

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2005-508419
(P2005-508419A)

(43) 公表日 平成17年3月31日(2005.3.31)

(51) Int.Cl.⁷

C08G 81/00

F 1

C08G 81/00

テーマコード(参考)

4 J O 3 1

審査請求 未請求 予備審査請求 有 (全 68 頁)

(21) 出願番号 特願2003-542251 (P2003-542251)
 (86) (22) 出願日 平成14年10月7日 (2002.10.7)
 (85) 翻訳文提出日 平成16年4月30日 (2004.4.30)
 (86) 國際出願番号 PCT/US2002/032085
 (87) 國際公開番号 WO2003/040208
 (87) 國際公開日 平成15年5月15日 (2003.5.15)
 (31) 優先権主張番号 10/000913
 (32) 優先日 平成13年11月2日 (2001.11.2)
 (33) 優先権主張国 米国(US)

(71) 出願人 390041542
 ゼネラル・エレクトリック・カンパニー
 GENERAL ELECTRIC CO
 MPANY
 アメリカ合衆国、ニューヨーク州、スケネ
 クタディ、リバーロード、1番
 (74) 代理人 100093908
 弁理士 松本 研一
 (74) 代理人 100105588
 弁理士 小倉 博
 (74) 代理人 100106541
 弁理士 伊藤 信和
 (74) 代理人 100129779
 弁理士 黒川 俊久

最終頁に続く

(54) 【発明の名称】固相重合によるブロックコポリマーの製造方法

(57) 【要約】

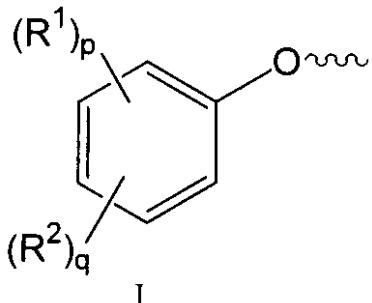
【課題】

固相重合でブロックコポリマーを製造する方法。

【解決手段】

活性化末端アリールオキシ基、例えば末端メチルサリチル基を有する部分結晶質ポリカーボネートの混合物は、固相重合条件下で、反応性末端ヒドロキシ基を有するオリゴマー状ポリエステルと共に加熱すると、ブロックコポリマーを生成する。この活性化末端アリールオキシ基は、出発原料のブロック長を保存する上で重要な役割を果たす。部分結晶質ポリカーボネートが活性化末端アリールオキシ基を欠いている対照試料、例えばフェノールで置換したポリカーボネートは、ずっと低い分子量でより高度にランダム化されたコポリマー生成物を生成する。このブロックコポリマー生成物は「耐候性」プラスチック材料として有用である。

【特許請求の範囲】

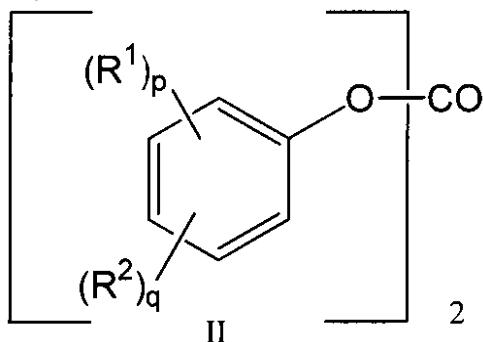

【請求項 1】

固相重合条件下で、活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料（A）を、反応性末端ヒドロキシ基を有する1種類以上のポリマー種（B）と接触させてブロックコポリマー生成物を生成させることを含んでなる、ブロックコポリマーの製造方法。

【請求項 2】

部分結晶質ポリカーボネート出発原料（A）が次の構造Iの末端アリールオキシ基を含む、請求項1記載の方法。

【化1】



式中、R¹は各々独立に、C₁～C₂₀脂肪族基、C₄～C₂₀脂環式基又はC₄～C₂₀芳香族基であり、R²は各々独立に、ハロゲン原子、ニトロ基、シアノ基、C₁～C₂₀アルコキシカルボニル基、C₁～C₂₀アシル基、C₄～C₂₀シクロアルコキシカルボニル基、C₆～C₂₀アリールオキシカルボニル基、C₁～C₂₀アルキルアミノカルボニル基、C₂～C₄₀ジアルキルアミノカルボニル基又はC₁～C₂₀ペルフルオロアルキル基であり、pは0～4の値を有する整数であり、qは1～5の値を有する整数である。

【請求項 3】

部分結晶質ポリカーボネート出発原料（A）が、1種類以上のジヒドロキシ芳香族化合物及び1種類以上の次式のジアリールカーボネートIIから誘導された構造単位を含む、請求項1記載の方法。

【化2】

式中、R¹は各々独立に、C₁～C₂₀脂肪族基、C₄～C₂₀脂環式基又はC₄～C₂₀芳香族基であり、R²は各々独立に、ハロゲン原子、ニトロ基、シアノ基、C₁～C₂₀アルコキシカルボニル基、C₁～C₂₀アシル基、C₄～C₂₀シクロアルコキシカルボニル基、C₆～C₂₀アリールオキシカルボニル基、C₁～C₂₀アルキルアミノカルボニル基、C₂～C₄₀ジアルキルアミノカルボニル基又はC₁～C₂₀ペルフルオロアルキル基であり、pは0～4の値を有する整数であり、qは1～5の値を有する整数である。

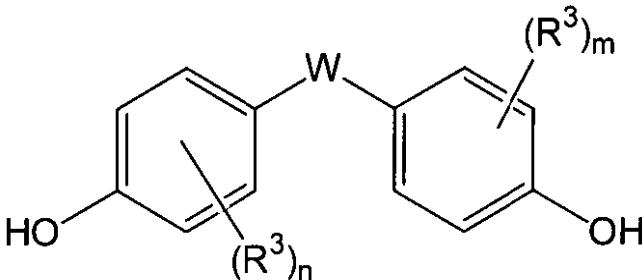
【請求項 4】

ジアリールカーボネートIIが、ビス（2-メトキシカルボニルフェニル）カーボネート、ビス（2-エトキシカルボニルフェニル）カーボネート、ビス（2-ブトキシカルボニルフェニル）カーボネート及びビス（2,4,6-トリフルオロフェニル）カーボネートからなる群から選択される、請求項3記載の方法。

10

20

30

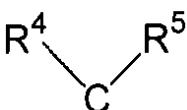

40

50

【請求項 5】

ジヒドロキシ芳香族化合物が次の構造 III のビスフェノールである、請求項 3 記載の方法。

【化 3】

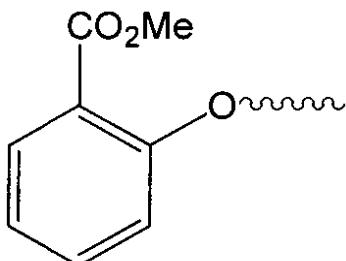


10

III

式中、R³は各々独立に、ハロゲン原子、ニトロ基、シアノ基、C₁～C₂₀アルキル基、C₄～C₂₀シクロアルキル基又はC₆～C₂₀アリール基であり、n及びmは独立に整数0～4であり、Wは結合、酸素原子、イオウ原子、SO₂基、C₁～C₂₀脂肪族基、C₆～C₂₀芳香族基、C₆～C₂₀脂環式基又は次式の基である。

【化 4】


20

式中、R⁴及びR⁵は独立に、水素原子、C₁～C₂₀アルキル基、C₄～C₂₀シクロアルキル基もしくはC₄～C₂₀アリール基、又はR⁴とR⁵が一緒にC₄～C₂₀脂環式環を形成するものであるが、該C₄～C₂₀脂環式環は適宜1以上のC₁～C₂₀アルキル、C₆～C₂₀アリール、C₅～C₂₁アラルキル、C₅～C₂₀シクロアルキル基もしくはこれらの組合せで置換されていてもよい。

【請求項 6】

部分結晶質ポリカーボネート出発原料(A)が、次式の2-メトキシカルボニルフェノキシ末端アリールオキシ基IV及びビスフェノールAから誘導された構造単位を含む、請求項1記載の方法。

【化 5】

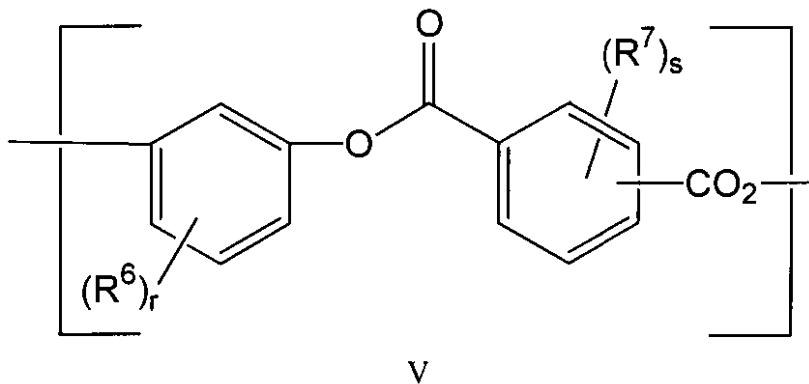
30

40

IV

【請求項 7】

反応性末端ヒドロキシ基を有するポリマー種(B)が、ポリエステル、ポリカーボネート、ポリエーテル、ポリエーテルケトン、ポリエーテルスルホン及びポリエーテルイミドからなる群から選択される、請求項1記載の方法。

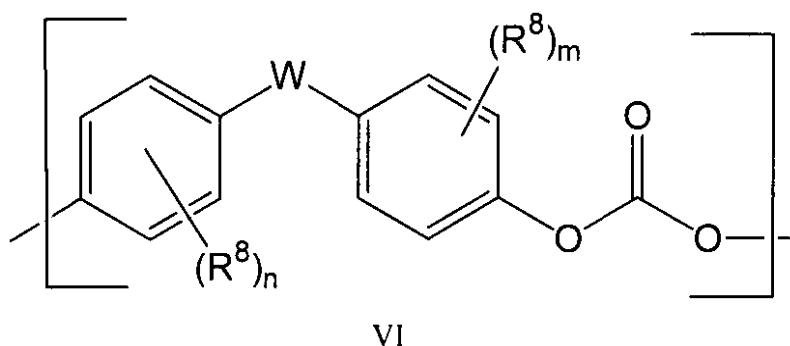

【請求項 8】

反応性末端ヒドロキシ基を有するポリマー種(B)が以下の(1)及び(2)からなる群から選択される構造単位を含む、請求項1記載の方法。

(1) 次式の構造Vに対応するポリエステル構造単位。

50

【化6】

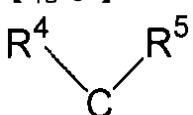


10

式中、 R^6 及び R^7 は各々独立に、ハロゲン原子、 $C_1 \sim C_{20}$ 脂肪族基、 $C_4 \sim C_{20}$ 脂環式基又は $C_4 \sim C_{20}$ 芳香族基であり、 r 及び s は独立に0～4の値を有する整数である。

(2) 次式の構造VIに対応するポリカーボネート構造単位。

【化7】

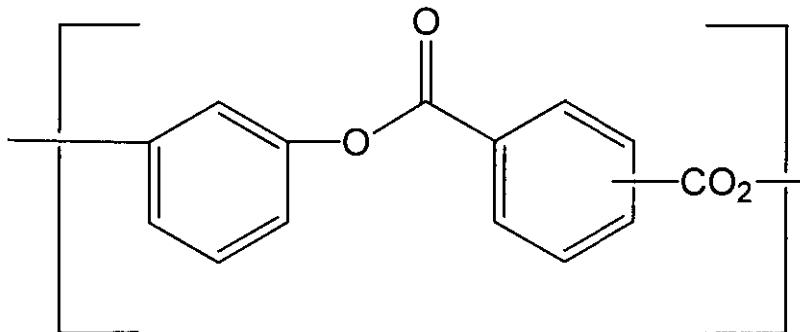


20

式中、 R^8 は各々独立に、ハロゲン原子、ニトロ基、シアノ基、 $C_1 \sim C_{20}$ アルキル基、 $C_4 \sim C_{20}$ シクロアルキル基又は $C_6 \sim C_{20}$ アリール基であり、 n 及び m は独立に整数0～4であり、Wは結合、酸素原子、イオウ原子、 SO_2 基、 $C_1 \sim C_{20}$ 脂肪族基、 $C_6 \sim C_{20}$ 芳香族基、 $C_6 \sim C_{20}$ 脂環式基又は次式の基である。

30

【化8】


式中、 R^4 及び R^5 は独立に、水素原子、 $C_1 \sim C_{20}$ アルキル基、 $C_4 \sim C_{20}$ シクロアルキル基もしくは $C_4 \sim C_{20}$ アリール基、又は R^4 と R^5 が一緒に $C_4 \sim C_{20}$ 脂環式環を形成するものであるが、該 $C_4 \sim C_{20}$ 脂環式環は適宜1以上の $C_1 \sim C_{20}$ アルキル、 $C_6 \sim C_{20}$ アリール、 $C_5 \sim C_{21}$ アラルキル、 $C_5 \sim C_{20}$ シクロアルキル基もしくはこれらの組合せで置換されていてもよい。

40

【請求項9】

反応性ヒドロキシ基を有するポリマー種(B)が、次式の構造単位VIIを含む重合度約4以上のポリエステルである、請求項8記載の方法。

【化9】

10

VII

【請求項10】

部分結晶質ポリカーボネート出発原料(A)が約50～約100%の末端封鎖率を有する、請求項1記載の方法。

【請求項11】

出発原料(B)が、触媒の非存在下でレゾルシノール、テレフタル酸ジフェニル、イソフタル酸ジフェニル及び触媒を含んでなる混合物を加熱して製造されたコポリマーである、請求項1記載の方法。

【請求項12】

テレフタル酸ジフェニルとイソフタル酸ジフェニルが、約1対10～約10対1のモル比を有する、請求項11記載の方法。

【請求項13】

出発原料(B)が、レゾルシノールと、テレフタロイルジクロライド及びイソフタロイルジクロライドとの界面重合で製造されたコポリマーである、請求項1記載の方法。

【請求項14】

テレフタロイルジクロライドとイソフタロイルジクロライドが、約1対10～約10対1のモル比を有する、請求項13記載の方法。

【請求項15】

出発原料(A)が約15～約40%の結晶化度を有する、請求項1記載の方法。

30

【請求項16】

固相重合条件が、約100～約240の温度に約1～約10時間加熱することを含む、請求項1記載の方法。

【請求項17】

さらに、出発原料(A)と(B)の混合物を製造することを含む、請求項1記載の方法。

【請求項18】

出発原料(A)と出発原料(B)を乾式混合することを含む、請求項17記載の方法。

【請求項19】

出発原料(A)と(B)の混合物を溶液から沈澱させることを含む、請求項17記載の方法。

40

【請求項20】

出発原料(A)と(B)が、出発原料(B)1グラム当たり約0.01～約100グラムの出発原料(A)の重量比を有する、請求項1記載の方法。

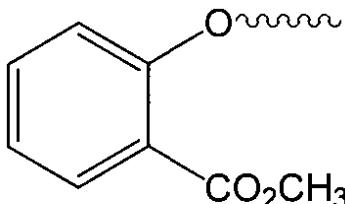
【請求項21】

生成物コポリマーが、対応するランダム分布の構造要素よりも50%以上長いブロック長に相当する測定可能なブロック度を有する、請求項1記載の方法。

【請求項22】

請求項1記載の方法で製造されたコポリマー生成物を含んでなる成形品。

【請求項23】


多層物品である、請求項22記載の物品。

50

【請求項 2 4】

固相重合条件下で、次式の末端 2 - メトキシカルボニルフェノキシ末端基 IV を有する部分結晶質ビスフェノール A ポリカーボネートを、反応性ヒドロキシル基を有する 1 種類以上のポリエステルと接触させて生成物コポリエステルカーボネートを生成させることを含んでなる、コポリエステルカーボネートの製造方法。

【化 1 0】

IV

10

【請求項 2 5】

部分結晶質ビスフェノール A ポリカーボネートが、ビス(メチルサリチル)カーボネートとビスフェノール A の溶融反応を含む方法で製造される、請求項 2 4 記載の方法。

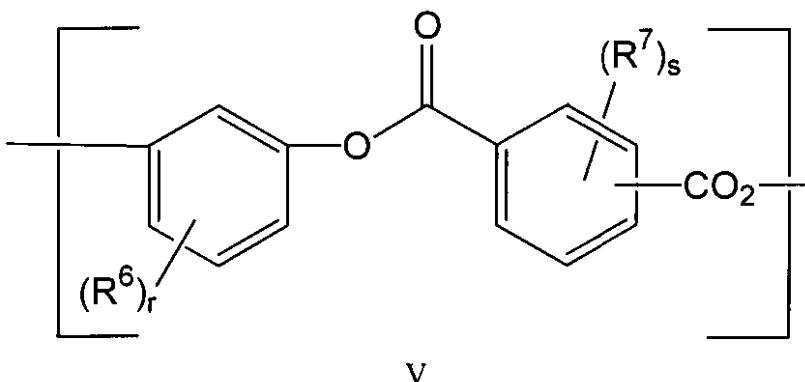
【請求項 2 6】

前記溶融反応で、部分結晶質ビスフェノール A ポリカーボネートが直接生成する、請求項 2 5 記載の方法。

【請求項 2 7】

部分結晶質ビスフェノール A ポリカーボネートが約 50 ~ 約 100 % の末端封鎖率を有する、請求項 2 6 記載の方法。

20


【請求項 2 8】

前記溶融反応で、約 90 ~ 約 100 % の末端封鎖率を有する非晶質ビスフェノール A ポリカーボネートが生成する、請求項 2 6 記載の方法。

【請求項 2 9】

ポリエステルが次式の構造 V に対応する構造単位を含む、請求項 2 5 記載の方法。

【化 1 1】

V

30

式中、R⁶ 及び R⁷ は各々独立に、ハロゲン原子、C₁ ~ C₂₀ 脂肪族基、C₄ ~ C₂₀ 脂環式基又は C₄ ~ C₂₀ 芳香族基であり、r 及び s は独立に 0 ~ 4 の値を有する整数である。

40

【請求項 3 0】

ポリエステルが、触媒の非存在下で、レゾルシノール、テレフタル酸ジフェニル、イソフタル酸ジフェニル及び触媒を含む混合物を加熱して製造されたポリエステルである、請求項 2 9 記載の方法。

【請求項 3 1】

テレフタル酸ジフェニルとイソフタル酸ジフェニルが約 1 対 10 ~ 約 10 対 1 のモル比を有する、請求項 3 0 記載の方法。

【請求項 3 2】

ポリエステルが、レゾルシノールと、イソフタロイルジクロライド及びテレフタロイルジ

50

クロライドの混合物との界面反応を含む方法で製造される、請求項 2 9 記載の方法。

【請求項 3 3】

イソフタロイルジクロライドとテレフタロイルジクロライドが、約 1 対 10 ~ 約 10 対 1 のモル比を有する、請求項 3 2 記載の方法。

【請求項 3 4】

部分結晶質ビスフェノール A ポリカーボネートが約 20 ~ 約 40 % の結晶化度を有する、請求項 2 5 記載の方法。

【請求項 3 5】

固相重合条件が、約 100 ~ 240 の温度に約 2 ~ 約 9 時間加熱することを含む、請求項 2 5 記載の方法。

10

【請求項 3 6】

請求項 2 5 記載の方法で製造されたコポリマー生成物を含んでなる成形品。

【請求項 3 7】

多層物品である、請求項 3 6 記載の物品。

【発明の詳細な説明】

【技術分野】

【0 0 0 1】

本発明は、固相重合によるコポリマーの製造方法に関する。さらに具体的には、当該方法は、ポリカーボネート構造単位とポリエステル構造単位を含むブロックコポリマーの固相重合による製造に関する。

