-

22

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : (11) International Publication Number: WO 93/17393
GOGF 15/40, 15/407, 5/00 AL | 43) Interational Publication Date: 2 September 1993 (02.09.93)
(21) International Application Number: PCT/US93/01891 | (81) Designated States: AU, CA, JP, European patent (AT, BE,
CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: 19 February 1993 (19.02.93) PT, SE).
(30) Priority data: Published
07/840,869 25 February 1992 (25.02.92) " US With international search report.

(71) Applicant: SALIENT SOFTWARE, INC. [US/US]; 124
University Avenue, Suite 300, Palo Alto, CA 94301 (US).

(72) Inventor: CHAMBERS, Lloyd, Lamont, IV ; 328 Waverley,
Apt. 2, Menlo Park, CA 94025 (US).

(74) Agent: FLIESLER, Martin, C.; Fliesler, Dubb, Meyer and
Lovejoy, Four Embarcadero Center - Suite 400, San
Francisco, CA 94111-4156 (US).

(54) Title: DIRECT READ OF BLOCK COMPRESSED DATA FILE

(57) Abstract

A method and apparatus for read-
ing and decompressing a subset (114) of a

.@ I~ 102 114

-
104 MEMORY SYSTEM

[---i DECOMPRESSED
block compressed data file (112) in which COMPRESSED |_t .., 110~ PORTION OF DATA (=====1]
: DATA FILE
three operating modes are used. The three
operating modes are selected according to 120 7 DIRECT READ SYSTEM
user access privileges. A direct read mode N —P—— | 122771~ DIRECT READ MEANS

for read only access, a file shadowing
mode for read/write access when it is like-
ly there will be no write, and a file put-
back mode, when it is likely that the file
will be written to, are the three access

modes. Data catching (160) is employed 108 ~

to improve system throughput and trans-

parency. Access of individual blocks of cry T | = =

compressed data is through a table of off- SoCoHPRESSOR j
sets (136), either stored in the compressed -~ 106 126 =T SHADOW MEANS j

data file or constructed from: scratch.

100 152 _\{

S~ e’ BUS A

130 \{

132

12 __N\Eomnnsssm CHECKER |
\]ﬂ\ STRUCTURE MEAE]

138 =71~ LOCATOR MEANS]

O/S PATCHER j

128 ~—1— PUTBACK MEANS ‘|

160 =1~

i S B B

CACHING MEANS j

154 =

]

COMPRESSOR

—

APPLICATION PROGRAM ‘|

=

150 —ﬂ OPERATING SYSTEM

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

AT Austria FR France . MR Mauritania

AU Australia GA Gabon . MW Malawi

BB Barbados GB United Kingdom NL Netherlands

BE Belgium GN Guineca NO Norway

BF Burkina Faso GR Greece NZ New Zealand

BG Bulgaria HU Hungary PL Poland

BJ Benin IE Ircland PT Portugal

BR Brazil IT Ialy RO Romania

CA Canada Je Japan RU Russian Federation
CF Central African Republic KP Democratic People's Republic SO Sudan

cc Congo of Korca SE Sweden

CH Swizerland KR Republic of Korea SK Slovak Republic
Cl C6te d'lvoire KZ Kazakhstan SN Senegal

cM Camcroon L Licehtenstein -Su Soviet Union

[Czechuslovakia . LK Sri lanka TD Chad

cz Czech Republic Lu Luxembourg TG Togo

DE Germany MC Mounaco UA Ukraine

DK Denmark MG Madagascar us United States of America
ES Spain Ml Mali VN Viet Nam

Fl Finland MN

Mongolia

™

WO 93/17393

"Direct Read of block compressed data file."

LIMITED COPYRIGHT WATIVER
A portion of the disclosure of this patent

document contains material which is subject to
copyright protection. The copyright owner has no

-objection to the facsimile reproduction by anyone

of the patent document or the patent disclosure, as
it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all
copyright rights whatsoever. »
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part ofA
application 07/759,226 entitled "Fast Data
Compressor with Direct Lookup Table Indexing into
History Buffer", which was filed September 13, 1991
by Lloyd Lamont Chambers IV, which is commonly
assigned with the present application, and which is
incorporated herein by reference as if fully set

forth herein. Another application of particular
interest is application entitled

"Method and Apparatus for Locating Longest Prior
Target String Matching Current String in Buffer",
which was filed February 21, 1992 by Lloyd Lamont
Chambers IV. These applications are commonly
assigned to Salient Software, Inc.

PCT/US93/01891

WO 93/17393

10

15

20

25

30

PCT/US93/01891

-2-

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to reading
of data from compressed data files, and more
specifically to a method and an apparatus for
decompressing and reading only a minimum subset of
a compressed data file directly into memory.

Description of the Background

Compressed data residing in a data file must
generally be decompressed in order to be of any real
use. However, if access to only a small portion of
the data file is needed, it is wasteful of
computational resources to decompress the entire
file. CPU time is unnecessarily wasted
decompressing the file, and storage space is
unnecessarily wasted holding the unneeded portions
of the decompressed data. '

Presently-available data decompressors appear to
suffer both these faults. When a program issues an
access request to a compressed file, the data
decompfessor decompresses the entire file and stores
the decompressed version for access by the program.
While the data decémprgssor is operating, the
program must wait. If thé data decompressor cannot
allocate storage for the decompressed file, unknown
€rrors may occur or the results may be otherwise
unpredictable. o

For example, if the cbmpfessed data file is on a
disk which has less free space than the decompressed
version of the file, the data decompressor may be
unable to operate.

Additionally, existing data decompressors -do not
operate at the same level of logical operation at

n,

WO 93/17393 : PCT/US93/01891

-3-

" which most computer programs operate. Specifically,
while computer programs tend to issue access
requests to a certain file (i.e. on a file basis),
existing data decompressors tend to operate at the -

5 much lower level of an operating system (i.e. on a
block basis, disk basis, device driver basis, or the
like).

This incompatibility of operational levels imposes
certain additional inefficiencies on existing data
10 decompressors. For example, existing data
decompressors do not take sufficient advantage of
the various read/write permission levels involved
in data access requests. If a program opens a file
"read only", for example, there is no need to save
15 a permanent copy of the decompressed data, because
it will ultimately be discarded when the program
closes the file.
What is needed, therefore, is an improved method
" "and apparatus for accessing data files on a file
20 basis, and within the file basis, on the more
limited basis of only a requested subset of the data
content of a specified file. The improved method

“and apparatus should have a reduced usage of
computational resources, 'by' decompressing only a

25 minimum amount of data. The improved method and
apparatus should operate regardless of how much free
storage is present on the medium on which the
compressed file is stored. The method and apparatus
should, additionally, take optimum advantage of

30 access permission levels indicated by programs
issuing data access requests.

WO 93/17393 ' PCT/US93/01891

-4-

SUMMARY OF THE INVENTION
The present invention provides an apparatus and

method for providing compressed data from a
compressed data file in response to a data request
5 which identifies given non-compressed data in a
non-compressed data file. The method and apparatus
identify, within in the compressed data file, given
compressed data which correspond to the given
non-compressed data identified by the data request,
10 decompress the given compressed data to reconstitute
the given non-compressed data, and provide the
reconstituted non-compressed data in response to the
data request.
The invention provides three operating modes,
15 selected according to access level permission
requested by an application seeking access to the
file. A direct read mode is used for read-only
permission; a file shadowing mode is used for
read/write permission when it is likely that the
20 application will only read from the file and never
write to it; a file putback mode is used for
read/write permission when it is likely that the
application will write to the file.
The invention provides data caching for
25 decompressed data blocks from a file, to avoid
repetitious reading and decompressing of a data
block containing two or more data requested at
different times, to improve throughput and
transparency of the system.
30
BRIEF DESCRTIPTION OF THE DRAWINGS
Fig. 1 illustrates the present invention as

embodied in a computer system.

F

WO 93/17393

10

15

20

25

30

PCT/US93/01891

-5-

Fig. 2 suggests the overall operation of the
invention in the control hierarchy of various levels
of a computer system.

Fig. 3 shows the basic operation of the invention
to decompress only requested portions of a data file
into memory.

Figs. 4A, 5A, and 6A are flowcharts demonstrating
operation of the invention in response to file open
requests in direct read, file shadowing, and file
putback modes, respectively.

Figs. 4B, 5B, and 6B are flowcharts demonstrating
operation of the invention in response to data write
requests, in the three modes.

Figs. 4C, 5C, and 6C are flowcharts demonstrating
operation of the invention in response to data read
requests, in the three modes.

Figs. 4D, 5D, and 6D are flowcharts demonstrating
operation of the invention in response to file close

- requests, in the three modes.

Figs. 7A-F illustrate operation of the invention
to create, decompress, and move files in the file

_shadowing mode.

Figs. 8A-F illustrate operation of the invention
to create, decompress, and move files in the file
putback mode. -

Fig. 9 illustrates one exemplary file format of a
file which may be advantageously used with the
present invention.

Fig. 10 illustrates the invention as embodied on

a recording medium such as a floppy disk.

WO 93/17393 PCT/US93/01891

-6-

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. COMPONENTS OF THE INVENTION
Fig. 1 shows the present invention as embodied in

a computer system 100 having a storage system 102,
5 a memory system 104, and a central processing unit
(CPU) 106 coupled together by a bus 108. The
storage system may, for example, be a hard disk
drive. The memory system may,' for example, be
random access memory (RAM). These may also be
10 characterized as permanent and temporary storage,
respectively. The present invention may be
practiced using a variety of data processing
environments. However, the preferred environment is
a data processing computer having a CPU, memory, and
15 a permanent storage device.
Fig. 10 illustrates the invention as embodied in
a floppy disk or the like, and may be understood to
represent any appropriate recording medium upon
which the invention may be embodied and from which
20 the invention may be retrieved and/or executed.
Other such media include hard disks, removable hard
disks, optical discs, PROMs, and the like.
Fig. 1 shows that, at a highest level of
abstraction, the present invention may be
25 characterized as an apparatus and method for
decompressing only a requested portion 110 of a
compressed data file 112 from the storage system to
RAM. 1In practice, the decompressed portion 110 may
include certain excess data 114 which are not
30 requested, but which are nevertheless decompressed
owing to the particular compression/decompression
scheme employed. _
The present invention is-a direct read system 120
which may reside in RAM while in use. The basic

*®

WO 93/17393

10

15

20

25

30

-7-

components of the direct read system are a direct
read means 122, a decompressor 124, a shadow means
126, a putback means 128, and a caching means 160.
The direct read means further includes an operating
System patcher 130, a compression checker 132, a
data structure means 134, and a locator means 136.
Other components of the computer system may
include an operating system 150 which provides a
controlling interface to the system hardware. The
computer system may further include an application
program 152 which issues data file access requests.
Such requests may include instructions for such
file-oriented operations as "open file", T"read

data", "write data", "get file position", "set file
position", "get end-of-file position", set
end-of-file position", "close file", and the like.

