007/087507 A2 |10 0000 0 00O 0 0O

(19) World Intellectual Property Organization | [I

) IO O T A R 50

International Bureau

(43) International Publication Date
2 August 2007 (02.08.2007)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2007/087507 A2

(51) International Patent Classification: Benjamin C. [US/US]; 726 Leland Avenue, 1W, Uni-
GOG6F 15/78 (2006.01) GOG6F 9/38 (2006.01) versity City, MO 63130 (US). HENRICHS, Michael
GOGF 15/80 (2006.01) [US/US]; 5708 Southwest Avenue, St. Louis, MO 63139

(21) International Application Number: (US). WHITE, Jason R. [US/US]; 902 Dogwood Creek

PCT/US2007/060835 Drive, Apt. 1, Manchester, MO 63021 (US).
(22) International Filing Date: 22 January 2007 (22.01.2007) (74) Agents: VOLK, JR., Benjamin L. et al.; Thompson
ore . Coburn, LLP, One US Bank Plaza, St. Louis, MO 63101

(25) Filing Language: English Us).

(26) Publication Language: English (81) Designated States (unless otherwise indicated, for every

(30) Priority Data: kind of national protection available): AE, AG, AL, AM,
11/339,892 26 January 2006 (26.01.2006) US AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

(71) Applicants (for all designated States except US): EXEGY CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
INCORPORATED [US/US]; Suite 300, 3668 South GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
Geyer Road, St. Louis, MO 63127 (US). WASHINGTON JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
UNIVERSITY [US/US]; One Brookings Drive, St. Louis, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MO 63130 (US). MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,

(72) Inventors; and RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,

(75) Inventors/Applicants (for US only): CHAMBERLAIN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Roger D. [US/US]; 64 Notre Dame Drive, St. Louis, MO
63141 (US). SHANDS, E.F. Berkley [US/US]; 603 Mead-
owridge Lane, Kirkwood, MO 63122 (US). BRODIE,

(34)

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: FIRMWARE SOCKET MODULE FOR FPGA-BASED PIPELINE PROCESSING

Reconfigurable Logic (102)
Firmware Application Module Chain (130)

FAM?2 [sese —>
(130b} (130m)

—»
132

:
B

H
'
i
s orami
H
:

134

Firmware Socket Module (120)

Y

100

(Bus {112)

(57) Abstract: A firmware
socket module is deployed on
a reconfigurable logic device,
wherein the firmware socket
module has a communication path
between itself and an entry point
into a data processing pipeline,
wherein the firmware socket module
is configured to provide both
commands and target data to the
entry point in the data processing
pipeline via the same communication
path, wherein each command defines

A h

A .

h

a data processing operation that is to
h

Processor
{108)

Disk Controller
{106)

be performed by the data processing
pipeline, and wherein the target

RAM
(110}

1\

Data Store

(104)

data corresponds to the data upon
which the data processing pipeline
performs its commanded data
processing operation. Preferably,
the firmware socket module is
configured to provide the commands
and target data in a predetermined
order that is maintained throughout
the data processing pipeline. Also,
the firmware socket module may be
configured to (1) access an external
input descriptor pool buffer that

O Gefines the order in which commands and target data are to be provided to the data processing pipeline, and (2) transfer the

commands and target data from an external memory to the data processing pipeline in accordance with the identified defined order.
Results of the processing by the data processing pipeline are also returned to external memory by the firmware socket module,
whereupon those results can be subsequently used by software executing on a computer system.

WO 2007/087507 A2 | NI DA 00 0T 000 00O O

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the begin-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL,, PL, PT, ning of each regular issue of the PCT Gazette.
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

WO 2007/087507 PCT/US2007/060835

10

15

20

30

Firmware Socket Module for FPGA-Based Pipeline Processing

Field of the Invention:

The present invention is directed toward the field of
interfacing hardware with software to support high speed data

processing operations in hardware.

Background and Summary of the Invention:

The ability to improve a computing system’s data
throughput capabilities when processing large volumes of data
is an ever present challenge. In many instances, processing
large data volumes using software executed by a general-
purpose processor will be too slow to meet the needs of users.
Therefore, it is desirable to either re-locate data processing
functionality away from software executed by the general-
purpose processor of a computer and into firmware deployed on
hardware or to partition data processing functionality between
such firmware and software. However, when doing so, hardware
devices (such as reconfigurable logic devices) need to be
interconnected with externmal resources such as data storage
and the software executed by the computer’s general-purpose
processor in a manner that does not create a bottleneck as
data and commands flow back and forth between the hardware and
the software.

As used herein, the term “general-purpose processor” will
refer to a hardware device that fetches instructions and
executes those instructions (for example, an Intel Xeon
processor or an AMD Opteron processor). The term
“reconfigurable logic” will refer to any logic technology
whose form and function can be significantly altered (i.e.,
reconfigured) in the field post-manufacture. This is to be

contrasted with a general-purpose processor whose function can

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

change post-manufacture, but whose form is fixed at
manufacture. The term “software” will refer to data
processing functionality that is deployed on a general-purpose
processor. The term “firmware” will refer to data processing
functionality that is deployed on reconfigurable logic.

In an effort to address the needs in the art, the
inventors herein disclose a new design for a firmware socket
module that interfaces at least one firmware application
module deployed on a reconfigurable logic device with external
memory and software. The firmware socket module is also
preferably deployed on the reconfigurable logic device. The
at least one firmware application module is configured to
perform a data processing operation on any target data that it
receives, wherein the data processing operation that the at
least one firmware application module performs is controlled
by a software-based command. Preferably, the at least one
firmware application module comprises a plurality of firmware
application modules that are arranged in a pipeline. Each
firmware application module in the pipeline is preferably
individually addressable for command information. Thus,
commands can be issued to specific firmware application
modules in the pipeline to control the data processing
operations of those specific firmware application modules.

The firmware socket module is configured to access
external memory and software to receive the commands and
target data that are to be processed through the firmware
application module pipeline. Preferably, the firmware socket
module issues transactions to a system bus to perform direct
memory access (DMA) transfers of commands and target data from
the computer system’s memory to itself. The firmware socket
module is configured to in turn provide these commands and
target data to the first one of the firmware application
modules in the pipeline in a predetermined order that is
defined by software.

The firmware socket module and firmware application

module pipeline are preferably configured to strictly maintain

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

the predetermined order of inbound commands and target data
when propagating commands and target data through the system.
When target data reaches a firmware application module in the
pipeline, the firﬁware application module performs its
specified data processing operation on the target data and
then provides the so-processed target data to the next
firmware application module in the pipeline. When command
data reaches a firmware application module in the pipeline,
the firmware application module will check to see whether the
command is directed toward it and, if it is, will interpret
that command to re-arrange its data processing operatioh as
appropriate. If the command is to be propagated further down
the pipeline, then the firmware application module will pass
the command to the next firmware application module in the
pipeline.

The flow of commands and target data, either into the
firmware socket module or into the entry point of the firmware
application module pipeline, can be thought of as a single
stream in which both commands and target data are interleaved
in accordance with the defined order. When it is said that
the commands and data are interleaved, this does not require
(although it does not exclude) a stream of
command/data/command/data/command/data.. Instead, the
interleaved stream of commands and data described herein
encompasses a stream such as
command/command/command/data/data/data/data/
data/command.. wherein the order of commands and data in the
stream is defined by software and preserved by the firmware
socket module when it propagates the stream to the firmware
application module pipeline.

Appropriate commands that control the firmware
application module’s data processing operation should precede
that target data in the streaﬁ of commands and target data
entering the firmware application pipeline, thereby allowing
the data processing operations of the firmware application

modules to be appropriately controlled prior to processing

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

target data. To facilitate the ease by which this strict
ordering of commands and target data is maintained, the
firmware socket module is configured to provide both command
and target data to the first firmware application module in
the pipeline over the same communication path that links the
firmware socket module with the first firmware application
module of the pipeline.

The natural synchronization between commands and target
data provided by this firmware socket module-to-firmware
application module pipeline connection avoids complexity in
the system and also enhances data throughput. In prior art
socket interfaces known to the inventors herein, commands are
communicated to data processing modules via a different
communication path than the communication path used to
communicate target data to data processing modules. When such
data processing modules are pipelined, such dual communication
paths creates management difficulties when attempting to
synchronize commands with data. In such cases, when new
commands are issued to a data processing module in the
pipeline, the entire pipeline will typically need to be
flushed of previous commands and previous data before that
command and any further target data can be processed through
the pipeline, thereby greatly detracting from the pipeline’'s
throughput capabilities. By way of distinction, however, with
the present invention one firmware application module of the
pipeline can take action on a command while other firmware
application modules in the pipeline are simultaneously
processing data in accordance with their defined data
processing operations. Thus, commands can be issued to
firmware application modules to adjust their data processing
operations without requiring the entire pipeline to be flushed
out.

High level software that is executed by the computer
system’s general-purpose processor preferably defines the
order of commands and data that are eventually propagated

through the firmware socket module and the firmware

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

application module pipeline. Lower level device driver
software that is also executed by the computer system’s
general-purpose processor then preferably preserves this
defined order of commands and data and makes such ordered
commands and data available to the firmware socket module.
The device driver software preferably preserves this order by
managing an input descriptor pool buffer in which pointers to
commands and target data are stored. The firmware socket
module will access the input descriptor pool buffer to learn
of the commands and target data that are to be delivered to
the firmware application module pipeline.

On the outbound side of the firmware socket module
(outbound to software), the device driver software preferably
maintains separate buffers for output commands and outbound
data to notify the firmware socket module of where commands
and data that have been processed by the firmware application
module should be stored in memory for subsequent access by
computer system software.

Among the advantages that the preferred embodiment of the
invention provides are the ability to reliably deliver flow-
controlled data from software to a reconfigurable logic device
and vice versa, and the ability to develop firmware
application modules independent of the computer system in
which they are deployed (so long as the firmware application
modules conform to the signaling requirements of the firmware
socket module). These and other features of the present
invention will be in part pointed out and in part apparent to
those having ordinary skill in the art upon review of the

following description and figures.

Brief Description of the Drawings:

Figure 1 is a block diagram view of a preferred system
that embodies the present invention;
Figure 2 illustrates an exemplary framework for the

deployment of software and firmware for the preferred system;

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

Figure 3(a) is a block diagram view of a preferred
printed circuit board for installation into a computer system
to carry out data processing tasks in accordance with the
present invention;

Figure 3(b) is a block diagram view of an alternate
printed circuit board for installation into a computer system
to carry out data processing tasks in accordance with the
present invention;

Figure 4 depicts the preferred signal layer interface
between the firmware socket module and the firmware
application modules;

Figure 5 depilcts the preferred hardware/software
interface between the firmware socket module and the memory
space managed by the device driver;

Figure 6(a) depicts an example of the input descriptor
pool buffer and kernel memory space that is managed by the
device driver;

Figures 6(b)- (o) illustrate how commands and target data
are seqguenced through the firmware socket module and firmware
application modules in accordance with the order of commands
and target data defined by the input descriptor pool buffer
example of Figure 6(a);

Figure 7 illustrates an exemplary FPGA that has been
configured with a firmware socket module and a plurality of
pipelined firmware application modules, each of which is
arranged to perform a different data processing operation; and

Figure 8 illustrates an example of how the firmware
application modules of a pipeline can be deployed across

multiple FPGAs.

