

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2017249594 B2

(54) Title
Methods for lung cancer detection

(51) International Patent Classification(s)
C12Q 1/68 (2006.01)

(21) Application No: **2017249594** (22) Date of Filing: **2017.04.17**

(87) WIPO No: **WO17/181202**

(30) Priority Data

(31) Number **62/323,589** (32) Date **2016.04.15** (33) Country **US**

(43) Publication Date: **2017.10.19**
(44) Accepted Journal Date: **2023.08.24**

(71) Applicant(s)
UCL Business Ltd;Natera, Inc.

(72) Inventor(s)
Zimmermann, Bernhard;Constantin, Tudor Pompiliu;Salari, Raheleh;Kirkizlar, Huseyin Eser;Swanton, Robert Charles;Jamal-Hanjani, Mariam;Abbosh, Christopher;Wilson, Gareth

(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
NARAYAN, A. et al., "Ultrasensitive Measurement of Hotspot Mutations in Tumor DNA in Blood Using Error-Suppressed Multiplexed Deep Sequencing", 2012. CANCER RESEARCH, Vol. 72, No. 14, pages 3492-3498
JAMAL-HANJANI, M. et al., "Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer", JANUARY 2016. ANNALS OF ONCOLOGY, Vol. 27, No. 5, pages 862-867.
SONG, X. et al., "Circulating tumor DNA identified by targeted sequencing in advanced-stage non-small cell lung cancer patients", 2015. CANCER LETTERS, Vol. 370, No. 2, pages 324-331.
US 2014/0296081 A1
WO 2015/164432 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
19 October 2017 (19.10.2017)

(10) International Publication Number

WO 2017/181202 A3

(51) International Patent Classification:

C12Q 1/68 (2006.01)

(21) International Application Number:

PCT/US2017/028013

(22) International Filing Date:

17 April 2017 (17.04.2017)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/323,589 15 April 2016 (15.04.2016) US

(71) Applicants: NATERA, INC. [US/US]; 201 Industrial Road, Suite 410, San Carlos, California 94070 (US). UCL BUSINESS PLC [GB/GB]; The Network Building, 97 Tottenham Court Road, London W1T 4TP (GB).

(72) Inventors: ZIMMERMANN, Bernhard; 201 Industrial Road, Suite 410, San Carlos, California 94070 (US). CONSTANTIN, Tudor Pompiliu; 201 Industrial Road, Suite 410, San Carlos, California 94070 (US). SALARI, Raheleh; 201 Industrial Road, Suite 410, San Carlos, California 94070 (US). KIRKIZLAR, Huseyin Eser;

1569 Donaldson St, Los Angeles, California 90026 (US). SWANTON, Robert Charles; University College London, Gower St, Bloomsbury, London, Greater London WC1E 6BT (GB). JAMAL-HANJANI, Mariam; University College London, Gower St, Bloomsbury, London, Greater London WC1E 6BT (GB). ABBOSH, Christopher; University College London, Gower St, Bloomsbury, London, Greater London WC1E 6BT (GB). WILSON, Gareth; Francis Crick Institute, 1 Midland Rd, Kings Cross, London, Greater London NW1 1AT (GB).

(74) Agent: WU, Linda; 201 Industrial Road, Suite 410, San Carlos, California 94070 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

(54) Title: METHODS FOR LUNG CANCER DETECTION

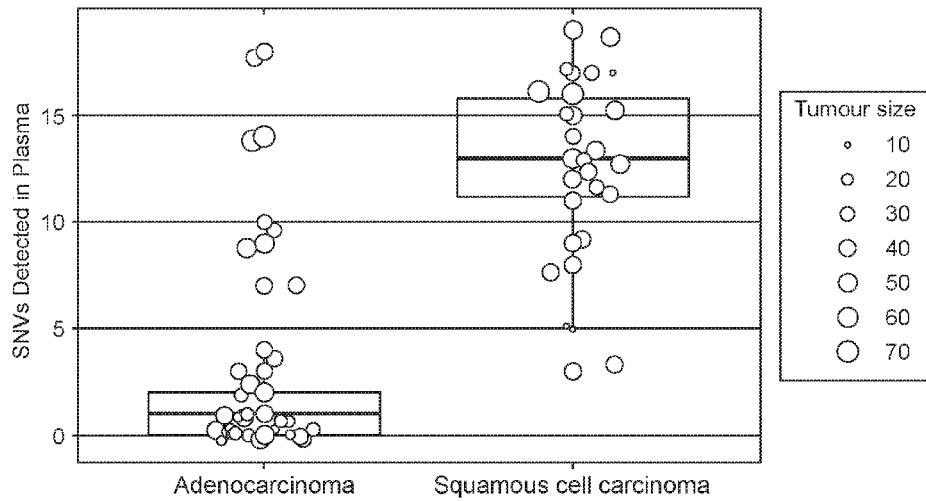


FIG. 7

(57) Abstract: The invention provides methods for detecting single nucleotide variants in lung cancer, especially stage 3a lung adenocarcinoma and lung squamous cell carcinoma. Additional methods and compositions, such as reaction mixtures and solid supports comprising clonal populations of nucleic acids, are provided.

SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— *of inventorship (Rule 4.17(iv))*

Published:

— *with international search report (Art. 21(3))*
— *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

(88) Date of publication of the international search report:

04 January 2018 (04.01.2018)

METHODS FOR LUNG CANCER DETECTION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application Serial No. 62/323,589, filed April 15, 2016, which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0002] The disclosed inventions relate generally to methods for detecting nucleic acid mutations and fusions using amplification methods such as the polymerase chain reaction (PCR).

BACKGROUND OF THE INVENTION

[0003] Detection of mutations associated with cancers whether prior to diagnosis, in making a diagnosis, for disease staging or to monitor treatment efficacy has traditionally relied on solid tumor biopsy samples. Such sampling is highly invasive and not without risk of potentially contributing to metastasis or surgical complications. Better and less invasive methods are needed for detecting mutations associated with cancer.

SUMMARY OF THE INVENTION

[0004] Provided herein in one embodiment, is a method for determining the single nucleotide variants present in a lung squamous cell carcinoma. The method in this embodiment, includes generating a set of amplicons by performing a multiplex amplification reaction on nucleic acids isolated from a sample of blood or a fraction thereof from an individual suspected of having a lung squamous cell carcinoma, wherein each amplicon of the set of amplicons spans at least one single nucleotide variant loci of a set of single nucleotide variant loci known to be associated with lung cancer; and

[0005] determining the sequence of at least a segment of each amplicon of the set of amplicons, wherein the segment comprises a single nucleotide variant loci, thereby determining the single nucleotide variants present in the squamous cell carcinoma.

[0006] In another embodiment, provided herein is a method for supporting a lung cancer diagnosis for an individual suspected of having lung cancer from a sample of blood or a fraction thereof from the individual. The method includes generating a set of amplicons by performing a multiplex

amplification reaction on nucleic acids isolated from the sample, wherein each amplicon of the set of amplicons spans at least one single nucleotide variant loci of a set of single nucleotide variant loci known to be associated with lung cancer; and

[0007] determining the sequence of at least a segment of each amplicon of the set of amplicons, wherein the segment comprises a single nucleotide variant loci, thereby determining whether one or more single nucleotide variants are present in the plurality of single nucleotide variant loci. According to illustrative embodiments,

[0008] the absence of a single nucleotide variant supports a diagnosis of stage 1a, 2a, or 2b adenocarcinoma,

[0009] the presence of a single nucleotide variant supports a diagnosis of squamous cell carcinoma or a stage 2b or 3a adenocarcinoma, and/or

[0010] the presence of 5, 10, 15 or more single nucleotide variants supports a diagnosis of squamous cell carcinoma or a stage 2b or 3 adenocarcinoma.

[0011] In certain embodiments, the presence of 5, 10, or 15 or more single nucleotide variants supports a diagnosis of squamous cell carcinoma or a stage 3 adenocarcinoma

[0012] In illustrative examples of any of the method embodiments provided herein that include an amplification step, the amplification reaction is a PCR reaction, the annealing temperature is between 1 and 15 °C greater than the melting temperature of at least 50, 60, 70, 85, 80, 90, 95, or 100% of the primers of the set of primers, the length of the annealing step in the PCR reaction is between 15 and 60 minutes, the primer concentration in the amplification reaction is between 1 and 10 nM, and the primers in the set of primers, are designed to minimize primer dimer formation.

[0013] In any of the method embodiments of the invention, that include determining or detecting the presence of an SNV using an amplification method, an efficiency and an error rate per cycle can be determined for each amplification reaction of the multiplex amplification reaction of the set of single nucleotide variance loci, and the efficiency and the error rate can be used to determine whether a single nucleotide variant at the set of single variant loci is present in the sample. In some of these exemplary embodiments, a confidence is determined and a SNV call is made if a cutoff confidence value is exceeded, such as 90%, 95%, or 98% confidence.

[0014] In other embodiments, inventive compositions and solid supports are provided herein.

[0015] Other embodiments and features and advantages of the disclosed inventions will be apparent from the following detailed description and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[0017] The presently disclosed embodiments will be further explained with reference to the attached drawings, wherein like structures are referred to by like numerals throughout the several views. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the presently disclosed embodiments.

[0018] FIG. 1 is a workflow Diagram.

[0019] FIG. 2 Top panel: the number of SNVs per sample; bottom panel: the working assays, sorted by driver category.

[0020] Figure 3. Measured cfDNA concentration. Each data point refers to a plasma sample.

[0021] Figure 4. Samples showing good correlation between tissue VAF measurements determined previously (x axis) and here using mPCR-NGS (y axis). Each sample is shown in a separate box, and the VAF data points are colored by tissue subsection.

[0022] Figure 5. Samples showing poor correlation between tissue VAF measurements determined previously (x axis) and here using mPCR-NGS (y axis). Each sample is shown in a separate box, and the VAF data points are colored by tissue subsection.

[0023] Figure 6A. Depth of read histogram as a function of the resulting call. Top: the assay did not detect the expected plasma SNV. Bottom: the assay detected the expected plasma SNV.

[0024] Figure 7. Number of SNVs detected in plasma by histological type.

[0025] Figure 8. SNV detection (left) and sample detection (right) in plasma by tumor stage.

[0026] Figure 9. Plasma VAF as a function of tumor stage and SNV clonality.

[0027] Figure 10. Number of SNVs detected in plasma from each sample as a function of the cfDNA input amount.

[0028] Figure 11. Plasma VAF as a function of average tumor VAF. Average tumor VAF was calculated across all the tumor sub-sections analyzed from each tumor.

[0029] FIG. 12 shows the clonal ratios (red to blue) and mutant variant allele frequency (MutVAF) of each detected SNV. The total SNVs detected from each sample are placed in a single column and the samples are categorized by tumor stage (pTNMstage). Samples with no detected SNVs are

included. The clonal ratio is defined as the ratio between the number of tumor subsections in which SNV was observed and the total number of subsections analyzed from that tumor.

[0030] FIG. 13 shows the clonal status (blue for clonal and red for subclonal) and mutant variant allele frequency (MutVAF) of each detected SNV. The total SNVs detected from each sample are placed in a single column and the samples are categorized by tumor stage (pTNMstage). Samples with no detected SNVs are included. The clonal status was determined by PyCloneCluster using whole exome sequencing data from the tumor tissue.

[0031] FIG. 14 shows the clonal status (blue for clonal and red for subclonal) and mutant variant allele frequency (MutVAF) of each detected SNV where the top panel shows only the clonal SNVs and the bottom panel shows only the subclonal SNVs. The total SNVs detected from each sample are placed in a single column and the samples are categorized by tumor stage (pTNMstage). Samples with no detected SNVs are included. The clonal status was determined by PyCloneCluster using whole exome sequencing data from the tumor tissue.

[0032] FIG. 15 shows the number of SNVs detected in plasma as a function of histological type and tumor size. The histological type and tumor stage were determined by the pathology report. Each data point is colored by size, where red denotes the largest tumor size and blue denotes the smallest tumor size.

[0033] FIG. 16 is a table of cfDNA analysis showing DNA concentration, genome copy equivalents into library prep, plasma hemolysis grade, and cDNA profile in all samples.

[0034] FIG. 17 is a table of SNVs detected in the plasma for each sample.

[0035] FIG. 18 is a table of additional SNVs detected in plasma.

[0036] FIG. 19 is a table of assay count based for genes for the experiments in Example 1.

[0037] FIG. 20 is a table of information regarding the samples analyzed in the study of Example 1 as well as data generated from the experiment provided in Example 1.

[0038] FIG. 21 is an example of detected assays and their background allele fractions for a plasma sample at relapse time (LTX103).

[0039] The above-identified figures are provided by way of representation and not limitation.

DETAILED DESCRIPTION OF THE INVENTION

[0040] Methods and compositions provided herein improve the detection, diagnosis, staging, screening, treatment, and management of lung cancer. Methods provided herein, in illustrative embodiments analyze single nucleotide variant mutations (SNVs) in circulating fluids, especially circulating tumor DNA. The methods provide the advantage of identifying more of the mutations that are found in a tumor and clonal as well as subclonal mutations, in a single test, rather than multiple tests that would be required, if effective at all, that utilize tumor samples. The methods and compositions can be helpful on their own, or they can be helpful when used along with other methods for detection, diagnosis, staging, screening, treatment, and management of lung cancer, for example to help support the results of these other methods to provide more confidence and/or a definitive result.

[0041] Accordingly, provided herein in one embodiment, is a method for determining the single nucleotide variants present in a lung squamous cell carcinoma by determining the single nucleotide variants present in a ctDNA sample from an individual, such as an individual having or suspected of having, squamous cell carcinoma, using a ctDNA SNV amplification/sequencing workflow provided herein.

[0042] In another embodiment, provided herein is a method for detecting lung squamous cell carcinoma in a sample of blood or a fraction thereof from an individual, such as an individual suspected of having a cancer, that includes determining the single nucleotide variants present in a sample by determining the single nucleotide variants present in a ctDNA sample using a ctDNA SNV amplification/sequencing workflow provided herein. The presence of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 SNVs on the low end of the range, and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 40, or 50 SNVs on the high end of the range, in the sample at the plurality of single nucleotide loci is indicative of the presence of squamous cell carcinoma.

[0043] In another embodiment, provided herein is a method for detecting a clonal single nucleotide variant in a lung tumor of an individual. The method includes performing a ctDNA SNV amplification/sequencing workflow as provided herein, and determining the variant allele frequency for each of the SNV loci based on the sequence of the plurality of copies of the series of amplicons. A higher relative allele frequency compared to the other single nucleotide variants of the plurality of single nucleotide variant loci is indicative of a clonal single nucleotide variant in the tumor. Variant allele frequencies are well known in the sequencing art. Support for this embodiment, is provided, for example in FIGs. 12-14.

[0044] In certain embodiments, the method further includes determining a treatment plan, therapy and/or administering a compound to the individual that targets the one or more clonal single nucleotide variants. In certain examples, subclonal and/or other clonal SNVs are not targeted by therapy. Specific therapies and associated mutations are provided in other sections of this specification and are known in the art. Accordingly, in certain examples, the method further includes administering a compound to the individual, where the compound is known to be specifically effective in treating lung squamous cell carcinoma having one or more of the determined single nucleotide variants.

[0045] In certain aspects of this embodiment, a variant allele frequency of greater than 0.25%, 0.5%, 0.75%, 1.0%, 5% or 10% is indicative a clonal single nucleotide variant. These cutoffs are supported by the data in tabular form FIG. 20.

[0046] In certain examples of this embodiment, the squamous cell carcinoma is a stage 1a, 1b, or 2a squamous cell carcinoma. In certain examples of this embodiment, the squamous cell carcinoma is a stage 1a or 1b squamous cell carcinoma. In certain examples of the embodiment, the individual is not subjected to surgery. In certain examples of the embodiment, the individual is not subjected to a biopsy.

[0047] In some examples of this embodiment, a clonal SNV is identified or further identified if other testing such as direct tumor testing suggest an on-test SNV is a clonal SNV, for any SNV on test that has a variable allele frequency greater than at least one quarter, one third, one half, or three quarters of the other single nucleotide variants that were determined.

[0048] In some embodiments, methods herein for detecting SNVs in ctDNA can be used instead of direct analysis of DNA from a tumor. Results provided herein demonstrate that SNVs that are much more likely to be clonal SNVs have higher VAFs (See e.g. FIGs. 12-14).

[0049] In certain examples of any of the method embodiments provided herein before a targeted amplification is performed on ctDNA from an individual, data is provided on SNVs that are found in a tumor from the individual. Accordingly, in these embodiments, a SNV amplification/sequencing reaction is performed on one or more tumor samples from the individual. In this methods, the ctDNA SNV amplification/sequencing reaction provided herein is still advantageous because it provides a liquid biopsy of clonal and subclonal mutations. Furthermore, as provided herein, clonal mutations can be more unambiguously identified in an individual that has lung cancer, if a high VAF percentage, for example, more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10% VAF in a ctDNA sample from the individual is determined for an SNV.

[0050] In certain embodiment, method provided herein can be used to determine whether to isolate and analyze ctDNA from circulating free nucleic acids from an individual with lung cancer. First, it is determined whether the lung cancer is an adenocarcinoma or a squamous cell carcinoma. If the lung cancer is a squamous cell carcinoma circulating free nucleic acids are isolated from individual. The method in some examples, further includes determining the stage of the lung cancer, wherein if the lung cancer is squamous cell carcinoma or stage 3a adenocarcinoma, circulating free nucleic acids are isolated from the individual. Results provided in FIG. 15 and in tabular form in FIG. 20 demonstrate that SNVs are prevalent in squamous cell carcinoma or stage 3a adenocarcinoma, However, SNVs are much less prevalent in earlier stage ADCs. Accordingly, important health care savings can be realized by saving from testing for SNVs in stage 1a, 1b, and/or 2a ADC patients.

[0051] In examples, if the lung cancer is squamous cell carcinoma or stage 3a adenocarcinoma, circulating free nucleic acids are isolated from the individual. Furthermore, in some examples, if **[0052]** the lung cancer is stage squamous cell carcinoma or stage 3a adenocarcinoma nucleic acids are not isolated from a lung tumor of the individual.

[0053] In some methods, provided herein are inventive compositions and/or solid supports. F1. A composition comprising circulating tumor nucleic acid fragments comprising a universal adapter, wherein the circulating tumor nucleic acids originated from a lung squamous cell carcinoma tumor.

[0054] In some embodiments, provided herein is an inventive composition that includes circulating tumor nucleic acid fragments comprising a universal adapter, wherein the circulating tumor nucleic acids originated from a sample of blood or a fraction thereof, of an individual with lung squamous cell carcinoma. Results presented in Example 1 demonstrate the surprising advantage of ctDNA SNV amplification/sequencing test methods. These methods typically include formation of ctDNA fragment that include a universal adapter. Furthermore, such methods typically include the formation of a solid support especially a solid support for high throughput sequencing, that includes a plurality of clonal populations of nucleic acids, wherein the clonal populations comprise amplicons generated from a sample of circulating free nucleic acids, wherein the ctDNA. In illustrative embodiments based on the surprising results provided herein, the ctDNA originated from a lung squamous cell carcinoma tumor.

[0055] Similarly, provided herein as an embodiment of the invention is a solid support comprising a plurality of clonal populations of nucleic acids, wherein the clonal populations comprise nucleic acid fragments generated from a sample of circulating free nucleic acids from a sample of blood or a fraction thereof, from an individual with lung squamous cell carcinoma.

[0056] In certain embodiments, the nucleic acid fragments in different clonal populations comprise the same universal adapter. Such a composition is typically formed during a high throughput sequencing reaction in methods of the present invention, as performed in Example 1.

[0057] The clonal populations of nucleic acids can be derived from nucleic acid fragments from a set of samples from two or more individuals. In these embodiments, the nucleic acid fragments comprise one of a series of molecular barcodes corresponding to a sample in the set of samples.

[0058] Detailed analytical methods are provided herein as SNV Methods 1 and SNV Method 2 in the analytical section herein. Any of the methods provided herein can further include analytical steps provided herein. Accordingly, in certain examples, the methods for determining whether a single nucleotide variant is present in the sample, includes identifying a confidence value for each allele determination at each of the set of single nucleotide variance loci, which can be based at least in part on a depth of read for the loci. The confidence limit can be set at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%. The confidence limit can be set at different levels for different types of mutations.

[0059] The method can be performed with a depth of read for the set of single nucleotide variance loci of at least 5, 10, 15, 20, 25, 50, 100, 150, 200, 250, 500, 1,000, 10,000, 25,000, 50,000, 100,000, 250,000, 500,000, or 1 million. FIG. 20 provides depth of read data for SNV loci successfully analyzed in Example 1.

[0060] In certain embodiments, a method of any of the embodiments herein includes determining an efficiency and/or an error rate per cycle are determined for each amplification reaction of the multiplex amplification reaction of the single nucleotide variance loci. The efficiency and the error rate can then be used to determine whether a single nucleotide variant at the set of single variant loci is present in the sample. More detailed analytical steps provided in SNV Method 2 provided in the analytical method can be included as well, in certain embodiments.

[0061] In illustrative embodiments, of any of the methods herein the set of single nucleotide variance loci includes all of the single nucleotide variance loci identified in the TCGA and COSMIC data sets for lung cancer, or for lung adenocarcinoma and/or especially lung squamous cell carcinoma.

[0062] In certain embodiments of any of the methods herein the set of single nucleotide variant loci include 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100, 250, 500, 1000, 2500, 5000, or 10,000 single nucleotide variance loci known to be associated with lung cancer, lung ADC, and/or especially lung SCC on the low end of the range, and , 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 75, 100, 250, 500, 1000, 2500, 5000, 10,000, 20,000 and 25,000 on the high end of the range.

[0063] In any of the methods for detecting SNVs herein that include a ctDNA SNV amplification/sequencing workflow, improved amplification parameters for multiplex PCR can be employed. For example, wherein the amplification reaction is a PCR reaction and the annealing temperature is between 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10°C greater than the melting temperature on the low end of the range, and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15° on the high end the range for at least 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95 or 100% the primers of the set of primers.

[0064] In certain embodiments, wherein the amplification reaction is a PCR reaction the length of the annealing step in the PCR reaction is between 10, 15, 20, 30, 45, and 60 minutes on the low end of the range, and 15, 20, 30, 45, 60, 120, 180, or 240 minutes on the high end of the range. In certain embodiments, the primer concentration in the amplification, such as the PCR reaction is between 1 and 10 nM. Furthermore, in exemplary embodiments, the primers in the set of primers, are designed to minimize primer dimer formation.

[0065] Accordingly, in an example of any of the methods herein that include an amplification step, the amplification reaction is a PCR reaction, the annealing temperature is between 1 and 10 °C greater than the melting temperature of at least 90% of the primers of the set of primers, the length of the annealing step in the PCR reaction is between 15 and 60 minutes, the primer concentration in the amplification reaction is between 1 and 10 nM, and the primers in the set of primers, are designed to minimize primer dimer formation. In a further aspect of this example, the multiplex amplification reaction is performed under limiting primer conditions.

[0066] In another embodiment, provided herein is a method for supporting a lung cancer diagnosis for an individual, such as an individual suspected of having lung cancer, from a sample of blood or a fraction thereof from the individual, that includes performing a ctDNA SNV amplification/sequencing workflow as provided herein, to determine whether one or more single nucleotide variants are present in the plurality of single nucleotide variant loci. In this embodiment, the following elements, statements, guidelines or rules apply:

[0067] the absence of a single nucleotide variant supports a diagnosis of stage 1a, 1b, or 2a adenocarcinoma,

[0068] the presence of a single nucleotide variant supports a diagnosis of squamous cell carcinoma or a stage 2b or 3a adenocarcinoma, and/or

[0069] the presence of ten or more single nucleotide variants supports a diagnosis of squamous cell carcinoma or a stage 2b or 3 adenocarcinoma.

[0070] The above elements, statements, guidelines or rules are supported by the results of Example 1 (See e.g. the tabular data in FIG. 20). These results identify analysis using a ctDNA SNV amplification/sequencing workflow of lung ADC and SCC samples from an individual as a valuable method for identifying SNVs found in an ADC tumor, especially for stage 2b and 3a ADC tumors, and especially an SCC tumor at any stage (See e.g. FIG. 15 and FIG. 20).

[0071] In certain examples, this embodiment further includes determining the stage of a lung cancer lesion by a non-invasive method. For example, the size of a tumor can be determined by non-invasive methods.

[0072] In certain embodiments, methods herein for detecting SNVs can be used to direct a therapeutic regimen. Therapies are available and under development that target specific mutations associated with ADC and SCC (Nature Review Cancer. 14:535-551 (2014). For example, detection of an EGFR mutation at L858R or T790M can be informative for selecting a therapy. Erlotinib, gefitinib, afatinib, AZK9291, CO-1686, and HM61713 are current therapies approved in the U.S. or in clinical trials, that target specific EGFR mutations. In another example, a G12D, G12C, or G12V mutation in KRAS can be used to direct an individual to a therapy of a combination of Selumetinib plus docetaxel. As another example, a mutation of V600E in BRAF can be used to direct a subject to a treatment of Vemurafenib, dabrafenib, and trametinib.

[0073] A sample analyzed in methods of the present invention, in certain illustrative embodiments, is a blood sample, or a fraction thereof. Methods provided herein, in certain embodiments, are specially adapted for amplifying DNA fragments, especially tumor DNA fragments that are found in circulating tumor DNA (ctDNA). Such fragments are typically about 160 nucleotides in length.

[0074] It is known in the art that cell-free nucleic acid (cfNA), e.g cfDNA, can be released into the circulation via various forms of cell death such as apoptosis, necrosis, autophagy and necroptosis. The cfDNA, is fragmented and the size distribution of the fragments varies from 150-350 bp to > 10000 bp. (see Kalnina et al. *World J Gastroenterol.* 2015 Nov 7; 21(41): 11636-11653). For example the size distributions of plasma DNA fragments in hepatocellular carcinoma (HCC) patients spanned a range of 100-220 bp in length with a peak in count frequency at about 166bp and the highest tumor DNA concentration in fragments of 150-180 bp in length (see: Jiang et al. *Proc Natl Acad Sci USA* 112:E1317-E1325).

[0075] In an illustrative embodiment the circulating tumor DNA (ctDNA) is isolated from blood using EDTA-2Na tube after removal of cellular debris and platelets by centrifugation. The plasma samples can be stored at -80°C until the DNA is extracted using, for example, QIAamp DNA Mini Kit (Qiagen, Hilden, Germany), (e.g. Hamakawa et al., *Br J Cancer.* 2015; 112:352-356). Hamakawa et al. reported median concentration of extracted cell free DNA of all samples 43.1 ng per ml plasma (range 9.5-1338 ng ml/) and a mutant fraction range of 0.001-77.8%, with a median of 0.90%.

[0076] In certain illustrative embodiments the sample is a tumor. Methods are known in the art for isolating nucleic acid from a tumor and for creating a nucleic acid library from such a DNA sample given the teachings here. Furthermore, given the teachings herein, a skilled artisan will recognize

how to create a nucleic acid library appropriate for the methods herein from other samples such as other liquid samples where the DNA is free floating in addition to ctDNA samples.

[0077] Methods of the present invention in certain embodiments, typically include a step of generating and amplifying a nucleic acid library from the sample (i.e. library preparation). The nucleic acids from the sample during the library preparation step can have ligation adapters, often referred to as library tags or ligation adaptor tags (LTs), appended, where the ligation adapters contain a universal priming sequence, followed by a universal amplification. In an embodiment, this may be done using a standard protocol designed to create sequencing libraries after fragmentation. In an embodiment, the DNA sample can be blunt ended, and then an A can be added at the 3' end. A Y-adaptor with a T-overhang can be added and ligated. In some embodiments, other sticky ends can be used other than an A or T overhang. In some embodiments, other adaptors can be added, for example looped ligation adaptors. In some embodiments, the adaptors may have tag designed for PCR amplification.

[0078] A number of the embodiments provided herein, include detecting the SNVs in a ctDNA sample. Such methods in illustrative embodiments, include an amplification step and a sequencing step (Sometimes referred to herein as a “ctDNA SNV amplification/sequencing workflow). In an illustrative example, a ctDNA amplification/sequencing workflow can include generating a set of amplicons by performing a multiplex amplification reaction on nucleic acids isolated from a sample of blood or a fraction thereof from an individual, such as an individual suspected of having a lung cancer, for example a squamous cell carcinoma, wherein each amplicon of the set of amplicons spans at least one single nucleotide variant loci of a set of single nucleotide variant loci, such as an SNV loci known to be associated with lung cancer; and

[0079] determining the sequence of at least a segment of each amplicon of the set of amplicons, wherein the segment comprises a single nucleotide variant loci. In this way, this exemplary method determines the single nucleotide variants present in the sample.

[0080] Exemplary ctDNA SNV amplification/sequencing workflows in more detail can include forming an amplification reaction mixture by combining a polymerase, nucleotide triphosphates, nucleic acid fragments from a nucleic acid library generated from the sample, and a set of primers that each binds an effective distance from a single nucleotide variant loci, or a set of primer pairs that each span an effective region that includes a single nucleotide variant loci. The single nucleotide variant loci, in exemplary embodiments, is one known to be associated with lung cancer, for example lung adenocarcinoma and/or in especially illustrative embodiments squamous cell carcinoma. Then, subjecting the amplification reaction mixture to amplification conditions to generate a set of amplicons comprising at least one single nucleotide variant loci of a set of single nucleotide variant loci, preferably known to be associated with lung cancer; and

[0081] determining the sequence of at least a segment of each amplicon of the set of amplicons, wherein the segment comprises a single nucleotide variant loci.

[0082] The effective distance of binding of the primers can be within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100, 125, or 150 base pairs of a SNV loci. The effective range that a pair of primers spans typically includes an SNV and is typically 160 base pairs or less, and can be 150, 140, 130, 125, 100, 75, 50 or 25 base pairs or less. In other embodiments, the effective range that a pair of primers spans is 20, 25, 30, 40, 50, 60, 70, 75, 100, 110, 120, 125, 130, 140, or 150 nucleotides from an SNV loci on the low end of the range, and 25, 30, 40, 50, 60, 70, 75, 100, 110, 120, 125, 130, 140, or 150, 160, 170, 175, or 200 on the high end of the range.

[0083] Further details regarding methods of amplification that can be used in a ctDNA SNV amplification/sequencing workflow to detect SNVs for use in methods of the invention are provided in other sections of this specification.

[0084] SNV Calling Analytics

[0085] During performance of the methods provided herein, nucleic acid sequencing data is generated for amplicons created by the tiled multiplex PCR. Algorithm design tools are available that can be used and/or adapted to analyze this data to determine within certain confidence limits, whether a mutation, such as a SNV is present in a target gene, as illustrated in Example 1 herein.

[0086] Sequencing Reads can be demultiplexed using an in-house tool and mapped using the Burrows-Wheeler alignment software, Bwa mem function (BWA, Burrows-Wheeler Alignment Software (see Li H. and Durbin R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler Transform. Bioinformatics, Epub. [PMID: 20080505]) on single end mode using pair merged reads to the hg19 genome. Amplification statistics QC can be performed by analyzing total reads, number of mapped reads, number of mapped reads on target, and number of reads counted.

[0087] In certain embodiments, any analytical method for detecting an SNV from nucleic acid sequencing data detection can be used with methods of the invention methods of the invention that include a step of detecting an SNV or determining whether an SNV is present. In certain illustrative embodiments, methods of the invention that utilize SNV METHOD 1 below are used. In other, even more illustrative embodiments, methods of the invention that include a step of detecting an SNV or determining whether an SNV is present at an SNV loci, utilize SNV METHOD 2 below.

[0088] SNV METHOD 1: For this embodiment, a background error model is constructed using normal plasma samples, which were sequenced on the same sequencing run to account for run-

specific artifacts. In certain embodiments, 5, 10, 15, 20, 25, 30, 40, 50, 100, 150, 200, 250, or more than 250 normal plasma samples are analyzed on the same sequencing run. In certain illustrative embodiments, 20, 25, 40, or 50 normal plasma samples are analyzed on the same sequencing run. Noisy positions with normal median variant allele frequency greater than a cutoff are removed. For example this cutoff in certain embodiments is > 0.1%, 0.2%, 0.25%, 0.5%, 1%, 2%, 5%, or 10%. In certain illustrative embodiments noisy positions with normal medial variant allele frequency greater than 0.5% are removed. Outlier samples were iteratively removed from the model to account for noise and contamination. In certain embodiments, samples with a Z score of greater than 5, 6, 7, 8, 9, or 10 are removed from the data analysis. For each base substitution of every genomic loci, the depth of read weighted mean and standard deviation of the error are calculated. Tumor or cell-free plasma samples' positions with at least 5 variant reads and a Z-score of 10 against the background error model for example, can be called as a candidate mutation.

[0089] SNV METHOD 2: For this embodiment Single Nucleotide Variants (SNVs) are determined using plasma ctDNA data. The PCR process is modeled as a stochastic process, estimating the parameters using a training set and making the final SNV calls for a separate testing set. The propagation of the error across multiple PCR cycles is determined, and the mean and the variance of the background error are calculated, and in illustrative embodiments, background error is differentiated from real mutations.

[0090] The following parameters are estimated for each base:

[0091] p = efficiency (probability that each read is replicated in each cycle)

[0092] p_e = error rate per cycle for mutation type e (probability that an error of type e occurs)

[0093] X_0 = initial number of molecules

[0094] As a read is replicated over the course of PCR process, the more errors occur. Hence, the error profile of the reads is determined by the degrees of separation from the original read. We refer to a read as k^{th} generation if it has gone through k replications until it has been generated.

[0095] Let us define the following variables for each base:

[0096] X_{ij} = number of generation i reads generated in the PCR cycle j

[0097] Y_{ij} = total number of generation i reads at the end of cycle j

[0098] X_{ij}^e = number of generation i reads with mutation e generated in the PCR cycle j

[0099] Moreover, in addition to normal molecules X_0 , if there are additional $f_e X_0$ molecules with the mutation e at the beginning of the PCR process (hence $f_e/(1+f_e)$ will be the fraction of mutated molecules in the initial mixture).

[0100] Given the total number of generation $i-1$ reads at cycle $j-1$, the number of generation i reads generated at cycle j has a binomial distribution with a sample size of $Y_{i-1,j-1}$ and probability parameter of p . Hence, $E(X_{ij} | Y_{i-1,j-1}, p) = p Y_{i-1,j-1}$ and $Var(X_{ij} | Y_{i-1,j-1}, p) = p(1-p) Y_{i-1,j-1}$.

[0101] We also have $Y_{ij} = \sum_{k=i}^j X_{ik}$. Hence, by recursion, simulation or similar methods, we can determine $E(X_{ij})$. Similarly, we can determine $Var(X_{ij}) = E(Var(X_{ij} | p)) + Var(E(X_{ij} | p))$ using the distribution of p .

[0102] finally, $E(X_{ij}^e | Y_{i-1,j-1}, p_e) = p_e Y_{i-1,j-1}$ and $Var(X_{ij}^e | Y_{i-1,j-1}, p) = p_e (1-p_e) Y_{i-1,j-1}$, and we can use these to compute $E(X_{ij}^e)$ and $Var(X_{ij}^e)$.

[0103] In certain embodiments, SNV Method 2 is performed as follows:

[0104] a) Estimate a PCR efficiency and a per cycle error rate using a training data set;

[0105] b) Estimate a number of starting molecules for the testing data set at each base using the distribution of the efficiency estimated in step (a);

[0106] c) If needed, update the estimate of the efficiency for the testing data set using the starting number of molecules estimated in step (b);

[0107] d) Estimate the mean and variance for the total number of molecules, background error molecules and real mutation molecules (for a search space consisting of an initial percentage of real mutation molecules) using testing set data and parameters estimated in steps (a), (b) and (c);

[0108] e) Fit a distribution to the number of total error molecules (background error and real mutation) in the total molecules, and calculate the likelihood for each real mutation percentage in the search space; and

[0109] f) Determine the most likely real mutation percentage and calculate the confidence using the data from in step (e).

[0110] A confidence cutoff can be used to identify an SNV at an SNV loci. For example, a 90%, 95%, 96%, 97%, 98%, or 99% confidence cutoff can be used to call an SNV.

[0111] Exemplary SNV METHOD 2 Algorithm

[0112] The algorithm starts by estimating the efficiency and error rate per cycle using the training set. Let n denote the total number of PCR cycles.

[0113] The number of reads R_b at each base b can be approximated by $(1+p_b)^n X_0$, where p_b is the efficiency at base b. Then $(R_b/X_0)^{1/n}$ can be used to approximate $1+p_b$. Then, we can determine the mean and the standard variation of p_b across all training samples, to estimate the parameters of the probability distribution (such as normal, beta, or similar distributions) for each base.

[0114] Similarly the number of error e reads R_b^e at each base b can be used to estimate p_e . After determining the mean and the standard deviation of the error rate across all training samples, we approximate its probability distribution (such as normal, beta, or similar distributions) whose parameters are estimated using this mean and standard deviation values.

[0115] Next, for the testing data, we estimate the initial starting copy at each base as $\int_0^1 \frac{R_b}{(1+p_b)^n} f(p_b) dp_b$ where f(.) is an estimated distribution from the training set.

[0116] $\int_0^1 \frac{R_b}{(1+p_b)^n} f(p_b) dp_b$ where f(.) is an estimated distribution from the training set.

[0117] Hence, we have estimated the parameters that will be used in the stochastic process. Then, by using these estimates, we can estimate the mean and the variance of the molecules created at each cycle (note that we do this separately for normal molecules, error molecules, and mutation molecules).

[0118] Finally, by using a probabilistic method (such as maximum likelihood or similar methods), we can determine the best f_e value that fits the distribution of the error, mutation, and normal molecules the best. More specifically, we estimate the expected ratio of the error molecules to total molecules for various f_e values in the final reads, and determine the likelihood of our data for each of these values, and then select the value with the highest likelihood.

[0119] Primer tails can improve the detection of fragmented DNA from universally tagged libraries. If the library tag and the primer-tails contain a homologous sequence, hybridization can be improved (for example, melting temperature (Tm) is lowered) and primers can be extended if only a portion of the primer target sequence is in the sample DNA fragment. In some embodiments, 13 or more target specific base pairs may be used. In some embodiments, 10 to 12 target specific base pairs may be used. In some embodiments, 8 to 9 target specific base pairs may be used. In some embodiments, 6 to 7 target specific base pairs may be used.

[0120] In one embodiment, Libraries are generated from the samples above by ligating adaptors to the ends of DNA fragments in the samples, or to the ends of DNA fragments generated from

DNA isolated from the samples. The fragments can then be amplified using PCR, for example, according to the following exemplary protocol:

[0121] 95°C, 2 min; 15 x [95°C, 20 sec, 55°C, 20 sec, 68°C, 20 sec], 68°C 2 min, 4°C hold.

[0122] Many kits and methods are known in the art for generation of libraries of nucleic acids that include universal primer binding sites for subsequent amplification, for example clonal amplification, and for subsequence sequencing. To help facilitate ligation of adapters library preparation and amplification can include end repair and adenylation (i.e. A-tailing). Kits especially adapted for preparing libraries from small nucleic acid fragments, especially circulating free DNA, can be useful for practicing methods provided herein. For example, the NEXTflex Cell Free kits available from Bioo Scientific () or the Natera Library Prep Kit (available from Natera, Inc. San Carlos, CA) . However, such kits would typically be modified to include adaptors that are customized for the amplification and sequencing steps of the methods provided herein. Adaptor ligation can be performed using commercially available kits such as the ligation kit found in the AGILENT SURESELECT kit (Agilent, CA).

[0123] Target regions of the nucleic acid library generated from DNA isolated from the sample, especially a circulating free DNA sample for the methods of the present invention, are then amplified. For this amplification, a series of primers or primer pairs, which can include between 5, 10, 15, 20, 25, 50, 100, 125, 150, 250, 500, 1000, 2500, 5000, 10,000, 20,000, 25,000, or 50,000 on the low end of the range and 15, 20, 25, 50, 100, 125, 150, 250, 500, 1000, 2500, 5000, 10,000, 20,000, 25,000, 50,000, 60,000, 75,000, or 100,000 primers on the upper end of the range, that each bind to one of a series of primer binding sites.

[0124] Primer designs can be generated with Primer3 (Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) “Primer3 - new capabilities and interfaces.” Nucleic Acids Research 40(15):e115 and Koressaar T, Remm M (2007) “Enhancements and modifications of primer design program Primer3.” Bioinformatics 23(10):1289-91) source code available at primer3.sourceforge.net). Primer specificity can be evaluated by BLAST and added to existing primer design pipeline criteria:

[0125] Primer specificities can be determined using the BLASTn program from the ncbi-blast-2.2.29+ package. The task option “blastn-short” can be used to map the primers against hg19 human genome. Primer designs can be determined as “specific” if the primer has less than 100 hits to the genome and the top hit is the target complementary primer binding region of the genome

and is at least two scores higher than other hits (score is defined by BLASTn program). This can be done in order to have a unique hit to the genome and to not have many other hits throughout the genome.

[0126] The final selected primers can be visualized in IGV (James T. Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov. Integrative Genomics Viewer. *Nature Biotechnology* 29, 24–26 (2011)) and UCSC browser (Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. *Genome Res.* 2002 Jun;12(6):996-1006) using bed files and coverage maps for validation.

[0127] Methods of the present invention, in certain embodiments, include forming an amplification reaction mixture. The reaction mixture typically is formed by combining a polymerase, nucleotide triphosphates, nucleic acid fragments from a nucleic acid library generated from the sample, a set of forward and reverse primers specific for target regions that contain SNVs. The reaction mixtures provided herein, themselves forming in illustrative embodiments, a separate aspect of the invention.

[0128] An amplification reaction mixture useful for the present invention includes components known in the art for nucleic acid amplification, especially for PCR amplification. For example, the reaction mixture typically includes nucleotide triphosphates, a polymerase, and magnesium. Polymerases that are useful for the present invention can include any polymerase that can be used in an amplification reaction especially those that are useful in PCR reactions. In certain embodiments, hot start Taq polymerases are especially useful. Amplification reaction mixtures useful for practicing the methods provided herein, such as AmpliTaq Gold master mix (Life Technologies, Carlsbad, CA), are available commercially.

[0129] Amplification (e.g. temperature cycling) conditions for PCR are well known in the art. The methods provided herein can include any PCR cycling conditions that result in amplification of target nucleic acids such as target nucleic acids from a library. Non-limiting exemplary cycling conditions are provided in the Examples section herein.

[0130] There are many workflows that are possible when conducting PCR; some workflows typical to the methods disclosed herein are provided herein. The steps outlined herein are not meant to exclude other possible steps nor does it imply that any of the steps described herein are required

for the method to work properly. A large number of parameter variations or other modifications are known in the literature, and may be made without affecting the essence of the invention.

[0131] In certain embodiments of the method provided herein, at least a portion and in illustrative examples the entire sequence of an amplicon, such as an outer primer target amplicon, is determined. Methods for determining the sequence of an amplicon are known in the art. Any of the sequencing methods known in the art, e.g. Sanger sequencing, can be used for such sequence determination. In illustrative embodiments high throughput next-generation sequencing techniques (also referred to herein as massively parallel sequencing techniques) such as, but not limited to, those employed in MYSEQ (ILLUMINA), HISEQ (ILLUMINA), ION TORRENT (LIFE TECHNOLOGIES), GENOME ANALYZER ILX (ILLUMINA), GS FLEX+ (ROCHE 454), can be used for sequencing the amplicons produced by the methods provided herein.

[0132] High throughput genetic sequencers are amenable to the use of barcoding (i.e., sample tagging with distinctive nucleic acid sequences) so as to identify specific samples from individuals thereby permitting the simultaneous analysis of multiple samples in a single run of the DNA sequencer. The number of times a given region of the genome in a library preparation (or other nucleic preparation of interest) is sequenced (number of reads) will be proportional to the number of copies of that sequence in the genome of interest (or expression level in the case of cDNA containing preparations). Biases in amplification efficiency can be taken into account in such quantitative determination.

[0133] Target Genes

[0134] Target genes of the present invention in exemplary embodiments, are cancer-related genes, and in many illustrative embodiments, lung cancer-related genes. A cancer-related gene (for example, a lung cancer-related gene or a lung SCC-related gene or a lung ADC-related gene) refers to a gene associated with an altered risk for a cancer (e.g. lung cancer or lung SCC or lung ADC, respectively) or an altered prognosis for a cancer. Exemplary cancer-related genes that promote cancer include oncogenes; genes that enhance cell proliferation, invasion, or metastasis; genes that inhibit apoptosis; and pro-angiogenesis genes. Cancer-related genes that inhibit cancer include, but are not limited to, tumor suppressor genes; genes that inhibit cell proliferation, invasion, or metastasis; genes that promote apoptosis; and anti-angiogenesis genes.

[0135] An embodiment of the mutation detection method begins with the selection of the region of the gene that becomes the target. The region with known mutations is used to develop primers for mPCR-NGS to amplify and detect the mutation.

[0136] Methods provided herein can be used to detect virtually any type of mutation, especially mutations known to be associated with cancer and most particularly the methods provided herein are directed to mutations, especially SNVs, associated with lung cancer, specifically adenocarcinoma and squamous cell carcinoma. Exemplary SNVs can be in one or more of the following genes: EGFR, FGFR1, FGFR2, ALK, MET, ROS1, NTRK1, RET, HER2, DDR2, PDGFRA, KRAS, NF1, BRAF, PIK3CA, MEK1, NOTCH1, MLL2, EZH2, TET2, DNMT3A, SOX2, MYC, KEAP1, CDKN2A, NRG1, TP53, LKB1, and PTEN, which have been identified in various lung cancer samples as being mutated, having increased copy numbers, or being fused to other genes and combinations thereof (Non-small-cell lung cancers: a heterogeneous set of diseases. Chen et al. *Nat. Rev. Cancer.* 2014 Aug 14(8):535-551). In another example, the list of genes are those listed above, where SNVs have been reported, such as in the cited Chen et al. reference. In another embodiment, the SNVs can include SNVs found in one of the genes found in Table 19 herein. SNVs in the genes listed in Table 19 were analyzed in the experiment of Example 1. SNVs in these genes were detected in tumor samples matched to the ctDNA samples of Example 1. In some embodiments, SNVs that are analyzed in methods provided herein can include any of the genes listed in this paragraph above or any of the genes in Table 19 that are not listed above. Provided herein, are methods that use the specific determination of a particular SNV in a particular gene to direct a targeted drug therapy.

[0137] Amplification (e.g. *PCR*) *Reaction Mixtures*:

[0138] Methods of the present invention, in certain embodiments, include forming an amplification reaction mixture. The reaction mixture typically is formed by combining a polymerase, nucleotide triphosphates, nucleic acid fragments from a nucleic acid library generated from the sample, a series of forward target-specific outer primers and a first strand reverse outer universal primer. Another illustrative embodiment is a reaction mixture that includes forward target-specific inner primers instead of the forward target-specific outer primers and amplicons from a first PCR reaction using the outer primers, instead of nucleic acid fragments from the nucleic acid library. The reaction mixtures provided herein, themselves forming in illustrative

embodiments, a separate aspect of the invention. In illustrative embodiments, the reaction mixtures are PCR reaction mixtures. PCR reaction mixtures typically include magnesium.

[0139] In some embodiments, the reaction mixture includes ethylenediaminetetraacetic acid (EDTA), magnesium, tetramethyl ammonium chloride (TMAC), or any combination thereof. In some embodiments, the concentration of TMAC is between 20 and 70 mM, inclusive. While not meant to be bound to any particular theory, it is believed that TMAC binds to DNA, stabilizes duplexes, increases primer specificity, and/or equalizes the melting temperatures of different primers. In some embodiments, TMAC increases the uniformity in the amount of amplified products for the different targets. In some embodiments, the concentration of magnesium (such as magnesium from magnesium chloride) is between 1 and 8 mM.

[0140] The large number of primers used for multiplex PCR of a large number of targets may chelate a lot of the magnesium (2 phosphates in the primers chelate 1 magnesium). For example, if enough primers are used such that the concentration of phosphate from the primers is ~9 mM, then the primers may reduce the effective magnesium concentration by ~4.5 mM. In some embodiments, EDTA is used to decrease the amount of magnesium available as a cofactor for the polymerase since high concentrations of magnesium can result in PCR errors, such as amplification of non-target loci. In some embodiments, the concentration of EDTA reduces the amount of available magnesium to between 1 and 5 mM (such as between 3 and 5 mM).

[0141] In some embodiments, the pH is between 7.5 and 8.5, such as between 7.5 and 8, 8 and 8.3, or 8.3 and 8.5, inclusive. In some embodiments, Tris is used at, for example, a concentration of between 10 and 100 mM, such as between 10 and 25 mM, 25 and 50 mM, 50 and 75 mM, or 25 and 75 mM, inclusive. In some embodiments, any of these concentrations of Tris are used at a pH between 7.5 and 8.5. In some embodiments, a combination of KCl and $(\text{NH}_4)_2\text{SO}_4$ is used, such as between 50 and 150 mM KCl and between 10 and 90 mM $(\text{NH}_4)_2\text{SO}_4$, inclusive. In some embodiments, the concentration of KCl is between 0 and 30 mM, between 50 and 100 mM, or between 100 and 150 mM, inclusive. In some embodiments, the concentration of $(\text{NH}_4)_2\text{SO}_4$ is between 10 and 50 mM, 50 and 90 mM, 10 and 20 mM, 20 and 40 mM, 40 and 60 mM, or 60 and 80 mM $(\text{NH}_4)_2\text{SO}_4$, inclusive. In some embodiments, the ammonium $[\text{NH}_4^+]$ concentration is between 0 and 160 mM, such as between 0 to 50, 50 to 100, or 100 to 160 mM, inclusive. In some embodiments, the sum of the potassium and ammonium concentration ($[\text{K}^+] + [\text{NH}_4^+]$) is between 0 and 160 mM, such as between 0 to 25, 25 to 50, 50 to 150, 50 to 75, 75 to 100, 100 to 125, or

125 to 160 mM, inclusive. An exemplary buffer with $[K^+] + [NH_4^+] = 120$ mM is 20 mM KCl and 50 mM $(NH_4)_2SO_4$. In some embodiments, the buffer includes 25 to 75 mM Tris, pH 7.2 to 8, 0 to 50 mM KCl, 10 to 80 mM ammonium sulfate, and 3 to 6 mM magnesium, inclusive. In some embodiments, the buffer includes 25 to 75 mM Tris pH 7 to 8.5, 3 to 6 mM $MgCl_2$, 10 to 50 mM KCl, and 20 to 80 mM $(NH_4)_2SO_4$, inclusive. In some embodiments, 100 to 200 Units/mL of polymerase are used. In some embodiments, 100 mM KCl, 50 mM $(NH_4)_2SO_4$, 3 mM $MgCl_2$, 7.5 nM of each primer in the library, 50 mM TMAC, and 7 μ l DNA template in a 20 μ l final volume at pH 8.1 is used.

[0142] In some embodiments, a crowding agent is used, such as polyethylene glycol (PEG, such as PEG 8,000) or glycerol. In some embodiments, the amount of PEG (such as PEG 8,000) is between 0.1 to 20%, such as between 0.5 to 15%, 1 to 10%, 2 to 8%, or 4 to 8%, inclusive. In some embodiments, the amount of glycerol is between 0.1 to 20%, such as between 0.5 to 15%, 1 to 10%, 2 to 8%, or 4 to 8%, inclusive. In some embodiments, a crowding agent allows either a low polymerase concentration and/or a shorter annealing time to be used. In some embodiments, a crowding agent improves the uniformity of the DOR and/or reduces dropouts (undetected alleles). *Polymerases* In some embodiments, a polymerase with proof-reading activity, a polymerase without (or with negligible) proof-reading activity, or a mixture of a polymerase with proof-reading activity and a polymerase without (or with negligible) proof-reading activity is used. In some embodiments, a hot start polymerase, a non-hot start polymerase, or a mixture of a hot start polymerase and a non-hot start polymerase is used. In some embodiments, a HotStarTaq DNA polymerase is used (see, for example, QIAGEN catalog No. 203203). In some embodiments, AmpliTaq Gold® DNA Polymerase is used. In some embodiments a PrimeSTAR GXL DNA polymerase, a high fidelity polymerase that provides efficient PCR amplification when there is excess template in the reaction mixture, and when amplifying long products, is used (Takara Clontech, Mountain View, CA). In some embodiments, KAPA Taq DNA Polymerase or KAPA Taq HotStart DNA Polymerase is used; they are based on the single-subunit, wild-type *Taq* DNA polymerase of the thermophilic bacterium *Thermus aquaticus*. KAPA Taq and KAPA Taq HotStart DNA Polymerase have 5'-3' polymerase and 5'-3' exonuclease activities, but no 3' to 5' exonuclease (proofreading) activity (see, for example, KAPA BIOSYSTEMS catalog No. BK1000). In some embodiments, *Pfu* DNA polymerase is used; it is a highly thermostable DNA polymerase from the hyperthermophilic archaeum *Pyrococcus furiosus*. The enzyme catalyzes the

template-dependent polymerization of nucleotides into duplex DNA in the 5'→3' direction. *Pfu* DNA Polymerase also exhibits 3'→5' exonuclease (proofreading) activity that enables the polymerase to correct nucleotide incorporation errors. It has no 5'→3' exonuclease activity (see, for example, Thermo Scientific catalog No. EP0501). In some embodiments Klentaq1 is used; it is a Klenow-fragment analog of Taq DNA polymerase, it has no exonuclease or endonuclease activity (see, for example, DNA POLYMERASE TECHNOLOGY, Inc, St. Louis, Missouri, catalog No. 100). In some embodiments, the polymerase is a PHUSION DNA polymerase, such as PHUSION High Fidelity DNA polymerase (M0530S, New England BioLabs, Inc.) or PHUSION Hot Start Flex DNA polymerase (M0535S, New England BioLabs, Inc.). In some embodiments, the polymerase is a Q5® DNA Polymerase, such as Q5® High-Fidelity DNA Polymerase (M0491S, New England BioLabs, Inc.) or Q5® Hot Start High-Fidelity DNA Polymerase (M0493S, New England BioLabs, Inc.). In some embodiments, the polymerase is a T4 DNA polymerase (M0203S, New England BioLabs, Inc.).

