

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
17 January 2008 (17.01.2008)

PCT

(10) International Publication Number
WO 2008/008407 A1(51) International Patent Classification:
C30B 23/00 (2006.01) C30B 25/00 (2006.01)

THOMSON, Darren [US/US]; 10107 Carillon Court, Ellicot City, MD 21042 (US). KHALER, David [US/US]; 5527 Link Avenue, Arbutus, MD 21227 (US). BERGHMANS, Andre [US/US]; 9737 Bon Heaven Lane, Owings Mills, MD 21117 (US). KNUTESON, David [US/US]; 1160 Winterson Road, Linthicum, MD 21090 (US).

(21) International Application Number:
PCT/US2007/015843

(74) Agents: YE, Michael, X. et al.; Andrews Kurth LLP, 1350 I Street, N.W., Suite 1100, Washington, DC 20005 (US).

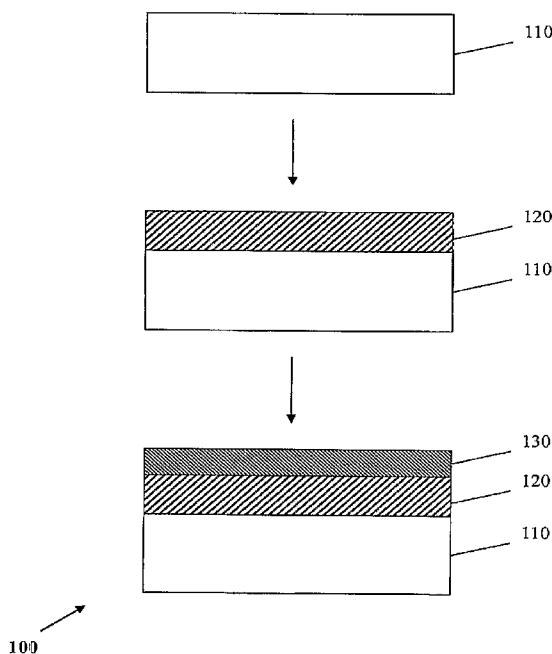
(22) International Filing Date: 12 July 2007 (12.07.2007)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

(26) Publication Language: English


[Continued on next page](30) Priority Data:
11/484,691 12 July 2006 (12.07.2006) US

(71) Applicant (for all designated States except US): NORTHERN GRUMMAN SYSTEMS CORPORATION [US/US]; 1840 Century Park East, Los Angeles, CA 90067-2199 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SINGH, Narsingh, Bahadur [US/US]; 5106 Crystal View Court, Ellicott City, MD 21043 (US). WAGNER, Brian [US/US]; 601 S. Bradford Street, Baltimore, MD 20724 (US). AUMER, Mike [US/US]; 8157 Mississippi Road, Laurel, MD 20724 (US).

(54) Title: WIDE BANDGAP SEMICONDUCTOR MATERIALS

(57) Abstract: A substrate and method for growing a semi-conductive crystal on a metal-organic alloy film such as $(\text{AlN})_x(\text{SiC})_{1-x}$ without any buffer layer is disclosed. The $(\text{AlN})_x(\text{SiC})_{1-x}$ alloy film can be formed on a SiC substrate by a vapor deposition process using AlN and SiC powder as starting materials. The $(\text{AlN})_x(\text{SiC})_{1-x}$ alloy film provides a better lattice match for GaN or SiC epitaxial growth and reduces defects in epitaxially grown GaN with better lattice match and chemistry.

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WIDE BANDGAP SEMICONDUCTOR MATERIALS

TECHNICAL FIELD

The invention relates generally to semiconductor materials, and more particularly to methods for producing high quality modified SiC and crystal substrate for GaN film growth.

BACKGROUND OF THE INVENTION

The development of modern electronic devices places an ever increasing demand on the quality of the semiconductor materials used in these devices. However, the epitaxially grown semiconductor crystal produced with today's technology are highly defective and adversely affect the performance and reliability of the device employing the crystal.

The poor quality of the epitaxially grown semiconductor crystals is generally due to the unavailability of a lattice matched and chemically matched substrate. When a film is grown on a substrate or an underlying layer such that the crystal structure of the substrate or underlying layer is reflected on the film, the thus-grown film exhibits microstructural discontinuity at the interface between layers formed of different semiconductor materials. Since the thickness of the film is considerably smaller than that of the substrate, the difference in lattice constant between the film and the substrate causes generation of strain and defects in the film.

For example, when a crystal of a nitride semiconductor such as gallium nitride (GaN) is grown on a starting substrate made of silicon (Si) or the like and then cooled to the ordinary temperature, a large number of dislocations and cracks occur in the nitride semiconductor layer because of stress caused by the difference in thermal expansion coefficient or lattice constant. If a large number of dislocations and cracks occur in the growth layer (nitride semiconductor layer), lattice defects or a large number of dislocations, deformations, cracks, etc., occur in a film when the film is epitaxially formed on the growth layer. This causes deterioration of the film characteristic.

To improve lattice match, a buffer layer can be formed on a substrate, and subsequently a crystal of a semiconductor is grown on the buffer layer. The buffer layer can lower the adverse effect of defects in the surface of the substrate on the crystal, and reduce propagation of lattice defects contained in the substrate. However, in some

cases, because of microstructural discontinuity at the substrate/buffer interface, defects are newly generated at the interface.

Therefore, demand has arisen for an epitaxially grown compound semiconductor film of reduced crystal defect density.

