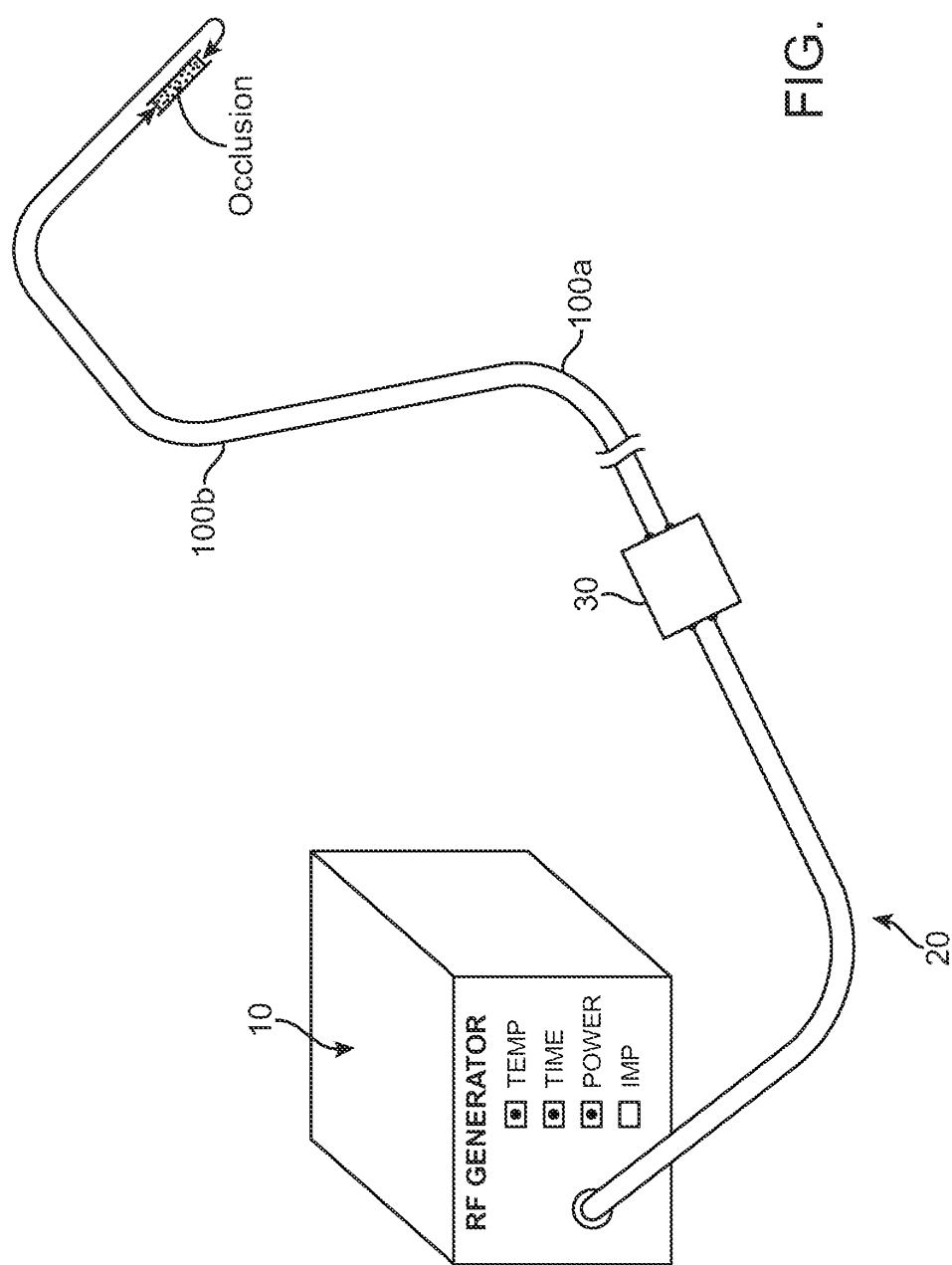
13. The system of claim 7 wherein at least one of the longitudinal members comprises an embolic protection mechanism for capturing and retrieving debris.

2008304599
11 Oct 2012

14. The system of claim 13, wherein the embolic protection mechanism is a filter.

15. The system of claim 13, wherein the embolic protection mechanism comprises a balloon.

16. The system of claim 13, wherein the embolic protection mechanism comprises a lumen which allows for aspiration through one of the longitudinal members.


17. The system of claim 7 in combination with the radio frequency generator, wherein the at least one coupler is electrically coupled to the radio frequency generator and the proximal end of the antegrade longitudinal member and the proximal end of the retrograde longitudinal member are electrically coupled to the at least one coupler and wherein the radio frequency generator is configured to create a bipolar arrangement with the first and second conductive electrodes so as to ablate the occlusion and create a channel in the occlusion.