[0143] In some embodiment, between 5 and 600 Units/mL (Units per 1 mL of reaction volume) of polymerase is used, such as between 5 to 100, 100 to 200, 200 to 300, 300 to 400, 400 to 500, or 500 to 600 Units/mL, inclusive.

PCR Methods

[0144] In some embodiments, hot-start PCR is used to reduce or prevent polymerization prior to PCR thermocycling. Exemplary hot-start PCR methods include initial inhibition of the DNA polymerase, or physical separation of reaction components reaction until the reaction mixture reaches the higher temperatures. In some embodiments, slow release of magnesium is used. DNA polymerase requires magnesium ions for activity, so the magnesium is chemically separated from the reaction by binding to a chemical compound, and is released into the solution only at high temperature. In some embodiments, non-covalent binding of an inhibitor is used. In this method a peptide, antibody, or aptamer are non-covalently bound to the enzyme at low temperature and inhibit its activity. After incubation at elevated temperature, the inhibitor is released and the reaction starts. In some embodiments, a cold-sensitive Taq polymerase is used, such as a modified DNA polymerase with almost no activity at low temperature. In some embodiments, chemical modification is used. In this method, a molecule is covalently bound to the side chain of an amino acid in the active site of the DNA polymerase. The molecule is released from the enzyme by

incubation of the reaction mixture at elevated temperature. Once the molecule is released, the enzyme is activated.

[0145] In some embodiments, the amount to template nucleic acids (such as an RNA or DNA sample) is between 20 and 5,000 ng, such as between 20 to 200, 200 to 400, 400 to 600, 600 to 1,000; 1,000 to 1,500; or 2,000 to 3,000 ng, inclusive.

[0146] In some embodiments a QIAGEN Multiplex PCR Kit is used (QIAGEN catalog No. 206143). For 100 x 50 μ l multiplex PCR reactions, the kit includes 2x QIAGEN Multiplex PCR Master Mix (providing a final concentration of 3 mM MgCl₂, 3 x 0.85 ml), 5x Q-Solution (1 x 2.0 ml), and RNase-Free Water (2 x 1.7 ml). The QIAGEN Multiplex PCR Master Mix (MM) contains a combination of KCl and (NH₄)₂SO₄ as well as the PCR additive, Factor MP, which increases the local concentration of primers at the template. Factor MP stabilizes specifically bound primers, allowing efficient primer extension by HotStarTaq DNA Polymerase. HotStarTaq DNA Polymerase is a modified form of *Taq* DNA polymerase and has no polymerase activity at ambient temperatures. In some embodiments, HotStarTaq DNA Polymerase is activated by a 15-minute incubation at 95°C which can be incorporated into any existing thermal-cycler program.

[0147] In some embodiments, 1x QIAGEN MM final concentration (the recommended concentration), 7.5 nM of each primer in the library, 50 mM TMAC, and 7 μ l DNA template in a 20 μ l final volume is used. In some embodiments, the PCR thermocycling conditions include 95°C for 10 minutes (hot start); 20 cycles of 96°C for 30 seconds; 65°C for 15 minutes; and 72°C for 30 seconds; followed by 72°C for 2 minutes (final extension); and then a 4°C hold.

[0148] In some embodiments, 2x QIAGEN MM final concentration (twice the recommended concentration), 2 nM of each primer in the library, 70 mM TMAC, and 7 μ l DNA template in a 20 μ l total volume is used. In some embodiments, up to 4 mM EDTA is also included. In some embodiments, the PCR thermocycling conditions include 95°C for 10 minutes (hot start); 25 cycles of 96°C for 30 seconds; 65°C for 20, 25, 30, 45, 60, 120, or 180 minutes; and optionally 72°C for 30 seconds); followed by 72°C for 2 minutes (final extension); and then a 4°C hold.

[0149] Another exemplary set of conditions includes a semi-nested PCR approach. The first PCR reaction uses 20 μ l a reaction volume with 2x QIAGEN MM final concentration, 1.875 nM of each primer in the library (outer forward and reverse primers), and DNA template. Thermocycling parameters include 95°C for 10 minutes; 25 cycles of 96°C for 30 seconds, 65°C for 1 minute, 58°C for 6 minutes, 60°C for 8 minutes, 65°C for 4 minutes, and 72°C for 30 seconds;

and then 72°C for 2 minutes, and then a 4°C hold. Next, 2 μ l of the resulting product, diluted 1:200, is used as input in a second PCR reaction. This reaction uses a 10 μ l reaction volume with 1x QIAGEN MM final concentration, 20 nM of each inner forward primer, and 1 μ M of reverse primer tag. Thermocycling parameters include 95°C for 10 minutes; 15 cycles of 95°C for 30 seconds, 65°C for 1 minute, 60°C for 5 minutes, 65°C for 5 minutes, and 72°C for 30 seconds; and then 72°C for 2 minutes, and then a 4°C hold. The annealing temperature can optionally be higher than the melting temperatures of some or all of the primers, as discussed herein (see U.S. Patent Application No. 14/918,544, filed Oct. 20, 2015, which is herein incorporated by reference in its entirety).

[0150] The melting temperature (T_m) is the temperature at which one-half (50%) of a DNA duplex of an oligonucleotide (such as a primer) and its perfect complement dissociates and becomes single strand DNA. The annealing temperature (T_A) is the temperature one runs the PCR protocol at. For prior methods, it is usually 5°C below the lowest T_m of the primers used, thus close to all possible duplexes are formed (such that essentially all the primer molecules bind the template nucleic acid). While this is highly efficient, at lower temperatures there are more unspecific reactions bound to occur. One consequence of having too low a T_A is that primers may anneal to sequences other than the true target, as internal single-base mismatches or partial annealing may be tolerated. In some embodiments of the present inventions, the T_A is higher than T_m , where at a given moment only a small fraction of the targets have a primer annealed (such as only ~1-5%). If these get extended, they are removed from the equilibrium of annealing and dissociating primers and target (as extension increases T_m quickly to above 70°C), and a new ~1-5% of targets has primers. Thus, by giving the reaction a long time for annealing, one can get ~100% of the targets copied per cycle.

[0151] In various embodiments, the annealing temperature is between 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 °C and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 15 °C on the high end of the range, greater than the melting temperature (such as the empirically measured or calculated T_m) of at least 25, 50, 60, 70, 75, 80, 90, 95, or 100% of the non-identical primers. In various embodiments, the annealing temperature is between 1 and 15 °C (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15 °C, inclusive) greater than the melting temperature (such as the empirically measured or calculated T_m) of at least 25; 50; 75; 100; 300; 500; 750; 1,000; 2,000; 5,000; 7,500; 10,000; 15,000; 19,000; 20,000; 25,000; 27,000; 28,000; 30,000; 40,000;

50,000; 75,000; 100,000; or all of the non-identical primers. In various embodiments, the annealing temperature is between 1 and 15 °C (such as between 1 to 10, 1 to 5, 1 to 3, 3 to 5, 3 to 8, 5 to 10, 5 to 8, 8 to 10, 10 to 12, or 12 to 15 °C, inclusive) greater than the melting temperature (such as the empirically measured or calculated T_m) of at least 25%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, or all of the non-identical primers, and the length of the annealing step (per PCR cycle) is between 5 and 180 minutes, such as 15 and 120 minutes, 15 and 60 minutes, 15 and 45 minutes, or 20 and 60 minutes, inclusive.

[0152] Exemplary Multiplex PCR Methods

[0153] In various embodiments, long annealing times (as discussed herein and exemplified in Example 12) and/or low primer concentrations are used. In fact, in certain embodiments, limiting primer concentrations and/or conditions are used. In various embodiments, the length of the annealing step is between 15, 20, 25, 30, 35, 40, 45, or 60 minutes on the low end of the range and 20, 25, 30, 35, 40, 45, 60, 120, or 180 minutes on the high end of the range. In various embodiments, the length of the annealing step (per PCR cycle) is between 30 and 180 minutes. For example, the annealing step can be between 30 and 60 minutes and the concentration of each primer can be less than 20, 15, 10, or 5 nM. In other embodiments the primer concentration is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 nM on the low end of the range, and 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, and 50 on the high end of the range.

[0154] At high level of multiplexing, the solution may become viscous due to the large amount of primers in solution. If the solution is too viscous, one can reduce the primer concentration to an amount that is still sufficient for the primers to bind the template DNA. In various embodiments, between 1,000 and 100,000 different primers are used and the concentration of each primer is less than 20 nM, such as less than 10 nM or between 1 and 10 nM, inclusive.

[0155] The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to use the embodiments provided herein, and are not intended to limit the scope of the disclosure nor are they intended to represent that the Examples below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by volume, and temperature is in degrees Centigrade. It should be understood that variations in the methods as

described can be made without changing the fundamental aspects that the Examples are meant to illustrate.

EXAMPLES

[0156] EXAMPLE 1. Analysis of single nucleotide variants (SNVs) in circulating tumor DNA (ctDNA) from Lung Cancer Patients

[0157] A prior pilot study demonstrated the successful detection of cancer-relevant point mutations in the plasma of cancer patients. In that study, the mutation profile of 4 lung cancer tumors was determined by whole exome sequencing (WES) or Ampliseq (Life Technologies, Carlsbad, CA), and a subset of those mutations were successfully detected in the corresponding plasma samples using a multiplex PCR-Next-Generation Sequencing (mPCR-NGS) method. In this experiment, called TRACERx, the mPCR-NGS method was used to detect and track over time cancer-specific mutations in the plasma of cancer patients, and to evaluate the utility of the method in monitoring disease progression through treatment. The overall project design is shown in FIG. 1. The first phase of the project was the determination of the baseline mutation profile in the plasma of 50 treatment-naïve lung cancer patients. Purified genomic DNA samples from several tumor regions (2-7 regions per tumor), purified germline DNA samples, and intact plasma samples from 50 patients were obtained. The mutation profile of all of the tumor regions was previously determined by WES and AmpliSeq, and a subset of mutations per patient was analyzed by mPCR-NGS. Those mutations included both driver and passenger mutations and both clonal and sub-clonal mutations. Based on these data, we designed multiplex PCR assays, prepared primer pools (primers were obtained from IDT, Coralville, Iowa), QC'ed the primer pools, and optimized the mPCR protocol for each pool. Plasma cfDNA was purified, quantified, and converted into libraries. The libraries were then used as input into mPCR, and the products were sequenced and analyzed. A similar protocol was applied to the genomic DNA from tumor and matched normal samples.

Samples description

[0158] **Samples.** For each of the first 50 TRACERx patients, 4-5 ml of plasma obtained before tumor resection and prior to any therapy was isolated. Plasma samples were aliquoted in 2 ml tubes and shipped frozen on dry ice. Purified genomic DNA from up to 7 tumor subsections, from affected lymph nodes (where available), and from the white blood cell fraction (referred to as the

matched normal) were purified and 500 ng purified DNA from each sample, normalized at 10 ng/μl, was analyzed. The purified DNA samples were frozen and shipped on dry ice.

[0159] SNV information. The mutation profile, including single nucleotide variants (SNVs) and copy number variants (CNVs), of each tumor subsection was determined by TRACERx using WES. The full mutation profile of each tumor was used to detect clonal structure and to reconstruct the phylogenetic tree of each tumor. PyClone (PyClone: statistical inference of clonal population structure in cancer. Roth et al, *Nature Methods* 11, 396–398 (2014)) was used to detect clonal structure. PyClone identifies a list of SNV subclones and calculates their cancer cell fraction. It also categorizes SNVs as either clonal or subclonal. The driver category of each SNV was determined and provided as the driver category (1-4, where 1 is most likely to be a driver mutation, and 4 is the least likely). For each patient, up to 108 SNVs, spanning all driver categories and including clonal and subclonal mutations, were analyzed. The detected allele fractions of each SNV in each tumor subsection, lymph node and matched normal DNA sample along with PyClone clonal/subclonal cluster information were compared.

[0160] Additional information. For each patient, the following information was available: tumor size (mm), tumor location (lung lobe), tumor stage, tumor pathological type, number of lymph nodes affected, vascular invasion status, as well as de-identified information on the collecting hospital.

Assay design and protocol optimization.

[0161] Assay design. Natera's standard assay design pipeline was used to design Right and Left PCR primers for all given SNVs. A pair of Right and Left PCR primers targeting an SNV is defined as an assay for that particular SNV. Note that it is possible for one assay to cover more than 1 target SNV if they are in close proximity. For every pair of assays, the probability of forming a primer-dimer was calculated. The SNV allele fraction data in each tumor was used to reconstruct phylogenetic trees using Lichee (Fast and scalable inference of multi-sample cancer lineages. Popic et al. *Genome Biol.* 2015 May 6;16:91). The list of assays for each sample were filtered to remove primers that are predicted to form primer dimers while giving strong priority to assays covering driver 1 and 2 SNVs. The remaining assays were used to build 5 balanced pools. All assays pooled together were compatible meaning there were no primers predicted to form primer-dimers in a pool. At each step, the assays were chosen such that assays covering driver 1 and 2 SNVs have the highest priority and for each patient the number of selected SNVs per branch was

proportional to the total number of SNVs of that branch from the reconstructed phylogenetic tree. More specifically, we tried to have a uniform sampling of SNVs from branches in the reconstructed phylogeny tree, making sure selected assays provided good coverage of the reconstructed tree. The final design consisted of 972 assays, equally distributed among 5 pools, and containing 15-20 assays for each sample. The number of SNVs and the number of assays per sample by driver category are shown in FIG. 2. The genes in which the SNVs are found and the number of SNVs that were assayed per gene are found in FIG. 19.

[0162] Pool QC and optimization. The 972 primer pairs were obtained (IDT, Coralville, Iowa) in individual wells, desalting and normalized to 100 μ M. The assays were pooled according to the pooling scheme, and each pool was used in a combined QC/optimization experiment. For the optimization experiment, several PCR parameters were varied and the effects on the sequencing performance, as well as the number of drop-out assays were evaluated from the sequence data. The PCR conditions that yielded the best percentage of on target reads, depth of read uniformity, and error rate were determined. Primers that were responsible for the majority of primer dimers were identified and removed from each pool (for each primer removed, its corresponding partner was also removed). Following this step, 908 total assays remained, equally distributed among the 5 pools.

Sample preparation

[0163] DNA extraction and QC. All the plasma aliquots from each patient were pooled prior to cfDNA extraction, and the hemolysis grade of each pooled plasma sample was evaluated visually (no hemolysis, mild hemolysis or severe hemolysis). cfDNA was extracted using the Qiagen NA kit (Valencia, CA) following a protocol optimized for 5 ml of plasma. All cfDNA samples were QCed on Bioanalyzer High Sensitivity chips (Agilent, Santa Clara, CA). The same Bioanalyzer High Sensitivity runs were also used to quantify the cfDNA samples by interpolation of the mononucleosomal peak height on a calibration curve prepared from a pure cfDNA sample that was previously quantified. This was necessary because cfDNA sometimes contains an intact DNA fraction that overlaps with the high size marker on the chip, which makes quantification of the mononucleosomal peak unreliable. A representative subset of the purified genomic DNA samples (from tumor subsections, lymph nodes and white blood cells) was quantified using Nanodrops (Wilmington, DE). All of the samples quantified were in the expected range (~10 ng/ μ l).

[0164] cfDNA library preparation. The entire cfDNA amount from each plasma sample was used as input into Library Prep using the Natera library prep kit and following the kit instructions. For two samples with extremely high cfDNA amounts, the input amount into Library Prep was restricted to ~50,000 genome equivalents (165 ng). The libraries were amplified to plateau and then purified using Ampure beads (Beckman Coulter, Brea, CA) following the manufacturer's protocol. The purified libraries were QCed on the LabChip.

[0165] cfDNA multiplex PCR and Sequencing. The library material from each plasma sample was used as input into multiplex PCR (mPCR) using the relevant assay pool and an optimized plasma mPCR protocol. The protocol utilized an annealing time of 15 minutes at a temperature of 60C or 62.5C, which was above the Tm of the primers. The Tms of the primers using theoretical calculations was 53 to 59C. A 10nM primer concentration was used. The mPCR products were barcoded in a separate PCR step, and the barcoded PCR products were pooled according to the assay pooling information (see section above) into 5 pools. The pools were purified using Ampure beads following the manufacturer's protocol, QCed on a Bioanalyzer DNA1000 chip (Agilent, Santa Clara, CA), and quantified using the Qubit dsDNA Broad Range kit (Thermo Fisher Scientific, Waltham, MA). Each pool contained libraries prepared as disclosed above, from 10 cancer patient plasma samples and 20 negative controls (prepared from cfDNA extracted from presumed healthy volunteers). The negative control samples were obtained following the necessary regulatory procedures. Each pool was sequenced on a separate HiSeq 2500 Rapid run (Illumina, San Diego, CA) with 50 cycle paired end single index reads.

[0166] gDNA multiplex PCR and sequencing. The genomic DNA samples were used as input into a similar mPCR using the relevant assay pools and an optimized genomic mPCR protocol. The mPCR products were barcoded in a separate PCR step, and all the barcoded products were combined into one pool. The pool was purified using Ampure beads following the manufacturer's protocol, QCed on a Bioanalyzer DNA1000 chip, and quantified using the Qubit dsDNA Broad Range kit. The pool was sequenced on a single HiSeq2500 Rapid run with 50 cycle single end single index reads.

Results

[0167] FIG. 20 is a table showing detailed results of the analysis and detailed information regarding the samples that were analyzed in this study.

[0168] cfDNA extraction and analysis. The distribution of cfDNA concentrations for the 50 plasma samples (**Figure 3**) followed the expected distribution based on 5 ml of plasma (median of 2,200 genome copy equivalents per ml of plasma). The cfDNA concentrations, the hemolysis grade (visually estimated) and the qualitative evaluation of the cfDNA size profile (visually estimated from the Bioanalyzer traces) are shown in tabular form in **FIG. 16**

[0169] cfDNA analysis. The purified cfDNA concentration, plasma hemolysis grade and cfDNA profile are shown in Figure 16. **cfDNA concentration** refers to the mononucleosomal peak only, and was determined from the mononucleosomal peak height using a calibration curve. Genome copy equivalents were calculated using a 3.3 pg/genome conversion factor; 40 μ l purified cfDNA is used as input into Library Prep; green highlights: for those samples, the input into library prep was restricted to 50,000 genome equivalents. **cfDNA size profile:** 1: most of the cfDNA is in the mononucleosomal peak; 2: most of the cfDNA is in the mononucleosomal peak, but other sizes are seen; 3: a large peak of intact DNA (>1,000 bp) is seen along with the mononucleosomal peak and some higher molecular weight peaks. **Hemolysis** was estimated visually based on the plasma color. 0: no hemolysis (yellow plasma); 1: mild hemolysis (faint pink plasma); 2: severe hemolysis (bright pink or red plasma).

[0170] VAF analysis in tumor subsections. The sequence data from each of the tumor subsections was analyzed to determine the variant allele frequency (VAF) of each SNV in each tumor subsection, lymph node and matched normal sample. This data was compared with matched data provided separately from a different test site using different test methods, such as whole genome sequencing and exome sequencing. For most samples, the previously determined tissue VAF values from each tumor subsection closely matched the newly derived tissue VAF values (**Figure 4**). However, there were a large number of samples in which significant discrepancies were seen (**Figure 5**). Three types of discrepancies were observed: (i) for one or two subsections, all the VAFs are 0 or close to 0 in the previous analysis, but are non-zero (and span the range of VAFs seen in other subsections of the same sample) in the mPCR-NGS analysis (e.g.: LTX041, LTX111); (ii) for several assays, the VAFs are 0 in the mPCR-NGS analysis, but are non-zero (and span the range of VAFs seen in other subsections of the same sample) in the previous analysis, and no clustering by subsection was seen with this discrepancy mode (e.g.: LTX093, LTX074); (iii) for several assays or regions, none of the assays failed but concordance between VAFs obtained in the two analyses was generally poor (e.g.: LTX063, LTX059).

[0171] We also identified 16 somatic SNVs from tissue samples which were not reported in TRACERx SNV calls. Among these new somatic SNVs, 7 were called in their corresponding plasma cfDNA as well. Please see the list in FIG. 18 .

[0172] One sample (U_LTX206, with 19 assays) failed sequencing and was removed from the analysis. 889 assays covering 911 SNVs were analyzed. Assays with a depth of read of less than 1,000 were considered failed, and their corresponding SNVs were marked as “no call”. In total 21 “no call” SNVs were removed from the analysis; 890 total SNVs were analyzed.

[0173] Each run belonged to one assay pool and contained 10 cancer samples as well as 20 control samples. The set of SNVs covered by assays in a pool are considered as target SNVs for the associated run. To make an SNV call at a specific position of a cancer sample, first a background error model for that position was built. The error model was constructed based on the 20 negative samples and the remaining cancer samples (8 or 9) that were not expected to contain an SNV at that position, based on the information provided. Positions with VAF > 20% were excluded from the background error model. A positive plasma SNV call was made if the confidence for that mutation in the corresponding plasma sample passed our confidence threshold of 95 to 98%.

[0174] The overall SNV detection rate in plasma is 35.5% (310 out of 890), similar to a prior pilot study. While the algorithm made most confident true positive calls, the number of false positive calls are at an acceptable number (<0.25%). The average mutant allele frequency for the SNVs detected with high confidence is 0.875%, ranging from 0.011% to 13.93%. A sample was considered as ‘detected in plasma’ if at least one SNV expected to be present in that sample was confidently detected in plasma. Using this definition, the overall sample detection rate in plasma was 69% (34 out of 49 samples), and for those, and the average number of SNVs detected in plasma was 9.1 (ranging from 1 to 19). The number of SNVs detected in plasma for each sample is shown in tabular form in FIG. 17.

[0175] **Analysis of SNVs that were not detected in plasma.** Several lines of evidence support the conclusion that the failure to detect >60% (580 out of 911) of the expected SNVs in the plasma is due to the fact that there is not enough evidence of presence for those mutations in the cfDNA sample, as opposed to some failure of the mPCR-NGS method: The depth of read (DOR) distribution is similar for the assays that detected the expected plasma SNV and the ones that didn’t detect the expected SNV (Figure 6a) (average DOR 45,551 for assays that detected the expected SNV vs 45,133 for the ones that didn’t). This suggests assays corresponding to false negative SNV

calls are as efficient as the ones for true positive calls. Furthermore, despite the high DOR at the target SNV position, the number of mutant reads is almost negligible. In fact, 36% of them have 0 mutant reads, 75% of them have more than 5 mutant reads, and the remaining 25% false negative calls have VAF < .1%.

Factors influencing SNV detection in plasma.

[0176] Several factors that influence plasma SNV detectability have been evaluated. The cfDNA amount and the tumor staging information, tumor size and the SNV frequencies in tumor subsections were determined in separate locations.

[0177] Histological type. The most important predictor of whether a particular tumor was detected in the plasma appeared to be histological type: 100% of the squamous cell carcinoma (SQCC) tumors were detected in plasma, whereas only 50% (15 / 29) of the adenocarcinoma (ADC) tumors were detected in plasma in this study (**Figure 7**). Moreover, the average number of SNVs detected per sample was 12.7 (median = 13) for SQCC and 2.6 (median = 1) for ADC. There was only one carcinosarcoma tumor and one adenosquamous tumor in this cohort, so no conclusions about their general detectability in plasma could be derived about those tumor types at this time.

[0178] Tumor stage and size. Tumor stage and size were some of the most important factors identified that influence the number of SNVs detected in the corresponding plasma sample (**Figure 8**). Stage 1a tumors had the lowest chance of having at least one SNV detected, as well as the lowest success rate of detecting SNVs in the plasma. The VAF distribution for the SNVs that were detected from stage 1a tumors was also lower than for the rest of the tumors (**Figure 9**). As tumor size and stage are correlated, a similar trend was seen with tumor size. As this was not due to assay failure or sensitivity limits (see below), the most likely explanation is that such tumors tend to not have cfDNA present in the plasma in quantities that are detectable in the plasma volumes used in this study. The effect of tumor stage and size on the number of SNVs detected in ctDNA varied between ADC and SQCC samples. The ADC samples were more dependent on these factors with a general trend of far fewer SNVs detected in ctDNA than were detected in ctDNA of the SCC samples. In fact, SNVs were detected in the ctDNA of all of the SQCC samples regardless of stage: Three SNVs were detected in the ctDNA of one of the SCC samples and at least 5 SNVs detected in the ctDNA of the remainder of the SCC samples (Figure 15). In fact, between 3 and 19 SNVs were detected in the ctDNA of SCC samples. In 6 ADC samples that were stage 1a, an SNV was only detected in one of the ctDNA samples, and in that sample only a single SNV was detected.

In none of the stage 1a ADC samples were more than 1 SNV detected in the ctDNA. In stage 1b ADC samples, less than 5 SNVs were identified in all but two samples, with 7 SNVs identified in one of the stage 1b ADC samples and 18 SNVs identified in one of the stage 1b samples.

[0179] Tumor VAF and clonality. The clonality ratio was calculated for each mutation as (number of sub-sections of a tumor where the mutation is detected) / (total number of sub-sections of that tumor analyzed). Mutations that were observed in all analyzed tumor sections are considered ‘clonal’, all others are considered ‘sub-clonal’. The VAF of SNVs detected in plasma correlates with the ‘clonality’ of the mutations, with more clonal mutations being responsible for the highest plasma VAF values (**Figures 9 and 12**); similarly, SNVs present in multiple tumor sub-sections tend to be responsible for higher plasma VAFs in the corresponding plasma samples. In addition to the clonality ratio, the clonal status of each SNV was categorized by PyCloneCluster based on WES data from the tumor tissue. Clonal SNVs tended to have higher VAFs (Figures 13 and 14).

[0180] cfDNA input and tumor VAF. There was no correlation between the amount of cfDNA and the number and proportion of SNVs detected in the plasma samples. The number of SNVs detected in plasma is not predicted by the cfDNA input amount; however, all samples with high input (>25,000 copies) had at least one SNV detected in plasma (**Figure 10**). The plasma SNV VAF also correlates with the tumor SNV VAF(**Figure 11**).

[0181] Multivariate analysis. A regression analysis was performed to determine the variables that can be used to predict our detection of mutations. More specifically, a 0/1 response variable was used to annotate the mutations we called as present or not. The following independent variables were included in our model:

1. tumor VAF
2. PyClone cluster (categorical variable)
3. cancer stage (categorical variable)
4. size of the tumor
5. input DNA amount
6. pathological type (categorical variable)
7. number of affected lymph nodes
8. vascular invasion (categorical variable)
9. affected lobe

A logistic regression showed that the following variables had statistically significant association with the detection of a mutation (with p-values < 5%):

1. tumor VAF (p = 4.3e-6)
2. PyClone cluster (p = 1.6e-4)
3. size of the tumor (p = 3.5e-4)
4. pathological type (p = 8.3e-30)

[0182] Conclusions. We demonstrate in this example the successful detection of lung cancer-related SNVs in plasma samples from patients with lung cancer. Using a custom multiplex PCR panel tailored for this sample cohort, SNVs with variant allele fraction as low as 0.01% were detected. Of the tested SNVs, 35% were detected in the plasma samples and 67% of the samples analyzed had at least one plasma SNV detected. We also identified some of the factors that contribute to the successful detection of plasma SNV. These include tumor type, tumor stage, tumor size, SNV allele frequency in tumor and, to a lesser extent, amount of cfDNA analyzed. The finding that not all SNVs were detected in plasma, and that not all samples have SNVs detectable in the plasma, does not appear to be due to assay or protocol limitations, as those assays were functional (as evidenced by their sequencing depth of read) and their limit of detection was sufficient to detect any SNVs, should they be present in the cfDNA sample. Rather, the failure to detect those SNVs was likely due to the fact that they are not present in the sample. Samples from low grade tumors and small tumors were more likely to have limited amounts of circulating tumor DNA. Similarly, SNVs that were present at low allele frequency in the tumor were less likely to be present in the plasma. However, even tumors of high grade and relatively large size can have no SNVs detected in the plasma. It is possible that other biological reasons are responsible for this (such as amount of ctDNA shedding from the tumor) and that analyzing more SNVs per sample will increase the chance of detecting some. 0.4 mM dNTPs (see FIG. 12-3C).

[0183] Those skilled in the art can devise many modifications and other embodiments within the scope and spirit of the presently disclosed inventions. Indeed, variations in the materials, methods, drawings, experiments examples and embodiments described may be made by skilled artisans without changing the fundamental aspects of the disclosed inventions. Any of the disclosed embodiments can be used in combination with any other disclosed embodiment.

[0184] The disclosed embodiments, examples and experiments are not intended to limit the scope of the disclosure nor to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (*e.g.*, amounts, temperature, *etc.*) but some experimental errors and deviations should be accounted for. It should be understood that variations in the methods as described may be made without changing the fundamental aspects that the experiments are meant to illustrate.

[0185] EXAMPLE 2. A bespoke multiplex PCR protocol to track tumor mutations in plasma

[0186] Natera's bespoke multiplex PCR (mPCR) protocol is designed to estimate plasma ctDNA level by tracking a set of patient-specific mutations identified from tumor tissue sample(s). Given a patient-specific mutation profile we designed custom mPCR panels that can be applied to time-series plasma samples of the corresponding patient.

[0187] SNV targets. The mutation profile, which included single nucleotide variants (SNVs) for each tumor subsection, was determined based on analyses of tumor sequencing. The full mutation profile of each tumor was used to reconstruct the phylogenetic tree of each tumor. PyClone (Roth, et al. (2014). PyClone: Statistical inference of clonal population structure in cancer. *Nature Methods* 11: 396–398) was used to identify clusters of SNVs, and calculate their cancer-cell fraction. This was used to categorize SNVs as either clonal or subclonal. The driver category of each SNV was determined (1–4, where 1 was most likely to be a driver mutation, and 4 was the least likely).

[0188] Assay design. Natera's standard assay design pipeline was used to design PCR primers for all given SNVs with following parameters:

- Optimal melting temperature [Tm] 56°C, allowed range, 53°C–59°C
- Amplicon length, 50–70 bp
- GCcontent, 30–70%

[0189] We refer to a pair of Right and Left PCR primers targeting a SNV as an assay for that particular SNV. It is possible for one assay to cover more than 1 target SNV, if they were in close proximity. For every pair of assays, the probability of forming primer-dimer was calculated using thermodynamic approach (SantaLucia JR (1998) "A unified view of polymer, dumbbell and oligonucleotide DNA nearest-neighbor thermodynamics", *Proc Natl Acad Sci* 95:1460-65) to estimate the stability of the primer pair's joint hybridization structure. Assays were pooled together

to minimize the number of primers with a high probability of forming primer-dimer in the same pool. For each patient, assays were prioritized such that, 1) assays covering driver SNVs had highest priority, and 2) there was uniform sampling of the phylogenetic tree.

[0190] Pool QC and optimization. The primers were ordered from IDT in individual wells, on desalting and normalized to 100 uM. The assays were pooled at Natera according to the pooling scheme, to create assay pools where each primer was at 250 nM in water. Each pool was used in a combined QC/optimization experiment. For the optimization experiment, PCR parameters (primer concentration and annealing temperature) were varied and the effects on the percentage of on-target reads, depth-of-read uniformity (measured as the ratio of the 80th percentile/20th percentile), and the number of drop-out assays (defined as assays with <1,000 reads) were evaluated from the sequencing data. The PCR conditions that yield the best percentage of on-target reads, depth-of-read uniformity, and the lowest number of drop-outs were determined. For all pools, the optimal conditions were 10 nM primers and 60°C or 62.5°C annealing temperature.

[0191] Primers that were responsible for the majority of primer dimers were identified and removed from each pool (for each primer removed, its corresponding partner was also removed).

[0192] DNA extraction and QC. Plasma aliquots from each patient were pooled prior to cfDNA extraction, and the hemolysis grade of each pooled plasma sample was evaluated visually and noted (no hemolysis, mild hemolysis, or severe hemolysis). cfDNA was extracted at Natera using the Qiagen NA kit following a protocol optimized for 5 ml of plasma. All cfDNA samples were QCed on Bioanalyzer High Sensitivity chips. The same Bioanalyzer High Sensitivity runs were also used to also quantify the cfDNA samples by interpolation of the mononucleosomal peak height on a calibration curve prepared from a pure cfDNA sample that was quantified previously. This is necessary because cfDNA sometimes contains an intact DNA fraction that overlaps with the high size marker on the chip, making quantification of the mononucleosomal peak unreliable.

[0193] Genomic DNA samples (from tumor subsections, lymph nodes, and white blood cells) were quantified on the Nanodrop.

[0194] cfDNA library preparation. The entire cfDNA amount from each plasma sample was used as input into Library Prep using the Natera library prep kit and following the kit instructions. For two samples with extremely high cfDNA amounts, the input amount into Library Prep was restricted to ~50,000 genome equivalents (165 ng). In brief, 40 ul of DNA extracted from plasma, which is present in fragments of mononucleosomal and polynucleosomal length, were end repaired

and A-tailed, and Natera custom adapters ligated. The libraries were amplified for 15 cycles to plateau and then purified using Ampure beads following the manufacturer's protocol. The purified libraries were QCed on the LabChip.

[0195] cfDNA multiplex PCR and Sequencing. The library material from each plasma sample was used as input into multiplex PCR using the relevant assay pool and an optimized plasma mPCR protocol. The PCR composition was: 1x in-house PCR master mix, 10 nM primers, 3 uL cfDNA library (corresponding to ~600 ng DNA), in 10 uL total reaction volume. The thermocycling conditions were: 95°C, 10 minutes; 10 cycles of (95°C, 30 seconds; 60°C or 62.5°C, 15 minutes; 72°C, 30 seconds); 72°C, 2 minutes, 4°C hold.

[0196] The mPCR products were barcoded in a separate PCR step, and the barcoded PCR products were pooled according to the assay pooling information.

[0197] The pools were purified using Ampure beads following the manufacturer's protocol, QCed on a Bioanalyzer DNA1000 chip, and quantified using the Qubit dsDNA Broad Range kit. Each pool contained barcoded mPCR products of 10 cancer plasma libraries and 20 negative controls (prepared from cfDNA extracted from healthy volunteers). The negative control samples were obtained following the necessary regulatory procedures. Each pool was sequenced on a separate HiSeq2500 Rapid runs with 50 cycle paired end single index reads.

[0198] Genomic DNA multiplex PCR and sequencing. The genomic DNA samples (gDNA) were used as input into a similar mPCR using the relevant assay pools and an optimized genomic mPCR protocol; 50 ng gDNA was used as input. The mPCR products were barcoded in a separate PCR step, and all the barcoded products were combined into one pool. The pool was purified using Ampure beads following the manufacturer's protocol, QCed on a Bioanalyzer DNA1000 chip, and quantified using the Qubit dsDNA Broad Range kit. The pool was sequenced on a single HiSeq2500 Rapid run with 50 cycle single end single index reads.

[0199] Bioinformatics Pipeline. Paired-end reads were mapped to the hg19 reference genome with Novoalign v2.08.02, and sorted and indexed using SAMtools (Li H.*, Handsaker B.*¹, Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. and 1000 Genome Project Data Processing Subgroup (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25, 2078-9). All the paired-end reads were merged using Pear (J. Zhang, K. Kobert, T. Flouri, A. Stamatakis. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30(5): 614-620, 2014) (using default parameters). Since all amplicons are

less than 70 bases long, with paired 50 bp reads generated by Illumina HiSeq 2500 all on-target reads were merged with the minimum of 30 bp overlap. Unassembled Reads are off-target and were filtered at this step. Amplicons were designed such that the target SNV positions were located in the overlapping region. Bases that did not match in forward and reverse reads or that have Phred quality score less than 20 were filtered out to minimize sequencing errors in subsequent steps. Merged reads with mapping quality higher than 30 and at most one mismatch under the sequence of primers were marked as on-target. Targets with less than 1000 reads were considered failed and were filtered from further analyses. Quality control (QC) was performed using an in-house Java program checking for a wide list of statistics per sample that included total numbers of reads, mapped reads, on-target reads, number of failed targets, and average error rate. A sample with less than 90% mapped reads and more than 3 failed targets did not pass, and needed to be resequenced.

[0200] Statistical Model. The PCR process was modeled as a stochastic process, estimating the error parameters using a set of 29 control plasma samples and making the final SNV calls on the target cancer samples. For each target SNV, we built a target-specific background error model by estimating the following parameters from the control samples.

- PCR efficiency (p): Probability that each molecule is replicated in a PCR cycle.
- Error rate (p_e): Error rate per cycle for mutation type e (e.g wildtype allele A to mutant allele G).
- Initial number of molecules (X_0)

[0201] The target-specific error propagation model was used to characterize the distribution of error molecules. As a molecule is replicated over the course of PCR process, more errors occur. If an error occurs in cycle i and there are X_i wildtype molecules in the system, that error molecule is duplicated in next cycle with probability p and new error molecules are produced from wildtype background molecules according to a binomial process $B(X_i, p_e)$. Using a recursive relation, we computed the mean and variance of number of total molecules X_n and number of error molecules E_n after n PCR cycles as shown in FIG. 21.

[0202] Algorithm steps:

- a. Estimating the PCR efficiency and per cycle error rate using the normal control samples.
- b. Using the efficiency estimate, compute the starting number of molecules in the test set.

- c. Use this starting copy number and the prior efficiency distribution from the training set to estimate the PCR efficiency in the test sample.
- d. For a range of potential real mutant fraction values θ between 0 and 1 (we used 0.15 as upper bound), we estimate the mean and variance for the total number of molecules, background error molecules and real mutation molecules using the error propagation model described in last paragraph and parameters estimated in steps a–c.
- e. Use the mean and variance estimated in step d to compute the likelihood $L(\theta)$ for each potential real mutant fraction. Select the value of θ that maximizes this likelihood, (denoted by $\hat{\theta}_{MLE}$) and compute the confidence score (as $\frac{L(\hat{\theta}_{MLE})}{L(0)+L(\hat{\theta}_{MLE})}$).
- f. Call a mutation if the confidence score is $\geq 95\%$ for transitions and $\geq 98\%$ for transversions.

[0203] The invention provides a method for preparing a fraction of DNA useful for tracking single nucleotide variants present in an individual having lung squamous cell carcinoma, the method comprising

(a) extracting cell-free DNA (cfDNA) from a plasma sample of blood obtained from the individual known to have lung squamous cell carcinoma;

(b) producing a fraction of the DNA useful for tracking single nucleotide variants present in the individual known to have lung squamous cell carcinoma by:

generating a set of amplicons, wherein the set of amplicons are generated by performing a multiplex PCR amplification reaction on nucleic acids of the DNA extracted in (a) and the multiplex PCR amplification reaction comprises forming an amplification reaction mixture by combining a polymerase, nucleotide triphosphates, nucleic acid fragments from a nucleic acid library generated from the plasma sample, and a set of forward and reverse primers that each binds an effective distance from a single nucleotide variant loci within 25 base pairs of the single nucleotide variant loci, or a set of primer pairs that each span an effective region comprising the single nucleotide variant loci within 25 base pairs of the single nucleotide variant loci, an annealing time of 15 minutes, 20mM tetramethyl ammonium chloride (TMAC), and a primer concentration of 10 nM, wherein the single nucleotide variant loci are known to be associated

with lung squamous cell carcinoma and each amplicon of the set of amplicons spans at least one single nucleotide variant loci of a set of 25 to 1000 single nucleotide variant loci known to be associated with lung squamous cell carcinoma; and

determining the single nucleotide variants present in the lung squamous cell carcinoma by next generation sequencing at a depth of read of greater than 1,000,000, and determining a sequence of at least a segment of each amplicon in the set of amplicons, wherein the segment comprises a single nucleotide variant loci.

[0204] In the present specification and claims, the word ‘comprising’ and its derivatives including ‘comprises’ and ‘comprise’ include each of the stated integers but does not exclude the inclusion of one or more further integers.

CLAIMS

1. A method for preparing a fraction of DNA useful for tracking single nucleotide variants present in an individual having lung squamous cell carcinoma, the method comprising

(a) extracting cell-free DNA (cfDNA) from a plasma sample of blood obtained from the individual known to have lung squamous cell carcinoma;

(b) producing a fraction of the DNA

useful for tracking single nucleotide variants present in the individual known to have lung squamous cell carcinoma by:

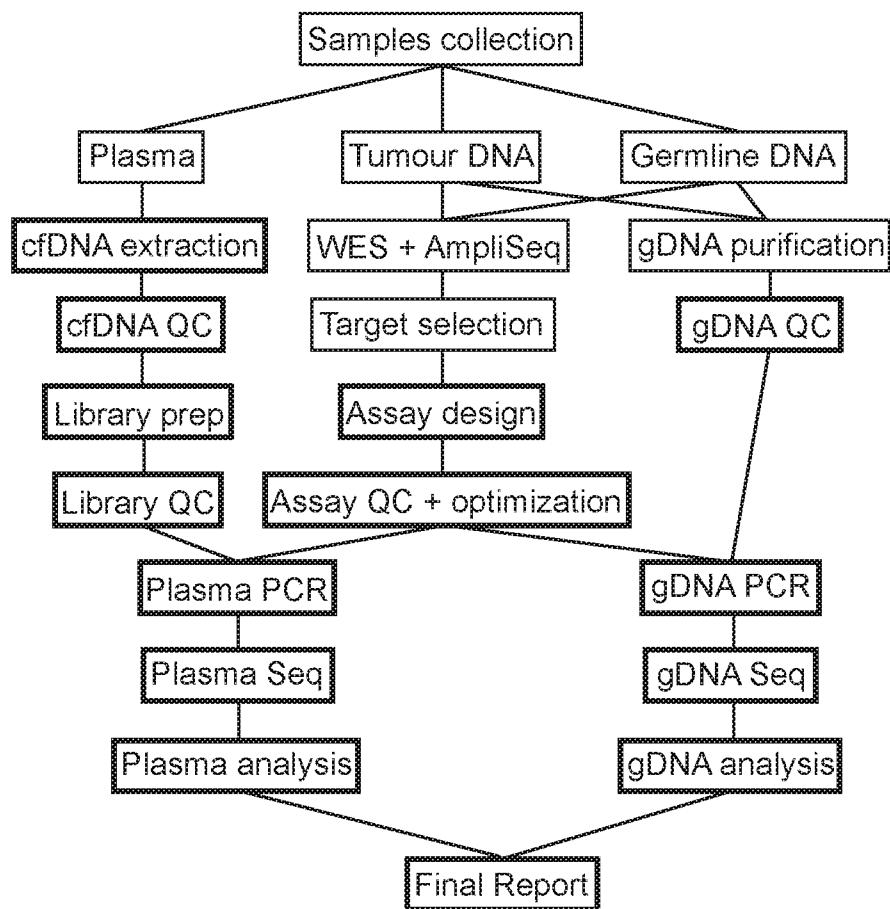
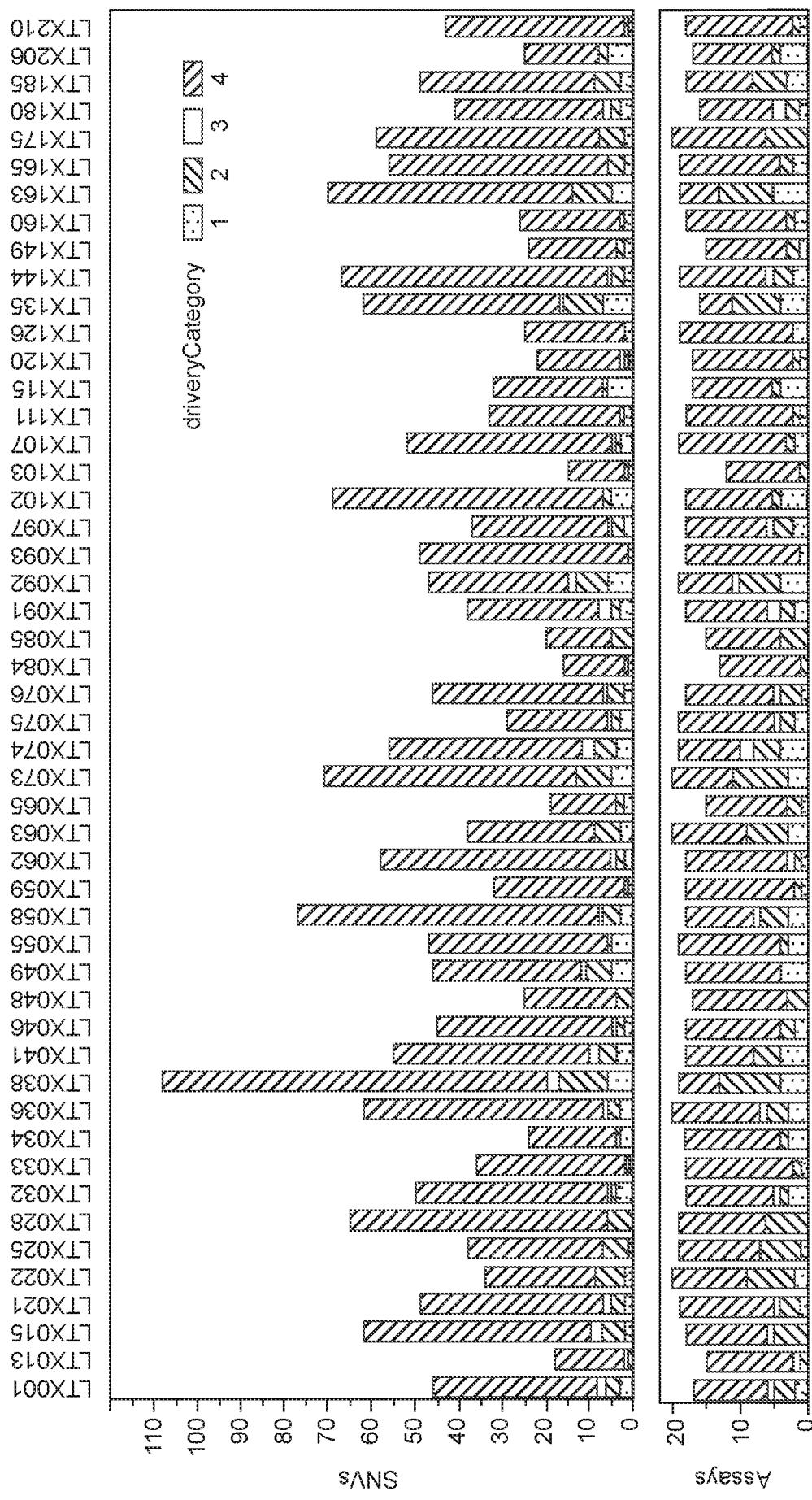
generating a set of amplicons, wherein the set of amplicons are generated by performing a multiplex PCR amplification reaction on nucleic acids of the DNA extracted in (a) and the multiplex PCR amplification reaction comprises forming an amplification reaction mixture by combining a polymerase, nucleotide triphosphates, nucleic acid fragments from a nucleic acid library generated from the plasma sample, and a set of forward and reverse primers that each binds an effective distance from a single nucleotide variant loci within 25 base pairs of the single nucleotide variant loci, or a set of primer pairs that each span an effective region comprising the single nucleotide variant loci within 25 base pairs of the single nucleotide variant loci, an annealing time of 15 minutes, 20mM tetramethyl ammonium chloride (TMAC), and a primer concentration of 10 nM, wherein the single nucleotide variant loci are known to be associated with lung squamous cell carcinoma and each amplicon of the set of amplicons spans at least one single nucleotide variant loci of a set of 25 to 1000 single nucleotide variant loci known to be associated with lung squamous cell carcinoma; and

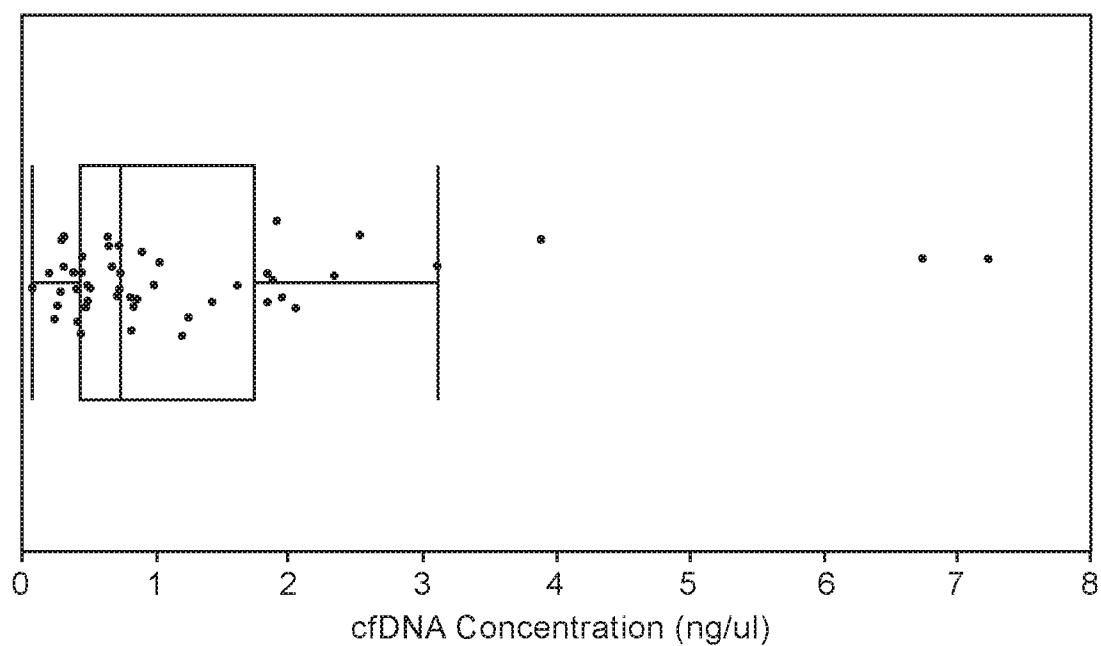
determining the single nucleotide variants present in the lung squamous cell carcinoma by next generation sequencing at a depth of read of greater than 1,000,000, and determining a sequence of at least a segment of each amplicon in the set of amplicons, wherein the segment comprises a single nucleotide variant loci.

2 The method according to claim 1, wherein the lung squamous cell carcinoma is a stage Ia, Ib, or 2a squamous cell carcinoma.

3. The method according to claim 1, wherein the squamous cell carcinoma is a stage Ia or Ib squamous cell carcinoma.
4. The method according to claim 1, wherein the individual is not subjected to surgery.
5. The method according to claim 1, wherein the individual is not subjected to a biopsy.
6. The method according to claim 1, wherein the method further comprises determining variant allele frequency for each of the single nucleotide variants from the sequence determination.
7. The method according to claim 6, wherein a lung squamous cell carcinoma treatment plan is identified based on variant allele frequency determinations.
8. The method according to claim 6, further comprising administering a compound to the individual, where the compound is known to be specifically effective in treating lung squamous cell carcinoma having one of the determined single nucleotide variants with a variable allele frequency greater than at least one half of the other single nucleotide variants that were determined.
9. The method according to claim 1, wherein nucleic acids are isolated from a tumor of the individual and single nucleotide variants are identified in the tumor for the set single nucleotide variant loci before determining the sequence of at least a segment of each amplicon of the set of amplicons for the plasma sample of blood.
10. The method according to claim 8, wherein a variant allele frequency of greater than 1.0% is indicative a clonal single nucleotide variant.
11. The method according to claim 10, wherein compound targets the clonal single nucleotide variants.