5

SUMMARY OF THE INVENTION

One aspect of the present invention relates to a method for producing a wide bandgap semiconductor crystal. The method comprises the step of depositing a semiconductor material on a metal-organic alloy film by a vapor deposition method. The 10 semiconductor material is nitride, carbide or diamond, and wherein the alloy is (AlN)_x(SiC)_(1-x) or Si_xGe_(1-x)C, where 0 < x < 1.

In one embodiment, the alloy film provides a better lattice match for GaN or SiC epitaxial growth, and reduces defects in epitaxially grown GaN and SiC films.

15 In one embodiment, the method further comprises the step of forming the alloy film by a vapor deposition method on a substrate prior to depositing the semiconductor material.

In another embodiment, the method further comprises the step of doping the substrate prior to the formation of the metal-organic alloy film.

20 In another embodiment, the AlN or SiC is deposited on the alloy film by physical vapor transport (PVT), advanced PVT (APVT), or chemical vapor deposition (CVD).

In another embodiment, the alloy film is formed by physical vapor transport (PVT), advanced PVT (APVT), or chemical vapor deposition (CVD).

25 Another aspect of the present invention relates to a method for producing an AlN-rich (AlN)_x(SiC)_(1-x) alloy film on a substrate. The method comprises the step of depositing AlN and SiC on the substrate to form an (AlN)_x(SiC)_(1-x) alloy film in a PVT process under a background pressure of less than 100 torr using AlN and GaN powder as starting materials.

30 Another aspect of the present invention relates to a method for producing a SiC-rich (AlN)_x(SiC)_(1-x) alloy film on a substrate. The method comprises the step of depositing AlN and SiC on the substrate to form an (AlN)_x(SiC)_(1-x) alloy film in a PVT process under a background pressure of 400-500 torr using AlN and GaN powder as starting materials.

Yet another aspect of the present invention relates to AlN and SiC crystals produced by the method of the present invention.

DETAILED DESCRIPTION OF DRAWINGS

Figure 1 is a schematic showing a method for growing a semiconductor crystal 5 on a metal-organic alloy film formed on a substrate.

Figure 2 is a picture of $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film on axis SiC wafer.

Figure 3 is a rocking curve of $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film.

Figure 4 is a ω - 2θ scan of $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film.

Figure 5 is a reciprocal space map for determination of crystal tilt of 10 $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film.

Figure 6 shows the morphology of GaN film grown on $(\text{AlN})_x(\text{SiC})_{(1-x)}$ substrate.

Figure 7 shows the photoluminescence of GaN film grown on $(\text{AlN})_x(\text{SiC})_{(1-x)}$ substrate.

DETAILED DESCRIPTION OF THE INVENTION

15 Figure 1 schematically shows a process 100 for growing a semiconductor material on a metal-organic alloy film. The process include the steps of growing a metal-organic alloy film 120 on a substrate 110, and epitaxially growing a target crystal 130 on the metal-organic alloy film 120.

The substrate

20 The substrate 110 can be carbon, silicon or silicon carbide (SiC) crystals of various modifications (polytypes). Examples of SiC include, but are not limited to, 3C-SiC (cubic unit cell, zincblende), 2H-SiC; 4H-SiC; 6H-SiC (hexagonal unit cell, wurtzite); 15R-SiC (rhombohedral unit cell), 21R-SiC 24R-SiC, and 27R-SiC. The growing surface can be either off axis or on axis. In one embodiment, the substrate 110 is $<001>$ 6H SiC. In another embodiment, the substrate 110 is on axis $<001>$ 6H SiC.

25 The substrate 110 can also be a doped SiC. Examples of doped SiC include, but are not limited to, n-type doped SiC such as SiC doped with nitrogen, and p-type SiC such as SiC doped with Al, B, Ga, Sc, P, Fe, and Va. Dopants may be introduced either during epitaxy or by ion implantation. In one embodiment, ammonia (NH₃) or tri-methyl aluminum (TMA) are used as dopant source for n- or p-type doping by CVD, respectively. A hydrogen gas purified with a Pd cell is used as carrier. The CVD is preformed under the pressure of an inert gas, such as nitrogen or argon, under the

pressure at 1-500 torr, preferably at 5-100 torr, and more preferably at 10-20 torr. The CVD is preformed at a temperature range from about 1600°C to about 2300°C, preferably from about 1800°C to about 2100°C, and more preferably at about 1900°C to about 2000°C.

5 The metal-organic alloy

The alloy 120 is epitaxially grown on the substrate 110 using a vapor deposition technique. Vapor deposition techniques provide the advantage of growing a crystal at the temperature below its melting point. Examples of vapor deposition techniques include, but are not limited to, physical vapor transport (PVT), advanced PVT (APVT), and 10 chemical vapor deposition (CVD). In the PVT process, the vapor pressure of a material is maintained high enough so that a crystal can be efficiently grown from the supersaturated vapor. In the APVT process, *in situ* synthesis and growth of the crystal occurs simultaneously.

In the CVD process, a chemical reaction is utilized to deposit a solid material 15 from a gaseous phase. CVD includes processes such as Atmospheric Pressure Chemical Vapor Deposition (APCVD), Low Pressure Chemical Vapor Deposition (LPCVD), High Temperature Chemical Vapor Deposition (HTCVD), Metal-Organic Chemical Vapor Deposition (MOCVD), Plasma Assisted Chemical Vapor Deposition (PACVD) or Plasma Enhanced Chemical Vapor Deposition (PECVD), Laser Chemical Vapor Deposition (LCVD), Photochemical Vapor Deposition (PCVD), Hot Wire CVD 20 (HWCVD), Chemical Vapor Infiltration (CVI) and Chemical Beam Epitaxy (CBE), and Hydride Vapor Phase Epitaxy (HVPE).

