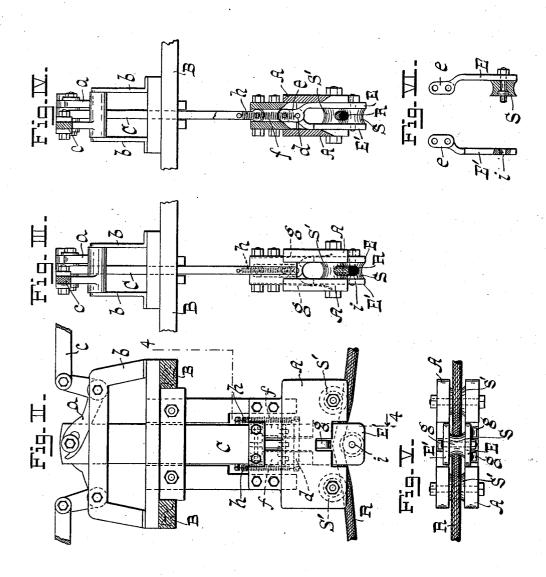

L. HACHENBERG. CABLE GRIP.

No. 536,425.

Patented Mar. 26, 1895.

WITNESSES: Chas. W. Thomas Eugenie a. Persides INVENTOR:
Louis Hachenberg;

BY

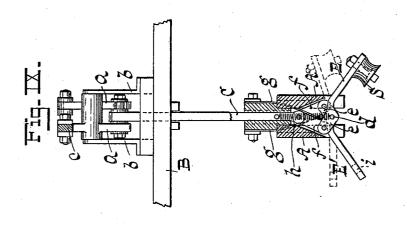

AFalwanfamy

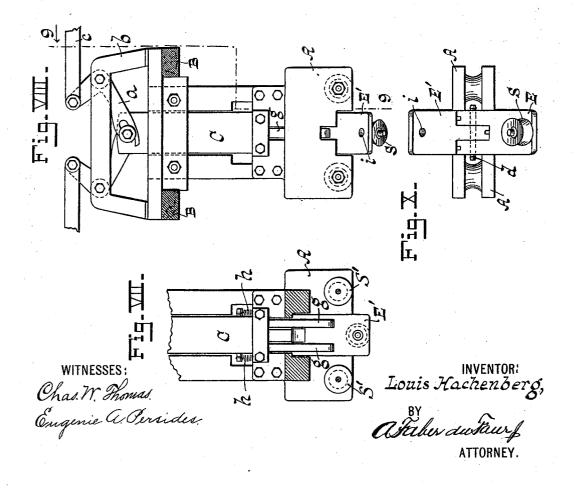
Attorney

L. HACHENBERG. CABLE GRIP.

No. 536,425.

Patented Mar. 26, 1895.


WITNESSES: Chas. W. Thomas. Eugenie a. Versides.


INVENTOR: Louis Hackenberg, BY Affalen ausaurs.

L. HACHENBERG. CABLE GRIP.

No. 536,425.

Patented Mar. 26, 1895.

United States Patent Office.

LOUIS HACHENBERG, OF NEW YORK, N. Y.

CABLE-GRIP.

SPECIFICATION forming part of Letters Patent No. 536,425, dated March 26, 1895.

Application filed February 16, 1895. Serial No. 538,602. (No model.)

To all whom it may concern:

Be it known that I, Louis Hachenberg, a citizen of the United States of America, residing at New York, in the county and State 5 of New York, have invented certain new and useful Improvements in Cable-Grips, of which the following is a specification.

My invention has reference to a cable-grip for cables running in underground conduits to and has for its object to provide means whereby the cable can be quickly lifted and gripped by the use of a single operating lever with little or no injury to the cable itself with

continued use.

To this end my invention consists essentially in the combination with a grip-body, of hinged wings having a link connection with the shank, a lifting sheave mounted on one of said wings, two wedging surfaces lo-20 cated in the grip-body on opposite sides of the grip-shank, an operating lever, intermediate connections between said lever and the grip-shank for reciprocating the same, and springs acting on the wings for spreading the 25 same on the depression of the grip shank.

The nature of my said invention will best be understood when described in connection with the accompanying drawings, in which-

Figure 1 represents a side elevation of a 30 cable car provided with my improved grip. Fig. 2 is a side elevation of the grip drawn on an enlarged scale. Fig. 3 is a sectional end elevation. Fig. 4 is a vertical section on the line 4—4, Fig. 2. Fig 5 is a bottom view 35 of Fig. 2. Fig. 6 represents the two wings of the grip in detail. Fig. 7 is a sectional side elevation, part being broken away. Fig. 8 is side elevation showing the grip-shank partially depressed. Fig. 9 is a vertical section 40 on the line 9-9, Fig. 8. Fig. 10 is a bottom view of Fig. 9.