FIG. 1


FIG. 2

SUBSTITUTE SHEET (RULE 26)

3 / 171

FIG. 3

4 / 171

FIG. 4

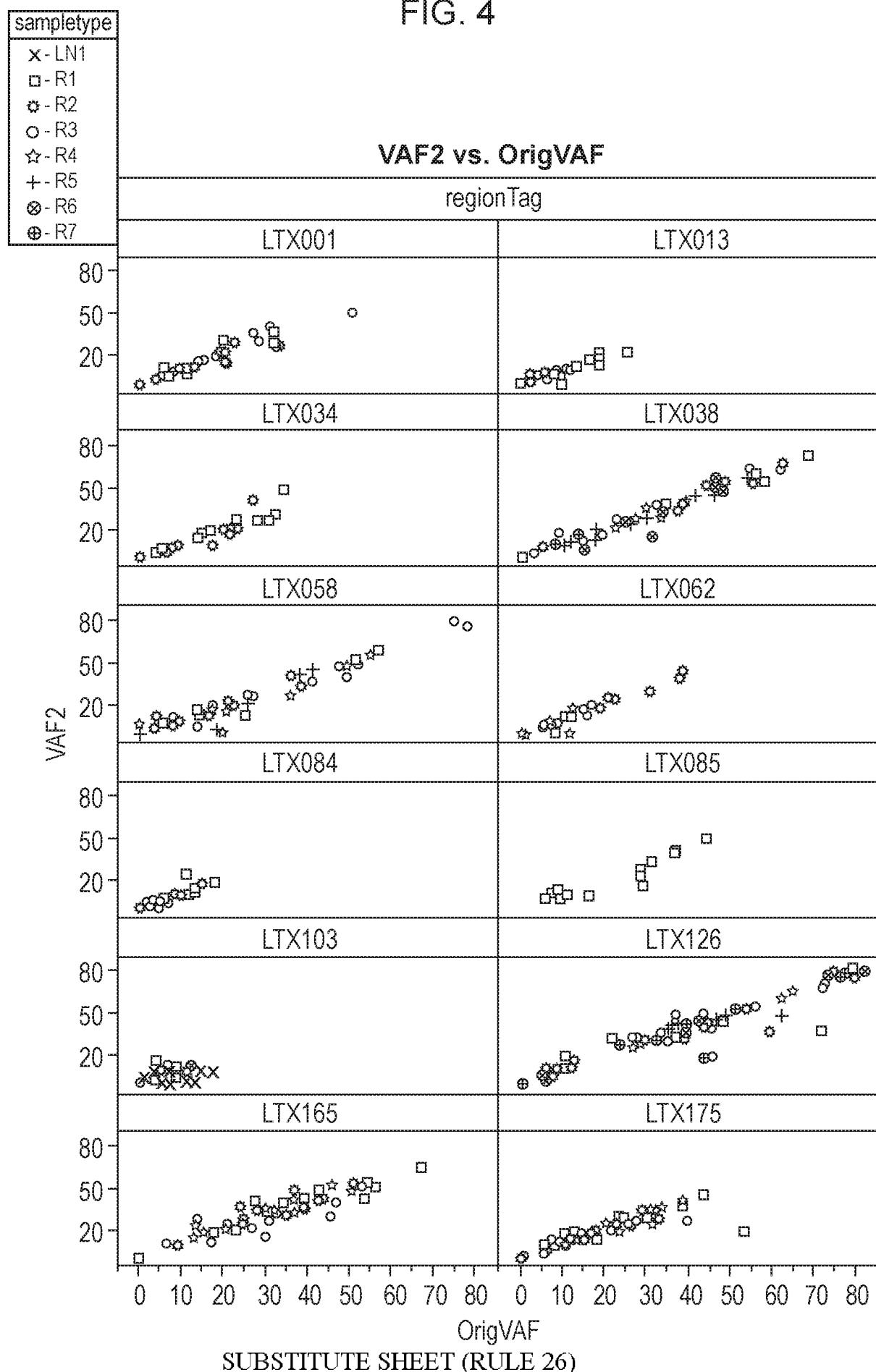


FIG. 4 (CONT.)

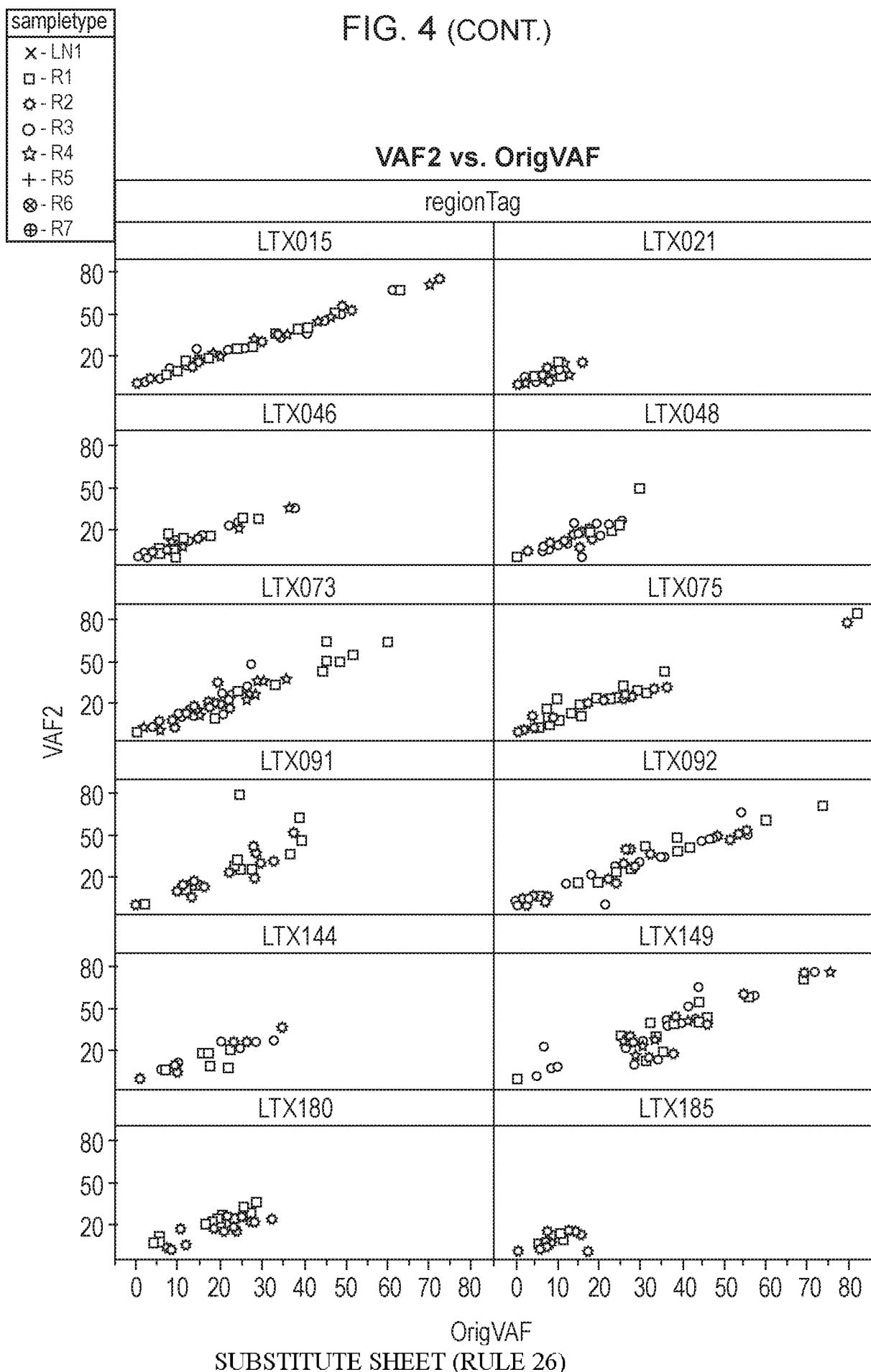
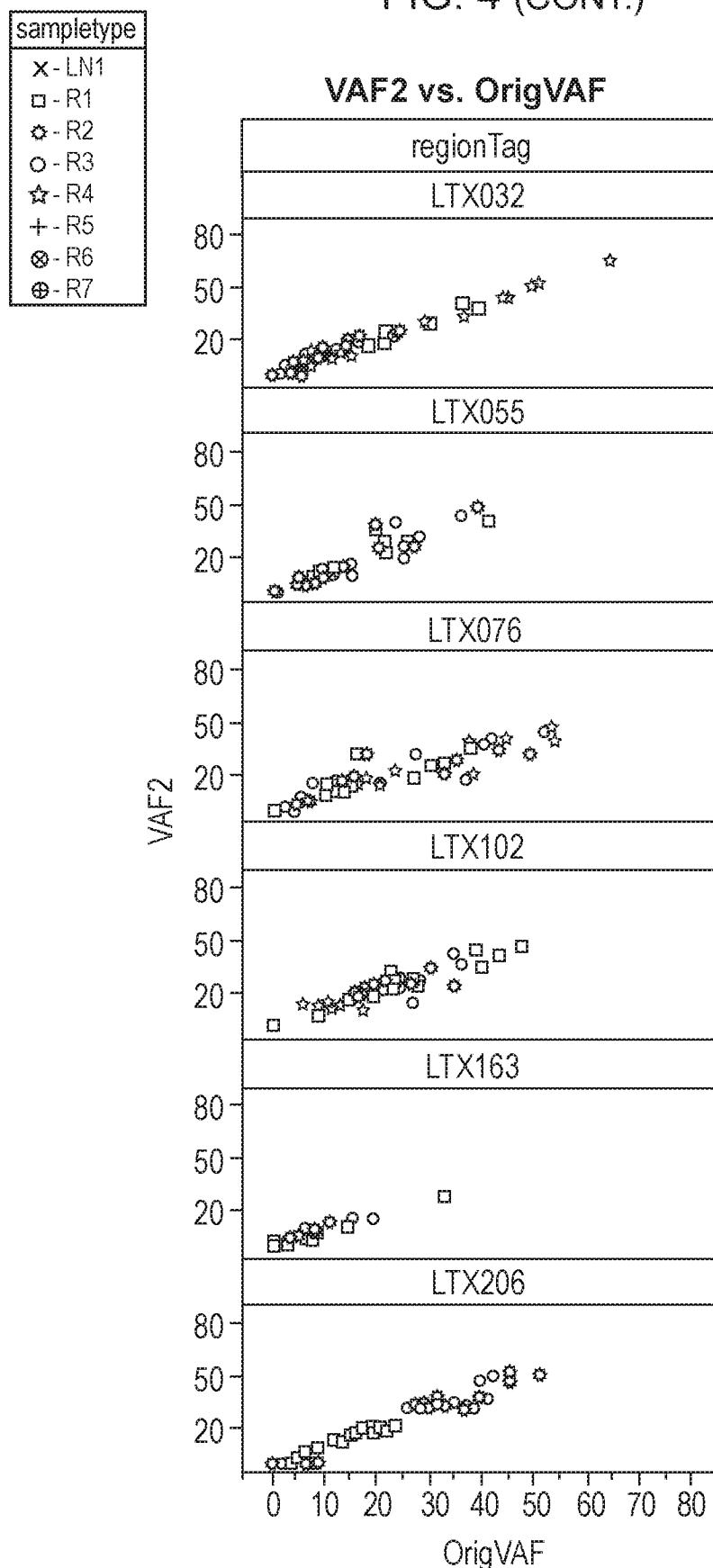



FIG. 4 (CONT.)

7 / 171

FIG. 5

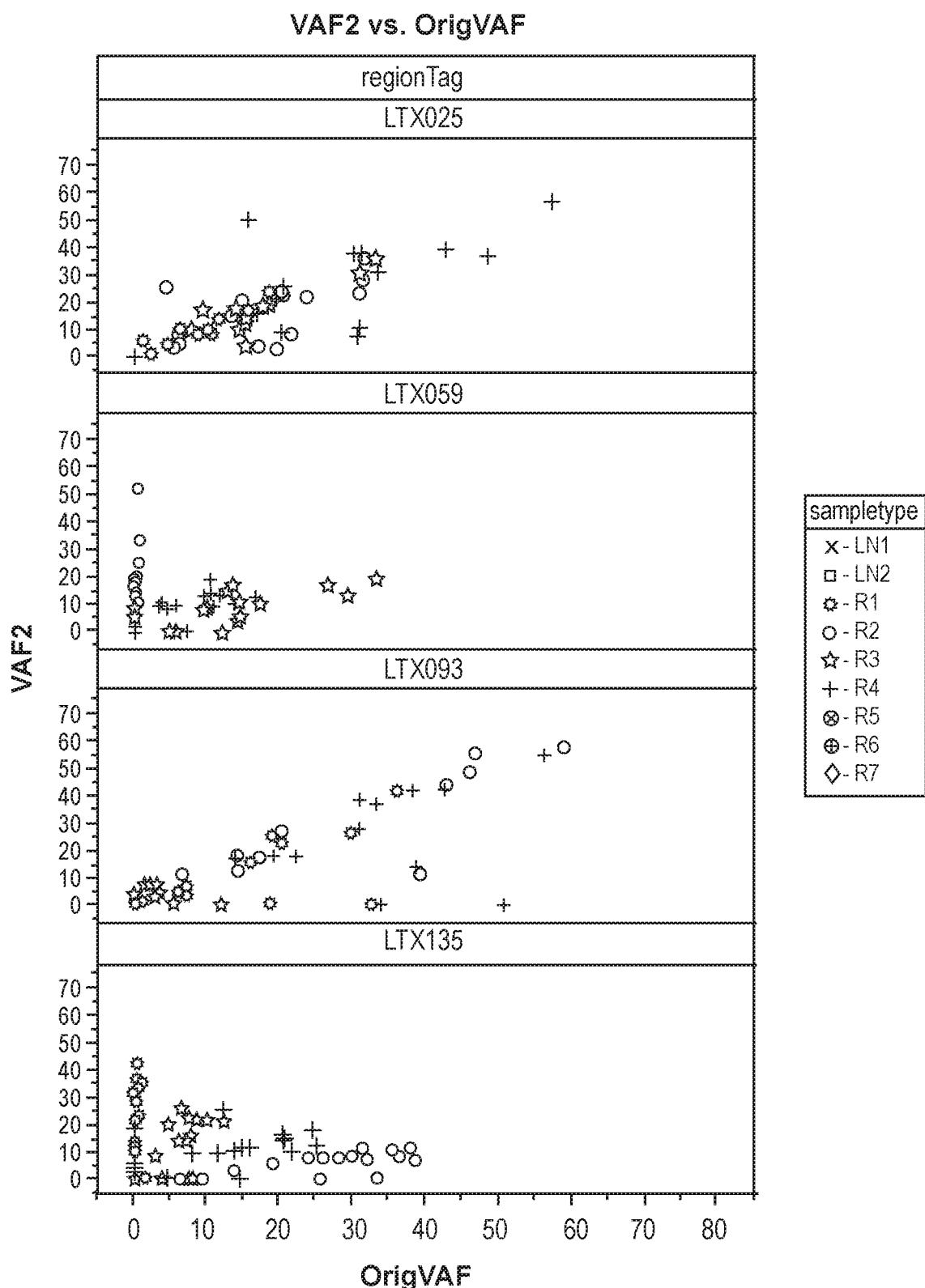


FIG. 5 (CONT.)

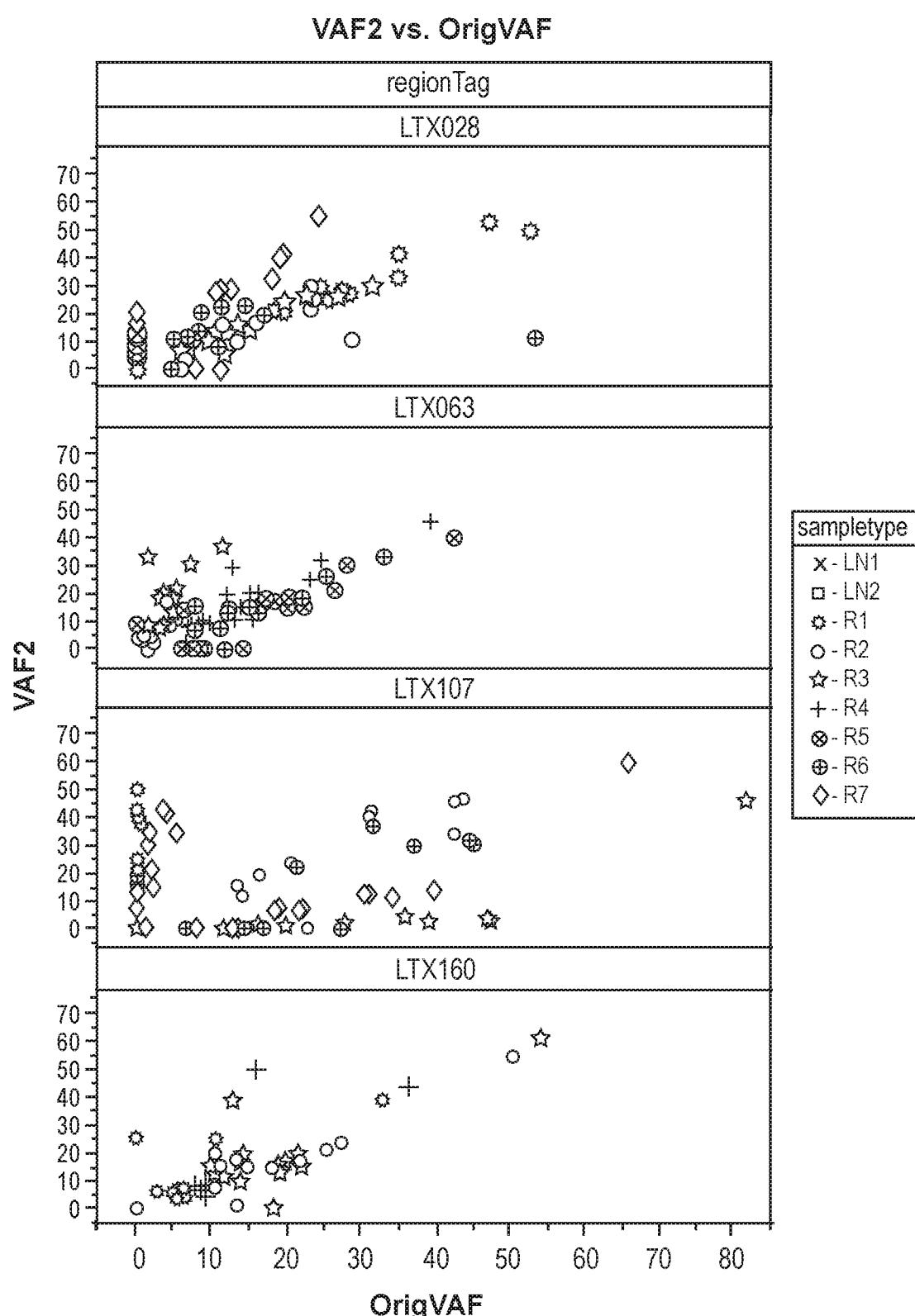
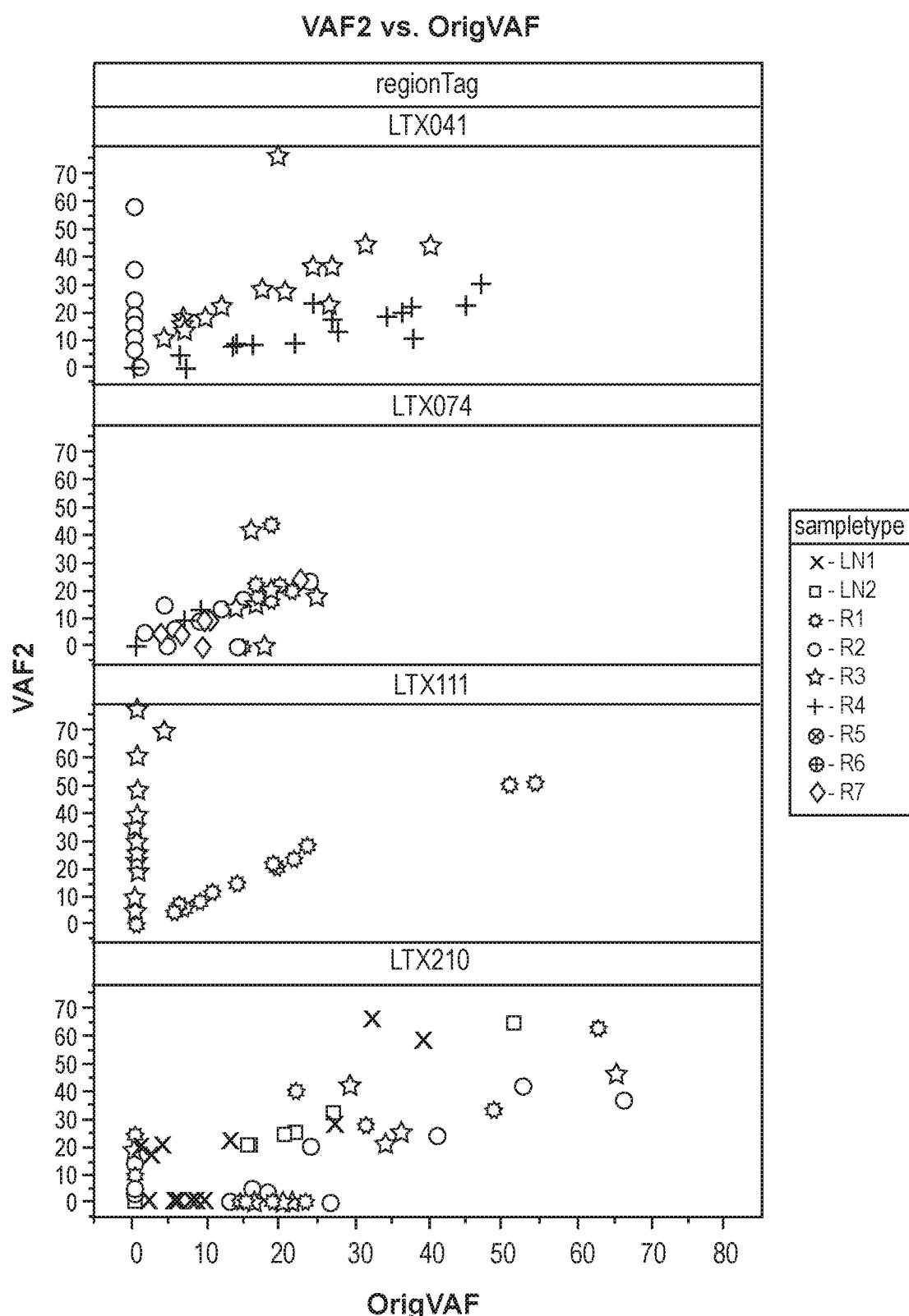



FIG. 5 (CONT.)

10 / 171

FIG. 6A

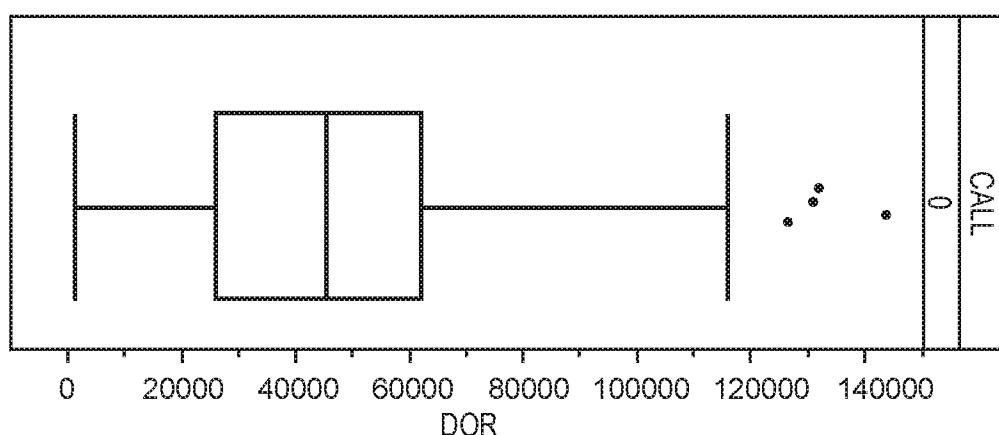
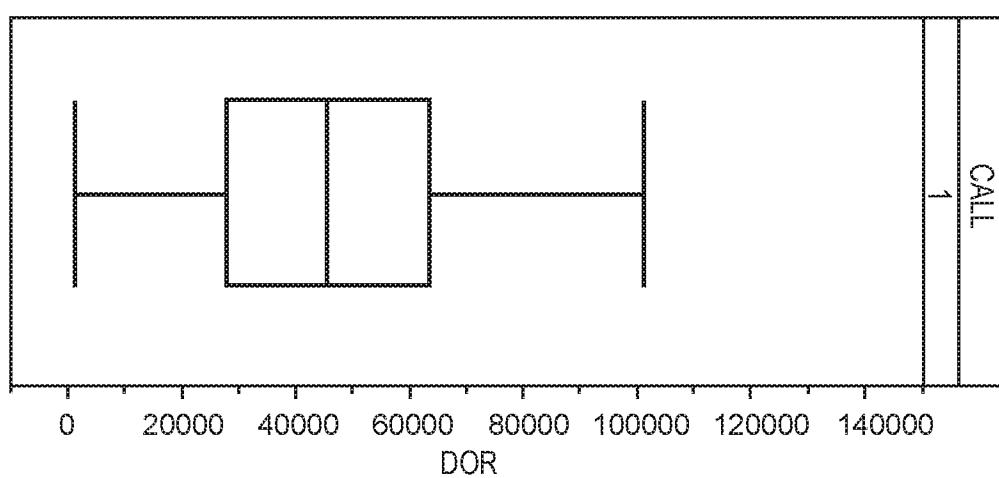



FIG. 6B

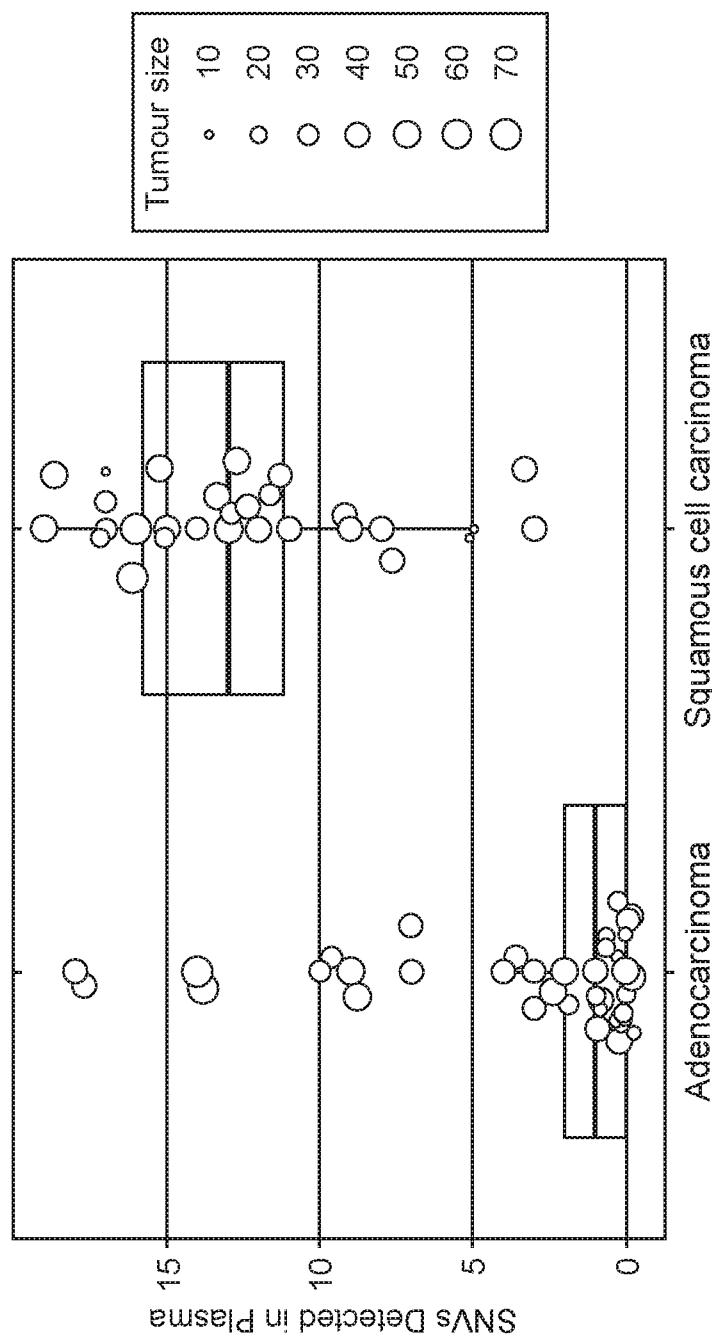


FIG. 7

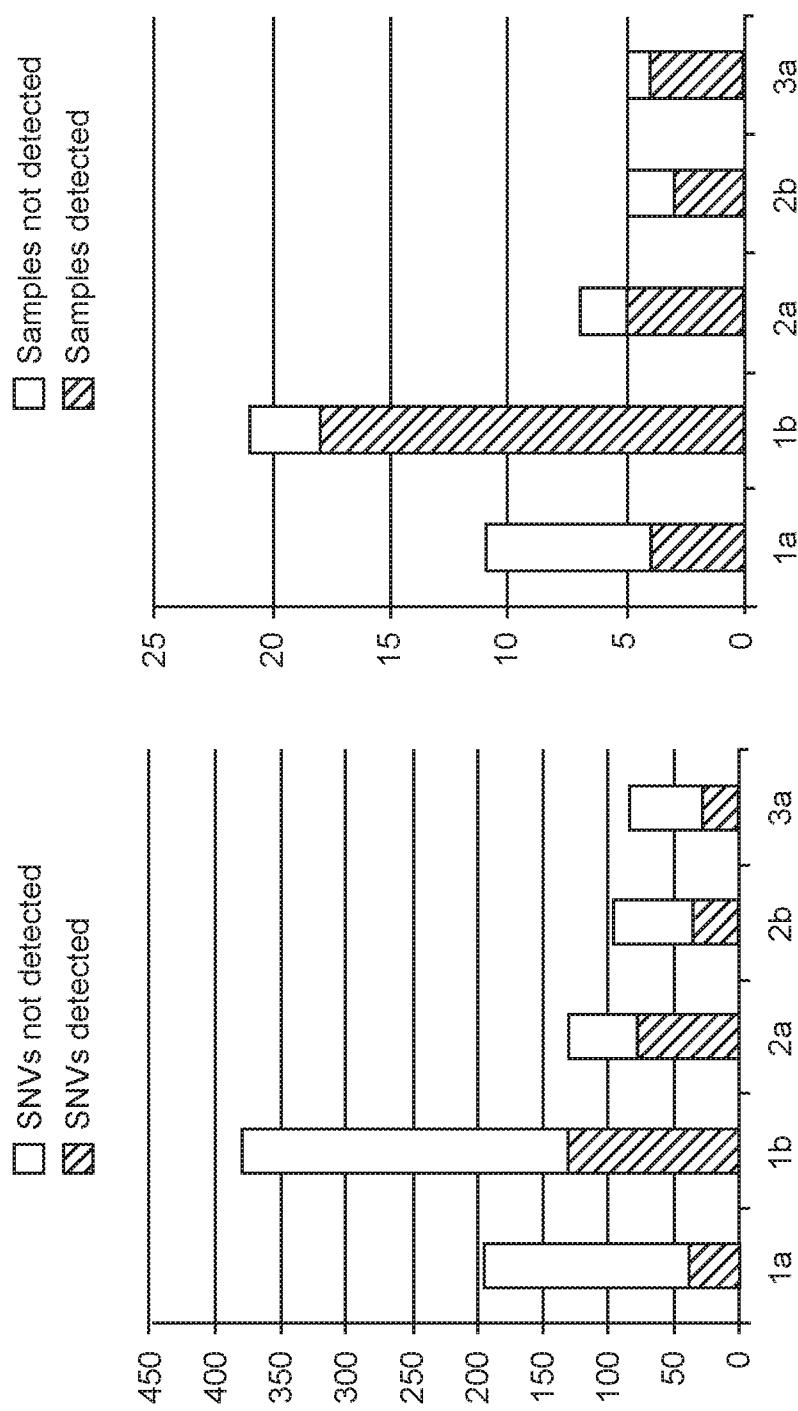


FIG. 8

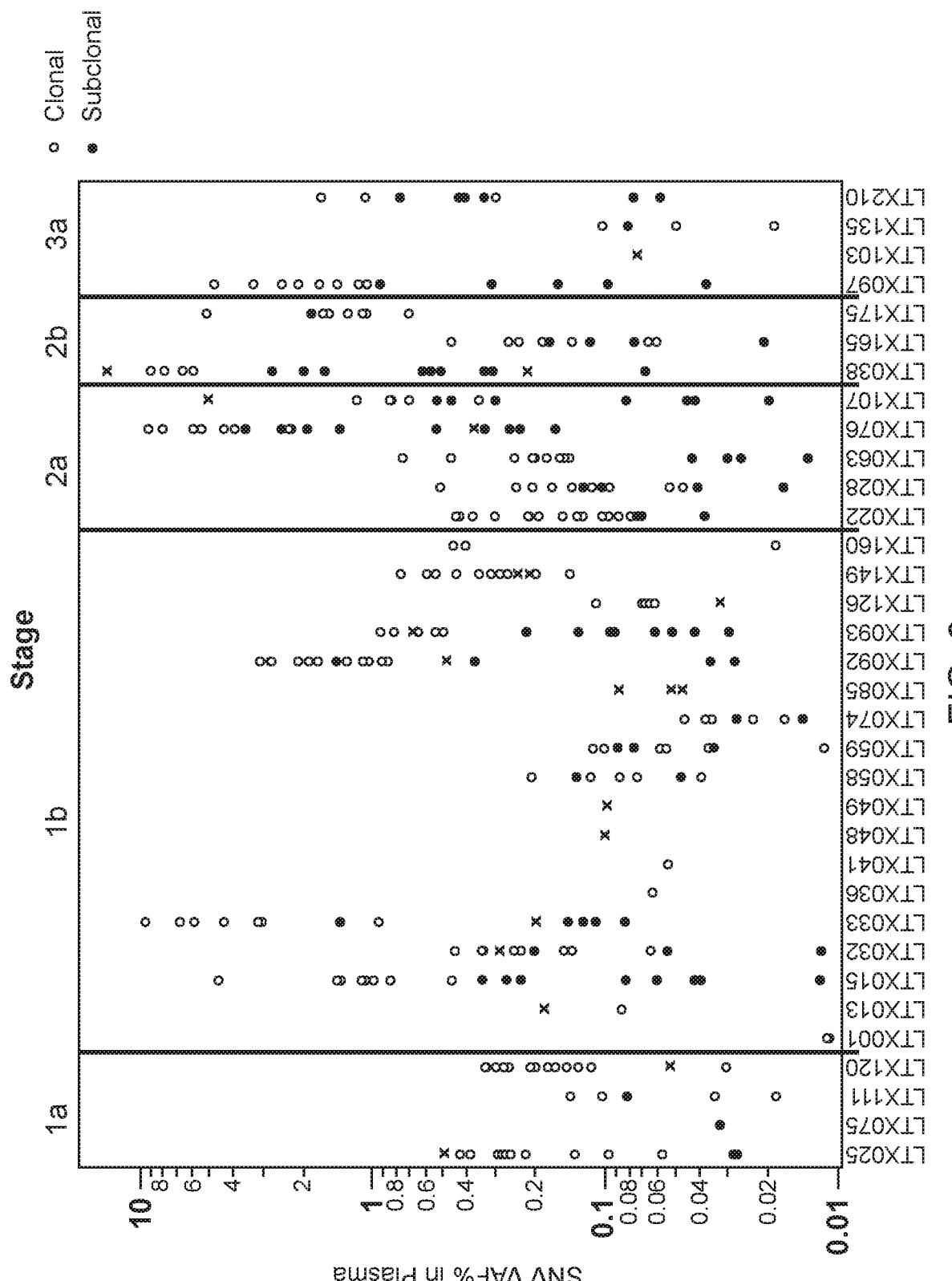


FIG. 9

FIG. 10

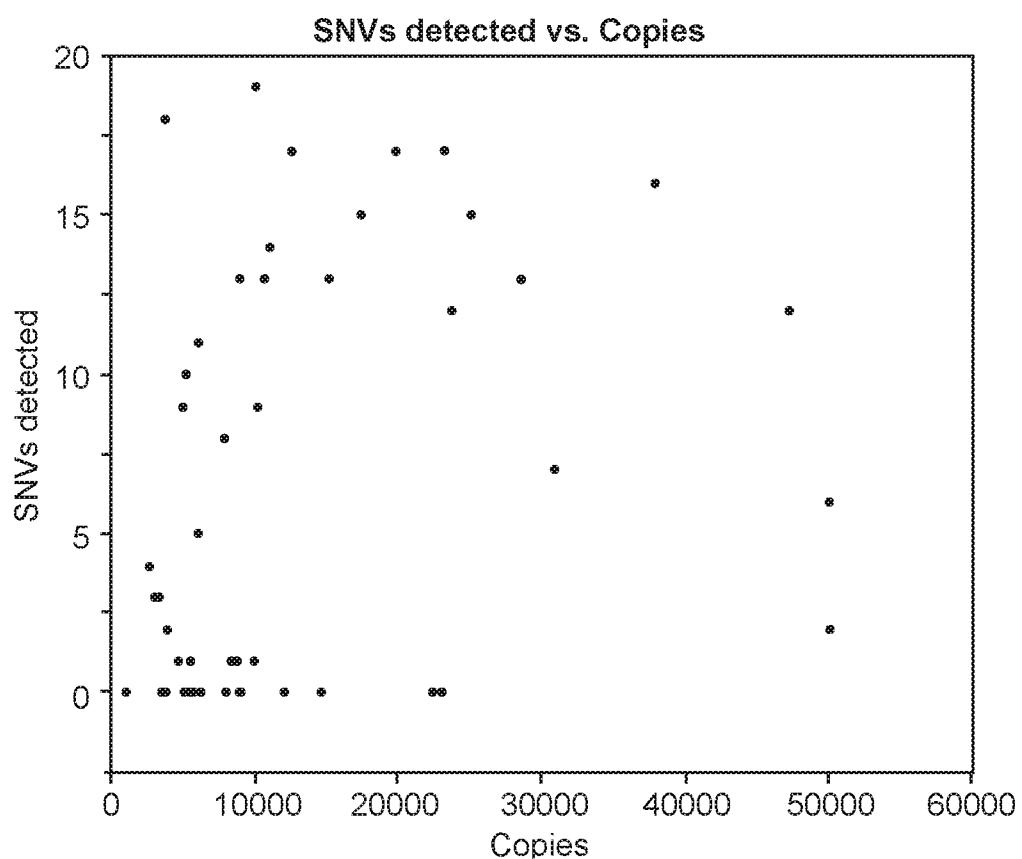


FIG. 11

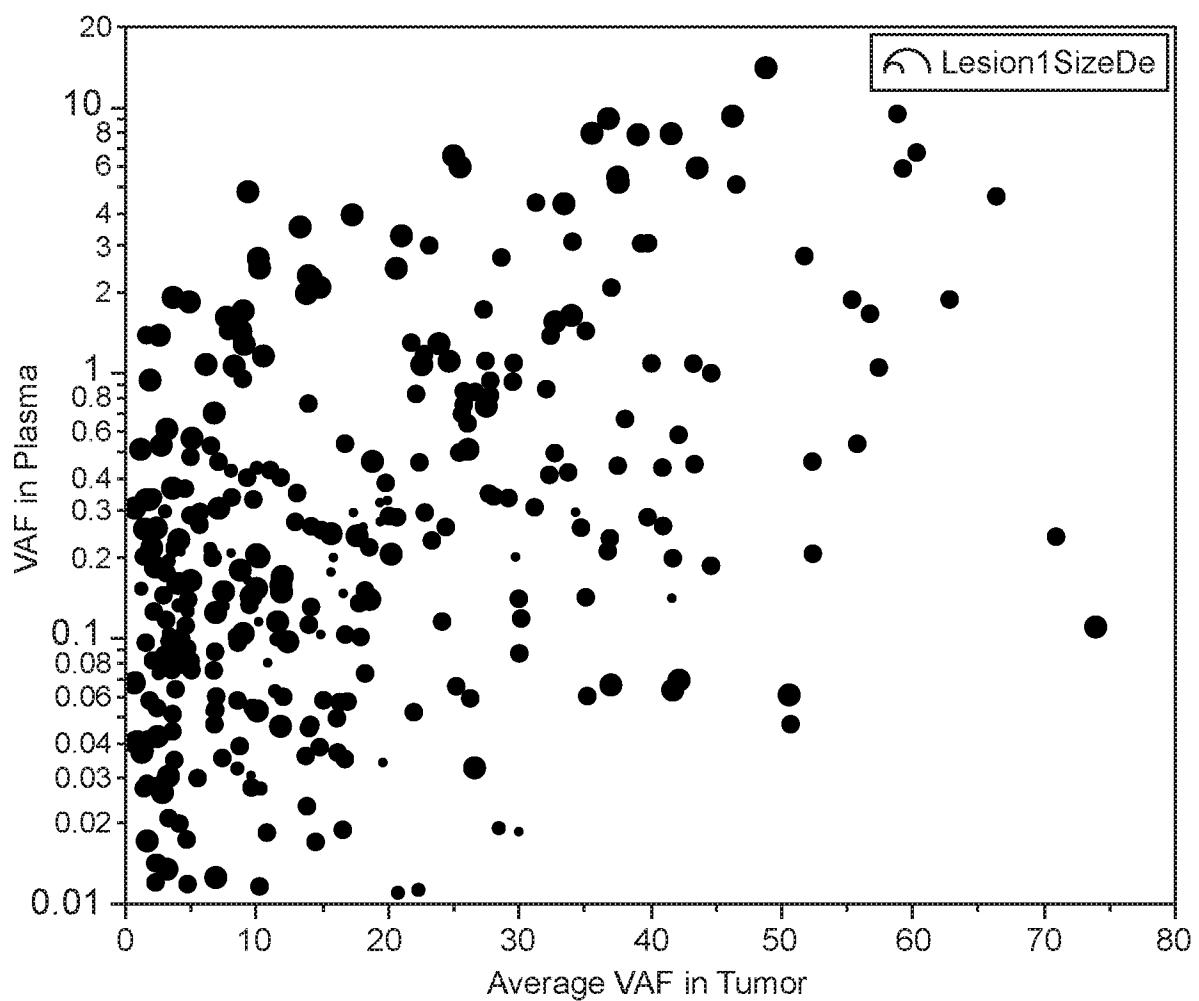


FIG. 12

MutVAF vs. SampleName

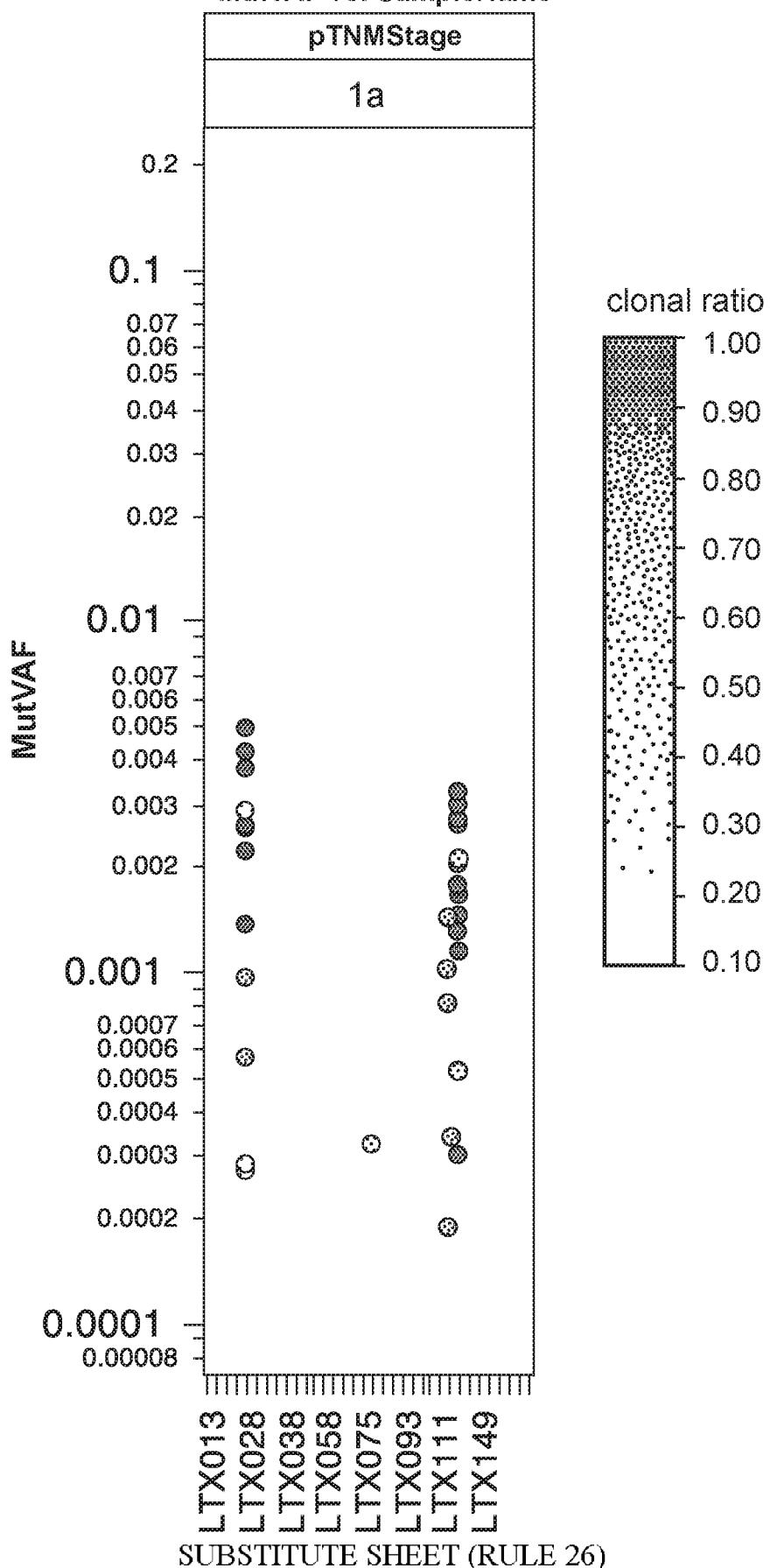


FIG. 12 (CONT.)

MutVAF vs. SampleName

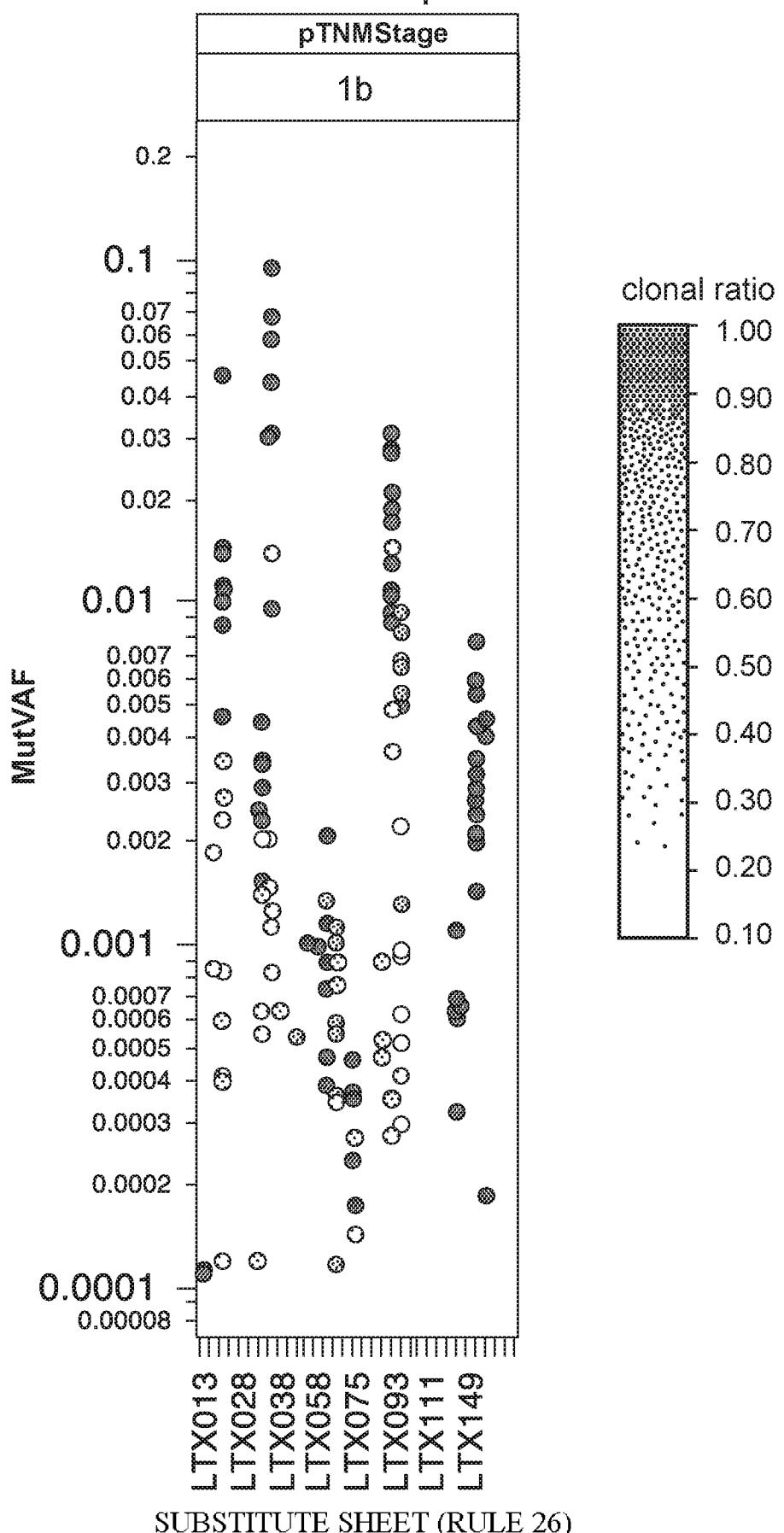


FIG. 12 (CONT.)

MutVAF vs. SampleName

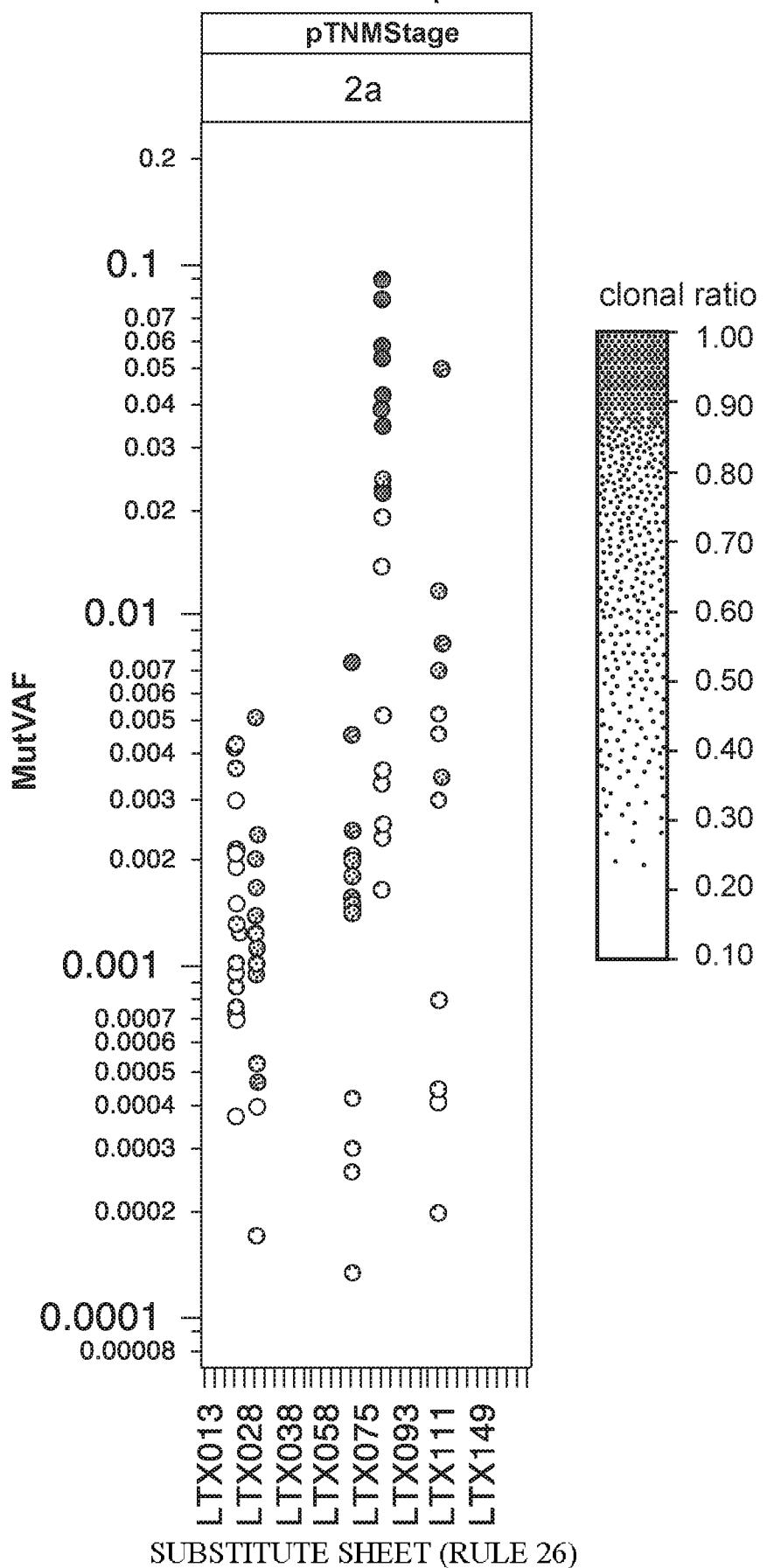
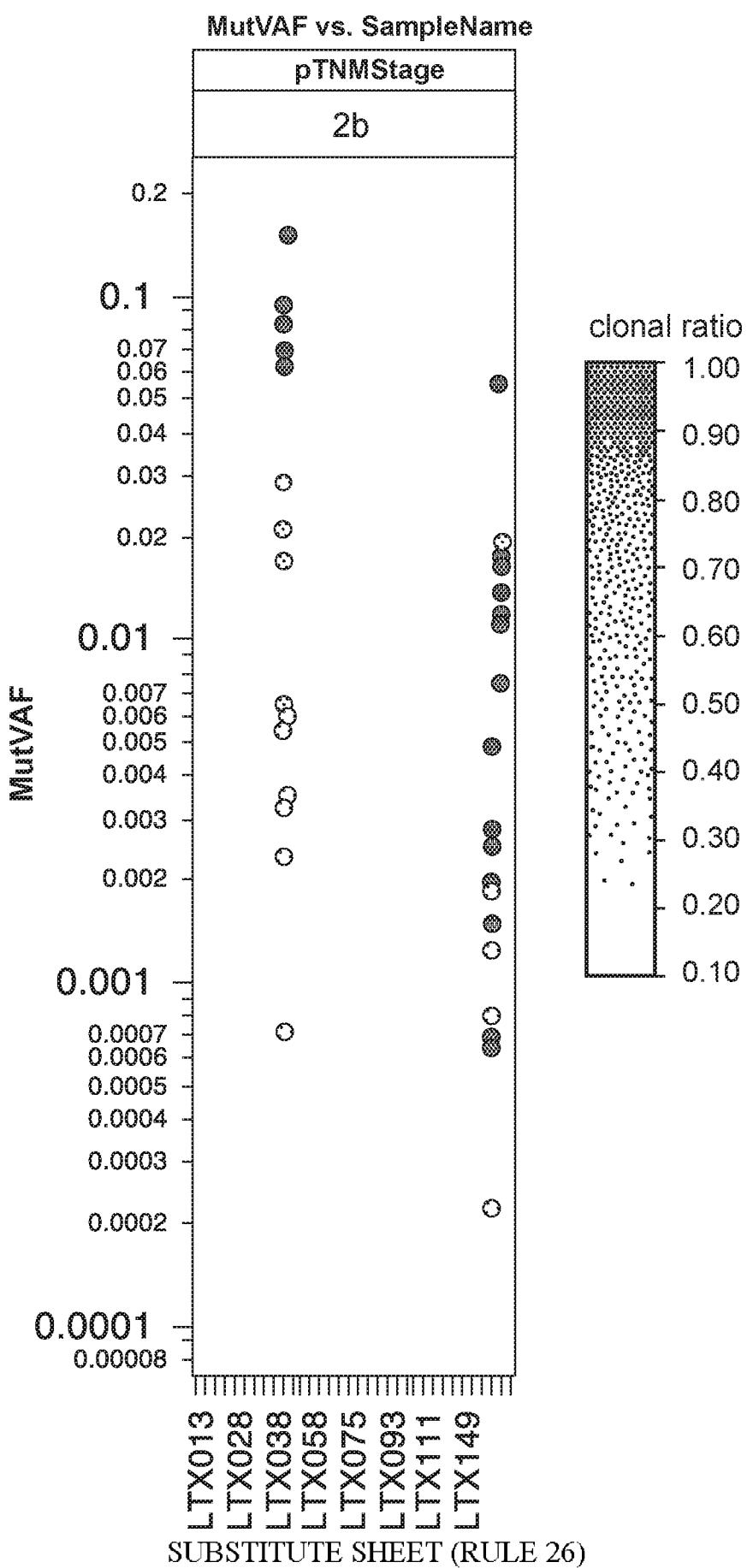



FIG. 12 (CONT.)