The alloy 120 is produced from two or more starting materials, such as AlN and 25 SiC powders, or GeC and SiC powders. In one embodiment, a $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy (where $0 < x < 1$) is produced by PVT or APVT using SiC and AlN powders. The PVT is preformed under the pressure of an gas, such as nitrogen or argon, with a pressure range of 1-500 torr and a temperature range from about 1600°C to about 2100°C, preferably from about 1700°C to about 2000°C, and more preferably at about 1800°C to about 1900°C.

30 The AlN-to-SiC ratio in the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy is determined by the background pressure of the vapor deposition process, as well as the AlN-to-SiC ratio of the AlN and SiC powder. $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloys having different AlN-to-SiC ratios can

be obtained by adjusting the AlN-to-SiC ratio in the starting materials (i.e., the AlN and SiC powders) and by varying the background pressure. For example, with a starting material of a 1:1 mixture of AlN and SiC powder, $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloys formed under a low background pressure (e.g., 50 -150 torr) tends to be AlN-rich alloys ($x \geq 0.7$), while 5 the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloys formed under a high background pressure (e.g., 400 -500 torr) tends to be SiC-rich alloys ($x \leq 0.5$).

The AlN-to-SiC ratio determines the lattice parameters, such as the lattice constant of GaN and bandgap of the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy. For example, AlN-rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloys have lattice constants and bandgaps that are closer to that of AlN. 10 While SiC-rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloys have lattice constants and bandgaps that are closer to that of SiC. Accordingly, the AlN-to-SiC ratio in the starting materials and the background pressure of the vapor deposition are selected based on the intended application of the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy.

For example, if the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy is used as the substrate to grow GaN 15 crystals, a high AlN-to-SiC ratio is preferred because AlN provides a better lattice match to GaN. The lattice constants for SiC, GaN and AlN are 3.073 $^{\circ}$ A, 3.189 $^{\circ}$ A and 3.112 $^{\circ}$ A. By increasing the concentration of AlN, the lattice parameter moves closer to the lattice parameter of GaN and hence better epitaxial growth is possible. In one embodiment, the 20 AlN-to-SiC ratio in the original powder is in the range of 1:1 to 5:1, and the background pressure is in the range of 1-200 torr.

On the other hand, if the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy is used to grow SiC crystals, a low AlN-to-SiC ratio is preferred. In one embodiment, the AlN-to-SiC ratio in the original powder is within the range of 1:5 to 1:1, and the background pressure is in the range of 300-500 torr.

25 In another embodiment, the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy is produced by MOCVD on a SiC wafer. The MOCVD process allows a lower operating temperature (1000 $^{\circ}$ C - 1300 $^{\circ}$ C) compared to the PVT process, which typically requires an operating temperature in the range of 1600 $^{\circ}$ C - 2100 $^{\circ}$ C.

30 In another embodiment, the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy is used to grow diamond film that requires very high temperature CVD.

In another embodiment, the alloy film can be grown by CVD and MOCVD using hexamethyldisilizane (HMDS). HMDS enables the growth at low temperature. Since

HMDS decomposes at low temperature, ammonia can be used as nutrient for supplying nitrogen and trimethyl aluminum (TMA) for aluminum source.

In another embodiment, a $\text{Si}_x\text{Ge}_{(1-x)}\text{C}$ / SiC and $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloys are produced using PVD and other methods for SiC heterostructure devices.

5 The target crystals

The target crystal 130 is a crystal of a wide bandgap semi-conductive material. Examples of the target crystal 130 include, but are not limited to, GaN , SiC and diamond. The target crystal 130 can be grown on alloy film 120 using a vapor deposition method such as PVT, APVT or CVD. Compared to the conventional processes that grow GaN and SiC on SiC or Si wafer, the alloy provides larger thermal conductivity, larger bandgap, better lattice match, better control of nucleation, and hence better crystal quality.

Another aspect of the present invention relates to GaN and SiC crystals grown on a $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film using the method of the described in the present invention.

15 In one embodiment, the GaN crystal is epitaxially grown by PVT on an AlN -rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film formed on a SiC substrate. In another embodiment, the SiC crystal is epitaxially grown by PVT on a SiC -rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film formed on a SiC substrate. As used herein, the term “ AlN -rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy” refers to an $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy where $x \geq 0.7$, while the term “ SiC -rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy” refers to an $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy where $x \leq 0.5$.

20 Yet another aspect of the present invention relates to AlN -rich and SiC -rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy films produced on a substrate by vapor deposition method. In one embodiment, the AlN -rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy films are produced on a SiC substrate using PVT with AlN and SiC powders under a background pressure of 1-100 torr. In 25 another embodiment, the SiC -rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy films are produced on a SiC substrate using PVT with AlN and SiC powders under a background pressure of 400-500 torr.

EXAMPLES

30 Example 1: Preparation of doped SiC crystals.

SiC crystal was doped with element or alloy in PVD process. The preliminary growth conditions are listed in Table 1.

Table 1: Preliminary growth conditions for doped SiC crystals

Starting material	SiC + dopant
Pressure of the chamber	10-20 torr
Transport Length	3-4 cm
Diameter of crucible	30 mm
Source temperature	1950°C
$T_S - T_G$	20-60K
Growth run time	4-6 hours
Crucible	graphite
Furnace	vertical induction

X-ray rocking curve is used to determine the crystal quality. The full width of half maxima of this doped crystal is slightly higher than pure SiC crystal.