Data read and write requests may take on a variety
of forms. For example, a data read request may
specify "read X bytes starting at location Y", or it
may specify "read bytes from location X to location
Y", or the like. Either of these may be considered -
as directly or indirectly reciting a starting
location, and ending location, and an amount of
data. ' o

According to known technology, these requests are
ordinarily serviced by the operating system.
However, the patcher 130 redirects these requests to
be handled by the direct read system. Methods are
known by which this is accomplished, such as by
altering the contents of a "trap table" or by
altering the instructions of the operating system
itself. The exact means and methods of the patcher
will depend on the particular computer system upon
which it is desired to practice the invention.

PCT/US93/01891

WO 93/17393

10

15

20

which contain requested data. Fig. 9 shows the .

25

30

PCT/US93/01891

-8-

The computer system maj further include a data
compressor 154 which compresses data files stored in
the storage system. While the data compressor is
not a necessary part of the present invention as
such, it will be understood that the decompressor
124 is capable of utilizing the same compressed file
format as the compressor 154. It will be further
understood that the compressor may be included in
the invention, to provide data re-compression, for
example.

The preferred data compressor and decompressor are
described in the cross-referenced applications. The
block-oriented compression technique employed
therein is ideally suited to use by the present
invention, to permit dJdecompression of minimized
subsets of a compressed data file, to minimize the
waste of computational resources otherwise used at
each data request. Because the compression
algorithm completely restarts itself for each
successive history buffer of data (i.e. the data in
one block aré compressed entirely independently of
data in another block), the present invention is
able to extract and decompress only those blocks

general file format of a compressed data file, which
is created by the data compressor and which is
readable by the decompressor.

IT. GENERAL OPERATION OF THE INVENTION

Fig. 2 1illustrates how the present invention
cooperates with an application program and an
operating system, to provide a wholly-transparent,
seamless interface between the application program
and data files, whereby compressed data files can be

%

WO 93/17393 PCT/US93/01891

-9-

accessed without modification of -- or notice to --
either the application program or the operating
system. i
When the application program issues a data file
5 access request, such as those listed above, the
request is intercepted by the direct read system
before it arrives at the operating system. This
ability is provided by the patcher. For example,
the application program may issue the request "read
10 the next byte from file X". The direct read system
alters the request according to information retained
by the data structure means and locator means.
After modification, the request may be "read block
Y from file X". The operating system receives this
15 modified request; both the application and the
operating system are unaware that the request has
been modified. The operating system performs the
indicated request, in this case reading block Y from

“file X.
20 Then, block Y is decompressed by the decompressor,
to form block Y’. The direct read system then

extracts the originally-requested byte from the
block Y', and returns that byte to the application
program. To the appliéation program, the operation
25 of the direct read system is transparent -- the
application program never knows that its original
request was not simply handled by the operating
system. - o
7 This permits the storage system to store an
30 increased amount of data, without requiring
modification of the application program or the
operating system. Perhaps more importantly, it
requires no intervention or specia; knowledge by a
person using the application program.

WO 93/17393 PCT/US93/01891

-10-

The data compressor and decompressor disclosed in
the cross-referenced applications have been selected
for use in the present invention because their
block-oriented nature allows decompression of less

5 than an entire data file, and further because the
decompressor is optimized to decompress at highly
improved speeds. This dramatically improves the
transparency of the present invention to a user.
The user may be entirely unaware that decompression

10 is taking place, even when performing operations
with which the user has become intimately familiar
in a wholly non-compressed environment.

Fig. 3 illustrates that a réquested subset of a
data file may be read into RAM in response to a data

15 read request, for example. Blocks which do not
include the requested data are not decompressed, and
are not read into RAM, This reduces CPU time
required for decompression, and reduces bus usage
required for transfer from the storage system to

20 RAM.

IIT. OPERATION OF THE INVENTION IN DIRECT READ
: MODE

Figs. 4A-D illustrate operation of the present

25 invention in a read-only direct read mode, showing
file open, write, read, and close operations,
respectively. ,

A. File Open Request -- Direct Read Mode

Fig. 4A shows operations beginning at node 402

30 when an application issues a data access request to
open a file for read-only permission. Initially, at
conditional block 404, the compression checker 132

in the direct read means 122 determines whether the
‘indicated file is compressed, and if so, whether it

35 is compressed using a format which the decompressor

»

WO 93/17393

10

15

20

25

30

PCT/US93/01891

-11-

can decompress. According to the decompressor of
the cross-referenced applications, this may be
performed simply by consulting the global file
header of the compressed file.

Throughout the remainder of this application, a
file compressed in a format which the decompressor
154 can decompress will be referred to as a "direct
read file". If conditional block 404 determines
that the file is a direct read file, operation
passes to block 406. There, the direct read system
issues a request for the operating system to open
the file. Upon opening of the file, operation
continues at block 408, where the data structure
means 134 creates data structures for the open file.
These data structures will be described below in
Section VII regarding "Access to Individual Blocks".

Then, at block 410, the direct read system returns
to the application program that file information
which the application program would ordinarily
expect to receive directly from the operating
system. Such information may include, for example,
a file number, file size, current .file pointér
value, and the like.

If, at conditional block 404, it is determined.
that the file is not a direct read file, operation
passes to block 412, where the direct read system
simply hands off the file open request to the
operating system. At this point, the direct read
system, in essence, "takes itself out of the loop"
regarding the particular file. Then, at block 410,
the operating system itself returns the proper file
information to the application program, entirely
bypassing the direct read system.

WO 93/17393 PCT/US93/01891

-12-

In either case, the file open operation is
complete at node 414.
B. Data Write Request -- Direct Read Mode

Fig. 4B illustrates operation of the invention in

5 response to a write request in read-only mode.
Operation begins at node 420, when the application
program issues the request. Then, unknown or
undefined operations are perfbrmed by the operating

system at block 422, because of the illogical

10 request for writing to a read-only file. Typically,
the application program will receive an error
message result from the operating system, and no

data will be written.
C. Data Read Request -- Direct Read Mode
15 Fig. 4C illustrates data read operations beginning
at node 430, when the application program issues a
data read request. Operation continues at
conditional bldck 432, where the compression checker
determines whether the file is a direct read file.
20 If it is a direct read file, operation contihueé
at block 434, where the locator means 136 identifies
which blocks of the compressed data file contain the
fequested data. Then, at block 436, the
decompressor 124 decompresses those blocks into RAM.
25 Then, the specifically-requested bytes of those
blocks are copied into the buffer where the
application program expects to receive them.
At conditional block 432, if the file is not a
, difect read file, operation passes to block 438,
30 where the direct read system takes itself out of the
loo@ by handing the request off to the operating
system for normal data read operations.
In either case, data read operatiqns are complete
at node 440.

WO 93/17393 PCT/US93/01891

-13-

D. File Close Request -- Direct Read Mode

Fig. 4D illustrates operation of the direct read
system in response to a file close request issued by
the application program at node 450. Operation

5 continues at conditional block 452, where the
compression checker determines whether the file is
a direct read file.

If it is a direct read file, operation continues

at block 454, where the data structure means 134

10 discards any data structures used for the file and
the caching means 160 de-allocates any cached
portions of the decompressed data. Then, at block
456, the direct read system issues a request for the
operating system to close the open direct read file.

15 At conditional block 452, if the file is not a
direct read file, operation passes directly to block
456. In either case, file close operations are
complete at node 458.

20 Iv. OPERATION OF THE INVENTION IN FILE SHADOWING
MODE

Figs. 5A-D illustrate file open, data write, data

read, and file close operations of the direct read

system when operating in file shadowing mode. 1In

25 the interest of clarity, Figs. 5A-D do not show

conditional blocks determining whether the request

involves a direct read file. It will be understood

that, as in Figs. 4A-D, if other than a direct read

file is involved, the direct read system will hand

30 off the request for normal operations by the
operating system. 7

Direct read operations in file shadowing mode are

performed by the direct read means, just as in

normal read-only direct read mode. Additional

35 features of file shadowing mode are provided by the

WO 93/17393 PCT/US93/01891

-14-

shadow means, and will be described below, with
reference to Figs. 5A-D and Figs. 7A-F.

A. File Open Request -- File Shadowing Mode

Fig. 5A shows operations of the direct read system

5 in file shadowing mode. File shadowing mode is
entered at node 502 when an application requests to
open a file for read/write permission in
circumstances indicating that the appiication will
most likely only read from, and not write to, the

10 file.

At block 504, the direct read system issues a
request for the operating system to open the
compressed file. Then, at block 506, the shadow
means determines the decompressed (expanded) size

15 of the entire file. . As indicated in the
cross-referenced applications, this information may
be obtained by simply consulting the global file
header of the compressed file. -

Then, at block. 508, the shadow means issues a

20 request for the operating system to open a shadow
file of this decompressed size. In one mode, this
request may include a first request to open a file,
and a second request to set the end-of-file marker
to the indicated position. Thus, the shadow file

25 will be sufficiently large, but will contain
garbage. At this point, the shadow file serves only
as a "placeholder" file, ensuring that sufficient
storage is reserved to hold ‘the entire file upon a
subsequent decompression. The shadow file may, in

30 one mode, be stored in a separate location from the
originél, compressed data file.

Fig. 7A shows the compressed data file as residing
in an original location in the storage system, while
the storage system further includes a temporary

WO 93/17393

10

15

20

25

30

-15-

storage location. In one mode, the original and
temporary locations may be distinct "directories"
or "folders" in the storage system. In other modes,
they could be separate hard disks, or the like.

Fig. 7B shows the compressed data file residing in
its original location, and the shadow file residing
in the temporary location.

File open operations are complete at node 510.

B. Data Write Request -- File Shadowing Mode

Fig. 5B illustrates operation of the shadow means

in response to a data write request issued by the
application program at node 520. Operation
continues at conditional block 522, where the shadow
means determines whether the shadow file is still
only a placeholder, or, in other words, whether the
compressed data file has yet been decompressed.