20 / 171

FIG. 12 (CONT.)

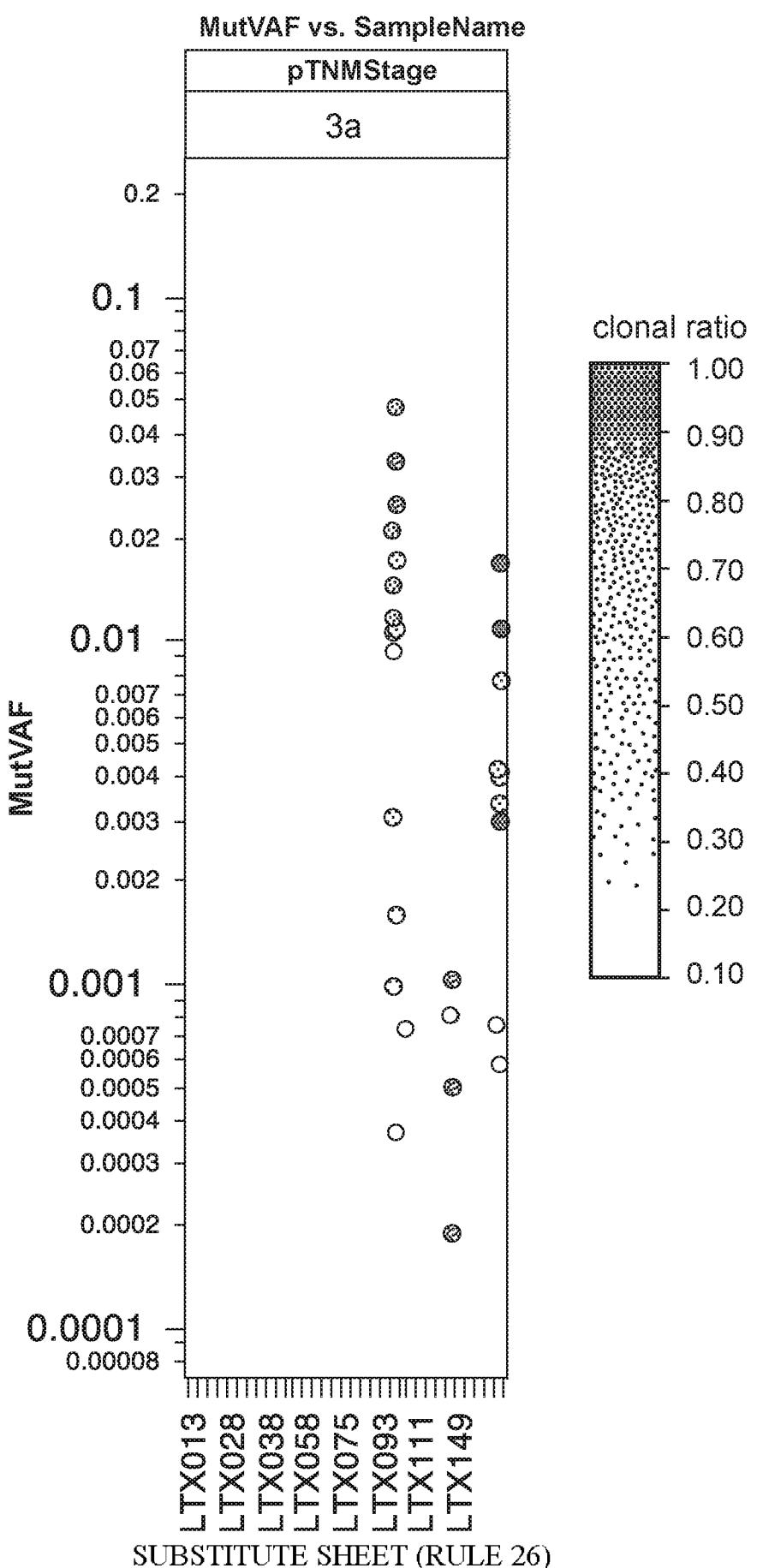
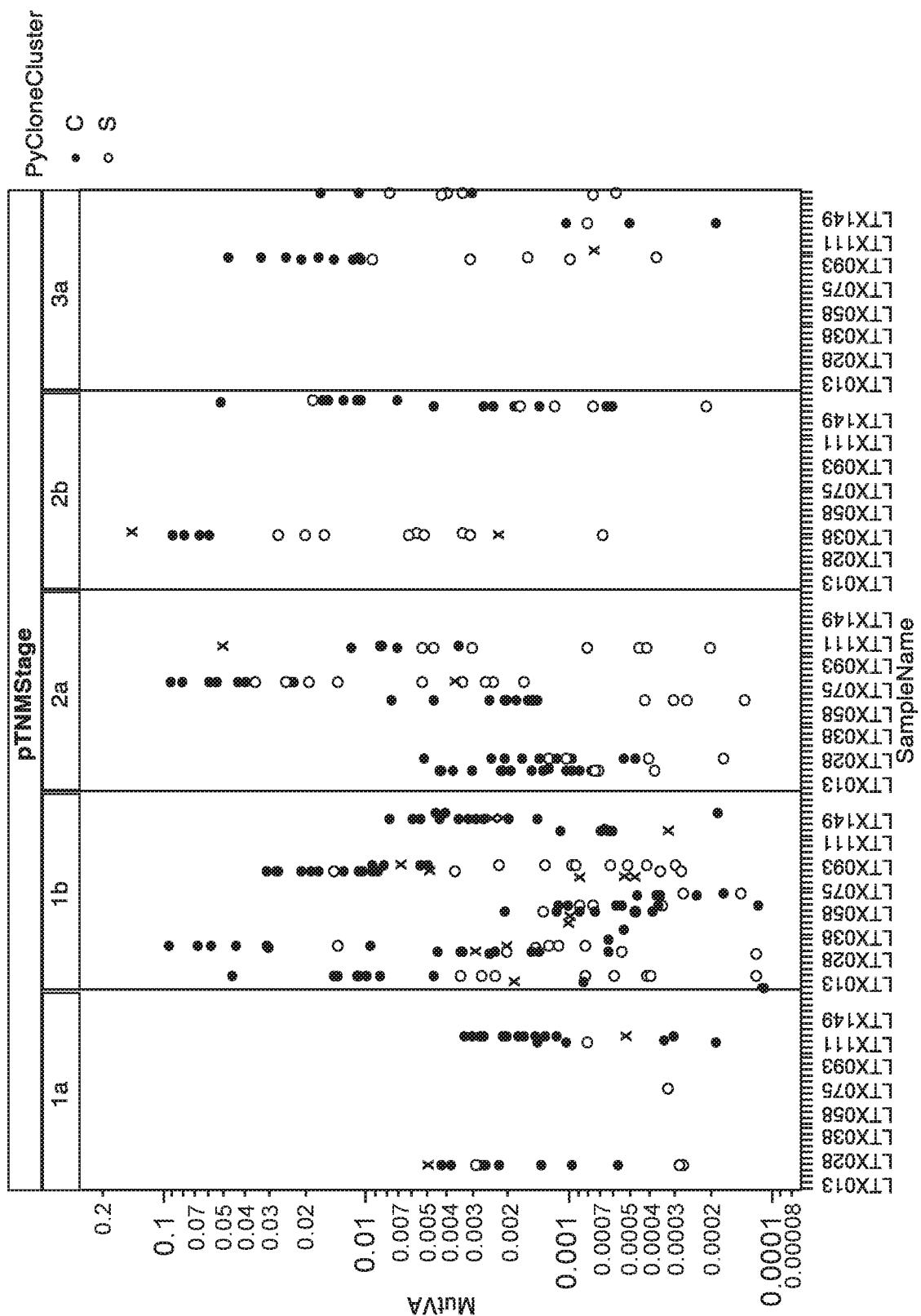
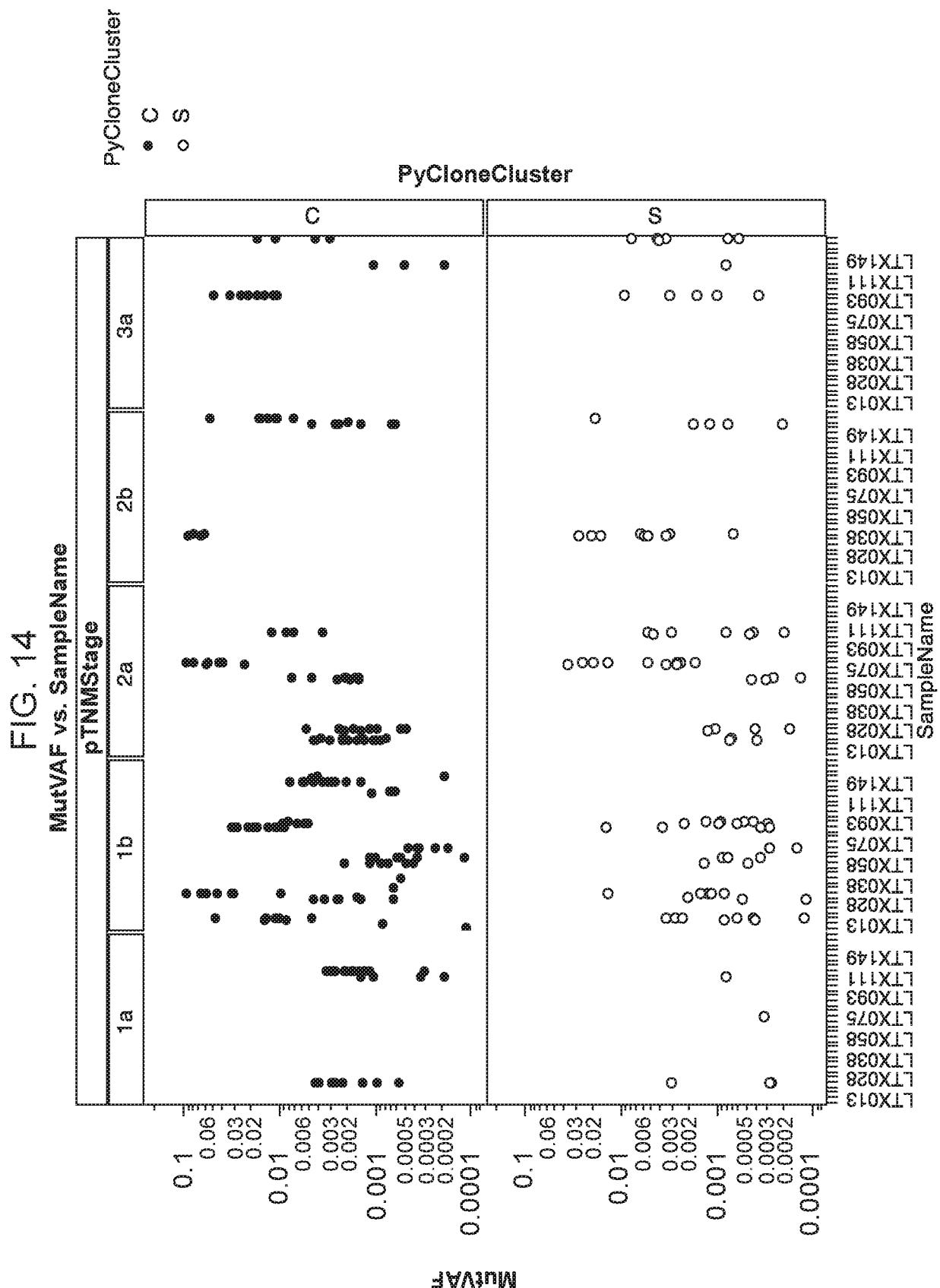
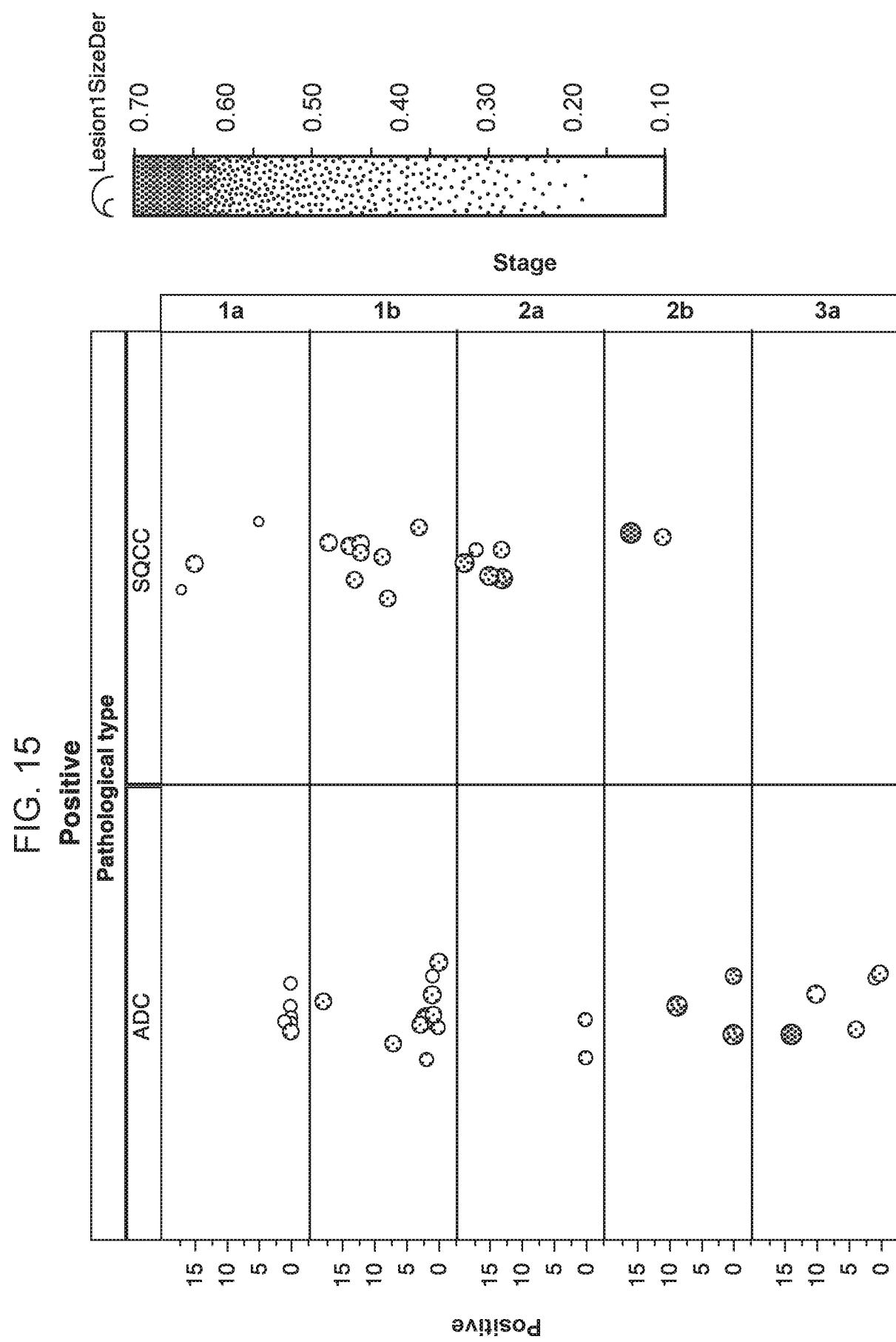





FIG. 13 WUVAF vs. Sample Name

23 / 171

24 / 171

FIG. 16

Sample ID	cfDNA concentration (ng/ul)	Genome copy equivalents into Library Prep	cfDNA size profile	Hemolysis
U_LTX144	0.09	1,017	3	2
B_LTX135	0.21	2,578	2	0
B_LTX160	0.25	3,021	2	1
M_LTX085	0.27	3,300	2	0
B_LTX065	0.30	3,564	2	0
U_LTX092	0.31	3,689	3	2
M_LTX013	0.32	3,853	2	0
B_LTX163	0.32	3,919	1	0
B_LTX075	0.39	4,733	1	0
M_LTX175	0.41	4,929	1	0
A_LTX055	0.42	5,042	2	0
A_LTX210	0.43	5,167	2	0
A_LTX049	0.45	5,465	2	0
M_LTX073	0.45	5,480	1	0
U_LTX103	0.46	5,611	2	0
A_LTX102	0.48	5,817	1	0
B_LTX165	0.50	6,049	2	0
U_LTX111	0.50	6,068	2	0
U_LTX180	0.52	6,245	2	0
U_LTX058	0.65	7,898	2	1
U_LTX091	0.66	8,030	2	0
U_LTX206	0.68	8,271	2	1
U_LTX036	0.69	8,293	1	0
B_LTX048	0.73	8,800	2	0
U_LTX107	0.73	8,878	2	0

FIG. 16 (CONT.)

L_LTX062	0.74	8,934	2	0	
B_LTX046	0.74	9,015	2	0	
L_LTX041	0.82	9,940	1	0	
U_LTX076	0.83	10,009	2	0	
B_LTX059	0.84	10,201	2	0	
M_LTX093	0.87	10,556	2	0	
U_LTX097	0.91	10,995	2	0	
U_LTX185	1.00	12,055	2	0	
U_LTX022	1.04	12,536	3	1	
L_LTX115	1.21	14,602	2	0	
B_LTX033	1.25	15,187	1	0	
M_LTX025	1.43	17,334	3	1	
R_LTX120	1.63	19,693	1	0	
B_LTX034	1.85	22,361	2	1	
A_LTX021	1.85	22,400	1	0	
B_LTX084	1.89	22,889	1	0	
M_LTX015	1.91	23,193	1	0	
M_LTX032	1.95	23,637	1	2	
M_LTX063	2.06	25,007	1	0	
M_LTX028	2.35	28,476	1	0	
M_LTX074	2.54	30,752	1	0	
B_LTX038	3.12	37,767	1	0	
M_LTX149	3.89	47,165	2	1	
U_LTX126	6.75	50,000	2	1	
U_LTX001	7.24	50,000	1	0	

26 / 171

FIG. 17

Sample	Total assays	Detected in plasma	Negative
LTX001	17	2	15
LTX013	15	2	13
LTX015	19	17	2
LTX021	19	0	19
LTX022	20	17	3
LTX025	19	15	4
LTX028	19	13	6
LTX032	17	12	5
LTX033	18	13	5
LTX034	18	0	18
LTX036	19	1	18
LTX038	19	16	3
LTX041	19	1	18
LTX046	18	0	18
LTX048	17	1	16
LTX049	18	1	17
LTX055	21	0	21
LTX058	18	8	10
LTX059	18	9	9
LTX062	18	0	18
LTX063	20	15	5
LTX065	15	0	15
LTX073	22	0	22
LTX074	19	7	12
LTX075	19	1	18
LTX076	20	19	1
LTX084	14	0	14

FIG. 17 (CONT.)

LTX085	15	3	12
LTX091	18	0	18
LTX092	21	18	3
LTX093	16	14	2
LTX097	18	14	4
LTX102	20	0	20
LTX103	13	1	12
LTX107	19	13	6
LTX111	17	5	12
LTX115	19	0	19
LTX120	18	17	1
LTX126	19	6	13
LTX135	17	4	13
LTX144	19	0	19
LTX149	17	12	5
LTX160	17	3	14
LTX163	19	0	19
LTX165	19	11	8
LTX175	21	9	12
LTX180	17	0	17
LTX185	18	0	18
LTX210	18	10	8

28 / 171

FIG. 18

Sample	Chr.	Position		Ref	Mut	Ref VAF Plasma	Mut VAF Plasma	Total DOR	Mut DOR
LTX032	6	161530837		T	G	99.691%	0.286%	63656	182
LTX063	1	27102067		T	G	99.802%	0.156%	52495	82
LTX063	10	108378017		T	A	99.839%	0.143%	56002	80
LTX092	2	216252943		G	T	99.484%	0.478%	42289	202
LTX107	3	156272874		A	G	94.884%	5.116%	3968	203
LTX149	14	70633967		G	T	99.754%	0.211%	50808	107
LTX149	1	160136470		T	G	99.418%	0.538%	31966	172

FIG. 19

Assay Count Based on Genes

28	TP53	2	PIK3CA	1	ZSCAN4
14	KRAS	2	PIEZ02	1	ZSCAN23
7	NF1	2	ODAM	1	ZP4
6	KEAP1	2	NTRK1	1	ZNF841
5	ARHGAP35	2	NPAP1	1	ZNF831
4	ZNF521	2	NOTCH1	1	ZNF804B
4	TRRAP	2	NIN	1	ZNF582
4	NTRK3	2	MLLT10	1	ZNF552
4	MYH9	2	MED13L	1	ZNF536
4	MYH11	2	LAMB4	1	ZNF513
4	MGA	2	KIAA1549	1	ZNF469
3	WRN	2	KDM5C	1	ZNF318
3	STK11	2	JAK2	1	ZIM2
3	NFE2L2	2	IL21R	1	ZIC4
3	MBD1	2	IKZF1	1	ZG16
3	KMT2D	2	GRM8	1	ZFYVE28
3	FBXW7	2	FBXL7	1	ZFHX4
3	FAT1	2	FANCC	1	ZCCHC5
3	DNAH12	2	EZH2	1	YARS
3	DMD	2	ERCC4	1	XRN1
3	COL4A1	2	EGFR	1	XPC
3	CHD8	2	DOCK2	1	XDH
3	ATRX	2	DNM2	1	WT1
3	ATP2B3	2	DMXL1	1	WNT10B
2	ZNF423	2	DLL1	1	WHSC1L1
2	VWC2	2	CTSF	1	WDFY4
2	TPR	2	CREBBP	1	WBP1
2	TENM2	2	COL6A6	1	WAS
2	SPHKAP	2	CNTLN	1	VWA5B2
2	SMARCA4	2	CIART	1	VPS16
2	SEPT12	2	CDKN2C	1	VEPH1
2	RYR3	2	CDH7	1	VCP
2	RYR2	2	CCND1	1	VAT1L
2	ROS1	2	CCDC168	1	UTP20
2	RBM10	2	BIVM-ERCC5	1	USP43
2	RB1	2	ATP13A4	1	USP12
2	RALGDS	2	ATM	1	UGGT2
2	PXDNL	2	ARID2	1	UBR4
2	PTPRZ1	2	ARID1A	1	UBQLN3
2	PROX1	2	ANKLE2	1	U2SURP
2	POLE	2	AFF2	1	U2AF1
2	PML	2	ADD2	1	TXNRD2

FIG. 19 (CONT.)

Assay Count Based on Genes

1	TUFT1	1	SYK	1	SIDT1
1	TUBGCP6	1	SUSD3	1	SH3TC1
1	TUBGCP4	1	SULT1C3	1	SH3RF1
1	TUBG1	1	STXBP5	1	SH3GL1
1	TTN	1	STOX1	1	SFMBT2
1	TTF2	1	STARD9	1	SETDB1
1	TSHZ2	1	SSR3	1	SETD2
1	TSHR	1	SRSF2	1	SETD1B
1	TSC2	1	SRBD1	1	SETBP1
1	TP63	1	SPTA1	1	SERPINB9
1	TOMM70A	1	SPNS2	1	SERPINB13
1	TOMM7	1	SPIDR	1	SERPINB10
1	TNKS	1	SPDL1	1	SERPINA3
1	TNFRSF14	1	SORT1	1	SEPT9
1	TNFAIP3	1	SORCS1	1	SEMA5A
1	TMEM5	1	SNTG2	1	SEMA3D
1	TMEM132D	1	SNF8	1	SELP
1	TMCC1	1	SMCR8	1	SDK2
1	TMC8	1	SMAD4	1	SCN10A
1	TLN1	1	SLX4	1	SCARF1
1	TIMELESS	1	SLITRK6	1	SCARB1
1	TIAM1	1	SLITRK2	1	SCAF8
1	THSD4	1	SLIT1	1	SATL1
1	TGM6	1	SLCO5A1	1	SARS
1	TG	1	SLCO4C1	1	SAP130
1	TFAP2B	1	SLC8A3	1	RYR1
1	TEX11	1	SLC7A1	1	RTL1
1	TET2	1	SLC6A2	1	RTEL1
1	TET1	1	SLC4A10	1	RPS2
1	TES	1	SLC38A7	1	RPN2
1	TENM4	1	SLC35A2	1	RPE65
1	TCTEX1D1	1	SLC27A4	1	ROBO3
1	TCF3	1	SLC26A8	1	RNFT2
1	TBC1D7	1	SLC23A2	1	RNF185
1	TAOK3	1	SLC22A12	1	RNASET2
1	TAF5	1	SLC10A1	1	RIT1
1	TAF3	1	SLAMF1	1	RHO
1	TAC1	1	SKIDA1	1	RGL1
1	SZT2	1	SIX5	1	RFT1
1	SYTL5	1	SIRT4	1	REST
1	SYTL2	1	SIN3A	1	REG1B
1	SYNE1	1	SIL1	1	REG1A

31 / 171

FIG. 19 (CONT.)

Assay Count Based on Genes

1	RBM19	1	PNPLA3	1	OR56A3
1	RBM15	1	PMFBP1	1	OR51F2
1	RASA3	1	PLXNA4	1	OR4K1
1	RASA1	1	PLOD1	1	OR2W5
1	RAI1	1	PLG	1	OR2G2
1	RAD9B	1	PLEKHG4B	1	OR2B2
1	RAB11FIP5	1	PLCG2	1	OR2AT4
1	QPRT	1	PLCE1	1	OR2AG2
1	PVRL2	1	PKHD1	1	OR13G1
1	PTPRM	1	PIK3AP1	1	OR11H6
1	PTPRD	1	PICALM	1	OR10Z1
1	PTPRC	1	PI4KA	1	OR10J1
1	PTPN1	1	PHOX2B	1	OMD
1	PTK6	1	PHLDB2	1	OC90
1	PTGFRN	1	PGLYRP2	1	NXPE3
1	PTEN	1	PFKFB3	1	NUP214
1	PSME4	1	PEG3	1	NUP210L
1	PRUNE2	1	PEAR1	1	NT5C2
1	PRRG1	1	PEAK1	1	NSD1
1	PRKCB	1	PDZD3	1	NRXN1
1	PRICKLE3	1	PDP1	1	NRAS
1	PRICKLE2	1	PDGFRB	1	NR2C2
1	PRG4	1	PDGFD	1	NPY5R
1	PRF1	1	PDE4DIP	1	NPRL2
1	PREPL	1	PCLO	1	NPR1
1	PRDM5	1	PCDHGA5	1	NPNT
1	PRDM16	1	PCDHB14	1	NPAS4
1	PRDM1	1	PCDHA4	1	NOTCH3
1	PQBP1	1	PAX7	1	NOL4
1	PPP1R3A	1	PAX5	1	NOA1
1	PPM1B	1	PACSIN3	1	NLRP7
1	PPL	1	PABPC5	1	NLRP5
1	PPAN	1	P2RY13	1	NLN
1	POU2AF1	1	OTOG	1	NKTR
1	POSTN	1	OTOF	1	NINL
1	POPDC3	1	OSBPL1A	1	NFKB2
1	PON1	1	OSBPL10	1	NELFA
1	POMT2	1	OR8K3	1	NEB
1	POLR2B	1	OR8A1	1	NDUFV3
1	POLR2A	1	OR6V1	1	NDUFS1
1	POLQ	1	OR5W2	1	NDUFB1
1	PNPT1	1	OR5AS1	1	NCS1

FIG. 19 (CONT.)

Assay Count Based on Genes

1	NAP1L3	1	MAP3K1	1	KDR
1	NACAD	1	MAGI2	1	KDM5A
1	NACA	1	MAGEC1	1	KCNMB2
1	NAA25	1	MAGEB5	1	KCNH3
1	N4BP2L2	1	MAD1L1	1	JAM3
1	Mar-01	1	LTBP2	1	JAM2
1	MYT1	1	LSMEM2	1	JAK1
1	MYO1H	1	LRTM2	1	ITPR1
1	MYO1E	1	LRRTM3	1	ITGA2
1	MYH4	1	LRRIQ1	1	IRS1
1	MYH1	1	LRRC49	1	IRF3
1	MYCN	1	LRRC27	1	IL4R
1	MUC16	1	LRP2	1	IL2RB
1	MTUS2	1	LRP1B	1	IL17A
1	MTNR1B	1	LRIT3	1	IFNG
1	MTHFD1	1	LPAR4	1	HTT
1	MTA1	1	LPAR3	1	HTR5A
1	MSL2	1	LIMCH1	1	HTR2C
1	MRPL37	1	LGR5	1	HSF5
1	MPPED2	1	LFNG	1	HSD3B7
1	MOGAT3	1	LDLR	1	HOXB5
1	MN1	1	LDHC	1	HMHA1
1	MMD2	1	LAMC1	1	HLCS
1	MLLT6	1	KSR2	1	HIST1H4H
1	MLLT4	1	KRTAP27-1	1	HIST1H3J
1	MLIP	1	KRT78	1	HIST1H3E
1	MLH1	1	KRT1	1	HIBADH
1	MITF	1	KPRP	1	HERPUD1
1	METTL13	1	KMT2A	1	HERC2
1	MET	1	KLK2	1	HECTD4
1	MED1	1	KLHL13	1	HECTD1
1	MDN1	1	KIT	1	HDGFRP2
1	MCM6	1	KIF26B	1	HDAC10
1	MCAT	1	KIF26A	1	HACE1
1	MBNL2	1	KIF13A	1	GTF3C1
1	MBD2	1	KIAA1598	1	GRWD1
1	MATK	1	KIAA1551	1	GRM3
1	MAST4	1	KIAA1109	1	GRIN3A
1	MAPK8IP3	1	KIAA1009	1	GRIA2
1	MAP4K3	1	KIAA0408	1	GREB1
1	MAP4K1	1	KHDRBS2	1	GPRC5C
1	MAP3K4	1	KERA	1	GPRASP1

FIG. 19 (CONT.)

Assay Count Based on Genes

1	GPR50	1	FAM92B	1	DISC1
1	GPR132	1	FAM83H	1	DIP2A
1	GPR125	1	FAM198A	1	DICER1
1	GPR108	1	F2RL1	1	DIAPH3
1	GPI	1	EYA1	1	DIAPH2
1	GORAB	1	EXT2	1	DHTKD1
1	GNPTAB	1	EXT1	1	DES
1	GNB1	1	ETV6	1	DCTN4
1	GNAS	1	ETV1	1	DCAF12L2
1	GNA14	1	ETNPPL	1	DAGLA
1	GNA11	1	ERMP1	1	CYP2C8
1	GLYR1	1	ERG	1	CXorf56
1	GC	1	ERCC6	1	CTTNBP2
1	GBP5	1	EPHA5	1	CTNND2
1	GBF1	1	EP300	1	CTHRC1
1	GATA2	1	ENOX1	1	CSMD3
1	GAS7	1	EMILIN1	1	CREB3L2
1	GAP43	1	EIF4A2	1	CPXCR1
1	GABRR2	1	EIF3E	1	CPS1
1	GAB4	1	EIF2A	1	CP
1	G2E3	1	EHD1	1	COQ5
1	FUBP1	1	EGFLAM	1	COLEC12
1	FTSJ1	1	EFHC2	1	COL4A6
1	FSIP2	1	EEF2	1	COL1A1
1	FSHR	1	ECE2	1	CNTNAP4
1	FOXS1	1	EBF1	1	CNTN5
1	FOXN2	1	DUSP7	1	CNR1
1	FNDC3B	1	DUSP22	1	CNBD1
1	FN1	1	DSG1	1	CLYBL
1	FMO3	1	DSCAML1	1	CLPB
1	FMN2	1	DPP10	1	CLEC10A
1	FLT3	1	DPEP2	1	CIITA
1	FLJ1	1	DOPEY1	1	CIAO1
1	FLJ1	1	DOK2	1	CHST14
1	FHAD1	1	DOCK4	1	CHRNB1
1	FGFR3	1	DNMT3A	1	CHRDL2
1	FGFR1	1	DNAH6	1	CHEK2
1	FGF18	1	DNAH5	1	CHD7
1	FDXR	1	DNAH2	1	CHD5
1	FBXO7	1	DNAH17	1	CEACAM3
1	FBP2	1	DNAH14	1	CEACAM16
1	FAR2	1	DLG5	1	CDYL2

34 / 171

FIG. 19 (CONT.)

Assay Count Based on Genes

1	CDX2	1	BMS1	1	ADAD1
1	CDS1	1	BHMT2	1	ACTRT2
1	CDK5RAP2	1	BCOR	1	ACTN2
1	CDK2	1	BCL3	1	ACTA2
1	CDK14	1	BCL11B	1	ACSL3
1	CDH24	1	BAP1	1	ACSBG1
1	CDH18	1	B9D1	1	ACBD7
1	CDH11	1	B3GALT2	1	ABL2
1	CDH1	1	B2M	1	ABL1
1	CD4	1	AWAT2	1	ABHD12
1	CD300LB	1	ATXN2	1	ABCC12
1	CD300E	1	ATXN1	1	ABCC11
1	CD163	1	ATP6V1C2	1	ABCB5
1	CCSER1	1	ATP1A4	1	ABCA9
1	CCNB1IP1	1	ATG4A	1	ABCA6
1	CCL7	1	ATG2B	1	AARD
1	CCDC67	1	ATF7IP	1	AADACL4
1	CCDC36	1	ASXL3		
1	CCDC150	1	ASXL1		
1	CCDC116	1	ASB2		
1	CBLB	1	ASAP3		
1	CASS4	1	ARNT		
1	CASP8	1	ARMCX4		
1	CASP2	1	ARL14		
1	CARD10	1	ARHGAP36		
1	CALD1	1	AQP8		
1	CADPS2	1	AQP1		
1	CACTIN	1	AOX1		
1	CACNA1B	1	AMER1		
1	C8B	1	ALMS1		
1	C6orf106	1	AKAP9		
1	C4orf51	1	AKAP8L		
1	C2orf48	1	AFF3		
1	C20orf26	1	ADH4		
1	C1orf64	1	ADCYAP1R1		
1	C1orf116	1	ADCY9		
1	C1QTNF7	1	ADCY2		
1	C17orf85	1	ADAMTS8		
1	BTN1A1	1	ADAMTS18		
1	BRIP1	1	ADAMTS16		
1	BRCA2	1	ADAM8		
1	BPIFB4	1	ADAM12		

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
1	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	17	7578457	1	0.491	C	A
2	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	18	42530965	2	0.416	C	A
3	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	9	5055705	3	0.853	G	T
4	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	23	39923016	4	0.355	C	T
5	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	2	27303728	5	0.465	C	G
6	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	11	117307924	6	0.484	G	C
7	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	18	28934317	7	0.906	A	C
8	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	6	83847081	8	0.755	A	T
9	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	3	14199848	9	0.307	T	C
10	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	11	4843295	10	0.397	G	T
11	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	23	107423820	11	0.816	G	T
12	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	3	31725537	12	0.419	G	C
13	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	12	14578167	13	0.407	G	T
14	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	4	170077668	14	0.393	T	A
15	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	21	39763593	15	0.283	G	T
16	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	1	1737935	16	0.319	C	A
17	SQ1326_Sample010	LTX180	Cancer	1	683	2279107	TracerX	10	21	38302632	17	0.933	C	A
18	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	17	7578450	18	0.468	C	A
19	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	17	7578449	19	0.483	C	A
20	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	12	46244139	20	0.059	C	T
21	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	15	74327689	21	0.484	G	T
22	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	19	10597402	22	0.776	G	A
23	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	5	78378719	23	0.435	C	A
24	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	19	1623974	24	0.489	C	G
25	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	11	44228441	25	0.689	G	A
26	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	4	106157924	26	0.300	C	T
27	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	4	71062448	27	0.399	G	T

FIG. 20

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
28	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	12	25398284	28	0.855	C	A
29	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	7	138554488	29	0.376	T	C
30	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	16	27460080	30	0.478	G	T
31	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	11	100061886	31	0.453	C	G
32	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	1	214171377	32	0.921	C	A
33	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	1	186269250	33	0.395	G	T
34	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	7	100839588	34	0.947	A	C
35	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	12	120954411	35	0.406	T	G
36	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	23	148037179	36	0.471	A	C
37	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	12	116452963	37	0.616	T	A
38	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	5	65105902	38	0.461	G	C
39	SQ1326_Sample003	LTX073	Cancer	1	675	2279100	TracerX	3	2	170044574	39	0.912	G	T
40	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	16	15932098	40	0.998	C	A
41	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	17	7577574	41	1.000	T	G
42	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	4	187549863	42	0.794	T	A
43	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	9	37002702	43	0.973	C	A
44	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	15	88420326	44	1.000	C	A
45	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	12	25398285	45	1.000	C	T
46	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	23	63410352	46	0.091	C	T
47	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	1	160607244	47	1.000	C	A
48	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	6	34614534	48	1.000	C	A
49	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	5	118456714	49	1.000	G	T
50	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	22	50678733	50	0.901	C	A
51	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	2	227660463	51	0.777	G	T
52	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	10	104156229	52	0.999	G	C
53	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	17	6980252	53	0.892	G	C
54	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	3	189604317	54	0.303	T	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
55	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	7	2564347	55	0.482	G	T
56	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	20	25434139	56	0.445	C	A
57	SQ1326_Sample002	LTX058	Cancer	1	674	2279099	TracerX	2	17	46669614	57	0.486	T	G
58	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	17	7577570	58	1.000	C	T
59	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	13	28588650	59	1.000	C	A
60	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	19	47424497	60	1.000	C	G
61	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	19	47424731	61	1.000	C	G
62	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	14	20779849	62	0.874	C	T
63	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	15	88727481	63	0.331	C	T
64	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	9	93636537	64	0.361	T	C
65	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	7	154862800	65	1.000	C	G
66	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	2	108881772	66	1.000	G	T
67	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	7	121652018	67	1.000	A	C
68	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	16	77918598	68	1.000	G	T
69	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	17	32597315	69	0.458	A	C
70	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	4	92520188	70	0.974	C	A
71	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	17	67029876	71	0.959	T	G
72	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	8	7776619	72	0.947	A	C
73	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	2	54147457	73	0.870	G	T
74	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	12	53070879	74	0.475	C	G
75	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	12	109865278	75	0.498	A	C
76	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	17	72610163	76	1.000	G	T
77	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	5	9190458	77	0.491	G	T
78	SQ1326_Sample009	LTX175	Cancer	1	682	2279106	TracerX	9	2	44556189	78	0.390	T	G
79	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	21	36259261	79	NaN	C	G
80	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	17	7579377	80	0.211	G	A
81	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	19	10610481	81	0.488	A	C

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pas	Row number	MutConf	Ref	Mut
82	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	1	110882959	82	0.442	C	T
83	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	1	2494684	83	0.776	C	T
84	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	5	56178457	84	0.071	G	A
85	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	23	53239695	85	0.340	C	T
86	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	16	81968086	86	0.738	C	T
87	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	9	97873900	87	0.873	C	G
88	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	16	27556751	88	0.431	C	A
89	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	6	88853702	89	0.975	C	A
90	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	17	67082851	90	0.314	A	T
91	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	11	119057379	91	0.430	G	C
92	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	11	118343868	92	0.969	C	G
93	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	2	48602421	93	0.434	G	C
94	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	16	85141463	94	0.773	G	T
95	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	1	245849542	95	0.423	C	A
96	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	4	2339145	96	0.457	C	G
97	SQ1326_Sample011	LTX185	Cancer	1	684	2279108	TracerX	11	23	118678418	97	0.757	C	G
98	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	17	7577059	98	0.224	C	T
99	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	15	42019435	99	0.612	T	C
100	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	8	31014903	100	0.465	G	A
101	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	16	4829736	101	0.444	C	G
102	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	22	28196336	102	0.493	C	A
103	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	15	41961225	103	0.374	C	T
104	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	16	68772312	104	NaN	G	C
105	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	1	150802432	105	0.255	G	A
106	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	1	51439886	106	0.749	G	A
107	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	17	9850237	107	0.338	C	T
108	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	19	47440656	108	0.577	G	T

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
109	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	17	74732533	109	NaN	G	A
110	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	17	29483072	110	0.924	C	G
111	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	3	15084467	111	0.418	G	T
112	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	19	50162959	112	0.486	G	C
113	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	7	22862311	113	0.473	G	C
114	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	6	53989658	114	0.871	G	C
115	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	9	97325660	115	0.461	G	C
116	SQ1326_Sample008	LTX163	Cancer	1	681	2279105	TracerX	8	5	169144389	116	0.881	T	G
117	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	12	25380254	117	0.416	C	G
118	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	17	7577100	118	0.976	T	C
119	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	2	1780938810	119	1.000	C	G
120	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	11	5529956	120	0.940	C	A
121	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	1	169566365	121	1.000	A	C
122	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	11	130289177	122	0.995	A	C
123	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	2	179650690	123	1.000	C	A
124	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	23	107393382	124	0.499	G	T
125	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	12	53241845	125	0.466	G	C
126	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	9	130550571	126	NaN	G	C
127	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	6	52052591	127	0.299	C	A
128	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	19	9088996	128	0.439	G	C
129	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	5	150029516	129	NaN	C	G
130	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	6	105233172	130	0.603	G	A
131	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	14	20404706	131	0.409	T	A
132	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	3	150281319	132	0.856	G	C
133	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	19	48949644	133	0.390	G	A
134	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	11	55681303	134	0.483	C	A
135	SQ1326_Sample004	LTX111	Cancer	1	676	2279101	TracerX	4	8	21766938	135	0.480	C	G

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
136	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	17	59876567	136	1.000	C	A
137	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	17	7578528	137	1.000	A	C
138	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	8	30989960	138	1.000	G	C
139	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	1	51439769	139	0.944	A	G
140	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	6	161530838	140	1.000	G	T
141	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	9	140865874	141	1.000	C	G
142	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	20	20269532	142	1.000	G	T
143	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	11	61490377	143	1.000	G	T
144	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	3	50387387	144	0.969	C	A
145	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	1	170513981	145	0.903	C	G
146	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	9	8331595	146	1.000	A	T
147	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	5	5303830	147	0.992	G	T
148	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	7	155530332	148	NaN	G	T
149	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	7	86415632	149	0.989	G	C
150	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	12	117188100	150	0.860	C	A
151	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	20	57429470	151	0.988	G	T
152	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	4	57865825	152	1.000	C	G
153	SQ1326_Sample001	LTX032	Cancer	1	673	2279098	TracerX	1	6	26285720	153	0.964	C	G
154	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	3	178952085	154	1.000	A	G
155	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	8	38274849	155	0.833	G	T
156	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	12	68549195	156	0.972	C	T
157	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	15	59528785	157	1.000	T	A
158	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	22	17488851	158	0.995	C	A
159	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	23	69898677	159	0.997	T	A
160	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	12	135303956	160	0.999	G	T
161	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	22	37531447	161	0.903	G	A
162	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	23	31222095	162	0.882	G	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
163	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	23	101910673	163	0.724	C	T
164	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	16	49671888	164	0.721	C	T
165	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	12	85450615	165	0.360	G	A
166	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	10	21804258	166	0.683	C	T
167	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	1	16332578	167	0.708	G	A
168	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	10	98764454	168	0.300	A	G
169	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	21	44324122	169	NaN	C	G
170	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	5	169138975	170	0.464	C	G
171	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	16	24135236	171	0.348	C	A
172	SQ1326_Sample005	LTX126	Cancer	1	677	2279102	TracerX	5	7	121965604	172	0.885	C	T
173	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	19	1207033	173	1.000	A	T
174	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	9	139409757	174	0.396	C	T
175	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	13	98043699	175	1.000	G	T
176	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	4	164449923	176	1.000	G	T
177	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	10	135084285	177	1.000	C	A
178	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	23	92927241	178	0.491	T	G
179	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	13	86369947	179	1.000	A	T
180	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	7	45124878	180	0.999	C	G
181	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	23	147733580	181	0.476	A	C
182	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	19	57325219	182	0.275	T	A
183	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	1	158617494	183	0.481	T	G
184	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	1	89732158	184	0.834	G	T
185	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	23	26236064	185	0.318	A	T
186	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	4	15444043	186	0.940	C	A
187	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	14	64924932	187	1.000	A	T
188	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	2	186656211	188	1.000	A	T
189	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	6	28403341	189	1.000	T	G

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
190	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	7	84694809	190	1.000	G	C
191	SQ1326_Sample012	LTX210	Cancer	1	685	2279109	TracerX	12	6	10796281	191	NaN	C	G
192	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	17	7578419	192	NaN	C	A
193	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	19	30936574	193	1.000	G	C
194	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	1	240256602	194	1.000	C	G
195	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	19	42301524	195	1.000	C	A
196	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	9	80144088	196	1.000	T	G
197	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	23	77913358	197	1.000	G	T
198	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	2	207003321	198	1.000	A	C
199	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	11	64111487	199	NaN	C	A
200	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	1	117527379	200	0.991	C	A
201	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	7	142750239	201	0.995	G	A
202	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	19	15281250	202	0.869	C	A
203	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	11	124748000	203	0.995	C	A
204	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	17	40765025	204	1.000	T	A
205	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	4	100057700	205	0.410	C	G
206	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	3	113321899	206	1.000	G	T
207	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	16	77387648	207	1.000	G	C
208	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	6	35911801	208	1.000	G	C
209	SQ1310_Sample007	LTX093	Cancer	2	394	2321999	TracerX	7	5	13781004	209	1.000	T	G
210	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	11	108122671	210	0.921	T	C
211	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	18	47806296	211	0.467	T	A
212	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	12	25398284	212	0.975	C	A
213	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	16	56976054	213	0.737	G	T
214	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	15	42052629	214	0.387	C	T
215	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	3	43095052	215	0.983	C	G
216	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	6	43322883	216	0.988	C	G

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
217	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	17	72456822	217	0.943	G	T
218	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	12	118293344	218	0.428	C	A
219	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	3	42672772	219	0.410	G	C
220	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	19	46269066	220	NaN	G	C
221	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	1	144922008	221	0.387	G	C
222	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	3	151046539	222	0.916	G	C
223	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	2	96933576	223	0.460	G	C
224	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	2	55920855	224	0.373	A	T
225	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	12	133306622	225	0.497	C	G
226	SQ1310_Sample001	LTX001	Cancer	2	385	2321991	TracerX	1	1	23763111	226	0.475	C	A
227	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	12	25389284	227	0.479	C	G
228	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	16	2131629	228	0.290	C	A
229	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	21	44524456	229	0.682	G	A
230	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	7	98553923	230	0.783	A	T
231	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	4	153245506	231	0.798	G	C
232	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	17	29654855	232	0.316	A	T
233	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	3	130300717	233	0.361	C	A
234	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	12	64178784	234	0.743	A	T
235	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	19	58326109	235	0.497	C	A
236	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	1	12726481	236	0.315	A	T
237	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	23	48337045	237	0.459	G	T
238	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	2	74687176	238	0.473	C	A
239	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	11	66333530	239	0.683	C	T
240	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	11	66333529	240	0.368	C	T
241	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	4	158262528	241	0.681	C	T
242	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	10	90703560	242	0.786	C	A
243	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	10	98408473	243	0.492	G	T

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
244	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	16	76389396	244	0.363	G	T
245	SQ1310_Sample009	LTX115	Cancer	2	396	2322001	TracerX	9	1	57415347	245	0.827	C	G
246	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	12	25398285	246	0.291	C	A
247	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	2	25467082	247	0.426	C	T
248	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	4	41748254	248	NaN	G	A
249	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	14	93264047	249	NaN	C	T
250	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	1	151534599	250	0.342	G	T
251	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	13	27649347	251	0.762	C	G
252	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	7	30962189	252	NaN	C	G
253	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	12	57114850	253	0.879	G	C
254	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	3	157081234	254	0.486	T	A
255	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	15	33872331	255	0.446	C	G
256	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	14	95080872	256	0.412	G	T
257	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	4	123336585	257	0.399	G	T
258	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	2	100623339	258	0.438	C	G
259	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	7	90613523	259	0.380	A	T
260	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	5	15937153	260	0.465	G	T
261	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	5	11082937	261	0.358	C	A
262	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	5	167645554	262	0.358	C	A
263	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	5	118469290	263	0.725	G	T
264	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	22	44322935	264	0.383	C	A
265	SQ1310_Sample004	LTX062	Cancer	2	388	2321994	TracerX	4	21	32638512	265	0.499	A	C
266	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	19	10597426	266	1.000	C	A
267	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	17	7577547	267	1.000	C	A
268	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	1	156838370	268	1.000	G	T
269	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	1	156838371	269	1.000	G	T
270	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	7	116397709	270	1.000	T	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
271	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	16	15841950	271	1.000	G	A
272	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	10	72358092	272	1.000	G	T
273	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	17	29701147	273	0.926	C	T
274	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	2	202151263	274	0.328	G	T
275	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	17	48266784	275	0.993	G	C
276	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	18	22806392	276	0.960	C	A
277	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	17	36873205	277	1.000	T	G
278	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	19	58190005	278	1.000	G	T
279	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	14	77745131	279	1.000	C	A
280	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	1	247752158	280	1.000	C	A
281	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	8	114186036	281	1.000	G	T
282	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	1	85279719	282	1.000	A	T
283	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	2	216252944	283	1.000	G	T
284	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	3	111632181	284	0.991	G	T
285	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	14	99641378	285	1.000	T	A
286	SQ1310_Sample006	LTX092	Cancer	2	393	2321998	TracerX	6	2	197583282	286	1.000	G	C
287	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	6	168363207	287	0.949	G	A
288	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	19	10906762	288	1.000	G	A
289	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	3	105389088	289	0.993	G	A
290	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	7	88965145	290	1.000	G	C
291	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	18	31324126	291	1.000	C	A
292	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	19	55441944	292	1.000	A	T
293	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	3	156272875	293	1.000	C	A
294	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	7	82595317	294	1.000	C	A
295	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	5	76128834	295	0.999	T	G
296	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	7	111422930	296	1.000	A	C
297	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	2	49210252	297	1.000	G	T

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
298	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	15	78463865	298	1.000	G	C
299	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	8	133045358	299	0.999	G	T
300	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	11	124440051	300	0.999	C	A
301	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	8	61750713	301	0.223	G	T
302	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	23	140996113	302	0.459	G	T
303	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	19	15586421	303	0.428	G	T
304	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	7	20689746	304	0.817	G	C
305	SQ1310_Sample008	LTX107	Cancer	2	395	2322000	TracerX	8	23	32381072	305	0.946	A	C
306	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	4	55561909	306	0.999	A	G
307	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	12	10215369	307	0.430	C	G
308	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	1	186294922	308	0.854	T	C
309	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	7	148544318	309	0.761	G	A
310	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	2	70919577	310	0.477	G	C
311	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	12	6923449	311	0.806	A	G
312	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	7	107704397	312	0.756	T	C
313	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	2	31598323	313	0.720	A	G
314	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	3	193132437	314	0.401	C	A
315	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	23	48762531	315	0.404	A	G
316	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	1	159409831	316	1.000	A	C
317	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	16	25232800	317	0.392	G	A
318	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	18	63526274	318	0.991	C	T
319	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	1	67243012	319	0.730	A	G
320	SQ1310_Sample005	LTX085	Cancer	2	389	2321995	TracerX	5	20	49195748	320	0.835	T	C
321	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	16	11000781	321	1.000	G	A
322	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	18	22804610	322	1.000	C	G
323	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	16	27454289	323	1.000	C	A
324	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	6	117638319	324	1.000	G	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
325	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	10	22016857	325	0.999	G	T
326	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	10	21823709	326	0.983	G	T
327	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	19	38942485	327	1.000	A	C
328	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	16	55705930	328	0.999	C	G
329	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	19	56896362	329	1.000	T	A
330	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	1	238053905	330	1.000	C	G
331	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	18	21957404	331	0.392	C	A
332	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	1	153658292	332	0.798	A	T
333	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	10	12139797	333	0.430	C	G
334	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	11	5969433	334	1.000	T	G
335	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	18	10696430	335	1.000	A	T
336	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	6	170592441	336	0.997	G	T
337	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	1	237817673	337	0.805	A	T
338	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	1	43904447	338	NaN	A	C
339	SQ1310_Sample003	LTX028	Cancer	2	387	2321993	TracerX	3	6	27879686	339	0.860	G	C
340	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	22	29095912	340	1.000	C	A
341	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	23	152807895	341	1.000	T	A
342	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	19	3113467	342	1.000	C	G
343	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	16	3786795	343	1.000	C	A
344	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	3	57448502	344	1.000	G	C
345	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	7	91691662	345	1.000	C	T
346	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	19	4362364	346	0.972	G	A
347	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	13	2960029	347	1.000	G	C
348	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	12	122261145	348	1.000	G	T
349	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	15	24922479	349	0.995	G	A
350	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	9	79322437	350	1.000	C	A
351	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	2	10894174	351	1.000	C	A

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
352	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	11	56085828	352	1.000	G	T
353	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	12	1940586	353	0.466	G	C
354	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	6	170592096	354	0.841	C	G
355	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	5	140603250	355	0.475	A	C
356	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	4	1991518	356	0.996	C	A
357	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	2	70905982	357	0.998	C	G
358	SQ1310_Sample002	LTX025	Cancer	2	386	2321992	TracerX	2	11	93088652	358	0.887	C	T
359	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	17	7578527	359	1.000	A	G
360	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	7	137597807	360	1.000	C	G
361	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	10	8006756	361	0.999	G	T
362	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	7	27582682	362	1.000	C	A
363	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	10	96798759	363	1.000	G	T
364	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	13	43986184	364	0.998	C	T
365	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	18	346453	365	1.000	G	T
366	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	20	30432471	366	0.999	G	T
367	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	1	182993071	367	0.977	G	A
368	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	3	49294386	368	1.000	C	G
369	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	3	50324123	369	1.000	A	T
370	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	1	6206306	370	1.000	C	G
371	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	9	5798962	371	1.000	C	T
372	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	20	62323174	372	0.965	G	A
373	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	3	38768524	373	0.984	G	T
374	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	2	141359067	374	0.921	A	G
375	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	2	211521351	375	1.000	G	T
376	SQ1310_Sample010	LTX120	Cancer	2	397	2322002	TracerX	10	9	131107700	376	1.000	G	A
377	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	23	152830557	377	0.490	C	G
378	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	12	25398285	378	0.337	C	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
379	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	4	153245455	379	0.382	C	A
380	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	17	7579378	380	0.888	G	T
381	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	13	103520588	381	0.775	G	T
382	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	16	15844020	382	0.720	C	T
383	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	10	104857113	383	0.926	G	C
384	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	11	85733463	384	0.450	C	G
385	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	23	90691588	385	0.789	G	T
386	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	12	7636270	386	0.426	G	T
387	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	2	79348040	387	0.416	C	A
388	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	16	68023965	388	1.000	C	A
389	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	13	110804825	389	0.416	C	A
390	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	14	105920600	390	0.825	G	T
391	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	1	171761246	391	0.909	G	T
392	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	1	150259318	392	0.458	G	C
393	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	6	62390879	393	0.290	C	A
394	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	16	4896197	394	0.852	C	A
395	SQ1328_Sample002	LTX041	Cancer	3	706	2279159	TracerX	2	13	110804826	395	0.421	C	A
396	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	17	7577580	396	1.000	T	C
397	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	1	115256529	397	1.000	T	C
398	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	2	178098966	398	1.000	C	T
399	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	7	98609727	399	1.000	G	A
400	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	15	4205902	400	1.000	G	C
401	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	5	66460021	401	1.000	G	A
402	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	1	2939112	402	1.000	G	C
403	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	2	136615556	403	1.000	C	T
404	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	19	1083272	404	1.000	C	T
405	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	7	75932205	405	NaN	C	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
406	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	19	3978139	406	0.376	G	A
407	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	19	39037699	407	0.751	G	A
408	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	16	72184618	408	NaN	C	G
409	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	22	37903864	409	1.000	A	C
410	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	7	121612669	410	1.000	A	C
411	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	22	36722683	411	0.982	G	A
412	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	17	10398519	412	1.000	G	A
413	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	11	134018480	413	1.000	G	A
414	SQ1328_Sample008	LTX097	Cancer	3	715	2279165	TracerX	8	5	52386370	414	0.749	T	C
415	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	12	25398285	415	0.393	C	A
416	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	17	29483017	416	0.484	G	T
417	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	4	41749461	417	0.498	C	G
418	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	19	51380137	418	0.300	C	A
419	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	1	78430779	419	0.407	C	A
420	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	12	25398284	420	0.483	C	A
421	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	1	236882203	421	0.310	T	A
422	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	15	28513699	422	0.407	C	A
423	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	1	183775513	423	0.868	C	G
424	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	12	101739472	424	0.754	G	T
425	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	18	31523112	425	0.421	C	A
426	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	23	100745059	426	0.496	A	C
427	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	5	38425079	427	0.374	C	G
428	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	3	178543485	428	0.862	G	C
429	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	4	57796165	429	0.793	G	C
430	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	4	123184698	430	0.411	G	T
431	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	4	855330655	431	0.837	G	T
432	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	5	174099	432	0.789	A	T

FIG. 20 (CONT.)