5 Example 2: Growth of $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film on axis SiC wafer

$(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film was grown on axis 6H-SiC (001) wafer using AlN and SiC powders, for which particles size ranged from 5-10 μm and purity was 99.99% with respect to metals. The preliminary growth conditions are shown in Table 2.

10 Table 2: Preliminary growth conditions for $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film on axis SiC wafer

Starting material	AlN and SiC powders
Pressure of the chamber	250 torr
Ambient gas	argon
Source temperature	1850°C
$T_S - T_G$	70°K
Growth run time	20 hours
Substrate	6H-SiC <001> on-axis

5 Example 3: Characterization of the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film grown on the on axis SiC wafer

As shown in Figure 3, $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy sample obtained in this experiment contained vast regions of continuous good quality film. Figure 4 is a rocking curve of $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film. The X-ray rocking curve shows small value indicating good crystallinity.

10 Figure 5 shows a ω - 2θ scan of the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film. The theoretical 2θ is 1515.96 sec between pure AlN (002) reflection and SiC (006) reflection. The measured 2θ is 1242.98 sec. These data suggest that the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy is about 80% AlN and about 20% SiC, i.e., $x = 0.8$.

15 Figure 6 is a reciprocal space map for determination of crystal tilt of $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film. The peak splitting along the omega-Rel axis suggests that the alloy film is tilted 254.9 arcsec ($\Delta\omega = 0.0708^\circ$) from the SiC substrate surface normal.

Example 4: Growth of GaN film on $(\text{AlN})_x(\text{SiC})_{(1-x)}$ substrate

20 GaN is typically grown on SiC by using a buffer film, such as AlN, on SiC. The AlN buffer, however, is not perfectly crystalline. In this embodiment, no buffer layer of AlN was used. GaN was grown directly on $(\text{AlN})_x(\text{SiC})_{(1-x)}$ substrate by MOCVD process. The morphology of GaN grown on the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ substrate is shown in Figure 6.

25 Figure 7 shows the photoluminescence of GaN film grown on the $(\text{AlN})_x(\text{SiC})_{(1-x)}$ substrate. The GaN crystal has a band-edge emission at 363.9 nm or 3.4eV, with a full width half maximum (FWHM) at 7.8 nm or 72meV. This value is very much comparable with costly and complex process in which AlN buffer is used for GaN growth.

30 $(\text{AlN})_x(\text{SiC})_{(1-x)}$ is also an excellent substrate for the growth of diamond film. Since this substrate is stable up to very high temperature compared to Si wafer, diamond film growth where substrate has to be at high temperature by CVD, PECVD and high temperature processes is possible.

The foregoing discussion discloses and describes many exemplary methods and embodiments of the present invention. As will be understood by those familiar with the

art, the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosure of the present invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.

What is claimed is:

1. A method for producing a semiconductor crystal, comprising depositing a semiconductor material on a metal-organic alloy film by a vapor deposition method,
 - 5 wherein the semiconductor material is selected from the group consisting of nitride, carbide and diamond, and wherein the metal-organic alloy is $(\text{AlN})_x(\text{SiC})_{(1-x)}$ or $\text{Si}_x\text{Ge}_{(1-x)}\text{C}$, where $0 < x < 1$.
 2. The method of claim 1, wherein the vapor deposition method is selected from the group consisting of PVT, APVT, MOCVD and CVD.
 - 10 3. The method of claim 2, wherein the semiconductor material comprises GaN and the metal-organic alloy comprises $(\text{AlN})_x(\text{SiC})_{(1-x)}$, and wherein the vapor deposition method is PVT.
 4. The method of claim 1, further comprising the step of: forming the metal-organic alloy film by a vapor deposition method on a substrate
 - 15 prior to depositing the semiconductor material.
 5. The method of claim 4, wherein the substrate is selected from the group consisting of carbon, silicon and SiC.
 6. The method of claim 5, wherein the substrate comprises SiC.
 7. The method of claim 6, wherein the substrate comprises on-axis 6H-SiC.
 - 20 8. The method of claim 5, wherein the substrate comprises SiC and the metal-organic alloy film comprises $(\text{AlN})_x(\text{SiC})_{(1-x)}$, formed by PVT, APVT, MOCVD or CVD.
 9. The method of claim 4, further comprising the step of: doping the substrate prior to forming the metal-organic alloy film on the substrate.
 - 25 10. The method of claim 9, wherein the substrate comprises SiC and is doped with ammonia or trimethyl aluminum in an MOCVD process.
 11. The method of claim 4, further comprising the step of: treating the substrate with hexamethyldisilizane and ammonia prior to forming the metal-organic alloy film on the substrate.
 - 30 12. The method of claim 1, wherein the semiconductor material comprises SiC and the metal-organic alloy comprises $(\text{AlN})_x(\text{SiC})_{(1-x)}$.

13. The method of claim 1, wherein the semiconductor material comprises diamond and the metal-organic alloy comprises $(\text{AlN})_x(\text{SiC})_{(1-x)}$.