Detailed Description of the Preferred Embodiment:

Figure 1 depicts a preferred system 100 in accordance
with the present invention. 1In this system, a reconfigurable
logic device 102 is positioned to receive data that streams
off the disk subsystem defined by disk controller 106 and data
store 104 (either directly or indirectly by way of system

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

memory such as RAM 110). Preferably, this data streams into
the reconfigurable logic device by way of system bus 112,
although other design architectures are possible (see Figure
3(b)). Preferably, the reconfigurable logic device is a field
programmable gate array (FPGA), although this need not be the
case. System bus 112 also interconnects the reconfigurable
logic device 102 with the computer system’g main processor 108
as well as the computer system’s RAM 110. The term “bus” as
used herein refers to a logical bus which encompasgses any
physical interconnect for which devices and locations are
accessed by an address. Examples of buses that could be used
in the practice of the present invention include, but are not
limited to the PCI family of buses (e.g., PCI-X and PCI-
Express) and HyperTransport busges. In a preferred embodiment,
system bus 112 may be a PCI-X bus, although this need not be
the case.

The data store can be any data storage device/system, but
is preferably some form of a mass storage medium. For
example, the data store 104 can be a magnetic storage device
such as an array of Seagate disks. However, it should be
noted that other types of storage media are suitable for use
in the practice of the invention. For example, the data store
could also be one or more remote data storage devices that are
accessed over a network such as the Internet or some local
area network (LAN).

The computer system defined by main processor 108 and RAM
110 is preferably any commodity computer system as would be
understood by those having ordinary skill in the art. For
example, the computer system may be an Intel Xeon system or an
AMD Opteron system.

The reconfigurable logic device 102 has firmware modules
deployed thereon that define its functionality. The firmware
socket module 120 handles the data movement requirements (both
command data and target data) into and out of the
reconfigurable logic device, thereby providing a consistent

application interface to the firmware application module (FAM)

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

chain 130 that is also deployed on the reconfigurable logic
device. The FAMs 130i of the FAM chain 130 are configured to
perform specified data processing operations on any target
data that streams through the chain 130 from the firmware
socket module 120. Preferred examples of FAMs that can be
deployed on reconfigurable logic are described in United
States patent 6,711,558 (entitled “Associative Database
Scanning and Information Retrieval”), pending United States
patent application 10/153,151 (filed May 21, 2002 entitled
“Associlative Database Scanning and Information Retrieval using
FPGA Devices” and published as 2003/0018630), published PCT
applications WO 05/048134 and WO 05/026925 (both filed May 21,
2004 and entitled “Intelligent Data Storage and Processing
Using FPGA Devices”), United States provisional patent
application 60/658,418 (filed March 3, 2005 and entitled
“"Biosequence Similarity Searching Using FPGA Devices”), United
States provisional patent application 60/736,081 (filed
November 11, 2005 and entitled “Method and Apparatus for
Performing Biosequence Similarity Searching”) and United
States patent application 11/293,619 (filed December 2, 2005
and entitled “Method and Device for High Performance Regular
Expression Pattern Matching”), the entire disclosures of each
of which are incorporated herein by reference. For example, a
non-exhaustive list of exemplary data processing operations
that can be performed by FAMs include data search operations
(of various types), data encryption operations (using any of a
number of encryption techniques and/or encryption keys), data
decryption operations (using any of a number of decryption
techniques and/or decryption keys), data compression
operations (using any of a number of data compression
techniques), data decompression operations (using any of a
number of data decompression techniques), and data reduction
operations.

The specific data processing operation that is performed
by a FAM is controlled/parameterized by the command data that

FAM receives from the firmware socket module 120. This

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

command data can be FAM-specific, and upon receipt of the
command, the FAM will arrange itself to carry out the data
processing operation controlled by the received command.

Once a FAM has been arranged to perform the data
processing operation specified by a received command, that FAM
is ready to carry out its specified data processing operation
on the target data that it receives from the firmware socket
module. Thus, a FAM can be arranged through an appropriate
command to search a specified stream of target data for the
presence of the term “Smith” therein. Once the FAM has
performed the search operation on the target data stream for
the term “Smith”, another command can be sent to that FAM that
will cause the FAM to re-arrange itself to search for the term
“Jones”. Not only will the FAM operate at hardware speeds
(thereby providing a high throughput of target data through
the FAM), but the FAMs can also be flexibly reprogrammed to
change the parameters of their data processing operations.

The FAM chain 130 preferably comprises a plurality of
firmware application modules (FAMs) 130a, 130b, .. that are
arranged in a pipelined sequence. As used herein, “pipeline”,
“pipelined sequence”, or “chain” refers to an arrangement of
FAMs wherein the output of one FAM is connected to the input
of the next FAM in the sequence. This pipelining arrangement
allows each FAM to independently operate on any data it
receives during a given clock cycle and then pass its output
to the next downstream FAM in the sequence during another
clock cycle.

A communication path 132 connects the firmware socket
module 120 with the input of the first one of the pipelined
FAMs 130a. The input of the first FAM 130a serves as the
entry point into the FAM chain 130. A communication path 134
connects the output of the final one of the pipelined FAMs
130m with the firmware socket module 120. The output of the
final FAM 130m serves as the exit point from the FAM chain
130. Both communication path 132 and communication path 134

are preferably multi-bit paths.

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

10

Figure 2 depicts an exemplary framework for the
deployment of applications on the system 100 of Figure 1. The
top three layers of Figure 2 represent functionality that is
executed in software on the computer system’s general-purpose
processor 108. The bottom two layers represent functionality
that is executed in firmware on the reconfigurable logic
device 102.

The application software layer 200 corresponds to high
level functionality such as the type of functionality wherein
one or more users interact with the application to define
which data processing operations are to be performed by the
FAMs and to define what target data those data processing
operations are to be performed upon.

The next layer is the module application programming
interface (API) layer 202 which comprises a high level module
API 202a and a low level module API 202b. The high level
module API 202a can provide generic services to application
level software (for example, managing callbacks). The low
level module APTI 202b manages the operation of the operating
system (0S) level/device driver software 204. A software
library interface 210 interfaces the high level module API
202a with the low level module API 202b. Details about this
software library interface are provided below.

The interface between the device driver software 204 and
the firmware socket module 120 serves as the hardware/software
interface 212 for the system 100. The details of this
interface 212 will be described in greater detail in
connection with Figure 5.

The interface between the firmware socket module 120 and
the FAM chain 130 is the firmware module interface 214. The
details of this interface will be described in greater detail
in connection with Figure 4.

Figure 3(a) depicts a printed circuit board or card 300
that can be connected to the PCI-X bus 112 of a commodity
computer system. In the example of Figure 3(a), the printed

circuit board includes an FPGA 302 (such as a Xilinx Virtex II

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

11

FPGA) that is in communication with a memory device 304 and a
PCI-X bus connector 306. A preferred memory device 304
comprises SRAM and DRAM memory. A preferred PCI-X bus
connector 306 is a standard card edge connector.

Figure 3(b) depicts an alternate configuration for a
printed circuit board/card 300. In the example of Figure
3(b), a private bus 308 (such as a PCI-X bus), a disk
controller 310, and a disk connector 312 are also installed on
the printed circuit board 300. Any commodity disk technology
can be supported, including but not limited to SCSI, SATA,
Fibre Channel (FC), etc. In this configuration, thé firmware
socket 120 also serves as a PCI-X to PCI-X bridge to provide
the processor 108 with normal access to the disk(s) connected
via the private PCI-X bus 308.

It is worth noting that in either the configuration of
Figure 3(a) or 3(b), the firmware socket 120 can make memory
304 accessible to the PCI-X bus, which thereby makes memory
304 available for use by the OS kernel 204 as the buffers for
transfers from the disk controller to the FAMs. It is also
worth noting that while a single FPGA 302 is shown on the
printed circuit boards of Figures 3(a) and (b), it should be
understood that multiple FPGAs can be supported by either
including more than one FPGA on the printed circuit board 300
or by installing more than one printed circuit board 300 in
the computer system. Figure 8 depicts an example where
numerous FAMs in a single pipeline are deployed across
nultiple FPGASs.

As shown in Figures 1-3, inbound data (from the kernel
204 to the card 300) is moved across the bus 112 in the
computer system to the firmware socket module 120 and then
delivered by the firmware socket module 120 to the FAM chain
130. Outbound data (from the card 300 to the kernel 204) are
delivered from the FAM chain 130 to the firmware socket module
120 and then delivered by the firmware socket module 120
across the PCI-X bus to the software application executing omn

the computer system. As shown in Figure 2, the three

10

15

20

WO 2007/087507

12

PCT/US2007/060835

interacting interfaces that are used are the firmware module

interface 214, the hardware/software interface 212, and the

software library interface 210.

Firmware Module Interface 214 - Signal Layer

The firmware module interface 214, which is shown in

Figure 4, includes the signals exchanged between the firmware

socket module 120 and the signals exchanged between FAMs

within the FAM chain 130.

further describe these signals.

Table 1 and the description below

Table 1:
Signal Name Description signal Signal Size
Direction
clk Clock Input Signal
reset Reset Input Signal
module_id Module ID Input 6-bit bus
data_in Input Data Input 64-bit bus
data cnt_in Data Count Input 3-bit bus
data_vld in Data Valid Input Signal
ctrl_vld_in Control Valid Input Signal
walt_upstream Wait Upstream Output Signal
data_out Output Data Output 64-bit bus
data_cnt_out .Data Count Output 3-bit bus
data_vld out Data Valid Output Signal
ctrl_vld out Control Valid Output Signal
wait_dnstrm Wait Input Signal
Downstream

through (8)

path 132).

The signal direction entries in the table are listed from

the perspective of a firmware module.

Thus, signals (4)

(“data_in”, “data_cnt_in”, “data_vld_in”,

“ctrl_vld in”, and “wait_upstrm”) comprise the interface

Signals (9) through (13)

(*data_out”,

signals with an upstream firmware module (e.g., communication

“data_cnt_out”, “data_vld_out”, “ctrl vld out”, and

“wait dnstrm”) comprise the interface signals with a

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

13

downstream firmware module (e.g., communication path 134).

The signal “clk” is a 1-bit input signal that is used to
clock the firmware socket module and FAM chain.

The signal “reset” is a 1-bit input sigmal that is used
to reset the firmware socket module and the FAM chain to its
start-up state.

The signal “module_ID” is a 6-bit input bus that informs
each firmware module of its position in the FAM chain.

The signal “data_in” is a 64-bit bus that is used to
transfer target data and command data into the FAM chain. Of
note, by using the same bﬁs to transfer both data and
commands, synchronization between commands and target data can
be maintained with little complexity.

The signal “data_cnt_in” is a 3-bit bus that is used to
determine how many of the 8 bytes on the input bus “data_in”
represent meaningful data. Preferably, values of 1-7 are
literally interpreted, and a value of 0 means that all 8 bytes
are valid.

The signal “data_vld_in” is a 1l-bit input signal that is
used to indicate that the data on the “data_in” bus and the
“data_cnt_in” bus are valid on a given clock cycle.

The signal “ctrl vld _in” is a 1-bit input signal that is
used to indicate that the data on the “data in” bus is valid
command (control) information on a given clock cycle. It is
worth noting that the “ctrl vld in” and “data_vld in” signals
into the same FAM should not be asserted at the same time.

The signal “wait upstrm” is a 1-bit output signal that is
used to tell the upstream firmware module to stop pushing data
into the current firmware module. Preferably, the firmware
module is configured to absorb 2 data values after the wait is
asserted.

The signal “data_out” is a 64-bit output bus that is used
to transfer both data and commands out of a given FAM. Once
again, because the same bus is used to transfer both data and

commands, synchronization between commands and target data can

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

14

be maintained through the FAM chain as each FAM operates on
the received commands and target data.