Similar letters of reference designate corresponding parts thoughout the several views

of the drawings.

Referring now to the drawings, the letter A designates the grip-body suspended from the frame of the truck B in any suitable manner. Within said body is mounted, and guided to reciprocate vertically, the grip-shank C, the 50 upper end of which is engaged by bell crank levers a a pivoted to frames b attached to the grip-body. The bell crank levers a a are vi- l erating lever is turned in the opposite direc-

brated by means of either of the operating levers D D' (Fig. 1) located on the opposite platforms of the car, as usual, and to which 55

they are connected by links cc.

E E' designate two wings pivoted to swing about a common shaft d. The ends of the wings are provided with upwardly projecting arms e which are connected by links f to the 60 lower end of the grip-shank C. The wings, when brought together, fit snugly in the bifurcated, or yoke-shape, end of the grip-body (Figs. 3 and 4), and, in addition thereto, are held together by flat springs g g located in 65 vertical grooves in the grip-body and bearing upon the backs of said wings. The wings are, furthermore, acted on by two spiral springs h h attached to the ends of the shaft d and to the grip-shank. In the wing E is 70 mounted a lifting sheave S, the pintle of which is adapted to enter a bearing i in the opposite wing E' when the two wings are brought together.

Within the bifurcated end of the grip-body 75 A are mounted two wedging surfaces S' S' located respectively on opposite sides of the grip-shank C and in the plane of the lifting sheave S when the latter is in its operative position. In the present example I have so shown the wedging surfaces in the form of rotatable sheaves, but I do not wish to restrict myself to the use of the same. The general object of the present construction is to lift the cable R when the car is to be started and 85 to wedge it between the lifting sheave S and the wedging sheaves S' S'; while at other times the parts are above the cable, and the car can pass over cross cables without interterference.

The operation of the grip is as follows: Assuming the parts to be in the position shown in Figs. 8 and 9 and that it is desired to start the car, the lever D is thrown over in the proper direction to lift the grip-shank C, 95 thereby drawing the wings E E' together and upwardly by means of the link connection f and the arms ee. The lifting sheave Sengages with and lifts the cable, drawing it up firmly between the two wedging sheaves S' 100 S', and it is held in this position by a usual pawl and segment j in connection with the operating lever. To release the grip the option causing the grip-shank to be lowered and freeing the wings from the grip-body (Fig. 9). On the downward movement of the wings the free ends of the flat springs g g leave the 5 body of the wings and engage with and press upon the arms e e thereof, thereby turning said wings about their shaft \bar{d} to open the same. Simultaneously therewith the spiral springs, h, acting on the shaft d, assist in opening the wings to release the cable and then hold the same open.

What I claim as new is-

1. A grip for cable cars comprising in its structure a grip-body, a reciprocating gripshank moving vertically within said body, hinged wings in connection with said shank, a lifting sheave mounted on one of said wings, two wedging surfaces on the grip-body located on opposite sides of the grip-shank, springs adapted to act on said wings for opening the same, and means for operating the grip-shank, substantially as described.

substantially as described.

2. A grip for cable cars comprising in its structure a grip body, a reciprocating grip
5 shank moving vertically within said body, hinged wings provided with upwardly projecting arms, links connecting said arms with the grip-shank, a lifting sheave mounted on one of said wings, two wedging sheaves on the grip-body located on opposite sides of the shank, springs adapted to act on said wings for opening the same, and means for op-

erating the grip-shank, substantially as described.

3. A grip for cable cars comprising in its 35 structure a grip-body, a reciprocating grip-shank moving vertically within said body, hinged wings provided with upwardly projecting arms, links connecting said arms with the grip-shank, a lifting sheave mounted on 40 one of said wings, two wedging surfaces on the grip-body located on opposite sides of the shank, flat springs secured in the body and acting on the wings to open the same, spiral springs attached to the grip-shank and to the 45 shaft of the wings, and means for operating the grip-shank, substantially as described.

4. A grip for cable cars comprising in its structure a grip-body, a reciprocating grip-shank moving vertically within said body, 50 hinged wings in connection with said shank, a lifting sheave mounted on one of said wings, two wedging surfaces on the grip-body located on opposite sides of the same, an operating lever, and a link and bell crank lever connecting the latter with the grip-shank, substantially as and for the purpose specified.

In testimony that I claim the foregoing as my invention I have signed my name in the presence of the two subscribing witnesses.

LOUIS HACHENBERG.

Witnesses:

A. FABER DU FAUR, Jr., EUGENIE A. PERSIDES.