18. The system of claim 17, further comprising circuitry in the radio frequency generator for controlling and generating radiofrequency energy.

19. The system of claim 17, further comprising a connection port in the radio frequency generator configured to connect to an EKG to time energy emission.

20. A method of recanalizing a vessel having an occlusion or a system, substantially as herein described with reference to the accompanying drawings.

FIG. 1

+

2 / 6

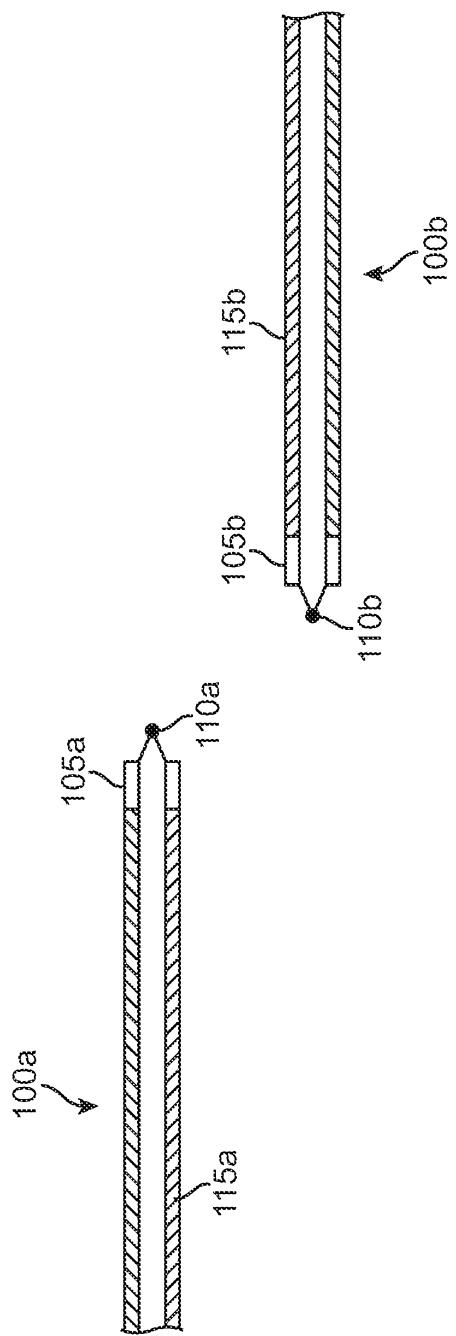


FIG. 2

+

+

3 / 6

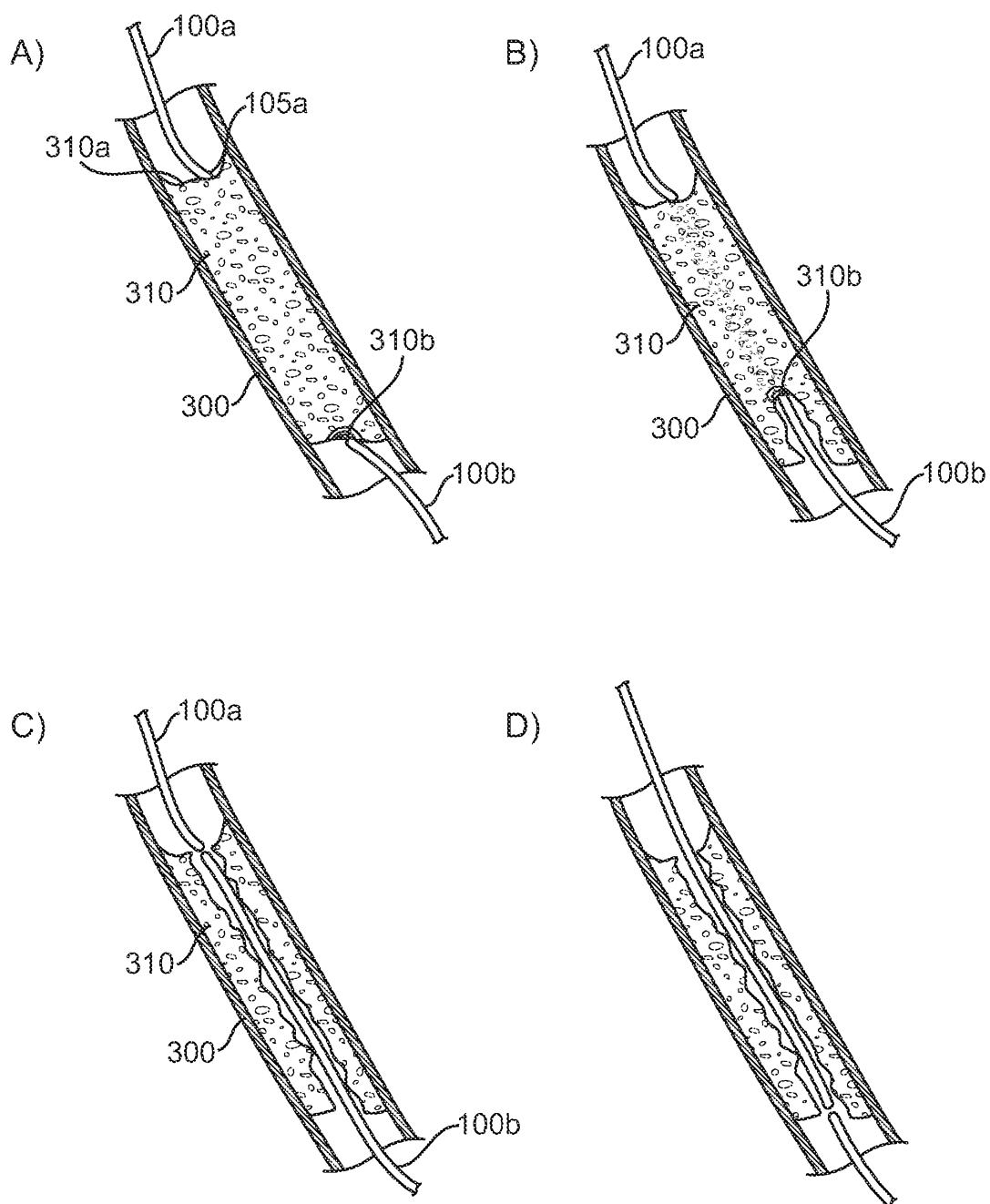


FIG. 3A

+