The signal “data_cnt_out” is a 3-bit bus that is used to
determine how many of the 8 bytes on the output bus “data_out”
represent meaningful data. Preferably, values of 1-7 are
literally interpreted, and a value of 0 means that all 8 bytes
are valid.

The signal “data_vld_out” is a 1-bit output signal that
is used to indicate that the data on the “data_out” bus and
the “data_cnt_out” bus are valid on a given clock cycle.

The signal “ctrl_vld out” is a 1-bit output signal that
is used to indicate that the data on the “data_out” bus is
valid command (control) information on a given clock cycle.

It is worth noting that the “ctrl vld out” and “data_vld out”
signals out of the same FAM should not be asserted at the same
time.

The signal “wait_dnstrm” is a 1-bit input signal that is
used to indicate to the FAM that either the firmware socket
module or a downstream module cannot absgsorb data at the
moment. Preferably, no more data should be shipped out from
that FAM until “wait_dnstrm” is deasserted.

It is worth noting that some contiguous FAMs in the FAM
chain may form a FAM subset, the FAM subset having its own
entry point and exit point. In such instances, the signal
interface described in the table above would be maintained
with respect to the entry point and the exit point of the FAM
subset, but a different signaling interface can optionally be
used internally between the FAMs of the FAM subset. It is
also worth noting that a FAM itself may be comprised of a
chain of firmware application submodules, wherein
communications between the submodules may optiomally follow a
different signaling interface than that described in the above

table.

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

15

Firmware Module Interface 214 - Logical Layer

As noted, the information delivered across the firmware
module interface on the 64-bit “data_in” and “data_out” buses
can either be application data or command (control)
information. Both the firmware socket module 120 and the
individual FAMs 130i maintain the ordering of commands and
data, so this order is preserved throughout throughout the
chain of FAMs. Information flowing down the chain along the
“‘data_in” and “data_out” buses (from the f£irmware socket
module to the first FAM in the chain, from one FAM to the next
downstream FAM, and from the final FAM in the chain to the
firmware socket module) that 1s data is referred to as the
data channel. Information flowing down the chain along the
*data_in” and “data_out” buses that is command (control)
information is referred to as the command channel. Commands
that are delivered via the command channel are typically not
consumed, but are interpreted (if appropriate) and passed on
to downstream modules. As a result, many commands that enter
the command channel are also delivered back to the software.

On the command channel, a preferred format for individual
commands is for them to have a 64 bit length with the
following fields:
command (16 bits); error (1 bit); sync (1 bit); reserved (8
bits); module ID (6 bits); and parameters (32 bits).

The command field is preferably encoded as two ASCII
characters (e.g., “QY” can be a query command), but this need
not be the case - any 16 bit value is valid. Upon entry into
the command channel, the error bit is clear. Any module can
thereafter set the error bit if appropriate, which is then
communicated back to the software when the command exits the
FAM chain and firmware socket module. The sync bit is
preferably set to control synchronization of the outbound
commands and data on their way back to the software.

The module ID field identifies the specific firmware
module that is to respond to the command. Preferably, a value

of 0 for the module ID means that all modules are to respond

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

16

to the command (including not only all of the FAMs but also
the firmware socket module). Also, it is preferred that a
value of 1 for the module ID means that all modules except the
firmware socket module are to respond to the command.
Preferably, the module ID value of 2 is reserved for the
firmware socket module alone, and module ID values greater
than or equal to 3 are directed toward specific FAMs. Each
FAM will know of its own module ID value by virtue of the
input signal module ID described in connection with the
firmware module interface’s sigmal layer.

Preferred global commands for the firmware module
interface include a reset command, gquery command, query
response command, pass through command, start of data command,
and end of data command.

The reset command (RS) operates to reset the entire FAM
chain or individual FAMs, as indicated by the command’s module
ID field. Preferably, the parameter field is unused for this
command.

The query command (QY) operates to query a module to
assess its current status. The module should respond with one
or more Query Response (QR) commands. After the module has
responded with its query respomnses, that module passes the
original QY command to the next module in the chain.
Preferably, the parameter field is unused for this command.

One or more query response commands (QR) are generated by
a module when it receives a QY command. Upon receipt of a
query response, FAMs should simply forward them downstream.
Preferably, the parameter field for a QR command is module-
specific, wherein this 32-bit field is split into two
subfields - the most significant 8 bits being a tag that
indicates what type of information is being sent and the least
significant 24 bits being the data associated with the given
tag.

The pass through command (PS) informs a module if it is
to pass data through unaltered or if it is to perfprm its

normal data processing operation. The pass through mode does

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

17

not impact command processing or command forwarding - its
impact is limited only to the data channel. Preferably, the
least significant bit (bit 0) of the parameter field
enables/disables the pass through mode - with a pass through
bit value of 1 enabling the pass through mode and a pass
through bit value of 0 disabling the pass through mode.

The start of data command (SD) is used to mark the start
of a data stream (typically on a file boundary). The end of
data command (ED) is used to mark the end of a data stream
(once again, typically on a file boundary). The parameter
fields for the SD and ED command are preferably unused,
although in some instances, they can be used to specify a file
ID or a frame ID.

Command propagation through the FAM chain preferably
proceeds as follows: (1) global commands (those commands
whose module ID value is 0 or 1) are propagated forward by
each FAM in the FAM chain, (2) a FAM will propagate forward
any command whose module ID value is set for a different FAM,
and (3) a FAM will propagate forward any command whose sync
bit is set.

Preferred commands that are or can be specific to the
firmware socket module include a data count command, reset
command, and a query response command.

A data count command (DC) can be used to ask the firmware
socket module how much data has passed through the FAM chain
since the last time it was reset. One DC command sent to the
firmware socket module will result in the 3 DC commands being
returned. The first responsive DC command will identify the
number of bytes that have gone into the FAM chain. The second
responsive DC command will identify the number of bytes of
data that has exited the FAM chain. The third responsive DC
command will be the original sent DC command that is being
returned. Preferably, an SD command or an RS command will
operate to reset the data counts. With respect to the
parameters field, the sent DC command’s parameters field is

preferably ignored while the parameters field of the

10

15

20

25

30

WO 2007/087507 PCT/US2007/060835

18

responsive DC commands will preferably identify the relevant
number of bytes as described above.

The reset command (RS) format is described above in
connection with the global commands. When the firmware socket
module receives an RS command, it preferably resets the entire
FAM chain and also clears any input and output queues. Any
data that may not yet have been returned from the card by the
firmware socket module will be cleared by the RS command;
thus, applications should make sure that they have received
all expected data before sending a reset command to the
firmware socket module. This can be achieved by sending a
command with the sync bit set or by strobing the Flush bit in
the Eirmware socket module’s doorbell register,

The query response command (QR) format is also described
above in connection with the global commands. Preferably,
when the firmware socket module issues a QR command, its

parameters field will be set as follows in Table 2 below:

Table 2:
Tag (8 bits) Value (24 bits)
0 Module Type (“Firmware
Socket Module”)
1 Version Number
2 Build (Revision Number)

Commands that are specific to the FAMs will vary as a
function of each FAM's data processing operation. For
example, a set of commands applicable to a FAM that is
configured to perform a search operation where a pattern is
matched to a stream of target data would preferably include
commands that define the pattern(s) against which the data
stream is searched, commands that identify how much context
from the data stream should be returned when a match to the
pattern is found in the data stream (e.g., returning X number
of bytes before and after the match within the data stream),
commands that define the number of mismatches allcwed for a

given pattern (e.g., if the pattern is of length 10, a

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

19

mismatch value of K will allow a match to occur when any (10-
K) of the 10 pattern characters match within the data stream),
commands that define which bits in a pattern must find a match
in the data stream for a match to be declared, commands that
define a file within the data that is to be searched, and
commands that define a subset of data within a file that
should be searched. The parameters field or optionally other
fields of such commands can be used to define these aspects of
the pattern matching operation performed by the FAM. Also the
QR command from a FAM that is configured to perform a pattern
matching operation preferably responds with tags whose values
correspond to an identification of the FAM type, an
identification of the FAM type’s version, an identification of
the FAM type’s build, and an identification of the number of
patterns supported by the FAM.

As another example, a set of commands applicable to a FAM
that is configured to perform an encryption or decryption
operation would preferably include commands that identify the
key that should be used in the encryption/decryption
operation.

In addition to any other previously listed data
processing operations that can be performed by FAMs, possible
data processing operations also include a field selection
operation that takes in fixed length records and passes only
the bytes of the record that have been selected (wherein a
command to such a FAM would indicate which bytes are to be
selected), a record gate operation that adds padding to
records whose size is not a multiple of the data size
processed through the FAMs (8 bytes in the preferred example
described herein) (wherein a command to such a FAM would
indicate the desired record size), an inverse record gate
operation that removes padding bytes from records (wherein a
command to such a FAM would indicate which bytes of a recoxrd
are to be removed), and a record select operation that
gearches within specified column boundaries of fixed length

records for matches to one or more patterns (an operation

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

20

whose commands would be similar to the pattern matching
commands described above but also including a command that
identifies how records are to be masked to limit the searches
to occur within specified column boundaries).

Preferably, the FAMs that are deployed on the FPGA are
dedicated to performing one type of data processing operation,
wherein the command signals operate to define specific aspects
of that type of data processing operation. For example, as
shown in Figure 7, each FAM in the FAM chain is devoted to a
type of data processing operation - e.g., the first FAM is
configured to performing a decompression operation, the 4" FaM
is configured to perform one type of search operation, the 5
FAM is configured to perform another type of search operation,
and the second to last FAM is configured to perform an
encryption operation. Through appropriate commands, the
specifics of each FAM’s data processing operation can be
controlled (e.g., to arrange the 4" FAM to search for the term
“Smith”, or to arrange the second to last FAM to perform an
encryption operation using Key A). If a FAM is to be entirely
reprogrammed to perform a different type of data processing
operation, it is preferred that the FPGA be reconfigured to
achieve this end, although this need not be the case.

Furthermore, by appropriately turning on or off each FAM
in the FAM chain, specialized processing operations can be
achieved by the FAM chain. For example, to perform a search
within a data stream for a given pattern wherein that data is
stored in an encrypted format, commands can be sent to the FAM
chain that (1) turns on one of the search FAMs and arranges it
with the given pattern, (2) turne on the decryption FAM and
arranges it with the appropriate key to decrypt the data
stream, and (3) turns off all other FAMs in the chain. In
such an instance, an encrypted data stream will be decrypted
by the second FAM and the decrypted data stream will be

searched by one of the search FAMs for the given pattern.

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

21

Hardware/Software Interface 212

Preferably, the firmware socket module uses a Xilinx PCI-
X core with a backend to transfer data to/from the system’s
memory space when used in conjunction with driver level system
software 204. The nature of this backend interface is
described in greater detail herein.

The Xilinx PCI-X Core Version 5.0 handles translation
from the interface as described by the PCI-X specification to
an interface designed by Xilinx as described by the Xilinx
LogiCore PCI-X Design Guide Version 5.0 and the Xilinx
LogiCore PCI-X Implementation Guide Version 5.0. Preferably,
the configuration parameters are set to indicate that the PCI-
X-connected printed circuit board 300 is 64-bit and 133 MHz
capable. Whether the system BIOS sets the speed of the device
to 100 MHz or 133 MHz depends upon the 133 MHz capability bit
and the physical voltage and time delay on the PCIXCAP pin.

If the modules deployed on the FPGA 302 only run at 100 MHz,
then the PCIXCAP pin should be set to indicate this. Also,
the PCI-X configuration can be set to use up to 3 64-bit Base
Address Registers (BARs) or 6 32-bit BARs. Preferably, the
firmware socket module 120 uses the first BAR, configured as a
64-bit BAR, to map its device registers for communication with
the device driver software 204.