20

【背景技術】

【0 0 0 2】

ブロックコポリマーは、ポリマーの物理的性質がどの程度ポリマーの構造で決定されるかによって評価される。ブロックコポリマーの構造は、ブロックを構成するモノマー、ブロックの長さ及びコポリマー分子当たりのブロックの数を調節することによって変えることができる。2種類の互いに反応性の二官能性オリゴマー（例えばオリゴマー状二酸クロライドとオリゴマー状ジオール）から製造されたブロックコポリマーは、マルチブロックコポリマーと呼ばれ、第一のオリゴマーの構造単位からなるブロックと第二のオリゴマーの構造単位からなるブロックとが交互に複数存在する構造を有する。マルチブロックコポリマーの物理的性質は、出発オリゴマーのブロック長の注意深い制御と、出発オリゴマーのブロック長を最終マルチブロックコポリマーに保つ合成法の選択によって調節できる。

30

【0 0 0 3】

ポリカーボネート構造単位とポリエステル構造単位を有するブロックコポリマー、すなわちブロックコポリエステルカーボネートは、UV 耐性熱可塑性材料としての有効性が実証されており、これらの要因に対する耐性が要求される用途に使用する「耐候性」プラスチック材料として期待できる。ブロックコポリエステルカーボネートは通常次のようにして製造される。水と溶媒（例えば塩化メチレン）、酸受容体（例えば水酸化ナトリウム）及びアミン触媒（例えばトリエチルアミン）の存在下で、1種類以上の芳香族ジヒドロキシ化合物と1種類以上の芳香族ジカルボン酸二塩化物を反応させてヒドロキシ末端オリゴマー状ポリエステルを生成させる。次に、このヒドロキシ末端オリゴマー状ポリエステルを、1種類以上のジヒドロキシ芳香族化合物の存在下、ポリカーボネート（例えばビスフェノール A ポリカーボネート）の製造で用いられるものと同様の界面条件下で追加のカーボネート単位源（ホスゲンなど）とさらに反応させる。ポリエステルブロックとポリカーボネートブロックを有するブロックコポリエステルカーボネートが生成する。

40

【0 0 0 4】

現在のブロックコポリエステルカーボネートの製造方法には、ホスゲンのような毒性の高い薬品の使用に伴う固有の欠点がある。さらに、ヒドロキシ末端オリゴマー状ポリエステルの製造時、またヒドロキシ末端オリゴマー状ポリエステルとホスゲン及び1種類以上のジヒドロキシ芳香族化合物の反応時に1種以上の溶媒を用いるため、使用装置からプロセス溶媒の漏れを防ぐ段階が必要とされる。プロセス溶媒の漏れを防ぐために採られる制御

50

手段はコスト及び製造プロセスの複雑さを増大させる。ホスゲンによらず、有機溶媒の使用を最小限にできるコポリエステルカーボネートの製造方法を提供できれば望ましい。

【0005】

ポリカーボネートの溶融製造法と同様の代替法は、その反応条件下で構造単位がランダムに配置される傾向があるため、ブロックコポリエステルカーボネートの製造には向きである。例えば、1種類以上のジヒドロキシ芳香族化合物と、エステル単位源（例えばテレフタル酸ジフェニル）及びカーボネート単位源（例えばジフェニルカーボネート）との混合物を、水酸化ナトリウムのような触媒の存在下高温メルト中で処理すると、コポリエステルカーボネートの構造単位が溶融重合条件下でポリマー鎖全体にわたって統計的に分布する傾向があるため、ランダムコポリエステルカーボネートが生成する。

10

【0006】

同様に、溶融法ポリカーボネートの製造に用いられる条件下で、ヒドロキシ末端オリゴマー状ポリエステルとカーボネート単位源（例えばジフェニルカーボネート）及びジヒドロキシ芳香族化合物との反応でヒドロキシ末端オリゴマー状ポリエステルをそのままポリカーボネート鎖に組み込もうとすると、ポリエステルブロックが重合反応の進行に伴ってランダム化する傾向があるためランダムコポリエステルカーボネートが生成する。ランダムコポリエステルカーボネートが生成するだけでなく、この「溶融」法では、ホスゲン又は塩化メチレンのような有機溶媒が必要とされないものの、高温及び比較的長い反応時間が必要とされる。そのため、成長ポリマー鎖のカーボネート単位とエステル単位のフリース転位による生成物のような副生物が生成しかねない。フリース転位は、無秩序なポリマーの枝分れを引き起こし、ポリマーの流動性と性能に悪影響を及ぼしかねない。さらに、フリース転位は、コポリエステルカーボネート生成物の「黄変」も生じかねない。そこで、ポリカーボネート構造単位とポリエステル構造単位を有するブロックコポリマーの製造方法であって、高温を用いる必要がなく、またフリース生成物の生成を最小限に抑制できる方法を提供できれば望ましい。

20

【0007】

ポリカーボネートとコポリエステルカーボネートは固相重合（SSP）でも製造されている。SSPには、溶融相法及び界面重縮合法の両者に対して幾つかの利点がある。SSPでは、界面法の重要な要素をなすホスゲンを使用する必要がない。さらに、SSPでは、ジフェニルカーボネートのようなジアリールカーボネートとビスフェノールAのようなビスフェノールとの溶融重合による高分子量ポリカーボネート製造で必要とされる温度よりもかなり低い温度を利用する。また、SSP法では、溶融相法と異なり、高温で極めて粘稠なポリマーメルトを取り扱う必要がなく、しかもSSP法の実施には、溶融法で必要とされるような高温真空下でポリマーメルトを混合できる特別な装置は必要ない。

30

【0008】

固相重合法では、ジフェニルカーボネートのようなジアリールカーボネートとビスフェノールAのようなビスフェノールとの溶融反応で前駆体ポリカーボネート（典型的には比較的低分子量のオリゴマー状ポリカーボネート）を製造する。ビスフェノールAポリカーボネートオリゴマーの製造では、水酸化ナトリウムのような触媒の存在下でジフェニルカーボネートのようなジアリールカーボネートをビスフェノールAと共に加熱し、その間フェノールを除去する。フェノールは、成長ポリマー鎖のフェノール性基とジフェニルカーボネート又はフェニルカーボネートポリマー鎖末端基とのエステル交換反応の副生物として生成する。このオリゴマー化反応は、通例、フェノール副生物の的確な除去を図るために減圧下で実施される。所望のレベルのオリゴマー化が達成されたら、反応を止め、生成物のオリゴマー状ポリカーボネートを単離する。こうして製造したオリゴマー状ポリカーボネートは非晶質であり、固相重合に適したものとするには部分的に結晶化しなければならない。

40

【0009】

オリゴマー状ポリカーボネートは、粉末又はペレット化オリゴマーを熱溶媒蒸気に暴露したり、非晶質オリゴマーを塩化メチレンのような溶媒に溶解した後メタノールや酢酸エチ

50

ルのような溶媒に加えて結晶質オリゴマー状ポリカーボネートを沈澱させるといった幾つかの方法で部分的に結晶化させることができる。通例、かかる溶媒蒸気又は液体溶媒結晶化法では、示差走査熱量計で測定して約20～約40%の結晶化度を有する部分結晶質オリゴマー状ポリカーボネートが得られる。この範囲の結晶化度は、通常、SSPに付されるペレット又は粉末の融着を起こすことなく、オリゴマー状ポリカーボネートを固相重合に付すのに十分である。溶媒結晶化だけでなく、オリゴマー状ビスフェノールAポリカーボネートは、溶融非晶質ポリカーボネートオリゴマーにジフェニルカーボネートを溶解させた後混合物を周囲温度に冷却してジフェニルカーボネートとの混合物として部分結晶質ポリカーボネートを得ることによっても結晶化されている。最後に、非晶質オリゴマー状ポリカーボネートの結晶化は、部分結晶質ポリカーボネートの融点未満の温度に長時間加熱することによっても行われている。しかし、かかる熱的結晶化は上述の結晶化法に比べると格段に遅い。

【0010】

粉末、粒子又はペレットのような固体形態の部分結晶質オリゴマー状ポリカーボネートは、次いで、固相重合条件下で、オリゴマー状ポリカーボネートの粘着温度又は融点よりも低いが部分結晶質オリゴマー状ポリカーボネートのガラス転移温度よりは高い温度に加熱され、鎖成長に伴って生成する揮発性副生物、フェノール、ジフェニルカーボネートなどを除去する。こうした条件下で、低分子量オリゴマーを高分子量ポリマーに変換する重縮合反応が固相で実現される。

【特許文献1】

欧洲特許出願公開第0908483号

【特許文献2】

米国特許第5191001号

【特許文献3】

ドイツ特許出願公開第2919629号

【発明の開示】

【発明が解決しようとする課題】

【0011】

現在の固相重合法は溶融法及び界面法コポリエステルカーボネート合成の有用な代替法を提供するものの、固相重合法には幾つかの短所がある。通例、部分結晶質前駆体ポリカーボネート及び部分結晶質オリゴマー状ポリエステル前駆体は、それらの製造にオリゴマー化段階と結晶化段階という2段階が必要である。また、固相重合プロセス自体比較的遅く、コポリエステルカーボネート生成物中でエステル構造単位とカーボネート構造単位がランダムに分布する。そこで、部分結晶質前駆体ポリカーボネートの製造効率を高め、非晶質又は結晶質オリゴマー状ポリエステル前駆体のいずれも使用でき、固相重合の速度を高めてエステル構造単位とカーボネート構造単位のランダム化の原因となる過程よりも迅速にポリマー鎖の成長が進行する改良法を見出しができれば極めて望ましい。かかるランダム化プロセスは通例ポリエステルブロックとポリカーボネートブロックの長さの劇的な低下として現れる。

【課題を解決するための手段】

【0012】

一態様では、本発明はブロックコポリマーの製造方法を提供する。この方法は、固相重合条件下で、活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料(A)を、反応性末端ヒドロキシ基を有する1種類以上のポリマー種(B)と接触させて生成物のブロックコポリマーを生成させることを含んでなる。本発明の一態様では、ブロックコポリマーはマルチブロックコポリエステルカーボネートである。

【発明を実施するための最良の形態】

【0013】

本発明の好ましい実施形態に関する以下の詳細な説明及び実施例を参照することによって本発明の理解を深めることができよう。本明細書及び特許請求の範囲では多くの用語を用

いるが、以下の意味をもつものと定義される。

【0014】

単数形で記載したものであっても、前後関係から明らかでない限り、複数の場合も含めて意味する。

【0015】

「適宜」という用語は、その用語に統いて記載された事象又は状況が起きても起きなくてもよいことを意味しており、かかる記載はその事象又は状況が起こる場合と起こらない場合を包含する。

【0016】

本明細書で用いる「ポリカーボネート」という用語は、1種類以上のジヒドロキシ芳香族化合物から誘導された構造単位を有するポリカーボネートをいい、コポリカーボネート及びポリエステルカーボネートを包含する。

【0017】

本明細書で用いる「溶融法ポリカーボネート」という用語は、1種類以上のジアリールカーボネートと1種類以上のジヒドロキシ芳香族化合物とのエステル交換で製造されたポリカーボネートをいう。

【0018】

本明細書中で「BPA」はビスフェノールAと定義され、2,2-ビス(4-ヒドロキシフェニル)プロパン、4,4'-イソプロピリデンジフェノール及びp,p'-BPAとしても知られる。

【0019】

本明細書で用いる「ビスフェノールAポリカーボネート」という用語は、基本的にすべて繰返し単位がビスフェノールA残基からなるポリカーボネートをいう。

【0020】

本明細書で用いる「活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料(A)」という用語は、「部分結晶質ポリカーボネート出発原料(A)」及び「出発原料(A)」という用語と同義に用いられ、いずれの用語も活性化末端アリールオキシ基を有する部分結晶質のポリカーボネートをいう。

【0021】

本明細書で用いる「反応性末端ヒドロキシ基を有するポリマー種(B)」という用語は、「ポリマー種(B)」及び「出発原料(B)」という用語と同義に用いられ、いずれの用語も反応性末端ヒドロキシル基を有するポリマー種をいう。

【0022】

本明細書で用いる「部分結晶質ポリカーボネート出発原料」という用語は、固相重合反応で反応体として用いられる任意の分子量の部分結晶質ポリカーボネートをいう。

【0023】

本明細書で用いる「ポリマー種」という用語には、ポリマー材料及びオリゴマー材料共に包含される。ポリマー材料(物質)は重量平均分子量Mwが15000ダルトンを超えるものと定義され、オリゴマー状材料(物質)は重量平均分子量Mwが15000ダルトン未満のものと定義される。

【0024】

「部分結晶質前駆体ポリカーボネート」という用語は、重量平均分子量が15000ダルトン未満で、示差走査熱量計による結晶化度が約15%以上のオリゴマー状ポリカーボネートをいう。

【0025】

「部分結晶質前駆体ポリカーボネート」と「部分結晶質オリゴマー状ポリカーボネート」という用語は同義に用いられる。

【0026】

本明細書で用いる「ポリエステル」という用語には、脂肪族ポリエステル及び芳香族ポリエステルいずれも包含される。従って、本明細書で用いる「ポリエステル」という用語に

10

20

30

40

50

は、「ポリアリーレート」とも呼ばれる芳香族ポリエステルも包含される。

【0027】

本明細書で用いる「オリゴマー状ヒドロキシ末端ポリエステル」という用語には、脂肪族及び芳香族オリゴマー状ヒドロキシ末端ポリエステル共に包含される。従って、「オリゴマー状ヒドロキシ末端ポリエステル」という用語には、オリゴマー状ヒドロキシ末端ポリアリーレートも包含される。

【0028】

本明細書で用いる「オリゴマー状ヒドロキシ末端ポリエステル」という用語は、重量平均分子量(M_w)が15000未満で、その鎖末端の約50%以上にヒドロキシ基を有するオリゴマー状ポリエステルをいう。例えば、イソフタル酸ジフェニルとテレフタル酸ジフェニルの1:1混合物と過剰レゾルシノールとの溶融反応で製造され、9000ダルトンの重量平均分子量を有し、鎖末端の80%にヒドロキシ基、鎖末端の20%にフェノキシ基を有するポリエステルがオリゴマー状ヒドロキシ末端ポリエステルの代表例として挙げられる。

【0029】

本明細書で用いる「反応性末端ヒドロキシル基」という用語は、ポリマー種の鎖末端に位置するヒドロキシ基をいい、例えば、10モル%過剰のビスフェノールAとイソフタロイルジクロライドとの界面反応で製造されたオリゴマーの鎖末端にあるヒドロキシ基をいう。

【0030】

本明細書で用いるビス(メチルサリチル)カーボネートという用語とビス(2-メトキシカルボニルフェニル)カーボネートという用語は同義であり、互換的に用いられる。

【0031】

本明細書で用いる「末端封鎖率」という用語は、ヒドロキシル基以外のポリカーボネート鎖末端の百分率をいう。ジフェニルカーボネートとビスフェノールAから製造されるビスフェノールAポリカーボネートの場合、約75%という「末端封鎖率」の値は、全ポリカーボネート鎖末端の約75%がフェノキシ基からなり、鎖末端の約25%がヒドロキシル基からなることを意味する。「末端封鎖率」と「末端封鎖百分率」という用語は同義に用いられる。

【0032】

本明細書で用いる「芳香族基」という用語は、1以上の芳香族基を含む原子価1以上の基をいう。芳香族基の具体例には、フェニル、ピリジル、フラニル、チエニル、ナフチル、フェニレン及びビフェニルがある。この用語には、芳香族成分と脂肪族成分を共に含む基、例えばベンジル基も包含される。

【0033】

本明細書で用いる「脂肪族基」という用語は、環状でない線状又は枝分れ原子配列からなる原子価1以上の基をいう。かかる配列は、窒素、イオウ及び酸素のようなヘテロ原子を含んでいてもよいし、或いは炭素と水素だけからなるものでもよい。脂肪族基の具体例には、メチル、メチレン、エチル、エチレン、ヘキシル、ヘキサメチレンなどがある。

【0034】

本明細書で用いる「脂環式基」という用語は、環状であるが芳香族ではなく、芳香族環を含まない原子配列からなる原子価1以上の基をいう。かかる配列は、窒素、イオウ及び酸素のようなヘテロ原子を含んでいてもよいし、或いは炭素と水素だけからなるものでもよい。脂環式基の具体例には、シクロプロピル、シクロペンチル、シクロヘキシル、2-シクロヘキシルエチ-1-イル、テトラヒドロフラニルなどがある。

【0035】

本明細書で用いる「多層物品」という用語は、2以上の層を含む物品をいう。

【0036】

本発明は、ブロックコポリマーの製造方法であって、固相重合条件下で、活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料(A)を、反応性末端ヒドロ

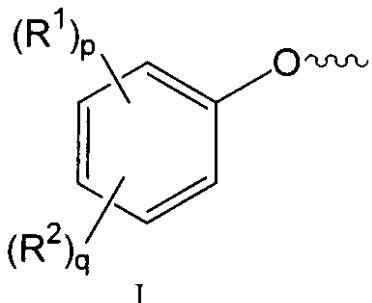
10

20

30

40

50


キシ基を有する 1 種類以上のポリマー種 (B) と接触させてブロックコポリマー生成物を生成させることを含む方法に関する。本発明の一態様では、ブロックコポリマーはマルチブロックコポリエステルカーボネートである。

【0037】

本発明の方法における部分結晶質ポリカーボネート出発原料 (A) は、次の構造 I の活性化末端アリールオキシ基を含む。

【0038】

【化1】

10

【0039】

式中、R¹は各々独立に、C₁～C₂₀脂肪族基、C₄～C₂₀脂環式基又はC₄～C₂₀芳香族基であり、R²は各々独立に、ハロゲン原子、ニトロ基、シアノ基、C₁～C₂₀アルコキシカルボニル基、C₁～C₂₀アシル基、C₄～C₂₀シクロアルコキシカルボニル基、C₆～C₂₀アリールオキシカルボニル基、C₁～C₂₀アルキルアミノカルボニル基、C₂～C₄₀ジアルキルアミノカルボニル基又はC₁～C₂₀ペルフルオロアルキル基であり、pは0～4の値を有する整数であり、qは1～5の値を有する整数である。

20

【0040】

構造 I を有する末端基の具体例は、2-メトキシカルボニルフェノキシ基、2-シアノフェノキシ基、2-アセチルフェノキシ基、2-ニトロフェノキシ基、4-ニトロフェノキシ基及び2,4,6-トリフルオロフェノキシ基である。

【0041】

本発明の一実施形態では、活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料 (A) は、1種類以上のジヒドロキシ芳香族化合物を1種類以上のジアリールカーボネートと溶融反応させて非晶質ポリカーボネートを得て、次に第二段階でこれを結晶化させることによって製造される。場合によっては、活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料 (A) は、ポリカーボネート生成物の結晶化を促進する反応条件下でのジヒドロキシ芳香族化合物とジアリールカーボネートの反応、例えばビスフェノールAとビス(メチルサリチル)カーボネートの反応で直接得ることもできる。別法として、活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料 (A) は、1以上の「活性化性置換基」を含むヒドロキシ芳香族化合物連鎖停止剤と酸受容体の存在下での、ホスゲンと1種類以上のジヒドロキシ芳香族化合物の界面反応で得ることもできる。活性化性置換基には、アルコキシカルボニル基、例えばメトキシカルボニル基、シアノ基、ニトロ基及びハロゲン原子がある。1以上の活性化性置換基を有する連鎖停止剤の具体例は、サリチル酸メチル、2-シアノフェノール、2,4,6-トリフルオロフェノールなどである。