Row number	Samplefield	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
433	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	16	80718770	433	0.387	G	C
434	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	32	32145428	434	0.898	G	C
435	SQ1328_Sample005	LTX055	Cancer	3	709	2279162	TracerX	5	23	37985925	435	0.389	G	T
436	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	17	7578457	436	1.000	C	A
437	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	4	153245381	437	1.000	T	C
438	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	13	28542956	438	NaN	G	T
439	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	13	32929041	439	1.000	G	T
440	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	31	111223171	440	0.996	G	A
441	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	17	71361424	441	1.000	C	A
442	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	14	31061546	442	1.000	G	C
443	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	16	48174630	443	1.000	A	T
444	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	10	28224075	444	NaN	G	C
445	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	4	22394224	445	1.000	T	A
446	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	6	27858176	446	0.996	C	G
447	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	19	11226802	447	0.867	C	T
448	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	4	106880244	448	1.000	G	A
449	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	1	1117644093	449	0.978	G	A
450	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	18	10784905	450	0.300	C	T
451	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	10	6254869	451	0.398	C	T
452	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	11	72141386	452	0.351	G	A
453	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	14	105518356	453	0.875	C	T
454	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	3	121223960	454	0.370	G	A
455	SQ1328_Sample010	LTX165	Cancer	3	717	2279167	TracerX	10	11	30433103	455	0.443	G	T
456	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	9	95179143	456	0.704	G	A
457	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	5	149514547	457	0.271	C	A
458	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	5	158140143	458	0.468	T	G
459	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	23	76938197	459	0.453	C	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
460	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	1	232172482	460	0.439	G	T
461	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	6	161143509	461	0.379	C	A
462	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	8	48626203	462	0.392	G	T
463	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	1	150256855	463	0.405	G	C
464	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	23	144906375	464	0.349	T	A
465	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	7	126173825	465	0.913	G	C
466	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	17	17700179	466	0.498	C	G
467	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	13	114748827	467	0.870	G	T
468	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	23	37312417	468	0.399	C	A
469	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	12	112528627	469	0.397	C	G
470	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	3	148924116	470	0.421	T	G
471	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	17	72859324	471	0.310	T	A
472	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	2	45826689	472	0.481	T	G
473	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	12	12006363	473	0.803	G	C
474	SQ1328_Sample001	LTX021	Cancer	3	705	2279158	TracerX	1	14	94420800	474	0.345	T	A
475	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	22	36715609	475	0.996	G	C
476	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	13	103519140	476	0.335	T	A
477	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	15	72039278	477	0.997	C	A
478	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	4	72618298	478	0.987	C	G
479	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	7	113558795	479	1.000	G	T
480	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	6	167369586	480	0.972	G	C
481	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	7	126173256	481	0.813	T	C
482	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	9	104499652	482	0.998	C	A
483	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	1	15635212	483	0.999	G	A
484	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	6	152599226	484	0.409	G	T
485	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	4	121737614	485	1.000	G	T
486	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	6	89981387	486	0.934	G	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
487	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	1	109778027	487	0.996	A	G
488	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	11	74424521	488	0.294	C	T
489	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	23	48759725	489	0.231	C	T
490	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	20	55033411	490	0.997	A	T
491	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	3	142089350	491	0.295	C	T
492	SQ1328_Sample006	LTX059	Cancer	3	713	2279163	TracerX	6	17	1538596	492	0.493	G	T
493	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	12	25398284	493	0.856	C	G
494	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	16	14029154	494	0.840	G	T
495	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	2	51255338	495	0.918	G	T
496	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	1	12024323	496	0.476	G	T
497	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	17	56540520	497	0.353	C	A
498	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	5	101595952	498	0.426	C	T
499	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	13	50413543	499	0.311	C	A
500	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	1	207196454	500	0.346	C	T
501	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	7	78256448	501	0.276	C	T
502	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	4	41663444	502	0.463	C	A
503	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	1	68910321	503	0.372	C	A
504	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	1	19449434	504	0.921	C	A
505	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	10	68687168	505	0.888	G	T
506	SQ1328_Sample007	LTX084	Cancer	3	714	2279164	TracerX	7	18	63477161	506	0.774	G	T
507	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	12	49434516	507	0.977	C	A
508	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	14	21869106	508	0.860	C	T
509	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	12	25398284	509	1.000	C	A
510	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	15	45007672	510	0.990	C	G
511	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	1	27023307	511	Nan	C	G
512	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	19	10600420	512	0.970	C	G
513	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	14	81610301	513	0.986	C	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
514	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	15	88777459	514	0.451	T	A
515	SO1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	17	7578190	515	0.231	T	C
516	SO1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	17	29663397	516	0.933	G	T
517	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	1	3329196	517	NaN	G	A
518	SO1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	19	45262781	518	0.881	C	T
519	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	11	128680482	519	0.202	C	T
520	SO1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	3	69928297	520	1.000	G	T
521	SO1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	21	31709951	521	0.857	G	C
522	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	8	109260902	522	0.475	G	C
523	SO1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	23	69262973	523	0.474	G	C
524	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	17	7674212	524	0.781	G	C
525	SQ1328_Sample009	LTX135	Cancer	3	716	2279166	TracerX	9	7	1976519	525	0.877	C	G
526	SO1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	1	179087864	526	0.781	T	A
527	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	7	13975490	527	0.905	T	A
528	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	22	36688117	528	0.489	T	G
529	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	19	1009549	529	NaN	C	A
530	SO1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	5	170883636	530	0.813	G	T
531	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	2	79312626	531	0.348	G	T
532	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	6	147527134	532	0.314	C	T
533	SO1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	6	26225746	533	0.439	C	A
534	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	23	44108149	534	1.000	C	A
535	SO1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	14	23523992	535	0.440	C	G
536	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	23	49040341	536	0.583	C	T
537	SO1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	6	16326778	537	0.824	C	A
538	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	1	225565074	538	0.039	G	A
539	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	14	20692485	539	0.601	C	T
540	SO1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	7	115890528	540	0.264	C	T

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Char	Pos	Row number	MutConf	Ref	Mut
541	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	13	100425110	541	0.481	T	G
542	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	22	198830340	542	0.263	G	A
543	SQ1328_Sample004	LTX048	Cancer	3	708	2279161	TracerX	4	17	18219954	543	0.706	C	T
544	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	17	7579485	544	0.459	C	A
545	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	7	55241708	545	0.445	G	C
546	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	18	48604750	546	0.362	G	A
547	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	23	152830448	547	0.432	G	A
548	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	19	45375306	548	0.449	G	C
549	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	2	22882599	549	0.679	C	T
550	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	10	118689468	550	0.801	C	G
551	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	3	4847939	551	0.418	C	G
552	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	16	58713976	552	0.461	C	A
553	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	4	57839436	553	0.406	C	G
554	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	22	43539119	554	0.500	C	A
555	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	4	164272221	555	0.413	G	C
556	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	13	30107108	556	0.942	C	A
557	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	21	27071135	557	0.431	C	A
558	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	1	237754064	558	0.360	C	T
559	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	17	19261251	559	0.876	C	T
560	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	10	15121020	560	0.296	G	T
561	SQ1328_Sample003	LTX046	Cancer	3	707	2279160	TracerX	3	11	78574162	561	0.346	C	A
562	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	17	7579398	562	0.889	C	A
563	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	19	1220502	563	NaN	G	T
564	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	12	133256551	564	0.380	C	A
565	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	18	22805714	565	0.583	C	T
566	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	1	19018437	566	0.827	C	A
567	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	11	108186565	567	0.319	A	T

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Pos	Row number	MutConf	Ref	Mut
568	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	11	55798386	568	0.774	C	A	
569	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	16	4933402	569	1.000	C	A	
570	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	19	56539619	570	0.829	C	G	
571	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	2	39559089	571	0.388	T	G	
572	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	17	48252792	572	NaN	G	T	
573	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	10	7262401	573	0.384	C	A	
574	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	2	128774019	574	0.888	C	A	
575	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	7	49815508	575	0.489	C	A	
576	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	9	135983408	576	0.498	A	C	
577	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	6	2895637	577	0.456	T	A	
578	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	1	193150241	578	0.823	G	T	
579	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	5	140187899	579	0.396	A	T	
580	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	15	43694034	580	0.496	A	C	
581	SQ1329_Sample004	LTX036	Cancer	4	724	2279191	TracerX	4	3	115439665	581	0.417	A	C	
582	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	17	7578190	582	1.000	T	C	
583	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	18	22807056	583	1.000	C	A	
584	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	4	187532858	584	0.999	C	A	
585	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	5	176710869	585	1.000	A	T	
586	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	8	88365909	586	1.000	G	T	
587	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	9	97887448	587	1.000	C	A	
588	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	18	47802230	588	1.000	C	A	
589	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	18	47800615	589	1.000	C	A	
590	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	16	14024630	590	1.000	C	A	
591	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	12	129559276	591	1.000	C	T	
592	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	1	247836132	592	1.000	G	T	
593	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	7	117432761	593	1.000	C	A	
594	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	6	155153840	594	1.000	A	G	

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
595	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	5	167645878	595	1.000	T	G
596	SQ1329_Sample003	LTX022	Cancer	4	722	2279189	TracerX	2	9	35714237	596	1.000	T	C
597	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	9	123220803	597	0.322	C	G
598	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	19	67212134	598	0.499	C	G
599	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	8	70674006	599	0.999	G	T
600	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	2	1168816	600	0.902	T	C
601	SQ1329_Sample002	LTX022	Cancer	4	722	2279189	TracerX	2	9	95841793	601	1.000	G	C
602	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	12	25398284	602	0.782	C	A
603	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	1	3313149	603	0.909	G	T
604	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	19	11152100	604	0.491	A	T
605	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	15	88680726	605	0.412	C	A
606	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	12	46244010	606	0.416	G	C
607	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	23	76939413	607	0.405	T	A
608	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	16	2121841	608	NaN	G	T
609	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	23	48547447	609	1.000	C	A
610	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	3	57457248	610	0.885	C	A
611	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	19	10897345	611	0.471	C	A
612	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	3	128200113	612	0.780	G	A
613	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	20	51870588	613	0.467	G	T
614	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	2	116520170	614	0.434	C	G
615	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	21	47987434	615	0.835	G	T
616	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	17	72519788	616	0.375	C	A
617	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	8	9437749	617	0.422	C	G
618	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	12	11153997	618	0.478	C	A
619	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	8	52323848	619	0.780	C	A
620	SQ1329_Sample006	LTX049	Cancer	4	729	2279193	TracerX	6	3	129370350	620	0.336	C	G
621	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TracerX	7	9	135982591	621	1.000	C	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
622	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	17	7578263	622	1.000	G	A
623	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	3	57430962	623	1.000	G	A
624	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	1	27102068	624	1.000	G	T
625	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	16	65016009	625	1.000	C	G
626	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	11	32449506	626	0.997	T	A
627	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	15	74326870	627	0.911	C	T
628	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	7	50450378	628	0.958	C	G
629	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	16	15811171	629	0.715	C	T
630	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	10	50732500	630	1.000	C	A
631	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	7	31144522	631	1.000	A	C
632	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	10	108378016	632	1.000	C	A
633	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	2	73302776	633	1.000	C	A
634	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	12	125298872	634	1.000	C	A
635	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	10	7032109	635	0.757	G	A
636	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	8	144812392	636	0.434	C	T
637	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	6	26508774	637	0.992	T	A
638	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	2	1170074	638	0.994	C	A
639	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	19	15511627	639	0.992	G	T
640	SQ1329_Sample007	LTX063	Cancer	4	730	2279194	TraceiX	7	7	49815709	640	1.000	G	C
641	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TraceiX	9	22	41566508	641	0.757	G	A
642	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TraceiX	9	11	69465952	642	0.360	C	T
643	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TraceiX	9	7	50459335	643	0.835	A	T
644	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TraceiX	9	7	98588208	644	0.218	C	T
645	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TraceiX	9	17	29664428	645	0.430	C	G
646	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TraceiX	9	4	3201640	646	0.878	G	T
647	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TraceiX	9	1	186303604	647	0.887	T	A
648	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TraceiX	9	13	110844627	648	0.291	G	T

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pas	Row number	MutConf	Ref	Mut
649	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	3	18397527	649	0.437	C	A
650	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	10	49944072	650	0.375	C	G
651	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	23	130220369	651	0.811	T	A
652	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	2	84864406	652	0.391	C	A
653	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	7	131864446	653	0.872	C	A
654	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	16	1812912	654	NaN	C	G
655	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	6	345914	655	0.863	C	A
656	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	22	50688115	656	0.478	C	G
657	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	7	134618237	657	0.407	A	C
658	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	2	44459475	658	0.393	C	A
659	SQ1329_Sample009	LTX144	Cancer	4	732	2279196	TracerX	9	2	162762359	659	0.429	C	G
660	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	14	51196324	660	1.000	G	A
661	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	1	65332716	661	1.000	C	A
662	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	16	4836063	662	1.000	G	C
663	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	2	178098810	663	1.000	C	G
664	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	9	134010388	664	1.000	A	T
665	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	11	69456203	665	1.000	C	G
666	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	1	27106535	666	1.000	G	A
667	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	12	131276458	667	NaN	G	T
668	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	9	139413985	668	0.670	C	T
669	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	23	76939312	669	0.999	G	A
670	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	3	37061826	670	1.000	G	A
671	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	4	55980381	671	1.000	G	A
672	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	1	198700816	672	1.000	G	C
673	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	12	464400	673	1.000	C	T
674	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	1	158576657	674	1.000	G	T
675	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	23	88008704	675	1.000	C	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
676	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	3	64132613	676	1.000	C	A
677	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	6	17772153	677	0.416	G	C
678	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	5	169020496	678	0.444	A	C
679	SQ1329_Sample005	LTX038	Cancer	4	725	2279192	TracerX	5	15	712764780	679	1.000	G	T
680	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	3	52436393	680	0.758	G	A
681	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	7	148508719	681	0.672	C	T
682	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	17	7578535	682	0.260	T	C
683	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	13	48955550	683	0.411	C	T
684	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	6	84895087	684	0.391	G	A
685	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	23	125298988	685	0.449	C	G
686	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	14	104639409	686	0.396	C	T
687	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	23	78010800	687	0.407	G	A
688	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	3	142735152	688	0.488	A	C
689	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	16	88501136	689	0.271	T	C
690	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	15	75692456	690	0.394	C	A
691	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	12	56827593	691	0.410	T	A
692	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	10	70646154	692	0.358	G	A
693	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	5	138456816	693	0.749	G	A
694	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	17	75471896	694	0.435	G	A
695	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	12	118610456	695	0.765	C	A
696	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	3	135870296	696	0.313	C	T
697	SQ1329_Sample003	LTX034	Cancer	4	723	2279190	TracerX	3	3	160395441	697	0.870	C	A
698	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	9	133730371	698	0.840	A	G
699	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	5	15937238	699	0.684	G	A
700	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	2	152403968	700	0.774	C	T
701	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	23	114141151	701	0.348	C	T
702	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	6	13316860	702	1.000	G	C

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
703	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	3	183994479	703	0.691	T	C
704	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	10	105147056	704	0.688	C	T
705	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	17	18154751	705	0.538	C	T
706	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	8	38205421	706	0.729	T	A
707	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	6	127768763	707	0.815	T	A
708	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	16	29706404	708	0.455	C	T
709	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	14	31592236	709	0.206	G	A
710	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	23	150348926	710	0.995	G	A
711	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	23	117044028	711	0.274	C	T
712	SQ1329_Sample001	LTX013	Cancer	4	721	2279188	TracerX	1	14	74988688	712	0.241	C	T
713	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	22	36702581	713	0.451	C	T
714	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	17	7577127	714	0.807	C	A
715	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	5	86629154	715	0.383	G	T
716	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	13	103385643	716	0.976	A	C
717	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	2	73679889	717	0.414	G	T
718	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	11	64360338	718	0.487	G	T
719	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	5	150133163	719	0.338	G	T
720	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	13	103390487	720	0.791	G	T
721	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	16	48209286	721	0.483	G	T
722	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	14	101347192	722	0.793	C	T
723	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	4	109674077	723	0.405	C	A
724	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	20	4837662	724	0.561	C	T
725	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	6	51523873	725	0.297	T	A
726	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	13	96530052	726	0.850	C	A
727	SQ1329_Sample008	LTX065	Cancer	4	731	2279195	TracerX	8	2	220283462	727	0.417	T	A
728	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	23	53239876	728	1.000	G	A
729	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	16	3786719	729	1.000	G	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
730	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	6	117647416	730	1.000	C	T
731	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	1	160136469	731	1.000	G	T
732	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	11	17629929	732	1.000	C	T
733	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	2	201462193	733	1.000	A	G
734	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	8	117950562	734	0.964	G	T
735	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	16	49669770	735	0.991	C	T
736	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	19	3783189	736	1.000	C	T
737	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	14	70633968	737	1.000	G	T
738	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	6	50791187	738	0.994	C	A
739	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	20	62837060	739	1.000	G	A
740	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	11	47200023	740	1.000	C	G
741	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	3	52087959	741	0.496	T	G
742	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	3	101520185	742	0.681	A	G
743	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	15	40763898	743	0.484	G	T
744	SQ1329_Sample010	LTX149	Cancer	4	733	2279197	TracerX	10	10	134161560	744	0.400	C	T
745	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	8	30948434	745	0.763	T	A
746	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	8	118847703	746	0.866	C	G
747	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	12	25398284	747	NAN	C	A
748	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	7	138603666	748	0.359	A	G
749	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	17	7577538	749	0.649	C	T
750	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	12	49416133	750	0.735	G	A
751	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	9	132963250	751	0.864	G	T
752	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	1	156833232	752	0.474	G	T
753	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	8	52721778	753	0.789	C	A
754	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	13	33109925	754	0.356	C	A
755	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	11	92714903	755	0.465	T	A
756	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	12	49361733	756	0.350	C	G

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pas	Row number	MutConf	Ref	Mut
757	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	15	77425561	757	0.400	C	A
758	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	15	33855180	758	0.826	A	C
759	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	18	51731448	759	0.485	A	C
760	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	6	90398305	760	0.389	G	C
761	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	19	4488790	761	0.467	G	C
762	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	9	17135350	762	0.444	A	T
763	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	9	17135349	763	0.468	G	T
764	SQ1311_Sample007	LTX102	Cancer	5	778	2322029	TracerX	7	11	85459443	764	0.384	T	A
765	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	3	186501407	765	1.000	G	T
766	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	18	61262379	766	1.000	G	T
767	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	17	7578394	767	1.000	T	C
768	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	16	2014284	768	1.000	G	A
769	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	3	178917564	769	1.000	T	C
770	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	13	49027177	770	0.977	C	T
771	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	2	10350625	771	1.000	G	T
772	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	3	130285569	772	1.000	G	T
773	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	8	104388139	773	1.000	G	T
774	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	19	52568449	774	0.929	G	T
775	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	22	32894496	775	0.999	T	A
776	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	12	71898461	776	0.999	G	T
777	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	8	94935116	777	1.000	G	C
778	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	3	193120500	778	1.000	A	C
779	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	14	70246051	779	1.000	G	T
780	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	11	6790165	780	1.000	C	A
781	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	4	71066286	781	0.989	C	G
782	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	5	7626280	782	1.000	A	T
783	SQ1311_Sample001	LTX015	Cancer	5	769	2322021	TracerX	1	17	10354175	783	0.745	C	G

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
784	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	17	7578206	784	0.959	T	C
785	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	10	89717615	785	0.864	C	T
786	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	9	5069164	786	0.984	A	G
787	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	3	47139542	787	0.693	G	A
788	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	20	31023115	788	0.982	G	T
789	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	12	49420108	789	0.948	C	G
790	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	1	150935141	790	0.940	G	C
791	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	19	47424096	791	0.365	C	G
792	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	20	57829494	792	1.000	C	G
793	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	17	76490183	793	0.982	C	G
794	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	1	33272142	794	0.433	C	G
795	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	16	27374243	795	0.345	G	T
796	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	4	1806572	796	NaN	T	G
797	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	8	134145841	797	0.987	G	C
798	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	12	110956536	798	0.440	C	G
799	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	12	120741431	799	0.780	C	A
800	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	7	107705249	800	0.530	A	T
801	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	19	3611956	801	0.989	G	C
802	SQ1311_Sample003	LTX074	Cancer	5	771	2322023	TracerX	3	17	29653132	802	0.413	C	G
803	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	7	55259515	803	0.158	T	G
804	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	17	7578403	804	0.425	C	A
805	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	23	47040716	805	0.928	G	T
806	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	23	47039288	806	NaN	T	G
807	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	18	8376593	807	0.752	G	A
808	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	12	49949724	808	0.481	C	G
809	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	20	2840714	809	0.820	C	T
810	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	2	223787502	810	0.281	C	A

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pas	Row number	MutConf	Ref	Mut
811	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	20	31676821	811	0.299	G	A
812	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	17	47010696	812	0.428	G	C
813	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	17	37571363	813	0.437	G	C
814	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	12	116457705	814	0.335	C	T
815	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	17	3717712	815	0.402	C	T
816	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	4	146653666	816	0.408	G	C
817	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	3	172065111	817	0.387	G	C
818	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	10	127843807	818	0.627	G	A
819	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	6	105609358	819	0.982	A	G
820	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	1	247654898	820	0.849	T	C
821	SQ1311_Sample004	LTX075	Cancer	5	772	2322024	TracerX	4	14	92588089	821	0.496	G	T
822	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	17	7577082	822	1.000	C	T
823	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	19	10600447	823	1.000	G	A
824	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	17	4439438	824	1.000	G	A
825	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	20	62165606	825	1.000	G	T
826	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	1	152732873	826	1.000	C	A
827	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	7	4947050	827	1.000	G	T
828	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	17	7350222	828	1.000	C	A
829	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	22	21167719	829	1.000	G	A
830	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	3	100093927	830	1.000	G	T
831	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	20	35862487	831	0.997	T	C
832	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	2	26700580	832	0.904	G	A
833	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	23	96684657	833	1.000	G	T
834	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	13	38172799	834	0.874	T	C
835	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	3	147121807	835	1.000	C	A
836	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	9	35057128	836	0.836	C	T
837	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	16	29791531	837	1.000	G	T

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
838	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	19	57286130	838	0.677	C	T
839	SQ1311_Sample002	LTX033	Cancer	5	770	2322022	TracerX	2	17	76134464	839	0.416	G	A
840	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	19	10602907	840	0.338	G	A
841	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	19	1220487	841	0.358	G	A
842	SQ1311_Sample016	LTX091	Cancer	5	777	2322028	TracerX	6	6	106555068	842	0.889	G	A
843	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	1	155874286	843	0.499	A	C
844	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	12	91449475	844	0.467	A	C
845	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	11	74800278	845	0.438	G	T
846	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	1	54675768	846	0.336	C	A
847	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	17	8045743	847	NaN	A	C
848	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	1	214170777	848	0.334	G	T
849	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	1	109859508	849	0.886	C	G
850	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	7	142988670	850	0.388	G	T
851	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	17	9559744	851	0.738	C	T
852	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	12	114380190	852	0.778	A	G
853	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	14	95562863	853	0.704	T	C
854	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	12	112668613	854	0.375	G	A
855	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	4	110791343	855	0.553	C	T
856	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	2	16082277	856	0.775	G	A
857	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	15	42980590	857	0.910	C	G
858	SQ1311_Sample006	LTX091	Cancer	5	777	2322028	TracerX	6	22	31592935	858	0.295	C	T
859	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TracerX	5	4	187521078	859	1.000	C	T
860	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TracerX	5	17	7577090	860	1.000	C	G
861	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TracerX	5	12	133225515	861	1.000	C	A
862	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TracerX	5	14	21868192	862	1.000	G	A
863	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TracerX	5	14	21868191	863	1.000	T	A
864	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TracerX	5	6	138199630	864	0.925	C	T

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
865	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	16	4043420	865	1.000	T	A
866	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	7	98574134	865	1.000	T	A
867	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	11	18434326	867	1.000	G	T
868	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	17	7416153	868	1.000	G	T
869	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	11	119045783	869	NaN	G	A
870	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	5	19838947	870	1.000	C	T
871	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	19	45209082	871	1.000	C	T
872	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	23	32482787	872	1.000	C	G
873	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	2	228884112	873	1.000	C	A
874	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	16	3656696	874	1.000	T	A
875	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	10	1041136546	875	1.000	G	A
876	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	10	79595553	876	1.000	C	A
877	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	8	72182032	877	1.000	C	G
878	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	3	53125957	878	1.000	G	C
879	SQ1311_Sample005	LTX076	Cancer	5	773	2322025	TraceX	5	3	129251434	879	1.000	G	A
880	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	12	25398284	880	1.000	C	A
881	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	19	47491255	881	0.753	C	T
882	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	19	11138504	882	0.371	G	T
883	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	7	97361937	883	0.992	G	C
884	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	11	64622898	884	1.000	T	A
885	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	10	43292571	885	0.380	C	A
886	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	18	61602264	886	0.401	G	C
887	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	7	150777840	887	NaN	C	A
888	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	2	27601137	888	0.473	C	A
889	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	22	21990773	889	0.374	C	T
890	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	4	8229319	890	0.817	G	A
891	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TraceX	9	5	140744399	891	0.783	C	T

FIG. 20 (CONT.)

Row number	SampleId	SampleName	SampleType	Pool	Barcode	SeqId	Project	SampleNumber	Chr	Pos	Row number	MutConf	Ref	Mut
892	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TracerX	9	12	29464049	892	0.389	T	C
893	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TracerX	9	10	469996501	893	NaN	G	A
894	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TracerX	9	15	24921526	894	0.398	G	T
895	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TracerX	9	11	104034545	895	0.409	G	T
896	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TracerX	9	11	66190163	896	0.161	G	A
897	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TracerX	9	4	66356134	897	0.940	G	A
898	SQ1311_Sample009	LTX160	Cancer	5	780	2322031	TracerX	9	20	2375907	898	0.415	G	T
899	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	17	7578406	899	0.343	C	T
900	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	14	51226846	900	0.909	C	T
901	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	12	56360899	901	0.494	G	C
902	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	1	154127373	902	0.490	G	C
903	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	14	96777916	903	0.406	G	C
904	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	19	34857281	904	0.255	C	A
905	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	23	84362885	905	0.579	A	G
906	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	10	96043555	906	0.929	G	T
907	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	19	102203867	907	0.921	C	T
908	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	20	25304046	908	0.937	C	T
909	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	16	30999142	909	NaN	A	G
910	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	7	94937446	910	NaN	T	C
911	SQ1311_Sample008	LTX103	Cancer	5	779	2322030	TracerX	8	1	171076966	911	0.961	G	A

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
1	99.972%	0.000%	14477	0	0.001%	0.004%	TRANSVERSION	0.0000	1	0	1	1
2	99.976%	0.000%	50554	0	0.002%	0.002%	TRANSVERSION	0.0000	2	0	2	1
3	99.966%	0.003%	32344	1	0.002%	0.004%	TRANSVERSION	0.0031	3	0	2	1
4	99.959%	0.028%	42542	12	0.040%	0.015%	TRANSITION	0.0282	4	0	1	1
5	100.000%	0.000%	9969	0	0.004%	0.007%	TRANSVERSION	0.0000	5	0	4	1
6	99.949%	0.000%	29318	0	0.001%	0.002%	TRANSVERSION	0.0000	6	0	4	1
7	99.960%	0.002%	44659	1	0.001%	0.001%	TRANSVERSION	0.0022	7	0	4	1
8	99.980%	0.005%	64660	3	0.004%	0.002%	TRANSVERSION	0.0046	8	0	4	1
9	99.987%	0.006%	61846	4	0.011%	0.005%	TRANSITION	0.0065	9	0	3	0.5
10	99.943%	0.000%	52505	0	0.003%	0.004%	TRANSVERSION	0.0000	10	0	4	1
11	99.954%	0.006%	49973	3	0.003%	0.003%	TRANSVERSION	0.0060	11	0	4	0.5
12	99.965%	0.000%	69116	0	0.001%	0.001%	TRANSITION	0.0000	12	0	4	0.5
13	99.970%	0.001%	72565	1	0.003%	0.004%	TRANSVERSION	0.0014	13	0	4	1
14	99.989%	0.002%	61574	1	0.003%	0.002%	TRANSVERSION	0.0016	14	0	4	1
15	99.942%	0.002%	53762	1	0.004%	0.002%	TRANSVERSION	0.0019	15	0	3	1
16	99.959%	0.000%	50965	0	0.003%	0.002%	TRANSVERSION	0.0000	16	0	4	1
17	99.962%	0.008%	60185	5	0.002%	0.002%	TRANSVERSION	0.0083	17	0	4	1
18	99.942%	0.000%	8654	0	0.004%	0.007%	TRANSVERSION	0.0000	18	0	1	1
19	99.942%	0.000%	8638	0	0.002%	0.004%	TRANSVERSION	0.0000	19	0	1	1
20	99.983%	0.010%	40946	4	0.032%	0.008%	TRANSITION	0.0098	20	0	1	1
21	99.970%	0.000%	6673	0	0.003%	0.009%	TRANSVERSION	0.0000	21	0	2	1
22	99.943%	0.057%	15688	9	0.039%	0.016%	TRANSITION	0.0574	22	0	2	1
23	99.976%	0.000%	33277	0	0.002%	0.003%	TRANSVERSION	0.0000	23	0	2	1
24	99.979%	0.000%	18943	0	0.001%	0.002%	TRANSVERSION	0.0000	24	0	2	1
25	99.967%	0.028%	39485	11	0.027%	0.011%	TRANSITION	0.0279	25	0	1	1
26	99.983%	0.017%	29005	5	0.035%	0.018%	TRANSITION	0.0172	26	0	2	1
27	99.974%	0.003%	30822	1	0.004%	0.005%	TRANSVERSION	0.0032	27	0	2	0.5

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
28	99.973%	0.004%	47600	2	0.002%	0.002%	TRANSVERSION	0.00442	28	0	1	0.75
29	99.974%	0.022%	23218	5	0.024%	0.009%	TRANSITION	0.0215	29	0	2	0.75
30	99.968%	0.000%	12593	0	0.001%	0.003%	TRANSVERSION	0.0000	30	0	2	0.5
31	99.955%	0.000%	61693	0	0.001%	0.001%	TRANSVERSION	0.0000	31	0	4	0.75
32	99.939%	0.015%	19768	3	0.004%	0.004%	TRANSVERSION	0.0152	32	0	4	1
33	99.949%	0.006%	47266	3	0.007%	0.004%	TRANSVERSION	0.0063	33	0	4	0.5
34	99.975%	0.006%	16257	1	0.001%	0.002%	TRANSVERSION	0.0062	34	0	4	0.75
35	99.984%	0.000%	55749	0	0.002%	0.002%	TRANSVERSION	0.0000	35	0	4	0.5
36	99.963%	0.000%	61921	0	0.001%	0.001%	TRANSVERSION	0.0000	36	0	4	0.25
37	99.964%	0.005%	61889	3	0.005%	0.002%	TRANSVERSION	0.0048	37	0	4	0.25
38	99.962%	0.000%	18559	0	0.002%	0.003%	TRANSVERSION	0.0000	38	0	4	0.25
39	99.960%	0.005%	37928	2	0.001%	0.002%	TRANSVERSION	0.0053	39	0	4	0.25
40	99.941%	0.047%	34038	16	0.003%	0.003%	TRANSVERSION	0.0470	40	1	2	1
41	99.773%	0.206%	28622	59	0.001%	0.002%	TRANSVERSION	0.2061	41	1	1	1
42	99.983%	0.010%	40090	4	0.007%	0.004%	TRANSVERSION	0.0100	42	0	2	1
43	99.894%	0.059%	8498	5	0.005%	0.010%	TRANSVERSION	0.0588	43	0	2	1
44	99.825%	0.115%	53250	61	0.001%	0.001%	TRANSVERSION	0.1146	44	1	2	1
45	99.866%	0.132%	49129	65	0.027%	0.007%	TRANSITION	0.1323	45	1	1	0.8
46	99.991%	0.006%	34059	2	0.029%	0.009%	TRANSITION	0.0059	46	0	1	0.2
47	99.862%	0.087%	27625	24	0.004%	0.003%	TRANSVERSION	0.0869	47	1	4	1
48	99.869%	0.073%	39700	29	0.004%	0.003%	TRANSVERSION	0.0730	48	1	4	1
49	99.921%	0.039%	49306	19	0.002%	0.002%	TRANSVERSION	0.0385	49	1	4	1
50	99.973%	0.003%	29698	1	0.001%	0.001%	TRANSVERSION	0.0034	50	0	4	0.2
51	99.943%	0.005%	21052	1	0.004%	0.004%	TRANSVERSION	0.0048	51	0	4	0.2
52	99.927%	0.047%	19164	9	0.001%	0.001%	TRANSVERSION	0.0470	52	1	3	0.4
53	99.981%	0.004%	47991	2	0.001%	0.001%	TRANSVERSION	0.0042	53	0	4	0.4
54	99.971%	0.002%	61783	1	0.004%	0.002%	TRANSVERSION	0.0016	54	0	4	0.4

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOF	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	Call	driver category	clonal ratio
55	100.000%	0.000%	5663	0	0.003%	0.005%	TRANSVERSION	0.0000	55	0	4	0.2
56	99.935%	0.000%	25969	0	0.003%	0.005%	TRANSVERSION	0.0000	56	0	4	0.2
57	99.972%	0.000%	21116	0	0.001%	0.002%	TRANSVERSION	0.0000	57	0	4	0.2
58	98.373%	1.628%	32812	534	0.032%	0.012%	TRANSITION	1.6275	58	1	1	1
59	98.402%	1.540%	73891	1138	0.004%	0.003%	TRANSVERSION	1.5401	59	1	2	1
60	98.877%	1.095%	60378	661	0.001%	0.001%	TRANSVERSION	1.0948	60	1	2	1
61	98.930%	1.062%	23644	251	0.001%	0.001%	TRANSVERSION	1.0616	61	1	2	1
62	99.960%	0.034%	32773	11	0.016%	0.008%	TRANSITION	0.0336	62	0	2	0.25
63	99.982%	0.018%	44346	8	0.028%	0.013%	TRANSITION	0.0180	63	0	2	0.5
64	99.981%	0.017%	51495	9	0.020%	0.007%	TRANSITION	0.0175	64	0	2	0.25
65	94.742%	5.155%	8729	450	0.000%	0.003%	TRANSVERSION	5.1552	65	1	4	1
66	98.701%	1.267%	71290	903	0.003%	0.002%	TRANSVERSION	1.2667	66	1	4	1
67	99.289%	0.698%	69158	483	0.001%	0.001%	TRANSVERSION	0.6984	67	1	4	1
68	98.704%	1.274%	58804	749	0.002%	0.002%	TRANSVERSION	1.2737	68	1	4	1
69	99.966%	0.000%	38169	0	0.001%	0.002%	TRANSVERSION	0.0000	69	0	4	0.5
70	99.969%	0.012%	64287	8	0.003%	0.002%	TRANSVERSION	0.0124	70	0	4	0.5
71	99.991%	0.005%	42207	2	0.001%	0.001%	TRANSVERSION	0.0047	71	0	4	0.5
72	99.987%	0.002%	47087	1	0.000%	0.001%	TRANSVERSION	0.0021	72	0	4	0.25
73	99.956%	0.004%	50364	2	0.002%	0.002%	TRANSVERSION	0.0040	73	0	4	0.25
74	99.974%	0.000%	66068	0	0.000%	0.001%	TRANSVERSION	0.0000	74	0	4	0.25
75	99.989%	0.000%	36577	0	0.000%	0.001%	TRANSVERSION	0.0000	75	0	4	0.25
76	98.124%	1.829%	31925	584	0.004%	0.003%	TRANSVERSION	1.8293	76	1	4	0.5
77	99.981%	0.000%	32415	0	0.000%	0.001%	TRANSVERSION	0.0000	77	0	4	0.25
78	99.966%	0.000%	61764	0	0.002%	0.002%	TRANSVERSION	0.0000	78	0	4	0.25
79	100.000%	0.000%	71	0	0.000%	0.000%	TRANSVERSION	0.0000	79	2	0.5	
80	99.988%	0.006%	16867	1	0.032%	0.018%	TRANSITION	0.0059	80	0	1	1
81	99.990%	0.000%	19887	0	0.001%	0.003%	TRANSVERSION	0.0000	81	0	2	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
82	99.972%	0.028%	14228	4	0.030%	0.027%	TRANSITION	0.0281	82	0	2	1
83	99.957%	0.039%	23264	9	0.027%	0.015%	TRANSITION	0.0387	83	0	2	1
84	99.988%	0.005%	56212	3	0.024%	0.008%	TRANSITION	0.0053	84	0	2	0.5
85	99.974%	0.026%	22944	6	0.033%	0.012%	TRANSITION	0.0262	85	0	1	0.5
86	99.964%	0.030%	46584	14	0.025%	0.006%	TRANSITION	0.0301	86	0	2	1
87	99.975%	0.002%	43265	1	0.001%	0.001%	TRANSITION	0.0023	87	0	1	0.5
88	99.968%	0.002%	56062	1	0.002%	0.002%	TRANSITION	0.0018	88	0	4	1
89	99.953%	0.027%	29734	8	0.005%	0.004%	TRANSITION	0.0269	89	0	4	1
90	99.969%	0.002%	45430	1	0.004%	0.003%	TRANSITION	0.0022	90	0	4	1
91	99.983%	0.0010%	34744	0	0.002%	0.002%	TRANSITION	0.0010	91	0	4	0.5
92	99.971%	0.007%	54767	4	0.001%	0.001%	TRANSITION	0.0073	92	0	4	0.5
93	99.971%	0.000%	58575	0	0.001%	0.002%	TRANSITION	0.0000	93	0	4	0.5
94	99.976%	0.003%	58973	2	0.003%	0.002%	TRANSITION	0.0034	94	0	4	0.5
95	99.974%	0.000%	26862	0	0.003%	0.003%	TRANSITION	0.0000	95	0	4	0.5
96	99.995%	0.000%	21218	0	0.002%	0.003%	TRANSITION	0.0000	96	0	4	0.5
97	99.967%	0.003%	32926	1	0.002%	0.002%	TRANSITION	0.0030	97	0	4	0.5
98	99.987%	0.013%	30955	4	0.030%	0.011%	TRANSITION	0.0129	98	0	1	1
99	99.985%	0.012%	59968	7	0.011%	0.004%	TRANSITION	0.0117	99	0	2	0.666667
100	100.000%	0.0010%	2359	0	0.023%	0.035%	TRANSITION	0.0000	100	0	1	0.666667
101	99.935%	0.000%	39856	0	0.001%	0.002%	TRANSITION	0.0000	101	0	2	0.333333
102	99.960%	0.001%	4979	0	0.002%	0.006%	TRANSITION	0.0000	102	0	2	0.333333
103	99.964%	0.026%	61348	16	0.029%	0.010%	TRANSITION	0.0261	103	0	2	0.333333
104	100.000%	0.000%	4066	0	0.000%	0.000%	TRANSITION	0.0000	104	0	1	0.333333
105	99.982%	0.016%	61873	10	0.028%	0.009%	TRANSITION	0.0162	105	0	2	0.333333
106	99.955%	0.041%	49019	20	0.032%	0.008%	TRANSITION	0.0408	106	0	1	0.333333
107	99.976%	0.024%	20716	5	0.038%	0.017%	TRANSITION	0.0241	107	0	2	0.333333
108	99.962%	0.002%	55268	1	0.002%	0.002%	TRANSITION	0.0018	108	0	2	0.333333

FIG. 20 (CONT.)