If the file has not been decompressed, operation

.passes to block 524, where the decompressor

decompresses the entire data file into the shadow.
file. Fig. 7B shows the shadow file as a
placeholder, while Fig. 7D shows the shadow file as
including decompressed data. _)
From block 524, operation passes to block 526,
where the shadow means issues a request for the
operating system to move the shadow file from the
temporary location to the same location as the
compressed data file, as seen in Fig. 7E. From
block 526, operation passes to block 528, where the
shadow means issues requests for the operating
system to close and delete the original compressed
data file, as seen in Fig. 7F. '
From block 528, operation passes to block 530,
where the data write requést is handed off to the
éperating system, which performs the data write to

PCT/US93/01891

WO 93/17393 PCT/US93/01891

-16-

the decompressed shadow file. If, at conditional
block 522, it is determined that the file had
already been decompressed, operation passes directly
to block 530. In either case, the write is complete
5 at node 532.
C. Date Read Request -- File Shadowing Mode

Fig. 5C illustrates operation of the direct read
means and the shadow means in responSérto a data
read request from an application program at node

10 540. From there, operation continues at conditional
block 542, where the shadow means determines whether
the file has been decompressed.

If the file has not yet been decompressed, the
file is still eligible for ordinary direct read

15 usage, identical to that of the read-only direct
read mode, as seen in Fig. 7A. Thus, operation
passes to block 544, where the direct read means
locates the appropriate blocks of the compressed
data file. Then, operation continues at block 546,

20 where the decompressor decompresses those blocks
into RAM and copies the requested bytes into the
applicaﬁion program’s buffer.

If, at conditional block 542, it is determined
that the file has alreééy'been decompressed, as seen

25 in Fig. 7F, operation passes to block 548. At block
548, the shadow means issues a request for the
operating system to read the indicated bytes from
the decompressed shadow file. In either case, read
operations are complete at node 550.

30 D. _File Close Request -- File Shadowing Mode

Fig. 5D illustrates operation of the shadow means

and the direct read means in response to a file
close request issued by the application program at
node 560. From there, operation continues at

WO 93/17393

10

15

20

25

30

-17-

conditional block 562, where the direct read means
determines whether the file has been decompressed.

If it has not been decompressed, operation passes
to block 564, where the shadow means issues requests
for the operating system to close and delete the
shadow file. Note that if the file was never
decompressed, this is because it never became
"dirty", or, in other words, it was never written
to. The only thing which block 564 will delete is
a garbage-containing placeholder shadow file.

From block 564, operation passes to block 566,
where the direct read means issues a request for the

operating system to close the open direct read file.

Thus, although the file was opened for read/write
permission, it was only used for reading. In this
situation, the history of the files is described by
the sequence: Fig. 7A, Fig. 7B, Fig. 7C.

If, at conditional block 562, the file was
determined to have been decompressed (i.e. written
to), operation passes. to block 568. At block 568,
the shadow means issues a request for the operating
system to close the open decompresséd shadow file.
In this situation, the history of the files is
described by the sequence: Fig. 7a, Fig. 7B, Fig.
7D, Fig. 7E, Fig. 7F. Note that the file is left in
a decompressed state. The compressor may
subsequently be used to re-compress the file, if
desired. This process could, optionally, be
incorporated into the close operation, by making the
compressor an integral part of the direct read
system.

In either case, file close operations are complete

at node 570.

PCT/US93/01891

WO 93/17393 PCT/US93/01891

-18-

V. OPERATION OF THE INVENTION IN FILE PUTBACK
MODE

Figs. 6A-D illustrate file open, data write, data

read, and file close operations of the direct read
5 system when operating in file putback mode. In the
interest of clarity, Figs. 6A-D do not show
conditional blocks determining whether the request
involves a direct read file. It will be understood
that, as in Figs. 4A-D, if other than a direct read
10 file is involved, the direct read system will hand
off the request for normal operations by the
operating system.
Direct read operations in file putback mode are
performed by the direct read means, just as in
15 normal read-only direct read mode. Additional
features of file putback mode are provided by the
putback means, and will be described below, with
reference to Figs. 6A-D and Figs. 8A-F.
A, File Open Request -- File Putback Mode
20 Fig. 6A shows operations of the direct read system

in file putback mode. File putback mode is entered
at node 602 when an application requests to open a
file for read/write permission in circumstances
indicating that the application will most likely
25 . write to the file. - '
At block 604, the direct read system issues a
request for the -operating system to open the
compressed file. Then, at block 606, the putback
means determines the decompressed (expanded) size of
30 the entire file. "Fig. 8A shows the compressed data
file in its original location.
Then, at block 608, the putback means issues a
request for the operating system to open a putback
file of this decompressed size, in the same

35 location. Then, operation continues at block 610,

WO 93/17393 PCT/US93/01891

-19-

where the decompressor decompresses the entire data
file into the putback file, as seen in Fig. 8B.
After decompression, operation passes to block
612, where the putback means issues requests for the
5 operating system to close the original compressed
data file and move it to the temporary location, as
in Fig. 8C.
File open operations are complete at node 614.
B. Data Write Reqguest -- File Putback Mode
10 Fig. 6B illustrates operations of the putback

means in response to a data write request issued by
the application program at node 620. Operation
passes to block 622, where the putback means issues
a request for the operating system to write the
15 indicated data to the decompressed putback file,
rather than to the compressed data file as
originally indicated by the application’s request.
Write operations are complete at node 624,
C. Date Read Request -- File Putback.Mode
20 Fig. 6C illustrates operations of the putback

means in response to a data read request issued by
the application program at node 630. Operation
ﬁasses to block 632, where the putback means issues
a request for the operating system to read the
25 indicated data from the decompressed putback file,
rather than from the compressed data file. Read
operations are complete at node 634.
D. File Close Request -- File Putback Mode
Fig. 6D illustrates operation of the putback means

30 and direct read means in response to a file close
request. At node 640, the application program
issues the request. Operation continues at

conditional block 642, where the putback means
determines whether the file has been written to.

WO 93/17393

10

15

20

25

30

-20-

If the file has not been written to, operation
passes to block 644, where the putback means issues
a request for the operating system to move the
compressed data file from the temporary location
back to its original location, as seen in Fig. 8D.
Then, at block 648, the putback means issues a
request for the operating system to delete the
decompressed putback file, as seen in Fig. 8E.

If the application did not write to the file, the
history of the files is described by the sequence:
Fig. 8a, Fig. 8B, Fig. 8C, Fig. 8D, Fig. 8E.

If, at conditional block 642, the putback means
determines that the application program wrote to the
file, operation passes to block 650, where the
putback means issues a request for the operating
system to close the open décompressed putback file.
Then, at block 652, the putback means issues a
request for the operating system to delete the
compressed data file from the temporary location, as
seen-in Fig. 8F.

If the application wrote to the file, the history
of the files is described by the sequence: Fig. 8a,
Fig. 8B, Fig. 8C, Fig. 8F.

Thus, what 1s "put back" into the original
location will be either thé'ériginal compressed data
file or the decompressed data file, depending on
whether the application- program wrote any data to
the file. In either case, file close operations are
complete at node 654. '

VI. CACHING
It is highly undesirable that the apparatus and
method would have to fetch and decompress an entire

PCT/US93/01891

WO 93/17393 PCT/US93/01891

-21-

block of data each time an application program
requested a single byte, for example.

Fig. 1 shows that, in order to prevent this, the
direct read system includes caching means 160 for

5 storing one or more decompressed data blocks for
each open file. '

Fig. 2 illustrates this feature. The first time
an application program requests data from a file,
the direct read means must rely on the operating

10 system to fetch a compressed block from the
permanent storage medium, and must further rely on
the decompressor to decompress the block into an
output buffer. Then, the requested data are
provided to the application program by the direct

15 read system.

On a subsequent request for data in the same
block, the direct read system need not invoke the
operating system nor the decompressor, because the
block will already be stored in a decompressed form

20 in one of the particular file'’s cache blocks. Thus,
the direct read system receives the data read
request, and immediately provides the requested data
to the application program from the cache block.
..In one mode, a block is cached only if both: it

25 is the last block involved in a data request, and it
contains data beyond that requested. In other
words, a block is cached if at least one byte in the
block’s latter portion was not yet requested. This
mode is selected based upon the likelihood that once

30 an application program has accessed an entire data
block, the application program is less likely to
make subsequent requests for the same data again.
It is further selected based upon the likelihood
that, once an application program has requested

WO 93/17393 PCT/US93/01891

-22-

given data in a block, there is a high likelihood
that immediately subsequent data in the block will
later be requested by the application program.
In one mode, up to twelve cache blocks are
5 maintained for each file, as needed. It is believed
unlikely that an application program will read
partial blocks from more than twelve locations in a
file, in a manner such that eaching of additional
blocks would be advantageous.
10
VII. ACCESS TQO INDIVIDUAL BLOCKS
A. Use of Block Tables
As shown in Fig. 9, and according to the file

format taught in the cross-referenced applications,
15 a compressed data file includes a block table which
provides access to the individual blocks of the
compressed data file.
Although each compressed block represents the same
quantity of non-compressed data, such as eight
20 kilobytes, each compressed block does not
' necessarily include the same quantity of compressed
data.))
Therefore, the block table entries may contain
offsets from to the beginnings of the respective
25 compressed data blocks. The offsets may be measured
from the beginning of the file as a whole, for
example. Thus, in response to a data read regquest
specifying "read X bytes starting at location Y in
file Z", the data structure means 134 and the
30 locator means 136 may access the block table of file
Z to gain access to the particular blocks
effectively containing bytes Y through Y+X-1 of the
file.)

WO 93/17393

10

15

20

25

30

-23-

PCT/US93/01891

In one mode, the data structure means 134 and the

locator means 136 may sequentially scan the block

table entries until it finds the block containing
byte Y, and the block containing byte Y+X-1. The
data structure means and the locator means must, of

course, take into account the size of the global

file header, if the block table entries indicate

offsets from the absolute beginning of the file,

rather than from the beginning of block 0.

It will be understood that, if

the data access

request specifies less than the entire data file,

the locator means may identify less than all blocks

in the compressed data file. The decompressor will -

then selectively decompress only those identified

blocks, without decompressing other, non-specified

blocks.

In one mode, the block table merely points to the

beginning locations of the respective blocks. 1In
this mode, the data structure means and the locator

means must further consult the block headers to

-determine how much non-compressed

data each block

effectivély holds, in order to determine what blocks

are involved in a given data access request. In

another mode, the bldék table entries may each

further include a copy of the expanded data size

field from the corresponding block

header. 1In this

mode, the data structure means and the locator means

need not consult the block headers in order to build

data structures providing access to the respective

blocks..
As is explained in the

cross-referenced

applications, the block table can be reconstructed
if that portion of the file is damaged. The global

file header is a known, fixed size.

Therefore, the

WO 93/17393

10

15

20

25

30

-24-

block header for block 0 begins at a known, fixed
position in the file. Block header 0 contains a
field indicating the compressed size of block 0.
Therefore, the location of the beginning of block
header 1 can readily be determined, and so forth.
Therefore, the locator means may include means for
reconstructing a damaged block table from the block
headers.