The bulk of communications between the firmware socket
module 120 and the device driver software 204 preferably
occurs via three sets of descriptor pools. As shown in Figure
5, the buffers for these descriptor poolg comprise a kernel to
card input descriptor pool buffer 500, a card to kernel output
descriptor pool buffer 504 that is for data, and a card to
kernel output descriptor pool buffer 506 that is for commands.
These descriptor pool buffers preferably reside in memory
space that is managed by the 0S kernel/device driver software
204 (for example, within RAM 110). Each entry in buffers 500,
504 and 506 comprises a descriptor, wherein each descriptor

may span multiple addresses within the buffer.

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

22

In addition to the byte count fields and other flags
described below, the descriptors each preferably contain the
physical and virtual address of memory locations for data
movement either from the software to the hardware (for an
input descriptor) or from the hardware to the software (for an
output descriptor). Thus, the entries in the descriptor pool
buffers serve as pointers to where the firmware socket module
is to read data from or write data to.

The memory space 502 from which and to which the firmware
socket module is to read/write data (both commands and target
data) can be any memory in the physical address space of the
computer system and any physically addressable data storage
device connected to the computer system. As such, memory
space 502 need not be limited to the motherboard of the
computer system (e.g., RAM 110). For example, if memory 304
of the card is made available to the driver level software
204, then the memory space 502 for storing commands and target
data could include memory 304. Also, the memory space 502 can
include addresses within data store 104 or some other system-
connected storage device if the address space of data store
104 or such a storage device is made available to driver level
software (e.g., through disk controller 106 for data store
104).

preferred normal operation for the hardware/software
interface 212 is as follows:

1) The software device driver 204 puts commands and data
that are to be delivered to the FAMs into a set of
buffers in the memory space 502. Preferably, the driver
level software 204 stores target data that is to be
streamed through the re-configurable logic device as a
single set in contiguous addresses of memory space 502,
which enhances not only the rate at which target data can
be loaded into the FPGA but also provides flexibility in
that consecutive descriptors pointing to such

contiguously stored target data can potentially be

WO 2007/087507

10

15

20

25

30

35

2)

3)

4)

PCT/US2007/060835
23

consolidated into fewer descriptors by updating the
descriptor’s byte count fields appropriately.

The device driver 204 then builds the input descriptors
that tell the firmware socket module about the content of
the buffers in memory space 502. Preferably, one
descriptor is used for each command or segment of M bytes
of target data, wherein the size of M is variable
according to a variety of factors. The size for M can be
defaulted to 32 kilobytes. However, as noted this value
can be variable by software giving consideration to a
desire to minimize the processor overheads associated with
buffer setup, descriptor management, and the like while still
moving large amounts of data through the card for each
descriptor. The device driver 204 also preferably builds
output descriptors that tell the firmware socket module
where to place data and commands that come back from the
FaMs. The input descriptors are stored by the device
driver 204 in the input descriptor pool buffer 500. The
output descriptors that correspond to data are stored by
the device driver 204 in the output descriptor pool
buffer 504, and the output descriptors that correspond to
commands are stored by the device driver 204 in the
output descriptor pool buffer 506.

The device driver 204 then informs the firmware socket
module that new input descriptors and output descriptors
are available via a doorbell signal over communication
path 510.

The firmware socket then reads a first input descriptor
in buffer 500 to identify the location where the data
(command or target data) to be delivered to the FAM chain
is stored, performs a DMA transfer of the data (command
or target data) from that location to the FAM chain, and
moves on to the next input descriptor in the buffer 500.
Thus, commands and target data are provided to the FAM
chain in the same order as set within the input

descriptor pool buffer 500.

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

24

5) The firmware socket module then delivers commands exiting
the FAM chain to.a buffer in memory space 502c¢c as
specified by the command output descriptor in buffer 506.
The firmware socket module also deiivers data exiting
from the FAM chain to a buffer in memory space 502b as
specified by the data output descriptor in buffer 504.

6) The firmware socket module then notifies the device
driver (via an interrupt) that commands and/or data are
available.

7) Software then invokes the appropriate data or command
handler as appropriate to address the returned data
and/or commands (which is controlled via the software
library interface 210).

When sending information from the software to the
reconfigurable logic device, all transfers (both command and
data) are preferably managed by the common input descriptors
stored in buffer 500. As long as individual FAMs in the FAM
chain do not reorder data and commands, the order of data and
commands defined by the order of input descriptors in buffer
500 will be maintained throughout processing within the
reconfigurable logic device.

Strict ordering is not necessarily required for data and
commands that are sent from the reconfigurable logic device
back to the software. If strict synchronization is desired
throughout the process (including the return of commands and
data to the software), then the device driver software can set
the sync bit in an individual command. When a command with
the sync bit set arrives at the firmware socket module from
the exit point from the FAM chain, then the firmware socket
module preferably performs the following functions: (1) flush
the data channel buffers to memory, (2) create a null (empty)
buffer in the data channel that has a sync flag set in the
data output descriptor, (3) ensure that this data output
déscriptor is flushed to memory, and (4) flush the command

channel buffer (with the sync bit set in the command itself).

10

15

WO 2007/087507 PCT/US2007/060835

25

The firmware socket module 120 preferably has 16 device
registers that are mapped into the memory region of the first
BAR identified above (and which is configured as a 64-bit
BAR). The physical addresses of each device register are the
Base Address plus an offset. The registers and their offset

from the BAR are listed in table 3 below:

Table 3:

Offset from BAR Device Register
0x00 Firmware ID
0x08 FPGA Info
0x10 Device Status
0x18 Onboard RAM Size
0x%20 Doorbell
0x28 Interrupt Status
0x30 Data-to-Card Address
0x38 Data-to-Card Count
0x40 Data-to-Card Next
0x48 Data-to-Kernel Address
0x50 Data-to-Kernel Count
0x58 Data-to-Kernel Next
0x60 Data-to-Kernel Address
0x68 Data-to-Kernel Count
0x70 Data-to-Kernel Next
0x78 Parameters

The firmware ID is a 64-bit read-only register composed
of 2 values. The least significant 32-bits are the firmware
ID number and the most significant 32-bits are the revision
number of the particular firmware indicated by the ID.

The FPGA information register is a 64-bit read-only
register that contains 2 pieces of information- the FPGA type
and the FPGA size. The FPGA type is 4 ASCII characters (32-
bits) that indicate the type of FPGA. For example, if the
FPGA device is a Xilinx Virtex-II device, then the FPGA type
would be “xc2v”. The FPGA size is a 32-bit integer that

indicates what size FPGA is being used. For example, if the.

WO 2007/087507 PCT/US2007/060835

10

15

20

26

FPGA device is a Xilinx Virtex-II 4000, then the FPGA size
would be 4000. The FPGA type is the least significant 32 bits
of the FPGA information register, while the FPGA size is the
most significant 32-bits of the register.

The device status register is a 64-bit read-only register
containing 2 pieces of information about the hardware system
attached to the hardware device. The least significant 32-
bits indicate the type of hardware system that is attached to
the hardware device. Table 4 below indicates an example of

device type numbering.

Table 4:
Device Type
Number Type of Attached System
0 Invalid Device Type
1 Standalone System (mo attached
devices)
2 SCSI
3 IDE
4 FibreChannel
5 isCsI
6 Reserved

The most significant 32-bits of the device status register are
an integer indicating the number of devices connected to the
hardware system.

The onboard RAM gize is a 64-bit register that indicates
the amount of memory 304 (in kilobytes) that is attached to
the FPGA device.

The doorbell register is a 64-bit read/write register
that contains flags used for communication between the driver
level software 204 and the firmware socket module 120. The
doorbell flags and their functionalities are listed in table 5

below:

10

15

20

25

WO 2007/087507 PCT/US2007/060835

27
Table 5:
Doorbell Bit(s) Name of Functionality
0 Run
1 Stop
2 Firmware Socket Module Reset
3 Flush
4 Strobe Debug
5 Clock Counter Reset
6-63 Reserved

The Run bit is set by the driver level software 204 to
tell the firmware socket module to start or resume running.
This bit will be cleared by the firmware socket module when it
is acknowledged by the hardware. The Stop bit is set by the
driver level software 204 to tell the firmware socket module
to stop running or pause. This bit will be cleared by the
firmware socket module when it is acknowledged by the
hardware. The Reset bit is set by the driver level software
204 to reset the firmware socket module and all of the FAMs in
the FAM chain. This bit will be cleared by the firmware
socket module when it is acknowledged by the hardware. The
Flush bit is set by the driver level software 204 to f£lush the
outbound buffer(s) on the firmware socket module that holds
commands and data destined for the software. This bit will be
cleared by the firmware socket module when it is acknowledged
by the hardware. The Strobe Debug bit is a bit that can be
used for debugging purposes. The Clock Counter Reset bit
resets the counters in the firmware socket module that are
used for determining the clock speed of the PCI-X bus. The
clock speed of the PCI-X bus can be determined by reading the
upper 9 bits of the firmware socket module parameters
register.

The interrupt status register is a 64-bit read/write
register that is used to notify to the driver level software

204 of the interrupt conditions listed in table 6 below. Any

WO 2007/087507 PCT/US2007/060835

10

15

20

28

time an interrupt condition is set, an interrupt is triggered
on the PCI-X bus to interrupt the operating system and should
be responded to by the driver level software 204. If multiple
interrupt conditions occur before the driver level software
204 reads the interrupt status register, then multiple bits
will be set when the software reads the interrupt status

register. When the interrupt status register is read, it is

cleared.
Table 6:
Interrupt Bit Name
0 Data-to-Card Input Descriptor Buffer Empty
1 Data-to-Card Error
2 Data-to-Card Input Descriptor Buffer Done
3 Data-to-Kernel Output Descriptor Buffer Full
4 Data-to-Kernel Error
5 Data-to-Kernel Output Descriptor Buffer Ready
6 No Results Found
7 Command-to-Kernel Output Descriptor Buffer Full
8 Command-to-Kernel Error
S Command-to-Kernel Output Descriptor Buffer Ready
10-63 Reserved

The firmware socket module sets Interrupt Bit 0 when it
tries to read an input descriptor buffer of data and the next
input descriptor buffer is not ready to be read (by checking
the Ready bit of the next input descriptor queued in the
buffer 500). If Interrupt Bit 0 has been written, then the
driver level software 204 must write to the Run bit of the
doorbell register before the firmware socket module will try
to read the input descriptor pool buffer again.

Interrupt Bit 1 signals that an error has occurred when
reading an input descriptor of data destined for input to the
firmware socket module.

If the interrupt flag of the input descriptor pool buffer

500 is set, then the firmware socket module will set Interrupt

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

29

Bit 2 after it is done reading an input descriptor buffer of
input data.

The firmware socket module sets Interrupt Bit 3 if it has
data to output to the kernel, but the next data-to-kernel
output descriptor buffer is unavailable (by checking the Ready
bit of the next data output descriptor queued in the buffer
504) . Once the firmware socket module has set this interrupt,
the driver level software 204 must write to the Run bit of the
doorbell register after it has made the data-to-kernel output
descriptor buffer(s) available before the firmware socket
module will try again to output data.

Interrupt Bit 4 signals that an error has occurred when
the firmware socket module tried to write data to an output
descriptor buffer.

The firmware socket module set Interrupt Bit 5 whenever
it writes data to a data-to-kernel output descriptor buffer
and has closed the descriptor (i.e., the firmware socket
module is moving on to the next data-to-kernel descriptor
buffer for writing data).