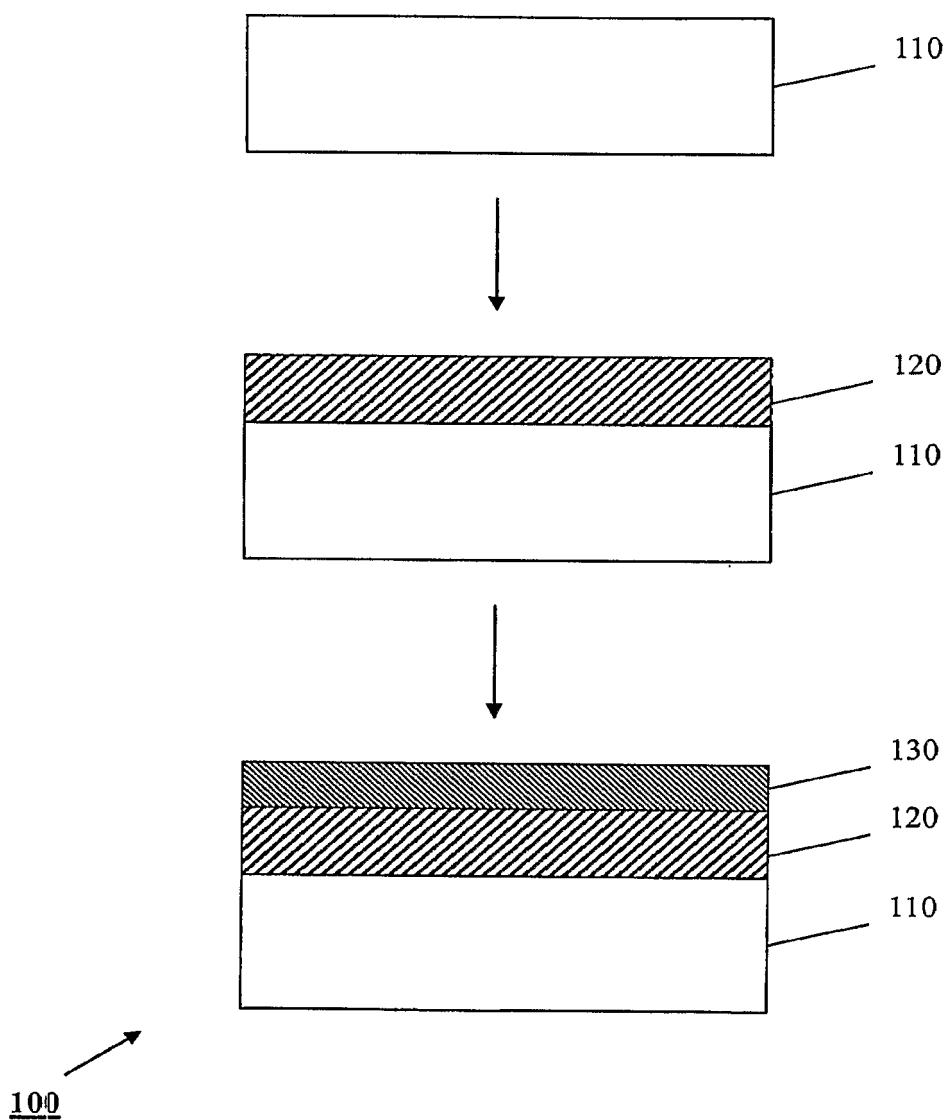
14. A method for producing a AlN-rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film on a substrate, comprising:

5 depositing AlN and SiC on a substrate to form an $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy in a PVT process under a background pressure of less than 100 torr using AlN and GaN powder as starting materials.

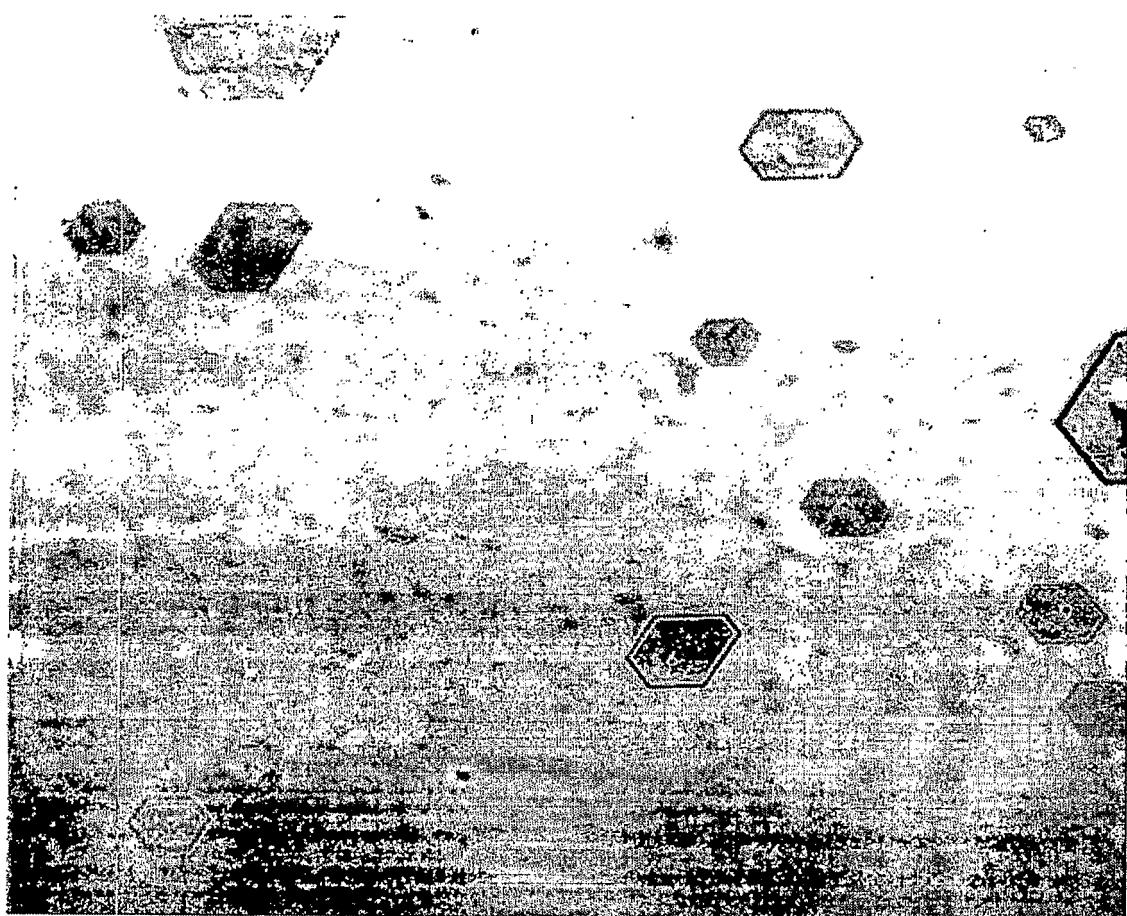
15. The method of claim 14, wherein the substrate comprises doped SiC.