As is further indicated in the cross-referenced
applications, each block header includes checksums
generated over both the block and the block header
itself. This information may be utilized to
reconstruct at least some portidns of a block table
which has been damaged, even if one or more of the
blocks and block headers have been damaged.
Therefore, the locator means may include means for
reconstrﬁcting some or most of a damaged block table
from damaged blocks and block headers.

B. Data Structures o

Those skilled in the art will appreciate that the
following description of the source code and of the
data structures is for teaching purposes only, and
that the source code speaks for itself.

As is seen in the attached Software Source Code
Appendix, each direct read file will have an
associated "FileStruct" which contains the data
structure entries for the particular file. Each
"FileStruct" includes "DRCommonItems", and may
optionally include other items as well.

The FileStruct structures for read-only direct
read files and shadow files are stored in a
doubly-linked 1list, as indicated by the items
"*next" and "*prev" in "DRCommonItems". Putback
files and their associated compressed data files are

PCT/US93/01891

WO 93/17393

10

15

20

25

30

-25-

handled within a simple array (not shown), which is
kept separate from the direct read and shadow files
for purposes of speed. Other modes are, of course,
feasible within the scope of this invention. When
a direct read file is opened, the data structure
means creates for it a "FileStruct" and adds it to
the doubly-linked list.

. The item "algorithm" indicates whether the file is
compressed, 'and if so, by what method. When a
direct read file is opened, the data structure means
sets the T"algorithm" item according to what
compression method was used, as indicated by the
file’'s global file header.

The items "logicalEOF" and "logicalFPos" are used
to keep track of where the application program
thinks it is in a non-compressed data file. These
values are used and updated by the direct read means
and the shadow means.

The item "shadowFileRef" ties a direct read file
to a shadow file. The item "compFileRef" ties a

" shadow file back to its compressed data file. These

values are used and set by the shadow means._)

The item "ddHeader" is filled by the data
structure means according to a global file header in
a given direct read file, and can be understood from
the cross-referenced applications. The shadow means
uses a '"expSize" field from the "ddHeader" to
determine how large a shadow file the operating
system should be requested to create.

The item "**offsets" is a handle to a
"PairOffsetsStruct", and is filled by the data
Structure means according to the offsets table of
the particular direct read file. Spec1f1cally, the
item "offsets[]" is a dynamically-allocated array of

PCT/US93/01891

WO 93/17393
-26-
offsets to the various data blocks. The locator
means uses the "offsets[]" to identify which

10

15

20

25

30

compressed block(s) in a file are involved in a
given data access request.

The item "cacheList" points to a doubly-linked
list of cache blocks for the file, and is maintained
and used by the caching means. Each cache block is
contained in a "CacheBlock" as shown. The cache
blocks for a given file are stored in a
doubly-linked 1list by the items "**next" and
"**prev". The cached block’s bytes are stored in
the dynamically-allocated item "bytes[]".

The usage of the other items will be understood
from the source code itself.

VIII. CONCLUSION

While the invention has been described with
reference to the embodiment of a data compression
system, its wuse in any suitable embodiment is
contemplated. Various aspects of the invention’s
cooperation with an operating system may be
incorporated directly into the direct read system
itself. For example, the direct read system could

“directly move or delete files, rather than using the

more conventional method of using an available
operating system. It will also be understood that
the terms "application program" and ‘"operating
system" may be used somewhat interchangeably.

These and various other changes in the form and
details discussed herein are possible within the
scope of this disclosure, including but not limited
to those discussed above. However, the invention is
to be afforded protection.according,to the scope of
the following Claims.

PCT/US93/01891

WO 93/17393 PCT/US93/01891

-27-

METHOD AND APPARATUS FOR PERFORMING
DIRECT READ OF COMPRESSED DATA FILE

Inventor:
Lloyd Lamont Chambers IV

SOFTWARE SOURCE CODE APPENDIX

Copyright 1991 Salient Software, Inc.
All Rights Reserved Except as Otherwise Disclaimed

WO 93/17393 PCT/US93/01891

-28~
IA ©1951 Saldient,
e All Rights Resezved

e S8alient Software, Inc.

e 124 University Ave., Suite 300
** Palo Alto, CA 94301 i
. (415)~321-5375

/* The structure that describes the number and offsets to blocks.
** Xeep this structure a multiple of { bytes! */
typedef struct
{ ulong numBlocks;
ulong numBlocks2;
ulong blockSize; /* or 0 for default */
uchar offsetsChecksum;
uchar unused{3):;
long offsets(];
} PairOffsetsStruct;

/* The header that precedes compressed data.

** IMPORTANT: Keep the size of this structure a multiple of 4 bytes =/

Typsdef struct

{ ushort compSize:

ushort expSize;

ulong futureUse:

uchar compDataChecksum;

uchar reserved : 2;

uchar repaired : i; /* was this block repaired? */

uczar compressorUsed : 2; /* if Pairs, which compressor was usec +/

uchar compSizePad : 2; /* true compressed size is ‘compSize' - ‘eompSizerad’ */
uchar copied : l; /" set if the data was copied instead of compressed */

uchar expDataChecksum; /* optional */
uchar headerChecksunm;

BiockHeader;

—~

enux

{ DirectReadKind = 3,
ShadowKind

}:

#define DRCommonItems \
union _FileStruct_ *next;\
" union _FileStruct_ *prev;\
short £ileRef;\
short kind;\
Boolean closed;\
Boolean naughty; \
Boolean allowAsync:\
Boolean shadowHosed;\
OSType appType:\
uchar appName([32];\
short appRefNum;

typedef struct _CacheBlock_
{ struct _CacheBlock_ **next;

struct _CacheBlock_ <**prev;

long index; /* < 0 if invalid */

uchar bytes{]}:; /* of appropriate size */
} CacheBlock, **CacheBlockHandle;

© 1991 salient Software, Inc. Page A-1

)

WO 93/17393

-20-

/* Direct Read files */

typedef struct

{ DRCommoniItems
ushort algorithm : 8; /* NoCompression, Pai
ushort resourcePork : 1; /* TRUE if this is
ushort unused : 7;

PCT/US93/01891

rsCompression, PairsSortCompression */

2 resource fork */

ulong noCompressionOffset; /* where to start reading if raw data */

ulong logicalEop;
ulong logicalFPpos;
long blockSize;
short shadowPileRef; /* file ref mm of sha
ulong lastAccessTime;
DDHeader ddHeader;)
PajroffsetsStruct **offgets;
ulong cacheSize;
short nurCacheBlocks;
" CacheBlockHandle cachelist;
} DRFileStruct, *DRFilePtr;

typedef struct

{ DRCommonItems
short dataForkRef;
short resForkRef;

dow file */

Boclean ourDataFork; /e TRUE if it's only us who owns fork */

Boolean ourResFork; /* TRUE if it's only
short compFileRef;
} ShadowFileStruct, *ShadowFilebtr;

typedef struct
{ DRCommonItems
} CommonFileStruct;

/* generic type shared between OpenFileStruct,

. typedef union ~Filestruct_

{ CommonFileStruct common;
DRFileStruct drFile;
ShadowFileStruct shadowFile;

} FileStruct, *FilePtr;

OSErr
DirectReadInit ()
{ OSErr err;
ulong insSize, outSize; .
HaveFlushTrap = TrapAvailable (_HWPriv) ;

err = DLInit(); /* allocate this first because it will never move! +;

if (err 1= nokrr)
return(err);

us who owns fork */

ShadowFileStruct */

insize = PAIRS_HALCOHP_SIZB(PAI*RSMIDCK_SIZE);

outSize « PAIRS_MAX_BLOCK_SIZE + PAIRS_MAX_OVERWRITE;

Ruexwue-(outstzc); /* enough to accomodate a whole block +

TempOutPty = NewPtr(outsSize);
€Ir = TempInInit (inSize);
if (err te noBrr)
return(err);
return(noErr);
} 7* routine DirectReadInit */

OSErr
ReadAtoffset (short fileRef, long *count, ucha
{ OSErr err;

r “buffer, long offset)

eIr = SetFPosAD(fileRef, fsFromStart, offset);

if (err 1= noBrr)
return(err);
€rr = FSReadAD(fileRef, count, buffer):
return(err);
} /¢ routine ReadAtOffset */

© 1991 salient Software, Inc. Page A-2

spillover +/

WO 93/17393 PCT/US93/01891

-30-

/* Things to check: (1) file already open writable or shared (2) volume locked </
OSErr
Di:cccsct:uprotrildof(short fileRef, Boolean resourceFork, DRFilePtr 'ruulcl
{ DRPilePtr info:
OSErr err;
DDHeader header;
ulong count;
BlockOffsetsStruct <**offsets;
ulong offsetsSize;
ulong pos;
ulong datalength:
short alg:;
*result = NIL;
/* read the main file header */
count = gizeof (header);
err = ESReadAD(fileRef, (long *)&count, &header):
if {err i= noBrr)
return(err};
/* Now check to see if this file is appropriate or not */
if ((err = DirectCanRead(&header)) != noErr)
return{err);
if (resourcePork)
{ dataLength = header.resFPorkLength:
alg = header.resAlgorithm;
}
else
{ datalength = header.dataForkLength;
alg = header.dataAlgorithm;
}
if (datalength == 0)
alg = NoCompression;
info = {void *)DLAllocFile();
if (info == NIL)
{ MakeMoreMemory (sizeof (FileStruct});
info = (void *)DLAllocFile();
if (info == NIL)
return(mFulErr); /* File Managers*' mFulErr, not mem 29r‘s menFullEss */
}
- (*info).kind = DirectReadKind;
{(*info).algorithm = alg:
{*info) .resourcefork = resourceFork;
(*info) .ddHeader = header;
(*info) .fileRef = fileRef;
/* set default block sizes */
if (alg == PairsCompression) -
{ (*info).blockSize = PAIRS_DLT_BLOCLSIZE,
(*info) .cacheSize = PAIRS_DLT_BLOCK SIZE + PAIRS_MAX_OVERWRITE:
}
else if (alg == PairsSortCompression)
{ (*info) .blockSize = PAIRS_SORT_BLOCK_SIZE;
{*info) .cacheSize = 'PAIRS_SORT_BLOCK_SIZE + PAIRS_MAX_OVERWRITE;
} . .
(*info).logicalBOF = dataLength;
if ((*info).logicalEOF == 0) /* an empty fork */
{ pos = 0;
offsetsSize = 0;
}
else if (¢*info).algorithm == NoCompression)
{ pos = sizeof (DDHeader); /* read the length ¢/
if (resourcePork) ’
pos += header.compDataForkLength;
offsetsSize = 0; ./* one long for start of data */
}
else /* regular case */
{ pos = gizeof (header) + header.compDataForkLength -
gizeof(long); /* read length */