Interrupt Bit 6 is defined to indicate that there is no
output data to be returned when a Flush bit has been set in
the doorbell register.

The firmware socket module sets Interrupt Bit 7 if it has
command data to output to the kernel, but the next command-to-
kernel output descriptor buffer is unavailable (by checking
the Ready bit of the next command output descriptor queued in
the buffer 506). Once the firmware socket module has set this
interrupt, the driver level software 204 must write to the Run
bit of the doorbell register after it has made the command-to-
kernel output descriptor buffer(s) available before the
firmware socket module will try again to output command data.

Interrupt Bit 8 signals that an error has occurred when
the firmware socket module tried to write command data to a
command output descriptor buffer.

The firmware socket module sets Interrupt Bit 9 whenever

it writes data to a command-to-kernel output descriptor buffer

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

30

and has closed the descriptor (i.e., the firmware socket
module is moving on to the next command-to-kernel descriptor
buffer for writing command data).

The data-to-card address register is a 64-bit read/write
register that is used to indicate the physical address of the
beginning of the data-to-card input descriptor pool buffer
500. The driver level software 204 should write to this
register before the Run bit of the doorbell register is
written to for the first time.

The data-to-card count register is a 32-bit read/write
register that is used to indicate the number of data-to-card
input descriptor buffers available for reading data. The
driver level software 204 should write to this register before
the Run bit of the Doorbell register is written to for the
first time. When this address is read from, a 64-bit value is
returned wherein the upper 32 bits are padded with zeros.

The data-to-card next register is a 32-bit read/write
pointer to the next data-to-card input descriptor buffer that
is to be read from. This is used to ensure that the firmware
socket module and the driver level software are in sync. When
this address is read from, a 64-bit value is returned wherein
the upper 32 bits are padded with zeros.

The data-to-kernel address register is a 48-bit
read/write register that is used to indicate the physical
address of the beginning of the data-to-kernel output
descriptor pool buffer 504. The driver level software 204
should write to this register before the Run bit of the
doorbell register is written to for the first time. When this
address is read from, a 64-bit value is returned wherein the
upper 16 bits are padded with zeros.

The data-to-kernel count register is a 32-bit read/write
register that is used to indicate the number of data-to-kernel
output descriptor buffers available for writing data. The
driver level software 204 should write to this register before

the Run bit of the Doorbell register is written to for the

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

31

first time. When this address is read from, a 64-bit value is
returned wherein the upper 32 bits are padded with zeros.

The data-to-kernel next register is a 32-bit read/write
pointer to the next data-to-kernel output descriptor buffer
that is to be written to. This is used to ensure that the
firmware socket module and the driver level software are in
sync. When this address is read from, a 64-bit value is
returned wherein the upper 32 bits are padded with zeros.

The command-to-kernel address register is a 48-bit
read/write register that is used to indicate the physical
address of the beginning of the command-to-kernel output
descriptor pool buffer 506. The driver level software 204
should write to this register before the Run bit of the
doorbell register is written to for the first time. When this
address is read from, a 64-bit value is returned wherein the
upper 16 bits are padded with zeros.

The command-to-kermnel count register is a 32-bit
read/write register that is used to indicate the number of
command-~to-kernel output descriptor buffers available for
writing command data. The driver level software 204 should
write to this register before the Run bit of the Doorbell
register is written to for the first time. When this address
is read from, a 64-bit value is returned wherein the upper 32
bits are padded with zeros.

The command-to-kernel next register is a 32-bit
read/write pointer to the next command-to-kernel output
descriptor buffer that is to be written to. This is used to
ensure that the firmware socket module and the driver level
goftware are in sync. When this address ig read from, a 64-
bit value is returned wherein the upper 32 bits are padded
with zeros.

The parameters register is a 64-bit register that is used
to set programmable parameters in the firmware socket module.
Some of these parameters are read/write while others are read-

only as depicted in table 7 below.

WO 2007/087507 PCT/US2007/060835

10

15

20

25

32
Table 7:
Bits Parameter Read/Write
5-0 Max PCI-X Burst Size Read/Write
54-6 Reserved Read/Write
55 Bus Speed Valid Read-Only
63-56 PCI-X Bus Speed Read-Only

The Max PCI-X Burst Size parameter is used to set the
maximum size transaction that the firmware socket module will
try to execute on the PCI-X bus 112. This maximum transaction
size will be the 6-bit value in the parameters register times
128, although setting this field to zero will set the maximum
transaction size to 4096 (the maximum transaction size allowed
by the PCI-X specification).

Bit 55 of the parameters register is used to indicate if
the PCI-X bus speed in the upper 8 bits of this register is
valid (wherein a “1” indicates validity and a “0” indicates
invalidity).

The most significant 8 bits of the parameters register
indicates the calculate speed of the PCI-X bus in MHz. The
Bus Speed Valid bit (bit 55) should also be read to determine
if this value is valid or not. If the PCI-X Bus Speed value
is not valid, the driver level software should wait a short
time and reread the value.

As discussed, communications between the firmware socket
module and the driver level software 204 occurs using 3 sets
of descriptors - 1 input descriptor pool and 2 output
descriptor pools (one for commands and the other for data).
Each pool has its own set of descriptors which contain flags
and fields with information about the descriptor buffers
(kernel buffers).

Each descriptor is preferably 32 bytes long, broken down

into 4 pieces of 8 bytes each, as shown in table 8 below:

5

10

15

20

WO 2007/087507

PCT/US2007/060835
33
Table 8:

Number of Bytes Field

8 Flags

8 Byte Count

8 Physical Address

8 Virtual Address

The flags field is a 64-bit field containing information

about the descriptor buffer as described in table 9 below:

Table 9:

Bit(s) Flag Name

Busy

Command/Datea

Data-to-Kernel

Data-to-Card

Ready

Done

] O1f | W M| | O

Interrupt

7-63 Reserved

The Busy bit is set by the driver level software 204 to
indicate that the descriptor buffer is in use.

The Command/Data bit is used to tell the firmware socket
module whether the buffer contains command information or
data. If the buffer contains command information, this bit
should be set; otherwise this bit should be cleared. The
firmware socket module reads this bit on the data-to-card
input descriptor buffers and marks all the data in that buffer

appropriately (as either command O data).

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

34

The Data-to-Kernel bit indicates whether or not the data
in the buffer is destined for the driver level software 204
(the kernel)., If this bit is set, the data is output from the
firmware socket module, destined for the kernel. The firmware
socket module is responsible for setting this bit. Either
this bit or the Data-to-~Card bit should always be set, but
never both.

The Data-to-Card bit indicates whether the data in the
buffer is destined for the firmware socket module (deployed on
the card). If this bit is set, the data is input to the
firmware socket module from the driver level software 204.

The driver level software 204 is responsible for setting this
bit. Either this bit or the Data-to-Kernel bit should always
be set, but never both.

The Ready bit is set by the driver level software 204 to
indicate that a buffer is ready for use by the firmware socket
module. The firmware socket module should clear this bit when
it processes the buffer.

The Done bit is set by the firmware socket module to
indicate to the driver level software 204 that the firmware
socket module has finished processing the buffer. Driver
level software 204 should clear this bit when it has finished
cleaning up the buffer.

The Interrupt bit is set by the driver level software to
instruct the firmware socket module to interrupt with a Data-
to-Card Descriptor Buffer Done Interrupt after it has
processed this buffer.

The byte count field is a 64-bit field that contains a
byte count for the buffer. The meaning of the byte count
differs for input and output descriptor buffers. For data-to-
card input descriptor buffers, the byte count field is the
number of bytes of data contained in the buffer. The firmware
socket module only uses 20 bits for the incoming byte count,
thus the maximum data-to-card buffer that the firmware socket
module can handle is (1IMB-1) bytes. This byte count value
should be set by the driver level software 204. For the data-

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

35

to-kernel and command-to-kernel output descriptor buffers, the
byte count is initially set by the driver level software 204
to indicate how many bytes are available in the buffer for
writing. When the firmware socket module sets the done bit on
the buffer, it should also update the byte count with the
actual number of bytes written to the buffer. This will also
be a maximum of (1MB-1) bytes.

The physical address field is a 64-bit field containing
the physical address of the kernel buffer in main memory.

This field is set by the driver level software 204.
Preferably, the firmware socket module only handles physical
addresses that can be represented in 48 bits.

The virtual address field is a 64-bit field that contains
the virtual address of the kernel buffer and is used only by
the driver level software 204.

In operation, when the firmware socket module receive a
Run signal on its doorbell register, the firmware socket
module will read and continue to read data-to-card input
descriptors in the buffers 500 until it tries to read from a
buffer that is not ready or until there is command information
or data in an output FIFO maintained by the firmware socket
module.

The firmware socket module preferably gives command
information for output the highest priority. If there is any
command information for output, the firmware socket module
will output it to an available Command-to-Kernel output
descriptor buffer 506. If such a buffer 506 is unavailable,
the firmware socket module will issue a Command-to-Kernel
Output Descriptor Buffer Full interrupt. The firmware socket
will then not try to output command information to a buffer
506 again until the Run bit in the doorbell register is
written to by the driver level software 204 to indicate that
buffers 506 have been made available.

The firmware socket module preferably gives data for
output the second highest priority. If the amount of data in

the firmware socket module’s output FIFO is greater than or

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

36

equal to the maximum PCI-X burst size, then the firmware
socket module will output data to an available data-to-kernel
output descriptor buffer 504. If the next data-to-kernel
buffer 504 is unavailable, the firmware socket module will
signal a Data-to-Kernel Output Descriptor Buffer Full
interrupt. The firmware socket module will then not try to
output data to a buffer 504 again until the Run bit in the
doorbell register is written to by the driver level software
204 to indicate that buffers 504 have been made available.

The firmware socket module preferably gives incoming data
or commands the lowest priority. If the next data-to-card
input descriptor buffer 500 is unavailable, then the firmware
socket module will signal a Data-to-Card Input Descriptor
Buffer Empty interrupt. The firmware socket module will not
try to read the next buffer 500 again until the Run bit of the
doorbell register is written to by the driver level software
204, indicating that the buffers 500 have been filled.

The firmware socket module will also preferably continue
processing buffers 500, 504, and 506 in order until the Next
pointer reaches the Count, at which point the Next pointer
will reset to the first buffer.

Figure 6(a) illustrates an example of how inbound data
and commands can be processed by the system 100. The input
descriptor pool buffer 500 of Figure 6(a) stores a plurality
of descriptors, the descriptors including pointers to
addresses in memory space 502 where commands and target data
are stored. In this example, pointer 1 points to a command
that arranges FAM#3 in a FAM chain 130 to perform a search for
the term "Smith” in a data stream. Pointers to other commands
are identified in Figure 6(a). Buffer 500 also stores
descriptors that point to target data that is to be processed
through the system 100 (see, for example, pointer 4). As
indicated, the driver level software 204 will populate the
buffer 500 with these descriptors, thereby defining the order
of commands and data that are to be delivered to the firmware

socket module and propagated through the FAM chain.

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

37

Figures 6(b)-(0) depict such propagation using the order
defined by the example of Figure 6(a). For ease of
illustration, SD and ED commands are omitted at the boundaries
of the target data in the buffer 500. As can be seen, the
defined order between commands and target data is maintained
by the firmware socket module and FAM chain as these commands
and data are processed through the FPGA. By appropriately
ordering commands and target data in the input descriptor
buffer, the software can achieve powerful high speed data
processing operations. For example, the descriptors in buffer
500 corresponding to pointers 1-5 are effective to perform a
decryption operation on encrypted target data stored in memory
from Address A+l through C followed by a search through the
decrypted data for the presence of the term “Smith”. Also,
presuming that the data stored in memory from Address P+1
through W has been compressed after being encrypted, the
descriptors in buffer 500 corresponding to pointers 6 et seq.
are effective to perform a decompression operation on that
target data, followed by a decryption operation on the
decompressed target data, followed by a search through the
decrypted and decompressed target data for the presence of the
term “Jones”. It is also worth noting that in practice, the
length of target data processed following a set of commands is
likely to be considerably greater than the example shown in
Figures 6(a)- (o), for example the length of target data can be
on the order of megabytes, gigabytes, and even terabytes {or
greater) depending upon the scope of the desired data

processging operation.

