

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2017/0159163 A1 Nettesheim

Jun. 8, 2017 (43) **Pub. Date:**

(54) PLASMA COATING DEVICE AND METHOD FOR PLASMA COATING OF A SUBSTRATE

(71) Applicant: Maschinenfabrik Reinhausen GmbH, Regensburg (DE)

(72) Inventor: Stefan Nettesheim, Regensburg (DE)

(21) Appl. No.: 15/439,222

(22) Filed: Feb. 22, 2017

Related U.S. Application Data

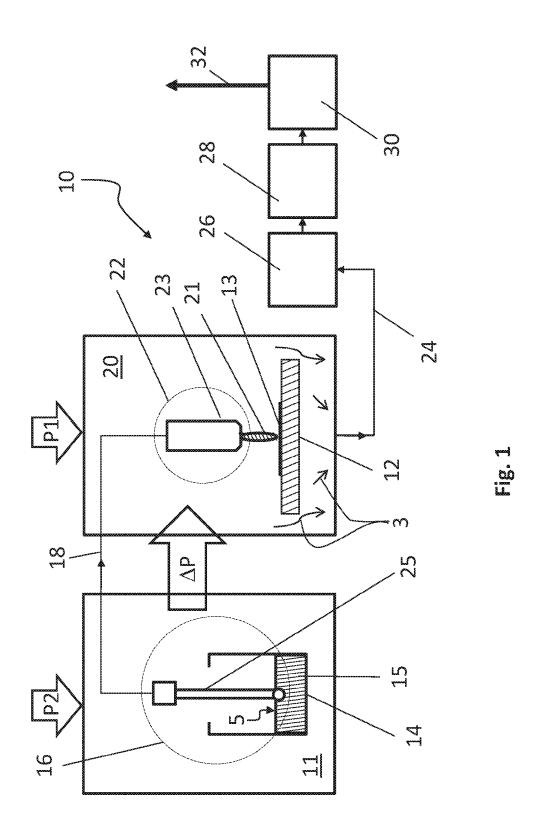
(63) Continuation-in-part of application No. 13/932,581, filed on Jul. 1, 2013.