© 1991 salient Software, Inc. Page A-3

WO 93/17393

}

-31-

if (resourcerork)
Pos += hendgr.cnnpResPorkLength:
count = sizeof (offsetsSize);
err = RcadAtotfur.(('info).filenef, (long *)&count,
(void *)&offsetsSize, pos);
if (err 1= noEBrr)
{ DLPFreeFile((FilePtr)info) H
return(err);
}
}
count = offsetsSize;
offsets = (void *)Newilandle (offsetsSize);
if (offsets == NIL)
{ Makc!lonuuory(offut-sizo):
offsets = (void *)NewHandle (offsetsSize) ;
}
(*info).offsets = offsets;
if ((err = noBrr) (| (offsets == NIL))
{ DLFreeFile({FilePtr)info);
return(memFullErr);
}
if (dataLength 1= 0 &c ((*info) .algorithm == NoCompression))
('1nfo).noConpreluionOfflet = pPOs;
else if (dataLength f= 0) /* normal conpressed case */
{ uchar offsetsChecksum;
PO8 ~= offsetsSize; /* reposition to read the offgets °;
err = RsadAt,Offut(('info).fileRef, (long *)&count, (vois *)*offsets,
if (err 1= nokrr)
{ DisposHandle(offsets):
DLFreeFile((FilePtr) info);
return(err);
}
/* check to see if offsets are valid */
offsetsChecksun = 0;
- . ComputeXORChecksum((void *)&(**offsets).of fsets fog,
T offsetsSize - sizeof(**offsets), &offsetsChecksum);
if (offsetsChecksum i= ("offlets).offsetschecksun)
{ Disposﬂandle(otfutt);
DLPreeFile((FilePtr) info);
return(checksuxError) ;
}
} /% _else */
/* If there is a block size specified, use it instead of Gefault. =/
if ((**offsets).blockSize 1= 0)
{ Boolean badBlockSize = FALSE;
(*info) .blockSize = (**offsets) .blockSize;
if (alg == PairsCompression)
{ if (("offactl).blocksizo In ?AIRS_DLT_BIDCK_SIZE)
badBlockSize = TRUB;
(*info) .cacheSize = (**offsets) .blockSize «+ PAIRS_MAX_OVERWRITE:
’ -
else if (alg == PairsSortCompression)
{ if ((**offsets).blockSize > PAIRS_HAULOCK_SIZB)
badBlocksize = TRUE; '
{*info) .cacheSize = (**offsets) .blockSize + PAIRS_MAX_OVERWRITE:
} - .
if (badBlockSize)
{ DirectClose(info);
return(internalBrror);
}
}

PCT/US93/01891

£38);

TelpInRealloc(PAIRSMSIZB'ZL); /* try to leave encigh for abou: 2 files */

*result = info;
return(noBrr);
/* routine DirectSetupForPileRef */

© 1991 Salient Software, Inc. Page A-4

WO 93/17393 PCT/US93/01891

OSErr -32-
DirectClose(DRFilePtr file) /* caller should take care of cloring file =7
{ if ({*file).kind I« JirectReadKind)
return(-1};
TempInFlush(file);
if ((*file).offsets = NIL}
DisposHandle((*fils) .offsets):
DisposeCacheBlocks (f: ie);
Nullify(file, sizeofr*file));
DLFPreeFile((FilePtr)<ile);
return(noBrr);
} /* routine DirectClcse */

/* Read bytes from the file. Shouldn't be called directly, because it does not
** account for newline mode or other variations in paramater 2iock. */
OSErr _DirectRead(DRTilePtr file, long *count, uchar *desz3uffer);

OSErr DirectRead(DRF:lePrr file, long *count, uchar *destzuffer)
{ OSErr err;
err = _DirectRead(Zile, count, destBuffer);
if (HaveFlushTrap)
FlushInstructionCache(): /* flushes both caches on an ¥258040 =/
return(errj;
} /* nested routine JirectRead */

static OSErr
~DirectRead (DRFilePtyr Zile, long *count, uchar *destBuffer:
{ ulong startlogPos;
long blockiIndex, fi-stBlock, lastBlock;
long destBufferAva::;
long destBufferUsed:
OSErr err; i
Boolean mustReturnE-T = FALSE;
if (*count == 0) /= handle stupid case =/
return(noErr); -
if (('file).logi_calE:.‘-‘ == 0) /* empty file */
{ *count = 0; -
return(eofErr);
}
startLogPos = DirectSetFPos(file); P
/* If the read would go beyond the EOF, read as much as we zan,
** but return an eofsrr. */
if (startLogPos ¢ *csunt > DirectGetEOF(file))
{ *count = Q;
if (startLogPos < DirectGetEOF(file))
“count = DirectGatEOP(file) - startLogPos;
BustReturnBOF = TRUE;
}
if ((*file).algorith= == NoCompression) /* read raw unconmpressed data </
{err = RudA:Offut(('ﬁlc).f:lleRet. count, destBuffer,
startLogPos + (*file) -noCompressionOffset) ;
DirectSetFPos(file, startLogPos + *count);
if (mustReturneor)
return{eofBrr);
return(err):
}
firstBlock = startlogPos / (*file) -blockSize; -
lastBlock = (startlogPos « (*count) -1) / (*file) .blocksize;
destBufferAvail = *count;
destBufferUsed = 0;
(*£ile}.lastAccessTine = AccessTime++;
/* read all the bytes in all the blocks */
for (blockIndex = firstBlock; blockIndex <= lastBlock; ++blockIndex)

4

© 1991 salient Software, Inc. Page A-5

PCT/US93/01891

WO 93/17393

-33-
{ uchar <dest;
long fromOffsec:;
iong advanceCount;
uchar *data;
B:dlean moveData;
CacheBlockHandle cacheBlock;
fromOffset = (startLogPos + destBufferUsed) % (*file).dlockSize;
advanceCount = {*file).blockSize - fromOffset;
if (advanceCount > destBufferAvail)
advanceCount = destBufferAvail;
mcveData = TRUE;
/* fetch the data in this block */
if ((cacheBlock = CachevValid(file, blockIndex)) 1= NIZ:
data = &(**cacheBlock) .bytes (0] ;
else
{ 3ata = TempOutPrr;
/* if a partial block and it's the last one, put it into the cache */
if ((blockIndex == lastBlock) && (advanceCount t= ('file).blocksize))
{ cacheBlock = Direc:ReallocCache(file);
if (cacheBlock != NIL)
{ (**cacheBlock).index = blockIndex;
data = &(**cacheBlock) .bytes (0] ;
}
2Ir = TempInGetBlock(file, blockIndex, lastBlock, daz:=:z;;
iZ (err != noErr)
return(err);
} /* else */
if (moveData) 3
¥yBlockMove (data « fromOffset, dest3uffer + destBufizzijsed,
advanceCount) ;
des:BufferAvail -= advanceCount ;
destBufferUsed <= advanceCount ;
DirectSetFpos(file, startLogPos «+ des:BufferUsed);

} /7 for
if (zustReturnEOF)
return(eofErr);

retura(noErr);
}_ /* rsutine DirectRead */

OSErr
DirectSetPPos (DRFilePtr file, ulong newPos)
{ if (newPos » DirectGetEOF(file))
{ (*file).logicalFPos = DirectGetEOF (file);
return(eofErr);
}
(*file).logicalFPos = newpos;
returmn(nokrr); - -
} /* routine DirectSetFPos */)

ulong

DirectGetrFpPos (DRFilePtr file)
{ return((*file).logicalFPos);
} /* routine DirectGetFPos */

ulong

DirectGatROF (DRPilePtr file)
{ return((*file).logicalEOF);
} /* routine DirectGetEOF */

© 1991 salient Software, Ine. Page A-6

WO 93/17393 PCT/US93/01891

~34<
static DRFilePtr
Findoldestrile¥ithCache(ulong minCacheSize)
{ DRFilePtr oldestFile = NIL;
DRFilePtr cur;
cur = (void *)DLGetList();
while (cur != NIL)
{ DRPilePrr file;
file = (void *)cur:;
if ((*cur).kind == DirectReadKind &&
(*£ile) .numCacheBlocks i= 0 &&
(*file).cacheSize >= minCacheSize)
{ if (oldestFile == NIL}
oldestFile = file;
else if ((*file).lastAccessTime < (*oldestFile).lastAccessTime)
oldestPile = file;
) .
cur = (void *)cur->next:
} 7+ vhile */
return(cldestFile);
} /* routine FindOldestFileWithCache */

/* Memory is needed. Purge cache blocks until enough is available.
** This is a slow, expensive operation and should be called only if necessary. +/
void
DirectPurgeCaches (ulong requiredBlock)
{ while (MaxBlock(} < requiredBlock)
{ DRFilePtr oldestFile;
CacheBlockHandle cacheBlock:
oldestFile = FindOldestFileWithCache(0);
if (oldestFile == NIL)
break:
DisposeCacheBlocks (oldestFile}; /* ahhh...trash thee all for speed *s
}
} 7* routine DirectPurgeCaches */

/* find oldest (last) cache block in the list =/
static CacheBlockHandle
GatOldestCacheBlock (DRFilePtr file, Bcolean remove)
{ CacheBlockHandle cur, last;
cur = last = (*file).cacheList;
while (cur t= NIL)
{ last = cur;
cur = (**cur).next;
}
if (last 1= NIL && remove)
{ CacheBlockHandle prev:
Prev = (**last).prev;
if (prev 1= NIL)
(**prev) :next = NIL;
elge
(*£ile) .cacheList = NIL;
(*£ile) .numCacheBlocks--;
}
return(last);
} /* routine GetOldestCacheBlock */

© 1991 salient Software, Inc. Page A-7

WO 93/17393 PCT/US93/01891

-35- o

/* Allocate another cache block for this file if possible.
** Return its index, or -1 if not possible.
*/
static CacheBlockHandle
DirectReallocCache (DRFilePtr file)
{ CacheBlockHandle newBlock; .
if ((*file).numCacheBlocks == MAX_CACHE_BLOCKS))
/* 1f we already have the max num of cache blocks, use the oldest one ./
newBlock = GetOldestCacheBlock (file, TRUE);
else) -
{ ulong allocSize = (*file).cacheSize + sizeof (CacheBlock) ;
NewBlock = NewHandle(allocSize):
if (newBlock == NIL)
{ TempInRealloc(allocSize);
newBlock = NewHandle(allocSize):;
}
if (rewBlock == NIL} /* take cache away from other file */
{ DirectPurgeCaches(allocSize) H
newBlock = NewHandle({allocSize);
}
} /% else */
if (newBlock =« NIL)
return(NIL);
/* insert new cache block at front of list =/
if ((*file).cacheList != NIL)
(**(~file).cacheList).prev = newBlock;
f**newElock) .next = (*file).cacheList;
i*"newslock) .prev = NIL;
t*file).cacheList = newBlock; .
ivfilei.numCacheBlocks«+;
Teturn(newBlock) ;
} /* routine DirectReallocCache */

static CacheBlockHandle

CacheValid(DRFilePtr file, long blockIndex)
Tegister CacheBlockHandle cur;
eur = (*file).cacheList;
while {cur != NIL)

1 if (!"cur).inde;: == blockIndex) /* move this one to freat of list */

{ if (cur 1= (*file) .cacheList) /* remove cur from list +/

{ ("*{**cur).prev).next = (**cur) .next;

if ((**cur).next 1= NIL)

(**(**cur) .next) .prev = (**cur) .pFev;
{**cur).next = (*file).cacheList; /+* insert cur at front... =/
{**(*£ile) .cacheList).prev = cur;
(**cur).prev = NIL;
(*file).cacheList = cur; : -

}
return(cur):
}
cur = (**cur).next;
.) /* while %/
return(NIL);
} /* routine Cachevalid +/

© 1991 salient Software, Inc. Page A-8

WO 93/17393 PCT/US93/01891

-36-
static void
DisposeCacheBlocks (DRFilePtr file)
{ register CacheBlockHandle cur;
cur = (*file).cacheList;
while {cur 1= NIL)
{ CacheBlockHandle temp;
temp = (**cur).next;
DisposHandle (cur);
cur = temp;
}
(*file).cacheList = NIL;
(*file) .numCacheBlocks = 0;
} /* routine DisposeCacheBlocks */

void
MakeKoreMemory (ulong requiredSpace)
{ /* next, get rid of excessive size input buffer */
if (MaxBlock() < requiredSpace)
{ TempInPorceToMin();
/* finally, get rid of caches until we have encugh space */
if (MaxBlock() < requiredSpace)
DirectPurgeCaches (requiredSpace);
}
} /" routine MakeMoreMemory */

typedef struct
{ Boolean busy;
short unused; /* to keep 4-byte aligned +/
ulong size;
ulong minSize;
long startBlockIndex; -
long stopBlockIndex;
DRFilePtr file:
uchar **bytes;
} TempInStruct:
static TempInStruct Templn;
static Boolean Have68020;

void ~TempInFlush(DRFilePtr file);

OSErr
TeapInInit (ulong minSize)
{ long result;
Have68020 = PALSE;
if (Guult:(gntal:meeuoﬂypo, &result) == noErr)
Have68020 = (result s« gestalt68020) ;
TenpIn.size = minSize;
TempIn.minSize = minsize;
ReserveMem(minSize);
TempIn.bytes = NewHandle (minSize);
if (TempIn.bytes != NIi)
HLock(TempIn.bytes) ;
Teturn((TempIn.bytes {= NIL) ? noBrr:memFullErr);
} /* nested routine TeapInInit */

© 1991 salient Software, Inc. Page A-9

WO 93/17393 - PCT/US93/01891

-37=-
/* Increase size of TempIn, leave at ‘least ‘leavePreeAmount’ bytes. */
OSErr
TempInRealloc{long leavePreeAmount)
{ long maxBlock;
long maxSize;
long newSize;
if (TempIn.busy)
return(fBsyzrr}; .
/* don't bother if it‘s already as small as possible */
if (TempIn.minSize == TempIn.size)
return(noErr);
TempIn.busy = TRUE; '
~TempInFlush(TemplIn.file);
/* get rid of excess data */
HUnlock(TempIn.bytes);
SetHandleSize(TempIn.bytes, TempIn.minSize);
TempIn.size = GetHandleSize(TempIn.bytes):
newSize = TempIn.minSize;
maxBlock = MaxBlock();
if (maxBlock > leaveFreeAmount)
newSize = maxBlock - leaveFreeAmount;
if (newsize > 128L * 1024L)
newSize = 128L * 1024L;
if (newSize > TempIn.minSize)
{ SetHandleSize (TempIn.bytes, newSize);
TempIn.size = GetHandleSize(Tempin.bytes):
}
HLock (TempIn.tvtes);
TempIn.busy = FALSE;
return(noBrr) ;
} /" nested routine TempInRealloc */

OSErr
TenpInForceToXin()

{ return(TempInRealloc(1024L * 1024L)) ;
}

/* flush without checking busy flag */
static void
~TempInFlush (DRFilePty file)
{ if (file == NIL i!| TempIn.file == file)
{ TempIn.startBiockIndex = -1;
Templn.stopBlockIndex = -1;
TempIn.file = NIL;
}
} /*'routine _TempInFlush */

OSErr
TempInrlush(DRFilePtr file)
(~4f (TempIn.file == file)
{ if (TempIn.busy)
return{fBsyErr);
TespIn.busy = TRUE;
~TempInFlush(file);
Templn.busy = FALSE;
}
return(noBrr);
} 7/* routine TempInFlush */

© 1991 salient Software, Inc. Page A-10

WO 93/17393 - PCT/US93/01891

-38-
OSErr
‘TempInGetBlock(DRFilePtr file, long desiredIndex, long- lastDesiredIndex. uchar *block)
{ long readStartpos;
long count;
OSBrr err;
long index:
uchar <*inBuf;
if (TempIn.busy)
return{fBsyErr) ;
Templn.busy = TRUE;
readStartPos = (**(*file).offsets] .offsets(desiredIndex]:
if (TempIn.file == file &t
"7 désiredIndex >= TempIn.startBlockIndex &&
desiredIndex <= TempIn.stopBlockIndex) /* block already in our cache */
{ ulong offset; .
offset = readStartPos - (**(*file) .of.fncsl.ot’tse:s[‘ruptn.startalockmdexl:
inBuf = &(*TempIn.bytes){offset);
}
else /* must read fresh data */
{ uchar checksun;
BlockHeader <*blockHeader:
~TempInFlush(TempIn.file); /* reset now in case of failure */
/* figure out how many blocks we can read into buffer and still fiz =/
index = desiredIndex:
count = 0;
while ({index <= lastDesiredIndex)
{ long newCount;
newCount = ("('file).oftsets).otfsen[iadexdl - readSzactPos;
if (newCount > TempIn.size)}
break;
count = newCount;
++index;
}
-=index;
err = ReadAtOffsec((*file).fileRef, &counc, “TempIn.byzes, readSta=:zPos):
"if (err f= notrri
{ TempIn.busy = FALSE;
return(err):
}
TempIn.startBlockIndex = desiredIndex;
TespIn.stopBlockIndex = index;
TempIn.file = file;
inBuf = &(*TempIn.bytes)(0};
checksum = 0; /* check to see if header is valid =/
blockiisader = (void *JinBuf;
ComputeXORChecksusn((void *)blockieader,
sizeof (BlockHeader) - sizcof(blockﬁnder-*ndexcheck:u-), &checksunm) ;
if (checksum = blockEsader->headerChecksunm)
{ TempIn.busy = FALSE;
return{checksun®rror);.
' -
} /% else v/
if ((*file).algorithm == PairsCompression [I /* decompress the block */
(*£ile) .algoritha == PairsSortCompression)
{ 1f (Have68020))
err = PairsDecompressBlock68020((PairaBlockieader *)inBuf,
inBuf + sizeof(FairsBlockieader), block) ;
else .
err = PairsDecompressBlock68000((PairsBlockHeader *)inBuf,
inBuf + sizeof(PairsBlockHeader), block) ;
}
TespIn.busy = FALSE;
if (err 1= noBrr)
return(err):
return(noBrr);
] /* routine TempInGetBlock */

© 1991 Salient Software, Inc. Page A-11

WO 93/17393 PCT/US93/01891

-390~
CLAIMS
I Claim:
5 1. A method of providing compressed data from a

compressed data file in response to a data request,
the data request identifying givéh non-compressed
data in a non-compressed data file, the method
comprising the steps of:

10 identifying, within in the compressed data file,
given compressed data which correspond to the given
non-compressed data identified by the data request,
the given compressed data comprising less than all
data in the compressed data file;

15 , decompressing the given compressed data to
reconstitute the given non-compressed data; and

providing the reconstituted non-compressed data in

response to the data request.

2. The method of Claim 1, further comprising the
_ Steps of:
caching the reconstituted non-compressed data; and
in response to a second, subsequent data regquest,
5 skipping the decompressing step.

3. The method of Claim 1, wherein the method is
performed by a computer system having random access
memory (RAM) and having permanent storage storing
the compressed data file, and wherein the

5 décompressing step comprises the step of:
decompressing the given compressed data into the
RAM.

WO 93/17393 PCT/US93/01891

-40-

4. The method of Claim 1, wherein the compressed
data file includes a plurality of
independently-compressed blocks of compressed data,
the blocks including one or more first blocks which

5 include compressed data corresponding to the
non-compressed data specified by the request and
which further include one or more second blocks, and
wherein:

the step of identifying includes identifying the

10 one or more first blocks from among the plurality of
blocks; '

the step of decompressing includes decompressing
the one or more first blocks; and

the step of providing includes providing one or

15 more bytes from the decompressed first blocks. '

- 5. The method of Claim 4, wherein the compressed
data file further includes a table of entries
indicating locations at which the blocks begih in
5 the compressed data file, and wherein the step of
7 identifying includes the step of:))

accessing the table of entries to identify an
initial one of the first blocks and a final one of

the first blocks.

6. The method of Claim 1, further comprising the
steps of:
o in response to a request to open the compressed
data file, creating a shadow file;
5 in response to a request to read from the
compressed data file,
if the shadow file has not been written to,

reading from the compressed data file, and

WO 93/17393 PCT/US93/01891
-41~

if the shadow file has been written to,
10 reading from the shadow file;
in response to a request to write to the
compressed data file,]
if the shadow file has not been written to,
- decompressing the compressed data file into the
15 shadow file and writing to the shadow file and
deleting the compressed data file, and
if the shadow file has been written to,
writing to the shadow file; and
in response to a request to close the compressed
20 data file,

' if the shadow file has not been written to,
deleting the shadow file and closing the compressed
data file, and

if the shadow file has been written to,
25 closing the shadow file. -

7. The method of Claim 1, further comprising the
steps of:
in response to a request to open the compressed
aata file, creating a putback file and decompressing
5 the compressed data file into the putback file;
in response to a request to read from the
compressed data file, reading from the putback file;
in response to a request to write to the
compressed data file, writing to the putback file
10 and,’ “ '
if the putback file has not been written to,
deiéting the compressed data file; and
in response to a request to close the compressed
data file,
15 if the putback file has not been written to,
deleting the putback file, and

WO 93/17393 PCT/US93/01891

-42-

if the putback file has been written to,
closing the putback file.