30

【0042】

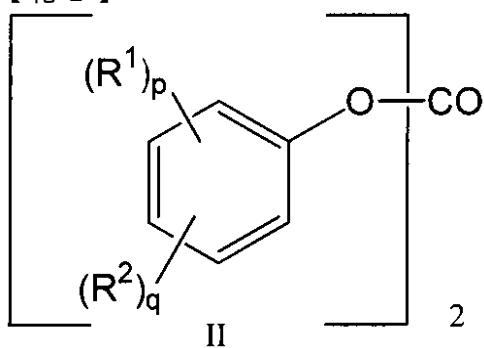
本発明のさらに別の実施形態では、活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料 (A) は、溶融反応条件下で、反応性末端ヒドロキシ基を有するポリカーボネートを、活性化性置換基を有するジアリールカーボネート、例えば構造 II を有するジアリールカーボネートで処理することを含む方法で製造される。例えば、溶融重合又は界面重合のいずれかで製造した反応性末端ヒドロキシ基を有するポリカーボネートを、活性化性置換基を有するジアリールカーボネートとさらに反応させれば、反応性末端ヒ

40

50

ドロキシ基の全部又は一部を活性化末端アリールオキシ基を有する末端基に転化させることができ、活性化末端アリールオキシ基を有するポリカーボネートが得られる。この活性化末端アリールオキシ基を有するポリカーボネートを結晶化させると出発原料（A）が得られる。

【0043】


「溶融重合条件」という用語は、触媒及び適宜助触媒の存在下でジアリールカーボネートとジヒドロキシ芳香族化合物との反応を起こすのに必要な条件を意味する。触媒は、アルカリ金属水酸化物、アルカリ土類水酸化物及びこれらの混合物のような数多くのエステル交換触媒のいずれでもよい。助触媒には、水酸化テトラメチルアンモニウムのようなテトラアルキルアンモニウム水酸化物、水酸化テトラブチルホスホニウムのようなテトラアルキルホスホニウム水酸化物、及び酢酸テトラブチルホスホニウムのようなテトラアルキルホスホニウムカルボン酸塩がある。反応温度は通常約100～約350、さらに好ましくは約180～約310である。圧力は大気圧でも加圧でもよいし、反応の初期段階で大気圧～約15トルの圧力とし、後段で減圧、例えば約0.2～約15トルとしてもよい。反応時間は一般に約0.1～約10時間である。

【0044】

本発明の一実施形態では、部分結晶質ポリカーボネート出発原料（A）は、溶融重合条件下1種類以上のジヒドロキシ芳香族化合物を1種類以上の次式のジアリールカーボネートIIと反応させることを含む方法で製造される。

【0045】

【化2】

【0046】

式中、 R^1 、 R^2 、 p 及び q は構造Iと同様に定義される。

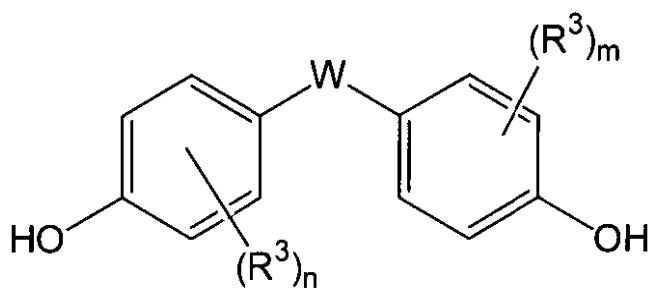
【0047】

ジアリールカーボネートIIの具体例は、ビス（2-メトキシカルボニルフェニル）カーボネート、ビス（4-クロロ-2-メトキシカルボニルフェニル）カーボネート、ビス（2-エトキシカルボニルフェニル）カーボネート、ビス（2-ブトキシカルボニルフェニル）カーボネート、ビス（2,4,6-トリフルオロフェニル）カーボネート、ビス（2-ニトロフェニル）カーボネート及びビス（2-シアノフェニル）カーボネートである。

【0048】

部分結晶質ポリカーボネート出発原料（A）の製造に使用できるジヒドロキシ芳香族化合物には、次式のビスフェノールIIIがある。

【0049】


【化3】

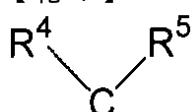
10

20

30

40

III


10

【0050】

式中、R³は各々独立に、ハロゲン原子、ニトロ基、シアノ基、C₁～C₂₀アルキル基、C₄～C₂₀シクロアルキル基又はC₆～C₂₀アリール基であり、n及びmは独立に整数0～4であり、Wは結合、酸素原子、イオウ原子、SO₂基、C₁～C₂₀脂肪族基、C₆～C₂₀芳香族基、C₆～C₂₀脂環式基又は次式の基である。

【0051】

【化4】

20

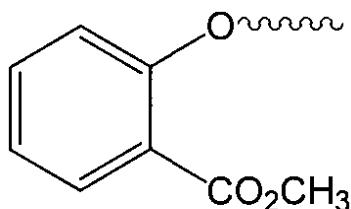
【0052】

式中、R⁴及びR⁵は独立に水素原子、C₁～C₂₀アルキル基、C₄～C₂₀シクロアルキル基もしくはC₄～C₂₀アリール基、又はR⁴とR⁵が一緒にC₄～C₂₀脂環式環を形成するものであるが、該C₄～C₂₀脂環式環は適宜1以上のC₁～C₂₀アルキル、C₆～C₂₀アリール、C₅～C₂₁アラルキル、C₅～C₂₀シクロアルキル基もしくはこれらの組合せで置換されていてもよい。

【0053】

構造IIIを有するビスフェノールの具体例は、ビスフェノールA、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-2-メチルフェニル)プロパン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4-ジヒドロキシ-1,1-ビフェニル、4,4-ジヒドロキシ-3,3-ジオクチル-1-ジメチル-1,1-ビフェニル、4,4-ジヒドロキシジフェニルエーテル、4,4-ジヒドロキシジフェニルチオエーテル、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン、1,3-ビス(2-(4-ヒドロキシ-3-メチルフェニル)-2-プロピル)ベンゼン、1,4-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン及び1,4-ビス(2-(4-ヒドロキシ-3-メチルフェニル)-2-プロピル)ベンゼンである。

30


40

【0054】

本発明の一実施形態では、部分結晶質ポリカーボネート出発原料(A)は、ビスフェノールAから誘導された繰返し単位と次式の2-メトキシカルボニルフェノキシ基IVとを含んでおり、2-メトキシカルボニルフェノキシ基IVは活性化末端アリールオキシ基を含む。

【0055】

【化5】

IV

【0056】

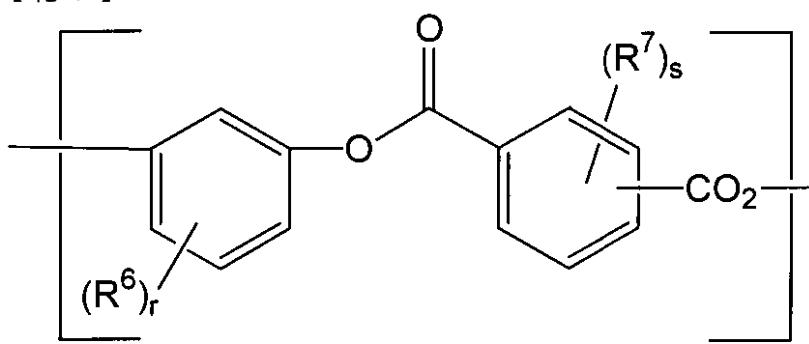
通例、部分結晶質ポリカーボネート出発原料(A)は末端封鎖率が約50～約100%で、示差走査熱量計で測定して約15～約40%の結晶化度を有する。通例、出発原料(A)は約1000～約30000ダルトンの重量平均分子量を有する。10

【0057】

本発明の一実施形態では、部分結晶質ポリカーボネート出発原料(A)は本明細書中で定義した「部分結晶質前駆体ポリカーボネート」であり、この部分結晶質前駆体ポリカーボネートは15000ダルトン未満、好ましくは約1000～約14000ダルトンの重量平均分子量を有する。

【0058】

反応性末端ヒドロキシ基を有するポリマー種(B)は、1種類以上のポリエステル、ポリカーボネート、ポリエーテル、ポリエーテルケトン、ポリエーテルスルホン、ポリエーテルイミド及びこれらの混合物とし得る。20


【0059】

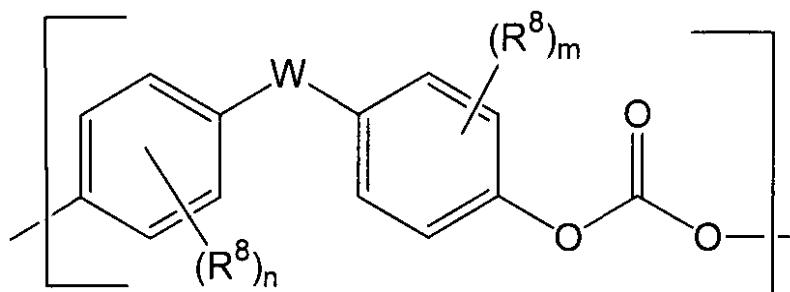
本発明の一実施形態では、反応性末端ヒドロキシ基を有するポリマー種(B)は、以下の(1)及び(2)からなる群から選択される構造単位を含む。

(1) 次式の構造Vに対応するポリエステル構造単位。

【0060】

【化6】

V


【0061】

式中、R⁶及びR⁷は各々独立に、ハロゲン原子、C₁～C₂₀脂肪族基、C₄～C₂₀脂環式基又はC₄～C₂₀芳香族基であり、r及びsは独立に0～4の値を有する整数である。30

(2) 次式の構造VIに対応するポリカーボネート構造単位。

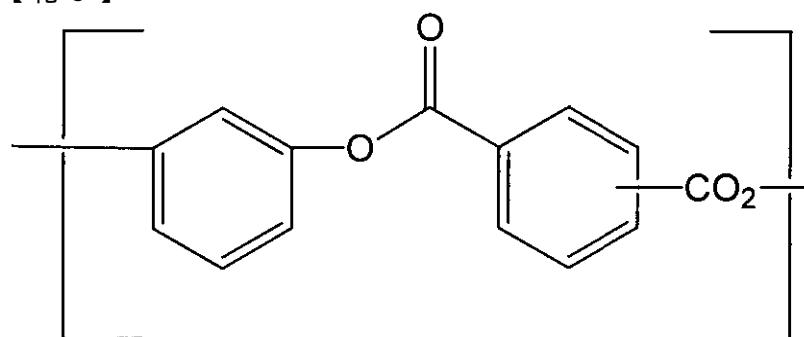
【0062】

【化7】

VI

10

【0063】


式中、 R^3 、n、m及びWは構造IIIで定義した通りである。

【0064】

本発明の別の実施形態では、反応性末端ヒドロキシ基を有するポリマー種(B)は、次式の構造単位VIIを含む重合度約4以上のオリゴマー状ポリエステルである。

【0065】

【化8】

VII

20

【0066】

構造Vを有する繰返し単位を含むポリエステルは様々な公知方法で製造することができ、例えば、酸受容体及びトリエチルアミンのようなアミン触媒の存在下、1種類以上の二酸クロライド(例えばテレフタロイルジクロライド及びイソフタロイルジクロライド)と1種類以上のジヒドロキシ芳香族化合物(例えばレゾルシノール)との界面反応で製造できる。

30

【0067】

一実施形態では、レゾルシノールを界面条件下でテレフタロイルジクロライドとイソフタロイルジクロライドの混合物と、テレフタロイルジクロライドとイソフタロイルジクロライドの合計モルに対するレゾルシノールのモル比が約1.01～約1.5となり、かつテレフタロイルジクロライドとイソフタロイルジクロライドのモル比が約1対約1.0～約1.0対約1となるようにして反応させる。

40

【0068】

また、構造Vを有する繰返し単位を含むポリエステルは、アルカリ金属水酸化物のようなエステル交換触媒とテトラアルキルアノニウム水酸化物のような助触媒の存在下、溶融重合条件下で、1種類以上のジヒドロキシ芳香族化合物(例えば、レゾルシノール及びヒドロキノン)を1種類以上のジアリールエステル(例えば、テレフタル酸ジフェニル及びイソフタル酸ジフェニル)と接触させることによっても製造できる。過剰のジヒドロキシ芳香族化合物を使用すると、ヒドロキシ末端ポリマー種の生成に有利に働く。

【0069】

本発明の一実施形態では、ポリマー種(B)は、繰返し単位VIIと、さらに反応性末端ヒドロキシ基を有するポリエステルであり、これは、溶融重合条件下エステル交換触媒の存

50

在下でレゾルシノールをテレフタル酸ジフェニルとイソフタル酸ジフェニルの混合物と反応させることによって製造される。この反応は、テレフタル酸ジフェニルとイソフタル酸ジフェニルの合計モル数に対するレゾルシノールのモルのモル比が約1.01～約1.5となり、かつテレフタル酸ジフェニルとイソフタル酸ジフェニルのモル比が約1対約10～約10対約1となるようにして実施される。

【0070】

本発明の別の実施形態では、繰返し単位VIIと、さらに反応性末端ヒドロキシ基を有するポリマー種(B)は、溶融重合条件下、触媒の非存在下で、レゾルシノールをテレフタル酸ジフェニルとイソフタル酸ジフェニルの混合物と反応させることによって製造される。この反応は、テレフタル酸ジフェニルとイソフタル酸ジフェニルの合計モル数に対するレゾルシノールのモル数のモル比が約1.01～約1.5となり、しかもテレフタル酸ジフェニルとイソフタル酸ジフェニルのモル比が約1対約10～約10対約1となるようにして実施される。

【0071】

ロックコポリマーは、本発明の方法に従って、固相重合条件下で、活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料(A)を、反応性末端ヒドロキシ基を有する1種類以上のポリマー種(B)と接触させることで製造される。出発原料(A)は本明細書で定義した部分結晶質「ポリマー材料」であればよく、「ポリマー材料」とは重量平均分子量M_wが15000ダルトンを超えるポリカーボネートを意味する。別法として、部分結晶質ポリカーボネート出発原料(A)は、M_w15000ダルトン未満の部分結晶質のオリゴマー状ポリカーボネートであってもよい。

【0072】

活性化末端アリールオキシ基を有する部分結晶質ポリカーボネート出発原料(A)と反応性末端ヒドロキシ基を有する1種類以上のポリマー種(B)との固相重合条件下での接触は、出発原料(A)と(B)の混合物を形成し、この混合物を固相重合条件に付すことによって実施し得る。この混合物は、粉末形態の部分結晶質ポリカーボネート出発原料(A)を粉末形態のポリマー種(B)と混合することによって形成し得る。混合は、各種の機械装置、例えばローラーミキサー又はヘンシェルミキサーを用いて2種類の粉末を乾式混合することによって達成し得る。

【0073】

通例、結晶質ポリカーボネート出発原料(A)と1種類以上のポリマー種(B)は、出発原料(A)と出発原料(B)との重量比が約0.01対約100～約100対約0.01となるように混合される。例えば、出発原料(B)1グラム当たり出発原料(A)0.01～100グラムの重量比で出発原料(A)と(B)を混合する。さらに典型的には、出発原料(A)と出発原料(B)の重量比は約1対約5～約5対約1である。出発原料(A)が部分結晶質で、出発原料(B)が非晶質である場合、出発原料(A)が混合物の主成分として存在するのが望ましい。

【0074】

場合によって、ポリマー種(B)は部分結晶質材料であってもよいし、非晶質であってもよい。例えば、ポリマー種(B)がポリエチレンテレフタレートやポリブチレンテレフタレートのようなヒドロキシ末端ポリエステルである場合、部分結晶質材料とし得る。また、ポリマー種(B)がレゾルシノール、テレフタル酸ジフェニル及びイソフタル酸ジフェニルから誘導された構造単位を含むヒドロキシ末端ポリアリーレートである場合、これは通例非晶質材料である。

【0075】

出発原料(A)と(B)の混合物の別の製造法では、活性化末端アリールオキシ基を有するポリカーボネート出発原料とポリマー種(B)を含む溶液を製造し、貧溶媒を加えて上記2種類の材料を混合物として沈澱させる。適当な溶媒には、塩化メチレンのようなハロゲン化溶媒がある。貧溶媒には、メタノールのようなアルコール、アセトンのようなケトン及び酢酸エチルのようなエステルがある。沈澱はポリマー種(B)が部分結晶質ポリカ

10

20

30

40

50

ー ボネット出発原料 (A) と混じり合ったものを含む。

【 0 0 7 6 】

本発明の一実施形態では、粉末形態の部分結晶質前駆体ポリカーボネット (A) を、2種類以上のポリマー種 (B) 、例えば粉末化形態のポリエチレンテレフタレート及び構造単位VIIを含むポリアリーレートオリゴマーと混合し、次にこの粉末混合物を固相重合条件下で反応させてブロックコポリエステルカーボネットを生成させる。

【 0 0 7 7 】

本発明の方法で用いられる固相重合条件は、約100～約240の温度で約0.5～約10時間、好ましくは約140～約220で約2～約9時間、部分結晶質ポリカーボネット出発原料 (A) と1種類以上のポリマー種 (B) の混合物を加熱することからなる。
10 固相重合は、固相重合する固体と不活性ガス流との接触及び固相重合の副生物の除去に適した反応容器で実施すればよい。固相重合の副生物は、主に、1以上の活性化性置換基を有するヒドロキシ芳香族化合物、例えばサリチル酸メチルである。副生物のヒドロキシ芳香族化合物は、出発原料 (B) の反応性ヒドロキシ基が出発原料 (A) の活性化末端基と反応するときのような鎖成長段階で生じる。また、固相重合の副生物には、IIのようなジアリールカーボネット及び例えばフェニルサリチルカーボネットのような混成カーボネットが含まれることもある。混成カーボネット及びフェノールは、出発原料 (A) が活性化末端アリールオキシ基を有していて、出発原料 (B) が末端フェノキシ基を有しているときに、固相重合の副生物に存在することがあり、出発原料 (B) を1種類以上のジフェニルエステルとモル過剰のジヒドロキシ芳香族化合物との溶融反応で製造する場合も同様である。
20

【 0 0 7 8 】

固相重合プロセスは回分法又は連続法のいずれで実施してもよい。本発明の一実施形態では、固相重合に付される固体混合物を固定床として、その中に不活性ガスを流す。

【 0 0 7 9 】

本発明の方法で製造されるブロックコポリマー生成物は通常マルチブロックコポリマーである。場合によっては、出発原料 (A) と出発原料 (B) がいずれも、反応性ヒドロキシ基の攻撃を受け易い内部官能基を含んでいることもあり、例えば出発原料 (A) の内部カーボネット基又は出発原料 (B) がオリゴマー状ポリエステルであるときに存在する内部エステル結合などがある。末端反応性ヒドロキシ基と内部官能基が反応すると、ブロックコポリマー生成物中に存在する1以上のブロックの平均ブロック長が低下する。ある条件下では、ブロックコポリマー生成物に存在する繰返し単位が完全にランダムに分布することがある。本発明の方法の重要な特徴は、ブロックコポリマーに存在する構造単位のランダム化を制御することである。これは、出発原料 (A) の末端基の反応性を高めることによって出発原料 (A) と出発原料 (B) との結合形成過程を有利に導くことで達成される。従って、本発明の方法では、部分結晶質ポリカーボネットが活性化末端アリールオキシ基Iをもたない他の固相重合法に比べ、出発原料のブロック長が保存される度合いが大きい。このブロック長の保存は、ブロックコポリマー生成物に存在するブロック長を、コポリマーの構造単位がポリマー鎖にランダムに分布したと仮定した場合に予想されるブロック長と比較することによって定量化できる。本発明の一実施形態では、ブロックコポリマー生成物のブロック長は、同じ構成のコポリマーにおける構造単位の対応ランダム分布よりも50～約90%長く、好ましくは60～約90%長い。
30 40