Software Library Interface 210:

The software API that supports application use of FAMs is
preferably embodied in a class, such as a class that could be
labeled ExegyFpga. This class preferably includes the
following public methods:

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

38

bool ExegyFpga::8endCommand { const char * TwoChars,
const it ModulelID,
const unsigned int Parameter,
const bool WaitForIt,

const bool Sync)

The SendCommand method delivers the given command to the
firmware socket module and FAMs via the command channel. The
argument “TwoChars” is a pair of bytes (typically ASCII
characters, but this need not be the case) that goes in the
command field (16 bits). The error field is cleared (set to
0). The argument “Sync” goes in the sync field (1 bit). The
argument “ModuleId” goes in the Module ID field (6 bits). The
argument “Parameter” goes in the parameters field (32 bits).
The argument “WaitForIt” is a flag that indicates whether the
method invocation should block (if WaitForIt is 1) or not
block (if WaitForIt isg 0) until the command returns from the

firmware. The method returns false on error.

size_t ExegyFpga::Write (gize t bytes, char * buffer)
The Write method delivers data from the given buffer to

the data channel. The method returns the number of bytes

transferred or an error in “exrrno”.

size t ExegyFpga::ReadCmd (size_t bytes, char * buffer)
The ReadCmd method reads commands from the Command-to-

Kernel output descriptor buffer(s) and delivers them to a user

buffer. This method returns bytes placed in the buffer.
size_t ExegyFpga: :Read(size_t bytes, char * buffer)
The Read method reads data from the Data-to-Kernel output

descriptor buffer(s) and delivers them to a user buffer. This

method returns bytes placed in the buffer or an “errno”.

WO 2007/087507

10

15

20

39

ENODATA is returned on a sync mark being encountered (i.e.,
the null buffer which is the result of a command sync bit).
An exemplary use of the software library interface is

illustrated below.

Card = ExegyFpga::0pen(..);

Card->SendCommand(...) ; //send a command to FAM chain
Card->Write(..); //send test data
Card->ReadCmd{..); //ensure command made it
Card->Read (..) ; //read test data

Card->Close{) ;

While the present invention has been described above in
relation to its preferred embodiment, various modifications
may be made thereto that still fall within the invention's
scope. Such modifications to the invention will be
recognizable upon review of the teachings herein. As such,
the full scope of the present invention is to be defined

solely by the appended claims and their legal equivalents.

PCT/US2007/060835

10

15

20

25

30

35

0 2007/087507 PCT/US2007/060835
40

WHAT IS CLAIMED IS:

1. A method of interfacing at least one firmware application
module that is deployed on a reconfigurable logic device with
a computer system, the computer system comprising a processor
and a memory space that are in communication with each other,
wherein the at least one firmware application module is
configured to perform a data processing operationm on any
target data that it receives, the method comprising:

within a firmware module that is deployed on the
reconfigurable logic device and that interfaces the at least
one firmware application module to the computer system memory
space, (1) reading from a buffer within the memory space to
identify a plurality of commands and target data that are to
be provided to the at least one firmware application module,
wherein the buffer defines an order in which the commands and
target data are to be provided to the at least one firmware
application module, each command controlling the data
processing operation that the at least one firmware
application module is to perform on any target data that it
receives, and (2) transferring commands and target data from
the computer system memory to the at least one firmware

application module in accordance with the defined order.

2. The method of claim 1 further comprising:
processing the transferred commands and target data
through the at least one firmware application module as a

stream of interleaved commands and target data.

3. The method of claim 2 wherein a communication path links
the firmware module with the at least one Eirmware application
module, and wherein the transferring step comprises providing
the commands and target data to the at least one firmware

application module over the same communication path.

4, The method of claim 3 wherein the at least one firmware

application module comprises a plurality of firmware

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

41

application modules that are arranged in a pipeline, the
pipeline having a first firmware application module and a
final firmware application module, wherein the transferring
step further comprises transferring, over the same
communication path, the commands and target data from the
computer system memory to the first firmware application
module of the pipeline in accordance with the determined

order.

5. The method of claim 4 wherein the processing step further
comprises sequentially processing the transferred commands and
target data through each additional firmware application
module of the pipeline culminating in the final firmware

application module of the pipeline.

6. The method of claim 5 wherein a plurality of the commands
are specific to individual ones of the firmware application

modules.

7. The method of claim 6 wherein at least one of the
commands comprises a pass through command to one of the

firmware application modules.

8. The method of claim 6 wherein the data processing
operations defined by the commands comprise at least two
members of the group consisting of a search operation, a data
reduction operation, an encryption operation, a decryption
operation, a compression operation, a decompression operation,

and a pass through operation.
9. The method of claim 5 wherein the computer system memory
space includes random access memory (RAM), and wherein the

external buffer is stored in the RAM.

10. The method of claim 9 further comprising:

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

42

managing the external buffer with a device driver that

operates under control of the processor.

11. The method of c¢laim 10 wherein the buffer comprises a
first buffer, wherein the final firmware application module of
the pipeline is configured to produce an output as a result of
the data processing operation that it performs on any target
data that it receives, the method further comprising:

via an additional communication path that links the final
firmware application module with the firmware module,
transferring the final firmware application module’s output to
the firmware module; and

within the firmware module, (1) reading an additional
buffer managed by the device driver to determine a location in
the computer system memory space where the final firmware
application module’s output is to be stored, and (2)
transferring the final firmware application module’s output to

the determined location in the computer system memory.

12. The method of claim 10 further -comprising:

storing the target data in the computer system memoxry
space in contiguous memory addresses in the same order as the
target data are to be provided to the firmware application

module pipeline.

13. The method of claim 12 wherein the managing step
comprises populating the first buffer with pointers to the
memory space addresses where the commands and target data are

stored in the computer system memory space.

14. The method of claim 13 wherein the populating step
comprises storing the pointers in the first buffer in the same
order as the commands and target data corresponding thereto
are to be provided to the firmware application module

pipeline.

10

15

20

25

30

35

WO 2007/087507

43

15. The method of claim 4 wherein the reconfigurable logic

device comprises a field programmable gate array (FPGA).

16. A method for controlling the flow of data and commands to
at least one firmware application module that is deployed on a
re-configurable logic device, the commands comprising
instructions for controlling the processing of the data by the
at least one firmware application module, the method
comprising:

providing a common communication path to said at least
one firmware application module; and

delivering both the commands and data over the common
communication path to said at least one firmware application

module.

17. The wmethod of claim 16 wherein the at least one firmware
application module comprises a plurality of firmware
application modules arranged in a pipeline, and wherein the
delivering step comprises delivering a stream of interleaved
commands and data to a first one of the firmware application

modules in the pipeline.

18. The method of claim 17 wherein at least a plurality of
the commands are specific to individual ones of the firmware

application modules in the pipeline.

19. A data processing device comprising:

a firmware socket module in communication with a data
processing pipeline, said data processing pipeline being
deployed on at least one reconfigurable logic device, and
wherein the firmware socket module is configured to control
the propagation of both commands and target data to the data
processing pipeline via a communication path common to both
the commands and the target data, wherein each command
controls a data processing operation that is to be performed

by the data processing pipeline, and wherein the target data

PCT/US2007/060835

WO 2007/087507 PCT/US2007/060835

10

15

20

25

30

35

44

corresponds to the data upon which the data processing

pipeline performs its commanded data processing operation.

20. The data processing device of claim 19 wherein the
firmware socket module is also deployed on the at least one

reconfigurable logic device.

21. The data processing device of claim 20 wherein the data
processing pipeline comprises a plurality of firmware
application modules that are connected in series, wherein the
firmware socket module is configured to provide the commands
and target data in a predetermined order to an entry point
into the data processing pipeline, and wherein the
predetermined order is waintained throughout the data

processing pipeline.

22. The data processing device of c¢laim 21 wherein the
firmware socket module ig configured to (1) access an external
input descriptor pool buffer to identify where in an external
memory space the commands and target data to be delivered to
the data processing pipeline are stored, wherein the input
descriptor pool buffer defines the order in which commands and
target data are to be delivered to the data processing
pipeline, and (2) transfer the identified commandg and target
data from the external memory space to the data processing

pipeline in accordance with the defined order.

23. The data processing device of claim 22 wherein the
reconfiqurable logic device comprises a field programmable
gate array (FPGA), wherein the firmware socket module has
another communication path between itself and an exit point
from the data processing pipeline, wherein the firmware socket
module is further configured to receive an output from the
data processing pipeline via the additional communication

path.

10

15

20

25

30

35

WO 2007/087507

PCT/US2007/060835
45

24. The data processing device of claim 23 wherein the
firmware socket module is further configured to (1) access a
first extermal output descriptor pool buffer to identify a
location in the memory space where command output from the
data processing pipeline should be stored, (2) access a second
external output descriptor pool buffer to identify a location
in the memory space where target data output from the data
processing pipeline should be stored, and (3) write the
command output and the target data output from the data
processing pipeline to their regpective identified locations

in the memory space.

25. A data processing system comprising:

& Processor;

a memory space that is managed by the processor;

a reconfigurable logic device, the reconfigurable logic
device comprising at least one firmware application module
that is deployed thereon and a firmware socket module that
interfaces the at least one firmware application module with
the processor and the memory, the firmware socket module and
the at least one firmware application module being in
communication with each other via a communication path; and

a bus through which the reconfigurable logic device
communicates with the processor and the memory space; and

wherein the firmware application module is configured to
perform a data processing operation on a data stream that it
receives;

wherein the firmware socket module is configured to
receive both a plurality of commands and target data from the
mMemMory space;

wherein the firmware socket module is configured provide
both the commands and the target data to the at least one
firmware application module via the same communication path
between itself and the at least ome firmware application
module, wherein each command controls the data processing

operation that is performed by the at least one firmware

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

46

application module, and wherein the target data comprises the
data upon which the at least one firmware application module’s

data processing operation is performed.

26. The system of claim 25 wherein the firmware socket module
is further configured to (1) receive the commands and the
target data as a stream of interleaved and ordered commands
and target data, and (2) maintain the order or the ordered
commands and target data when it provides the stream to the at
least one firmware application module via the same

communication path,

27. The gystem of claim 26 wherein the reconfigurable logic

device comprises a field programmable gate array (FPGA).

28. The system of claim 27 wherein the at least one firmware
application module comprises a plurality of firmware
application modules that are arranged in a pipeline, wherein
each of the firmware application modules in the pipeline are
configured to sequentially process the commands and the target
data of the stream in the same order in which the firmware

socket module provided the commands and the target data.

29. The system of claim 28 wherein a plurality of the
commands are specific to individual ones of the firmware

application modules in the pipeline.

30. The system of claim 28 wherein the firmware application
modules and the firmware socket module are arranged in a
chain, wherein the firmware socket module provides the stream
of interleaved and ordered commands and target data to the

first one of the firmware application modules in the pipeline.