+

4 / 6

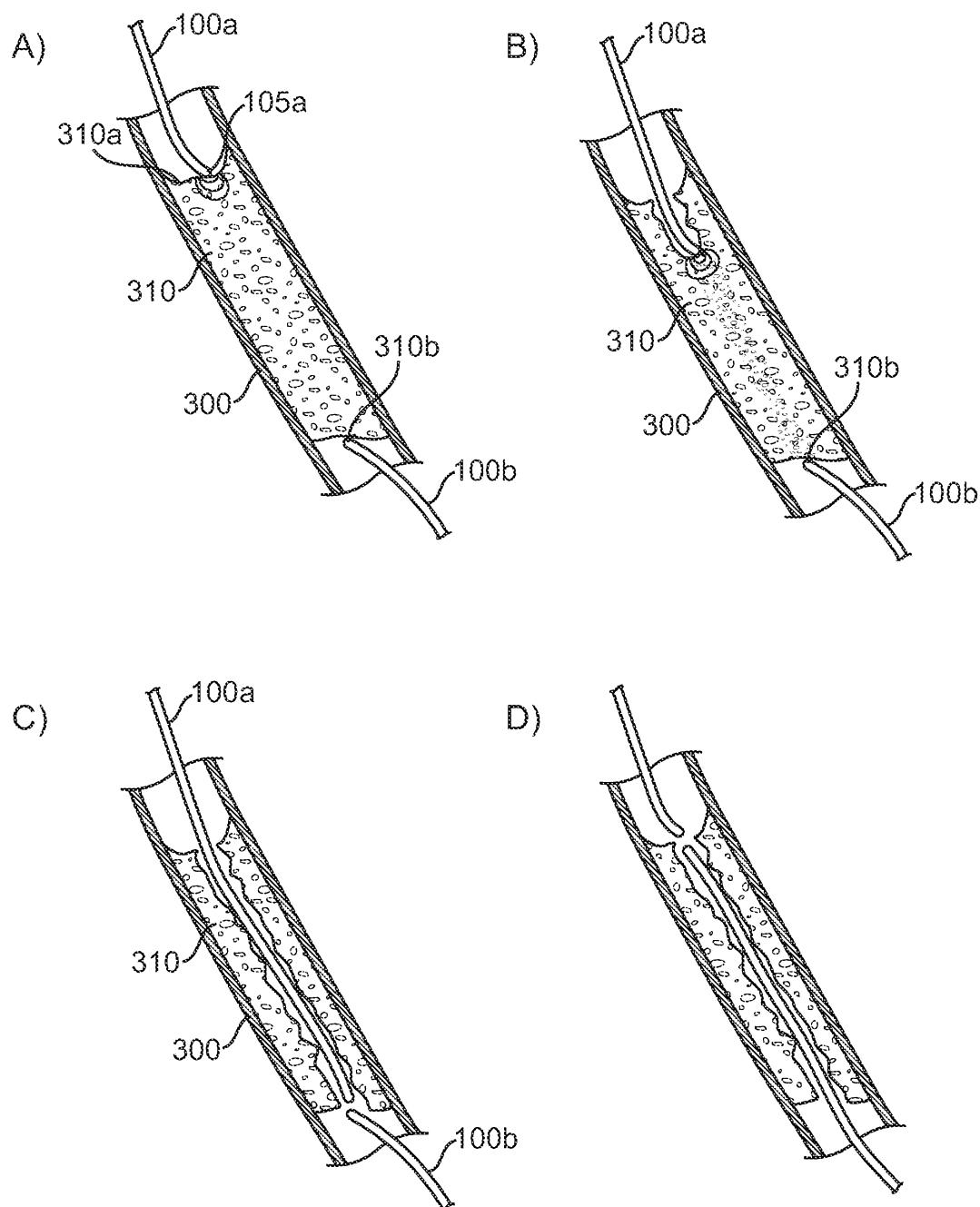


FIG. 3B

+

+

5 / 6

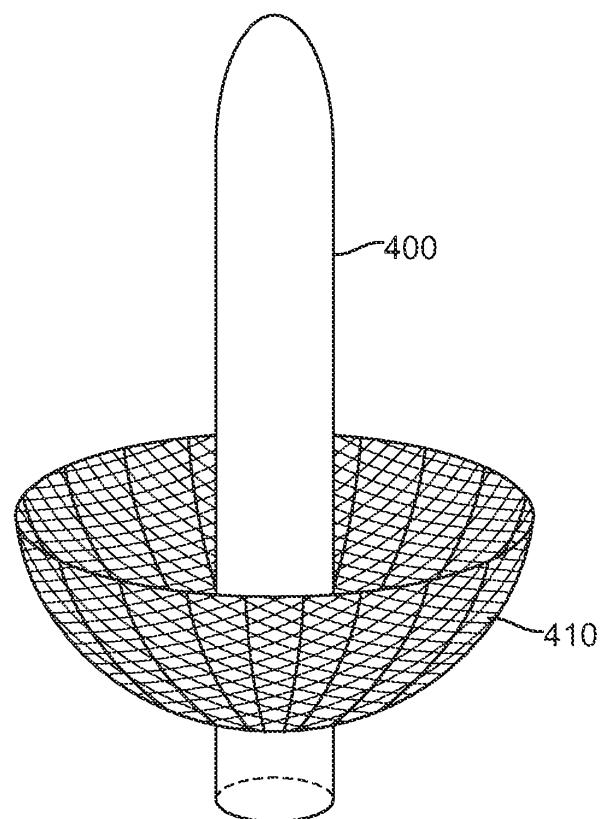


FIG. 4

+

+

6 / 6

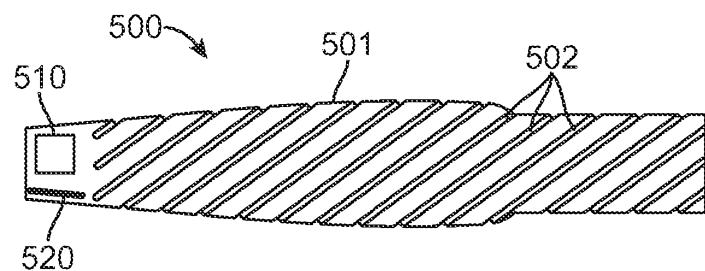


FIG. 5A

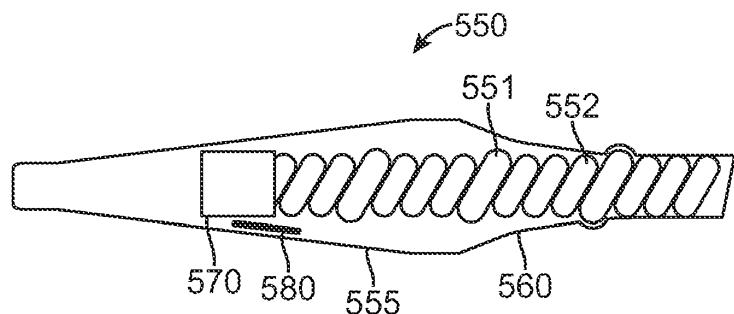


FIG. 5B

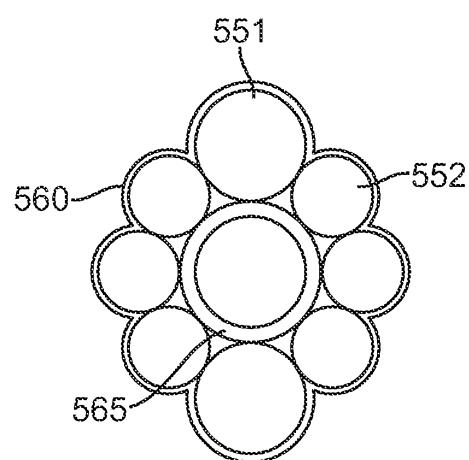


FIG. 5C

+