(54) Title: METHOD FOR SETTING AN OPERATING PARAMETER IN A PERIPHERAL IC AND DEVICE FOR CARRYING OUT SAID METHOD

(57) Abstract: The invention relates to a method for setting an operating parameter in a peripheral IC (12). In this method, the operating parameter is transmitted from a central IC (15) via a bus connection (19) to the peripheral IC (12). The method is characterized in that the operating parameter is initially buffered in a preregister (24) in the peripheral IC (12), and in that the buffered operating parameter is transferred into a working register (25) only if a transfer signal is sent from the central IC (15) via the bus connection (19). This method has the advantage that, for example in the case of rapidly changing receive conditions in a send/receive unit, adjustment of the send or receive gain setting is very flexible, and it is easy to avoid an incorrect setting due to a detected signal fluctuation. The invention also relates to a device for carrying out said method.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Method for setting an operating parameter in a peripheral IC
and device for carrying out said method

The invention relates to a method for setting an operating
parameter in a peripheral IC, where the operating parameter
is transmitted from a central IC to the peripheral IC via a
bus connection. The invention also relates to a device for
carrying out said method.

Background to the invention
There is a continuous and even growing trend to increase the
digitization of electrical devices in the household and in
the field of consumer electronics. As part of this
development, much effort is also being made to network the
different digital devices in the household and thereby
further increase their functionality. Wire-based bus systems
such as the IEEE1394 bus, Powerline bus, USB bus, Ethernet,
etc. are already specified and have been available for quite
some time.

However, intensive work is also being conducted into
standards for wireless networking of devices in the
household. The so-called HIPERLAN Type 2 is cited as an
example of a system which allows wireless networking of
devices. In fact, this system has already been specified in
an ETSI/BRAN standard. The exact title of this ETSI standard
is Broadband Radio Access Networks (BRAN); High Performance
Radio Local Area Network (HIPERLAN) Type 2. The complete
standard comprises a number of parts, each of which can be
ordered from ETSI in its latest version. Transmission of
data as per this system takes place in the 5 GHz range.
HIPERLAN2 devices contain a corresponding HIPERLAN2
interface which offers both send and receive functionality.
The maximum speed of data transmission on a single channel
is 32 megabits per second. This is achieved using a powerful
Orthogonal Frequency Division Multiplexing (OFDM)
transmission method. The following digital modulation
methods can be used for the various subcarriers: BPSK, QPSK,
16QAM, and optionally 64QAM. With these digital modulation
methods, it is vital when receiving that the signal
amplitude at the demodulator input is set in a defined manner. Since the HIPERLAN2 interface is essential constructed with two integrated circuits, one of which (the so-called front-end IC) is an analog IC, with the tuner and the mixer circuits, and the other of which (the baseband processor) is a digital IC, the actual signal amplitude is determined in the digital IC, but the receive gain has to be set in the analog IC. For this purpose, it must therefore be possible to transmit data from the digital IC to the analog IC. Fluctuations in the gain setting as the result of applying setting values which transpire to be unreliable should also be avoided whenever possible. There is also a requirement for a simple bus connection between the digital IC and the analog IC, with as few wires or lines as possible. Since it is preferable for the gain setting to become effective without lengthy delays, data transmission must also be very fast.