【 0 0 8 0 】

本発明の方法で製造したブロックコポリマーは、適宜、染料、UV安定剤、酸化防止剤、熱安定剤及び離型剤を始めとする慣用添加剤とブレンドして成形品を形成してもよい。特に、所望の成形品の成形のための加工処理に役立つ添加剤とブロックコポリマーのブレンドを形成するのが好ましい。ブレンドは、適宜、所望の添加剤を約0.0001～約1.0重量%、さらに好ましくは約0.0001～約1.0重量%含有し得る。

【 0 0 8 1 】

本発明のブロックコポリマーに添加できる物質又は添加剤には、特に限定されないが、耐
50

熱性安定剤、UV吸収剤、離型剤、帯電防止剤、スリップ剤、粘着防止剤、滑剤、防曇剤、着色剤、天然油、合成油、ワックス、有機充填材、無機充填材及びこれらの混合物がある。

【0082】

上記耐熱性安定剤の具体例には、特に限定されないが、フェノール系安定剤、有機チオエーテル系安定剤、有機リン系安定剤、ヒンダードアミン系安定剤、エポキシ系安定剤及びこれらの混合物がある。耐熱性安定剤は固体又は液体の形態で添加し得る。

【0083】

UV吸収剤の具体例には、特に限定されないが、サリチル酸系UV吸収剤、ベンゾフェノン系UV吸収剤、ベンゾトリアゾール系UV吸収剤、シアノアクリレート系UV吸収剤及びこれらの混合物がある。

【0084】

離型剤の具体例には、特に限定されないが、天然及び合成パラフィン、ポリエチレンワックス、フルオロカーボンその他の炭化水素系離型剤、ステアリン酸、ヒドロキシステアリン酸その他の高級脂肪酸、ヒドロキシ脂肪酸その他の脂肪酸系離型剤、ステアリン酸アミド、エチレンビスステアルアミドその他の脂肪酸アミド、アルキレンビス脂肪酸アミドその他の脂肪酸アミド系離型剤、ステアリルアルコール、セチルアルコールその他の脂肪族アルコール、多価アルコール、ポリグリコール、ポリグリセロールその他のアルコール性離型剤、ステアリル酸ブチル、ペンタエリトリートールテトラステアレートその他の脂肪酸の低級アルコールエステル、脂肪酸の多価アルコールエステル、脂肪酸のポリグリコールエステルその他の脂肪酸エステル系離型剤、シリコーン油その他のシリコーン系離型剤、さらにはこれらのいずれかの混合物がある。

【0085】

着色剤は顔料でも染料でもよい。本発明では、無機着色剤及び有機着色剤を別々に使用してもよいし、併用してもよい。

【0086】

本発明の方法で製造したブロックコポリマーは、該ブロックコポリマー、又は該ブロックコポリマーとビスフェノールAポリカーボネートのような第二のポリマーとのブレンドを、射出成形、圧縮成形、押出法及び溶液キャスト法で成形して、所望の物品にすることができる。射出成形が物品の好ましい成形法である。一実施形態では、本発明の方法で製造したブロックコポリマーから成形される成形品は多層物品である。本発明の方法で製造した構造単位V及びVIを含むブロックコポリマーから製造される多層物品は、アウトドアピアノのボディ部材などの様々なアウトドア用途に特に適している。

【実施例】

【0087】

以下の実施例は、特許請求の範囲に記載した方法をいかに実施し評価するかの詳しい説明を当業者に提供するために記載するものであり、本発明者らが発明として把握している範囲を限定するものではない。特記しない限り、部は重量部であり、温度は である。

【0088】

分子量は、数平均分子量(M_n)又は重量平均分子量(M_w)として報告し、ゲルパーミエーションクロマトグラフィー(GPC)で求めた。2通りのGPC較正法を用いた。第一の方法では、ポリカーボネート分子量標準を用いて広範囲の標準較正曲線を作成し、これを用いてポリマー分子量を決定した。この較正法は、本明細書に記載のブロックコポリカーボネートの製造に用いたサリチル酸メチル末端封鎖ポリカーボネートオリゴマーの分子量の決定に用いた。第二のGPC較正法では、既知分子量の一連のポリスチレン標準を用いて較正曲線を作成し、これをコポリエステルカーボネート生成物の分子量の決定に用いた。この第二のGPC較正法は、本明細書に記載のオリゴマー状ポリエステルの分子量の決定にも用いた。GPCでポリカーボネートの特性を決定する場合、ポリカーボネート標準を用いて得られる分子量の方が、ポリスチレン標準を用いて得られるものよりも正確であると一般に考えられている。一般に、GPC法でポリスチレン標準を用いて求めたポ

10

20

30

40

50

リカーボネートの分子量は、ポリカーボネート標準を用いて求めた値に比べ、 M_n 値及び M_w 値が約 1.5 ~ 約 2.5 倍高い。本願明細書では、ポリカーボネート及びポリエステルオリゴマーの重合度 (D P) は N M R を用いて得た。N M R で得られるポリカーボネートオリゴマーの重合度の値は、一般に、G P C でポリカーボネート分子量標準を用いて得た M_n 値とよく相關する。ゲルバーミエーションクロマトグラフィーは、カラム温度が約 25 になるように実施し、移動相はクロロホルムであった。

【 0 0 8 9 】

固相重合は次のように実施した。「固相重合条件下での加熱プロトコル」に付すべき材料約 1 グラムを、10 mL ガラス濾過器に入れて対流式オーブンに配置した。オーブンの底部は窒素導入口を備えていた。窒素を、対流式オーブン内部に収容された約 16 メートルの銅管を通して予熱し、濾過器の底部から、固相重合中の材料を通して、濾過器の頂部へと流した。窒素の流速は約 2.5 リットル / 分であった。通例、固相重合反応の過程で、温度は、約 140 の初期温度から約 165 ~ 約 220 の最終温度まで 1 以上の段階で上昇した。固相重合反応の進行は、ガラス濾過器内の材料の試料を定期的に採取し、示差走査熱量分析 (D S C) に付すことによってモニターした。固相重合のコポリエステルカーボネート生成物は、D S C でガラス転移温度を測定し、ポリスチレン標準を用いたG P C で M_n 及び M_w の値を求め、N M R でコポリエステルカーボネート生成物の組成とブロック度を求めた。コポリエステルカーボネート生成物は「マルチブロックコポリエステルカーボネート」であるが、本明細書では便宜上これを単に「ブロックコポリエステルカーボネート」という。

10

20

30

40

【 0 0 9 0 】

サリチル酸メチル末端封鎖ポリカーボネートオリゴマーの調製

螺旋型攪拌機、蒸留ヘッド及び目盛付受器を備えた 500 mL 又は 1000 L ガラス製回分式反応器で、ビス (メチルサリチル) カーボネートとビスフェノール A との溶融反応を行った。ガラス壁からの外来ナトリウムを除去するため、反応器を 3 N H C l 中に 12 時間以上浸し、次いで脱イオン水 (18 M) で灌いで脱イオン水に 12 時間以上浸した。次いで、反応器を使用前にオーブンで一晩乾燥した。反応器を P I D 制御器付きの流動砂浴で加熱した。浴温は反応器と砂浴の界面付近で測定した。反応器の圧力はフ拉斯コ受器下流での窒素放出で調節した。圧力は M K S ピラニ真空計で測定した。

【 0 0 9 1 】

30

実施例 1

非晶質メチルサリチル末端封鎖ポリカーボネートを以下のようにして調製した。反応器に、150 グラム (0.6571 モル) の固体ビスフェノール - A (B P A) と、243.6 グラム (0.7368 モル) の固体ビス (メチルサリチル) カーボネート (B M S C) を仕込み、反応開始時の B M S C と B P A のモル比が約 1.12 となるようにした。酢酸テトラブチルホスホニウム助触媒を、B P A 1 モル当たり助触媒 2.5×10^{-4} モルに相当する量で加えた。触媒の E D T A マグネシウム二ナトリウム塩を、B P A 1 モル当たり触媒 1.0×10^{-6} モルに相当する量で加えた。反応器を密閉し、雰囲気を窒素で 3 回交換した。最後の窒素交換の後、反応器内の圧力を約 5 ~ 約 15 mm H g にした。最初の段階で、反応器を 170 の流動浴中に沈めた。5 分後に、60 r p m の速度で攪拌を開始した。さらに 10 ~ 15 分経過後、反応体が完全に融解し、攪拌機の速度を 200 r p m に上げた。反応混合物を攪拌・加熱しながら、遊離サリチル酸メチルを受器に回収した。170 で理論量 (B P A と B M S C との完全な反応を基準) の約 90 ~ 約 95 % のサリチル酸メチル副生物が除去された。次に、210、240 及び 270 という一連の温度段階で浴温を上昇させ、各段階で反応混合物を 20 分間攪拌した。最後の 2 段階 (240 及び 270) で、反応混合物上の圧力は約 1 トル以下に下げた。次に、この反応容器を砂浴から取り出し、容器を窒素ガスで穏やかにパージした。非晶質オリゴマー状生成物を回収した。ポリカーボネート分子量標準を用いたG P C で測定したところ、 $M_w = 4820$ 、 $M_n = 2138$ であった。末端封鎖率は 99 % であった。

【 0 0 9 2 】

50

実施例 2 ~ 6 は、同様に調製した非晶質メチルサリチル末端封鎖ポリカーボネートオリゴマーを示す。実施例 2 ~ 6 のオリゴマー状ポリカーボネートデータをまとめて表 1 に示す。

【 0 0 9 3 】

【表 1】

表 1 非晶質メチルサリチル末端封鎖オリゴマー

実施例	BMSC/BPA	Mw	Mn	[OH]	EC(%)
2	1.042	12906	5697	109	98.2
3	1.052	10853	4973	96	98.6
4	1.064	9547	3871	189	97.9
5	1.087	6885	3134	0	100
6	1.136	4376	2013	0	100

【 0 0 9 4 】

実施例 7 ~ 10

メチルサリチル末端基を有する結晶質オリゴマー状ポリカーボネートを同様にして調製した。反応器に、固体 B P A (1 5 0 g 又は 3 0 0 g 、 0 . 6 5 7 1 又は 1 . 3 1 4 1 モル) と固体 B M S C とを仕込み、反応開始時の B M S C と B P A のモル比が約 1 . 0 0 ~ 約 1 . 1 5 となるようにした。触媒の種類と量は実施例 1 で用いたものと同一であった。反応器を密閉し、雰囲気を窒素で 3 回交換した。最後の窒素交換の後、反応器内の圧力を約 5 ~ 約 1 5 m m H g にした。最初の段階で、反応器を 1 7 0 の流動浴中に沈めた。5 分後に、 6 0 r p m の速度で攪拌を始めた。さらに 1 0 ~ 1 5 分経過後、反応体が完全に融解し、攪拌機の速度を 2 0 0 r p m に上げた。反応混合物を攪拌・加熱しながら、遊離サリチル酸メチルを受器に回収した。低分子量の結晶質オリゴマーを得るために、理論量 (B P A と B M S C の完全な反応を基準) の約 9 0 ~ 約 9 5 % のサリチル酸メチル副生物が除去されるまで、サリチル酸メチルを反応容器から留去した。しかる後、反応容器を砂浴から取り出し、容器を窒素ガスで穏やかにパージした。冷却すると、結晶質オリゴマー状生成物が収縮して碎けるのが観察された。冷却した結晶質生成物は反応器から容易に注ぎ出すことができた。この方法で調製した結晶質メチルサリチル末端封鎖ポリカーボネートオリゴマーのデータをまとめて表 2 に示す。

【 0 0 9 5 】

【表 2】

表 2 結晶質メチルサリチル末端封鎖オリゴマー

実施例	BMSC/BPA	Mw	Mn	[OH]	EC(%)	% Cryst
7	1.05	9400	4017	778	90.8	22
8	1.03	12864	6026	1017	82.0	31
9	1.02	15486	6553	1025	80.2	30
10	1.017	16035	7021	959	80.2	30

【 0 0 9 6 】

表 1 及び表 2 において、「 B M S C / B P A 」比は使用したビス (メチルサリチル) カーボネートとビスフェノール A のモル比を表す。記号「 [O H] 」は百万分率 (p p m) で表し、生成物ポリカーボネートでみられた遊離ヒドロキシル基の濃度を示す。遊離ヒドロキシル基濃度は定量的赤外分光法で求めた。「 E C (%) 」はヒドロキシル基以外のポリマー鎖末端の割合 (パーセント) を表す。サリチル末端基は生成物の加溶媒分解後に H P L C 分析で求めた。「 % C r y s t 」という用語は生成物ポリカーボネートの結晶化度 (%) を表し、示差走査熱量計で測定した。

【 0 0 9 7 】

ヒドロキシ末端ポリエステルオリゴマーの調製

実施例 1 1

10

20

30

40

50

機械式攪拌機、Vigreuxカラム付Dean Starkトラップ及び真空装置接続部を備えたガラス製反応器に、レゾルシノール(3.03g、0.0275モル)、イソフタル酸ジフェニル(3.98g、0.0125モル)、テレフタル酸ジフェニル(3.98g、0.0125モル)、水酸化リチウム(2.2ミリグラム[mg])及び水酸化テトラメチルアンモニウム(25wt%溶液、10マイクロリットル)を仕込んだ。窒素雰囲気を確立し(3回真空バージ)、ゆっくりとした攪拌を開始した。反応器を降ろして、約200℃に調節した塩浴中に沈めた。15分後に圧力を100トルに下げた。この圧力と温度を45分間維持したところ、その間に約1mLのフェノールが回収された。次に圧力を50トルに下げて60分間維持したところ、さらに1mLのフェノールが回収された。次いで、温度を220℃に上げたところ、60分後さらに1.2mLのフェノールが得られた。次の30分間反応器を220℃、25トルに保った。最後に、温度を240℃に上げ、45分間真空にしたところ、最終的なフェノールの量は約3.5mLとなった(理論量の80%)。この粘稠な琥珀色の物質をアルミニウム製の鍋に注ぎ入れたところ、4.5グラムのオリゴマー状ヒドロキシ末端ポリエステル生成物が得られた。GPC分析の結果、M_wは8026であった。この物質のT_gは112℃であった。レゾルシノールとイソフタル酸とテレフタル酸又はこれらの誘導体から誘導される各構造単位を含むオリゴマー状ヒドロキシ末端ポリエステルを「ITRオリゴマー」と呼ぶ。

10

20

【0098】

実施例11に記載の方法に従って、イソフタル酸ジフェニルとテレフタル酸ジフェニルの1:1混合物とレゾルシノールとの溶融反応で、実施例12~19の一連のオリゴマー状ヒドロキシ末端ポリエステルを調製した。実施例11~19のオリゴマー状ヒドロキシ末端ポリエステルに関するデータをまとめて表3に示す。重量平均分子量M_wの値は、ポリスチレン分子量標準を用いたGPCで決定した。

30

【0099】

【表3】

表3 ヒドロキシ末端ポリエステルオリゴマー

実施例	M _w オリゴマー ^a	%過剰 レゾルシノール	%フェノール 除去率	T _g
11	8,026	10	80	112℃
12	8327	10	---	115℃
13	9,891	10	86	118℃
14	14,400	10	93	---
15	5,511	32	98	---
16	11,080	10	95	---
17	1,306	100	93	---
18	5,209	32	95	---
19	7,541	10	93	---

^aポリスチレン標準を用いてGPCで決定したM_w

40

50

【0100】

固相重合によるブロックコポリマー

実施例20

実施例1で調製した重合度約8.4の非晶質サリチル酸メチル末端封鎖ポリカーボネートオリゴマー(M_w=4820、M_n=2138)1.0グラムと、実施例11と同様にして調製したITRオリゴマーであってジオキサホスホラン誘導体の定量的¹³C-NMR及び/又は³¹P-NMRで測定した重合度(DP)が約9.2のITRオリゴマー2gから調製した混合物を塩化メチレンに溶解した。塩化メチレンの量の約2倍に相当する量の酢酸エチルを加えて結晶化させ、溶液からオリゴマー混合物を沈殿させた。こうして沈殿した物質を濾過により液相から分離した。次に、この液相を蒸発乾固し、その残渣を濾過で回収した固体と一緒にした。真空オーブン中約60℃で一晩乾燥させた後、得られた粉末の特性を示差走査熱量計(DSC)で決定したところ、約100℃にガラス転移(T_g)を示し、それぞれ約148℃及び200℃の融点に相当する2本のブロードなピークを示した。この部分結晶質メチルサリチル末端封鎖ポリカーボネートオリゴマーとITRオリ

ゴマーの混合物の一部は、実施例 2 1 で用いるため保存した。次に、第二の粉末部分を次の固相重合条件下での加熱プロトコルに供した。

【 0 1 0 1 】

【表 4】

段階	温度	時間	合計時間
1	140°C	240 分	240 分
2	155°C	150 分	390 分
3	165°C	150 分	540 分

【 0 1 0 2 】

固相重合後、ブロックコポリエステルカーボネート生成物を D S C で分析したところ、約 129 の T g 、及びそれぞれ約 187 及び 208 の融点に相当する 2 本のプロードなピークを有していた。ポリスチレン標準を用いた G P C では、 M w = 28000 ダルトン、 M n = 9540 ダルトンの単一ピークを示した。定量的 ¹³C - N M R で、平均ポリカーボネートブロック長が約 4.05 で平均ポリエステルブロック長が約 7 のブロック状コポリマーであることが判明した。

【 0 1 0 3 】

実施例 2 1

実施例 2 0 で後の使用のために保存しておいた粉末混合物の一部を次の固相重合条件下での加熱プロトコルに付した。

【 0 1 0 4 】

【表 5】

段階	温度	時間	合計時間
1	140-160°C	185 分	185 分
2	165°C	25 分	210 分
3	170°C	20 分	230 分

【 0 1 0 5 】

ポリスチレン標準を用いたコポリエステルカーボネート生成物の G P C 分析で、 M w = 18880 、 M n = 9230 の単一の狭いピークを示した。定量的 ¹³C - N M R で、平均ポリカーボネートブロック長が約 4.15 で、平均ポリエステルブロック長が約 8.9 のブロック状コポリマーであることが判明した。

【 0 1 0 6 】

実施例 2 2

実施例 1 で調製したサリチル酸メチル末端封鎖ポリカーボネートオリゴマー (M w = 4820 、 M n = 2138 、 D P 約 8.4) を塩化メチレンに溶解し、その後使用した塩化メチレンの量の約 5 倍に相当する量の酢酸エチルを加えて沈澱させた。この沈澱を液相から濾別した。次に液相を蒸発乾固させて固体残渣を得た。その後、沈澱と液相からの固体残渣とを一緒にして、沈澱と、液相の蒸発で得られた固体残渣との混合物を形成した。この混合物を粉碎した後機械的に振盪して、実質的に部分結晶質メチルサリチル末端封鎖ポリカーボネートオリゴマーからなる粉末を得た。次に、部分結晶質メチルサリチル末端封鎖ポリカーボネートオリゴマーを粉碎し、同じ重量の、実施例 1 1 の方法と比率を用いて調製したオリゴマー状ヒドロキシ末端ポリエステル (ポリスチレン標準を用いた M w = 8845 、 D P = 約 9.2) の微粉末と共に実験室用ミルミキサーで数分間混合した。 D S C で分析したところ、このオリゴマーの混合物は約 105 の T g と、約 170 の融解温度に相当するプロードなピークを示した。一部を実施例 2 3 及び 2 4 で使用するために保存した。この混合物の残りの部分を次の固相重合条件下での加熱プロトコルに付した。

【 0 1 0 7 】

【表 6】

10

20

30

40

段階	温度	時間	合計時間
1	150-170°C	90分	90分
2	170°C	90分	180分
3	180°C	80分	260分
4	185°C	60分	320分
5	200°C	30分	350分
6	205°C	90分	440分