Row number	RevVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
109	99.905%	0.000%	1051	0	0.066%	0.135%	TRANSITION	0.0000	109	0	2	0.333333
110	99.965%	0.002%	45220	1	0.001%	0.001%	TRANSVERSION	0.0022	110	0	1	0.333333
111	99.975%	0.001%	75824	1	0.002%	0.003%	TRANSVERSION	0.0013	111	0	4	0.333333
112	99.885%	0.006%	20870	0	0.001%	0.002%	TRANSVERSION	0.0000	112	0	4	0.333333
113	99.971%	0.000%	31239	0	0.001%	0.002%	TRANSVERSION	0.0000	113	0	4	0.333333
114	99.955%	0.002%	64117	1	0.001%	0.002%	TRANSVERSION	0.0016	114	0	4	0.333333
115	99.956%	0.000%	22915	0	0.002%	0.003%	TRANSVERSION	0.0000	115	0	4	0.333333
116	99.984%	0.001%	76682	1	0.000%	0.001%	TRANSVERSION	0.0013	116	0	4	0.333333
117	99.977%	0.000%	60030	0	0.001%	0.001%	TRANSVERSION	0.0000	117	0	2	0.666667
118	99.888%	0.102%	21494	22	0.038%	0.011%	TRANSITION	0.1024	118	1	1	0.666667
119	99.869%	0.080%	41218	33	0.001%	0.001%	TRANSVERSION	0.0801	119	1	1	0.666667
120	99.952%	0.016%	25196	4	0.003%	0.004%	TRANSVERSION	0.0159	120	0	4	0.666667
121	99.829%	0.140%	35666	50	0.001%	0.003%	TRANSVERSION	0.1402	121	1	4	0.666667
122	99.956%	0.019%	43161	8	0.001%	0.001%	TRANSVERSION	0.0185	122	1	4	0.666667
123	99.917%	0.034%	44468	15	0.002%	0.002%	TRANSVERSION	0.0337	123	1	4	0.666667
124	100.000%	0.000%	1605	0	0.001%	0.005%	TRANSVERSION	0.0000	124	0	4	0.666667
125	99.982%	0.000%	22756	0	0.001%	0.002%	TRANSVERSION	0.0000	125	0	4	0.333333
126	99.884%	0.000%	859	0	0.000%	0.000%	TRANSVERSION	0.0000	126	4	0.333333	
127	99.974%	0.000%	62614	0	0.003%	0.002%	TRANSVERSION	0.0000	127	0	4	0.333333
128	99.963%	0.000%	42874	0	0.001%	0.002%	TRANSVERSION	0.0000	128	0	4	0.333333
129	100.000%	0.000%	941	0	0.007%	0.026%	TRANSVERSION	0.0000	129	4	0.333333	
130	99.953%	0.045%	44915	20	0.043%	0.009%	TRANSITION	0.0445	130	0	4	0.333333
131	99.980%	0.000%	4893	0	0.006%	0.005%	TRANSVERSION	0.0000	131	0	4	0.333333
132	99.974%	0.002%	53432	1	0.001%	0.001%	TRANSVERSION	0.0019	132	0	4	0.333333
133	99.959%	0.031%	9799	3	0.033%	0.015%	TRANSITION	0.0306	133	0	4	0.333333
134	100.000%	0.000%	1721	0	0.002%	0.003%	TRANSVERSION	0.0000	134	0	4	0.333333
135	99.980%	0.000%	5048	0	0.004%	0.008%	TRANSVERSION	0.0000	135	0	4	0.333333

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
136	99.528%	0.442%	70369	311	0.002%	0.002%	TRANSVERSION	0.4420	136	1	1	1
137	99.549%	0.339%	23921	81	0.001%	0.001%	TRANSVERSION	0.3386	137	1	1	1
138	99.813%	0.150%	84682	127	0.002%	0.002%	TRANSVERSION	0.1500	138	1	1	1
139	99.926%	0.067%	54063	36	0.025%	0.011%	TRANSITION	0.0666	139	0	2	0.5
140	99.686%	0.283%	63649	180	0.002%	0.001%	TRANSVERSION	0.2828	140	1	4	1
141	99.726%	0.231%	30270	70	0.001%	0.002%	TRANSVERSION	0.2313	141	1	4	1
142	99.714%	0.246%	74474	183	0.002%	0.003%	TRANSVERSION	0.2457	142	1	4	1
143	99.604%	0.334%	40375	135	0.005%	0.003%	TRANSVERSION	0.3344	143	1	4	1
144	99.965%	0.010%	40343	4	0.001%	0.003%	TRANSVERSION	0.0099	144	0	4	0.25
145	99.958%	0.005%	82361	4	0.002%	0.001%	TRANSVERSION	0.0049	145	0	4	0.25
146	99.844%	0.138%	33236	46	0.003%	0.003%	TRANSVERSION	0.1384	146	1	4	0.5
147	99.915%	0.064%	14139	9	0.005%	0.006%	TRANSVERSION	0.0637	147	1	4	0.25
148	99.880%	0.120%	831	1	0.008%	0.030%	TRANSVERSION	0.1203	148	4	0.25	
149	99.965%	0.012%	51042	6	0.001%	0.001%	TRANSVERSION	0.0118	149	1	4	0.5
150	99.963%	0.007%	29354	2	0.003%	0.004%	TRANSVERSION	0.0068	150	0	4	0.25
151	99.774%	0.201%	3975	8	0.008%	0.022%	TRANSVERSION	0.2013	151	1	3	0.25
152	99.923%	0.054%	64692	35	0.002%	0.002%	TRANSVERSION	0.0541	152	1	4	0.25
153	99.948%	0.014%	49582	7	0.002%	0.002%	TRANSVERSION	0.0141	153	0	4	0.25
154	99.887%	0.109%	53989	59	0.020%	0.007%	TRANSITION	0.1093	154	1	1	1
155	99.960%	0.003%	32779	1	0.002%	0.003%	TRANSVERSION	0.0031	155	0	1	0.142857
156	99.926%	0.069%	87068	60	0.028%	0.009%	TRANSITION	0.0689	156	1	4	1
157	99.908%	0.063%	49063	31	0.006%	0.003%	TRANSITION	0.0632	157	1	4	1
158	99.903%	0.061%	8248	5	0.001%	0.004%	TRANSVERSION	0.0606	158	1	4	1
159	99.953%	0.032%	68302	22	0.005%	0.002%	TRANSVERSION	0.0322	159	1	4	1
160	99.906%	0.066%	28751	19	0.003%	0.004%	TRANSVERSION	0.0661	160	1	4	1
161	99.938%	0.062%	25870	16	0.027%	0.012%	TRANSITION	0.0618	161	0	4	1
162	99.897%	0.097%	55471	54	0.045%	0.014%	TRANSITION	0.0973	162	0	4	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL number	driver category	ctional ratio
163	99.958%	0.038%	47354	18	0.028%	0.011%	TRANSITION	0.0380	163	0	4	1
164	99.935%	0.056%	37608	21	0.044%	0.017%	TRANSITION	0.0558	164	0	4	0.142857
165	99.970%	0.029%	66173	19	0.034%	0.011%	TRANSITION	0.0287	165	0	4	0.142857
166	99.968%	0.029%	78312	23	0.027%	0.008%	TRANSITION	0.0294	166	0	4	0.142857
167	99.950%	0.047%	32060	15	0.036%	0.014%	TRANSITION	0.0468	167	0	4	0.142857
168	99.985%	0.004%	46212	2	0.011%	0.007%	TRANSITION	0.0043	168	0	4	0.142857
169	99.976%	0.000%	8252	0	0.000%	0.000%	TRANSVERSION	0.0000	169	0	4	0.142857
170	99.971%	0.000%	37813	0	0.001%	0.001%	TRANSVERSION	0.0000	170	0	4	0.142857
171	99.974%	0.003%	77091	2	0.004%	0.002%	TRANSVERSION	0.0026	171	0	4	0.142857
172	99.942%	0.051%	46949	24	0.028%	0.009%	TRANSITION	0.0511	172	0	4	0.142857
173	98.324%	1.651%	8176	135	0.002%	0.007%	TRANSVERSION	1.6512	173	1	1	1
174	99.976%	0.024%	12381	3	0.028%	0.017%	TRANSITION	0.0242	174	0	2	0.2
175	99.673%	0.295%	58380	172	0.003%	0.002%	TRANSVERSION	0.2946	175	1	4	0.142857
176	99.545%	0.408%	48968	200	0.006%	0.003%	TRANSVERSION	0.4084	176	1	4	1
177	98.926%	1.074%	3073	33	0.002%	0.008%	TRANSVERSION	1.0739	177	1	4	1
178	99.979%	0.000%	23718	0	0.000%	0.001%	TRANSVERSION	0.0000	178	0	4	0.2
179	99.916%	0.075%	59837	45	0.008%	0.003%	TRANSVERSION	0.0752	179	1	4	0.2
180	99.307%	0.058%	22506	13	0.003%	0.003%	TRANSVERSION	0.0578	180	1	4	0.2
181	99.979%	0.000%	23830	0	0.001%	0.001%	TRANSVERSION	0.0000	181	0	4	0.2
182	99.981%	0.006%	46406	3	0.010%	0.003%	TRANSVERSION	0.0065	182	0	4	0.2
183	99.970%	0.000%	36822	0	0.001%	0.001%	TRANSVERSION	0.0000	183	0	4	0.2
184	99.969%	0.009%	58499	5	0.005%	0.003%	TRANSVERSION	0.0085	184	0	4	0.2
185	99.988%	0.003%	32083	1	0.006%	0.004%	TRANSVERSION	0.0031	185	0	4	0.2
186	99.954%	0.010%	50217	5	0.003%	0.002%	TRANSVERSION	0.0100	186	0	4	0.2
187	99.555%	0.426%	57577	245	0.004%	0.002%	TRANSVERSION	0.4255	187	1	4	0.6
188	99.667%	0.330%	62131	205	0.007%	0.002%	TRANSVERSION	0.3300	188	1	4	0.6
189	99.199%	0.758%	61781	468	0.001%	0.002%	TRANSVERSION	0.7575	189	1	4	0.6

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
190	99.548%	0.399%	55943	223	0.002%	0.001%	TRANSVERSION	0.3986	190	1	4	0.6
191	100.000%	0.000%	149	0	0.000%	0.000%	TRANSVERSION	0.0000	191	4	4	0.4
192	100.000%	0.000%	2	0	0.000%	0.000%	TRANSVERSION	0.0000	192	1	1	1
193	99.040%	0.924%	5627	52	0.002%	0.006%	TRANSVERSION	0.9241	193	1	4	0.75
194	99.473%	0.498%	3226	16	0.001%	0.005%	TRANSVERSION	0.4960	194	1	4	1
195	99.339%	0.638%	59757	381	0.003%	0.002%	TRANSVERSION	0.6376	195	1	4	0.75
196	99.847%	0.130%	43880	57	0.001%	0.002%	TRANSVERSION	0.1299	196	1	4	0.75
197	99.311%	0.663%	30631	203	0.002%	0.002%	TRANSVERSION	0.6627	197	1	4	0.75
198	99.181%	0.813%	61660	501	0.000%	0.000%	TRANSVERSION	0.8125	198	1	4	0.75
199	100.000%	0.000%	550	0	0.012%	0.036%	TRANSVERSION	0.0000	199	4	4	0.25
200	99.950%	0.029%	33957	10	0.002%	0.003%	TRANSVERSION	0.0294	200	1	4	0.25
201	99.909%	0.091%	56197	54	0.023%	0.009%	TRANSITION	0.0908	201	1	4	0.25
202	99.959%	0.005%	17008	1	0.003%	0.005%	TRANSVERSION	0.0059	202	0	4	0.25
203	99.955%	0.041%	26680	11	0.003%	0.003%	TRANSVERSION	0.0412	203	1	4	0.25
204	81.308%	0.061%	53848	33	0.003%	0.007%	TRANSVERSION	0.0613	204	1	4	0.25
205	99.973%	0.001%	72785	1	0.002%	0.001%	TRANSVERSION	0.0014	205	0	4	0.25
206	99.437%	0.535%	39229	210	0.003%	0.002%	TRANSVERSION	0.5353	206	1	4	0.75
207	99.880%	0.051%	52604	27	0.003%	0.002%	TRANSVERSION	0.0513	207	1	4	0.25
208	99.873%	0.095%	57676	55	0.001%	0.001%	TRANSVERSION	0.0954	208	1	4	0.25
209	99.732%	0.218%	63348	138	0.001%	0.001%	TRANSVERSION	0.2178	209	1	4	0.25
210	99.978%	0.016%	82128	13	0.007%	0.003%	TRANSITION	0.0158	210	0	1	1
211	99.991%	0.008%	23429	0	0.002%	0.004%	TRANSVERSION	0.0000	211	0	2	1
212	99.930%	0.019%	73340	14	0.003%	0.003%	TRANSVERSION	0.0191	212	0	1	1
213	99.956%	0.005%	59282	3	0.004%	0.003%	TRANSVERSION	0.0051	213	0	2	0.666667
214	99.962%	0.034%	92382	31	0.037%	0.009%	TRANSITION	0.0336	214	0	2	0.333333
215	99.922%	0.011%	17895	2	0.001%	0.001%	TRANSVERSION	0.0112	215	1	4	1
216	99.963%	0.011%	45876	5	0.001%	0.001%	TRANSVERSION	0.0109	216	1	4	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
217	99.963%	0.008%	24021	2	0.001%	0.002%	TRANSVERSION	0.0083	217	0	4	1
218	99.972%	0.003%	32009	1	0.004%	0.004%	TRANSVERSION	0.0031	218	0	4	0.666667
219	99.961%	0.000%	59620	0	0.001%	0.001%	TRANSVERSION	0.0000	219	0	4	0.333333
220	99.939%	0.000%	4882	0	0.001%	0.003%	TRANSVERSION	0.0000	220	0	4	0.333333
221	99.978%	0.001%	131526	1	0.001%	0.001%	TRANSVERSION	0.0008	221	0	3	0.333333
222	99.974%	0.003%	37763	1	0.001%	0.002%	TRANSVERSION	0.0026	222	0	4	0.666667
223	99.953%	0.000%	33961	0	0.001%	0.001%	TRANSVERSION	0.0000	223	0	4	0.666667
224	99.985%	0.000%	26187	0	0.005%	0.004%	TRANSVERSION	0.0000	224	0	4	0.666667
225	99.955%	0.000%	22347	0	0.000%	0.001%	TRANSVERSION	0.0000	225	0	4	0.333333
226	99.980%	0.000%	39791	0	0.001%	0.001%	TRANSVERSION	0.0000	226	0	4	0.333333
227	99.969%	0.000%	65241	0	0.002%	0.005%	TRANSVERSION	0.0000	227	0	1	0.6
228	99.918%	0.000%	29121	0	0.007%	0.005%	TRANSVERSION	0.0000	228	0	1	0.6
229	99.956%	0.030%	50130	15	0.027%	0.009%	TRANSITION	0.0299	229	0	1	0.6
230	99.974%	0.002%	42283	1	0.002%	0.002%	TRANSVERSION	0.0024	230	0	2	0.6
231	99.966%	0.001%	75805	1	0.001%	0.001%	TRANSVERSION	0.0013	231	0	1	0.6
232	99.993%	0.002%	45188	1	0.006%	0.004%	TRANSVERSION	0.0022	232	0	1	0.6
233	99.971%	0.001%	101704	1	0.002%	0.001%	TRANSVERSION	0.0010	233	0	4	0.6
234	99.989%	0.006%	79007	5	0.005%	0.002%	TRANSVERSION	0.0063	234	0	4	0.6
235	99.945%	0.000%	12695	0	0.001%	0.003%	TRANSVERSION	0.0000	235	0	4	0.6
236	99.979%	0.003%	87332	3	0.005%	0.002%	TRANSVERSION	0.0034	236	0	4	0.6
237	99.926%	0.000%	10781	0	0.004%	0.006%	TRANSVERSION	0.0000	237	0	4	0.6
238	99.954%	0.002%	48304	1	0.002%	0.005%	TRANSVERSION	0.0021	238	0	4	0.2
239	99.962%	0.035%	52014	18	0.031%	0.010%	TRANSITION	0.0346	239	0	4	0.2
240	99.975%	0.023%	52000	12	0.028%	0.010%	TRANSITION	0.0231	240	0	4	0.2
241	99.960%	0.034%	84689	29	0.031%	0.010%	TRANSITION	0.0342	241	0	4	0.2
242	99.964%	0.005%	54973	3	0.004%	0.003%	TRANSVERSION	0.0055	242	0	4	0.4
243	99.963%	0.000%	13642	0	0.001%	0.003%	TRANSVERSION	0.0000	243	0	4	0.4

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOF	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
244	99.958%	0.002%	98269	2	0.003%	0.002%	TRANSVERSION	0.00020	244	0	4	0.4
245	99.966%	0.003%	93289	3	0.002%	0.001%	TRANSVERSION	0.0032	245	0	4	0.4
246	99.975%	0.000%	56951	0	0.004%	0.003%	TRANSVERSION	0.0000	246	0	1	1
247	99.958%	0.035%	28357	10	0.038%	0.016%	TRANSITION	0.0353	247	0	1	0.25
248	100.000%	0.000%	787	0	0.087%	0.160%	TRANSITION	0.0000	248	2	0.25	
249	NaN	NaN	0	NaN	0.027%	0.003%	TRANSITION	#VALUE!	249	2	0.25	
250	99.963%	0.004%	72134	3	0.006%	0.003%	TRANSVERSION	0.0042	250	0	4	1
251	99.967%	0.001%	71880	1	0.001%	0.001%	TRANSVERSION	0.0014	251	0	4	1
252	99.979%	0.000%	34082	0	0.000%	0.001%	TRANSVERSION	0.0000	252	0	4	1
253	99.970%	0.003%	30289	1	0.001%	0.002%	TRANSVERSION	0.0033	253	0	3	0.25
254	99.982%	0.000%	77312	0	0.001%	0.003%	TRANSVERSION	0.0000	254	0	4	0.25
255	99.986%	0.000%	62479	0	0.001%	0.001%	TRANSVERSION	0.0000	255	0	4	0.25
256	99.981%	0.002%	64251	1	0.002%	0.002%	TRANSVERSION	0.0016	256	0	4	0.25
257	99.949%	0.000%	80603	0	0.001%	0.001%	TRANSVERSION	0.0000	257	0	4	0.25
258	99.951%	0.000%	43541	0	0.002%	0.002%	TRANSVERSION	0.0000	258	0	4	0.5
259	99.914%	0.003%	76783	2	0.003%	0.002%	TRANSVERSION	0.0026	259	0	4	0.5
260	99.962%	0.000%	18443	0	0.003%	0.004%	TRANSVERSION	0.0000	260	0	4	0.25
261	99.926%	0.000%	39036	0	0.004%	0.003%	TRANSVERSION	0.0000	261	0	4	0.25
262	99.970%	0.002%	101412	2	0.003%	0.002%	TRANSVERSION	0.0020	262	0	4	0.25
263	99.970%	0.005%	60021	3	0.005%	0.003%	TRANSVERSION	0.0050	263	0	4	0.25
264	99.963%	0.003%	64825	2	0.004%	0.003%	TRANSVERSION	0.0031	264	0	4	0.25
265	99.987%	0.000%	46646	0	0.000%	0.001%	TRANSVERSION	0.0000	265	0	4	0.25
266	97.253%	2.723%	29118	793	0.003%	0.004%	TRANSVERSION	2.7234	266	1	2	1
267	98.080%	1.865%	28748	536	0.005%	0.004%	TRANSVERSION	1.8645	267	1	1	1
268	96.963%	3.037%	5564	169	0.004%	0.011%	TRANSVERSION	3.0374	268	1	2	1
269	96.885%	3.043%	5553	169	0.002%	0.008%	TRANSVERSION	3.0434	269	1	2	1
270	99.073%	0.916%	80238	735	0.006%	0.003%	TRANSVERSION	0.9160	270	1	2	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
271	97.311%	2.689%	25919	697	0.044%	0.018%	TRANSITION	2.6891	271	1	2	1
272	98.909%	1.078%	29963	323	0.002%	0.003%	TRANSVERSION	1.0780	272	1	1	1
273	99.937%	0.061%	61931	38	0.030%	0.009%	TRANSITION	0.0614	273	0	1	0.333333
274	99.986%	0.000%	41743	0	0.004%	0.003%	TRANSVERSION	0.0000	274	0	1	0.333333
275	99.916%	0.035%	14256	5	0.002%	0.003%	TRANSVERSION	0.0351	275	1	2	0.666667
276	99.983%	0.017%	5783	1	0.002%	0.006%	TRANSVERSION	0.0173	276	0	2	0.666667
277	98.700%	1.285%	19923	256	0.001%	0.002%	TRANSVERSION	1.2849	277	1	3	1
278	98.933%	1.036%	44901	465	0.002%	0.001%	TRANSVERSION	1.0356	278	1	4	1
279	97.891%	2.070%	27640	572	0.002%	0.002%	TRANSVERSION	2.0695	279	1	4	1
280	98.262%	1.713%	44127	756	0.002%	0.002%	TRANSVERSION	1.7132	280	1	4	1
281	98.087%	1.869%	66818	1249	0.003%	0.002%	TRANSVERSION	1.8693	281	1	4	1
282	99.113%	0.860%	40483	348	0.007%	0.004%	TRANSVERSION	0.8596	282	1	4	1
283	99.487%	0.478%	42297	202	0.004%	0.004%	TRANSVERSION	0.4776	283	1	4	0.333333
284	99.949%	0.028%	68742	19	0.004%	0.003%	TRANSVERSION	0.0276	284	1	4	0.333333
285	98.546%	1.423%	3163	45	0.005%	0.010%	TRANSVERSION	1.4227	285	1	3	0.333333
286	99.595%	0.362%	91620	332	0.000%	0.001%	TRANSVERSION	0.3624	286	1	4	0.333333
287	99.759%	0.241%	1658	4	0.040%	0.045%	TRANSITION	0.2413	287	0	2	0.428571
288	99.168%	0.823%	33283	274	0.035%	0.013%	TRANSITION	0.8232	288	1	1	0.857143
289	99.915%	0.081%	80383	65	0.027%	0.008%	TRANSITION	0.0809	289	1	1	0.285714
290	99.284%	0.693%	60298	418	0.000%	0.000%	TRANSVERSION	0.6932	290	1	4	0.714286
291	99.625%	0.349%	67377	235	0.003%	0.002%	TRANSVERSION	0.3488	291	1	4	0.714286
292	98.816%	1.164%	76375	889	0.007%	0.003%	TRANSVERSION	1.1640	292	1	4	0.714286
293	94.860%	5.064%	3969	201	0.002%	0.008%	TRANSVERSION	5.0642	293	1	4	0.857143
294	99.130%	0.843%	71507	603	0.003%	0.002%	TRANSVERSION	0.8433	294	1	4	0.714286
295	99.943%	0.020%	80608	16	0.001%	0.001%	TRANSVERSION	0.0198	295	1	4	0.285714
296	99.925%	0.044%	61121	27	0.001%	0.001%	TRANSVERSION	0.0442	296	1	4	0.285714
297	99.432%	0.526%	93367	491	0.002%	0.002%	TRANSVERSION	0.5259	297	1	4	0.428571

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
298	99.513%	0.457%	83501	382	0.001%	0.001%	TRANSVERSION	0.4575	298	1	4	0.428571
299	99.654%	0.296%	2025	6	0.002%	0.009%	TRANSVERSION	0.2963	299	1	4	0.428571
300	99.919%	0.041%	80002	33	0.004%	0.003%	TRANSVERSION	0.0412	300	1	4	0.142857
301	99.975%	0.001%	67129	1	0.006%	0.003%	TRANSVERSION	0.0015	301	0	4	0.142857
302	99.984%	0.000%	30715	0	0.001%	0.001%	TRANSVERSION	0.0000	302	0	4	0.142857
303	99.973%	0.000%	25849	0	0.002%	0.002%	TRANSVERSION	0.0000	303	0	4	0.142857
304	99.971%	0.001%	83844	1	0.001%	0.001%	TRANSVERSION	0.0012	304	0	4	0.142857
305	99.990%	0.003%	31447	1	0.000%	0.001%	TRANSVERSION	0.0032	305	0	4	0.142857
306	99.947%	0.052%	88196	46	0.012%	0.004%	TRANSITION	0.0522	306	1	2	0.5
307	99.965%	0.000%	48607	0	0.002%	0.002%	TRANSVERSION	0.0000	307	0	2	0.5
308	99.955%	0.042%	59816	25	0.025%	0.008%	TRANSITION	0.0418	308	0	2	0.5
309	99.930%	0.065%	38307	25	0.048%	0.012%	TRANSITION	0.0653	309	0	2	0.5
310	99.967%	0.000%	33571	0	0.001%	0.002%	TRANSVERSION	0.0000	310	0	4	0.5
311	99.966%	0.022%	46446	10	0.014%	0.006%	TRANSITION	0.0215	311	0	4	0.5
312	99.980%	0.013%	55513	7	0.010%	0.005%	TRANSITION	0.0126	312	0	4	0.5
313	99.965%	0.029%	37441	11	0.023%	0.008%	TRANSITION	0.0294	313	0	4	0.5
314	99.979%	0.000%	47327	0	0.002%	0.002%	TRANSVERSION	0.0000	314	0	4	0.5
315	99.936%	0.014%	6960	1	0.015%	0.011%	TRANSITION	0.0144	315	0	4	0.5
316	99.922%	0.047%	72794	34	0.001%	0.001%	TRANSVERSION	0.0467	316	1	4	0.5
317	99.973%	0.025%	36619	9	0.027%	0.009%	TRANSITION	0.0246	317	0	4	0.5
318	99.903%	0.088%	66147	58	0.033%	0.008%	TRANSITION	0.0877	318	1	4	0.5
319	99.970%	0.028%	90771	25	0.023%	0.005%	TRANSITION	0.0275	319	0	4	0.5
320	99.962%	0.027%	47558	13	0.016%	0.007%	TRANSITION	0.0273	320	0	4	0.5
321	99.491%	0.509%	41425	211	0.041%	0.018%	TRANSITION	0.5094	321	1	2	0.75
322	99.768%	0.205%	74486	153	0.001%	0.001%	TRANSVERSION	0.2054	322	1	2	0.75
323	99.833%	0.139%	56941	79	0.001%	0.002%	TRANSVERSION	0.1387	323	1	2	0.75
324	99.831%	0.169%	72635	123	0.029%	0.007%	TRANSITION	0.1693	324	1	2	0.75

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
325	99.906%	0.053%	75808	40	0.003%	0.003%	TRANSVERSION	0.0528	325	1	2	0.625
326	99.851%	0.124%	4040	5	0.007%	0.016%	TRANSVERSION	0.1238	326	1	2	0.625
327	99.872%	0.114%	35895	41	0.000%	0.001%	TRANSVERSION	0.1142	327	1	4	0.75
328	99.925%	0.046%	28160	13	0.002%	0.002%	TRANSVERSION	0.0462	328	1	4	0.75
329	99.897%	0.096%	78027	75	0.003%	0.002%	TRANSVERSION	0.0961	329	1	4	0.75
330	99.733%	0.241%	83100	200	0.001%	0.001%	TRANSVERSION	0.2407	330	1	4	0.75
331	99.964%	0.001%	69110	1	0.004%	0.005%	TRANSVERSION	0.0014	331	0	4	0.125
332	99.994%	0.002%	81559	2	0.002%	0.002%	TRANSVERSION	0.0025	332	0	4	0.125
333	99.964%	0.000%	74652	0	0.001%	0.001%	TRANSVERSION	0.0000	333	0	4	0.125
334	99.940%	0.017%	93616	16	0.000%	0.001%	TRANSVERSION	0.0171	334	1	4	0.125
335	99.835%	0.103%	45536	47	0.008%	0.004%	TRANSVERSION	0.1032	335	1	4	0.625
336	99.925%	0.040%	34883	14	0.002%	0.003%	TRANSVERSION	0.0401	336	1	4	0.125
337	99.967%	0.005%	82249	4	0.003%	0.002%	TRANSVERSION	0.0049	337	0	4	0.125
338	99.980%	0.000%	64365	0	0.000%	0.000%	TRANSVERSION	0.0000	338	0	4	0.125
339	99.963%	0.003%	97626	3	0.001%	0.001%	TRANSVERSION	0.0031	339	0	4	0.125
340	99.560%	0.418%	68473	286	0.003%	0.003%	TRANSVERSION	0.4177	340	1	1	1
341	99.475%	0.494%	9522	47	0.006%	0.007%	TRANSVERSION	0.4936	341	1	2	1
342	99.837%	0.134%	14147	19	0.000%	0.002%	TRANSVERSION	0.1343	342	1	2	1
343	99.913%	0.057%	49157	28	0.004%	0.003%	TRANSVERSION	0.0570	343	1	2	0.75
344	99.752%	0.218%	83034	181	0.000%	0.001%	TRANSVERSION	0.2180	344	1	2	1
345	99.734%	0.262%	63459	166	0.029%	0.009%	TRANSITION	0.2616	345	1	2	1
346	99.713%	0.287%	7653	22	0.071%	0.039%	TRANSITION	0.2875	346	1	2	0.25
347	99.600%	0.381%	72757	277	0.002%	0.002%	TRANSVERSION	0.3807	347	1	4	1
348	99.686%	0.272%	6998	19	0.002%	0.007%	TRANSVERSION	0.2715	348	1	4	0.75
349	99.900%	0.095%	60776	58	0.028%	0.005%	TRANSITION	0.0954	349	1	4	0.75
350	99.685%	0.286%	82909	237	0.003%	0.002%	TRANSVERSION	0.2859	350	1	4	1
351	99.5681%	0.260%	68893	179	0.002%	0.002%	TRANSVERSION	0.2598	351	1	4	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
352	99.709%	0.253%	71913	182	0.004%	0.002%	TRANSVERSION	0.2531	352	1	4	1
353	99.964%	0.000%	16490	0	0.003%	0.004%	TRANSVERSION	0.0000	353	0	4	0.25
354	99.970%	0.003%	65904	2	0.002%	0.002%	TRANSVERSION	0.0030	354	0	4	0.25
355	99.985%	0.000%	61843	0	0.001%	0.001%	TRANSVERSION	0.0000	355	0	4	0.25
356	99.953%	0.028%	46350	13	0.002%	0.002%	TRANSVERSION	0.0280	356	1	4	0.25
357	99.929%	0.027%	40789	11	0.001%	0.001%	TRANSVERSION	0.0270	357	1	4	0.25
358	99.959%	0.039%	114279	45	0.023%	0.006%	TRANSITION	0.0394	358	0	4	0.25
359	99.799%	0.201%	26914	54	0.015%	0.008%	TRANSITION	0.2006	359	1	1	1
360	99.645%	0.327%	57140	187	0.001%	0.002%	TRANSVERSION	0.3273	360	1	2	1
361	99.772%	0.200%	69657	139	0.004%	0.010%	TRANSVERSION	0.1996	361	1	4	1
362	99.668%	0.295%	80791	238	0.003%	0.002%	TRANSVERSION	0.2946	362	1	4	1
363	99.790%	0.176%	78486	138	0.002%	0.001%	TRANSVERSION	0.1758	363	1	4	1
364	99.720%	0.272%	91402	249	0.045%	0.024%	TRANSITION	0.2724	364	1	4	1
365	99.705%	0.260%	59290	154	0.004%	0.002%	TRANSVERSION	0.2597	365	1	4	1
366	99.680%	0.296%	4060	12	0.005%	0.012%	TRANSVERSION	0.2956	366	1	4	1
367	99.854%	0.146%	15736	23	0.034%	0.018%	TRANSITION	0.1462	367	1	4	1
368	99.641%	0.321%	71286	229	0.001%	0.001%	TRANSVERSION	0.3212	368	1	4	1
369	99.822%	0.164%	29256	48	0.004%	0.004%	TRANSVERSION	0.1641	369	1	4	1
370	99.864%	0.114%	61237	70	0.001%	0.001%	TRANSVERSION	0.1143	370	1	4	1
371	99.862%	0.131%	94027	123	0.041%	0.009%	TRANSITION	0.1308	371	1	4	1
372	99.771%	0.207%	9157	19	0.047%	0.031%	TRANSITION	0.2075	372	1	4	1
373	99.938%	0.030%	46460	14	0.004%	0.004%	TRANSVERSION	0.0301	373	1	4	1
374	99.944%	0.050%	50145	25	0.024%	0.008%	TRANSITION	0.0499	374	0	4	0.5
375	99.909%	0.052%	59049	31	0.003%	0.003%	TRANSVERSION	0.0525	375	1	4	0.5
376	99.790%	0.210%	28119	59	0.027%	0.010%	TRANSITION	0.2098	376	1	4	0.5
377	99.951%	0.000%	6162	0	0.001%	0.003%	TRANSVERSION	0.0000	377	0	2	0.75
378	99.959%	0.000%	53167	0	0.003%	0.003%	TRANSVERSION	0.0000	378	0	1	0.75

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
379	99.945%	0.002%	58130	1	0.003%	0.002%	TRANSVERSION	0.0017	379	0	1	0.75
380	99.982%	0.006%	16280	1	0.003%	0.005%	TRANSVERSION	0.0061	380	0	1	0.75
381	99.985%	0.003%	58261	2	0.003%	0.003%	TRANSVERSION	0.0034	381	0	1	0.75
382	99.956%	0.044%	24768	11	0.037%	0.017%	TRANSITION	0.0444	382	0	2	0.75
383	99.956%	0.005%	59448	3	0.001%	0.002%	TRANSVERSION	0.0050	383	0	2	0.75
384	99.979%	0.000%	37507	0	0.001%	0.002%	TRANSVERSION	0.0000	384	0	2	0.75
385	99.924%	0.011%	27778	3	0.007%	0.004%	TRANSVERSION	0.0108	385	0	4	0.75
386	99.979%	0.002%	52331	1	0.002%	0.003%	TRANSVERSION	0.0019	386	0	4	0.75
387	99.960%	0.000%	65149	0	0.001%	0.001%	TRANSVERSION	0.0000	387	0	4	0.75
388	99.940%	0.053%	43191	23	0.003%	0.002%	TRANSVERSION	0.0533	388	1	4	0.75
389	99.964%	0.000%	22501	0	0.004%	0.004%	TRANSVERSION	0.0000	389	0	4	0.5
390	99.951%	0.005%	42840	2	0.003%	0.003%	TRANSVERSION	0.0047	390	0	4	0.25
391	99.976%	0.007%	41272	3	0.002%	0.003%	TRANSVERSION	0.0073	391	0	4	0.25
392	99.969%	0.000%	45400	0	0.001%	0.002%	TRANSVERSION	0.0000	392	0	4	0.75
393	99.982%	0.000%	49402	0	0.003%	0.002%	TRANSVERSION	0.0000	393	0	4	0.75
394	99.956%	0.008%	36246	3	0.006%	0.010%	TRANSVERSION	0.0083	394	0	4	0.75
395	99.978%	0.000%	22500	0	0.003%	0.004%	TRANSVERSION	0.0000	395	0	4	0.5
396	97.547%	2.449%	23933	586	0.030%	0.011%	TRANSITION	2.4485	396	1	1	0.875
397	96.750%	3.246%	24859	807	0.018%	0.010%	TRANSITION	3.2463	397	1	1	0.875
398	97.921%	2.076%	39401	818	0.024%	0.009%	TRANSITION	2.0761	398	1	2	0.75
399	98.570%	1.419%	36794	522	0.040%	0.013%	TRANSITION	1.4187	399	1	2	0.75
400	98.892%	1.049%	51880	544	0.002%	0.002%	TRANSVERSION	1.0486	400	1	2	0.625
401	95.243%	4.758%	10804	514	0.062%	0.031%	TRANSITION	4.7575	401	1	4	0.75
402	98.289%	1.694%	29400	498	0.002%	0.003%	TRANSVERSION	1.6939	402	1	4	0.625
403	98.933%	1.064%	60623	645	0.031%	0.009%	TRANSITION	1.0640	403	1	4	0.625
404	98.855%	1.145%	4717	54	0.041%	0.026%	TRANSITION	1.1448	404	1	4	0.75
405	100.000%	0.000%	288	0	0.000%	0.000%	TRANSVERSION	0.0000	405	4	4	0.125

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	driver category	clonal ratio
406	99.972%	0.028%	17818	5	0.034%	0.017%	TRANSITION	0.0281	406	0	4
407	99.950%	0.038%	26127	10	0.029%	0.011%	TRANSITION	0.0383	407	0	4
408	99.939%	0.006%	1652	0	0.000%	0.000%	TRANSVERSION	0.0000	408	0	4
409	99.675%	0.306%	20615	63	0.001%	0.002%	TRANSVERSION	0.3056	409	1	4
410	99.950%	0.034%	54285	20	0.001%	0.001%	TRANSVERSION	0.0368	410	1	4
411	99.899%	0.097%	268805	28	0.033%	0.010%	TRANSITION	0.0972	411	1	3
412	99.838%	0.159%	43904	70	0.032%	0.009%	TRANSITION	0.1594	412	1	4
413	99.069%	0.929%	51583	479	0.031%	0.008%	TRANSITION	0.9286	413	1	4
414	99.985%	0.011%	45487	5	0.009%	0.004%	TRANSITION	0.0110	414	0	4
415	99.971%	0.002%	44550	1	0.003%	0.003%	TRANSVERSION	0.0022	415	0	1
416	99.989%	0.000%	9510	0	0.002%	0.004%	TRANSVERSION	0.0000	416	0	1
417	99.971%	0.000%	17025	0	0.000%	0.002%	TRANSVERSION	0.0000	417	0	1
418	99.975%	0.001%	72154	1	0.003%	0.002%	TRANSVERSION	0.0014	418	0	2
419	99.932%	0.003%	61366	2	0.004%	0.004%	TRANSVERSION	0.0033	419	0	1
420	99.980%	0.000%	44549	0	0.005%	0.018%	TRANSVERSION	0.0000	420	0	1
421	99.986%	0.003%	58029	2	0.006%	0.003%	TRANSVERSION	0.0034	421	0	4
422	99.976%	0.003%	37156	1	0.004%	0.004%	TRANSVERSION	0.0027	422	0	4
423	99.970%	0.004%	47036	2	0.002%	0.001%	TRANSVERSION	0.0043	423	0	4
424	99.970%	0.004%	49800	2	0.003%	0.002%	TRANSVERSION	0.0040	424	0	4
425	99.967%	0.003%	60837	2	0.003%	0.003%	TRANSVERSION	0.0033	425	0	4
426	99.975%	0.000%	20341	0	0.000%	0.002%	TRANSVERSION	0.0000	426	0	4
427	99.965%	0.002%	56447	1	0.002%	0.002%	TRANSVERSION	0.0018	427	0	4
428	99.954%	0.003%	60758	2	0.001%	0.002%	TRANSVERSION	0.0033	428	0	4
429	99.960%	0.002%	50130	1	0.002%	0.002%	TRANSVERSION	0.0020	429	0	4
430	99.968%	0.003%	34821	1	0.003%	0.003%	TRANSVERSION	0.0029	430	0	4
431	99.965%	0.008%	62649	5	0.005%	0.005%	TRANSVERSION	0.0080	431	0	4
432	99.975%	0.007%	28421	2	0.005%	0.005%	TRANSVERSION	0.0070	432	0	4

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
433	99.970%	0.002%	60124	1	0.002%	0.002%	TRANSVERSION	0.0017	433	0	4	0.333333
434	99.969%	0.005%	64923	3	0.001%	0.002%	TRANSVERSION	0.0046	434	0	4	0.333333
435	99.964%	0.003%	36312	1	0.003%	0.003%	TRANSVERSION	0.0028	435	0	4	0.333333
436	99.487%	0.458%	18112	83	0.001%	0.003%	TRANSVERSION	0.4583	436	1	1	1
437	99.812%	0.186%	48994	91	0.007%	0.005%	TRANSITION	0.1857	437	1	1	1
438	99.941%	0.000%	5112	0	0.000%	0.000%	TRANSVERSION	0.0000	438	0	2	1
439	99.770%	0.140%	38706	54	0.004%	0.004%	TRANSVERSION	0.1395	439	1	2	1
440	99.807%	0.174%	41373	72	0.048%	0.016%	TRANSITION	0.1740	440	1	2	0.25
441	99.745%	0.236%	10600	25	0.004%	0.006%	TRANSVERSION	0.2359	441	1	4	1
442	99.716%	0.258%	54178	140	0.001%	0.001%	TRANSVERSION	0.2584	442	1	4	1
443	99.916%	0.065%	53601	35	0.005%	0.002%	TRANSVERSION	0.0653	443	1	4	1
444	NaN	NaN	0	NaN	0.001%	0.001%	TRANSVERSION	#VALUE!	444	4	4	1
445	99.887%	0.060%	60005	36	0.002%	0.002%	TRANSVERSION	0.0600	445	1	4	1
446	99.967%	0.021%	23994	5	0.000%	0.001%	TRANSVERSION	0.0208	446	1	4	0.25
447	99.931%	0.059%	40835	24	0.033%	0.011%	TRANSITION	0.0588	447	0	4	0.25
448	99.884%	0.116%	58558	68	0.025%	0.007%	TRANSITION	0.1161	448	1	4	0.25
449	99.920%	0.075%	78586	59	0.026%	0.009%	TRANSITION	0.0751	449	1	4	0.25
450	99.948%	0.039%	59427	23	0.054%	0.015%	TRANSITION	0.0387	450	0	4	0.25
451	99.818%	0.023%	21986	5	0.025%	0.013%	TRANSITION	0.0227	451	0	4	0.5
452	99.969%	0.028%	35318	10	0.034%	0.012%	TRANSITION	0.0283	452	0	4	0.5
453	99.934%	0.060%	16648	10	0.029%	0.012%	TRANSITION	0.0601	453	0	4	0.75
454	99.958%	0.036%	74654	27	0.040%	0.011%	TRANSITION	0.0362	454	0	4	0.25
455	99.971%	0.000%	48955	0	0.001%	0.001%	TRANSVERSION	0.0000	455	0	4	0.25
456	99.965%	0.030%	56545	17	0.026%	0.009%	TRANSITION	0.0301	456	0	2	1
457	99.942%	0.003%	60010	2	0.007%	0.003%	TRANSVERSION	0.0033	457	0	2	1
458	99.971%	0.000%	54965	0	0.001%	0.001%	TRANSVERSION	0.0000	458	0	2	0.75
459	99.951%	0.000%	28542	0	0.002%	0.004%	TRANSVERSION	0.0000	459	0	1	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	Call	driver category	clonal ratio
460	99.946%	0.002%	46587	1	0.002%	0.003%	TRANSVERSION	0.0021	460	0	4	0.75
461	99.984%	0.000%	63619	0	0.002%	0.002%	TRANSVERSION	0.0000	461	0	4	0.75
462	99.971%	0.000%	64453	0	0.002%	0.002%	TRANSVERSION	0.0000	462	0	4	0.5
463	99.974%	0.000%	74213	0	0.001%	0.002%	TRANSVERSION	0.0000	463	0	4	0.25
464	99.970%	0.015%	79666	12	0.008%	0.003%	TRANSVERSION	0.0151	464	0	4	0.25
465	99.968%	0.003%	58832	2	0.001%	0.001%	TRANSVERSION	0.0034	465	0	4	0.25
466	99.993%	0.000%	13594	0	0.000%	0.002%	TRANSVERSION	0.0000	466	0	4	0.25
467	99.953%	0.010%	29658	3	0.004%	0.004%	TRANSVERSION	0.0101	467	0	4	0.25
468	99.966%	0.000%	84581	0	0.003%	0.004%	TRANSVERSION	0.0000	468	0	4	0.25
469	99.966%	0.000%	64535	0	0.002%	0.002%	TRANSVERSION	0.0000	469	0	4	0.25
470	99.941%	0.000%	83191	0	0.001%	0.002%	TRANSVERSION	0.0000	470	0	4	0.25
471	99.970%	0.000%	30288	0	0.007%	0.006%	TRANSVERSION	0.0000	471	0	4	0.25
472	99.978%	0.000%	54921	0	0.000%	0.001%	TRANSVERSION	0.0000	472	0	4	0.25
473	99.964%	0.001%	75082	1	0.001%	0.002%	TRANSVERSION	0.0013	473	0	3	0.25
474	99.982%	0.002%	45023	1	0.004%	0.003%	TRANSVERSION	0.0022	474	0	4	0.25
475	99.943%	0.036%	28012	10	0.002%	0.003%	TRANSVERSION	0.0357	475	1	2	0.75
476	99.997%	0.000%	38900	0	0.004%	0.003%	TRANSVERSION	0.0000	476	0	1	0.25
477	99.934%	0.058%	12121	7	0.001%	0.003%	TRANSVERSION	0.0578	477	1	4	0.75
478	99.960%	0.012%	52093	6	0.001%	0.001%	TRANSVERSION	0.0115	478	1	4	0.75
479	99.894%	0.054%	53542	29	0.005%	0.003%	TRANSVERSION	0.0542	479	1	4	0.75
480	99.884%	0.058%	1728	1	0.003%	0.010%	TRANSVERSION	0.0579	480	0	4	0.75
481	99.931%	0.063%	73577	46	0.045%	0.010%	TRANSITION	0.0625	481	0	4	0.75
482	99.889%	0.111%	6281	7	0.003%	0.006%	TRANSVERSION	0.1115	482	1	4	0.75
483	99.897%	0.100%	46791	47	0.027%	0.007%	TRANSITION	0.1005	483	1	4	0.75
484	99.951%	0.004%	28449	1	0.005%	0.005%	TRANSVERSION	0.0035	484	0	4	0.5
485	99.894%	0.075%	45356	34	0.003%	0.003%	TRANSVERSION	0.0750	485	1	4	0.5
486	99.931%	0.069%	13021	9	0.025%	0.010%	TRANSITION	0.0691	486	0	4	0.75

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	Normalstddev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
487	99.908%	0.088%	26093	23	0.014%	0.008%	TRANSITION	0.0881	487	1	4	0.5
488	99.974%	0.023%	26653	6	0.034%	0.011%	TRANSITION	0.0225	488	0	4	0.25
489	100.000%	0.000%	6979	0	0.033%	0.017%	TRANSITION	0.0000	489	0	4	0.25
490	99.948%	0.034%	34821	12	0.003%	0.003%	TRANSVERSION	0.0345	490	1	4	0.25
491	99.980%	0.018%	55334	10	0.030%	0.012%	TRANSITION	0.0181	491	0	4	0.25
492	99.943%	0.000%	3507	0	0.002%	0.005%	TRANSVERSION	0.0000	492	0	4	0.25
493	99.958%	0.002%	61185	1	0.001%	0.003%	TRANSVERSION	0.0016	493	0	1	1
494	99.968%	0.005%	44316	2	0.003%	0.003%	TRANSVERSION	0.0045	494	0	2	1
495	99.887%	0.019%	5289	1	0.005%	0.012%	TRANSVERSION	0.0189	495	0	4	0.666667
496	99.935%	0.000%	10738	0	0.003%	0.006%	TRANSVERSION	0.0000	496	0	4	0.666667
497	99.970%	0.001%	87734	1	0.002%	0.001%	TRANSVERSION	0.0011	497	0	4	1
498	99.956%	0.030%	29758	9	0.031%	0.018%	TRANSITION	0.0302	498	0	4	1
499	99.974%	0.001%	60598	0	0.003%	0.002%	TRANSVERSION	0.0000	499	0	4	1
500	99.973%	0.027%	26381	7	0.042%	0.018%	TRANSITION	0.0265	500	0	4	0.333333
501	99.979%	0.020%	65957	13	0.027%	0.007%	TRANSITION	0.0197	501	0	4	0.666667
502	99.976%	0.000%	46673	0	0.001%	0.002%	TRANSVERSION	0.0000	502	0	4	0.666667
503	99.959%	0.002%	65398	1	0.003%	0.002%	TRANSVERSION	0.0015	503	0	4	0.666667
504	99.957%	0.004%	51150	2	0.001%	0.002%	TRANSVERSION	0.0039	504	0	4	0.666667
505	99.931%	0.007%	67139	5	0.003%	0.003%	TRANSVERSION	0.0074	505	0	4	0.666667
506	99.971%	0.006%	64823	4	0.005%	0.003%	TRANSVERSION	0.0062	506	0	4	0.333333
507	99.897%	0.057%	8738	5	0.005%	0.008%	TRANSVERSION	0.0572	507	0	1	0.6
508	99.919%	0.076%	40702	31	0.047%	0.013%	TRANSITION	0.0762	508	0	2	0.8
509	99.865%	0.102%	45945	47	0.002%	0.002%	TRANSVERSION	0.1023	509	1	1	0.8
510	99.919%	0.050%	22206	11	0.003%	0.005%	TRANSVERSION	0.0495	510	1	2	0.8
511	100.000%	0.000%	58	0	0.000%	0.000%	TRANSVERSION	0.0000	511	1	1	0.8
512	99.918%	0.060%	31888	19	0.004%	0.008%	TRANSVERSION	0.0596	512	0	2	0.8
513	99.962%	0.019%	42513	8	0.002%	0.002%	TRANSVERSION	0.0188	513	1	1	0.8

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	eternal ratio
514	99.964%	0.000%	33678	0	0.001%	0.002%	TRANSITION	0.0000	514	0	2	0.8
515	99.989%	0.004%	28487	1	0.012%	0.006%	TRANSITION	0.0035	515	0	1	0.8
516	99.976%	0.005%	55316	3	0.001%	0.002%	TRANSITION	0.0054	516	0	1	0.8
517	98.879%	1.121%	446	5	0.097%	0.200%	TRANSITION	1.1211	517	2	0.8	
518	99.910%	0.080%	6261	5	0.030%	0.023%	TRANSITION	0.0799	518	0	2	0.8
519	99.991%	0.000%	11391	0	0.033%	0.019%	TRANSITION	0.0000	519	0	2	0.6
520	99.849%	0.080%	45153	36	0.003%	0.002%	TRANSITION	0.0797	520	1	2	0.2
521	99.947%	0.004%	53113	2	0.002%	0.002%	TRANSITION	0.0038	521	0	4	0.2
522	99.951%	0.000%	28817	0	0.001%	0.002%	TRANSITION	0.0000	522	0	4	0.2
523	99.959%	0.010%	7406	0	0.005%	0.011%	TRANSITION	0.0000	523	0	4	0.2
524	99.965%	0.001%	71884	1	0.001%	0.001%	TRANSITION	0.0014	524	0	4	0.2
525	99.979%	0.004%	28417	1	0.001%	0.002%	TRANSITION	0.0035	525	0	4	0.2
526	99.958%	0.012%	33149	4	0.008%	0.005%	TRANSITION	0.0121	526	0	2	0.75
527	99.961%	0.018%	28033	5	0.006%	0.004%	TRANSITION	0.0178	527	0	2	0.75
528	99.973%	0.001%	14738	0	0.001%	0.002%	TRANSITION	0.0000	528	0	2	0.25
529	99.788%	0.000%	942	0	0.000%	0.000%	TRANSITION	0.0000	529	4	1	
530	99.949%	0.003%	29342	1	0.002%	0.003%	TRANSITION	0.0034	530	0	4	0.75
531	99.973%	0.003%	33782	1	0.004%	0.002%	TRANSITION	0.0030	531	0	4	0.75
532	99.980%	0.017%	35315	6	0.024%	0.008%	TRANSITION	0.0170	532	0	4	1
533	99.966%	0.000%	32791	0	0.002%	0.002%	TRANSITION	0.0000	533	0	4	0.75
534	99.871%	0.101%	34957	35	0.003%	0.002%	TRANSITION	0.1001	534	1	4	1
535	99.978%	0.030%	27651	0	0.002%	0.002%	TRANSITION	0.0000	535	0	4	0.25
536	99.916%	0.063%	4776	3	0.052%	0.033%	TRANSITION	0.0628	536	0	4	0.25
537	99.969%	0.003%	32668	1	0.002%	0.002%	TRANSITION	0.0031	537	0	4	0.25
538	100.000%	0.000%	25456	0	0.029%	0.010%	TRANSITION	0.0000	538	0	4	0.25
539	99.958%	0.039%	31042	12	0.038%	0.011%	TRANSITION	0.0387	539	0	4	0.25
540	99.968%	0.023%	69644	16	0.033%	0.008%	TRANSITION	0.0230	540	0	4	0.25

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
541	99.969%	0.000%	38711	0	0.001%	0.002%	TRANSVERSION	0.0000	541	0	4	0.25
542	99.978%	0.022%	18522	4	0.046%	0.019%	TRANSITION	0.0216	542	0	4	0.25
543	99.968%	0.029%	30893	9	0.025%	0.007%	TRANSITION	0.0291	543	0	4	0.25
544	99.981%	0.000%	10613	0	0.003%	0.004%	TRANSVERSION	0.0000	544	0	1	1
545	99.971%	0.000%	44705	0	0.002%	0.002%	TRANSVERSION	0.0000	545	0	1	1
546	99.965%	0.026%	57494	15	0.029%	0.008%	TRANSITION	0.0261	546	0	2	0.25
547	99.953%	0.047%	8470	4	0.047%	0.032%	TRANSITION	0.0472	547	0	2	0.25
548	99.957%	0.000%	21102	0	0.002%	0.003%	TRANSVERSION	0.0000	548	0	4	1
549	99.947%	0.053%	22644	12	0.049%	0.020%	TRANSITION	0.0530	549	0	4	0.75
550	99.957%	0.001%	83931	1	0.001%	0.001%	TRANSVERSION	0.0012	550	0	4	0.25
551	99.975%	0.001%	67130	1	0.002%	0.002%	TRANSVERSION	0.0015	551	0	4	0.25
552	99.956%	0.000%	15922	0	0.002%	0.003%	TRANSVERSION	0.0000	552	0	4	0.25
553	99.973%	0.000%	56035	0	0.002%	0.002%	TRANSVERSION	0.0000	553	0	4	0.5
554	100.000%	0.000%	2337	0	0.000%	0.000%	TRANSVERSION	0.0000	554	0	4	0.5
555	99.960%	0.000%	60560	0	0.001%	0.002%	TRANSVERSION	0.0000	555	0	4	0.25
556	99.977%	0.006%	17658	1	0.001%	0.002%	TRANSVERSION	0.0057	556	0	4	0.25
557	99.977%	0.000%	68504	0	0.001%	0.001%	TRANSVERSION	0.0000	557	0	4	0.25
558	99.958%	0.037%	62274	23	0.041%	0.011%	TRANSITION	0.0369	558	0	4	0.25
559	99.940%	0.060%	25194	15	0.031%	0.012%	TRANSITION	0.0595	559	0	4	0.25
560	99.971%	0.003%	65977	2	0.005%	0.002%	TRANSVERSION	0.0030	560	0	4	0.25
561	99.972%	0.000%	38908	0	0.003%	0.003%	TRANSVERSION	0.0000	561	0	4	0.25
562	99.973%	0.013%	14942	2	0.004%	0.005%	TRANSVERSION	0.0134	562	0	1	0.625
563	99.944%	0.000%	1797	0	0.000%	0.000%	TRANSVERSION	0.0000	563	0	1	0.625
564	99.973%	0.002%	60259	1	0.003%	0.002%	TRANSVERSION	0.0017	564	0	2	0.625
565	99.958%	0.040%	62456	25	0.040%	0.011%	TRANSITION	0.0400	565	0	2	0.625
566	99.975%	0.004%	28380	1	0.002%	0.003%	TRANSVERSION	0.0035	566	0	2	0.125
567	99.991%	0.002%	66495	1	0.003%	0.002%	TRANSVERSION	0.0015	567	0	1	0.375

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	Call category	driver category	clonal ratio
568	99.976%	0.003%	67920	2	0.003%	0.002%	TRANSVERSION	0.0029	568	0	4	0.5
569	99.914%	0.063%	51092	32	0.003%	0.002%	TRANSVERSION	0.0626	569	1	4	0.5
570	99.956%	0.002%	48243	1	0.002%	0.002%	TRANSVERSION	0.0021	570	0	4	0.5
571	99.982%	0.000%	77368	0	0.001%	0.001%	TRANSVERSION	0.0000	571	0	4	0.125
572	100.000%	0.000%	596	0	0.004%	0.018%	TRANSVERSION	0.0000	572	4	4	0.125
573	99.961%	0.002%	46677	1	0.003%	0.003%	TRANSVERSION	0.0021	573	0	4	0.125
574	99.967%	0.009%	42395	4	0.004%	0.003%	TRANSVERSION	0.0094	574	0	4	0.125
575	100.000%	0.000%	3455	0	0.002%	0.005%	TRANSVERSION	0.0000	575	0	4	0.125
576	99.985%	0.000%	52008	0	0.000%	0.001%	TRANSVERSION	0.0000	576	0	3	0.375
577	99.978%	0.000%	18554	0	0.003%	0.004%	TRANSVERSION	0.0000	577	0	4	0.375
578	99.978%	0.002%	80204	2	0.001%	0.001%	TRANSVERSION	0.0025	578	0	4	0.125
579	99.941%	0.008%	50489	4	0.008%	0.004%	TRANSVERSION	0.0079	579	0	4	0.125
580	99.982%	0.000%	62239	0	0.000%	0.001%	TRANSVERSION	0.0000	580	0	4	0.125
581	99.971%	0.000%	69281	0	0.001%	0.001%	TRANSVERSION	0.0000	581	0	4	0.125
582	99.573%	0.424%	29984	127	0.012%	0.005%	TRANSITION	0.4236	582	1	1	0.5
583	99.844%	0.125%	39085	49	0.003%	0.003%	TRANSVERSION	0.1254	583	1	2	0.333333
584	99.856%	0.077%	38854	30	0.007%	0.005%	TRANSVERSION	0.0772	584	1	2	0.333333
585	99.914%	0.073%	77901	57	0.006%	0.003%	TRANSVERSION	0.0732	585	1	2	0.166667
586	99.772%	0.212%	68920	146	0.003%	0.002%	TRANSVERSION	0.2118	586	1	2	0.166667
587	99.871%	0.096%	87104	84	0.005%	0.004%	TRANSVERSION	0.0964	587	1	1	0.166667
588	99.856%	0.132%	83553	11	0.002%	0.004%	TRANSVERSION	0.1317	588	1	2	0.5
589	99.643%	0.297%	5043	15	0.007%	0.010%	TRANSVERSION	0.2974	589	1	2	0.166667
590	99.854%	0.103%	39777	41	0.004%	0.002%	TRANSVERSION	0.1031	590	1	2	0.333333
591	99.799%	0.194%	38229	74	0.031%	0.013%	TRANSITION	0.1936	591	1	4	0.166667
592	99.541%	0.434%	64087	278	0.002%	0.004%	TRANSVERSION	0.4338	592	1	4	0.5
593	99.628%	0.366%	16117	59	0.002%	0.005%	TRANSVERSION	0.3661	593	1	4	0.5
594	99.905%	0.088%	70665	62	0.014%	0.004%	TRANSITION	0.0877	594	1	4	0.333333