Invention

The invention meets the aforementioned requirements with the measures as claimed in Claims 1 and 4. The aforementioned setting fluctuations are reliably avoided by including a preregister in the analog IC (subsequently also referred to as the peripheral IC) in addition to the working register for the receive gain setting. Said preregister can buffer a setting value which is transmitted via the bus connection between the analog IC and the digital IC. This setting value is transferred to the working register only if a corresponding transfer signal (validity signal) is sent from the digital IC (subsequently also referred to as the central IC) via the bus connection. If, during transmission of a setting value, it becomes apparent in the baseband processor that the setting value which has been sent was actually unstable or another setting value was determined, the baseband processor can decide not to transmit the transfer signal for the previous setting value and instead transmit the new setting value to the analog IC directly. This value is then used to overwrite the content of the preregister, and the previously written value is not therefore used. The
setting value contained in the preregister is transferred to
the working register and the changed gain setting can become
effective only if the transfer signal is sent via the bus
connection. It is possible for one setting value to be
written more than once successively to the preregister,
without a transfer to the working register taking place.
Consequently, a current setting value is always contained in
the analog IC so that it is possible to respond quickly to
changed receive conditions, but if it becomes apparent that
it would be better to retain the previously existing value
in the working register, the setting value which has been
transmitted can still be suppressed quickly. The process for
setting the receive gain is therefore very flexible as
required by the digital modulation method.

The dependent claims contain advantageous developments and
improvements to the method and device according to the
invention. The bus connection between the peripheral IC and
the central IC is advantageously implemented as a serial bus
connection with a data line, a control line and a clock
line, where the transfer signal is transmitted via the
control line. This serial bus connection requires only three
lines, thereby ensuring low circuit complexity and reducing
the possibility of interference signals being introduced.
The control line of the serial bus connection is also used
advantageously to transmit the start signal for a data
transmission from the central IC to the peripheral IC.
Therefore the control line has a dual function.

Drawings
An exemplary embodiment of the invention is shown in the
drawings and explained in greater detail in the following
description.

In the drawings:
Figure 1 shows a block diagram of the device according to
the invention;
Figure 2 shows a block diagram of the bus interface for
data transmission between the central IC and the
peripheral IC, and the control registers connected
to it in the peripheral IC;
Figure 3 a signal diagram for a data transmission from the
central IC to the peripheral IC;
Figure 4 a signal diagram for a data transmission from the
peripheral IC to the central IC.

Exemplary embodiment of the invention
Figure 1 shows the components of a HIPERLAN2 interface in a
block diagram. The reference symbol 10 indicates the antenna
or antenna system with a changeover switch between receive
mode and send mode. The reference symbol 11 indicates the
discrete components in which the RF signal is processed,
including the send and receive filters and the balancing
transformer between the antenna cable (coaxial cable) and
the front-end IC 12. The front-end IC 12 is divided into an
RF part 13 and a converter part 14 for generating the
intermediate frequency. The dual conversion superheterodyne
principle with conversion to a first and a second
intermediate frequency is preferably implemented in the
receive circuit, in order to reliably prevent image
frequency reception. The send and receive paths have
separate filter and amplifier stages. Two separate PLL
synthesizer tuners are used for tuning on the send and
receive paths. A further component of the front-end IC 12 is
the serial bus interface for data transmission to and from
the baseband processor 15. The output amplifier for the send
path is indicated in Figure 1 by the reference symbol 18,
and is a discrete component to the front-end IC as outside.
Said output amplifier can be set by the baseband processor
15 via an analog line. Fine adjustment of the receive gain
is however achieved by means of the additional send
amplifiers in the RF section 13 of the front-end IC. The
amplifiers for the receive path are provided in the front-
end IC and are adjustable. The front-end IC 12 does not have
a dedicated clock generator for transferring setting values
to the relevant working registers. Therefore this clock is
transmitted via the serial bus connection 19.
The main component of the central IC 15 is a powerful processor, which uses software to implement the upper layers of the HIPERLAN2 protocol. In particular, this concerns the layers above the network layer (data link control layer). The same processor is also responsible for modulation and demodulation of the signals to be sent or received using the OFDM method. Another integrated component of the peripheral IC 15 is the AD converter, which converts the intermediate frequency signal, that is output by the front-end IC 12, to a digital signal. The central IC 15 likewise contains a DA converter, which converts the digitally modulated signal to a corresponding analog signal. An external SDRAM memory module 16 is provided for storing data. The necessary software programs are stored in the flash memory 17, which is also external. Bus connections for an IEEE1394 bus interface or an Ethernet bus interface are also provided on the central IC.

Figure 2 shows one part of the front-end IC 12, specifically the bus interface 20 and the status and setting registers that are connected to it. The bus interface 20 comprises a shift register 21 having a register width of 8 bits and a bus controller 22 which can be implemented using corresponding hardware as a status function. The bus driver 23 is also shown as a separate component and is activated for the send mode from the peripheral IC to the central IC. As previously mentioned, the bus connection itself comprises three lines. The data transmission line Data is directly connected to the input of the shift register 21. The output of the bus driver 23 is also connected to this data line. Conversely, the output of the shift register 21 is connected to the input of the bus driver 23. The control line of the bus connection is shown by the word Start in Figure 2. This line is connected to the controller 22. Since the front-end IC does not contain a dedicated clock generator, a clock line (CLK) is provided as a third line on the bus connection in order to prevent interference effects on the RF signal. This is connected to both the clock input of the shift register 21 and the bus controller 22. In addition to the
status register 29 with a width of 2 bits, the front-end IC includes a PLL1 register 27 with a width of 8 bits and a PLL2 register 28 with a width of 4 bits. The PLL1 register 27 is used to set the PLL, which stabilizes the frequency for converting the RF signal to the first intermediate frequency during the receive mode, or stabilizes the frequency for converting the intermediate frequency signal to the RF signal during these send mode.

The setting value in the PLL2 register 28 is used as appropriate to set the PLL, which stabilizes the frequency for the mixer, which convert the receive signal at the first intermediate frequency to the receive signal at the second intermediate frequency. During the send mode, the setting value is used to stabilize the frequency for the mixer when converting the send signal at the second intermediate frequency to the send signal at the first intermediate frequency.

Both PLL registers 27 and 28 are read-only registers. The parallel outputs of the registers 27 and 28 are hard wired to the corresponding programmable frequency dividers (not shown). The lock status for both PLLs is entered into the status register 29.

The front-end IC 12 also contains a TXGain register 26. This likewise has a width of 8 bits. The gain setting for the send mode is written to this register. The parallel outputs of the register are hard-wired to different send amplifiers accordingly (not shown).

In addition, an RXGain register 25 is provided for the receive mode. This is the working register for the receive gain setting. It also has a width of 8 bits. The parallel outputs of this register 25 are hard-wired to corresponding receive amplifiers in the RF path (not shown). According to the invention, a second register is also provided for the receive gain setting and functions as a preregister. This is shown as the RXGain Preload register 24 in Figure 2. It has
a width of 8 bits, like the RXGain register 25. The parallel outputs of this preregister 24 are connected to the corresponding parallel inputs of the RXGain register 25. The parallel inputs of registers 24, 26, 27 and 28 are connected to the parallel outputs of the shift register 21. In this configuration, the PLL2 register 28 is connected only to the four most-significant bits of the shift register 21. The three least-significant bits of the shift register 21 are also connected separately to the bus controller 22. These three bits are used to transmit the register write address during data transmission from the central IC to the peripheral IC. The write operation to one of the write registers 24, 26, 27 and 28 will now be described in greater detail. The address lines for the write registers 24, 25, 26, 27 and 28 are also shown in Figure 2 and lead from the bus controller 22 to the relevant register. They also function at the same time as a write-enable signal, so that data waiting at the parallel inputs can be transferred to the register.

In the case of the status register 29, an address line to this register and a corresponding read signal can be omitted, since the parallel outputs of the status register are permanently connected via multiplexers to the two most-significant bits of the shift register 21, and transfer of the status register content to the shift register 21 can be effected by means of an enable signal (Load_Status) to the multiplexers from the bus controller 22 end.

The data transmission process for an operating parameter from the central IC 15 to the peripheral IC 12 will now be described in greater detail, with reference to the signal diagram in Figure 3. The top line of Figure 3 shows the system clock with which the central IC 15 works. The clock frequency is 160 MHz. This is used to derive the clock CLK for data transmission between the peripheral and the central IC. The system clock is stepped down by a factor of 4 for this purpose, thereby giving a clock frequency of 40 MHz for the data transmission. The data transmission is started by
the central IC 15 by sending a start pulse on the start line.

As shown in Figure 3, the length of the start pulse corresponds to half the clock pulse period of the data transmission clock at 40 MHz. The rising edge of the start pulse resets the bus controller 22 if the High potential on the clock line is detected at the same time. Starting with the trailing edge of the bus clock following the rising edge of the start pulse, the register write address for the write operation is transmitted on the data line Data. The sampling instant for each bit is symbolized by a vertical dashed line. This vertical dashed line coincides with the rising edge of the bus clock (CLK) in each case. The clock cycles after the start pulse are counted in the bus controller 22. With the trailing edge of the third clock cycle after the start pulse, the register write address which is represented by the three least-significant bits of the shift register 21 is decoded internally in the bus controller 22, and a reservation flip-flop for the corresponding address line is set internally in the bus controller 22. Data transmission of the register write address is immediately followed by data transmission of the operating parameter. Eight bits are transmitted as an operating parameter in each case. Therefore a total of eleven bits are shifted into the shift register 21, of which only the last eight bits remain when the data transmission is complete. The first three bits, which relate to the register write address, have been shifted out of the shift register 21 by this time and are therefore no longer available. With the trailing edge of the last clock cycle of the transmission of the eight data bits, the bus controller 22 generates a write pulse xxx_write.

This write pulse is routed in parallel to all address lines except for the address line (rxg_valid) which leads to the working register 25. However, the write pulse is allowed through only on the address line which was previously selected by setting the reservation flip-flop when decoding the address. Consequently, the register write pulse reaches only the selected register, where it causes the data waiting at the parallel inputs of this register to be transferred into this register. If the selected register is the
preregister 24, then the setting value in this register does not yet have any effect on the receive gain setting at this time. In this case, the value held in the preregister 24 is transferred to the next register 25 only following a further pulse on the start line. This transfer pulse does not differ from the aforementioned start pulse on the start line. However, it should be noted that it can be distinguished from the start pulse by virtue of the fact that at the instant this pulse is generated the clock line (CLK) is switched to Low, whereas the High potential is present on the clock line (CLK) in the case of a valid start pulse. It is therefore possible to generate a copy pulse on a further line (xxx_valid) by logically combining the clock line and the start line, where this copy pulse is routed only to the address line of the working register 25, and without previously setting a reservation flip-flop for this purpose. If security or safety considerations so require, the configuration can also be implemented in such a way that the copy pulse is allowed onto the address line of the working register only if the reservation flip-flop for the preregister 24 has been set previously. During the whole write cycle, the control line Output_Enable of the bus controller 22 is deactivated, i.e. is at Low potential.

The operation for reading the status information in the peripheral IC 12 will now be described in greater detail, with reference to Figure 4. This data transmission is also initiated from the central IC 15. The same designations are used for the lines in Figure 4 as in Figure 3. The central IC 15 again starts the data transmission with a start pulse on the start line. The status register read address is then transmitted to the peripheral IC 12. The Output_Enable line of the bus driver 23 is activated by the trailing edge of the clock cycle in which the last address bit was transmitted. At the same time, the control line Load_Status is used to switch the multiplexers for the two most-significant bits of the status register 29, and the content of the status register 29 is copied into the two most-significant bits of the shift register 21 with the next
rising edge of the bus clock. Since the bus driver is already switched on, transmission of the highest-order bit takes place via the bus line (Data) at the same time as this clock pulse. The next clock pulse triggers a shift operation in the shift register 21 and results in transmission of the second status bit. With the trailing edge of this clock cycle, data transmission to the central IC 15 is terminated because the control line Output_Enable is reset to Low and therefore the bus driver 23 is disconnected. During transmission of the status information, the internal control lines xxx_write and xxx_valid in the bus controller 22 are deactivated, i.e. set to Low.

The invention is not restricted to the exemplary embodiment described here. There is scope for many different adaptations and developments which are also considered to belong to the invention. For example, the invention could feature additional preregisters for additional setting registers if required. The corresponding bus controller 22 would have to be adapted accordingly. It is also conceivable to use a parallel bus connection instead of a serial bus connection between the peripheral and central IC. A different serial bus connection without a clock line, i.e. with asynchronous data transmission, is also possible. The register width of the setting registers and of the shift register can also be modified for different applications.
Patent claims

1. A method for setting an operating parameter in a peripheral IC (12), in which method the operating parameter is transmitted from a central IC (15) via a bus connection (19) to the peripheral IC (12), characterized in that the operating parameter is buffered in a preregister (24) of the peripheral IC (12) and that the buffered operating parameter is transferred to a working register (25) only if a transfer signal has been sent from the central IC (12) via the bus connection (19).

2. The method as claimed in Claim 1, in which method the bus connection (19) is a serial bus connection with a data line (Data), a control line (Start) and a clock line (CLK), and the transfer signal is transmitted via the control line (Start) to the peripheral IC (12).

3. The method as claimed in Claim 1 or 2, in which method the start of a data transmission from the central IC (15) to the peripheral IC is also signaled via the control line (Start).

4. A device for carrying out the method as claimed in one of the preceding claims with a central IC (15) and a peripheral IC (12), with a bus connection (19) between the central IC (15) and the peripheral IC (12), where the peripheral IC (12) has a working register (25) for an operating parameter, characterized in that the peripheral IC (12) also has a preregister (24) for buffering an operating parameter which is received via the bus connection (19), and has means for transferring the buffered value to the working register (25), which means respond to a transfer signal that is transmitted from the central IC (15) via the bus connection (19).

5. The device as claimed in Claim 4, in which device the bus connection (19) is a serial bus connection with a
data line (Data), a control line (Start) and a clock line (CLK), and the control line (Start) is used to transmit the transfer signal.

6. The device as claimed in Claim 5, in which device the control line (Start) is also used to transmit a start signal for data transmission from the central IC (15) to the peripheral IC (12).

7. The device as claimed in one of the preceding claims, in which device the peripheral IC (12) relates to a front-end IC for a communication arrangement for wireless data transmission and the central IC (15) relates to a signal processing device, with means for modulation or demodulation of the mixed RF input signal and for further signal processing in baseband.

8. The device as claimed in Claim 7, in which device the operating parameter relates to the gain setting for the receive gain in the front-end IC (12).

9. The device as claimed in one of the preceding claims, which device is configured as a send and receive device for wireless data transmission in accordance with the HIPERLAN2 standard.
Fig. 3
Fig. 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 G06F 13/42

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, COMPENDEX, EMBASE, INSPEC, PAJ, IBM-TDB, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>PROFIBUS NUTZERORGANISATION E.V.: "PROFIBUS Technical Description" 1 September 1999 (1999-09-01), PROFIBUS NUTZERORGANISATION E.V., KARLSRUHE XP002235273 page 4, column 2, paragraph 2 - paragraph 4; figure 8 page 12 page 27, column 2, paragraph 3 - page 28, column 1, paragraph 1 page 15, column 1, line 6 - column 2, line 14 ---</td>
<td>1, 4</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 071 228 A (TEXAS INSTRUMENTS FRANCE ;TEXAS INSTRUMENTS INC (US)) 24 January 2001 (2001-01-24) column 9, paragraph 44 column 16, paragraph 71 ---</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patient family members are listed in annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

* **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* **Z** document member of the same patent family

Date of the actual completion of the international search

19 March 2003

Date of mailing of the international search report

03/04/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer

Juenger, B
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 1071228 A</td>
<td>24-01-2001</td>
<td>US 6498939 B1</td>
</tr>
<tr>
<td>EP 1071228 A1</td>
<td>24-01-2001</td>
<td></td>
</tr>
</tbody>
</table>