【0108】

生成物のコポリエステルカーボネートは、約135のTgと、それぞれ約169及び221の融点に相当する2本のブロードなピークを有していた。ポリスチレン標準を用いた生成物のGPC分析で、Mw = 79830、Mn = 21720のブロードなピークを示した。定量的¹³C-NMRは、平均ポリカーボネートブロック長が約6.7で、平均ポリエステルブロック長が約8.6のブロック状コポリマーであることが判明した。10

【0109】

実施例23

実施例22で調製したオリゴマーの部分結晶質混合物の一部を固相重合条件下次の加熱プロトコルに付した。

【0110】

【表7】

段階	温度	時間	合計時間
1	160-195°C	140分	140分
2	195°C	50分	190分
3	210-215°C	25分	215分
4	215°C	80分	295分

【0111】

生成物のコポリエステルカーボネートは、約143のTgと、それぞれ約130、161及び243の融点に相当する3本のブロードなピークを有していた。ポリスチレン標準を用いた生成物のGPC分析で、Mw = 73540、Mn = 24000のブロードなピークを示した。定量的¹³C-NMRで、平均ポリカーボネートブロック長が約4.25で、平均ポリエステルブロック長が約6.4のブロック状コポリマーであることが判明した。20

【0112】

実施例24

実施例22で調製したオリゴマーの部分結晶質混合物の一部を次の固相重合条件下での加熱プロトコルに付した。

【0113】

【表8】

段階	温度	時間	合計時間
1	170-200°C	75分	75分
2	200°C	60分	135分

【0114】

生成物のコポリエステルカーボネートは、約133のTgと、それぞれ約162及び221の融点に相当する2本のブロードなピークを有していた。ポリスチレン標準を用いて生成物のGPC分析をしたところ、Mw = 41250、Mn = 14020のブロードなピークが認められた。定量的¹³C-NMRで、平均ポリカーボネートブロック長が約5.65で、平均ポリエステルブロック長が約7のブロック状コポリマーであることが判明した。40

【0115】

比較例1

ビスフェノールAとジフェニルカーボネートの溶融反応で調製した重量平均分子量(Mw)約5600ダルトン、数平均分子量(Mn)約2300ダルトン(DP約9.1)の非晶質オリゴマー状ビスフェノールAポリカーボネート粉末の試料を、米国特許第6031

063号に記載の方法に従ってイソプロパノール蒸気を用いて結晶化した。部分結晶質オリゴマー状ポリカーボネート粉末が得られた。この部分結晶質オリゴマー状ポリカーボネートは末端封鎖率約60%であり、換言すれば、オリゴマー鎖末端の60%がジフェニルカーボネート由来のフェノキシ基であり、鎖末端の約40%がヒドロキシ基であった。この部分結晶質オリゴマー状ポリカーボネートの一部を、同じ重量の、実施例11の方法と比率を用いて調製したオリゴマー状ヒドロキシ末端ポリエステル(^{13}C -NMRによるDP=約9.2)の微粉末と共に実験室用ミルミキサーで数分間混合した。次に、この混合物を次の固相重合条件下での加熱プロトコルに付した。

【0116】

【表9】

段階	温度	時間	合計時間
1	170-200°C	75分	75分
2	200°C	60分	135分

【0117】

固相重合で得られた生成物をポリスチレン標準を用いてGPC分析したところ、Mw=13020、Mn=5080のプロードなピークを示した。定量的 ^{13}C -NMRから、平均ポリカーボネートブロック長が約2.35で、平均ポリエステルブロック長が約4.3のブロック状コポリマーであることが判明した。

【0118】

実施例20~24で得られたデータは、温和な条件下でブロック状コポリエステルカーボネートが得られる本発明の方法を例証している。比較例1は、コポリエステルカーボネートを製造する従来の固相重合技術の限界を例証している。実施例20~24及び比較例1のデータを表4に示す。

【0119】

【表10】

表4 SSPによるブロック状コポリエステルカーボネート

実施例	Mw ^a	Mn ^a	PCブロック長 実測 ^b / %保持率 ^c		ITRブロック長 実測 ^b / %保持率 ^c	
			実測 ^b	%保持率 ^c	実測 ^b	%保持率 ^c
20	28000	9450	4.0	47.6%	7	76.1%
21	18880	9230	4.1	48.8%	8.9	96.7%
22	79830	21720	6.7	79.8%	8.6	93.5%
23	73540	24000	4.2	50.0%	6.4	69.6%
24	41250	14020	5.6	66.7%	7	76.1%
CE-1	13020	5080	2.3	25.2%	4.3	46.7%

^a分子量はポリスチレン標準を用いたGPCで決定。

^bブロック長は ^{13}C -NMRで決定。

^cブロック長の保持率%は、出発オリゴマーのDPを、コポリエステルカーボネート生成物中に存在するポリカーボネート又はポリエステルブロックの平均DPと比較して決定。

【0120】

実施例20~24では、初期ポリエステルブロック長の約70~約97%がコポリエステルカーボネート生成物で保存されている。例えば、実施例20では、ヒドロキシ末端ITRオリゴマーの平均ブロック長(その重合度(DP)ともいう。)は約9.2であった。固相重合後のコポリエステルカーボネート生成物は、平均ブロック長約7のポリエステルブロック(ITRブロック)を含んでいた。すなわち、元のポリエステルブロック長の約76%がコポリエステルカーボネート生成物で保持されている。実施例20~24を比較例1(C E - 1)と対比すると、ポリカーボネートとポリエステルのいずれについてもオ

10

20

30

40

50

リゴマー状出発原料のブロック長がよく保存されるだけでなく、分子量増加が格段に速いことも分かる。すなわち、本発明の方法では、実質的な分子量（ M_w 約 19000 ~ 約 79000 ダルトン）を有するブロック状コポリエステルカーボネートが得られるのに対して、従来の固相重合技術を用いると、低分子量（ $M_w < 15000$ ダルトン）のランダムなコポリエステルカーボネートが得られた（比較例 1）。

【 0 1 2 1 】

本発明をその好ましい実施形態を特に参照して詳細に説明してきたが、本発明の要旨及び技術的範囲内で変更及び修正をなすことができることは当業者には明らかであろう。

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
15 May 2003 (15.05.2003)

PCT

(10) International Publication Number
WO 03/040208 A1(51) International Patent Classification⁵: C08G 64/18, 64/30, 63/64, 63/80

(74) Agents: WINTER, Catherine, J. et al.; General Electric Company, 3135 Easton Turnpike (W3C), Fairfield, CT 06430 (US).

(81) Designated States (national): AT, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LG, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CL, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BJ, BJ, CI, CG, CI, CM, GA, GN, GQ, GW, MI, MR, NU, SN, TD, TG).

(30) Priority Data:
10/000913 2 November 2001 (02.11.2001) US(71) Applicant: GENERAL ELECTRIC COMPANY
[US/US]; 1 River Road, Schenectady, NY 12345 (US).

(72) Inventors: O'NEIL, Gregory, Allen; 26 Devoe Drive, Clifton Park, NY 12065 (US); DAY, James; 136 Spring Road, Sotia, NY 12302 (US); BRUNELLE, Daniel, Joseph; 4 Woods Edge, Burnt Hills, NY 12027 (US); SURIANO, Joseph, Anthony; 38 Gloucester Street, Clifton Park, NY 12065 (US); MCCLOSKEY, Patrick, Joseph; 10 Meadowbrook Road, Latham, NY 12189 (US); SMIGELSKI, Paul, Michael, Jr.; 2104 Chepstow Road, Schenectady, NY 12303 (US).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A1

WO 03/040208

(54) Title: METHOD OF MAKING BLOCK COPOLYMERS BY SOLID STATE POLYMERIZATION

(57) Abstract: A method of preparing block copolymers by solid state polymerization is described. A mixture of a partially crystalline polycarbonate having activated terminal aryloxy groups, for example terminal methyl salicyl groups, when heated together with an oligomeric polyester having reactive terminal hydroxy groups under solid state polymerization conditions affords block copolymers. The activated terminal aryloxy groups play a key role in preserving the block lengths of the starting materials. A control sample in which the partially crystalline polycarbonate lacks activated terminal aryloxy groups, for example polycarbonates substituted by phenol, affords a much lower molecular weight, more highly randomized copolymer product. The product block copolymers are useful as "weatherable" plastic materials.

WO 03/040208

PCT/US02/32085

METHOD OF MAKING BLOCK COPOLYMERS BY
SOLID STATE POLYMERIZATION

BACKGROUND OF THE INVENTION

This invention relates to a method of copolymer preparation by solid state polymerization. More particularly the method relates to the preparation of block copolymers incorporating polycarbonate and polyester structural units by solid state polymerization.

Block copolymers are prized for the degree to which polymer physical properties are determined by polymer structure. Block copolymer structure may be varied by adjusting the monomers constituting the blocks, the length of the blocks, and the number of blocks per copolymer molecule. Block copolymers prepared from two different difunctional, mutually reactive oligomers, for example an oligomeric diacid chloride and an oligomeric diol, are referred to as multiblock copolymers and possess a structure in which there are multiple blocks comprising the structural units of the first oligomer alternating with blocks comprising the structural units of the second oligomer. The physical properties of multiblock copolymers may be adjusted through careful control of the block length of the starting oligomers and the choice of a synthetic method which preserves the block length of the starting oligomers in the final multiblock copolymer.

Block copolymers incorporating polycarbonate and polyester structural units, block copolyestercarbonates, have demonstrated effectiveness as UV resistant thermoplastics and hold promise as "weatherable" plastic materials for use in applications in which resistance to the elements is required. Block copolyestercarbonates are typically prepared by reaction of at least one aromatic dihydroxy compound with at least one aromatic dicarboxylic acid dichloride in the presence of water and a solvent such as methylene chloride, an acid acceptor such as sodium hydroxide, and an amine catalyst such as triethylamine to produce a hydroxy-terminated oligomeric polyester. The hydroxy-terminated oligomeric polyester is then further reacted with an additional source of carbonate units, for example phosgene, under interfacial conditions analogous to those used in making polycarbonates such as bisphenol A polycarbonate, in the presence of at least one dihydroxy aromatic compound. A block copolyestercarbonate having polyester blocks and polycarbonate blocks is produced.

WO 03/040208

PCT/US02/32085

Current methods of preparing block copolyestercarbonates suffer from the disadvantages inherent in the use of highly toxic chemicals such as phosgene. Moreover, the use of one or more solvents during the preparation of the hydroxy-terminated oligomeric polyester and during the reaction of the hydroxy-terminated oligomeric polyester with phosgene and at least one dihydroxy aromatic compound requires that steps must be taken to prevent the escape of process solvents from the equipment used. Control measures taken to prevent the escape of process solvents add to the cost and complexity of the manufacturing process. It would be desirable to provide a method for making copolyestercarbonates which did not rely on phosgene and minimized the use of organic solvents.

An alternative methodology, analogous to the melt preparation of polycarbonates, is inapplicable to the manufacture of block copolyestercarbonates due to the tendency of the structural units to randomize under the reaction conditions. Thus, treatment of a mixture of one or more dihydroxy aromatic compounds with a source of ester units such as diphenyl terephthalate, and a source of carbonate units such as diphenyl carbonate in the melt at high temperature in the presence of a catalyst such as sodium hydroxide affords a random copolyestercarbonate owing to the tendency of the structural units of the copolyestercarbonate to achieve a statistical distribution throughout the polymer chains under melt polymerization conditions.

Attempts to incorporate hydroxy-terminated oligomeric polyester intact into polycarbonate chains by reaction of said hydroxy-terminated oligomeric polyester with a source of carbonate units such as diphenyl carbonate and a dihydroxy aromatic compound under the conditions used to prepare melt polycarbonate likewise affords a random copolyestercarbonate owing to the tendency of the polyester blocks to randomize as the polymerization proceeds. In addition to affording random copolyestercarbonates, the "melt" method, although obviating the need for phosgene or an organic solvent such as methylene chloride, requires high temperatures and relatively long reaction times. As a result, by-products may be formed at high temperature, such as the products arising by Fries rearrangement of carbonate and ester units along the growing polymer chains. Fries rearrangement gives rise to uncontrolled polymer branching which may negatively impact the flow properties and performance of the polymer. Moreover, Fries rearrangement may result in "yellowing" of the product copolyestercarbonate. It would be desirable therefore to provide a method for making block copolymers incorporating polycarbonate and

WO 03/040208

PCT/US02/32085

polyester structural units which did not require the use of high temperatures and which minimized the formation of Fries product.

Polycarbonates and copolyestercarbonates have been prepared by solid state polymerization (SSP). SSP offers several advantages over both melt phase and the interfacial polycondensation processes. SSP does not require the use of phosgene gas which forms an important element of the interfacial process. Additionally SSP utilizes considerably lower temperatures than those required for the preparation of high molecular weight polycarbonate by melt polymerization of a diaryl carbonate such as diphenyl carbonate and a bisphenol such as bisphenol A. Also, the SSP process, unlike the melt phase process, does not require handling highly viscous polymer melt at high temperatures and the special equipment capable of mixing polymer melt under vacuum at high temperature required in the melt process is not required to perform the SSP process.

In a solid state polymerization process, a precursor polycarbonate, typically a relatively low molecular weight oligomeric polycarbonate, is prepared by the melt reaction of a diaryl carbonate such as diphenyl carbonate with a bisphenol such as bisphenol A. In the preparation of bisphenol A polycarbonate oligomers, a diaryl carbonate such as diphenyl carbonate is heated together with bisphenol A in the presence of a catalyst such as sodium hydroxide while removing phenol. Phenol is formed as a by-product of the transesterification reaction between phenolic groups of the growing polymer chains and diphenyl carbonate or phenyl carbonate polymer chain endgroups. This oligomerization reaction is typically carried out under reduced pressure to facilitate the orderly removal of the phenol by-product. When the desired level of oligomerization has been achieved the reaction is terminated and the product oligomeric polycarbonate is isolated. The oligomeric polycarbonate so produced is amorphous and must be partially crystallized in order to be suitable for solid state polymerization.

The oligomeric polycarbonate may be partially crystallized by one of several methods, such as exposure of powdered or pelletized oligomer to hot solvent vapors, or dissolution of the amorphous oligomer in a solvent such as methylene chloride and thereafter adding a solvent such as methanol or ethyl acetate to precipitate crystalline oligomeric polycarbonate. Typically, such solvent vapor or liquid solvent crystallization methods result in partially crystalline oligomeric polycarbonates having a percent crystallinity between about 20 and about 40 percent as measured by

WO 03/040208

PCT/US02/32085

differential scanning calorimetry. A percent crystallinity in this range is usually sufficient for the oligomeric polycarbonate to undergo solid state polymerization without fusion of the pellets or powder being subjected to SSP. In addition to solvent induced crystallization, oligomeric bisphenol A polycarbonate has been crystallized by dissolving diphenyl carbonate in molten amorphous polycarbonate oligomer followed by cooling the mixture to ambient temperature to afford partially crystalline polycarbonate as a mixture with diphenyl carbonate. Finally, amorphous oligomeric polycarbonates have been crystallized by prolonged heating at a temperature below the melting point of the partially crystalline polycarbonate. However, such thermally induced crystallization is quite slow relative to the aforementioned crystallization methods.

The partially crystalline oligomeric polycarbonate in a solid form such as a powder, particulate or pellet is then heated under solid state polymerization conditions at a temperature below the sticking temperature or melting point of the oligomeric polycarbonate, but above the glass transition temperature of the partially crystalline oligomeric polycarbonate, and the volatile by-products formed as chain growth occurs, phenol, diphenyl carbonate and the like, are removed. The polycondensation reaction which converts the low molecular weight oligomer to high polymer is effected in the solid state under these conditions.

Although modern solid state polymerization methods provide a valuable alternative to the melt and interfacial copolyestercarbonate syntheses, the solid state polymerization method suffers from several disadvantages. Typically, the partially crystalline precursor polycarbonate and a partially crystalline oligomeric polyester precursor require two steps for their preparation; an oligomerization step and a crystallization step. Moreover, the solid state polymerization process itself is relatively slow, and affords a random distribution of ester and carbonate structural units within the product copolyestercarbonate. Thus it would be highly desirable to discover improvements which provide greater efficiency in the preparation of the partially crystalline precursor polycarbonate, employ either an amorphous or crystalline oligomeric polyester precursor, and enhance the rates of solid state polymerization such that polymer chain growth proceeds faster than the processes responsible for randomization of ester and carbonate structural units. Such randomization processes typically are manifested by a dramatic reduction in polyester and polycarbonate block lengths.

WO 03/040208

PCT/US02/32085

BRIEF SUMMARY OF THE INVENTION

In one aspect, the present invention provides a method of preparing block copolymers, said method comprising contacting a partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups with at least one polymeric species (B) comprising reactive terminal hydroxy groups under solid state polymerization conditions to afford a product block copolymer. In one aspect of the present invention the block copolymer is a multiblock copolyestercarbonate.

DETAILED DESCRIPTION OF THE INVENTION

The present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the invention and the examples included herein. In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings.

The singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.

"Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.

As used herein the term "polycarbonate" refers to polycarbonates incorporating structural units derived from one or more dihydroxy aromatic compounds and includes copolycarbonates and polyester carbonates.

As used herein, the term "melt polycarbonate" refers to a polycarbonate made by the transesterification of at least one diaryl carbonate with at least one dihydroxy aromatic compound.

"BPA" is herein defined as bisphenol A and is also known as 2,2-bis(4-hydroxyphenyl)propane, 4,4'-isopropylidenediphenol and p,p-BPA.

As used herein, the term "bisphenol A polycarbonate" refers to a polycarbonate in which essentially all of the repeat units comprise a bisphenol A residue.

As used herein, the term "partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups" is used interchangeably with the terms "partially crystalline polycarbonate starting material (A)" and "starting material (A)",

WO 03/040208

PCT/US02/32085

each of said terms referring to a partially crystalline polycarbonate comprising activated terminal aryloxy groups.

As used herein the term "polymeric species (B) comprising reactive terminal hydroxy groups" is used interchangeably with the terms "polymeric species (B)" and "starting material (B)", each of said terms referring to a polymeric species comprising reactive terminal hydroxyl groups.

As used herein, the term "partially crystalline polycarbonate starting material" refers to a partially crystalline polycarbonate of any molecular weight which is used as a reactant in a solid state polymerization reaction.

As used herein, the term "polymeric species" includes both polymeric and oligomeric materials. Polymeric materials are defined as having weight average molecular weights, M_w , greater than 15,000 daltons, and oligomeric materials are defined as having weight average molecular weights, M_w , less than 15,000 daltons.

The term "partially crystalline precursor polycarbonate" refers to an oligomeric polycarbonate having a weight average molecular weight of less than 15000 daltons and percent crystallinity of at least about 15 percent based on differential scanning calorimetry.

The terms "partially crystalline precursor polycarbonate" and "partially crystalline oligomeric polycarbonate" are used interchangeably.

As used herein, the term "polyester" includes both aliphatic and aromatic polyesters. Thus, the term "polyester" as used herein includes aromatic polyesters sometimes referred to as "polyarylates".

As used herein, the term "oligomeric hydroxy-terminated polyester" includes both aliphatic and aromatic oligomeric hydroxy-terminated polyesters. Thus, the term "oligomeric hydroxy-terminated polyesters" includes oligomeric hydroxy-terminated polyarylates.

As used herein, the term "oligomeric hydroxy-terminated polyester" refers to an oligomeric polyester having a weight average molecular weight (M_w) of less than 15,000 and having hydroxy groups at about 50 percent or more of its chain ends. For example, a polyester prepared by the melt reaction of excess resorcinol with a 1:1 mixture of diphenyl isophthalate and diphenyl terephthalate, having a weight average

WO 03/040208

PCT/US02/32085

molecular weight of 9,000 daltons and possessing hydroxy groups at 80 percent of the chain ends and phenoxy groups at 20 percent of the chain ends, represents an oligomeric hydroxy-terminated polyester.