31. The system of claim 28 wherein the processor is further
configured with a device driver that maintains a buffer in

which data corresponding to a plurality of commands and data

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

47

corresponding to a plurality of data streams are stored in
said order, and wherein the firmware socket module is
configured to access the buffer to identify the commands and
the data streams to be processed through the firmware

application modules.

32. The system of claim 31 wherein the commands and the
target data are stored in the memory space at a plurality of
memory addresses, and wherein the data corresponding to the
plurality of commands and the data corresponding to the target
data that are stored in the buffer comprise a plurality of
pointers to the memory addresses where the corresponding

commands and target data are stored.

33. The system of claim 32 wherein the target data that is to
be processed as a group through the chain is stored in
contiguous memory addresses in the same order as which

pointers thereto are stored in the buffer.

34. The system of claim 27 wherein the data processing
operations comprise at least two members of the group
consisting of a search operation, an encryption operation, a
decryption operation, a compression operation, a decompression

operation, and a data reduction operation.

35. A data processing card for connection with a bus of a
computer system, the data processing card comprising:

a reconfiqurable logic device, the reconfigurable logic
device having deployed thereon a firmware application module
pipeline and a firmware module;

wherein the firmware module is configured to interface
the firmware application module pipeline with at least one
external source of target data and commands, wherein the
commands control how the firmware application module pipeline

processes target data;

10

15

20

25

30

WO 2007/087507 PCT/US2007/060835

48

wherein the firmware application module pipeline
comprises a plurality of firmware application modules arranged
in a sequence, each firmware application module being
configured to perform a data processing operation on target
data, the firmware application module pipeline having an entry
communication path from the firmware module to a first one of
the firmware application modules in the sequence;

wherein the firmware module is further configured to
control how the firmware application module pipeline processes
target data by providing, through the entry communication
path, the first one of the firmware application modules in the
seguence with a stream of interleaved commands and target
data, wherein the commands and target data have a defined
order within the stream;

wherein the firmware module is configured to read entries
that are stored in an external buffer to determine the
commands and the target data that are to be provided to the
firmware application module pipeline, wherein the order of
entries in the external buffer defines the order of commands
and target data within the stream; and ‘

wherein the firmware application module pipeline is
configured to sequentially process the commands and target
data of the stream through the sequence of firmware
application modules in the same order in which those commands

and target data were ordered within the stream.

36. The data procesgsing card of claim 35 wherein the external
buffer entries comprise pointers to addresses in the at least
one external source where the commands and target data are
stored, wherein the firmware module is further configured to
access the at least one external source to retrieve, from the
addresses, the commands and target data in accordance with the

defined order.

10

15

20

25

30

WO 2007/087507 PCT/US2007/060835

49

37. The data processing card of claim 36 wherein a plurality
of the commands are specific to individual ones of the

firmware application modules in the sequence.

38. The data processing card of claim 37 wherein at least one
of the commands comprises a pass through command to one of the

firmware application modules in the sequence..

39. The data processing card of claim 37 wherein the data
processing operations defined by the commands comprise at
least two members of the group consisting of a search
operation, a data reduction operation, an encryption
operation, a decryption operation, a compression operation, a

decompression operation, and a pass through operation.

40. The data processing card of claim 39 wherein the firmware
application module pipeline further has an exit communication
path from a final one of the firmware application modules in
the sequence to the firmware module, wherein each data
procession operation performed by the final one of the
firmware application modules in the sequence produces an
output, and wherein the firmware module is further configured
to (1) receive the outputs from the final one of the firmware
application modules in the sequence via the exit communication
path, (2) read entries that are stored in an external buffer
to determine a plurality of locations in the at least one
external source where the outputs are to be stored, and (3)
write the outputs to the at least one external source at the

determined locations.

41. The data processing card of claim 35 wherein the
reconfigurable logic device comprises a field programmable

gate array (FPGA).

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

50

42. A system controlling the processing of data through a
reconfigurable logic device via software, the system
comprising:

device driver software for execution by a processor, the
device driver software being configured to manage a memory
space in which data is stored at a plurality of memory
addresses; and

a reconfigurable logic device for communicating with the
device driver software and the memory space over a bus;

wherein at least one firmware application module and a
firmware socket module are deployed on the reconfigurable
logic device;

wherein the at least one firmware application module is
configured to perform a data processing operation on any
target data that it receives;

wherein the device driver software is configured to store
a plurality of commands in the memory space, each command for
controlling a data processing operation that is to be
performed by the at least one firmware application module;

wherein the device driver software is further configured
to maintain an input descriptor pool buffer in the memory
space that defines an order in which commands and data are to
be processed through the at least one firmware application
module; and

wherein the firmware socket module is configured to (1)
access the input descriptor pool buffer to identify the
ordered commands and data that are to be processed through the
at least one firmware application module, and (2) access the
memory space to transfer the commands and data to the at least
one firmware application module in accordance with the defined

order.

43. The system of claim 42 wherein the at least one firmware
application module cowmprises a plurality of firmware
application modules that are arranged in a pipelined sequence,

the pipelined sequence including a first firmware application

10

15

20

25

30

35

WO 2007/087507 PCT/US2007/060835

51

module, wherein the firmware socket module is in communication
with the first firmware application module of the pipelined
sequence via a communication path, wherein the firmware socket
module is further configured to transfer the commands and data
to the first firmware application module in the pipelined

sequence over the same communication path.

44. The system of claim 43 wherein each command includes a
firmware application module identifier that identifies the
firmware application module in the pipelined sequence to which

that command is applicable.

45. The system of claim 44 wherein the device driver software
is further configured to maintain the input descriptor pool
buffer by storing therein a plurality of pointers to memory
addresses in the memory space where the commands and data to
be processed through the pipelined sequence of firmware
application modules are stored, wherein the order of pointers
in the input descriptor pool buffer defines the order in which
commands and data are provided to the pipelined sequence of

firmware application modules by the firmware socket module.

46. The system of claim 45 wherein the reconfigurable logic
device comprises a field programmable gate array (FPGA), the
system further comprising application software for execution
by the processor and module application programming interface
software for execution by the processor, wherein the
application software is configured to receive input from a
user that specifies (1) at least one data processing operation
to be performed by the pipelined sequence of firmware
application modules and (2) the data upon which the pipelined
sequence of firmware application modules will perform the at
least specified data processing operatiom, and wherein module
application programming interface software is configured to
interface the application software with the device driver

software such that the device driver software appropriately

WO 2007/087507 PCT/US2007/060835

10

156

20

25

30

35

52

manages the input descriptor pool buffer and the memory space

in accordance with the user input.

47. The gystem of claim 45 wherein the device driver software
is further configured to store the data to be processed
through the pipelined sequence in contiguous memory addresses
of the memory space in same order as that data is to be
provided to the pipelined sequence of firmware application

modules.

48. A device for interfacing a pipeline of firmware
application modules that are deployed on at least one
reconfigurable logic device with a memory space that is
external to the reconfigurable logic device, the device
comprising:

a firmware module that is deployed the at least one
reconfigurable logic device, wherein the firmware module is
configured to (1) serially access the external memory space to
retrieve a plurality of commands and a plurality of groups of
target data in an order and (2) deliver both the retrieved
commands and target data groups to an entry point in the
pipeline as a single interleaved stream in the same order over
a common communication path that connects the firmware module
with the entry point into the pipeline, wherein each firmware
application module in the pipeline is configured to perform a
data processing operation on any target data that it receives,
and wherein each command is configured to control the data
processing operation of at least one firmware application

module in the pipeline.

49. The device of claim 48 wherein the firmware module is
further configured determine which commands and which target
data groups are to be retrieved from the external memory space
by reading an ordered set of descriptors that are stored in
the external memory space by a software program executed by an

external processor, wherein the ordered set of descriptors

WO 2007/087507 PCT/US2007/060835
53

defines the order in which commands and target data groups are

to be interleaved in the stream.

WO 2007/087507 PCT/US2007/060835

1/13
100
Reconfigurable Logic (102)
| Intbheh ettt i indededndeindintelebebatadadabaininiaind e d o S aiaiadal AL) 3
E Firmware Application Module Chain {130) !
15 | || FAMI s EAM2 > eeee —>! FAMm |
820 11 (130a) (130b) (130m) | !
! x ' 134
e =ik
Firmware Socket Module {120)
4 us (112)
A 4
y y X y
v v v
Disk Controller Processor RAM
(106} (108) (110)
A
/,,_#_\\
\‘*_,/
Data Store
(104 Figure 1
\———___/
Application Software (200) N
Software High Level Module APT (202a) General Purpose
Library ——Pp-=-mm-ommomesmoseoosesesscoeoooooae Processor
Interface Low Level Module API (202b) W
(210) OS Level/Device Drivers (204)
Hardware/Software
Interface » - -
(212) Firmware Socket (DMA Engine} (120)
Reconfigurable
Firmware Module > > Logic (e.g, FPGA)
Interface Firmware Application Module(s) {130)
(214)
vy

Figure 2

WO 2007/087507 PCT/US2007/060835

2/13
Printed Circuit Board (300)
FPGA (302)
EAM(s) (130)
4
/ \ Memory
Firmware Socket (12% < > (304)
' - (
\
PCI-X Connector {306)
\ 1’
Figure 3(a)
Printed Circuit Board (300)
Private
PCI-X Bus (308) D
Memory 1
(304) - %{
Disk c 3
EPGA (302) —f G >0 1
FAM(s) (130) (SCSI. SATA N
4 \ FC, etc.) Ié
[\ g
}Firmware Socket (12(9 < » o
R
(((s)
| \
PCJ-X Connector (306)
\ ¥

Figure 3(b)

PCT/US2007/060835

WO 2007/087507

3/13

{ 9In3Ig

19MI0S SIBMULI]

YR}

ap! v pl ’
qE eS| [empow W2 19sar Pl 2inpow

wnsup Jem wsdnTges e wjsup e wsdn Jem
o Pk W P 1o Lell— N0 DI 1D Ul DA R fea—
WO DA EIED Ul DIA EIED [eml— INO DIA BIED UL DN EIED [elf————
WO o Ejep U T EJED et INOTJUD EIED W JUD EIED e
o eep Ul BIED Lag—| 1IN0 BIED Ui BJED |-

(qoeT) & Wvd (e0eT) V WVI

PCT/US2007/060835

4/13

WO 2007/087507

Memory Space (502a)

Y mw “i-....:|n..|||1..-......|........||.:.|||_ 3 “i..n..u:-.i:..n..........u...:.n..:..:-J
1 [aw] 1] o ']
) | ¢ 8 _ !
] 1
P8 “ - ! m
3 m L& m !
eseceee m mz “ ssnsene “ W/ “ ssesnse "
i OB\ m
- ! ' = i i
! i : i “
> = " 44 ! I “
S ! “...!.r||."..|..|..|||..||....|!. e S SO U PN |
DY : , [
hY A] 1 1 !
Ay \ M EEREENN]] I E N NN NN H [} [E X NN NN]
/ /4 “ " I t
U N VU RO T R UUUN SO O SRS YU AN PIRIIIRU S AU
| D g 1 [! 3 n. 1 7 7
I mm m;mh/ —= “
1 = o]
1 — =]]
1 m.nlb. 4\/ Om..pla\)
1 S 09 ssee - seese)
i B RIEW g nm g 1
! 4 5 8 Ry !
! g5 g |
_ 8 &R 85§ :
|) EE |
\) oF ~ oQ <
e e e e e o o e e om e i e e e et et e et e ot e e e e e e e]
=t
=& — =
o = / / / ﬁ
585 =
ok < W\ o i
T B o =2
£ 2 °
e =
= N
F%) (]
B = E_
=0 g AY
22 @ 88
— I3y ~
P] "
[}
m a
g <« &
o
B