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL number	driver category	ctional ratio
595	99.755%	0.215%	67474	145	0.001%	0.002%	TRANSVERSION	0.2149	595	1	4	0.5
596	99.848%	0.152%	34824	53	0.018%	0.010%	TRANSITION	0.1522	596	1	4	0.166667
597	99.962%	0.001%	74173	1	0.003%	0.002%	TRANSVERSION	0.0013	597	0	4	0.166667
598	99.962%	0.000%	5238	0	0.001%	0.002%	TRANSVERSION	0.0000	598	0	4	0.166667
599	99.937%	0.037%	83096	31	0.005%	0.003%	TRANSVERSION	0.0373	599	1	4	0.166667
600	99.959%	0.039%	58594	23	0.020%	0.007%	TRANSITION	0.0393	600	0	4	0.166667
601	99.909%	0.070%	18621	13	0.001%	0.002%	TRANSVERSION	0.0698	601	1	4	0.166667
602	99.961%	0.002%	45600	1	0.002%	0.001%	TRANSVERSION	0.0022	602	0	1	1
603	99.919%	0.007%	13642	1	0.003%	0.007%	TRANSVERSION	0.0073	603	0	2	1
604	99.985%	0.000%	13616	0	0.002%	0.004%	TRANSVERSION	0.0000	604	0	1	1
605	99.958%	0.003%	33593	1	0.004%	0.004%	TRANSVERSION	0.0030	605	0	2	1
606	99.973%	0.000%	56570	0	0.001%	0.001%	TRANSVERSION	0.0000	606	0	2	1
607	99.981%	0.004%	51503	2	0.005%	0.004%	TRANSVERSION	0.0039	607	0	1	1
608	100.000%	0.000%	601	0	0.000%	0.000%	TRANSVERSION	0.0000	608	1	1	1
609	99.867%	0.098%	14246	14	0.002%	0.004%	TRANSVERSION	0.0983	609	1	2	1
610	99.939%	0.004%	22910	1	0.002%	0.003%	TRANSVERSION	0.0044	610	0	2	1
611	99.945%	0.001%	14614	0	0.003%	0.006%	TRANSVERSION	0.0000	611	0	1	0.5
612	99.939%	0.061%	19600	12	0.041%	0.017%	TRANSITION	0.0612	612	0	2	0.5
613	99.955%	0.000%	37781	0	0.001%	0.002%	TRANSVERSION	0.0000	613	0	4	1
614	99.961%	0.000%	48193	0	0.001%	0.002%	TRANSVERSION	0.0000	614	0	4	1
615	99.975%	0.004%	23882	1	0.002%	0.003%	TRANSVERSION	0.0042	615	0	4	1
616	99.982%	0.003%	33777	1	0.004%	0.003%	TRANSVERSION	0.0030	616	0	4	1
617	99.952%	0.000%	47995	0	0.002%	0.002%	TRANSVERSION	0.0000	617	0	4	0.5
618	99.971%	0.000%	17113	0	0.001%	0.003%	TRANSVERSION	0.0000	618	0	4	0.5
619	99.958%	0.003%	38334	1	0.002%	0.003%	TRANSVERSION	0.0026	619	0	4	0.5
620	99.963%	0.002%	64054	1	0.003%	0.001%	TRANSVERSION	0.0016	620	0	4	0.5
621	99.204%	0.741%	9174	68	0.003%	0.007%	TRANSVERSION	0.7412	621	1	2	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	Driver category	clonal ratio
622	99.536%	0.459%	41387	190	0.048%	0.015%	TRANSITION	0.4591	622	1	1
623	99.753%	0.245%	72187	177	0.030%	0.010%	TRANSITION	0.2452	623	1	2
624	99.794%	0.153%	52430	80	0.001%	0.001%	TRANSVERSION	0.1526	624	1	1
625	99.758%	0.148%	57294	85	0.002%	0.002%	TRANSVERSION	0.1484	625	1	2
626	99.785%	0.179%	2796	5	0.002%	0.009%	TRANSVERSION	0.1788	626	1	1
627	99.912%	0.088%	25139	22	0.037%	0.017%	TRANSITION	0.0875	627	0	2
628	99.983%	0.006%	17917	1	0.001%	0.003%	TRANSVERSION	0.0056	628	0	2
629	99.934%	0.066%	10618	7	0.051%	0.020%	TRANSITION	0.0659	629	0	2
630	99.809%	0.148%	64258	95	0.004%	0.003%	TRANSVERSION	0.1478	630	1	4
631	99.813%	0.157%	57335	90	0.001%	0.002%	TRANSVERSION	0.1570	631	1	4
632	99.837%	0.143%	55992	80	0.002%	0.002%	TRANSVERSION	0.1429	632	1	4
633	99.769%	0.205%	11237	23	0.001%	0.003%	TRANSVERSION	0.2047	633	1	4
634	99.752%	0.200%	33432	67	0.002%	0.002%	TRANSVERSION	0.2004	634	1	4
635	99.944%	0.051%	62216	32	0.040%	0.008%	TRANSITION	0.0514	635	0	5
636	100.000%	0.000%	5633	0	0.011%	0.011%	TRANSITION	0.0000	636	0	4
637	99.969%	0.013%	74807	10	0.001%	0.001%	TRANSVERSION	0.0134	637	1	4
638	99.955%	0.026%	42341	11	0.004%	0.002%	TRANSVERSION	0.0260	638	1	4
639	99.940%	0.030%	26723	8	0.002%	0.003%	TRANSVERSION	0.0299	639	1	4
640	99.935%	0.042%	35483	15	0.001%	0.001%	TRANSVERSION	0.0423	640	1	4
641	99.945%	0.045%	30822	14	0.034%	0.011%	TRANSITION	0.0454	641	0	1
642	99.983%	0.017%	5775	1	0.041%	0.028%	TRANSITION	0.0173	642	0	2
643	99.958%	0.009%	78893	7	0.005%	0.002%	TRANSVERSION	0.0089	643	0	2
644	99.975%	0.023%	56918	13	0.039%	0.010%	TRANSITION	0.0228	644	0	2
645	99.965%	0.000%	57273	0	0.001%	0.001%	TRANSVERSION	0.0000	645	0	1
646	99.941%	0.003%	32096	1	0.001%	0.002%	TRANSVERSION	0.0031	646	0	4
647	99.970%	0.006%	53469	3	0.002%	0.002%	TRANSVERSION	0.0056	647	0	3
648	99.983%	0.000%	71852	0	0.003%	0.002%	TRANSVERSION	0.0000	648	0	4

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
649	99.995%	0.000%	18216	0	0.003%	0.003%	TRANSVERSION	0.0000	649	0	4	0.333333
650	99.960%	0.010%	70163	0	0.002%	0.002%	TRANSVERSION	0.0000	650	0	4	0.333333
651	99.994%	0.006%	17203	1	0.003%	0.003%	TRANSVERSION	0.0058	651	0	4	0.333333
652	99.970%	0.000%	53121	0	0.002%	0.002%	TRANSVERSION	0.0000	652	0	4	0.666667
653	99.964%	0.007%	30464	2	0.003%	0.003%	TRANSVERSION	0.0066	653	0	4	0.666667
654	100.000%	0.000%	12939	0	0.000%	0.001%	TRANSVERSION	0.0000	654	0	4	0.666667
655	99.969%	0.015%	143425	7	0.003%	0.001%	TRANSVERSION	0.0049	655	0	4	0.333333
656	99.984%	0.000%	12792	0	0.002%	0.003%	TRANSVERSION	0.0000	656	0	4	0.333333
657	99.931%	0.003%	36474	1	0.003%	0.003%	TRANSVERSION	0.0027	657	0	4	0.333333
658	99.980%	0.010%	49860	0	0.002%	0.002%	TRANSVERSION	0.0000	658	0	4	0.333333
659	99.972%	0.000%	72185	0	0.001%	0.001%	TRANSVERSION	0.0000	659	0	4	0.333333
660	92.133%	7.867%	40245	3166	0.034%	0.013%	TRANSITION	7.8668	660	1	1	1
661	97.998%	1.963%	63135	1243	0.003%	0.000%	TRANSVERSION	1.9588	661	1	2	0.428571
662	97.294%	2.670%	33072	883	0.002%	0.002%	TRANSVERSION	2.6699	662	1	2	0.285714
663	94.053%	5.900%	64203	3788	0.001%	0.009%	TRANSVERSION	5.9000	663	1	1	1
664	93.488%	6.500%	80373	5224	0.006%	0.003%	TRANSVERSION	6.4997	664	1	2	1
665	99.372%	0.561%	18007	101	0.001%	0.002%	TRANSVERSION	0.5609	665	1	2	0.142857
666	98.386%	1.602%	43191	692	0.034%	0.009%	TRANSITION	1.6022	666	1	1	0.428571
667	100.000%	0.000%	166	0	0.000%	0.000%	TRANSITION	0.0000	667	2	2	0.285714
668	99.938%	0.048%	21037	10	0.046%	0.024%	TRANSITION	0.0475	668	0	2	0.142857
669	99.778%	0.217%	17996	39	0.035%	0.011%	TRANSITION	0.2167	669	1	2	0.142857
670	99.666%	0.329%	58676	193	0.032%	0.009%	TRANSITION	0.3289	670	1	1	0.142857
671	99.391%	0.607%	66212	402	0.026%	0.011%	TRANSITION	0.6071	671	1	2	0.285714
672	99.459%	0.510%	54742	279	0.000%	0.001%	TRANSVERSION	0.5097	672	1	2	0.142857
673	99.692%	0.306%	52596	161	0.021%	0.006%	TRANSITION	0.3061	673	1	2	0.142857
674	91.060%	8.974%	66390	5958	0.003%	0.000%	TRANSVERSION	8.9742	674	1	4	1
675	86.044%	13.931%	36473	5081	0.004%	0.000%	TRANSVERSION	13.9310	675	1	4	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	Driver category	Clonal ratio
676	92.177%	7.805%	27791	2169	0.001%	0.000%	TRANSVERSION	7.8047	676	1	4
677	99.969%	0.001%	81844	1	0.001%	0.001%	TRANSVERSION	0.0012	677	0	4
678	99.975%	0.000%	72437	0	0.001%	0.001%	TRANSVERSION	0.0000	678	0	4
679	99.885%	0.067%	96679	65	0.002%	0.002%	TRANSVERSION	0.0672	679	1	4
680	99.941%	0.051%	25271	13	0.036%	0.014%	TRANSITION	0.0514	680	0	1
681	99.974%	0.026%	53764	14	0.025%	0.008%	TRANSITION	0.0260	681	0	2
682	99.994%	0.000%	31176	0	0.016%	0.013%	TRANSITION	0.0000	682	0	1
683	99.954%	0.041%	86086	35	0.043%	0.012%	TRANSITION	0.0407	683	0	1
684	99.959%	0.034%	70312	24	0.037%	0.009%	TRANSITION	0.0341	684	0	4
685	99.973%	0.000%	33648	0	0.002%	0.003%	TRANSVERSION	0.0000	685	0	4
686	99.962%	0.038%	13078	5	0.048%	0.022%	TRANSITION	0.0382	686	0	1
687	99.951%	0.038%	77292	29	0.043%	0.014%	TRANSITION	0.0375	687	0	4
688	99.969%	0.000%	49154	0	0.000%	0.001%	TRANSVERSION	0.0000	688	0	4
689	99.983%	0.015%	40103	6	0.028%	0.010%	TRANSITION	0.0150	689	0	4
690	99.977%	0.003%	89962	3	0.004%	0.002%	TRANSVERSION	0.0033	690	0	4
691	99.977%	0.004%	81389	3	0.004%	0.003%	TRANSVERSION	0.0037	691	0	4
692	99.977%	0.023%	69281	16	0.028%	0.009%	TRANSITION	0.0231	692	0	4
693	99.961%	0.039%	46090	18	0.031%	0.007%	TRANSITION	0.0391	693	0	4
694	99.968%	0.032%	9416	3	0.053%	0.042%	TRANSITION	0.0319	694	0	4
695	99.969%	0.004%	79850	3	0.003%	0.002%	TRANSVERSION	0.0038	695	0	4
696	99.975%	0.025%	60408	15	0.034%	0.009%	TRANSITION	0.0248	696	0	4
697	99.957%	0.004%	103482	4	0.002%	0.001%	TRANSVERSION	0.0039	697	0	4
698	99.963%	0.026%	50838	13	0.015%	0.006%	TRANSITION	0.0256	698	0	2
699	99.952%	0.044%	49653	22	0.040%	0.019%	TRANSITION	0.0443	699	0	4
700	99.929%	0.069%	97182	67	0.051%	0.012%	TRANSITION	0.0689	700	0	4
701	99.963%	0.035%	37509	13	0.042%	0.010%	TRANSITION	0.0347	701	0	4
702	99.889%	0.085%	48512	41	0.001%	0.001%	TRANSVERSION	0.0845	702	1	4

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MuTGOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	Call	driver category	clonal ratio
703	99.976%	0.020%	29477	6	0.020%	0.010%	TRANSITION	0.0204	703	0	4	0.75
704	99.924%	0.067%	77837	52	0.055%	0.010%	TRANSITION	0.0668	704	0	4	0.75
705	99.950%	0.050%	12050	6	0.048%	0.026%	TRANSITION	0.0498	705	0	4	0.5
706	99.976%	0.006%	84591	5	0.005%	0.002%	TRANSITION	0.0059	706	0	3	0.75
707	99.977%	0.012%	64964	8	0.007%	0.005%	TRANSITION	0.0123	707	0	4	0.75
708	99.969%	0.031%	3262	1	0.031%	0.032%	TRANSITION	0.0307	708	0	4	0.25
709	99.977%	0.021%	60894	13	0.044%	0.013%	TRANSITION	0.0213	709	0	4	0.25
710	99.813%	0.184%	34291	63	0.041%	0.013%	TRANSITION	0.1837	710	1	4	0.25
711	99.968%	0.027%	40710	11	0.042%	0.009%	TRANSITION	0.0270	711	0	4	0.25
712	99.971%	0.025%	48639	12	0.044%	0.012%	TRANSITION	0.0247	712	0	4	0.25
713	99.925%	0.062%	16058	10	0.063%	0.035%	TRANSITION	0.0623	713	0	2	1
714	99.981%	0.004%	25918	1	0.003%	0.004%	TRANSITION	0.0039	714	0	1	1
715	99.969%	0.003%	35877	1	0.003%	0.002%	TRANSITION	0.0028	715	0	2	1
716	99.963%	0.005%	59159	3	0.000%	0.001%	TRANSITION	0.0051	716	0	4	1
717	99.956%	0.002%	53621	1	0.002%	0.002%	TRANSITION	0.0019	717	0	4	1
718	100.000%	0.000%	6231	0	0.003%	0.006%	TRANSITION	0.0000	718	0	4	1
719	99.945%	0.000%	65283	0	0.002%	0.002%	TRANSITION	0.0000	719	0	4	1
720	99.963%	0.007%	29539	2	0.005%	0.003%	TRANSITION	0.0068	720	0	4	1
721	99.971%	0.000%	10349	0	0.002%	0.004%	TRANSITION	0.0000	721	0	4	1
722	99.901%	0.099%	5070	5	0.057%	0.039%	TRANSITION	0.0986	722	0	4	1
723	99.964%	0.000%	41536	0	0.002%	0.003%	TRANSITION	0.0000	723	0	4	1
724	99.957%	0.041%	51540	21	0.039%	0.013%	TRANSITION	0.0407	724	0	4	1
725	99.958%	0.002%	52391	1	0.005%	0.003%	TRANSITION	0.0019	725	0	4	0.666667
726	99.959%	0.004%	46624	2	0.002%	0.002%	TRANSITION	0.0043	726	0	4	0.333333
727	99.977%	0.008%	13272	1	0.008%	0.006%	TRANSITION	0.0075	727	0	4	0.333333
728	99.754%	0.239%	41862	100	0.026%	0.011%	TRANSITION	0.2389	728	1	1	1
729	99.799%	0.198%	36840	77	0.033%	0.013%	TRANSITION	0.1983	729	1	2	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
730	99.732%	0.262%	33950	89	0.026%	0.011%	TRANSITION	0.2622	730	1	2	1
731	99.447%	0.535%	31985	171	0.003%	0.003%	TRANSVERSION	0.5346	731	1	4	1
732	99.692%	0.308%	9088	28	0.022%	0.016%	TRANSITION	0.3081	732	1	4	1
733	99.710%	0.283%	55830	158	0.022%	0.007%	TRANSITION	0.2830	733	1	4	1
734	99.882%	0.118%	1701	2	0.011%	0.023%	TRANSVERSION	0.1176	734	0	4	1
735	99.422%	0.578%	1903	11	0.057%	0.053%	TRANSITION	0.5780	735	1	4	1
736	99.557%	0.435%	12648	55	0.035%	0.014%	TRANSITION	0.4349	736	1	4	1
737	99.766%	0.211%	50771	107	0.002%	0.002%	TRANSVERSION	0.2108	737	1	4	1
738	99.859%	0.141%	1416	2	0.002%	0.010%	TRANSVERSION	0.1412	738	1	4	1
739	99.636%	0.347%	23047	80	0.058%	0.023%	TRANSITION	0.3471	739	1	4	1
740	99.231%	0.752%	11441	86	0.001%	0.002%	TRANSVERSION	0.7517	740	1	4	1
741	99.955%	0.0010%	17693	0	0.000%	0.001%	TRANSVERSION	0.0000	741	0	4	0.25
742	99.961%	0.031%	45836	14	0.029%	0.012%	TRANSITION	0.0305	742	0	4	0.25
743	99.982%	0.000%	5460	0	0.003%	0.006%	TRANSVERSION	0.0000	743	0	4	0.25
744	99.950%	0.045%	41799	19	0.051%	0.021%	TRANSITION	0.0455	744	0	4	0.25
745	99.955%	0.010%	73119	7	0.007%	0.003%	TRANSVERSION	0.0096	745	0	1	1
746	99.961%	0.002%	62233	1	0.001%	0.001%	TRANSVERSION	0.0016	746	0	1	1
747	99.965%	0.002%	56886	1	0.018%	0.083%	TRANSVERSION	0.0018	747	0	1	1
748	99.990%	0.010%	85981	9	0.013%	0.005%	TRANSITION	0.0105	748	0	2	0.25
749	99.951%	0.044%	40748	18	0.042%	0.013%	TRANSITION	0.0442	749	0	1	0.25
750	99.953%	0.042%	64465	27	0.033%	0.012%	TRANSITION	0.0419	750	0	1	0.25
751	99.960%	0.005%	42095	2	0.002%	0.002%	TRANSVERSION	0.0048	751	0	4	1
752	99.967%	0.000%	9050	0	0.003%	0.005%	TRANSVERSION	0.0000	752	0	4	1
753	99.943%	0.003%	36934	1	0.002%	0.003%	TRANSVERSION	0.0027	753	0	4	1
754	99.964%	0.005%	60381	3	0.006%	0.003%	TRANSVERSION	0.0050	754	0	4	1
755	99.982%	0.000%	27254	0	0.001%	0.002%	TRANSVERSION	0.0000	755	0	4	1
756	99.955%	0.002%	64942	1	0.003%	0.002%	TRANSVERSION	0.0015	756	0	4	1

FIG. 20 (CONT.)

Row number	RevAF	MutVAF	DQR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
757	99.967%	0.003%	60198	2	0.004%	0.003%	TRANSVERSION	0.0033	757	0	4	0.25
758	99.987%	0.001%	130760	1	0.001%	0.001%	TRANSVERSION	0.0008	758	0	4	0.25
759	99.978%	0.000%	76473	0	0.000%	0.001%	TRANSVERSION	0.0000	759	0	4	0.25
760	99.955%	0.000%	50670	0	0.002%	0.001%	TRANSVERSION	0.0000	760	0	4	0.25
761	99.976%	0.000%	16811	0	0.002%	0.004%	TRANSVERSION	0.0000	761	0	4	0.25
762	99.960%	0.000%	12424	0	0.004%	0.005%	TRANSVERSION	0.0000	762	0	4	0.25
763	99.944%	0.000%	12439	0	0.003%	0.004%	TRANSVERSION	0.0000	763	0	4	0.25
764	99.979%	0.002%	61410	1	0.003%	0.002%	TRANSVERSION	0.0016	764	0	4	0.5
765	95.402%	4.571%	7525	344	0.007%	0.158%	TRANSVERSION	4.5714	765	1	2	1
766	98.987%	0.987%	67498	666	0.003%	0.034%	TRANSVERSION	0.9867	766	1	2	1
767	98.928%	1.072%	12037	129	0.012%	0.037%	TRANSITION	1.0717	767	1	1	1
768	99.542%	0.455%	35824	163	0.032%	0.018%	TRANSITION	0.4550	768	1	2	1
769	98.901%	1.098%	57579	632	0.016%	0.038%	TRANSITION	1.0976	769	1	2	1
770	99.912%	0.081%	60218	49	0.030%	0.010%	TRANSITION	0.0814	770	1	2	0.25
771	99.137%	0.838%	43432	364	0.004%	0.029%	TRANSITION	0.8381	771	1	4	1
772	98.554%	1.422%	66601	947	0.005%	0.049%	TRANSITION	1.4219	772	1	4	1
773	98.607%	1.365%	61972	846	0.004%	0.047%	TRANSITION	1.3651	773	1	4	1
774	99.962%	0.011%	61137	7	0.004%	0.002%	TRANSITION	0.0115	774	0	4	0.5
775	99.950%	0.039%	46317	18	0.005%	0.003%	TRANSITION	0.0389	775	1	4	0.5
776	99.931%	0.060%	31766	19	0.003%	0.004%	TRANSITION	0.0598	776	1	4	0.5
777	99.625%	0.335%	40251	135	0.002%	0.012%	TRANSITION	0.3354	777	1	4	0.25
778	99.944%	0.041%	77450	32	0.001%	0.002%	TRANSITION	0.0413	778	1	4	0.25
779	99.700%	0.265%	49036	130	0.004%	0.009%	TRANSITION	0.2651	779	1	4	0.5
780	99.633%	0.336%	64845	218	0.003%	0.012%	TRANSITION	0.3362	780	1	4	0.5
781	99.966%	0.012%	58742	7	0.001%	0.001%	TRANSITION	0.0119	781	1	3	0.25
782	99.753%	0.229%	51517	118	0.003%	0.008%	TRANSITION	0.2291	782	1	4	0.25
783	99.982%	0.001%	72741	1	0.001%	0.001%	TRANSITION	0.0014	783	0	4	0.25

FIG. 20 (CONT.)

98 / 171

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
784	99.963%	0.037%	46235	17	0.011%	0.006%	TRANSITION	0.0368	784	1	1	1
785	99.951%	0.045%	89461	40	0.028%	0.007%	TRANSITION	0.0447	785	0	1	1
786	99.958%	0.035%	86328	30	0.012%	0.004%	TRANSITION	0.0348	786	1	2	1
787	99.970%	0.028%	72443	20	0.024%	0.011%	TRANSITION	0.0276	787	0	1	0.75
788	99.957%	0.017%	64911	11	0.002%	0.002%	TRANSVERSION	0.0169	788	1	2	1
789	99.935%	0.011%	27701	3	0.002%	0.002%	TRANSVERSION	0.0108	789	0	1	1
790	99.975%	0.006%	79790	5	0.001%	0.002%	TRANSVERSION	0.0063	790	0	2	0.5
791	99.970%	0.001%	76137	1	0.002%	0.002%	TRANSVERSION	0.0013	791	0	2	0.25
792	99.919%	0.045%	101211	46	0.001%	0.002%	TRANSVERSION	0.0455	792	1	4	1
793	99.942%	0.023%	17331	4	0.001%	0.003%	TRANSVERSION	0.0231	793	1	4	1
794	99.971%	0.000%	68959	0	0.001%	0.001%	TRANSVERSION	0.0000	794	0	4	0.25
795	99.951%	0.003%	36931	1	0.005%	0.004%	TRANSVERSION	0.0027	795	0	4	0.25
796	99.976%	0.000%	21146	0	0.000%	0.001%	TRANSVERSION	0.0000	796	0	3	0.25
797	99.929%	0.014%	84985	12	0.001%	0.002%	TRANSVERSION	0.0141	797	1	4	0.25
798	99.947%	0.000%	62273	0	0.001%	0.002%	TRANSVERSION	0.0000	798	0	4	0.25
799	99.963%	0.006%	69390	4	0.004%	0.003%	TRANSVERSION	0.0058	799	0	4	0.25
800	99.948%	0.019%	93840	18	0.008%	0.003%	TRANSVERSION	0.0192	800	0	4	0.5
801	99.959%	0.027%	7366	2	0.000%	0.001%	TRANSVERSION	0.0272	801	1	4	0.5
802	99.970%	0.000%	81135	0	0.001%	0.001%	TRANSVERSION	0.0000	802	0	3	0.25
803	99.952%	0.013%	76660	10	0.030%	0.009%	TRANSVERSION	0.0130	803	0	1	1
804	99.952%	0.000%	26938	0	0.004%	0.005%	TRANSVERSION	0.0000	804	0	1	1
805	99.969%	0.012%	16036	2	0.003%	0.009%	TRANSVERSION	0.0125	805	0	2	1
806	99.985%	0.000%	53610	0	0.001%	0.002%	TRANSVERSION	0.0000	806	0	2	1
807	99.963%	0.032%	81735	26	0.025%	0.007%	TRANSITION	0.0318	807	0	4	0.5
808	99.959%	0.000%	29424	0	0.001%	0.002%	TRANSVERSION	0.0000	808	0	4	1
809	99.949%	0.048%	73108	35	0.029%	0.011%	TRANSITION	0.0479	809	0	4	1
810	99.959%	0.001%	115923	1	0.002%	0.002%	TRANSVERSION	0.0009	810	0	3	1

FIG. 20 (CONT.)

Row number	RevVAF	MutVAF	DEL	MUTDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
811	99.973%	0.024%	67309	16	0.041%	0.014%	TRANSITION	0.0238	811	0	4	1
812	99.958%	0.000%	71504	0	0.001%	0.002%	TRANSITION	0.0000	812	0	4	1
813	99.971%	0.001%	80208	1	0.001%	0.001%	TRANSITION	0.0012	813	0	4	0.5
814	99.964%	0.030%	126317	38	0.040%	0.011%	TRANSITION	0.0301	814	0	4	0.5
815	99.967%	0.032%	98575	32	0.038%	0.013%	TRANSITION	0.0325	815	0	4	0.5
816	99.970%	0.001%	79622	1	0.002%	0.002%	TRANSITION	0.0013	816	0	4	0.5
817	99.976%	0.001%	106264	1	0.001%	0.001%	TRANSITION	0.0009	817	0	4	0.5
818	99.954%	0.040%	109650	44	0.038%	0.011%	TRANSITION	0.0401	818	0	4	1
819	99.964%	0.032%	99924	32	0.010%	0.004%	TRANSITION	0.0320	819	1	4	0.5
820	99.951%	0.045%	44558	20	0.025%	0.011%	TRANSITION	0.0449	820	0	4	1
821	99.973%	0.000%	7295	0	0.003%	0.009%	TRANSITION	0.0000	821	0	4	0.5
822	94.168%	5.818%	31055	1806	0.040%	0.208%	TRANSITION	5.8155	822	1	1	1
823	96.913%	3.084%	31326	966	0.037%	0.106%	TRANSITION	3.0837	823	1	2	1
824	90.657%	9.343%	4688	438	0.047%	0.323%	TRANSITION	9.3430	824	1	4	1
825	95.646%	4.327%	3767	163	0.008%	0.149%	TRANSITION	4.3271	825	1	4	1
826	96.985%	2.984%	15054	479	0.007%	0.103%	TRANSITION	2.9837	826	1	4	1
827	99.041%	0.939%	60374	567	0.007%	0.032%	TRANSITION	0.9392	827	1	4	1
828	93.279%	6.680%	7261	485	0.011%	0.230%	TRANSITION	6.6795	828	1	4	1
829	99.852%	0.144%	82710	119	0.027%	0.008%	TRANSITION	0.1439	829	1	4	0.25
830	99.854%	0.125%	57596	72	0.003%	0.005%	TRANSITION	0.1248	830	1	4	0.25
831	99.912%	0.082%	67315	55	0.017%	0.008%	TRANSITION	0.0817	831	1	4	0.25
832	99.936%	0.064%	21844	14	0.029%	0.012%	TRANSITION	0.0641	832	0	4	0.25
833	99.777%	0.199%	29650	59	0.004%	0.007%	TRANSITION	0.1990	833	1	4	0.25
834	99.975%	0.024%	66806	16	0.012%	0.005%	TRANSITION	0.0240	834	0	4	0.25
835	98.602%	1.371%	86352	1184	0.007%	0.047%	TRANSITION	1.3711	835	1	4	0.25
836	99.947%	0.053%	15165	8	0.028%	0.015%	TRANSITION	0.0528	836	0	4	0.25
837	99.867%	0.110%	52495	58	0.007%	0.005%	TRANSITION	0.1105	837	1	4	0.25

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
838	99.954%	0.044%	93572	41	0.039%	0.009%	TRANSITION	0.0438	838	0	4	0.25
839	99.974%	0.026%	15226	4	0.028%	0.016%	TRANSITION	0.0263	839	0	4	0.25
840	99.982%	0.014%	22020	3	0.029%	0.018%	TRANSITION	0.0136	840	0	2	1
841	99.980%	0.020%	5071	1	0.042%	0.027%	TRANSITION	0.0197	841	0	1	1
842	99.942%	0.052%	34529	18	0.023%	0.012%	TRANSITION	0.0521	842	0	1	1
843	99.990%	0.000%	69072	0	0.000%	0.001%	TRANSITION	0.0000	843	0	2	1
844	99.979%	0.000%	92375	0	0.000%	0.001%	TRANSITION	0.0000	844	0	4	1
845	99.974%	0.006%	15463	1	0.007%	0.008%	TRANSITION	0.0065	845	0	4	1
846	99.982%	0.000%	54778	0	0.003%	0.002%	TRANSITION	0.0000	846	0	4	1
847	100.000%	0.000%	176	0	0.000%	0.000%	TRANSITION	0.0000	847	3	1	
848	99.972%	0.000%	53866	0	0.003%	0.002%	TRANSITION	0.0000	848	0	4	1
849	99.973%	0.003%	63569	2	0.001%	0.001%	TRANSITION	0.0031	849	0	4	0.5
850	99.950%	0.003%	61953	2	0.004%	0.003%	TRANSITION	0.0032	850	0	4	0.5
851	99.961%	0.036%	94777	34	0.028%	0.010%	TRANSITION	0.0359	851	0	4	0.5
852	99.985%	0.015%	20658	3	0.010%	0.006%	TRANSITION	0.0145	852	0	4	0.5
853	99.964%	0.031%	61106	19	0.027%	0.010%	TRANSITION	0.0311	853	0	3	0.5
854	99.936%	0.055%	42030	23	0.053%	0.013%	TRANSITION	0.0547	854	0	4	0.5
855	99.960%	0.035%	96130	34	0.024%	0.011%	TRANSITION	0.0354	855	0	4	0.5
856	99.957%	0.043%	18555	8	0.030%	0.013%	TRANSITION	0.0431	856	0	3	0.5
857	99.976%	0.004%	71157	3	0.001%	0.001%	TRANSITION	0.0042	857	0	4	0.5
858	99.978%	0.018%	72628	13	0.027%	0.009%	TRANSITION	0.0179	858	0	4	0.5
859	94.143%	5.849%	37629	2201	0.040%	0.201%	TRANSITION	5.8492	859	1	2	1
860	94.559%	5.401%	29975	1619	0.009%	0.186%	TRANSITION	5.4012	860	1	1	
861	96.061%	3.894%	15561	606	0.009%	0.134%	TRANSITION	3.8944	861	1	2	1
862	97.696%	2.299%	65975	1517	0.034%	0.079%	TRANSITION	2.2994	862	1	2	1
863	97.714%	2.255%	65998	1488	0.006%	0.078%	TRANSITION	2.2546	863	1	2	1
864	99.922%	0.069%	43704	30	0.033%	0.011%	TRANSITION	0.0686	864	0	1	0.25

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF_PCT	Row number	CALL	driver category	clonal ratio
865	92.074%	7.900%	52788	4170	0.011%	0.272%	TRANSVERSION	7.8995	865	1	4	1
866	90.824%	9.162%	20684	1895	0.002%	0.001%	TRANSVERSION	9.1617	866	1	3	1
867	95.687%	4.287%	62277	2670	0.009%	0.148%	TRANSVERSION	4.2873	867	1	4	1
868	96.466%	3.506%	28098	985	0.006%	0.121%	TRANSVERSION	3.5056	868	1	4	1
869	96.567%	3.333%	60	2	0.044%	0.235%	TRANSITION	3.3333	869	4	0.75	
870	97.541%	2.454%	84920	2084	0.041%	0.084%	TRANSITION	2.4541	870	1	4	0.75
871	98.094%	1.903%	70516	1342	0.054%	0.065%	TRANSITION	1.9031	871	1	4	0.25
872	99.616%	0.364%	55191	201	0.002%	0.013%	TRANSITION	0.3642	872	1	4	0.25
873	99.447%	0.528%	55475	293	0.002%	0.018%	TRANSVERSION	0.5282	873	1	4	0.25
874	98.619%	1.370%	64097	878	0.006%	0.047%	TRANSVERSION	1.3698	874	1	4	0.25
875	99.743%	0.257%	26021	67	0.027%	0.015%	TRANSITION	0.2575	875	1	4	0.25
876	99.762%	0.163%	21426	35	0.004%	0.008%	TRANSVERSION	0.1634	876	1	4	0.25
877	99.694%	0.256%	75514	193	0.002%	0.009%	TRANSVERSION	0.2556	877	1	4	0.25
878	99.635%	0.330%	60620	200	0.002%	0.011%	TRANSVERSION	0.3299	878	1	4	0.25
879	99.762%	0.233%	41216	96	0.049%	0.016%	TRANSITION	0.2329	879	1	4	0.25
880	99.531%	0.448%	56451	253	0.002%	0.015%	TRANSVERSION	0.4482	880	1	1	1
881	99.934%	0.060%	51332	31	0.044%	0.018%	TRANSITION	0.0604	881	0	2	0.75
882	99.976%	0.002%	49566	1	0.003%	0.002%	TRANSITION	0.0020	882	0	1	0.25
883	99.957%	0.018%	32676	6	0.001%	0.002%	TRANSITION	0.0184	883	1	4	1
884	99.529%	0.399%	40096	160	0.002%	0.014%	TRANSITION	0.3990	884	1	4	1
885	99.972%	0.005%	88051	4	0.005%	0.003%	TRANSITION	0.0045	885	0	4	0.75
886	99.956%	0.000%	47765	0	0.002%	0.002%	TRANSITION	0.0000	886	0	4	0.75
887	99.883%	0.000%	853	0	0.018%	0.052%	TRANSITION	0.0000	887	4	1	
888	99.914%	0.000%	23234	0	0.001%	0.003%	TRANSITION	0.0000	888	0	4	1
889	99.975%	0.019%	31715	6	0.036%	0.023%	TRANSITION	0.0189	889	0	4	1
890	99.932%	0.060%	13229	8	0.033%	0.026%	TRANSITION	0.0605	890	0	4	1
891	99.942%	0.054%	53469	29	0.038%	0.012%	TRANSITION	0.0542	891	0	4	1

FIG. 20 (CONT.)

Row number	RefVAF	MutVAF	DOR	MutDOR	NormalMean	NormalStdDev	ErrorType	MutVAF - PCT	Row number	CALL	driver category	clonal ratio
892	99.981%	0.014%	57417	8	0.015%	0.007%	TRANSITION	0.0139	892	0	4	0.25
893	NaN	NaN	0	NaN	2.751%	5.365%	TRANSITION	#VALUE!	893	0	4	0.25
894	99.980%	0.003%	39969	1	0.005%	0.005%	TRANSVERSION	0.0025	894	0	4	0.25
895	99.953%	0.002%	44501	1	0.003%	0.002%	TRANSVERSION	0.0022	895	0	4	0.25
896	99.995%	0.005%	18708	1	0.037%	0.018%	TRANSITION	0.0053	896	0	4	0.25
897	99.891%	0.103%	33083	34	0.046%	0.015%	TRANSITION	0.1028	897	0	4	0.75
898	99.963%	0.003%	34715	1	0.003%	0.003%	TRANSVERSION	0.0029	898	0	4	0.75
899	99.967%	0.020%	15018	3	0.038%	0.020%	TRANSITION	0.0200	899	0	1	1
900	99.933%	0.067%	22420	15	0.032%	0.011%	TRANSITION	0.0669	900	0	2	0.25
901	99.952%	0.000%	8421	0	0.001%	0.004%	TRANSVERSION	0.0000	901	0	4	0.5
902	99.980%	0.000%	20063	0	0.001%	0.002%	TRANSVERSION	0.0000	902	0	4	0.75
903	99.974%	0.000%	81736	0	0.001%	0.001%	TRANSVERSION	0.0000	903	0	4	0.75
904	99.974%	0.002%	58328	1	0.005%	0.003%	TRANSVERSION	0.0017	904	0	4	0.25
905	99.983%	0.017%	12086	2	0.016%	0.014%	TRANSITION	0.0165	905	0	4	1
906	99.960%	0.008%	77664	6	0.002%	0.002%	TRANSVERSION	0.0077	906	0	4	0.5
907	99.907%	0.093%	11862	11	0.029%	0.019%	TRANSITION	0.0927	907	0	4	0.25
908	99.931%	0.065%	56684	37	0.028%	0.010%	TRANSITION	0.0653	908	0	4	0.5
909	99.974%	0.026%	19100	5	0.078%	0.113%	TRANSITION	0.0262	909	0	4	0.25
910	99.987%	0.010%	111296	11	0.060%	0.151%	TRANSITION	0.0099	910	0	4	0.25
911	99.925%	0.073%	71154	52	0.035%	0.012%	TRANSITION	0.0731	911	1	4	0.25

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCIuster	PTNMStage	Lesion1Size	DNA input	Row number	Hospital
1	32.03	30.25	35.71	30.49	C	1a	20	16	20.6	1
2	27.86	25.605	25.22	23.9	C	1a	20	16	20.6	2
3	27.5	26.585	28.41	25.62	C	1a	20	16	20.6	3
4	22.72	21.63	25.45	22.58		1a	20	16	20.6	4
5	23.65	21.51	19.09	17.98	C	1a	20	16	20.6	5
6	24.35	21.555	25.58	25.09	C	1a	20	16	20.6	6
7	27	23.58	25.59	23.54	C	1a	20	16	20.6	7
8	20.65	19.39	22.18	19.48	C	1a	20	16	20.6	8
9	7.65	5.53	6.24	5.04	S	1a	20	16	20.6	9
10	7.24	6.34	8.19	6.19	S	1a	20	16	20.6	10
11	7.07	5.45	8.14	6.31		1a	20	16	20.6	11
12	8.16	6.06	6.73	4.73	S	1a	20	16	20.6	12
13	25.5	23.295	33.1	29.88	S	1a	20	16	20.6	13
14	19.79	18.93	18.93	18.72	C	1a	20	16	20.6	14
15	23.12	20.885	22.42	22.09	S	1a	20	16	20.6	15
16	16.01	13.295	20.78	19.58	S	1a	20	16	20.6	16
17	11.72	8.4	11.89	8.99	S	1a	20	16	20.6	17
18	59.9	33.9975	65.49	36.92	C	1b	NA	19	18.1	18
19	59.79	33.96	65.33	36.85	C	1b	NA	19	18.1	19
20	51.02	34.4825	54.97	38.52	C	1b	NA	19	18.1	20
21	45.21	30.0225	64.86	48.84	C	1b	NA	19	18.1	21
22	45.03	29.1375	50.29	35.39	C	1b	NA	19	18.1	22
23	44.4	29.23	44.56	28.89	C	1b	NA	19	18.1	23
24	32.81	26.05	34.25	26.48	C	1b	NA	19	18.1	24
25	25.16	14.3125	26.8	14.05	C	1b	NA	19	18.1	25
26	23.84	16.8325	30.42	19.86	C	1b	NA	19	18.1	26
27	20.37	7.64	13.48	5.98	S	1b	NA	19	18.1	27

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	pTNMStage	Lesion1Size	DNA input	Row number	Hospital
28	20.08	9.8525	29.16	14.19	S	1b	NA	19	18.1	28
29	18.55	9.65	9.73	6.28	C	1b	NA	19	18.1	M
30	10.53	5.4225	12.28	6.28	S	1b	NA	19	18.1	M
31	48.48	22.335	50.39	24.37	C	1b	NA	19	18.1	M
32	20	14.83	19.88	16.38	C	1b	NA	19	18.1	M
33	7.95	4.07	7.76	4.44	S	1b	NA	19	18.1	33
34	9.75	5.785	12.8	6.37	S	1b	NA	19	18.1	M
35	9.02	4.13	8.21	4.29	S	1b	NA	19	18.1	M
36	6.42	1.605	7.57	1.9		1b	NA	19	18.1	36
37	5.76	1.44	7.35	1.84	S	1b	NA	19	18.1	M
38	11.53	2.93	13.94	3.49	S	1b	NA	19	18.1	38
39	5.48	1.78	6.2	2.28	S	1b	NA	19	18.1	M
40	77.53	50.772	77.37	51	C	1b	44	40	26.1	40
41	74.69	52.464	79.86	56.55	C	1b	44	40	26.1	41
42	51.77	25.298	49	25.81	C	1b	44	40	26.1	42
43	48.76	26.358	40.91	17.33	C	1b	44	40	26.1	43
44	47.37	24.212	47.46	22.04	C	1b	44	40	26.1	44
45	13.98	9.532	17.64	11.37	S	1b	44	40	26.1	45
46	9.69	1.938	10.64	2.14		1b	44	40	26.1	46
47	40.98	30.098	38.21	27.69	C	1b	44	40	26.1	47
48	26.82	18.344	27.37	17.01	C	1b	44	40	26.1	48
49	23.58	14.882	21.02	13.83	C	1b	44	40	26.1	49
50	5.14	1.028	5.77	1.16	S	1b	44	40	26.1	50
51	5.99	1.262	8.35	1.67	S	1b	44	40	26.1	51
52	25.45	6.86	27.55	7.26	S	1b	44	40	26.1	52
53	17.46	5.214	20.65	5.64	S	1b	44	40	26.1	53
54	10.08	3.466	10.18	3.14	S	1b	44	40	26.1	54

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	PTNMStage	Lesion1Siz ePath	Lesion1Siz eDe	DNA input	Row number	Hospital
55	10.51	2.892	12.5	5.88	S	1b	44	40	26.1	55	U
56	10.01	2.73	11.46	3.17		1b	44	40	26.1	56	U
57	13.61	2.978	5.56	1.4	S	1b	44	40	26.1	57	U
58	43.75	34.0725	46.17	36.97	C	2b	65	54	16.3	58	M
59	38.49	32.815	37.19	32.52	C	2b	65	54	16.3	59	M
60	31.78	24.745	34.01	26.6	C	2b	65	54	16.3	60	M
61	30.34	22.6625	34.43	26.53	C	2b	65	54	16.3	61	M
62	17.54	4.5025	14.49	4.11	S	2b	65	54	16.3	62	M
63	17.45	7.23	14.36	6.8	S	2b	65	54	16.3	63	M
64	6.25	1.6675	7.08	1.8	S	2b	65	54	16.3	64	M
65	53.07	37.64	27.14	23.6	C	2b	65	54	16.3	65	M
66	12.22	9.1275	19.71	13.44	C	2b	65	54	16.3	66	M
67	10.69	6.8425	9.55	6.58	C	2b	65	54	16.3	67	M
68	25.96	23.9675	29.5	25.84	C	2b	65	54	16.3	68	M
69	20.09	9.465	24.07	11.01	S	2b	65	54	16.3	69	M
70	14.64	6.965	13.63	6.69	S	2b	65	54	16.3	70	M
71	23.38	9.9075	18.88	8.98	S	2b	65	54	16.3	71	M
72	5.33	1.3325	4.88	1.22	S	2b	65	54	16.3	72	M
73	5.53	1.3825	5.11	1.28	S	2b	65	54	16.3	73	M
74	5.18	1.295	3.98	1	S	2b	65	54	16.3	74	M
75	6.75	1.6875	6.35	1.59	S	2b	65	54	16.3	75	M
76	10.16	4.945	17.51	7.55	S	2b	65	54	16.3	76	M
77	6.01	1.5025	10.44	2.63	S	2b	65	54	16.3	77	M
78	7.92	2.1175	9.47	2.5	S	2b	65	54	16.3	78	M
79	17.33	8.805	0	0	S	1a	18	15	39.8	79	U
80	13.64	10.95	16.12	14.08	C	1a	18	15	39.8	80	U
81	12.57	11.485	15.49	14.15	C	1a	18	15	39.8	81	U

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Max VAF in tumor	Naterra Mean VAF in Tumor	PyCloneCIuster	ptNMSta ge	LesionSiz ePath	LesionSiz eDe	DNA input	Row number	Hospital
82	12.47	10.385	15.41	14.07	C	1a	18	15	39.8	82	U
83	11.21	9.385	14.4	12.1	C	1a	18	15	39.8	83	U
84	8.21	4.105	7.83	3.92	S	1a	18	15	39.8	84	U
85	6.88	3.44	5.87	2.96		1a	18	15	39.8	85	U
86	6.45	5.755	7.35	7.1	C	1a	18	15	39.8	86	U
87	5.76	3.12	4.82	2.53	S	1a	18	15	39.8	87	U
88	15.25	11.985	14.1	12.75	C	1a	18	15	39.8	88	U
89	12.04	10.385	16.42	15.31	C	1a	18	15	39.8	89	U
90	11.97	11.82	13.74	12.18	C	1a	18	15	39.8	90	U
91	7.89	3.945	11.54	5.88	S	1a	18	15	39.8	91	U
92	11.49	5.85	10.98	5.56	S	1a	18	15	39.8	92	U
93	9.88	5.345	8.5	4.28	S	1a	18	15	39.8	93	U
94	10.03	5.32	13.09	6.65	S	1a	18	15	39.8	94	U
95	5.03	2.515	6.25	3.13	S	1a	18	15	39.8	95	U
96	5.26	2.63	3.89	1.94	S	1a	18	15	39.8	96	U
97	6.76	3.38	4.35	2.17		1a	18	15	39.8	97	U
98	32.3	20.5333	28.77	19.57	C	2a	26	25	12.9	98	B
99	15.27	10.8867	16.44	11.13	C	2a	26	25	12.9	99	B
100	8.12	5.67	10.81	7.18	C	2a	26	25	12.9	100	B
101	7.94	2.84	6.39	2.13	S	2a	26	25	12.9	101	B
102	7.69	2.65333	10	3.33	S	2a	26	25	12.9	102	B
103	7.53	2.62	5.99	2	S	2a	26	25	12.9	103	B
104	6.49	2.16333	3.57	1.19	S	2a	26	25	12.9	104	B
105	6.03	2.76333	9.85	3.83	S	2a	26	25	12.9	105	B
106	5.94	1.98	5.37	1.81	S	2a	26	25	12.9	106	B
107	5.45	1.81667	6.98	2.33	S	2a	26	25	12.9	107	B
108	5.41	1.88667	5.28	1.94	S	2a	26	25	12.9	108	B

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in Tumor	PyCloneCI cluster	pTNMStage	Lesion1Size	DNA input	Row number	Hospital
109	5.36	1.78667	3.33	1.11	S	2a	26	25	12.9	109
110	5.31	1.77	5.62	1.88	S	2a	26	25	12.9	110
111	7.65	2.97667	7	2.71	S	2a	26	25	12.9	111
112	6.67	2.76	4.81	1.78	S	2a	26	25	12.9	112
113	7.49	3.36	8.03	3.27	S	2a	26	25	12.9	113
114	6.7	2.23333	4.86	1.62	S	2a	26	25	12.9	114
115	7.32	2.44	11.04	4.69	S	2a	26	25	12.9	115
116	5.03	1.73333	5.69	1.98	S	2a	26	25	12.9	116
117	26.5	13.49	36.23	25.46	S	1a	10	10	20	117
118	25.61	14.96	26.94	23.94	C	1a	10	10	20	118
119	22.31	10.91	20.78	16.07	S	1a	10	10	20	119
120	51.34	23.4167	48.22	35.2	C	1a	10	10	20	120
121	70.32	41.7233	70.64	60.67	C	1a	10	10	20	121
122	66.67	30.0567	61.38	45.12	C	1a	10	10	20	122
123	37.25	19.6933	40.12	32.03	C	1a	10	10	20	123
124	82.99	46.43	80.85	66.07		1a	10	10	20	124
125	23.46	7.82	25.04	12.52	S	1a	10	10	20	125
126	16.24	5.54333	79.25	39.62	S	1a	10	10	20	126
127	10.04	3.34667	10.17	5.08	S	1a	10	10	20	127
128	20.7	6.9	23.99	12.01	S	1a	10	10	20	128
129	35.66	11.96	0	0	S	1a	10	10	20	129
130	23.67	8.02333	30.53	15.26	S	1a	10	10	20	130
131	6.06	2.02	5.08	2.54	S	1a	10	10	20	131
132	8.83	2.94333	7.93	3.96	S	1a	10	10	20	132
133	6.56	2.18667	5.56	2.78	S	1a	10	10	20	133
134	6.03	2.29333	6.13	3.07	S	1a	10	10	20	134
135	5.24	2.23333	5.36	4.95	S	1a	10	10	20	135

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyClone cluster	PTNMStage	Lesion1Size	DNA input	Row number	Hospital	
					ePath	eDe	eDe				
136	64.17	37.595	65.73	38.43	C	1b	NA	44	78	136 M	
137	50.39	28.1425	52.11	31.25	C	1b	NA	44	78	137 M	
138	36.17	18.33	33.78	20.04	C	1b	NA	44	78	138 M	
139	12.31	7.055	12.55	7.52	C	1b	NA	44	78	139 M	
140	44.76	20.7825	45.42	24.03		1b	NA	44	78	140 M	
141	43.96	23.4325	45.71	25.95	C	1b	NA	44	78	141 M	
142	28.92	17.8275	31.84	19.79	C	1b	NA	44	78	142 M	
143	49.51	29.2675	51.27	31.74	C	1b	NA	44	78	143 M	
144	14.57	3.7875	11.56	3.08	S	1b	NA	44	78	144 M	
145	6.16	1.6575	7.42	1.94	S	1b	NA	44	78	145 M	
146	7.42	4.8575	14.56	9.71	C	1b	NA	44	78	146 M	
147	7.16	3.8975	6.51	3.66	C	1b	NA	44	78	147 M	
148	10.07	4.615	11.89	5.72	C	1b	NA	44	78	148 M	
149	10.73	4.81	10.94	4.1	S	1b	NA	44	78	149 M	
150	5.42	1.4725	2.27	0.75	S	1b	NA	44	78	150 M	
151	5.24	1.4775	1.04	0.26	S	1b	NA	44	78	151 M	
152	5.98	2.4875	6.54	3.09	S	1b	NA	44	78	152 M	
153	5.94	2.3525	9.06	3.44	S	1b	NA	44	78	153 M	
154	78.98	74.0257	81.47	75.23	C	1b	50	50	269.9	154 U	
155	11.61	2.00714	11.93	1.71	S	1b	50	50	269.9	155 U	
156	46.44	42.2714	46.2	43.18	C	1b	50	50	269.9	156 U	
157	47.83	41.7886	43.5	40.43	C	1b	50	50	269.9	157 U	
158	71.15	50.6657	50	33.69	C	1b	50	50	269.9	158 U	
159	34.48	26.6871	38.66	32.2	1b	50	50	269.9	159 U		
160	39.42	37.0743	48.42	36.16	C	1b	50	50	269.9	160 U	
161	81.56	74.8286	80.98	74.95	C	1b	50	50	269.9	161 U	
162	55.7	50.5129	55.72	51.58	1b	50	50	269.9	162 U		

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	PTNMStage	Lesion1Size	DNA input	Row number	Hospital
163	36.17	31.8357	40.64	32.06	1b	50	50	269.9	163	U
164	10.76	1.53714	19.77	2.84	S	1b	50	50	269.9	164
165	10.58	1.51143	12.09	1.77	S	1b	50	50	269.9	165
166	12.32	1.76	16.03	2.29	S	1b	50	50	269.9	166
167	7.97	1.13857	11.06	1.6	S	1b	50	50	269.9	167
168	7.14	1.22429	4.91	0.83	S	1b	50	50	269.9	168
169	5.65	0.875714	11.87	1.71	S	1b	50	50	269.9	169
170	5.88	0.918571	3.34	0.51	S	1b	50	50	269.9	170
171	5.6	1.02429	6.08	0.98	S	1b	50	50	269.9	171
172	5.46	0.865714	6.46	0.99	S	1b	50	50	269.9	172
173	66.11	56.818	65.56	54.48	C	3a	35	32	17	173
174	7.55	1.51	5.88	1.18	S	3a	35	32	17	174
175	34.16	22.892	40.22	26.03	C	3a	35	32	17	175
176	40.74	32.382	32.22	27.78	C	3a	35	32	17	176
177	52.39	40.17	81.82	53.27	C	3a	35	32	17	177
178	19.77	4	19.27	3.85	S	3a	35	32	17	178
179	16.28	3.62	19.17	4.29	S	3a	35	32	17	179
180	9.59	1.918	10.08	2.02	S	3a	35	32	17	180
181	21.05	4.21	24.6	4.92	S	3a	35	32	17	181
182	5.7	1.178	5.12	1.03	S	3a	35	32	17	182
183	7.89	1.578	3.47	0.69	S	3a	35	32	17	183
184	5.28	1.23	6.39	1.28	S	3a	35	32	17	184
185	9.36	1.872	14.27	2.85	S	3a	35	32	17	185
186	5.25	1.05	5.44	1.09	S	3a	35	32	17	186
187	18.65	11.108	20.82	12.63	S	3a	35	32	17	187
188	15.84	9.828	20.87	11.99	S	3a	35	32	17	188
189	26.34	14.022	24.69	13.69	S	3a	35	32	17	189