As used herein, the term "reactive terminal hydroxyl groups" refers to hydroxy groups located at the chain ends of polymeric species, for example, the hydroxy groups found at the chain ends of an oligomer produced by the interfacial reaction of a 10 mole percent excess of bisphenol A with isophthaloyl dichloride.

As used herein the terms bis(methyl salicyl) carbonate and bis(2-methoxycarbonylphenyl) carbonate have the same meaning and are used interchangeably.

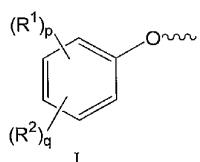
As used herein the term "percent endcap" refers to the percentage of polycarbonate chain ends which are not hydroxyl groups. In the case of bisphenol A polycarbonate prepared from diphenyl carbonate and bisphenol A, a "percent endcap" value of about 75% means that about seventy-five percent of all of the polycarbonate chain ends comprise phenoxy groups while about 25% of said chain ends comprise hydroxyl groups. The terms "percent endcap" and "percent endcapping" are used interchangeably.

As used herein the term "aromatic radical" refers to a radical having a valence of at least one and comprising at least one aromatic ring. Examples of aromatic radicals include phenyl, pyridyl, furanyl, thieryl, naphthyl, phenylene, and biphenyl. The term includes groups containing both aromatic and aliphatic components, for example a benzyl group.

As used herein the term "aliphatic radical" refers to a radical having a valence of at least one and consisting of a linear or branched array of atoms which is not cyclic. The array may include heteroatoms such as nitrogen, sulfur and oxygen or may be composed exclusively of carbon and hydrogen. Examples of aliphatic radicals include methyl, methylene, ethyl, ethylene, hexyl, hexamethylene and the like.

As used herein the term "cycloaliphatic radical" refers to a radical having a valence of at least one and comprising an array of atoms which is cyclic but which is not aromatic, and which does not further comprise an aromatic ring. The array may include heteroatoms such as nitrogen, sulfur and oxygen or may be composed exclusively of carbon and hydrogen. Examples of cycloaliphatic radicals include

WO 03/040208


PCT/US02/32085

cyclopropyl, cyclopentyl cyclohexyl, 2-cyclohexylethyl-1-yl, tetrahydrofuryl and the like.

As used herein, the term "multilayer article" refers to an article which comprises at least two layers.

The present invention relates to a method for preparing block copolymers, said method comprising contacting a partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups with at least one polymeric species (B) comprising reactive terminal hydroxy groups under solid state polymerization conditions to afford a product block copolymer. In one aspect of the present invention the block copolymer is a multiblock copolyestercarbonate.

The partially crystalline polycarbonate starting material (A) according to the method of the present invention comprises activated terminal aryloxy groups having structure I

wherein R¹ is independently at each occurrence a C₁-C₂₀ aliphatic radical, C₄-C₂₀ cycloaliphatic radical, C₄-C₂₀ aromatic radical; R² is independently at each occurrence a halogen atom, nitro group, cyano group, C₁-C₂₀ alkoxy carbonyl group, C₁-C₂₀ acyl group, C₄-C₂₀ cycloalkoxy carbonyl group, C₆-C₂₀ aryloxy carbonyl group, C₁-C₂₀ alkylaminocarbonyl group, C₂-C₁₀ dialkylaminocarbonyl group, or a C₁-C₂₀ perfluoroalkyl group; p is an integer having a value 0 to 4, and q is an integer having a value of 1 to 5.

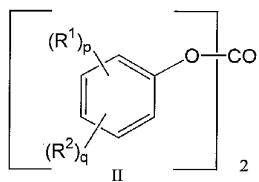
Terminal groups having structure I are exemplified by the 2-methoxycarbonyl phenoxy, 2-cyanophenoxy, 2-acetylphenoxy, 2-nitrophenoxy, 4-nitrophenoxy, and 2,4,6-trifluorophenoxy groups.

WO 03/040208

PCT/US02/32085

In one embodiment of the present invention the partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups is prepared by the melt reaction of at least one dihydroxy aromatic compound with at least one diaryl carbonate to provide an amorphous polycarbonate which is then crystallized in a second step. In some instances the partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups may be obtained directly by reaction of a dihydroxy aromatic compound with a diaryl carbonate, for example the reaction of bisphenol A with bis(methyl salicyl) carbonate under reaction conditions promoting the crystallization of the polycarbonate product. Alternatively, the partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups may be obtained by interfacial reaction of phosgene with at least one dihydroxy aromatic compound in the presence of an acid acceptor and a hydroxy aromatic compound chainstopper, said chain stopper comprising at least one "activating substituent". Activating substituents include alkoxy carbonyl groups; for example, the methoxycarbonyl group, the cyano group; the nitro group; and halogen atoms. Chainstoppers incorporating at least one activating substituent are exemplified by methyl salicylate, 2-cyanophenol, 2,4,6-trifluorophenol and the like.

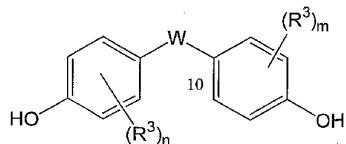
In yet a further embodiment of the present invention, the partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups is prepared by a method comprising treatment under melt reaction conditions of a polycarbonate comprising reactive terminal hydroxy groups, with a diaryl carbonate comprising activating substituents, for example, diaryl carbonates having structure II. Thus, a polycarbonate comprising reactive terminal hydroxy groups, said polycarbonate having been prepared either by melt polymerization or interfacial polymerization, may be further reacted with a diaryl carbonate comprising activating substituents, thereby converting all or a portion of said reactive terminal hydroxy groups to endgroups comprising activated terminal aryloxy groups and affording a polycarbonate comprising said activated terminal aryloxy groups. Crystallization of said polycarbonate comprising activated terminal aryloxy groups affords starting material (A).


The term "melt polymerization conditions" is understood to mean those conditions necessary to effect reaction between a diaryl carbonate and a dihydroxy aromatic compound in the presence of a catalyst and optionally a co-catalyst. The catalyst may be any one of a number of transesterification catalysts, such as alkali metal hydroxides, alkaline earth hydroxides and mixtures thereof. Co-catalysts include

WO 03/040208

PCT/US02/32085

tetraalkylammonium hydroxides, such as tetramethylammonium hydroxide; tetraalkylphosphonium hydroxides, such as tetrabutylphosphonium hydroxide; and tetraalkylphosphonium carboxylates, such as tetrabutylphosphonium acetate. The reaction temperature is typically in the range of about 100 to about 350°C, more preferably about 180 to about 310°C. The pressure may be at atmospheric pressure, supraatmospheric pressure, or a range of pressures from atmospheric pressure to about 15 torr in the initial stages of the reaction, and at a reduced pressure at later stages, for example in the range of about 0.2 to about 15 torr. The reaction time is generally about 0.1 hours to about 10 hours.


In one embodiment of the present invention the partially crystalline polycarbonate starting material (A) is prepared by a method comprising reacting under melt polymerization conditions at least one dihydroxy aromatic compound with at least one diaryl carbonate II

wherein R¹, R², p and q are defined as in structure I.

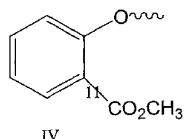
Diaryl carbonates II are exemplified by bis(2-methoxycarbonylphenyl) carbonate, bis(4-chloro-2-methoxycarbonylphenyl) carbonate, bis(2-ethoxycarbonylphenyl) carbonate, bis(2-butoxycarbonylphenyl) carbonate, bis(2,4,6-trifluorophenyl) carbonate, bis(2-nitrophenyl) carbonate, and bis(2-cyanophenyl) carbonate.

Dihydroxy aromatic compounds which may be employed to prepare said partially

WO 03/040208

PCT/US02/32085

crystalline polycarbonate starting material (A) include bisphenols III


wherein R³ is independently at each occurrence a halogen atom, nitro group, cyano group, C₁-C₂₀ alkyl group, C₄-C₂₀ cycloalkyl group, or C₆-C₂₀ aryl group; n and m are independently integers 0-4; and W is a bond, an oxygen atom, a sulfur atom, a SO₂ group, a C₁-C₂₀ aliphatic radical, a C₆-C₂₀ aromatic radical, a C₆-C₂₀ cycloaliphatic radical or the group

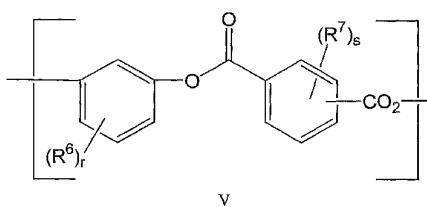
wherein R⁴ and R⁵ are independently a hydrogen atom, C₁-C₂₀ alkyl group, C₄-C₂₀ cycloalkyl group, or C₆-C₂₀ aryl group; or R⁴ and R⁵ together form a C₄-C₂₀ cycloaliphatic ring which is optionally substituted by one or more C₁-C₂₀ alkyl, C₆-C₂₀ aryl, C₅-C₂₁ aralkyl, C₅-C₂₀ cycloalkyl groups or a combination thereof.

Bisphenols having structure III are exemplified by bisphenol A; 2,2-bis(4-hydroxy-3-methylphenyl)propane; 2,2-bis(4-hydroxy-2-methylphenyl)propane; 2,2-bis(3-chloro-4-hydroxyphenyl)propane; 2,2-bis(3-bromo-4-hydroxyphenyl)propane; 2,2-bis(4-hydroxy-3-isopropylphenyl)propane; 1,1-bis(4-hydroxyphenyl)cyclohexane; 1,1-bis(4-hydroxy-3-methylphenyl)cyclohexane; 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane; 4,4'-dihydroxy-1,1-biphenyl; 4,4'-dihydroxy-3,3'-dimethyl-1,1-biphenyl; 4,4'-dihydroxy-3,3'-dioctyl-1,1-biphenyl; 4,4'-dihydroxydiphenylether; 4,4'-dihydroxydiphenylthioether; 1,3-bis(2-(4-hydroxyphenyl)-2-propyl)benzene; 1,3-bis(2-(4-hydroxy-3-methylphenyl)-2-propyl)benzene; 1,4-bis(2-(4-hydroxyphenyl)-2-propyl)benzene and 1,4-bis(2-(4-hydroxy-3-methylphenyl)-2-propyl)benzene.

In one embodiment of the present invention the partially crystalline polycarbonate starting material (A) comprises repeat units derived from bisphenol A, and 2-methoxycarbonylphenoxy groups, IV, said group IV comprising the activated terminal aryloxy groups.

WO 03/040208

PCT/US02/32085

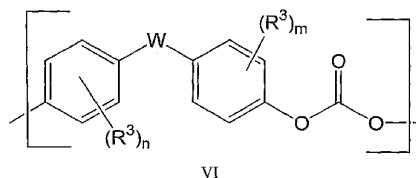

Typically, the partially crystalline polycarbonate starting material (A) will have a percent endcap of between about 50 and about 100 percent and a percent crystallinity as measured by differential scanning calorimetry of between about 15 and about 40 percent. Typically, starting material (A) will have a weight average molecular weight between about 1000 and about 30,000 daltons.

In one embodiment of the present invention the partially crystalline polycarbonate starting material (A) is a "partially crystalline precursor polycarbonate" as defined herein, said partially crystalline precursor polycarbonate having a weight average molecular weight less than 15000 daltons, preferably in a range between about 1000 and about 14000 daltons.

The polymeric species (B) comprising reactive terminal hydroxy groups may be at least one polyester, polycarbonate, polyether, polyetherketone, polyethersulfone, polyetherimides, and a mixture thereof.

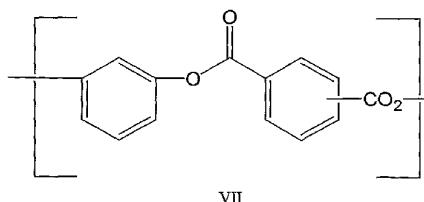
In one embodiment of the present invention the polymeric species (B) comprising reactive terminal hydroxy groups comprises structural units selected from the group consisting of

(I) polyester structural units corresponding to structure V


WO 03/040208

PCT/US02/32085

wherein R⁶ and R⁷ are independently at each occurrence a halogen atom, C₁-C₂₀ aliphatic radical, C₄-C₂₀ cycloaliphatic radical, or a C₄-C₂₀ aromatic radical, and r and s are independently integers having values from 0 to 4; and


(2) polycarbonate structural units corresponding to structure VI

5

wherein R³, n, m, and W are defined as in structure III.

In a further embodiment of the present invention the polymeric species (B) comprising reactive terminal hydroxy groups is an oligomeric polyester comprising structural units VII and having a degree of polymerization of at least about 4.

Polyesters comprising repeat units having structure V may be prepared by a variety of known methods including the interfacial reaction of one or more diacid chlorides, such as terephthaloyl dichloride and isophthaloyl dichloride, with one or more dihydroxy aromatic compounds, such as resorcinol, in the presence of an acid acceptor and an amine catalyst such as a triethylamine.

WO 03/040208

PCT/US02/32085

In one embodiment, resorcinol is reacted with a mixture of terephthaloyl dichloride and isophthaloyl dichloride under interfacial conditions such that the molar ratio of resorcinol to total moles of terephthaloyl dichloride and isophthaloyl dichloride is between about 1.01 and about 1.5, and the molar ratio of terephthaloyl dichloride to isophthaloyl dichloride is in a range between about 1 to about 10 and about 10 to about 1.

Polyesters comprising repeat units having structure V may also be prepared by contacting one or more dihydroxy aromatic compounds, such as resorcinol and hydroquinone, with one or more diaryl esters such as diphenyl terephthalate and diphenyl isophthalate, under melt polymerization conditions in the presence of a transesterification catalyst such as an alkali metal hydroxide and a co-catalysts, such as a tetraalkylammonium hydroxide. The use of excess dihydroxy aromatic compound favors the formation of hydroxy terminated polymeric species.

In one embodiment of the present invention polymeric species (B) is a polyester comprising repeat units VII and further comprising reactive terminal hydroxy groups is prepared by reacting resorcinol under melt polymerization conditions with a mixture of diphenyl terephthalate and diphenyl isophthalate in the presence of a transesterification catalyst. The reaction is carried out such that the molar ratio of moles of resorcinol to the combined number of moles of diphenyl terephthalate and diphenyl isophthalate is between about 1.01 and about 1.5, and the molar ratio of diphenyl terephthalate to diphenyl isophthalate is in a range between about 1 to about 10 and about 10 to about 1.

In an alternate embodiment of the present invention polymeric species (B) comprising repeat units VII and further comprising reactive terminal hydroxy groups is prepared by reacting resorcinol reacted under melt polymerization conditions with a mixture of diphenyl terephthalate and diphenyl isophthalate in the absence of any added catalyst. The reaction is carried out such that the molar ratio of moles of resorcinol to the combined number of moles of diphenyl terephthalate and diphenyl isophthalate is between about 1.01 and about 1.5, and the molar ratio of diphenyl terephthalate to diphenyl isophthalate is in a range between about 1 to about 10 and about 10 to about 1.

Block copolymers are prepared according to the method of the present invention by contacting a partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups with at least one polymeric species (B) comprising

WO 03/040208

PCT/US02/32085

reactive terminal hydroxy groups under solid state polymerization conditions. The starting material (A) may be a partially crystalline "polymeric material" as defined herein, meaning a polycarbonate having a weight average molecular weight, M_w , of greater than 15,000 daltons. Alternatively, partially crystalline polycarbonate starting material (A) may be a partially crystalline oligomeric polycarbonate having M_w , of less than 15,000 daltons.

Contacting the partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups with at least one polymeric species (B) comprising reactive terminal hydroxy groups under solid state polymerization conditions may be carried out by forming a mixture of starting materials (A) and (B) and subjecting the said mixture to solid state polymerization conditions. The mixture may be formed by mixing the partially crystalline polycarbonate starting material (A) in powder form with polymeric species (B) in powder form. This mixing may be accomplished by dry mixing the two powders using a variety of mechanical devices, for example, a roller mixer, or a Henschel mixer.

Typically, crystalline polycarbonate starting material (A) is mixed together with at least one polymeric species (B) such that the weight ratio of starting material (A) to starting material (B) is in a range between about 0.01 to about 100 and about 100 to about 0.01. For example, the starting materials (A) and (B) are mixed in a weight ratio of between 0.01 grams and 100 grams starting material (A) per gram of starting material (B). More typically, the weight ratio of starting material (A) to starting material (B) is in a range between about 1 to about 5 and about 5 to about 1. In instances wherein starting material (A) is partially crystalline and starting material (B) is amorphous it is desirable that starting material (A) be the major component present in the mixture.

In some instances the polymeric species (B) may be a partially crystalline material or may be amorphous. For example, where the polymeric species (B) is a hydroxy terminated polyester such as polyethylene terephthalate or polybutylene terephthalate it may be a partially crystalline material. Alternatively, where polymeric species (B) is a hydroxy terminated polyarylate comprising structural units derived from resorcinol, diphenyl terephthalate and diphenyl isophthalate it will typically be an amorphous material.

Alternate methods of preparing mixtures of the starting materials (A) and (B) include preparing a solution containing a polycarbonate starting material comprising activated

WO 03/040208

PCT/US02/32085

terminal aryloxy groups, and a polymeric species (B), and adding an anti solvent to precipitate the two materials as a mixture. Suitable solvents include halogenated solvents such as methylene chloride. Anti solvents include alcohols such as methanol, ketones such as acetone, and esters such as ethyl acetate. The precipitate contains the polymeric species (B) admixed with the partially crystalline polycarbonate starting material (A).

In one embodiment of the present invention the partially crystalline precursor polycarbonate (A) in powder form is mixed with at least two polymeric species (B), for example powdered forms of polyethylene terephthalate and a polyarylate oligomer comprising structural units VII, and the mixture of powders is then reacted under solid state polymerization conditions to afford a block copolyestercarbonate.

The solid state polymerization conditions employed according to the method of the present invention comprise heating a mixture of the partially crystalline polycarbonate starting material (A) with at least one polymeric species (B) at a temperature between about 100°C and about 240°C for a period of from about 0.5 and about 10 hours, preferably between about 140°C and about 220°C for a period of from between about 2 and about 9 hours. The solid state polymerization may be carried out in any reaction vessel adapted for contacting a stream of an inert gas with the solid undergoing solid state polymerization, and removal of the by-products of solid state polymerization. The by-products of solid state polymerization are principally hydroxy aromatic compounds comprising at least one activating substituent, for example methyl salicylate. The hydroxy aromatic compound by-products are formed in chain growth steps such as when the reactive hydroxy groups of starting material (B) react with the activated terminal groups of starting material (A). The by-products of solid state polymerization may also include diaryl carbonates such as II and mixed carbonates, for example phenyl salicyl carbonate. Mixed carbonates and phenol may be present in the by-products of solid state polymerization when starting material (A) comprises activated terminal aryloxy groups and starting material (B) comprises terminal phenoxy groups, as is the case when starting material (B) is made by the melt reaction of one or more diphenyl esters with a molar excess of a dihydroxy aromatic compound.

The solid state polymerization process may be carried out in either a batch or continuous mode. In one embodiment of the present invention the solid mixture

WO 03/040208

PCT/US02/32085

undergoing solid state polymerization is configured as a fixed bed with an inert gas passing through it.