8. A method of reading data from a compressed.
data file in response to a data request, the
compressed data file including blocks of compressed
data each corresponding to respective non-compressed

5 data in a non-compressed data file, the data request
identifying given non-compressed data in the
non-compressed data file, the blocks including one
or more first blocks containing compressed data
corresponding to the given data and further

10 including one or more second blocks, the method
comprising the steps of:

identifying, within the compressed data file, the
one or more first blocks;

responsive to the identifying step, selectively

15 decompressing the.one or more first blocks; and
responsive to the selectively decompressing step,
providing decompressed data from the decompressed

first blocks as the given non-compressed data.

9. The method of Claim 8, further comprising the
steps of:

caching the reconstituted.non-combressed data; and

in response to a second, subsequent data request,

5 skipping the decompressing step.

10. The method of Claim 8, wherein the method is
perforﬁed by a computer system having random access
memory (RAM) and having permanent storage storing
the compressed data file, and wherein _ the

5 decompressing step comprises the stép of:

WO 93/17393 PCT/US93/01891
-43-

decompressing the given compressed data into the
RAM.

11. The method of Claim 8, wherein the compressed
data file further includes a table of entries
indicating locations at which the blocks -begin in
the compressed data file, and wherein the step of

S identifying 1ncludes the step of:

accessing the table of entries to identify an
initial one of the first blocks and a final one of
the first blocks.

12. The method of Claim 11, wherein the data
request specifies a starting location and an ending
location of requested data, and wherein one or more
entries in the table each identifies an offset from

5 the beginning of the compressed data file, at which
offset a corresponding block begins, and wherein the
identifying step comprlses the steps of:

determining a first entry identifying an offset

, corresp&nding to a location less than or equal to
10 the starting location of the requested data;
determining a secondréntrY'identifyind an offset
corresponding to a location greater than or equal to
the ending location; and
identifying all blocks corresponding to entries
15 from the first entry to the Second entry.

13. The method of Claim 8, further comprising the
steps of:

creating a shadow file;

decompressing the compressed file into the shadow

5 file and discarding the compressed data file in

WO 93/17393 PCT/US93/01891

-44-

response to a request for writing to the
non-compressed data file; and

closing the shadow file in response to a request
for closing the non-compressed data file.

14. The method of Claim 8, further comprising the
'steps of: '
creating a shadow file; and
discarding the shadow file and closing the
5 compressed data file in response to a request for
closing the non-compressed data file.

15. The method of Claim 8, further comprising the
steps of:

creating a putback file;

decompressing the compressed data file into the

5 pﬁthaék file; and —

discarding the putback file and closing _the
compressed data file in response to a request for
closing the non-compressed data file.

16. The method of Claim 8, further comprising the
steps of: '
creating a putback file;
decompressing the compressed data file into the
5 putback file; and
writing to the putback file and discarding the
compressed data file in response to a request for

writing to the non-compressed data file.

17. A method of reading data from a compressed
data file in response to a data request, the
compressed data file residing on a permanent storage

medium and including independently-compressed blocks

WO 93/17393 PCT/US93/01891

-45-

5 of compressed data, the data request specifying a
starting location and an ending Vlocétion of
non-compressed data to be read from the permanent
storage medium into random access memory (RAM), the
method comprising the steps of:

10 locating a first block of the
independently-compressed blocks, which first block
contains compressed data corresponding to
non-compressed data at the starting location;

decompressing the first block from the permanent

15 storage medium into RAM;

if the first block does not contain compressed

data corresponding to non-compressed data at the
ending location,

locating one or more additional blocks of the

20 independently-compressed blocks up to. a second
block, the additional blocks containing compressed
-data corresponding to non-compressed data at
locations up to .the. ending location, the second
block including non-compressed data at the ending -

25 location, and o

decompressing the additional blocks from the
permanent storage medium into RAM; and
providing, as the non-compressed data,
decompressed data from a first location in RAM to a
30 second location in‘RAM:_

18. The method of Claim 17, further comprising
the steps of:

caching the decompressed blocks in RAM; and

in response to a second, subsequent data request,

5 skipping the decompressing steps.

WO 93/17393 PCT/US93/01891

-46-

19. The method of Claim 17, wherein the
compressed data file further includes a table of
entries indicating locations at which the blocks
begin in the compressed data file, and wherein the

5 - locating steps includes the step of:

accessing the table of entries to identify the

first block and the additional blocks.

20. The method of Claim 19, wherein the data
request specifies a starting location and an ending
location of requested data, and wherein one or more
entries in the table each identifies an offset from

5 the beginning of the compressed data file, at which
offset a corresponding block begins, and wherein the
locating steps comprise the steps of:

determining a first entry identifying an offset
corresponding to a location less than or equal to

10 the starting location of the requested data;
determining a second entry identifying an offset
correspondiﬁé to a location greater than or equal to
the ending location; and
i identifying all blocks corresponding to entries

15 _ from the first eﬁtry to the second entry.

21. The method of Claim 17, further comprising
the step of:

performing file shadowing.

22. The method of Claim 17, further comprising
the step of:
performing file putback.

23. An apparatus for performing direct read
operations on a compressed data file, the compressed

WO 93/17393 : PCT/US93/01891

-47~

data file, the apparatus receiving a data access
request for the compressed data file, the apparatus
5 comprising:
compression checker means for determining whether
the compressed data file includes a file format
having independently-compressed data blocks;
data structure means, responsive to the
10 compression checker means determining that the file
includes the file format, for constructing a data
structure providing individual access to the data
blocks;
locator means, responsive to the data access
15 request, for accessing the data structure to
identify one or more of the blocks as including data
lbcations involved in the data access request; and
decompressor means for decompressing the
identified one or more blocks, and for providing
20 access to data in the decompressed blocks in

response to the data access request.

24, The apparatus of Claim 23, further
comprising:
file shadowing means for shadowing the compressed .

data file during read access requests.

25, The apparatus of Claim 23, further
comprising: 7 -
file putback means for restoring the compressed

data file after read access requests.

26. A data decompressor providing an application
program transparent access to given data in a
compressed data file such that the application

program may issue data access requests as though the

WO 93/17393 PCT/US93/01891
-48-~

5 given data were in a non-compressed daté file, the
data compressor comprising:
means for identifying a proper subset of the
compressed data file containing given compressed
data corresponding to the given data; and
10 means for decompressing the proper subset of the

compressed data.

27. The data decompressor of Claim 26, wherein
the compressed data file includes a plurality of
independently-compressed blocks, the blocks
including one or more first blocks containing the

5 given compressed data and further including one or
more second blocks, and wherein the means for
identifying further comprises:

means for determining which of the plurality of
blocks are the first blocks. -

28. The data decompressor of Claim 27, wherein:
the means for decompressing decompresses the first
blocks to constitute a portion of decompressed data,
wherein the portion includes the given data and
5 other data; and
the means for decompféésing includes means for

providing only the given data from the portion.

29. The data decompressor of Claim 28, further
comprising: -
means for caching the portion in random access
memory; and
5 means, responsive to a subsequent request for
second data in the portion, for providing the second

data directly from the cached portion.

WO 93/1 7393 PCT/US93/01891

-49-

30. A recording medium having recorded thereon a
computer program providing an application program
transparent access to given data in a compressed
data file such that the application program may

5 issue data access requests as though the given data
were in a non-compressed data file, the recording
medium comprising: o

instructions for identifying a proper subset of

the compressed data file containing given compressed
10 data corresponding to the given data; and
instructions for decompressing the proper subset

of the compressed data.

31. The recording medium of Claim 30, wherein the
compressed data file includes a plurality of
independently-compressed blocks, the blocks
including one or more first blocks containing the

5 given compressed data and further including one or
more second blocks, and wherein the instructions for
identifying éomprise:

instructions for determining which of the

plurality of blocks are the first blocks.

32. The recording medium of Claim 31, wherein the
instructions for decompressing comprise: 7
instructions for decompressing the first blbcks to
constitute a portion of decompressed data, the
5 portion including the given data and other data; and
instructions for providing only the given data
from the portion.

33. The recording medium of Claim 32, further

comprising:

WO 93/17393 PCT/US93/01891

-50-

instructions for caching the portion in random
access memory; and

5 instructions, responsive to a subsequent request

for second data in the portion, for providing the

second data directly from the cached portion.

WO 93/17393 PCT/US93/01891

1/12

104™ MEMORY SYSTEM
[~ 102 T T pEcomPressed
compressen | | 110~ PORTION OF DATA ===---
DATA FILE

120 ~—~ DIRECT READ SYSTEM
N~ A~ | 22—~ DIRECT READ MEANS

130 0/S PATCHER

132] COMPRESSION CHECKER

134 T
v BUS > DATA STRUCTURE MEANS

136 LOCATOR MEANS
108
]
cPu ¥ 124 —— DECOMPRESSOR
L— 106 126 —1— SHADOW MEANS
128 —4— PUTBACK MEANS
160 —f— CACHING MEANS
/ 154 — COMPRESSOR
100 152 =1~ APPLICATION PROGRAM
150 =4~ OPERATING SYSTEM

Fig. 1

SUBSTITUTE SHEET

PCT/US93/01891

WO 93/17393

2/12

ve bl

\\

| e

N

TATATATATRTATATAY

.

g¢ bl

Z b4

W3LSAS
ONILVHIdO

h 4

1s3nd3y

HOSS3HdWOO3a Q3HOLVd

(sx0078)

34 Viva a3SS3HdWOD

FSNOdS3aY
asHolvd

\ 4

© W3LSAS
a<wm._.0mm_o

aSNOdS3Y T tsanoau

$5300v $S300V

y

WVHOOHd
NOILYOIlddV

SUBSTITUTE SHEET

WO 93/17393 PCT/US93/01891

3/12

APPLICATION ISSUES
OPEN-FILE-READ-ONLY
REQUEST

402

404

DIRECT
READ
FILE

?

y

ASK O/S TO OPEN THE FILE 406

v

HAND OFF THE REQUEST To
412N THE 0/5 FoR NORMAL OPEN

408

y

CREATE INTERNAL DATA | _
STRUCTURES FOR THE FILE

[410

4 y
RETURN FILE INFO TO
APPLICATION PROGRAM

OPEN IS COMPLETE 414

(READ-ONLY OPEN)