16. A method for producing a SiC-rich $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy film on a substrate, comprising:

depositing AlN and SiC on a substrate to form an $(\text{AlN})_x(\text{SiC})_{(1-x)}$ alloy in a PVT process under a background pressure of 400-500 torr using AlN and SiC powder as starting materials.


17. The method of claim 16, wherein the substrate comprises doped SiC.

18. A semi-conductive crystal produced by the method of claim 1.


19. The semi-conductive crystal of claim 18, wherein the semiconductor crystal comprises GaN.

20. The semi-conductive crystal of claim 18, wherein the semiconductor crystal comprises SiC.

1/7

FIG. 1

2/7

FIG. 2

3/7

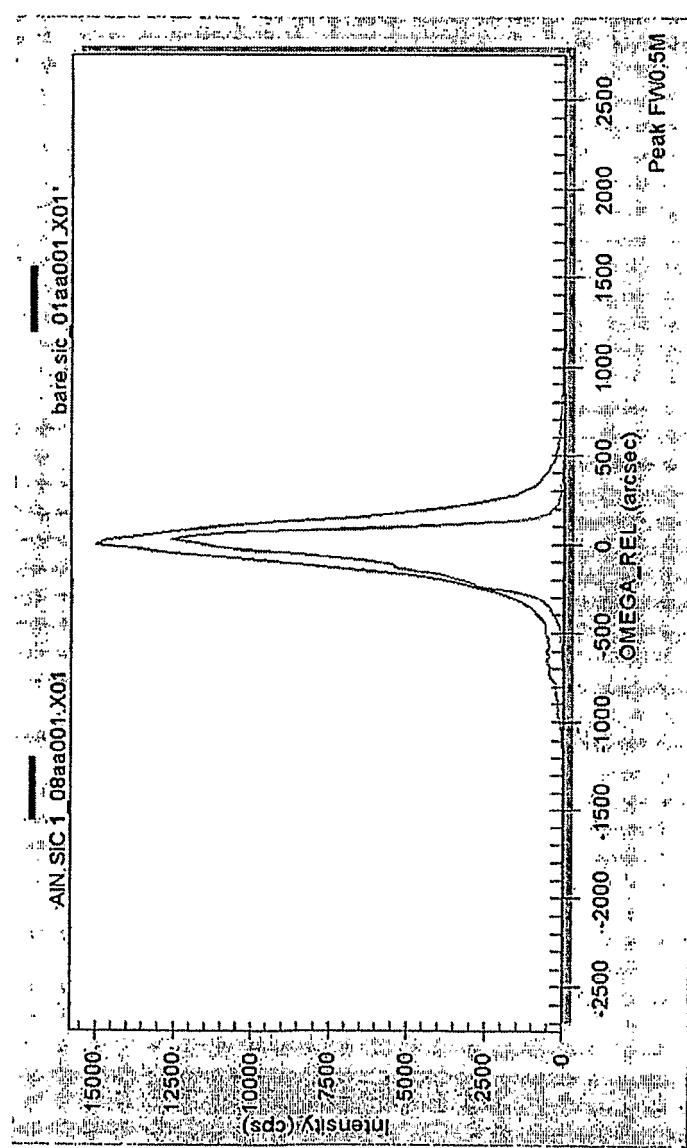


FIG. 3

4/7

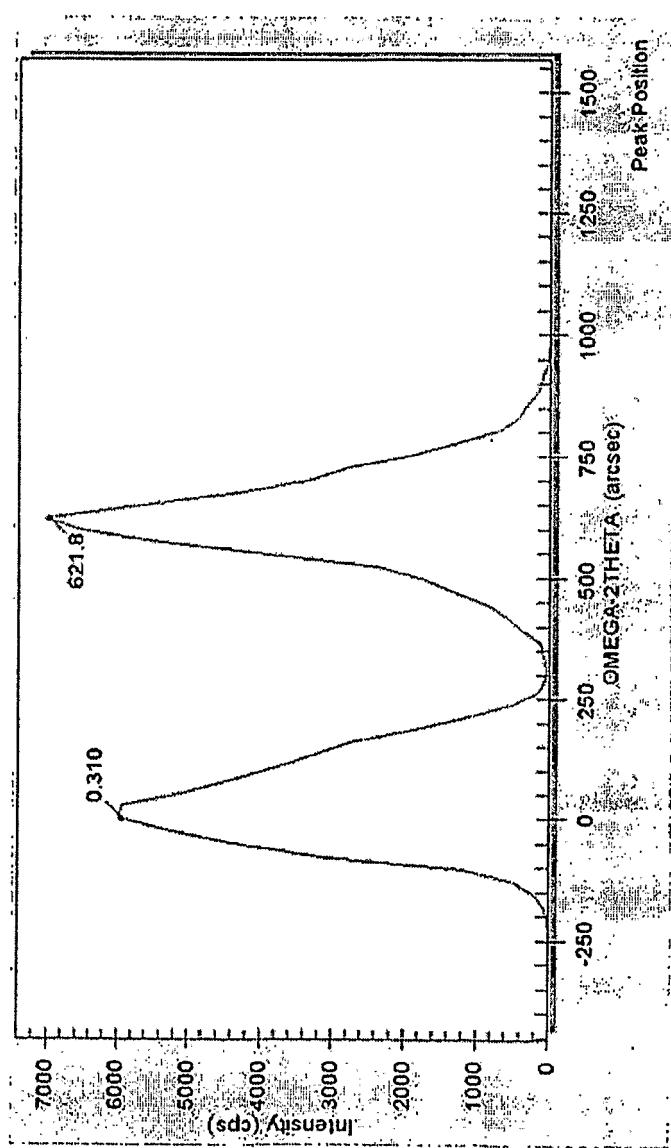
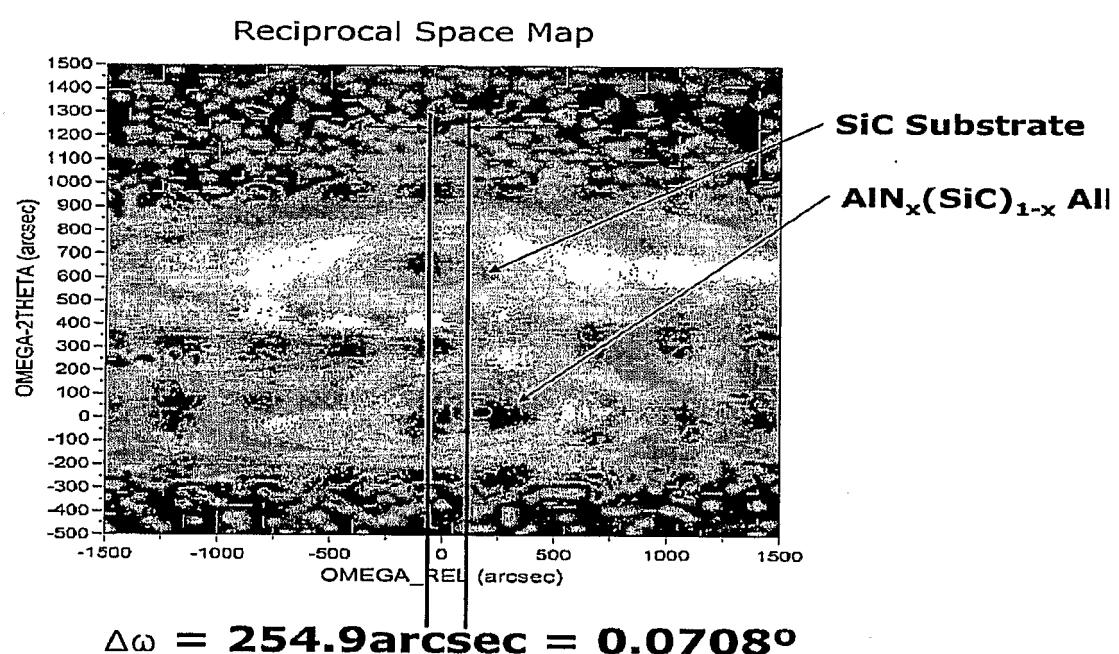
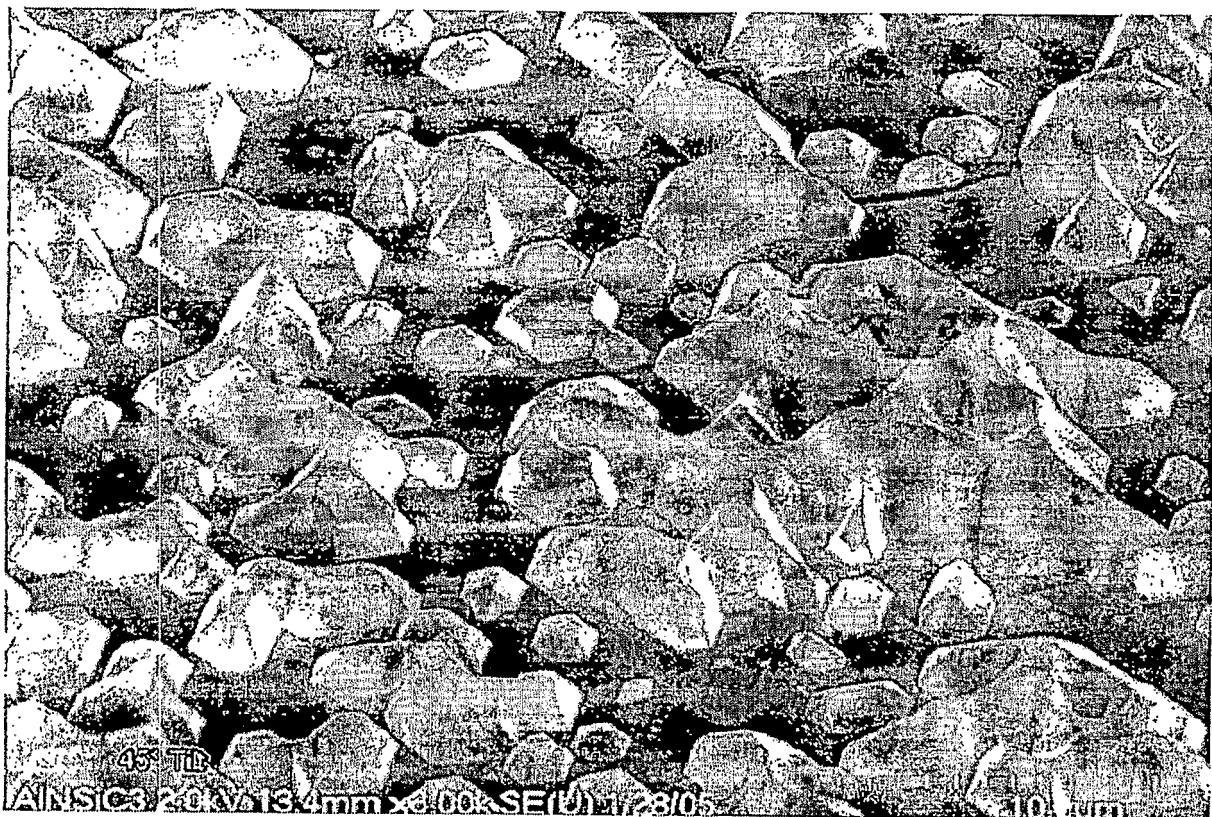
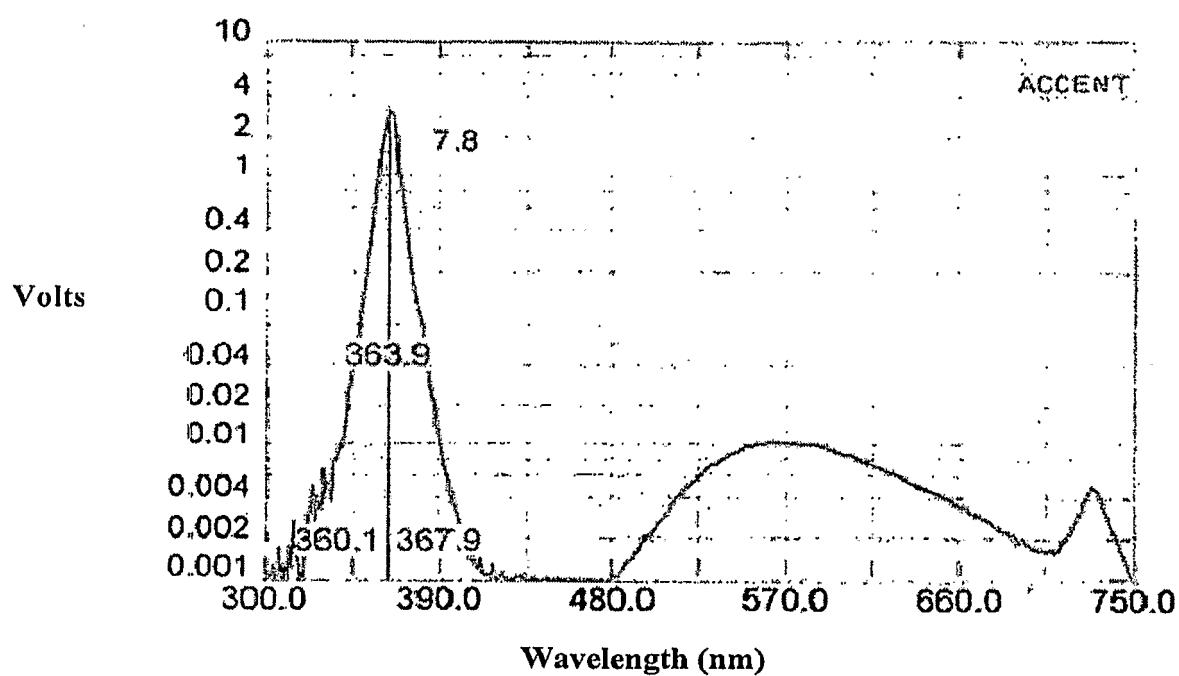