The block copolymer product made by the method of the present invention is typically a multi-block copolymer. In some instances both starting material (A) and starting material (B) contain internal functional groups subject to attack by a reactive hydroxy group, for example the internal carbonate groups of starting material (A) or the internal ester linkages present when starting material (B) is an oligomeric polyester. Reactions between terminal reactive hydroxy groups and internal functional groups results in a reduction of the average block length of one or more of the blocks present in the product block copolymer. Under certain conditions a completely random distribution of the repeat units present in the product block copolymer may be obtained. An important feature of the method of the present invention is the ability to control and limit the randomization of the structural units present in the block copolymer. This is achieved by favoring bond forming processes between starting material (A) and starting material (B) based upon the enhance reactivity of the terminal groups in starting material (A). Thus the method of the present invention preserves to a greater extent the block lengths of the starting materials than do other solid state polymerization methods in which the partially crystalline polycarbonate lacks activated terminal aryloxy groups I. This preservation of the block lengths is quantifiable by comparing the block lengths present in the product block copolymer with the block lengths which would be expected if the structural units of the copolymer were distributed randomly along the polymer chain. In one embodiment of the present invention the block lengths of the product block copolymer are at least 50 to about 90 percent longer, preferably at least 60 to about 90 percent longer than the corresponding random distribution of structural units in an identically constituted copolymer.

The block copolymers made by the method of the present invention may optionally be blended with any conventional additives, including but not limited to dyestuffs, UV stabilizers, antioxidants, heat stabilizers, and mold release agents, to form a molded article. In particular, it is preferable to form a blend of the block copolymer and additives which aid in processing the blend to form the desired molded article. The blend may optionally comprise from about 0.0001 to about 10% by weight of the desired additives, more preferably from about 0.0001 to about 1.0% by weight of the desired additives.

WO 03/040208

PCT/US02/32085

Substances or additives which may be added to the block copolymers of this invention, include, but are not limited to, heat-resistant stabilizer, UV absorber, mold-release agent, antistatic agent, slip agent, antiblocking agent, lubricant, anticlouding agent, coloring agent, natural oil, synthetic oil, wax, organic filler, inorganic filler and mixtures thereof.

Examples of the aforementioned heat-resistant stabilizers, include, but are not limited to, phenol stabilizers, organic thioether stabilizers, organic phosphide stabilizers, hindered amine stabilizers, epoxy stabilizers and mixtures thereof. The heat-resistant stabilizer may be added in the form of a solid or liquid.

Examples of UV absorbers include, but are not limited to, salicylic acid UV absorbers, benzophenone UV absorbers, benzotriazole UV absorbers, cyanoacrylate UV absorbers and mixtures thereof.

Examples of the mold-release agents include, but are not limited to natural and synthetic paraffins, polyethylene waxes, fluorocarbons, and other hydrocarbon mold-release agents; stearic acid, hydroxystearic acid, and other higher fatty acids, hydroxyfatty acids, and other fatty acid mold-release agents; stearic acid amide, ethylenebisstearamide, and other fatty acid amides, alkylenebisfatty acid amides, and other fatty acid amide mold-release agents; stearyl alcohol, cetyl alcohol, and other aliphatic alcohols, polyhydric alcohols, polyglycols, polyglycerols and other alcoholic mold release agents; butyl stearate, pentaerythritol tetrastearate, and other lower alcohol esters of fatty acid, polyhydric alcohol esters of fatty acid, polyglycol esters of fatty acid, and other fatty acid ester mold release agents; silicone oil and other silicone mold release agents, and mixtures of any of the aforementioned.

The coloring agent may be either pigments or dyes. Inorganic coloring agents and organic coloring agents may be used separately or in combination in the invention.

The block copolymers prepared by the method of the present invention may be transformed into desired articles by molding the block copolymer, or a blend of the block copolymer with a second polymer such as bisphenol A polycarbonate, by injection molding, compression molding, extrusion methods and solution casting methods. Injection molding is the more preferred method of forming the article. In one embodiment, the molded article formed from the block copolymer made by the method of the present invention is a multilayer article. Multilayer articles prepared from block copolymers comprising structural units V and VI, said block copolymers

WO 03/040208

PCT/US02/32085

being prepared by the method of the present invention, are particularly well suited for use in such varied outdoor applications such as body parts for outdoor vehicles and the like.

EXAMPLES

The following examples are set forth to provide those of ordinary skill in the art with a detailed description of how the methods claimed herein are made and evaluated, and are not intended to limit the scope of what the inventors regard as their invention. Unless indicated otherwise, parts are by weight, temperature is in °C.

Molecular weights are reported as number average (M_n) or weight average (M_w) molecular weight and were determined by gel permeation chromatography (GPC). Two GPC calibration methods were employed. The first method employed polycarbonate molecular weight standards to construct a broad standard calibration curve against which polymer molecular weights were determined. This calibration method was used to determine the molecular weights of methyl salicylate endcapped polycarbonate oligomers used to prepare block copolycarbonates as described herein. The second GPC calibration method relied upon a series of polystyrene standards of known molecular weight which were used to construct a calibration curve with which to determine the molecular weights of product copolyestercarbonates. This second GPC calibration method was also used to determine the molecular weights of oligomeric polyesters described herein. When characterizing a polycarbonate by GPC, it is generally believed that the molecular weights obtained using polycarbonate standards are more accurate than those obtained using polystyrene standards. In general, polycarbonate molecular weights determined using a polystyrene standard based GPC method have M_n and M_w values which are about 1.5 to about 2.5 times higher than the same values measured using polycarbonate standards. Throughout this application, the degree of polymerization (DP) of polycarbonate and polyester oligomers was obtained using NMR. Polycarbonate oligomer degree of polymerization values obtained by NMR generally correlate well with M_n values obtained by GPC using polycarbonate molecular weight standards. Gel permeation chromatography was carried out such that the temperature of the columns was about 25°C and the mobile phase was chloroform.

Solid state polymerizations were carried out as follows. About 1 gram of the material being subjected to a "heating protocol under solid state polymerization conditions" was placed in a 10 mL fritted funnel positioned in a convection oven. The base of the

WO 03/040208

PCT/US02/32085

oven was equipped with a nitrogen inlet. Nitrogen, preheated by passage through approximately 16 meters of copper tubing contained within the convection oven, was passed through the base of the funnel, through the material undergoing solid state polymerization and out through the top of the funnel. The nitrogen flow rate was about 2.5 liters per minute. Typically, over the course of the solid state polymerization reaction the temperature was raised in one or more steps from an initial temperature of about 140°C to a final temperature in a range between about 165°C and about 220°C. The course of the solid state polymerization reaction was followed by periodically sampling the material in the fritted funnel and subjecting the sample to differential scanning calorimetry (DSC). The copolyestercarbonate product of solid state polymerization the product was characterized by DSC to determine the glass transition temperature, GPC using polystyrene standards to determine the values of M_n and M_w , and NMR to evaluate the composition and blockiness of the product copolyestercarbonate. The product copolyestercarbonates are "multiblock copolyestercarbonates" which for convenience are referred to here simply as "block copolyestercarbonates".

PREPARATION OF METHYL SALICYLATE ENDCAPPED POLYCARBONATE OLIGOMERS

Melt reactions of bis(methyl salicyl) carbonate with bisphenol A reactions were carried out in a 500-mL or 1000-L glass batch reactor equipped with a helical agitator, distillation head and a graduated receiving vessel. To remove any adventitious sodium from the glass walls of the reactor, the reactor was soaked in 3N HCl for at least 12 hours followed by rinsing and immersion in deionized water (18 Mohm) for at least 12 hours. The reactor was then dried in an oven overnight prior to use. The reactor was heated by means of a fluidized sand bath with a PID controller. The bath temperature was measured near the interface of the reactor and the sand bath. The pressure over the reactor was controlled by a nitrogen bleed downstream of the receiving flask. Pressure was measured with a MKS pirani gauge.

Example 1

Amorphous methyl salicyl endcapped polycarbonate was prepared as follows. The reactor was charged with 150 grams (0.6571 mole) solid bisphenol-A (BPA) and 243.6 grams (0.7368 mole) solid bis(methyl salicyl) carbonate (BMSC) such that the molar ratio of BMSC to BPA was about 1.12 at the outset of the reaction. Tetrabutyl phosphonium acetate co-catalyst was added in an amount corresponding to 2.5×10^{-4}

WO 03/040208

PCT/US02/32085

moles co-catalyst per mole BPA. The catalyst, EDTA magnesium disodium salt, was added in an amount corresponding to 1.0×10^{-6} mole catalyst per mole BPA. The reactor was sealed and the atmosphere was exchanged with nitrogen three times. Following the final nitrogen exchange the pressure in the reactor was brought to between about 5 and about 15 mmHg. In a first stage, the reactor was submerged in the fluidized bath at 170°C. After five minutes, agitation was begun at a rate of 60 rpm. After an additional ten to fifteen minutes the reactants were fully melted and the agitator speed was increased to 200 rpm. The reaction mixture was stirred and heated while liberated methyl salicylate was collected in the receiving vessel. Between about 90 and about 95 percent of the theoretical amount (based on complete reaction between BPA and the BMSC) of the methyl salicylate by-product was removed at 170°C. The bath temperature was then raised through a series of temperature stages; 210°C, 240°C, and 270°C and the reaction mixture was stirred for 20 minutes at each stage. During the last two stages (240°C and 270°C) the pressure over the reaction mixture was reduced to about 1 torr or less. The reaction vessel was then removed from the sand bath and the vessel was gently purged with nitrogen gas. The amorphous, oligomeric product was recovered and was determined to have $M_w = 4820$ and $M_n = 2138$, as measured by GPC using a polycarbonate molecular weight standards. The percent endcap was 99%.

Examples 2-6 represent analogously prepared amorphous methyl salicyl endcapped polycarbonate oligomers. Data for oligomeric polycarbonates of Examples 2-6 are gathered in Table 1.

TABLE 1 AMORPHOUS METHYL SALICYL ENCAPPED OLIGOMERS

Example	BMSC/BPA	Mw	Mn	[OH]	EC(%)
2	1.042	12906	5697	109	98.2
3	1.052	10853	4973	96	98.6
4	1.064	9547	3871	189	97.9
5	1.087	6885	3134	0	100
6	1.136	4376	2013	0	100

Examples 7-10

Crystalline oligomeric polycarbonates incorporating methyl salicyl endgroups were prepared analogously. The reactor was charged with solid BPA (150g or 300g,

WO 03/040208

PCT/US02/32085

0.6571 or 1.3141 mole) and solid BMSC such that the molar ratio of BMSC to BPA was between about 1.00 and about 1.15 at the outset of the reaction. Catalyst identities and amounts were the same as those used in Example 1. The reactor was, sealed and the atmosphere was exchanged with nitrogen three times. Following the final nitrogen exchange the pressure in the reactor was brought to between about 5 and about 15mmHg. In a first stage, the reactor was submerged into the fluidized bath at 170°C. After five minutes, agitation was begun at a rate of 60 rpm. After an additional ten to fifteen minutes the reactants were fully melted and the agitator speed was increased to 200 rpm. The reaction mixture was stirred and heated while liberated methyl salicylate was collected in the receiving vessel. To obtain lower molecular weight crystalline oligomers, methyl salicylate was distilled from the reaction vessel until between about 90 and about 95 percent of the theoretical amount (based on complete reaction between BPA and the BMSC) of the methyl salicylate by-product had been removed. The reaction vessel was then removed from the sand bath and the vessel was gently purged with nitrogen gas. Upon cooling, the crystalline oligomeric product was observed to contract and fracture. The cooled crystalline product was easily poured from the reactor. Data for crystalline methyl salicyl endcapped polycarbonate oligomers prepared by this method are gathered in Table 2.

TABLE 2 CRYSTALLINE METHYL SALICYL ENCAPPED OLIGOMERS

Example	BMSC/BPA	Mw	Mn	[OH]	EC(%)	% Cryst
7	1.05	9400	4017	778	90.8	22
8	1.03	12864	6026	1017	82.0	31
9	1.02	15486	6553	1025	80.2	30
10	1.017	16035	7021	959	80.2	30

In Tables 1 and 2 the ratio "BMSC/BPA" represents the mole ratio of bis(methyl salicyl) carbonate to bisphenol A employed. The symbol "[OH]" is expressed in parts per million (ppm) and represents the concentration of free hydroxyl groups found in the product polycarbonate. The free hydroxyl group concentration was determined by quantitative infrared spectroscopy. "EC (%)" represents the percentage of polymer chain ends not terminating in a hydroxyl group. Salicyl endgroups were determined by HPLC analysis after product solvolysis. The term "% Cryst" represents the percent crystallinity of the product polycarbonate and was determined by differential scanning calorimetry.

WO 03/040208

PCT/US02/32085

PREPARATION OF HYDROXY TERMINATED POLYESTER OLIGOMERS

EXAMPLE 11

Into a glass reactor equipped with a mechanical stirrer, Dean Stark trap with Vigreux column and vacuum attachment was charged resorcinol (3.03 g, 0.0275 moles), diphenylisophthalate (3.98 g, 0.0125 moles), diphenylterephthalate (3.98 g, 0.0125 moles), lithium hydroxide (2.2 milligrams [mg]), and tetramethylammonium hydroxide (10 microliters of 25 wt% solution). A nitrogen atmosphere was established (3 vacuum purges) and slow stirring begun. The reactor was lowered into a salt bath controlled at about 200°C. After 15 minutes the pressure was reduced to 100 Torr. This pressure and temperature were maintained for 45 minutes during which time about 1 mL of phenol was collected. The pressure was then lowered to 50 Torr and maintained for 60 minutes, collecting an additional 1 mL of phenol. The temperature was then raised to 220°C and after 60 minutes an additional 1.2 mL of phenol was obtained. For the next 30 minutes the reactor was held at 220°C and 25 Torr. Finally, the temperature increased to 240°C and full vacuum applied for 45 minutes, the final amount of phenol being about 3.5 mL (80% of theory). The viscous amber colored material was poured onto an aluminum pan, yielding 4.5 grams product oligomeric hydroxy-terminated polyester. GPC analysis indicated a Mw of 8,026. The Tg of this material was 112°C. Oligomeric hydroxy-terminated polyesters comprising structural units derived from resorcinol, isophthalic acid, and terephthalic acid, or their derivatives, are referred to as "TIR oligomers".

A series of oligomeric hydroxy-terminated polyesters comprising Examples 12-19 was prepared by the melt reaction of resorcinol with a 1:1 mixture of diphenyl isophthalate and diphenyl terephthalate according to the method described in Example 11. Data for the oligomeric hydroxy-terminated polyesters of Examples 11-19 are gathered in Table 3. Values of weight average molecular weight, M_w , were determined by GPC using polystyrene molecular weight standards.

TABLE 3 HYDROXY TERMINATED POLYESTER OLIGOMERS

Example	Mw oligomer ^a	% excess resorcinol	% phenol removed	Tg
11	8,026	10	80	112°C
12	8327	10	—	115°C
13	9,891	10	86	118°C
14	14,400	10	93	—
15	5,511	32	98	—
16	11,080	10	95	—
17	1,306	100	93	—
18	5,209	32	95	—
19	7,541	10	93	—

^a GPC determined M_w using polystyrene standards

BLOCK COPOLYMERS BY SOLID STATE POLYMERIZATION

Example 20

A mixture prepared from 1.0 gram of the amorphous methyl salicylate-endcapped polycarbonate oligomer prepared in Example 1 (M_w = 4820, M_n = 2138), having a degree of polymerization of about 8.4, and 2g of an ITR oligomer, prepared as in Example 11, having a degree of polymerization (DP) of about 9.2 as determined by quantitative ¹³C-NMR and/or ³¹P-NMR of the dioxaphospholane derivative, was dissolved in methylene chloride. Ethyl acetate, in an amount corresponding to approximately twice the amount of methylene chloride, was added to crystallize and precipitate the mixture of oligomers from solution. The material thus precipitated was separated from the liquid phase by filtration. The liquid phase was then evaporated to dryness and the residue was combined with the solid recovered by filtration. After drying at about 60°C in a vacuum oven overnight, the resulting powder was characterized by differential scanning calorimetry (DSC), which indicated a glass transition (T_g) at about 100°C and two broad peaks corresponding to melting points at approximately 148°C and 200°C, respectively. A portion of this mixture of partially crystalline methyl salicyl endcapped polycarbonate oligomer and ITR oligomer was reserved for use in Example 21. A second portion of the powder was then subjected to the following heating protocol under solid state polymerization conditions.

Step	Temperature	Time	Total Time
1	140°C	240 minutes	240 minutes
2	155°C	150 minutes	390 minutes
3	165°C	150 minutes	540 minutes

WO 03/040208

PCT/US02/32085

--	--	--	--

Following solid state polymerization the product block copolyestercarbonate was analyzed by DSC, and shown to possess a T_g of about 129°C and two broad peaks corresponding to melting points at approximately 187°C and 208°C, respectively. GPC indicated a single peak with $M_w = 28000$ daltons and $M_n = 9540$ daltons using polystyrene standards. Quantitative ^{13}C -NMR indicated a blocky copolymer with an average polycarbonate block length of about 4.05 and an average polyester block length of about 7.

Example 21

A portion of the powder mixture reserved for later use in Example 20 was subjected to the following heating protocol under solid state polymerization conditions.

Step	Temperature	Time	Total Time
1	140-160°C	185 minutes	185 minutes
2	165°C	25 minutes	210 minutes
3	170°C	20 minutes	230 minutes

GPC analysis of the product copolyestercarbonate indicated a single narrow peak with $M_w = 18880$ and $M_n = 9230$ using polystyrene standards. Quantitative ^{13}C -NMR indicated a blocky copolymer with an average polycarbonate block length of about 4.15 and an average polyester block length of about 8.9.

Example 22

Methyl salicylate endcapped polycarbonate oligomer prepared in Example 1 ($M_w = 4820$, $M_n = 2138$, DP about 8.4) was dissolved in methylene chloride and subsequently precipitated by adding ethyl acetate in an amount corresponding to approximately 5 times the amount of methylene chloride employed. The precipitate was filtered from the liquid phase. The liquid phase was then evaporated to dryness to afford a solid residue. The precipitate and the solid residue from the liquid phase were then combined to form a mixture of the precipitate and the solid residue obtained by evaporation of the liquid phase. The mixture was ground and then shaken mechanically to afford a powder consisting essentially of partially crystalline methyl salicyl endcapped polycarbonate oligomer. The partially crystalline methyl salicyl

WO 03/040208

PCT/US02/32085

endcapped polycarbonate oligomer was then ground and mixed together in a laboratory mill mixer for several minutes with an equal weight of a fine powder of oligomeric hydroxy-terminated polyester ($M_w = 8845$ using polystyrene standards, $DP = \text{about } 9.2$) prepared using the methodology and proportions of Example 11. Upon analysis by DSC, the mixture of oligomers displayed a T_g of about 105°C and a broad peak corresponding to a melting temperature at about 170°C . A portion was reserved for use in Examples 23 and 24. A second portion of the mixture was subjected to the following heating protocol under solid state polymerization conditions.

Step	Temperature	Time	Total Time
1	$150\text{-}170^\circ\text{C}$	90 minutes	90 minutes
2	170°C	90 minutes	180 minutes
3	180°C	80 minutes	260 minutes
4	185°C	60 minutes	320 minutes
5	200°C	30 minutes	350 minutes
6	205°C	90 minutes	440 minutes

The product copolyestercarbonate had a T_g of about 135°C and two broad peaks corresponding to melting points at approximately 169°C and 221°C respectively. GPC analysis of the product indicated a broad peak with $M_w = 79,830$ and $M_n = 21,720$ using polystyrene standards. Quantitative $^{13}\text{C-NMR}$ indicated a blocky copolymer with an average polycarbonate block length of about 6.7 and an average polyester block length of about 8.6.

Example 23

A portion of the partially crystalline mixture of oligomers prepared in Example 22 was subjected to the following heating protocol under solid state polymerization conditions.

Step	Temperature	Time	Total Time
1	$160\text{-}195^\circ\text{C}$	140 minutes	140 minutes
2	195°C	30 minutes	190 minutes
3	$210\text{-}215^\circ\text{C}$	25 minutes	215 minutes
4	215°C	80 minutes	295 minutes

WO 03/040208

PCT/US02/32085

The product copolyestercarbonate had a T_g of about 143°C and three broad peaks corresponding to melting points at approximately 130°C, 161°C and 243°C respectively. GPC analysis of the product indicated a broad peak with $M_w = 73,540$ and $M_n = 24,000$ using polystyrene standards. Quantitative $^{13}\text{C-NMR}$ indicated a blocky copolymer with an average polycarbonate block length of about 4.25 and an average polyester block length of about 6.4.

Example 24

A portion of the partially crystalline mixture of oligomers prepared in Example 22 was subjected to the following heating protocol under solid state polymerization conditions.

Step	Temperature	Time	Total Time
1	170-200°C	75 minutes	75 minutes
2	200°C	60 minutes	135 minutes

The product copolyestercarbonate had a T_g of about 133°C and two broad peaks corresponding to melting points at approximately 162°C and 221°C respectively. GPC analysis of the product indicated a broad peak with $M_w = 41,250$ and $M_n = 14,020$ using polystyrene standards. Quantitative $^{13}\text{C-NMR}$ indicated a blocky copolymer with an average polycarbonate block length of about 5.65 and an average polyester block length of about 7.

Comparative Example 1

A sample of amorphous, oligomeric bisphenol A polycarbonate powder prepared by the melt reaction of bisphenol A with diphenyl carbonate having a weight average molecular weight (M_w) of about 5600 daltons, a number average molecular weight (M_n) of about 2300 daltons (DP about 9.1) was crystallized using isopropanol vapors according to the method described in U.S. Patent 6,031,063. A partially crystalline oligomeric polycarbonate powder was obtained. The partially crystalline oligomeric polycarbonate had a percent endcapping of about 60 percent, meaning that 60 percent of the oligomer chain ends were phenoxy groups derived from diphenyl carbonate, and about 40 percent of the chain ends were hydroxy groups. A portion of the partially crystalline oligomeric polycarbonate was mixed together in a laboratory mill mixer for several minutes with an equal weight of a fine powder of oligomeric hydroxy-terminated polyester (DP = about 9.2 by $^{13}\text{C-NMR}$) prepared using the

WO 03/040208

PCT/US02/32085

methodology and proportions of Example 11. The mixture was then subjected to the following heating protocol under solid state polymerization conditions.

Step	Temperature	Time	Total Time
1	170-200°C	75 minutes	75 minutes
2	200°C	60 minutes	135 minutes

The product resulting from solid state polymerization was subjected to GPC analysis which indicated a broad peak with $M_w = 13,020$ and $M_n = 5,080$ using polystyrene standards. Quantitative ^{13}C -NMR indicated a blocky copolymer with an average polycarbonate block length of about 2.35 and an average polyester block length of about 4.3.

The data presented in Examples 20-24 illustrate the method of the present invention which provides blocky copolyestercarbonates under mild conditions. Comparative Example 1 illustrates the limitations of conventional solid state polymerization technology for the preparation of copolyestercarbonates. Data for Example 20-24 and Comparative Example 1 is given in Table 4.

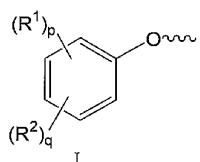
TABLE 4 BLOCKY COPOLYESTERCARBONATES BY SSP

Example	Mw ^a	Mn ^a	PC Block Length Observed ^b /% Retention ^c	ITR Block Length Observed ^b /% Retention ^c		
20	28000	9450	4.0 47.6%	7 76.1%		
21	18880	9230	4.1 48.8%	8.9 96.7%		
22	79830	21720	6.7 79.8%	8.6 93.5%		
23	73540	24000	4.2 50.0%	6.4 69.6%		
24	41250	14020	5.6 66.7%	7 76.1%		
CE-1	13020	5080	2.3 25.2%	4.3 46.7%		

^a Molecular weights determined by GPC using polystyrene standards. ^b block length determined by ¹³C-NMR. ^c % Retention of block length compared the DP of the starting oligomer to the average DP of the polycarbonate or polyester blocks present in the product copolyestercarbonate.

In Examples 20-24 between about 70 and about 97 percent of the initial polyester block length is preserved in the product copolyestercarbonate. For example, in Example 20 the average block length of the hydroxy-terminated ITR oligomer, also referred to as its degree of polymerization (DP), was about 9.2. The product copolyestercarbonate following solid state polymerization comprised polyester blocks (ITR blocks) having an average block length of about 7. Thus, about 76 percent of the original polyester block length is retained in the product copolyestercarbonate. Comparison of Examples 20-24 with Comparative Example 1 (CE-1) reveals not only more complete retention of the block lengths of the oligomeric starting materials, both polycarbonate and polyester, but much more rapid increase in molecular weight. Thus, the method of the present invention provides blocky copolyestercarbonates having substantial molecular weights (M_w 's from about 19000 to about 79000 daltons) whereas a much more random copolyestercarbonate having low molecular weight (M_w <15000 daltons) was obtained using a conventional solid state polymerization technique (Comparative Example 1).

The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood by those skilled in the art that variations and modifications can be effected within the spirit and scope of the invention.

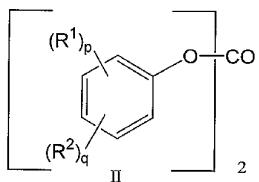

WO 03/040208

PCT/US02/32085

WHAT IS CLAIMED IS:

1. A method of preparing block copolymers, said method comprising contacting a partially crystalline polycarbonate starting material (A) comprising activated terminal aryloxy groups with at least one polymeric species (B) comprising reactive terminal hydroxy groups under solid state polymerization conditions to afford a product block copolymer.

2. A method according to claim 1 wherein said partially crystalline polycarbonate starting material (A) comprises terminal aryloxy groups having structure I

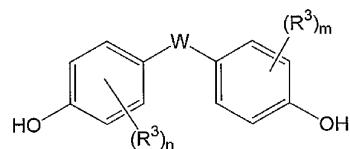


wherein R¹ is independently at each occurrence a C₁-C₂₀ aliphatic radical, C₄-C₂₀ cycloaliphatic radical, C₄-C₂₀ aromatic radical; R² is independently at each occurrence a halogen atom, nitro group, cyano group, C₁-C₂₀ alkoxy carbonyl group, C₁-C₂₀ acyl group, C₄-C₂₀ cycloalkoxy carbonyl group, C₄-C₂₀ aryloxy carbonyl group, C₁-C₂₀ alkylamino carbonyl group, C₂-C₄₀ dialkylamino carbonyl group, or a C₁-C₂₀ perfluoroalkyl group; p is an integer having a value 0 to 4, and q is an integer having a value of 1 to 5.

3. A method according to claim 1 wherein said partially crystalline polycarbonate starting material (A) comprises structural units derived from at least one dihydroxy aromatic compound and at least one diaryl carbonate II

WO 03/040208

PCT/US02/32085


wherein R¹ is independently at each occurrence a C₁-C₂₀ aliphatic radical, C₆-C₂₀ cycloaliphatic radical, C₆-C₂₀ aromatic radical; R² is independently at each occurrence a halogen atom, nitro group, cyano group, C₁-C₂₀ alkoxy carbonyl group, C₁-C₂₀ acyl group, C₄-C₂₀ cycloalkoxy carbonyl group, C₆-C₂₀ aryloxy carbonyl group, C₁-C₂₀ alkylaminocarbonyl group, C₂-C₄₀ dialkylaminocarbonyl group, or a C₁-C₂₀ perfluoroalkyl group; p is an integer having a value 0 to 4, and q is an integer having a value of 1 to 5.

4. A method according to claim 3 wherein diaryl carbonate II is selected from the group consisting of bis(2-methoxy carbonylphenyl) carbonate, bis(2-ethoxy carbonylphenyl) carbonate, bis(2-butoxy carbonylphenyl) carbonate, and bis(2,4,6-trifluorophenyl) carbonate.

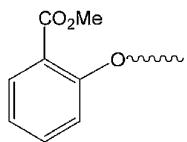
WO 03/040208

PCT/US02/32085

5.A method according to claim 3 wherein said dihydroxy aromatic compound is a bisphenol having structure III

III

wherein R³ is independently at each occurrence a halogen atom, nitro group, cyano group, C₁-C₂₀ alkyl group, C₄-C₂₀ cycloalkyl group, or C₆-C₂₀ aryl group; n and m are independently integers 0-4; and W is a bond, an oxygen atom, a sulfur atom, a SO₂ group, a C₁-C₂₀ aliphatic radical, a C₆-C₂₀ aromatic radical, a C₆-C₂₀ cycloaliphatic radical or the group

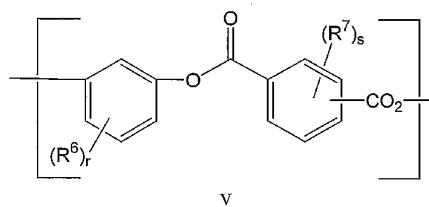


wherein R⁴ and R⁵ are independently a hydrogen atom, C₁-C₂₀ alkyl group, C₄-C₂₀ cycloalkyl group, or C₄-C₂₀ aryl group; or R⁴ and R⁵ together form a C₄-C₂₀ cycloaliphatic ring which is optionally substituted by one or more C₁-C₂₀ alkyl, C₆-C₂₀ aryl, C₅-C₂₁ aralkyl, C₅-C₂₀ cycloalkyl groups or a combination thereof.

6.A method according to claim 1 wherein said partially crystalline polycarbonate starting material (A) comprises 2-methoxycarbonylphenoxy terminal aryloxy groups IV

WO 03/040208

PCT/US02/32085

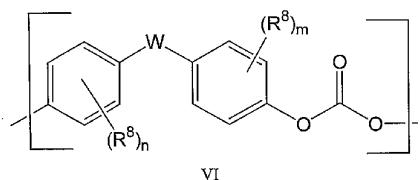

IV

and structural units derived from bisphenol A.

7. A method according to claim 1 wherein said polymeric species (B) comprising reactive terminal hydroxy groups is selected from the group consisting of polyesters, polycarbonates, polyethers, polyetherketones, polyethersulfones, and polyetherimides.

8. A method according to claim 1 wherein said polymeric species (B) comprising reactive terminal hydroxy groups comprises structural units selected from the group consisting of

(1) polyester structural units corresponding to structure V

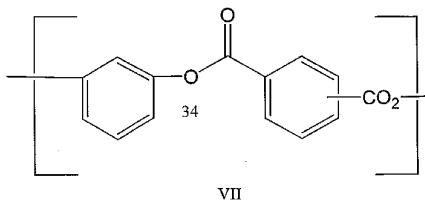

V

wherein R⁶ and R⁷ are independently at each occurrence a halogen atom, C₁-C₂₀ aliphatic radical, C₄-C₂₀ cycloaliphatic radical, or a C₆-C₂₀ aromatic radical, and r and s are independently integers having values from 0 to 4; and

WO 03/040208

PCT/US02/32085

(2) polycarbonate structural units corresponding to structure VI



wherein R^8 is independently at each occurrence a halogen atom, nitro group, cyano group, C_1 - C_{20} alkyl group, C_4 - C_{20} cycloalkyl group, or C_6 - C_{20} aryl group; n and m are independently integers 0-4; and W is a bond, an oxygen atom, a sulfur atom, a SO_2 group, a C_1 - C_{20} aliphatic radical, a C_6 - C_{20} aromatic radical, a C_6 - C_{20} cycloaliphatic radical or the group

wherein R^4 and R^5 are independently a hydrogen atom, C_1 - C_{20} alkyl group, C_4 - C_{20} cycloalkyl group, or C_6 - C_{20} aryl group; or R^4 and R^5 together form a C_4 - C_{20} cycloaliphatic ring which is optionally substituted by one or more C_1 - C_{20} alkyl, C_6 - C_{20} aryl, C_5 - C_{21} aralkyl, C_5 - C_{20} cycloalkyl groups or a combination thereof.

9. A method according to claim 8 wherein said polymeric species (B) comprising reactive hydroxy groups is a polyester comprising structural units VII

WO 03/040208

PCT/US02/32085

and having a degree of polymerization of at least about 4.

10. A method according to claim 1 wherein said partially crystalline polycarbonate starting material (A) has a percent endcap between about 50 and about 100 percent.

11. A method according to claim 1 wherein starting material (B) is a copolymer prepared by heating in the absence of a catalyst, a mixture comprising resorcinol, diphenyl terephthalate, diphenyl isophthalate, and a catalyst.

12. A method according to claim 11 wherein said diphenyl terephthalate and said diphenyl isophthalate have a molar ratio, said molar ratio being in a range between about 1 to 10 and about 10 to 1.

13. A method according to claim 1 wherein starting material (B) is a copolymer prepared by interfacial polymerization of resorcinol with terephthaloyl dichloride and isophthaloyl dichloride.

14. A method according to claim 13 wherein said terephthaloyl dichloride and said isophthaloyl dichloride have a molar ratio, said molar ratio being in a range between about 1 to 10 and about 10 to 1.

15. A method according to claim 1 wherein starting material (A) has a crystallinity in a range between about 15 and about 40 percent.

16. A method according to claim 1 wherein said solid state polymerization conditions comprise heating at a temperature between about 100°C about 240°C for a period of between about 1 and about 10 hours.

17. A method according to claim 1 further comprising preparing a mixture of starting materials (A) and (B).

18. A method according to claim 17 comprising dry mixing starting material (A) with starting material (B).

WO 03/040208

PCT/US02/32085

19. A method according to claim 17 comprising precipitating a mixture of starting materials (A) and (B) from solution.


20. A method according to claim 1 wherein starting materials (A) and (B) have a weight ratio in a range between about 0.01 and about 100 grams starting material (A) per gram starting material (B).

21. A method according to claim 1 wherein the product copolymer has a measurable degree of blockiness corresponding to blocklengths which are at least 50 percent longer than the corresponding random distribution of structural elements.

22. A molded article comprising the product copolymer prepared by the method of claim 1.

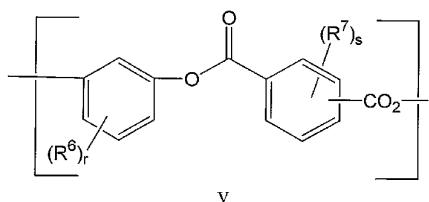
23. An article according to claim 22 which is a multilayer article.

24. A method of preparing copolyestercarbonates, said method comprising contacting a partially crystalline bisphenol A polycarbonate comprising terminal 2-methoxycarbonyl phenoxy end groups IV

with at least one polyester comprising reactive hydroxyl groups under solid state polymerization conditions to afford a product copolyestercarbonate.

25. A method according to claim 24 wherein said partially crystalline bisphenol A polycarbonate is prepared by a method comprising melt reaction of bis(methyl salicyl) carbonate with bisphenol A.

WO 03/040208


PCT/US02/32085

26. A method according to claim 25 wherein said melt reaction affords a partially crystalline bisphenol A polycarbonate directly.

27. A method according to claim 26 wherein said partially crystalline bisphenol A polycarbonate has a percent endcap of between about 50 and about 100 percent.

28. A method according to claim 26 wherein said melt reaction affords an amorphous bisphenol A polycarbonate having a percent endcap between about 90 and about 100 percent.

29. A method according to claim 25 wherein said polyester comprises structural units corresponding to structure V

wherein R⁶ and R⁷ are independently at each occurrence a halogen atom, C₁-C₂₀ aliphatic radical, C₄-C₂₀ cycloaliphatic radical, or a C₄-C₂₀ aromatic radical, and r and s are independently integers having values from 0 to 4.

30. A method according to claim 29 wherein said polyester is a polyester prepared by heating in the absence of a catalyst, a mixture comprising resorcinol, diphenyl terephthalate, diphenyl isophthalate, and a catalyst.

31. A method according to claim 30 wherein said diphenyl terephthalate and said diphenyl isophthalate have a molar ratio, said molar ratio being in a range between about 1 to 10 and about 10 to 1.

WO 03/040208

PCT/US02/32085

32.A method according to claim 29 wherein said polyester is prepared by a method comprising the interfacial reaction of resorcinol with a mixture of isophthaloyl dichloride and terephthaloyl dichloride.

33.A method according to claim 32 wherein said isophthaloyl dichloride and said terephthaloyl dichloride have a molar ratio, said molar ratio being in a range between about 1 to 10 and about 10 to 1.

34.A method according to claim 25 wherein said partially crystalline bisphenol A polycarbonate has a crystallinity in a range between about 20 and about 40 percent.

35.A method according to claim 25 wherein said solid state polymerization conditions comprise heating at a temperature in a range between about 100 and 240°C for a period between about 2 and about 9 hours.

36.A molded article comprising the product copolymer prepared by the method of claim 25.

37.An article according to claim 36 which is a multilayer article.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No. PCT/US 02/32085
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C08G64/18 C08G64/30 C08G63/64 C08G63/80		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C08G		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 908 483 A (COUNCIL SCIENT IND RES) 14 April 1999 (1999-04-14) ---	
A	US 5 191 001 A (ALEWELT WOLFGANG ET AL) 2 March 1993 (1993-03-02) ---	
A	DE 29 19 629 A (BASF AG) 20 November 1980 (1980-11-20) ---	
<input type="checkbox"/> Further documents are listed in the continuation of box C. <input checked="" type="checkbox"/> Patent family members are listed in annex.		
<p>* Special categories of cited documents :</p> <p>*A* document detailing the general state of the art which is not considered to be of particular relevance</p> <p>*E* earlier document but published on or after the international filing date</p> <p>*L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</p> <p>*O* document referring to an oral disclosure, use, exhibition or other means</p> <p>*P* document published prior to the international filing date but later than the priority date claimed</p> <p>*T* later document published after the international filing date on the same subject and not in conflict with the application but cited to understand the general state of the art underlying the invention</p> <p>*V* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</p> <p>*W* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other prior art documents, such combination being obvious to a person skilled in the art</p> <p>*F* document member of the same patent family</p>		
Date of the actual completion of the international search 8 January 2003		Date of mailing of the International search report 15/01/2003
Name and mailing address of the ISA European Patent Office, P.B. 5616 Patentlan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-3040, Tx. 31 651 epo nl, Fax. (+31-70) 340-3016		Authorized officer Lohner, P

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT				International Application No PCT/US 02/32085	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date		
EP 0908483	A 14-04-1999	EP 0908483 A1	14-04-1999		
US 5191001	A 02-03-1993	DE 4032924 A1 EP 0481296 A2 JP 4285632 A	23-04-1992 22-04-1992 09-10-1992		
DE 2919629	A 20-11-1980	DE 2919629 A1	20-11-1980		

Form PCT/ISA/210 (patent family annex) (July 1992)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,SK,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,N0,NZ,OM,PH,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,UZ,VN,YU,ZA,ZM,ZW

(72)発明者 オニール, グレゴリー・アレン

アメリカ合衆国、12065、ニューヨーク州、クリフトン・パーク、ディボー・ドライブ、26番

(72)発明者 ディ, ジェームズ

アメリカ合衆国、12302、ニューヨーク州、ソティア、スプリング・ロード、136番

(72)発明者 ブルネル, ダニエル・ジョセフ

アメリカ合衆国、12027、ニューヨーク州、バント・ヒルズ、ウッズ・エッジ、4番

(72)発明者 スリアノ, ジョセフ・アンソニー

アメリカ合衆国、12065、ニューヨーク州、クリフトン・パーク、グロスター・ストリート、35番

(72)発明者 マックロスキー, パトリック・ジョセフ

アメリカ合衆国、12189、ニューヨーク州、ラザム、メドウブルック・ロード、10番

(72)発明者 スミゲルスキー, ポール・マイケル, ジュニア

アメリカ合衆国、12303、ニューヨーク州、スケネクタディ、チェプストー・ロード、210番

F ターム(参考) 4J031 AA49 AA52 AA53 AA54 AA57 AA58 AB04 AC03 AD01 AE03

AE05 AF30