Fig. 4A

APPLICATION ISSUES

WRITE REQUEST 420

Y

UNDEFINED RESULT, k 422
SUCH AS 0/S ERROR

(READ-ONLY WRITE)

Fig. 4B

SUBSTITUTE SHEET

PCT/US93/01891

WO 93/17393

4/12

g5y | 374 3S0O10 OL S/0 Nsv

Y

>

- Ov bi4

{@v3d XINO-av3d)

ovy

3L3T7dWOD SI avad

9EY Wvd OLNI S$X0018
3SOHL SS3HdW0OO3a

r

Viva g3ss3ddwoo3a
40 SNOIL"HOd

¥S" — agauovo alvooTivaa

Qv3d TYWHON HOd S/0 JHL | ggp
O1 1S3ND3Y IHL 440 ONVH

1
ERIE]
avad
1034ia

S3A

183Nn03y 30710
$3ANSSI NOILYODIddV

osy

.

viva aalsand3ad
vey 1 ONINIVINOD SX0078 aNId

e
34
avad
19234ia

S3A

183034 avad
SANSSI NOILYDITddY

SUBSTITUTE SHEET

PCT/US93/01891

WO 93/17393
5/12
520 APPLICATION ISSUES
WRITE REQUEST
FILE
522 DECOM-
PRESSED
2
APPLICATION ISSUES 502
OPEN-FILE-READ-OR-WRITE 0
REQUEST
524 DECOMPRESS ENTIRE FILE
s INTO SHADOW FILE

ASK 0/S TO OPEN L <04
COMPRESSED FILE

Y

526 TN ASK 0/S TO MOVE SHADOW
y FILE TO REGULAR LOCATION

GET EXPANDED SIZE - 506 .

y

528 ™Y ASK O/S TO CLOSE AND

s DELETE COMPRESSED FILE
ASK 0/S TO ALLOCATE AND
OPEN SHADOW FILE OF |- ... a
THE EXPANDED SIZE -
530 NORMAL 0/S WRITE TO
IN TEMPORARY LOCATION DECOMPRESSED SHADOW FILE

OPEN IS COMPLETE 510 532 WRITE IS COMPLETE

—

Fig. 5A Fig. 5B

(SHADOW WRITE)

SUBSTITUTE SHEET

PCT/US93/01891

WO 93/17393

6/12

3137dWOD SI 3SOT1D

995

>
g

04§

4 A3SSIHAWOD IHL
3S07T0 01 S/0 Msv

r

34 MOAVHS Q3ss3IH4AW0D3a [89S

3HL 3SOT10 OL S/0 Msv

vas

06 by

{avIe MOavHs)

3137dWOD SI avay 0SS

>

avs

Ld

WVH OLNI s300714d
3SOHL SS3Hd0O3a

A

I4 MOGVHS a3SSIH4AWOD3a
WOHd av3y TVWHON HOd S/O 8¥S

Ol 1S3ND3Y 3

HL 440 ONVH

374 MOGVHS 3HL 3137130
ONV 35070 OL S/0 SV

¢
a3ss3Hd
-Woo3a

ERIE! 295

4S3N03d 35010
S3NSSi NOILYOIlddv

08s

A

oS

Viva a31sano3d
ONINIVINOD S$3007d aNid

[
a3ss3dd
-Noo3a

4 Zvs

'153no3y avay

S3NSSI NOILVOITddV ovs

SUBSTITUTE SHEET

WO 93/17393 PCT/US93/01891

7/12

APPLICATION ISSUES
OPEN-FILE-READ-OR-WRITE
REQUEST

620 APPLICATION ISSUES
602 - WRITE REQUEST

i
4 ASK O/S TO WRITE THE
ASK O/S TO OPEN 604 622™N REQUESTED DATA TO THE
COMPRESSED FILE DECOMPRESSED FILE
v
GET EXPANDED SIZE 606 :
624 WRITE IS COMPLETE

-

ASK O/S TO ALLOCATE AND : BACK_WRI

OPEN DECOMPRESSION

¥ |
FILE OF THE EXPANDED |~ 608 F l 6 B
SIZE IN SAME LOCATION x

y

DECOMPRESS ENTIRE

COMPRESSED FILE INTO | 610
DECOMPRESSED FILE APPLICATION ISSUES
RESS 630 READ REQUEST

y

ASK O/S TO CLOSE AND™ | -~ .
MOVE COMPRESSED FILE 612 ASK O/S TO READ THE
TO TEMPORARY LOCATION 632 ™ REQUESTED DATA FROM THE |

DECOMPRESSED FILE

y

h 4

514 634 READ IS COMPLETE

{PUTBACK OPEN) (PUTBACK READ)

Ig. 6A Fig. 6

OPEN IS COMPLETE

SUBSTITUTE SHEET

WO 93/17393

PCT/US93/01891

8/12

640

APPLICATION ISSUES
CLOSE REQUEST

h 4

y

ASK 0/S TO MOVE ASK 0/S TO CLOSE
COMPRESSED FILE [~ g4 DECOMPRESSED FILE
TO ORIGINAL LOCATION 650
h 4
A 4
ASK O/S TO DELETE |~ 648 A ONPAE LD rETE
DECOMPRESSED FILE 652 |
v
CLOSE IS COMPLETE 654
(PUTBACK CLOSE) -

Fig. 6D

SUBSTITUTE SHEET

WO 93/17393

£
COMPRESSED
a DATA FILE

v

N
Fig. 7A
(Sronsce svrey)

COMPRESSED
DATA FILE

N~

SHADOW FILE
(PLACEHOLDER]

J

(

T

Q
o

|

COMPRESSED
DATA FILE

N~
Fig. 7C

PCT/US93/01891

9/12
SHADOWING
TORAGE SYSTE
ORIGINAL
LOCATION COMPRESSED
DATA FILE
* SHADOW FILE
ngggggg’f (DECOMPRESSED)

w
Fig. 7D

COMPRESSED
DATA FILE

SHADOW FILE
(DECOMPRESSED)

~
Fig. 7E

SHADOW FILE
(DECOMPRESSED)

N~

—
Fig. 7F

SUBSTITUTE SHEET

WO 93/17393

COMPRESSED
DATA FILE

N

~
Fig. 8A

COMPRESSED
DATA FILE

PUTBACK FILE
(DECOMPRESSED)

—

Fig. 8B

TORAGE SYSTE

PUTBACK FILE
(DECOMPRESSED)

COMPRESSED
DATA FILE

N~

Fig. 8C

SUBSTITUTE SHEET

10/12

PUTBACK

ORIGINAL
LOCATION

TEMPORARY
LOCATION

|

PCT/US93/01891

TORAGE SYSTE

COMPRESSED
DATA FILE

PUTBACK FILE
(DECOMPRESSED)

~
Fig. 8D

COMPRESSED
DATA FILE

N~

~N
Fig. S8E

PUTBACK FILE .
(DECOMPRESSED)

N—

S~
Fig. 8F

(81

WO 93/17393

11/12

Y

GLOBAL FILE HEADER

A4

BLOCK 0 (REPRESENTS 8K)

A 4

BLOCK 1 (REPRESENTS 8K)

Y

BLOCK 2 (REPRESENTS 8K)

A4

BLOCK 3 (REPRESENTS 8K)

A4

I

BLOCK 4 (REPRESENTS 1K)

BT[0]

BT[1]

BT[2]

BT[3]

BT[4]

BT[5]

REDUNDANT GLOBAL
FILE HEADER

Fig. 9

SUBSTITUTE SHEET

PCT/US93/01891

WO 93/17393 PCT/US93/01891

12/12

DIRECT READ MEANS

L 0/S PATCHER DECOMPRESSOR

COMPRESSION CHECKER SHADOW MEANS

DATA STRUCTURE MEANS PUTBACK MEANS

‘LOCATOR MEANS CACHING MEANS

Fig. 10

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT International application No.
PCT/US93/01891

A. CLASSIFICATION OF SUBJECT MATTER
IPC(5) :GOG6F 15/40, 15/407, 5/00
US CL :345/600; 341/55;
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/2;395/250;

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Dialog, 12 Data Bases, Decompress### Compress###; Record# or Block# or Subset# or Segment#; Data "Aivding” Some or
all Terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y | US,A 4,956,808 (Aakre et al.) 11 September 1990 Abstract, Figs 1, | 1-3,8-10,
2b; Col. 2, Col. 7-10. 17-18
Y US,A, 4,897,717 (Hamilton et al.) 30 January 1990 Abstract; Col. | 1-3,8-10,
4-6, 58-59. | 17-18
Y US,A, 4,408,301 (Tida) 04 October 1983 Col; 11-12. 1-3,8-10,
"17-18
Y US,A, 4,467,421 (White) 21 August 1984 Abstract, col. 1; Fig. 3, 1-3,8-10,
: 10; Claims §, 17-18
24-25.

E Further documents are listed in the continuation of Box C. D See patent family annex. -

. Special categories of cited documents: T later document published after the international filing date or priority
e . Cy dateand not in conflict with the application but cited to understand the
A dwm:;f'mm “:r ;::vt:ln:;m of the art which is not considered principle or theory underlying the invention ’
. X* document of particular relevance; the claimed invention cannot be
E earlier document published on or after the intemational filing date considered novel or cannot be considered to involve an inventive step
bl document which may throw doubts on priority claim(s) or which is . when the document is taken alone
cited to establish the publication date of another citation or other X 5 X .
ial reason H . °Y* document of particular relevance; the claimed invention cannot be
special (&2 specifid) considered to involve an inventive step when the document s
‘o* document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art .
P document published prior 1o the intemational filing date but later than =g~ document member of the same patent family
the priority date claimed -
Date of the actual completion of the international search Date of mailing of the international search report

09 APRIL 1993 0 7 JUN 1993

Name and mailing address of the ISA/US Authorized officer m
Commissioner of Patents and Trademarks M ‘%:M-

Box PCT
W:‘lhington, D.C. 20231 PAUL R. LINTZ
Facsimile No. NOT APPLICABLE Telephone No. (703) 305-3832

Form PCT/ISA/210 (second sheet)(July 1992)«

Col. 1,2,21,22,28.

PCT/US93/01891
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
T US,A, 5,179,651 (Taaffee et al.) 12 January 1993 Abstract. 1-3,8-10,
’ 17-18

T US,A, 5,155,484 (Chambers IV) 13 October 1992 Abstract, Fig. | 1-5,8-12,

1,6; Cols, 30, 31. ' 17-20
A US,A, 4,782,325 (Jeppsson et al.) 01 November 1988 Abstract, 1,8,17

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

g}

v

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