WO 2007/087507 PCT/US2007/060835

5/13
Kernel Memory Space (502) =====m-—=mmm o e o o e e e e e e e
:
)
E Command; FAM#3; Search for “Smith”
1
! Command: FAM#2; Decrypt Using Key 1
1
Kernel to Card Input : Command: FAM#1; Pass Through
Descriptor Pool Buffer |
(500) ! Command: FAM#3; Search for “Jones”
1]
(: Command: FAM#1; Decompress
.
L]
.
Input Descriptor 1
Input Descriptor 2 .
Address A | Data
Input Descriptor 3 i r
Data
Input Descriptor 4 !
Input Descriptor 5 E 3 .
]
Tnput Descriptor 6 ! $Addf385 B | Data
1
Input Descriptor 7 : Data
)
Input Descriptor 8 : M
1 [4
. 1
Input Descriptor 9 E g AddressC | Data
Input Descriptor 10 3 .
Input Descriptor 11 :, .
1 L]
Input Descriptor 12 E .
. : i
L])
?) AddressP | Data
; r
! Data
1
] -
! *
>Address Q | Data
Data
.
: »
} AddressR | Data
[}
; Data
)
1 [.
: .
. []
Figure 6(a) ;
H AddressS | Data
|
] Data
'
1
3
1
]
1
3

WO 2007/087507

6/13

PCT/US2007/060835

FAM 1

Current: Process data

FAM 2

Current: Process data

FAM 3

Current: Process data

streamn Z. in accordance stream Y in accordance stream X in accordance
with the FAM’s current with the FAM’s current with the FAM'’s current
processing arrangement. —P! processing arrangement. P processing arrangement.
y
\ 4
FIRMWARE SOCKET

Current Inbound: Command for arranging FAM #3 to search data stream for the term “Smith”.
Current Outbound: Output from FAM #3

Commands and Data From
Storage

f

Figure 6(b)

|

Commands and Data To

Storage

FAM 1 FAM 2 FAM 3
Current: Command for Current: Process data Current: Process data
arranging FAM #3 to stream Z, in accordance stream Y in accordance
search data stream for the with the FAM’s current with the FAM's current
term “Smith”. —P» processing arrangement. P! processing arrangement.

y'\

4
FIRMWARE SOCKET

Current Inbound: Command for arranging FAM #2, to decrypt any received data.
Current Qutbound: Output from FAM #3's processing of data stream X.

Cormmands and Data From
Storage

1

Figure 6(c)

!

Commands and Data To
Storage

WO 2007/087507 PCT/US2007/060835

7/13
FAM 1 FAM 2 FAM 3
Current: Command for Current: Command for Cuzrent: Process data
arranging FAM #2 to arranging FAM #3 to stream Z in accordance
decrypt any received data. search data stream for the with the FAM’s current
—» term “Smith”, —»| processing arrangement.

FIRMWARE SOCKET

Current Inbound: Command for arranging FAM #1 to act as a pass through.
Current Outbound: Output from FAM #3’s processing of data stream Y.

1 ;

Commands and Data From Commands and Data To
Storage Storage
Figure 6(d)
FAM 1 FAM 2 FAM 3

Current: Command for Current: Command for Current: Command for
arranging FAM #1 to act arranging FAM #2. to arranging FAM #3 to

as a pass through. decrypt any received data. search data stream for the

—»| term “Smith”.

FIRMWARE SOCKET

Current Inbound: Data stream starting at Address A+1 and ending at Address B
Current Outbound: Output from FAM #3’s processing of data stream Z.

1 |

Commands and Data From Commands and Data To
Storage Storage

Figure 6(e)

WO 2007/087507 PCT/US2007/060835

8/13

FaAM 1 FAM 2 FAM 3
Current: Process data Current: Command for Current: Command for
stream starting at Address arranging FAM #1 to act arranging FAM #2 to
A+1 and ending at Address as a pass through. decrypt any received data.
B in accordance with » »
FAM'’s current processing
arrangement (“Pass
Through”).

A

FIRMWARE SOCKET

Current Inbound: Data stream starting at Address B+1 and ending at Address C
Current Outbound: Command for arranging FAM #3 to search data stream for the term “Smith”.

Commands and Data From Commands and Data To
Storage Storage

Figure 6(f)

FAM1 FAM 2 FAM 3
Current: Process data Current: Process data Current: Command for
stream starting at Address stream starting at Address arranging FAM #1 to act
B+1 and ending at Address A+1 and ending at Address as a pass through.
C in accordance with » B in accordance with
FAM'’s current processing FAM'’s current processing
arrangement (“Pass arrangement
Through?”). {“Decryption”).

A

FIRMWARE SOCKET

Current Inbound: Command for arranging FAM #3 to search data stream for the term “Jones”.
Current Outbound: Command for arranging FAM #2 to decrypt any received data.

! v

Commands and Data From Commands and Data To
Storage Storage

Figure 6(g)

WO 2007/087507 PCT/US2007/060835
9/13
FAM 1 FAM 2 FAM 3
Current: Command for Current: Process data Current: Process data
arranging FAM #3 to stream starting at Address stream starting at Address
search data stream for the B+1 and ending at Address A+1 and ending at Address

term “Jones”.

C in accordance with
FAM'’s current processing
arrangement
{"Decryption”).

Y

B in accordance with
FAM’s current processing
arrangement {“Search for
i Slnit}l’ll).

FIRMWARE SOCKET

Current Inbound: Command for arranging FAM #1 to decompress any received data.
Current Outbound: Command for arranging FAM #1 to act as a pass through.

Commands and Data From

f

Storage

Figure 6(h)

|

Commands and Data To
Storage

and ending at Address B.

FAM 1 FAM 2 FAM 3
Current: Command for Current: Command for Current: Process data
arranging FAM #1 to arranging FAM #3 to stream starting at Address
decompress any received search data stream for the B-+1 and ending at Address
data. »| term “Jones”. » C in accordance with
FAM’s current processing
arrangement (“Search for
‘Snﬁﬂl’”}-
A
) 4
FIRMWARE SOCKET

Current Inbound: Data stream starting at Address P+1 and ending at Address Q
Current Outbound: Output from FAM #3’s processing of the data stream starting at Address A+1

Commands and Data From

f

Storage

Figure 6(i)

!

Storage

Commands and Data To

WO 2007/087507 PCT/US2007/060835

10413

FAM 1 FAM 2 FAM 3
Current: Process the data Current: Command for Current: Command for
stream starting at Address arranging FAM #1 to arranging FAM #3 to
P+1 and ending at Address decompress any received search data stream for the
Q in accordance with —» data. P term “Jones”.
FAM's current processing
arrangement
(“Decompression”}.

A

A
FIRMWARE SOCKET

Current Inbound: Data stream starting at Address Q+1 and ending at Address R
Current Outbound: Output from FAM #3's processing of the data stream starting at Address B+1
and ending at Address C in accordance with FAM’s current processing arrangement.

Commands and Data From Commands and Data To
Storage Storage

Figure 6(j)

FAM 1 FAM 2 FAM 3
Current: Process the data Current: Process the data Current: Command for
stream starting at Address stream starting at Address arranging FAM #1 to
Q+1 and ending at P+1 and ending at Address decompress any received
Address R in accordance » Q in accordance with P data.
with FAM's current FAM'’s current processing
processing arrangement arrangement
{"Decompression”). {“Decryption”).

A

h 4
FIRMWARE SOCKET

Current Inbound: Data stream starting at Address R+1 and ending at Address S
Current Qutbound: Command for arranging FAM #3 to search data stream for the term “Jones”.

Commands and Data From Commands and Data To
Storage Storage

Figure 6(k)

WO 2007/087507

11/13

PCT/US2007/060835

FAM 1

Current: Process the data

FAM 2

Current: Process the data

FAM 3

Current: Process the data

stream starting at Address stream starting at Address stream starting at Address
R+1 and ending at Address Q-+1 and ending at P+1 and ending at Address
S in accordance with » Address R in accordance Q in accordance with
FAM'’s current processing with FAM’s current FAM’s current processing
arrangement processing arrangement arrangement (“Search for
{("Decompression”). {"Decryption”). Jones").
A
.
FIRMWARE SOCKET

Current Inbound: Data stream starting at Address S+1 and ending at Address T
Current Qutbound: Command for arranging FAM #1 to decompress any received data.

f

Commands and Data From
Storage

Figure 6(1)

Commands and Data To

FAM 1

Current: Process the data
stream starting at Address
S+1 and ending at Address
T in accordance with
FAM'’s current processing
arrangement
(“Decompression”).

FAM 2

Current: Process the data
stream starting at Address
R+1 and ending at Address
S in accordance with
FAM!’s current processing
arrangement
{"Decryption”).

FAM 3

Current: Process the data
streamn starting at Address
Q+1 and ending at
Address R in accordance
with FAM’s current
processing arrangement
{“Search for ‘Jones™).

A

FIRMWARE SOCKET

Current Inbound: Data stream starting at Address T+1 and ending at Address U
Current Outbound: Output from FAM #3’s processing of the data stream starting at Address P+1

and ending at Address Q.

!

Commands and Data From
Storage

Figure 6(m)

Commands and Data To

WO 2007/087507 PCT/US2007/060835

12/13

FAM 1 FAM 2 FAM 3
Current: Process the data Current: Process the data Current: Process the data
stream starting at Address stream starting at Address stream starting at Address
T+1 and ending at Address S+1 and ending at Address R+1 and ending at Address
U in accordance with. ¥ T in accordance with » S in accordance with
FAM's current processing FAM'’s current processing FAM's current processing
arrangement arrangement arrangement (“Search for
{(“Decompression”). {“Decryption”). Tones™).

y

4
FIRMWARE SOCKET
Current Inbound: Data stream starting at Address U+1 and ending at Address V
Current Outbound: Output from FAM #3’s processing of the data stream starting at Address Q-+1
and ending at Address R.
Commands and Data From Commands and Data To
Storage Storage
Figure 6(n)

FAM 1 FAM 2 FAM 3
Current: Process the data Cwrent: Process the data Current: Process the data
stream starting at Address stream starting at Address stream starting at Address
U+1 and ending at T+1 and ending at Address S+1 and ending at Address
Address V in accordance -» U in accordance with » T in accordance with
with FAM's current FAM'’s current processing FAM’s cutrent processing
processing arrangement arrangement arrangement (“Search for
(“Decompression”). (“Decryption”). Tones").

?

y
FIRMWARE SOCKET
Current Inbound: Data stream starting at Address V+1 and ending at Address W
Cuzrent Outbound: Output from FAM #3’s processing of the data stream starting at Address R+1
and ending at Address S.
Commands and Data From Commands and Data To

Storage Storage

Figure 6(o)

PCT/US2007/060835

WO 2007/087507

13/13

w Qhﬂ—mmm (z11) sng utoxg/og,
A
v
(0T T) 193008 SrEMUIIL]
v
WINVI [€— esee «—| TWVI |€ TNV [« WAV [6— eeee «— TWVL 1 Wva
(qeoe) T vDdda (eToe) 1 vDdd
/ 9In3ig
(T11) sng worg/0L,
A
(0TT) 319008 2TEMTUIT]
yy
y
uononpay q \'4
ssaxduwon) 1dLrouyg ssaxduwro) n |:21:1q] ¢ odL 1, yoawos a 9dA 1, yoIsog " ssarduosag 1dAroaa ssaxdwoda(y
{og1) wvd {oe1) Wva {og1) wvd (og1) Wva (0£1) Wvd (oe1) Wvd {oe1) wva loeT) wv4 (oeT) Wvd
(zog) vodd

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings