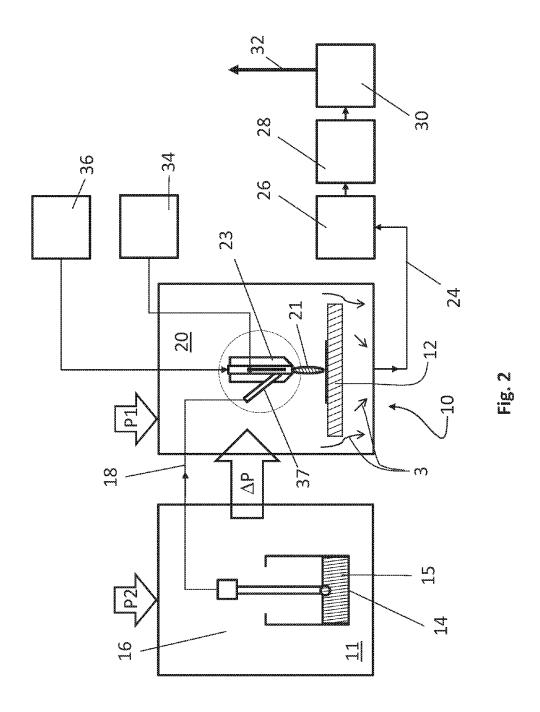
(30)Foreign Application Priority Data

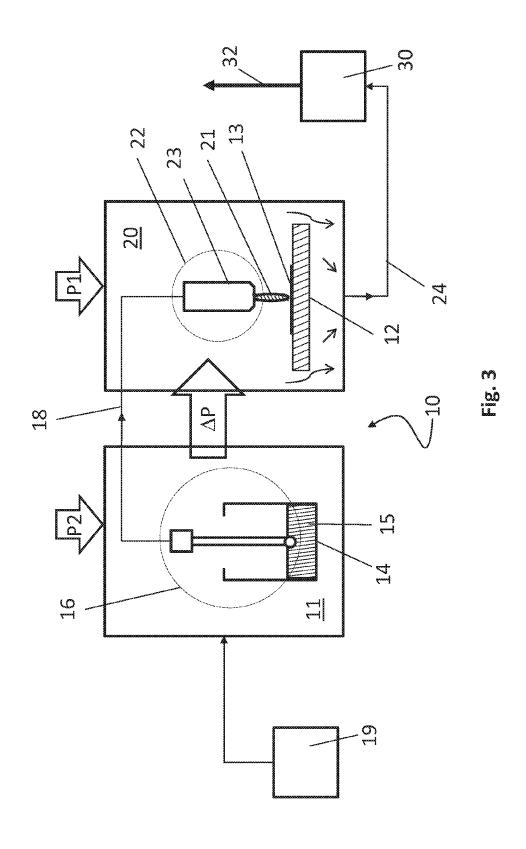
Jul. 6, 2012 (DE) 102012106078.9

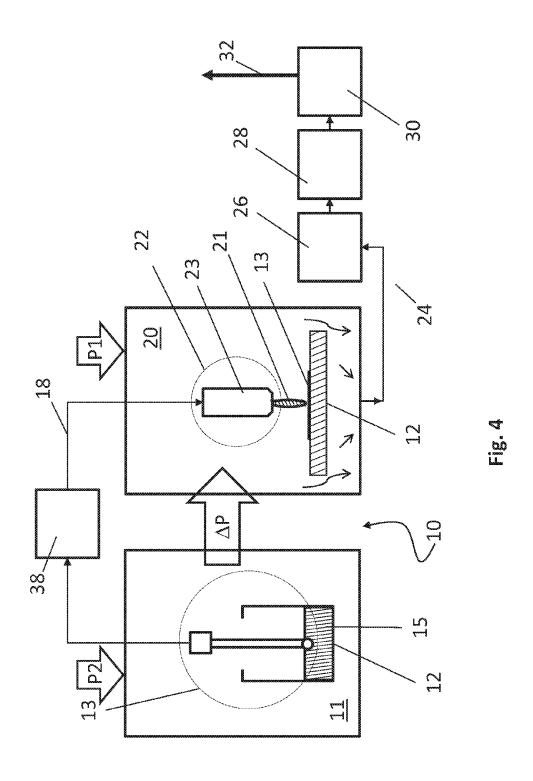
Publication Classification

(51) Int. Cl. C23C 4/134


(2006.01)


U.S. Cl. (52)


CPC C23C 4/134 (2016.01)


(57)**ABSTRACT**

The invention relates to a plasma coating device (10) and a method for homogenous coating of a substrate (12). It comprises a particle reservoir (14), a dosing device (16) for dosing the particles (15) contained in the particle reservoir (14), a processing chamber (20) and a transport line (18) to convey particles (15) into the processing chamber (20). The processing chamber pressure (P1) in the processing chamber (20) is lower than the particle reservoir pressure (P2) in the particle reservoir (14).

PLASMA COATING DEVICE AND METHOD FOR PLASMA COATING OF A SUBSTRATE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a Continuation-in-Part patent application under 35 U.S.C. §120 of U.S. patent application Ser. No. 13/932,581, filed on Jul. 1, 2013, which claims priority from German Patent Application No. 10 2012 106 078.9, filed on Jul. 6, 2012, which applications are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

[0002] The invention relates generally to a plasma coating device, and more specifically to a plasma coating device for coating of a substrate,

[0003] Furthermore, the invention generally relates to a method for plasma coating of a substrate.

BACKGROUND OF THE INVENTION

[0004] The state of the art comprises a diverse series of sample coating methods and devices. The methods may be selected according to the substrate, the layer to be coated thereon and in particular according to the layer thickness. Amongst suitable coating methods are, according to the initial state of the coating material, gas-phase deposition, dip coating, spraying methods, electroplating or powder coating. Some methods, amongst which in particular thermal spraying methods, plasma spraying, low-temperature plasma coating or laser-assisted powder deposition, are especially suitable for making a homogeneous coating on a substrate. All of these methods require a continuous and well-dosed amount of powder supply to a so-called coating torch.

[0005] To obtain coating layers with specific properties while inducing little thermal and mechanical stress into the substrate to be coated, especially fine-grained powders are used which have particle sizes of 20 µm and below. During the coating of the substrate, the powder is injected into the coating torch. The conveyance of such fine-grained powders is, however, challenging. Furthermore, fine-grained powders tend to form agglomerates that a processing gas stream may not be able to break up. Also, the operation of suitable types of pumps often becomes unstable when handling processing gases with high powder contents. Pumps and conveyance devices are prone to heavy erosion and blockage depending on the powder used. Also, the properties of the powder material itself have a significant impact. Particularly critical are abrasive, low-melting and hygroscopic powders.

[0006] U.S. Pat. No. 5,853,815 discloses a method to homogeneously coat a substrate, wherein a plasma stream covers the entire width of the substrate. For this purpose, a powder reservoir is connected via a feeding line directly with a plasma generation unit. A large pressure difference between the coating torch in the plasma generation unit and the environment of the coating torch generates a shock pattern. Thereby, the coating material is dispersed within the plasma stream and the resulting coating jet is widened.

[0007] German Patent No. DE 198 26 550 C2 proposes that powder may be extracted from a reservoir by mechanical means and converted, together with a carrier gas, into a powder aerosol. The powder aerosol may subsequently be stored in a container and be submitted to ultrasonic treatment in order to break up any particle agglomerates. This

process is, however, very complex and not sufficiently reliable for powders prone to agglomeration.

[0008] Other documents of the state of the art, like e.g., DE 102 16 294 A1, DE 10 2005 032 711 A1, US 2007/059436 A1, U.S. Pat. No. 4,109,027 A, DE 43 28 021 A1, EP 0 120 810 A1 or WO 2010/060646 A1, disclose deposition devices or deposition methods that do not involve a plasma and therefore do not inject a deposition material (powder) into a plasma coating torch. Likewise, the problem remains unaddressed of how a constant extraction rate of deposition material is achieved.

SUMMARY OF THE INVENTION

[0009] The present invention broadly comprises a plasma coating device having a particle reservoir, a dosing device for dosing the particles stored in the particle reservoir, an all-round closed processing chamber, at least one transport line from the particle reservoir to the processing chamber, a suction pump being connected with the processing chamber such that a pressure gradient between the processing chamber and the particle reservoir is settable in such a way that there is a processing chamber pressure in the processing chamber and a particle reservoir pressure in the particle reservoir wherein the processing chamber pressure is lower than the particle reservoir pressure, and a plasma coating torch within the processing chamber that receives at a constant conveying rate the particles from the particle reservoir wherein the constant conveying rate is accurately adjustable by means of the transport line and mechanically or pneumatically generated particle aggregations within the transport line are avoided.

[0010] The present invention also broadly comprises a

method for plasma coating of a substrate having the steps of: extracting in a regulated manner particles from a particle reservoir with a dosing device by means of a movable suction lance; supplying the particles via a transport line to a processing chamber, in which a plasma coating torch is provided; and setting a pressure gradient between the processing chamber and the particle reservoir by means of a suction pump connected to the processing chamber such that the pressure gradient determines a delivery rate of particles. [0011] The object of the present invention is to provide a plasma coating device and a method for plasma coating of a substrate capable of conveying a powder or a mixture of powder and processing gas from a powder reservoir into a processing chamber ensuring a homogeneous, precisely dosed, pulsation-free and time stable powder conveyance between the powder reservoir and the processing chamber. [0012] Accordingly, a plasma coating device for deposition of a coating onto a substrate is disclosed. The coating is produced from particles contained in a particle reservoir. A dosed quantity of particles is extracted from the particle reservoir by a dosing device and subsequently fed to an all-round closed processing chamber via a transport line. Pressure P1 within the processing chamber is lower than pressure P2 within the particle reservoir. The pressure gradient between processing chamber pressure P1 and particle reservoir pressure P2 is achievable and adjustable by means of a suction pump connected to the processing chamber. The powder particles in the powder reservoir are fed to a plasma coating torch inside the processing chamber via the transport line. The transport is precisely adjustable so as to avoid aggregation of mechanically or pneumatically-related particles in the transport line.

[0013] In an embodiment of the invention, the particle reservoir of the plasma coating device is arranged within a dosing chamber, and the dosing device is connected with the all-round closed processing chamber via the transport line. Due to their different purposes, the processing chamber and the dosing chamber are functionally separated.

[0014] Processing pressure P1 may be adjusted and adapted by a suction pump connected to the processing chamber via a suction line. Furthermore, a throttle valve can be provided in order to adapt the suction gas stream acting upon the processing chamber. For this purpose, this throttle valve is arranged between the suction line and the suction pump.

[0015] In another embodiment of the invention, a filter is provided for filtering the suction gas stream siphoned off from the processing chamber by the suction pump. This filter is arranged between the suction line and the suction pump and preferably downstream of the throttle valve. In the context of the present invention, the notion "suction gas stream" is to be understood as the stream composed of the mixture of particles and gas siphoned off from the processing chamber.

[0016] The pressure difference between particle reservoir pressure P2 and processing pressure P1 is adjusted between 50 mbar and 1000 mbar, preferably at 200 mbar. For this purpose, the absolute particle reservoir pressure P2 is adjusted between 900 mbar and 1500 mbar. The absolute processing pressure P1 in the processing chamber is adjusted to at most 1013 mbar, preferably below 500 mbar and more preferably still at 30 mbar.

[0017] The dosing device has a movable suction lance protruding into the particle reservoir. This setup is particularly advantageous if the deposition device is implemented as plasma coating device with a plasma coating torch inside a processing chamber.

[0018] With respect to the inventive method for coating a substrate, a dosed quantity of particles is extracted from a particle reservoir by means of a dosing device. Subsequently, these particles are conveyed via a transport line from which they are fed into the processing chamber. A pressure gradient is set between the particle reservoir and the processing chamber in order to determine a feed rate of particles into the processing chamber.

[0019] In an embodiment of the inventive method, the pressure gradient is generated by aspiration of the processing chamber. The value of the pressure gradient may be set by adjusting the aspiration power.

[0020] The setup of the proposed plasma coating device has the particular advantage that no pumping unit is required in the powder transport line between the powder reservoir and the processing chamber. Furthermore, one can get around of mechanical or pneumatic units in the transport path.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] The nature and mode of operation of the present invention will now be more fully described in the following detailed description of the invention taken with the accompanying figures, in which:

[0022] FIG. 1 is a schematic representation of a first embodiment of the inventive plasma coating device;

[0023] FIG. 2 is a schematic representation of another embodiment of the inventive plasma coating device;

[0024] FIG. 3 is a schematic representation of yet another embodiment of the inventive plasma coating device; and, [0025] FIG. 4 is a schematic representation of yet another embodiment of the inventive plasma coating device.

DETAILED DESCRIPTION OF THE INVENTION

[0026] At the outset, it should be appreciated that like drawing numbers on different drawing views identify identical, or functionally similar, structural elements of the invention. While the present invention is described with respect to what is presently considered to be the preferred aspects, it is to be understood that the invention as claimed is not limited to the disclosed aspect. The present invention is intended to include various modifications and equivalent arrangements within the spirit and scope of the appended claims.

[0027] Furthermore, it is understood that this invention is not limited to the particular methodology, materials and modifications described and as such may, of course, vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the present invention, which is limited only by the appended claims.

[0028] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. In the context of the present invention, the notion "suction gas stream" is to he understood as the stream composed of the mixture of particles and gas siphoned off from the processing chamber. Although any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods, devices, and materials are now described.

[0029] FIG. 1 illustrates a first embodiment of inventive plasma coating device 10. Plasma coating device 10 has dosing chamber 11. Dosing chamber 11 holds dosing device 16 with particle reservoir 14 containing particles 15 used for coating substrate 12. Furthermore, a particle separation unit is provided within dosing device 16 by means of which particles 15, i.e., powder, can be extracted from particle reservoir 14. This particle separation unit may be embodied as, e.g., suction lance 25. Suction lance 25 dips into the stock of particles or, alternatively, is positioned closely above surface 5 of the stock of particles. The deposition of particles 15 onto substrate 12 as coating 13 is carried out inside processing chamber 20. In order to supply particles 15 to be deposited onto substrate 12 from dosing chamber 11 to processing chamber 20, dosing device 16 is connected to processing chamber 20 via transport line 18.

[0030] Preferably, suction lance 25 is operatively arranged to be movable during an extraction of particles 15 from particle reservoir 14, and in particular, suction lance 25 moves parallel to the surface of particles 15 in particle reservoir 14. This movement provides a plasma coating device and a method for plasma coating of a substrate capable of conveying a powder or a mixture of powder and processing gas from a particle reservoir into a processing chamber ensuring a homogeneous, precisely dosed, pulsation-free and time stable powder conveyance between the powder reservoir and the processing chamber. In one embodiment, a three-axle system is utilized, which allows for relative motion of the suction lance in the X-, Y- and

Z-directions. The X/Y motion drives the horizontal relative motion between suction lance 25 and the surface 5, while the Z-axis permits the vertical adjustment of suction lance 25 in order to ensure a constant distance from surface 5, a continuous contact to the powder surface, or a constant immersion depth of the suction lance into the particle reservoir. It should be appreciated that the suction lance may move at any point throughout the extraction process and may also move circularly, omni-directionally, etc., or in any other suitable manner known in the art.

[0031] According to the invention, the conveyance of particles 15 from dosing device 16 to processing chamber 20 is achieved by the generation of a suitable pressure gradient ΔP between dosing chamber 11 and processing chamber 20. Dosing chamber 11 and processing chamber 20 are functionally independent of each other. For this purpose, processing chamber pressure P1 is set within processing chamber 20. Also, dosing chamber pressure P2 within particle reservoir 14 is set to be higher than processing chamber pressure P1. The value of pressure gradient ΔP can be adjusted, thus enabling the powder 15 feed rate generated by pressure gradient ΔP to be accurately set. In this way, it is possible to avoid the formation of particle agglomerates caused by mechanical or pneumatic units or means in the conveyance path of particles 15 towards substrate 12. Avoiding the formation of such particle agglomerates allows a homogeneous, precisely dosed, pulsation-free and reliable powder conveyance between powder reservoir 14 and processing chamber 20.

[0032] In order to adjust pressure gradient ΔP between processing chamber 20 and particle reservoir 14, processing chamber 20 is equipped with suction line 24. Suction line 24 is connected to suction pump 30 generating processing pressure P1 within processing chamber 20 which is lower than particle reservoir pressure P2 within dosing chamber 11. The suction pump is controlled in order to maintain pressure gradient ΔP between processing chamber 20 and particle reservoir 14 within predetermined deviation limits at a given target value.

[0033] Processing pressure P1 generated by suction pump 30 takes absolute pressure values of 1013 mbar at most and preferably ranges below 50 mbar. Processing pressures P1 at 30 mbar are especially preferable, particularly because, in this value range, excess material accumulating in processing chamber 20, like e.g., loose powder 15 not adhering to coating 13, and also processing gas can be sucked out with suction stream 3 forming from processing chamber 20 towards suction pump 30. Particle reservoir pressure P2 preferably ranges from absolute values between 900 mbar and 1500 mbar.

[0034] By means of a suitable combination of an aspiration of processing chamber 20 and the dosing and fluidizing of the particles, pressure gradient ΔP between the two functionally separated chambers (processing chamber 20 and dosing chamber 11) can thus he achieved and the feed rate of particles 15 can be precisely set. The supply of the coating process with the coating material, e.g., the powder, is governed by pressure gradient ΔP and can thus be regulated by setting precess of powder particles 15 in a processing gas can be controlled. Pressure gradient ΔP is set such that the pressure difference between particle reservoir pressure P2 and processing pressure P1 ranges between 50 mbar and 1000 mbar, preferably around 200 mbar.

[0035] Throttle valve 26 is arranged downstream of suction line 24 and can provide an additional means of control and regulation of the pressure difference. By means of throttle valve 26, the suction power generated by suction pump 30 and acting upon processing chamber 20 can be adjusted without the suction power of suction pump 30 having to be changed itself. This fact allows a fast setting of the effective suction power acting upon processing chamber 20 and thus constituting an efficient means of regulation of plasma coating device 10. The control of additional components, such as suitable sensors (not shown), can optionally be automated by a control unit (not shown). Additionally, filter 28 may be mounted upstream of suction pump 30 to avoid undesired contamination of suction pump 30 with particles 15. The extracted gases can be exhausted from suction pump 30 via outlet 32. Suction pump 30 and throttle valve 26 are coordinately controlled in order to maintain pressure gradient ΔP between processing chamber 20 and particle reservoir 14 on the set target level within predetermined limits.

[0036] FIG. 2 shows a schematic embodiment of the invention in which substrate 12 is coated by plasma coating device 10. For this purpose, particles 15 are conveyed from dosing chamber 11, where the pressure within processing chamber 20 is lower than within dosing chamber 11. Particles 15 are guided via transport line 16 directly into plasma coating nozzle 23, are injected into plasma coating torch 21 and subsequently impinge onto substrate 12 to be coated. Here, plasma coating torch 21 is a plasma jet. As previously described, pressure gradient ΔP for quantity control and dosage of the conveyed particles 15 is to be set via the suction pump 30. Upstream of suction pump 30, throttle valve 26 and filter 28 are provided. Additional components of plasma coating device 10 are electrical power supply 34 and processing gas supply 36 to plasma coating nozzle 23 in processing chamber 20. Preferably, they are connected to plasma coating nozzle 23. Likewise, particles 15 are fed from particle reservoir 14 to plasma coating nozzle 23 via feeder 37.

[0037] FIG. 3 shows yet another embodiment of plasma coating device 10. This embodiment supplements the setups of the embodiments of FIG. 1 or 2 by pressure pump 19 connected to dosing chamber 11. The action of auxiliary pressure pump 19 helps to achieve a sufficient pressure gradient ΔP between processing chamber 20 and dosing chamber 11. Besides suction pump 30, this provides an additional means to regulate the particle stream from dosing chamber 11 to processing chamber 20. With this setup, pressure values can be obtained within dosing chamber 11 which are higher than the normal pressure of the surrounding atmosphere. This embodiment may also be supplemented by throttle valve 26 and filter 28 according to FIG. 1 or 2.

[0038] FIG. 4 shows yet another embodiment of plasma coating device 10. This embodiment supplements the setups of the embodiments shown in FIG. 1, 2 or 3 by transport line element 38 arranged in transport line 18 and serving to further stabilize pressure gradient ΔP between dosing chamber 11 and processing chamber 20. Transport line element 38 may he implemented in two ways. According to a first implementation, transport line element 38 is an auxiliary pump generating a supportive pressure in the direction of processing chamber 20 that further stabilizes pressure gradient ΔP between dosing chamber 11 and processing cham-

ber 20. Thereby, it supports the stabilization of the feed rate of particles 15 fed to processing chamber 20. According to a second implementation, transport line element 38 is a throttle in transport line 18 serving to counteract an undesirably high pressure gradient ΔP between dosing chamber 11 and processing chamber 20. Preferably, the throttling action of this throttle is tunable. By means of suitable measurement, sensor and control units, control and regulation of the throttling action of the throttle and the suction power of suction pump 30 may be automated. Suction pump 30, transport line element 38 and throttle valve 26 can be coordinately controlled such that pressure gradient ΔP between processing chamber 20 and particle reservoir 14 remains at an adjusted target value within predetermined deviation limits, thus ensuring the constancy of the powder delivery rate from particle reservoir 14.

[0039] The invention has been described with reference to preferred embodiments. On the basis of the disclosure it is obvious to one skilled in the art that changes, modifications of the invention and in particular combinations of features disclosed in the context of different embodiments are contained in the protective scope of the present invention.

LIST OF REFERENCE NUMBERS

[0040] 3 Suction stream

[0041] 5 Surface

[0042] 10 Plasma coating device

[0043] 11 Dosing chamber

[0044] 12 Substrate

[0045] 13 Coating

[0046] 14 Particle reservoir

[0047] 15 Particles

[0048] 16 Dosing device

[0049] 18 Transport line

[0050] 19 Pressure pump

[0051] 20 Processing chamber

[0052] 21 Coating torch

[0053] 22 Coating head

[0054] 23 Plasma coating nozzle

[0055] 24 Suction line

[0056] 25 Suction lance

[0057] 26 Throttle valve

[0058] 28 Filter

[0059] 30 Suction pump

[0060] 32 Outlet

[0061] 34 Electrical power supply

[0062] 36 Processing gas supply

[0063] 37 Feeder

[0064] 38 Transport line element

[0065] P1 Processing chamber pressure

[0066] P2 Particle reservoir pressure

[0067] ΔP Pressure gradient

What is claimed is:

- 1. A plasma coating device for coating a substrate with particles, the device comprising:
 - a particle reservoir;
 - a dosing device for dosing the particles stored in the particle reservoir;
 - an all-round closed processing chamber;
 - at least one transport line for guiding particles directly from the particle reservoir to the processing chamber;
 - a movable suction lance of the dosing device dips into the particle reservoir or is positioned closely above a surface of the particles in the particle reservoir, wherein

- the movable suction lance is operatively arranged to be movable during an extraction of the particles from the particle reservoir;
- a suction pump being connected with the processing chamber such that a pressure gradient between the processing chamber and the particle reservoir is settable in such a way that there is a processing chamber pressure in the processing chamber and a particle reservoir pressure in the particle reservoir, wherein the processing chamber pressure is lower than the particle reservoir pressure; and,
- a plasma coating torch within the processing chamber receives at a constant conveying rate the particles from the particle reservoir, wherein the constant conveying rate is adjustable by means of the at least one transport line and mechanically or pneumatically generated particle aggregations within the at least one transport line are avoided.
- 2. The plasma coating device as recited in claim 1, wherein a dosing chamber accommodates the dosing device which is connected with the processing chamber via the at least one transport line.
- 3. The plasma coating device as recited in claim 2, wherein the processing chamber is functionally separated from the dosing chamber.
- **4.** The plasma coating device as recited in claim **1**, wherein a suction line is connected to the processing chamber and to the suction pump.
- 5. The plasma coating device as recited in claim 1, wherein a throttle valve is arranged upstream of the suction pump and at least one filter is arranged between the throttle valve and the suction pump.
- **6**. The plasma coating device as recited in claim **1**, wherein a pressure difference between the particle reservoir pressure and the processing chamber pressure is between 50 mbar and 1000 mbar.
- 7. The plasma coating device as recited in claim 6, wherein the pressure difference is set at 200 mbar.
- **8**. The plasma coating device as recited in claim **1**, wherein the particle reservoir pressure is between 900 mbar and 1500 mbar.
- **9**. The plasma coating device as recited in claim **1**, wherein the process chamber pressure is at most 1013 mbar.
- 10. The plasma coating device as recited in claim 9, wherein the process chamber pressure is lower than 500 mbar.
- 11. The plasma coating device as recited in claim 10, wherein the process chamber pressure is 30 mbar.
- 12. The plasma coating device as recited in claim 1, wherein the movable suction lance which protrudes into the particle reservoir is connected with the at least one transport line.
- 13. The plasma coating device as recited in claim 2, wherein an additional supporting pump is assigned to and acts on the dosing chamber.
- 14. The plasma coating device as recited in claim 1, wherein a transport line element for stabilization of the pressure gradient is provided in the at least one transport line.
- 15. The plasma coating device as recited in claim 14, wherein the transport line element is a supporting pump or a throttle
- **16**. A plasma coating device for coating a substrate with particles, the device comprising:

- a particle reservoir;
- a dosing device with a movable suction lance which protrudes into the particle reservoir for dosing the particles stored in the particle reservoir;
- an all-round closed processing chamber;
- at least one transport line for guiding particles directly from the particle reservoir to the processing chamber;
- the movable suction lance of the dosing device dips into the particle reservoir or is positioned closely above a surface of the particles in the particle reservoir, wherein the movable suction lance is operatively arranged to be movable during an extraction of the particles from the particle reservoir;
- a suction pump being connected with the processing chamber via a suction line such that a pressure gradient between the processing chamber and the particle reservoir is settable in such a way that there is a processing chamber pressure in the processing chamber and a

- particle reservoir pressure in the particle reservoir, wherein the processing chamber pressure is lower than the particle reservoir pressure; and,
- a plasma coating torch within the processing chamber receives at a constant conveying rate the particles from the particle reservoir, wherein the constant conveying rate is adjustable by means of the at least one transport line and mechanically or pneumatically generated particle aggregations within the at least one transport line are avoided, wherein a dosing chamber accommodates the dosing device which is connected with the processing chamber via the at least one transport line and further comprising an additional supporting pump assigned to and acting on the dosing chamber.
- 17. The plasma coating device as recited in claim 16 further comprising a transport line element for stabilizing the pressure gradient in the at least one transport line.

* * * * *