FIG. 4

5/7


FIG. 5

6/7

FIG. 6

7/7

FIG. 7

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 07/15843

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - C30B 23/00, C30B 25/00 (2007.10)

USPC - 117/84, 117/105

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8) - C30B 23/00, C30B 25/00 (2007.10)

USPC - 117/84, 117/105

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC - 438/40 (Keywords limited - See list for keywords)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWEST (USPT, PGPB, EPAB, JPAB); DialogPRO (Chemistry); Google Scholar

Search Terms: semiconductor, crystal, metal, organic, alloy, vapor, deposition, nitride, carbide, diamond, AlN, SiC, GaN, silicon, carbon, trimethyl, aluminum, ammonia, disilazane

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6,086,672 A (Hunter) 11 July 2000 (11.07.2000), especially, claims 1 and 22; col 1, ln 8-9; col 1, ln 6-10; col 1, ln 67; col 2, ln 4-10; col 3, ln 10; col 3, ln 13; col 6, ln 13; col 6, ln 23-24; col 14, ln 36; col 15, ln 59; col 16, ln 19	1, 4-9, 11-13, 18 and 20
Y		2, 3, 10, 14-17 and 19
Y	US 7,052,546 B1 (Motakef) 30 May 2006 (30.05.2006), especially, col 1, ln 47; col 1, ln 66; col 6, ln 12	2, 3, 14-17 and 19
Y	US 7,033,854 B2 (Morita) 25 April 2006 (25.04.2006), especially, col 2, ln 9; col 8, ln 50; col 8, ln 59	10

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

03 November 2007 (03.11.2007)

Date of mailing of the international search report

03 DEC 2007

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774