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCluster	pTNMStage	LesionSize	DNA input	Row number	Hospital
190	15.62	9.344	20.77	11.8	S	3a	35	32	17	190
191	14.13	5.554	0	0	S	3a	35	32	17	191
192	53.26	37.0875	100	25	C	1b	NA	32	34.8	192
193	46.74	27.8825	55.71	32.96	C	1b	NA	32	34.8	193
194	39.11	25.52	13.79	6.48	C	1b	NA	32	34.8	194
195	42.95	26.1525	44.47	28.53	C	1b	NA	32	34.8	195
196	30.74	14.22	27.87	13.69	S	1b	NA	32	34.8	196
197	58.57	38.155	58.1	40.61		1b	NA	32	34.8	197
198	45.92	27.86	49.23	30.15	C	1b	NA	32	34.8	198
199	33.71	8.4275	0	0	S	1b	NA	32	34.8	199
200	22.31	5.5775	17.79	4.45	S	1b	NA	32	34.8	200
201	19.12	4.78	18.71	4.7	S	1b	NA	32	34.8	201
202	13.9	3.475	17.13	4.28	S	1b	NA	32	34.8	202
203	7.24	1.81	3.97	1.02	S	1b	NA	32	34.8	203
204	7.14	1.785	7.4	1.87	S	1b	NA	32	34.8	204
205	6.81	1.7025	5.09	1.28	S	1b	NA	32	34.8	205
206	31.03	16.81	39.24	21.5	C	1b	NA	32	34.8	206
207	14.22	3.665	18.17	4.77	S	1b	NA	32	34.8	207
208	6.51	1.6275	10.7	2.72	S	1b	NA	32	34.8	208
209	14.35	3.84	13.3	3.51	S	1b	NA	32	34.8	209
210	50.37	38.4167	50.61	38.37	C	1b	40.2	26	289.5	210
211	32.87	28.5667	29.99	24.54	C	1b	40.2	26	289.5	211
212	32.2	28.5333	40.84	33.73	C	1b	40.2	26	289.5	212
213	18.18	9.74333	19.61	10.77	S	1b	40.2	26	289.5	213
214	9.54	3.18	9.21	3.08	S	1b	40.2	26	289.5	214
215	27.26	22.4033	36.44	30.27	C	1b	40.2	26	289.5	215
216	28.25	20.8467	30.67	24.09	C	1b	40.2	26	289.5	216

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCluster	ptNMsta ge	Lesion1Siz ePath	Lesion1Siz eDe	DNA input	Row number	Hospital
217	13.79	11.68	16.07	12.95	C	1b	40.2	26	289.5	217	U
218	15.45	7.86	16.36	8.6	S	1b	40.2	26	289.5	218	U
219	11.47	3.82333	7.43	2.48	S	1b	40.2	26	289.5	219	U
220	5.98	1.99333	11.37	3.79	S	1b	40.2	26	289.5	220	U
221	5.29	3.19	5.71	3.34	S	1b	40.2	26	289.5	221	U
222	16.22	8.62333	16.6	9.01	S	1b	40.2	26	289.5	222	U
223	15.17	7.95667	17.31	9.32	S	1b	40.2	26	289.5	223	U
224	14.87	9.09333	17.92	9.75	S	1b	40.2	26	289.5	224	U
225	6.8	2.26667	6.02	2.01	S	1b	40.2	26	289.5	225	U
226	5.42	1.80667	6.69	2.23	S	1b	40.2	26	289.5	226	U
227	41.61	21.454	47.07	39.73	C	1a	14	14	48.2	227	L
228	37.55	19.078	52.38	30.35	C	1a	14	14	48.2	228	L
229	28.95	10.472	23.55	18.73	C	1a	14	14	48.2	229	L
230	23.6	10.528	21.53	17.22	C	1a	14	14	48.2	230	L
231	23.5	11.102	23.78	18.27	C	1a	14	14	48.2	231	L
232	17	8.418	15.03	12.47	C	1a	14	14	48.2	232	L
233	21.28	9.336	22.03	17.2	C	1a	14	14	48.2	233	L
234	27.02	11.704	27.39	20.58	C	1a	14	14	48.2	234	L
235	13.18	6.824	10.04	8.2	C	1a	14	14	48.2	235	L
236	21.48	9.542	22.29	16.94	C	1a	14	14	48.2	236	L
237	44.08	19.888	44.15	34.44		1a	14	14	48.2	237	L
238	7.42	1.53	5.71	1.9	S	1a	14	14	48.2	238	L
239	6.72	1.344	7.3	2.45	S	1a	14	14	48.2	239	L
240	6.64	1.426	7.29	2.43	S	1a	14	14	48.2	240	L
241	6.29	1.258	7.42	2.49	S	1a	14	14	48.2	241	L
242	24.6	9.3	24.21	15.33	S	1a	14	14	48.2	242	L
243	27.95	10.504	28.2	21.92	C	1a	14	14	48.2	243	L

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI cluster	PTNMStage	Lesion1Siz ePath	Lesion1Siz eDe	DNA input	Row number	Hospital
244	19.74	8.312	20.27	15.07	C	1a	14	14	48.2	244	L
245	15.42	6.884	22.48	16.33	S	1a	14	14	48.2	245	L
246	37.97	23.075	39.92	26.51	C	1a	24	24	29.5	246	L
247	11.5	2.9625	12.35	3.24	S	1a	24	24	29.5	247	L
248	11.4	2.85	0	0	S	1a	24	24	29.5	248	L
249	8.59	2.275	7.73	2.06	S	1a	24	24	29.5	249	L
250	38.49	19.7475	43.59	23.67	C	1a	24	24	29.5	250	L
251	21.03	11.2725	25.26	14.33	C	1a	24	24	29.5	251	L
252	31.02	21.7775	29.81	22.44	C	1a	24	24	29.5	252	L
253	6.13	1.5325	7.86	1.96	S	1a	24	24	29.5	253	L
254	8.25	2.155	0	0	S	1a	24	24	29.5	254	L
255	22.44	5.8025	24.56	6.16	S	1a	24	24	29.5	255	L
256	18.44	4.6475	18.7	4.68	S	1a	24	24	29.5	256	L
257	14.82	3.8275	15.74	3.95	S	1a	24	24	29.5	257	L
258	8.63	4.2575	8.83	4.42	S	1a	24	24	29.5	258	L
259	7.79	3.3925	8.65	4.16	S	1a	24	24	29.5	259	L
260	7.81	2.165	8.62	2.32	S	1a	24	24	29.5	260	L
261	6.99	1.91	7.13	1.87	S	1a	24	24	29.5	261	L
262	6.64	1.855	6.36	1.74	S	1a	24	24	29.5	262	L
263	5.71	1.635	6.7	1.82	S	1a	24	24	29.5	263	L
264	5.65	1.4125	6.79	1.71	S	1a	24	24	29.5	264	L
265	5.6	1.4	4.84	1.22	S	1a	24	24	29.5	265	L
266	60.1	51.8233	62.43	53.82	C	1b	40	40	12.2	266	U
267	59.93	55.45	60.29	52.94	C	1b	40	40	12.2	267	U
268	53.71	39.3833	67.24	52.19	C	1b	40	40	12.2	268	U
269	53.66	39.91	67.24	52.21	C	1b	40	40	12.2	269	U
270	39.01	29.5967	40.21	32.73	C	1b	40	40	12.2	270	U

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Max VAF in tumor	Mean VAF in tumor	Natera Mean VAF in tumor	PyCloneCluster	ptNMSta	Lesion1Size	Lesion1Size	DNA input	Row number	Hospital
271	34.41	28.7267	34.6	29.26	C	1b	40	40	40	12.2	271	U
272	32.71	29.67	43.86	37.33	C	1b	40	40	40	12.2	272	U
273	19.41	6.87667	15.76	6.03	S	1b	40	40	40	12.2	273	U
274	14.92	6.4	16.87	7.7	S	1b	40	40	40	12.2	274	U
275	12.09	7.46	13.97	8.11	S	1b	40	40	40	12.2	275	U
276	6.71	4.74	5.88	4.69		1b	40	40	40	12.2	276	U
277	23.94	21.8633	23.93	20.76	C	1b	40	40	40	12.2	277	U
278	73.54	57.49	72.47	57.39	C	1b	40	40	40	12.2	278	U
279	44.65	37.11	45.53	37.13	C	1b	40	40	40	12.2	279	U
280	35.34	27.38	35.06	26.9	C	1b	40	40	40	12.2	280	U
281	73.45	62.8933	71.56	61.68	C	1b	40	40	40	12.2	281	U
282	41.04	32.15	41.4	32.97	C	1b	40	40	40	12.2	282	U
283	12.05	5.03667	14.91	6.16		1b	40	40	40	12.2	283	U
284	7.06	2.64333	5.9	2.2	S	1b	40	40	40	12.2	284	U
285	21.32	7.89	0	0	S	1b	40	40	40	12.2	285	U
286	11.85	4.61	14.47	6.03	S	1b	40	40	40	12.2	286	U
287	42.64	14.2914	50.6	19.76	S	2a	45	45	45	29.3	287	U
288	37.04	22.2271	42.63	27.36	C	2a	45	45	45	29.3	288	U
289	18.98	3.86571	0.09	4.76	S	2a	45	45	45	29.3	289	U
290	47.11	25.7271	45.85	29.72	C	2a	45	45	45	29.3	290	U
291	22.22	13.1529	23.81	16.49	C	2a	45	45	45	29.3	291	U
292	39.74	22.85	41.47	28.17	C	2a	45	45	45	29.3	292	U
293	81.63	46.6329	91.67	75.56		2a	45	45	45	29.3	293	U
294	46.98	25.8586	46.74	30.7	C	2a	45	45	45	29.3	294	U
295	21.63	4.18571	0.11	4.44	S	2a	45	45	45	29.3	295	U
296	18.46	3.65714	0.13	4.3	S	2a	45	45	45	29.3	296	U
297	16.02	6.59286	18.22	8.62	S	2a	45	45	45	29.3	297	U

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PycloneCI	PTNMStage	Lesion1Size	Lesion2Size	eDe	DNA input	Row number	Hospital
298	16.74	7.16286	19.71	9.56	S	2a	45	45	45	29.3	298	U
299	14.29	5.76143	14.34	6.55	S	2a	45	45	45	29.3	299	U
300	6.57	0.98	7.66	1.28	S	2a	45	45	45	29.3	300	U
301	6.49	0.927143	6.84	1.14	S	2a	45	45	45	29.3	301	U
302	13.19	1.88429	0	2.69		2a	45	45	45	29.3	302	U
303	12.39	1.77	0	2.4	S	2a	45	45	45	29.3	303	U
304	8	1.24	0	1.43	S	2a	45	45	45	29.3	304	U
305	22.98	3.47429	25.68	4.29		2a	45	45	45	29.3	305	U
306	44.11	22.055	50.35	50.35		1b	NA	NA	42	10.9	306	M
307	36.34	18.17	39.78	39.78		1b	NA	NA	42	10.9	307	M
308	28.24	14.12	21.41	21.41		1b	NA	NA	42	10.9	308	M
309	8.09	4.045	9.23	9.23		1b	NA	NA	42	10.9	309	M
310	16.33	8.165	9.62	9.62		1b	NA	NA	42	10.9	310	M
311	10.92	5.46	10.47	10.47		1b	NA	NA	42	10.9	311	M
312	30.66	15.33	32.79	32.79		1b	NA	NA	42	10.9	312	M
313	8.94	4.47	5.95	5.95		1b	NA	NA	42	10.9	313	M
314	37.04	18.52	41.92	41.92		1b	NA	NA	42	10.9	314	M
315	29.08	14.54	16.04	16.04		1b	NA	NA	42	10.9	315	M
316	28.34	14.17	28.03	28.03		1b	NA	NA	42	10.9	316	M
317	8.57	4.285	15.23	15.23		1b	NA	NA	42	10.9	317	M
318	7.21	3.605	12.06	12.06		1b	NA	NA	42	10.9	318	M
319	5.72	2.86	7.26	7.26		1b	NA	NA	42	10.9	319	M
320	5.56	2.78	8.27	8.27		1b	NA	NA	42	10.9	320	M
321	56.35	26.1875	49.79	31.11	C	2a	NA	55	94	321	M	
322	47.27	20.33	53.25	31.47	C	2a	NA	55	94	322	M	
323	35.16	18.695	33.83	25.28	C	2a	NA	55	94	323	M	
324	28.31	12.0325	27.24	17.86	C	2a	NA	55	94	324	M	

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	pTNMStage	Lesion1Size	Lesion1Size	DNA input	Row number	Hospital
325	23.88	10.1337	20.8	15.59	C	2a	NA	55	94	325	M
326	19.46	6.95375	21.57	6.03	S	2a	NA	55	94	326	M
327	25.87	11.6725	25.22	15.06	C	2a	NA	55	94	327	M
328	25.43	11.8988	30.1	19.2	C	2a	NA	55	94	328	M
329	27.32	12.4475	27.27	17.27	C	2a	NA	55	94	329	M
330	35.81	17.7275	41.69	27.37	C	2a	NA	55	94	330	M
331	16.93	2.11625	0.1	2.84	S	2a	NA	55	94	331	M
332	17.2	2.15	0.02	3.62	S	2a	NA	55	94	332	M
333	12.19	2.15375	12.81	2.96	S	2a	NA	55	94	333	M
334	9.64	1.73875	10.19	2.42	S	2a	NA	55	94	334	M
335	26.83	9.05375	26.47	12.61	S	2a	NA	55	94	335	M
336	6.68	0.835	3.32	0.64	S	2a	NA	55	94	336	M
337	6.9	0.8625	7.8	1.3	S	2a	NA	55	94	337	M
338	6.19	0.77375	6.58	1.11	S	2a	NA	55	94	338	M
339	5.84	0.73	6.77	1.13	S	2a	NA	55	94	339	M
340	57.36	33.8175	56.95	35.26	C	1a	NA	29	57.2	340	M
341	48.63	32.7975	37.14	30.25	C	1a	NA	29	57.2	341	M
342	30.89	17.885	11.11	7.2	C	1a	NA	29	57.2	342	M
343	30.77	16.4025	7.51	4.16	C	1a	NA	29	57.2	343	M
344	30.22	18.6575	38.28	22.42	C	1a	NA	29	57.2	344	M
345	19.47	14.2375	21.77	14.83	C	1a	NA	29	57.2	345	M
346	15.75	5.03	50	18.97	S	1a	NA	29	57.2	346	M
347	33.52	19.915	31.13	19.76	C	1a	NA	29	57.2	347	M
348	21.31	13.0175	17.65	10.36	C	1a	NA	29	57.2	348	M
349	16.99	8.6425	16.02	9.37	C	1a	NA	29	57.2	349	M
350	31.33	20.16	38	23.21	C	1a	NA	29	57.2	350	M
351	42.94	24.495	39.92	24.22	C	1a	NA	29	57.2	351	M

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI cluster	PTNMStage	Tumor1Size	Tumor1Size	DNA input	Row number	Hospital
352	20.41	15.01	25.72	18.61	C	1a	NA	29	57.2	352	M
353	7.72	1.93	10.37	2.59	S	1a	NA	29	57.2	353	M
354	6	1.5	8.38	2.09	S	1a	NA	29	57.2	354	M
355	6.49	1.6225	5.14	1.3	S	1a	NA	29	57.2	355	M
356	6.72	1.725	5.78	1.45	S	1a	NA	29	57.2	356	M
357	5.91	1.4775	5.18	1.3	S	1a	NA	29	57.2	357	M
358	5.12	1.28	4.18	1.06	S	1a	NA	29	57.2	358	M
359	36.78	29.81	53.85	38.43	C	1a	10	10	65	359	R
360	28.92	20.045	26.42	20.53	C	1a	10	10	65	360	R
361	19.9	15.925	15	14.22	C	1a	10	10	65	361	R
362	25.37	17.445	25	19.15	C	1a	10	10	65	362	R
363	20.22	15.735	17.95	16.11	C	1a	10	10	65	363	R
364	25.34	19.495	24.59	19.33	C	1a	10	10	65	364	R
365	23.51	18.18	36.36	26.05	C	1a	10	10	65	365	R
366	49.44	34.38	50	36.65	C	1a	10	10	65	366	R
367	19.59	16.67	27.06	13.53	C	1a	10	10	65	367	R
368	25.08	19.47	19.05	16.77	C	1a	10	10	65	368	R
369	12.77	9.4	7.57	6.01	C	1a	10	10	65	369	R
370	13.33	10.225	7.09	6.74	C	1a	10	10	65	370	R
371	9.13	7.675	18.18	12.57	C	1a	10	10	65	371	R
372	10.73	8.125	11.56	5.78	C	1a	10	10	65	372	R
373	12.92	9.64	12.73	10.12	C	1a	10	10	65	373	R
374	6.25	4.36	12.86	8	C	1a	10	10	65	374	R
375	8.33	6.53	15.12	10.6	C	1a	10	10	65	375	R
376	6.5	4.31	8.16	5.4	C	1a	10	10	65	376	R
377	46.67	23.3875	76.91	55.52	C	1b	45	43	32.8	377	L
378	37.39	22.1475	44.7	34.18	C	1b	45	43	32.8	378	L

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Max VAF in tumor	Max VAF in tumor	Natera Mean VAF in Tumor	PyClone1 cluster	pTNMStage	Lesion1Size	DNA input	Row number	Hospital
						ePath	eDe	eDe			
379	36.39	20.2675	37.56	27.15	C	1b	45	43	32.8	379	L
380	33.98	19.355	37.13	26.71	C	1b	45	43	32.8	380	L
381	27.59	14.05	28.13	20.22	C	1b	45	43	32.8	381	L
382	24.29	13.7375	29.27	23.71	C	1b	45	43	32.8	382	L
383	21.71	10.4625	22.74	15.19	C	1b	45	43	32.8	383	L
384	15.81	8.59	18.28	12.54	C	1b	45	43	32.8	384	L
385	37.67	19.44	24.1	16.76		1b	45	43	32.8	385	L
386	44.74	26.995	44.9	34.41	C	1b	45	43	32.8	386	L
387	26.57	16.4825	28.41	21.98	C	1b	45	43	32.8	387	L
388	13.77	6.92	14.8	9.93	C	1b	45	43	32.8	388	L
389	6.25	3.915	10.53	7.28	S	1b	45	43	32.8	389	L
390	6.83	1.8425	10.53	3.51	S	1b	45	43	32.8	390	L
391	7.75	1.9375	5.35	1.8	S	1b	45	43	32.8	391	L
392	16.23	8.3475	17.75	12.29	S	1b	45	43	32.8	392	L
393	16.15	7.7175	16.5	12.23	S	1b	45	43	32.8	393	L
394	13.16	7.5625	13.47	8.9	C	1b	45	43	32.8	394	L
395	6.1	3.8975	10.55	7.31	S	1b	45	43	32.8	395	L
396	40.44	20.712	37.89	23.03	C	3a	70	70	36.3	396	U
397	39.28	21.1175	40.39	26	C	3a	70	70	36.3	397	U
398	28.67	14.8925	27	17.83	C	3a	70	70	36.3	398	U
399	14.73	8.87625	12.46	8.78	C	3a	70	70	36.3	399	U
400	13.96	8.37	16.82	10.33	C	3a	70	70	36.3	400	U
401	18.6	9.4125	31.82	19.6	C	3a	70	70	36.3	401	U
402	17.26	9.0525	30.65	18.9	C	3a	70	70	36.3	402	U
403	13.41	6.245	13.1	7.69	C	3a	70	70	36.3	403	U
404	22.27	10.5925	15.38	9.51	C	3a	70	70	36.3	404	U
405	5.65	0.78625	15.79	2.9	S	3a	70	70	36.3	405	U

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in Tumor	Natera Mean VAF in Tumor	PyClone cluster	PTNMStage	LesionSize	LesionSizeDe	DNAnput	Row number	Hospital
406	10.71	1.36125	5.82	0.92	S	3a	70	70	36.3	406	U
407	7.41	0.955	8.79	1.28	S	3a	70	70	36.3	407	U
408	8.73	1.09125	14.21	2.03	S	3a	70	70	36.3	408	U
409	20.78	7.185	13.56	6.28	S	3a	70	70	36.3	409	U
410	8.56	1.32875	7.72	1.4	S	3a	70	70	36.3	410	U
411	15	4.1875	15.61	5.01	S	3a	70	70	36.3	411	U
412	11.64	4.07875	18.18	6.39	S	3a	70	70	36.3	412	U
413	9.82	1.9525	9.23	2.51	S	3a	70	70	36.3	413	U
414	11.81	2.555	10.49	2.7	S	3a	70	70	36.3	414	U
415	40.95	38.5233	48.85	44.77	C	1b	48	40	16.6	415	A
416	26.57	24.2367	28.82	28.24	C	1b	48	40	16.6	416	A
417	23.46	20.8467	41.06	38.99	C	1b	48	40	16.6	417	A
418	14.73	13.0733	15.58	15.28	C	1b	48	40	16.6	418	A
419	10.47	5.07667	11.45	6.79	S	1b	48	40	16.6	419	A
420	5.14	1.71333	5.51	1.84	S	1b	48	40	16.6	420	A
421	15.21	11.5267	10.98	10.72	C	1b	48	40	16.6	421	A
422	27.87	26.0867	32.17	31.26	C	1b	48	40	16.6	422	A
423	11.59	10.4267	13.81	11.88	C	1b	48	40	16.6	423	A
424	25.58	22.5167	25.39	24.08	C	1b	48	40	16.6	424	A
425	7.6	2.53333	4.9	1.63	S	1b	48	40	16.6	425	A
426	7.55	2.51667	6.87	2.29	S	1b	48	40	16.6	426	A
427	8.02	2.67333	7.09	2.36	S	1b	48	40	16.6	427	A
428	6.02	2.00667	4.24	1.41	S	1b	48	40	16.6	428	A
429	10.97	5.04	10	4.91	S	1b	48	40	16.6	429	A
430	9.84	5.10667	12.48	5.7	S	1b	48	40	16.6	430	A
431	9.21	4.43333	12.99	5.93	S	1b	48	40	16.6	431	A
432	7.53	2.68333	6.7	2.23	S	1b	48	40	16.6	432	A

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI cluster	PTNMStage	LesionSize	DNA input	Row number	Hospital
433	8.78	2.926567	11.9	4.11	5	1b	48	40	16.6	433
434	7.88	2.656567	9.3	3.17	5	1b	48	40	16.6	434
435	24.81	8.27	19.99	6.68		1b	48	40	16.6	435
436	66.67	52.4325	65.59	53.3	C	2b	39	40	20	436
437	53.71	44.705	53.76	42.14	C	2b	39	40	20	437
438	42.41	36.4025	48.94	36.64	C	2b	39	40	20	438
439	39.77	30.0575	42.09	36.56	C	2b	39	40	20	439
440	12.85	3.2125	14.47	3.64	5	2b	39	40	20	440
441	53.07	36.995	45.05	35.08	C	2b	39	40	20	441
442	52.52	34.7975	51.05	34.23	C	2b	39	40	20	442
443	35.06	25.29	33.22	27.53	C	2b	39	40	20	443
444	55.54	45.1775	52.24	44.13		2b	39	40	20	444
445	39.93	35.28	43.88	35.12	C	2b	39	40	20	445
446	13.46	3.365	25.15	6.31	5	2b	39	40	20	446
447	13.36	3.34	15.04	3.81	5	2b	39	40	20	447
448	12.72	3.18	14.68	3.71	5	2b	39	40	20	448
449	20.42	5.105	21.59	5.47	5	2b	39	40	20	449
450	6.43	1.6075	11.21	2.85	5	2b	39	40	20	450
451	27.43	12.81	41.14	19.52	5	2b	39	40	20	451
452	17.46	7.655	19.41	8.79	5	2b	39	40	20	452
453	34.12	18.945	40.59	20.29	5	2b	39	40	20	453
454	8.84	2.21	9.44	2.4		2b	39	40	20	454
455	8.61	2.1525	9.71	2.43	5	2b	39	40	20	455
456	15.57	10.385	15.3	10.11	5	3a	43	40	73.9	456
457	10.38	8.35	11.13	7.81	C	3a	43	40	73.9	457
458	10.2	8.3825	10.18	8.66	C	3a	43	40	73.9	458
459	7.32	5.985	8.07	6.72		3a	43	40	73.9	459

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	PTNMSta	Lesion1Siz e	Lesion1Siz ePath	Lesion1Siz eDe	DNA Input	Row number	Hospital
450	10.24	7.105	15.63	11.32	S	3a	43	40	73.9	460	A	
461	8.04	6.005	9.24	6.37	S	3a	43	40	73.9	461	A	
462	12.56	6.9375	7.86	5.68	S	3a	43	40	73.9	462	A	
463	5.01	1.2525	5.92	1.48	S	3a	43	40	73.9	463	A	
464	8.53	2.16	6.22	1.56	S	3a	43	40	73.9	464	A	
465	5.89	3.3475	5.15	3.04	S	3a	43	40	73.9	465	A	
466	8.68	3.1375	8	2.75	S	3a	43	40	73.9	466	A	
467	6.91	4.3025	11.63	5.39	S	3a	43	40	73.9	467	A	
468	8.12	4.2625	9.45	5.11	S	3a	43	40	73.9	468	A	
469	5.73	1.4325	5.87	1.47	S	3a	43	40	73.9	469	A	
470	5.11	1.2775	4.78	1.19	S	3a	43	40	73.9	470	A	
471	7.32	1.83	3.86	0.97	S	3a	43	40	73.9	471	A	
472	5.11	1.3025	4.97	1.24	S	3a	43	40	73.9	472	A	
473	10.21	3.2775	10.74	3.97	S	3a	43	40	73.9	473	A	
474	8.47	3.6575	10.69	4.51	S	3a	43	40	73.9	474	A	
475	26.47	13.8175	25.46	18.31	C	1b	NA	41	33.7	475	B	
476	12.04	3.855	13.2	5.3	S	1b	NA	41	33.7	476	B	
477	13.34	8.6125	16.36	15.37	C	1b	NA	41	33.7	477	B	
478	15.01	10.3	18.87	13.27	C	1b	NA	41	33.7	478	B	
479	17.17	9.775	19.6	14.44	C	1b	NA	41	33.7	479	B	
480	33.16	15.17	52.58	30.3	C	1b	NA	41	33.7	480	B	
481	14.63	9.52	19.85	14.54	C	1b	NA	41	33.7	481	B	
482	29.31	14.055	33.82	19.08	C	1b	NA	41	33.7	482	B	
483	13.24	8.565	18.54	14.08	C	1b	NA	41	33.7	483	B	
484	9.91	5.345	13.05	10.89	S	1b	NA	41	33.7	484	B	
485	14.41	6.8075	13.76	9.61	S	1b	NA	41	33.7	485	B	
486	9.53	5.9	10.39	9.13	S	1b	NA	41	33.7	486	B	

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCluster	PTNWista	Lesion1Size	Lesion1Size	Row number	Hospital
					ePath	ePath	eDe	eDe		
487	14.17	6.905	13.57	9.01	S	1b	NA	41	33.7	487
488	7.3	1.93	4.84	1.63	S	1b	NA	41	33.7	488
489	6.35	1.5875	8.73	2.95	S	1b	NA	41	33.7	489
490	12.05	3.8	11.35	4.69	S	1b	NA	41	33.7	490
491	5.81	1.5675	6.6	2.23	S	1b	NA	41	33.7	491
492	5.02	1.255	0	0	S	1b	NA	41	33.7	492
493	17.43	12.7767	19.69	14.02	C	2a	22	25	75.5	493
494	10.59	7.22667	10.06	7.44	C	2a	22	25	75.5	494
495	13.36	9.78667	25	12.5	C	2a	22	25	75.5	495
496	9.47	6.42333	9.91	6.35	C	2a	22	25	75.5	496
497	11.3	8.55333	11.19	8.94	C	2a	22	25	75.5	497
498	13.33	9.77667	11.66	8.63	C	2a	22	25	75.5	498
499	10.01	8.97333	12.64	9.83	C	2a	22	25	75.5	499
500	5.97	2.90667	5.97	2.97	C	2a	22	25	75.5	500
501	13.93	8.69333	16.47	10.63	C	2a	22	25	75.5	501
502	10.44	7.73	11.11	8.62	C	2a	22	25	75.5	502
503	9.51	6.04333	10.37	7.05	C	2a	22	25	75.5	503
504	9.46	5.79667	10.54	6.45	C	2a	22	25	75.5	504
505	8.48	6.35667	9.65	7.66	C	2a	22	25	75.5	505
506	5.01	2.72333	5.74	3.2	C	2a	22	25	75.5	506
507	38.46	17.004	36.07	19.41	C	3a	NA	37	8.5	507
508	37.76	17.76	42.59	23.43	C	3a	NA	37	8.5	508
509	36.2	16.832	36.64	22.64	C	3a	NA	37	8.5	509
510	35.36	16.19	36.9	20.58	C	3a	NA	37	8.5	510
511	33.18	13.816	0	0	C	3a	NA	37	8.5	511
512	31.91	12.108	31.16	16.11	C	3a	NA	37	8.5	512
513	31.34	16.644	35.37	20.94	C	3a	NA	37	8.5	513

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCluster	ptNMSta	Lesion1Size	DNA input	Row number	Hospital
					ePath	eDe				
514	29.72	14.39	28.68	17.16	C	3a	NA	37	8.5	514
515	28.22	13.152	32.57	16.94	C	3a	NA	37	8.5	515
516	25.85	11.136	23.96	14.16	C	3a	NA	37	8.5	516
517	25.7	12.108	25	6.25	C	3a	NA	37	8.5	517
518	23.87	10.928	23.04	13.56	C	3a	NA	37	8.5	518
519	19.12	7.114	20.29	11.05	C	3a	NA	37	8.5	519
520	13.7	4.438	13.35	5.57	S	3a	NA	37	8.5	520
521	9.09	1.818	10.69	2.67	S	3a	NA	37	8.5	521
522	6.35	2.13	7.82	3.64	S	3a	NA	37	8.5	522
523	7.53	1.506	18.71	4.68		3a	NA	37	8.5	523
524	10.24	2.048	6.23	1.57	S	3a	NA	37	8.5	524
525	5.2	1.04	2.61	0.65	S	3a	NA	37	8.5	525
526	24.72	16.03	23.46	20.04	C	1b	NA	42	29	526
527	12.26	8.04	11.07	10.66	C	1b	NA	42	29	527
528	6.96	1.74	6.64	2.21	S	1b	NA	42	29	528
529	29.47	16.65	50	19.44	C	1b	NA	42	29	529
530	22.98	16.9325	22	18.05	C	1b	NA	42	29	530
531	14.89	9.145	17.61	13.65	C	1b	NA	42	29	531
532	19.14	13.965	25.3	20.3	C	1b	NA	42	29	532
533	21.76	13.5525	22.74	17.72	C	1b	NA	42	29	533
534	25	17.99	26.86	23.34		1b	NA	42	29	534
535	9.66	2.4775	9.81	3.27	S	1b	NA	42	29	535
536	6.57	1.75	7.91	2.64		1b	NA	42	29	536
537	7.68	1.92	5.79	1.93	S	1b	NA	42	29	537
538	11.66	2.915	11.94	4	S	1b	NA	42	29	538
539	14.65	3.73	17.41	5.82	S	1b	NA	42	29	539
540	11.9	2.975	10.96	3.66	S	1b	NA	42	29	540

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCt	PTNMStage	Lesion1Size	Lesion1Size	DNA input	Row number	Hospital
541	6.45	1.6125	6.29	2.1	S	1b	NA	42	29	541	B
542	13.74	3.6775	24.18	8.07	S	1b	NA	42	29	542	B
543	6.84	2.8425	6.5	3.9	S	1b	NA	42	29	543	B
544	37.01	25.055	36.82	25.75	C	2b	NA	47	29.7	544	B
545	36.05	23.4725	36.18	25.09	C	2b	NA	47	29.7	545	B
546	15.3	3.8825	16.16	4.17	S	2b	NA	47	29.7	546	B
547	7.41	1.8525	17.11	4.33		2b	NA	47	29.7	547	B
548	24.22	16.2575	26.2	15.92	C	2b	NA	47	29.7	548	B
549	9.01	7.2025	12.43	9.53	C	2b	NA	47	29.7	549	B
550	11.95	2.9875	11.55	2.92	S	2b	NA	47	29.7	550	B
551	10.47	2.6175	9.67	2.44	S	2b	NA	47	29.7	551	B
552	9.85	2.5175	10.45	2.62	S	2b	NA	47	29.7	552	B
553	10.75	4.705	13.49	6.06	S	2b	NA	47	29.7	553	B
554	9.69	5.2325	13.89	3.47	S	2b	NA	47	29.7	554	B
555	8.5	3.3975	6.96	3.15	S	2b	NA	47	29.7	555	B
556	7.67	2.4025	7.09	2.78	S	2b	NA	47	29.7	556	B
557	6.86	2.2825	6.05	2.26	S	2b	NA	47	29.7	557	B
558	5.48	2.25	6.34	2.33	S	2b	NA	47	29.7	558	B
559	11.14	2.865	13.65	3.53	S	2b	NA	47	29.7	559	B
560	6.75	1.6875	4.09	1.03	S	2b	NA	47	29.7	560	B
561	5.54	1.385	3.82	0.96	S	2b	NA	47	29.7	561	B
562	43.95	18.8725	39.88	28.49	C	1b	52	25	27.4	562	U
563	40.91	15.5613	54.55	21.91	C	1b	52	25	27.4	563	U
564	38.74	13.3413	32.69	18.9	C	1b	52	25	27.4	564	U
565	26.63	9.495	26.47	15.87	C	1b	52	25	27.4	565	U
566	15.49	2.805	13.77	4.32	S	1b	52	25	27.4	566	U
567	14.05	5.40125	15.2	8.38	S	1b	52	25	27.4	567	U

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	PTNMStage	Lesion1SizePath	Lesion1SizeeDe	DNA input	Row number	Hospital
568	11.38	4.6125	15.92	8.26	C	1b	52	25	27.4	568	U
569	33.77	11.4788	34.42	19.91	C	1b	52	25	27.4	569	U
570	19.7	6.965	22.22	14.4	C	1b	52	25	27.4	570	U
571	5.26	0.71875	6.56	1.39	S	1b	52	25	27.4	571	U
572	7.63	1.02125	9.33	2.15	S	1b	52	25	27.4	572	U
573	9.76	1.2975	8.29	1.88	S	1b	52	25	27.4	573	U
574	5.26	0.675	5.96	1.26	S	1b	52	25	27.4	574	U
575	6.48	0.9025	6.63	1.33	S	1b	52	25	27.4	575	U
576	14.13	4.50125	13.1	6.28	S	1b	52	25	27.4	576	U
577	12.89	4.4175	11.93	6.55	S	1b	52	25	27.4	577	U
578	9.99	1.30375	9.78	1.97	S	1b	52	25	27.4	578	U
579	9.49	1.21875	11.28	2.27	S	1b	52	25	27.4	579	U
580	5.6	0.7	5.52	1.14	S	1b	52	25	27.4	580	U
581	5.4	0.68875	5.41	1.1	S	1b	52	25	27.4	581	U
582	24.62	8.12167	31.41	18.32	C	2a	60	24	41.4	582	U
583	16.96	4.81833	18.95	9.95	C	2a	60	24	41.4	583	U
584	14.76	4.42	13.71	7.57	C	2a	60	24	41.4	584	U
585	13.02	2.60667	11.45	4.35	S	2a	60	24	41.4	585	U
586	12.6	3.70167	11.16	6.4	C	2a	60	24	41.4	586	U
587	10.46	3.26333	11.11	6.71	C	2a	60	24	41.4	587	U
588	10.45	4.12333	19.93	16.34	C	2a	60	24	41.4	588	U
589	9.92	3.09167	18.14	12.77	C	2a	60	24	41.4	589	U
590	9.63	3.36833	9.66	5.95	C	2a	60	24	41.4	590	U
591	10.2	3.37	10.32	6.15	C	2a	60	24	41.4	591	U
592	30.25	10.0917	28.96	18.76	C	2a	60	24	41.4	592	U
593	10.7	4.12667	16.55	11.28	C	2a	60	24	41.4	593	U
594	12.5	4.015	10.57	6.35	C	2a	60	24	41.4	594	U

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	pTNmStage	Lesion1Size	DNA input	Row number	Hospital
595	18.56	6.54167	22.29	13.2	C	2a	60	24	41.4	595
596	6.48	1.27667	6.68	2.3	C	2a	60	24	41.4	596
597	13.04	2.44	11.63	4.4	S	2a	60	24	41.4	597
598	5.29	0.881667	3.31	1.1	S	2a	60	24	41.4	598
599	8.33	1.70833	11.44	4.33	S	2a	60	24	41.4	599
600	8.28	1.715	8.41	3.31	S	2a	60	24	41.4	600
601	5.85	0.975	5.74	1.93	S	2a	60	24	41.4	601
602	36.38	30.755	41.06	35.59	C	1b	22	20	18	602
603	31.03	18.195	31.47	23.04	C	1b	22	20	18	603
604	30.3	24.57	35.66	30.9	C	1b	22	20	18	604
605	27.57	25.65	30.01	24.34	C	1b	22	20	18	605
606	25.84	22.225	24.95	21.38	C	1b	22	20	18	606
607	23.11	16.27	21.94	16.53		1b	22	20	18	607
608	18.25	14.68	28.57	18.83	C	1b	22	20	18	608
609	14.42	11.59	26.39	16.32		1b	22	20	18	609
610	13.95	13.24	18.09	15.77	C	1b	22	20	18	610
611	9.67	6.675	9.45	5.71	S	1b	22	20	18	611
612	8.97	5.85	7.41	5.43	S	1b	22	20	18	612
613	27.32	22.595	28.71	24.2	C	1b	22	20	18	613
614	23.42	18.86	24.38	20.4	C	1b	22	20	18	614
615	11.31	9.25	11.58	10.26	C	1b	22	20	18	615
616	34.77	30.005	41.5	36.29	C	1b	22	20	18	616
617	8.02	4.185	8.93	4.46	S	1b	22	20	18	617
618	10.63	5.315	10.03	5.01	S	1b	22	20	18	618
619	6.13	4.14	8.25	5.66	S	1b	22	20	18	619
620	6.51	3.255	6.48	3.24	S	1b	22	20	18	620
621	42.62	27.5733	46.35	33.79	C	2a	NA	49	82.5	621

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI cluster	PTNMStage	Lesion1Size	Lesion1Size	Row number	Hospital
					ePath	eDe	eDe			
622	28.12	18.90117	31.73	25.7	C	2a	NA	49	82.5	622
623	26.5	15.755	24.98	18.28	C	2a	NA	49	82.5	623
624	16.97	10.07	20.84	16.05		2a	NA	49	82.5	624
625	16.04	7.55833	14.42	9.08	C	2a	NA	49	82.5	625
626	14.14	8.82667	33.33	16.2	C	2a	NA	49	82.5	626
627	12.98	3.545	10.84	4.74	S	2a	NA	49	82.5	627
628	11.19	2.80667	8.04	3.18	S	2a	NA	49	82.5	628
629	8.96	3.445	9.3	4.02	S	2a	NA	49	82.5	629
630	18.49	11.9783	20.46	15.25	C	2a	NA	49	82.5	630
631	20.06	11.93	20.44	15.43	C	2a	NA	49	82.5	631
632	16.57	9.65333	20	14.51	C	2a	NA	49	82.5	632
633	22.49	10.0783	15.66	10.63	C	2a	NA	49	82.5	633
634	20.45	10.255	19.75	14.66	C	2a	NA	49	82.5	634
635	9.54	4.21	10.51	4.47	S	2a	NA	49	82.5	635
636	7.87	2.925	2.33	0.47	S	2a	NA	49	82.5	636
637	8.78	3.23333	10.29	4.28	S	2a	NA	49	82.5	637
638	7.51	2.895	9.67	4.21	S	2a	NA	49	82.5	638
639	9.11	3.35833	9.87	4.09	S	2a	NA	49	82.5	639
640	7.6	2.52833	9.2	3.41	S	2a	NA	49	82.5	640
641	23.39	7.99667	22.71	7.68	S	1b	35	25	3.4	641
642	19.83	6.72	26.67	8.89	S	1b	35	25	3.4	642
643	8.97	2.99	10.17	3.39	S	1b	35	25	3.4	643
644	7.46	2.48667	7.3	2.45	S	1b	35	25	3.4	644
645	6.36	2.12	5.99	2	S	1b	35	25	3.4	645
646	32.37	26.89	29.01	27.16	C	1b	35	25	3.4	646
647	7.98	2.66	10.54	3.51	S	1b	35	25	3.4	647
648	8.99	2.99667	6.21	2.07	S	1b	35	25	3.4	648

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCaller	ptNMSta ge	LesionSizePath	LesionSize ePath	DNA input	Row number	Hospital
649	5.62	1.87333	7.61	2.58	S	1b	35	25	3.4	649	U
650	26.06	8.78333	26.77	8.93	S	1b	35	25	3.4	650	U
651	34.41	11.47	37.55	12.53		1b	35	25	3.4	651	U
652	28.22	16.8467	27.12	16.23	C	1b	35	25	3.4	652	U
653	24.07	13.36	23.41	13.91	C	1b	35	25	3.4	653	U
654	23.01	13.49667	24.49	11.61	S	1b	35	25	3.4	654	U
655	9.58	3.23	11.19	3.82	S	1b	35	25	3.4	655	U
656	21.35	7.25	9.57	3.19	S	1b	35	25	3.4	656	U
657	17.25	5.75	18.93	6.31	S	1b	35	25	3.4	657	U
658	7.1	2.36667	6.26	2.09	S	1b	35	25	3.4	658	U
659	6.48	2.16	6.19	2.06	S	1b	35	25	3.4	659	U
660	61.97	41.6643	64.73	44.76	C	2b	NA	67	124.6	660	B
661	48.18	13.87	49.19	14.44	S	2b	NA	67	124.6	661	B
662	37.54	10.1971	38.31	10.58	S	2b	NA	67	124.6	662	B
663	36.67	25.5814	38.82	26.77	C	2b	NA	67	124.6	663	B
664	33.84	25.0843	33.74	26.34	C	2b	NA	67	124.6	664	B
665	31.43	5.15	16.33	2.56	S	2b	NA	67	124.6	665	B
666	25.96	7.77714	25	7.41	S	2b	NA	67	124.6	666	B
667	17.48	4.42571	18.18	5.41	S	2b	NA	67	124.6	667	B
668	15.07	2.21	5.65	0.81		2b	NA	67	124.6	668	B
669	14.62	2.08857	12.17	1.74		2b	NA	67	124.6	669	B
670	11.56	1.65143	12.11	1.75	S	2b	NA	67	124.6	670	B
671	9.93	3.22857	9.2	3.08	S	2b	NA	67	124.6	671	B
672	8.62	1.23143	7.88	1.13	S	2b	NA	67	124.6	672	B
673	5.4	0.784286	5.05	0.75	S	2b	NA	67	124.6	673	B
674	57.9	36.8857	56.61	37.08	C	2b	NA	67	124.6	674	B
675	68.22	48.89	74.72	55.5		2b	NA	67	124.6	675	B

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	ptNMSta ge	Lesion1SizedPath	Lesion1Sized	DNA input	Row number	Hospital
676	55.49	39.15	61.63	43.95	C	2b	NA	67	124.6	676	B
677	6.07	0.901429	5.85	0.84	S	2b	NA	67	124.6	677	B
678	6.45	0.921429	8.04	1.15	S	2b	NA	67	124.6	678	B
679	5.24	0.748571	8.52	1.22	S	2b	NA	67	124.6	679	B
680	34.38	30.525	48.42	44.82	C	1a	NA	30	73.8	680	B
681	30.42	25.82	27.37	24.76	C	1a	NA	30	73.8	681	B
682	16.33	8.165	20.7	10.4	S	1a	NA	30	73.8	682	B
683	6.17	3.085	5.27	2.78	S	1a	NA	30	73.8	683	B
684	27.84	23.95	26.93	24.51	C	1a	NA	30	73.8	684	B
685	31.81	26.47	32.21	25.17		1a	NA	30	73.8	685	B
686	17.44	16.095	19.23	15.17	C	1a	NA	30	73.8	686	B
687	19.97	16.96	21.22	17.8		1a	NA	30	73.8	687	B
688	23.17	22.91	27.35	24.76	C	1a	NA	30	73.8	688	B
689	21.95	10.975	22.22	11.11	S	1a	NA	30	73.8	689	B
690	6.77	3.385	6.18	3.1	S	1a	NA	30	73.8	690	B
691	6.64	3.32	4.98	2.51	S	1a	NA	30	73.8	691	B
692	5.42	2.795	7.74	3.96	S	1a	NA	30	73.8	692	B
693	8.16	4.08	6.72	3.4	S	1a	NA	30	73.8	693	B
694	6.57	3.285	7.82	3.91	S	1a	NA	30	73.8	694	B
695	5.71	2.855	6.66	3.33	S	1a	NA	30	73.8	695	B
696	8.5	6.23	8.5	6.53	S	1a	NA	30	73.8	696	B
697	6.1	5.31	7.69	5.57	S	1a	NA	30	73.8	697	B
698	7.75	3.9925	7.9	4.85	C	1b	NA	53	12.7	698	M
699	25.19	10.785	22.32	13.27	C	1b	NA	53	12.7	699	M
700	6.72	3.3925	7.44	4.52	C	1b	NA	53	12.7	700	M
701	13.18	4.27	13.32	6.33		1b	NA	53	12.7	701	M
702	6.45	3.17	8.97	5.73	C	1b	NA	53	12.7	702	M

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	PTNMStage	Lesion1Size	Lesion1Size	Row number	Hospital
					ePath	ePath	ePath	eDe		
703	18.71	8.835	13.23	8.86	C	1b	NA	53	12.7	703
704	18.35	9.845	20.94	13.15	C	1b	NA	53	12.7	704
705	9.23	4.77	11.57	7.05	C	1b	NA	53	12.7	705
706	18.69	9.5425	17.43	11.35	C	1b	NA	53	12.7	706
707	16.4	7.78	17.32	10.89	C	1b	NA	53	12.7	707
708	9.78	2.9875	7.14	2.38	S	1b	NA	53	12.7	708
709	7.12	2.685	7.44	3.37	S	1b	NA	53	12.7	709
710	9.4	2.35	6.52	2.21		1b	NA	53	12.7	710
711	8.18	2.16	6.02	2.07		1b	NA	53	12.7	711
712	5.95	1.5725	4.46	1.5	S	1b	NA	53	12.7	712
713	17.98	14.0467	15.62	15.19	C	1a	NA	20	11.8	713
714	16.36	10.7267	15.24	11.76	C	1a	NA	20	11.8	714
715	10.18	9.60333	11.88	9.74	C	1a	NA	20	11.8	715
716	15.78	9.77333	15.91	11.39	C	1a	NA	20	11.8	716
717	11.29	9.80667	12.33	10.71	C	1a	NA	20	11.8	717
718	10.66	8.61333	13.49	10.73	C	1a	NA	20	11.8	718
719	11.8	9.43667	13.31	10.47	C	1a	NA	20	11.8	719
720	14.95	10.4167	16.04	11.45	C	1a	NA	20	11.8	720
721	10.59	9.23667	15.47	12.63	C	1a	NA	20	11.8	721
722	12.18	11.16	28.3	26.49	C	1a	NA	20	11.8	722
723	10	9.47	12.31	9.7	C	1a	NA	20	11.8	723
724	14.64	10.3733	10.61	9.33	C	1a	NA	20	11.8	724
725	6.4	5.48333	6.65	5.73	C	1a	NA	20	11.8	725
726	5.09	4.33333	5.51	4.93	S	1a	NA	20	11.8	726
727	5.01	3.65333	2.78	1.74	C	1a	NA	20	11.8	727
728	75	71	77.92	75.62		1b	NA	32	155.6	728
729	45.55	41.7975	52.05	46.41	C	1b	NA	32	155.6	729

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCt uster	ptNMSta ge	Lesion1Siz ePath	Lesion1Siz eDe	DN A input	Row number	Hospital	
730	43.61	41.05	44.74	43.68	C	1b	NA	32	155.6	730	M	
731	57.15	55.85	61.2	60.26	C	1b	NA	32	155.6	731	M	
732	33.96	31.25	75	16.92	15.74	C	1b	NA	32	155.6	732	M
733	45.22	39.87	55	42.04	40.38	C	1b	NA	32	155.6	733	M
734	34.98	30.23	25	28.36	20.89	C	1b	NA	32	155.6	734	M
735	43.45	42.23	55	66.67	53.74	C	1b	NA	32	155.6	735	M
736	43.12	41	42	42.36	41.44	C	1b	NA	32	155.6	736	M
737	39.02	36.83	55	43.81	42.76		1b	NA	32	155.6	737	M
738	37.55	35.16	42	42.86	30.49	C	1b	NA	32	155.6	738	M
739	30.47	27.77	75	30.26	29.15	C	1b	NA	32	155.6	739	M
740	26.72	25.86	55	31.03	26.83	C	1b	NA	32	155.6	740	M
741	10.22	2.55	55	10.2	2.55	S	1b	NA	32	155.6	741	M
742	8.48	2.32	55	9.41	2.39	S	1b	NA	32	155.6	742	M
743	7	1.75	55	25	6.25	S	1b	NA	32	155.6	743	M
744	5.48	1.49	55	2.76	0.75	S	1b	NA	32	155.6	744	M
745	42.83	29.8	41.2	31.96	C	2b	71	56	19.2	745	A	
746	26.32	18.37	75	25.08	20.35	C	2b	71	56	19.2	746	A
747	22.77	19.81	75	31.87	24.23	C	2b	71	56	19.2	747	A
748	22.59	5.64	75	24.6	6.16	S	2b	71	56	19.2	748	A
749	18.82	4.70	55	19.11	4.84	S	2b	71	56	19.2	749	A
750	18.7	4.67	55	24.8	6.22	S	2b	71	56	19.2	750	A
751	23.62	18.30	25	29.56	24.43	C	2b	71	56	19.2	751	A
752	23.4	17.43	75	27.54	21.86	C	2b	71	56	19.2	752	A
753	47.46	30.35	75	47.6	34.43	C	2b	71	56	19.2	753	A
754	38.76	24.58	55	44.74	27.57	C	2b	71	56	19.2	754	A
755	27.2	20.63	25	3	19.91	C	2b	71	56	19.2	755	A
756	40	28.83	75	36.18	24.25	C	2b	71	56	19.2	756	A

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI VAF in Tumor	PTNMStage	Lesion1Size	Lesion1Size ePath	DNA input	Row number	Hospital	
757	16.12	4.03	19.12	4.78	S	2b	71	56	19.2	757	A	
758	15.42	3.85	20.44	5.15	S	2b	71	56	19.2	758	A	
759	8.36	2.09	7.7	1.92	S	2b	71	56	19.2	759	A	
760	14.29	3.57	25	16.71	4.18	S	2b	71	56	19.2	760	A
761	26.49	6.62	25	28.89	7.22	S	2b	71	56	19.2	761	A
762	26.86	6.8	29	14.29	3.96	S	2b	71	56	19.2	762	A
763	26.19	6.54	75	14.29	3.57	S	2b	71	56	19.2	763	A
764	24.15	8.49	75	26.14	9.56	S	2b	71	56	19.2	764	A
765	72.52	66.45	55	75.22	70.72	C	1b	NA	32	76.5	765	M
766	51.19	44.72	56	53.6	46.33	C	1b	NA	32	76.5	766	M
767	48.91	43.36	56	56.13	45.14	C	1b	NA	32	76.5	767	M
768	40.7	22.48	25	39.35	26.26	C	1b	NA	32	76.5	768	M
769	29.45	27.51	75	29.97	27.76	C	1b	NA	32	76.5	769	M
770	15.19	5.04	75	18.83	5.86	S	1b	NA	32	76.5	770	M
771	33.65	26.71	75	34.97	29.85	C	1b	NA	32	76.5	771	M
772	37.83	35.16	25	39.54	36.08	C	1b	NA	32	76.5	772	M
773	48.23	32.47	5	51.03	35.3	C	1b	NA	32	76.5	773	M
774	15.33	5.14	17.28	5.41	S	1b	NA	32	76.5	774	M	
775	18.48	8.78	75	19.66	9.5	S	1b	NA	32	76.5	775	M
776	14.86	6.99	75	16.62	7.53	S	1b	NA	32	76.5	776	M
777	8.29	2.17	75	12.04	3.35	S	1b	NA	32	76.5	777	M
778	6.51	2.06	5	7.59	2.31	S	1b	NA	32	76.5	778	M
779	11.64	5.72	5	17.07	7.85	S	1b	NA	32	76.5	779	M
780	16.8	8.17	25	19.32	9.75	S	1b	NA	32	76.5	780	M
781	9.11	2.36	75	9.98	2.64	S	1b	NA	32	76.5	781	M
782	7.82	2.04	25	8.6	2.38	S	1b	NA	32	76.5	782	M
783	13.28	4.00	75	15.44	5.04	S	1b	NA	32	76.5	783	M

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Max VAF in tumor	Mean VAF in tumor	Natera VAF in Tumor	PyClone cluster	PTNMStage	LesionSize	LesionSizePath	DNA input	Row number	Hospital
784	24.34	16.2475	22.14	17.31	C	1b	NA	38	101.5	784	M	
785	23.54	21.0525	24.42	22.69	C	1b	NA	38	101.5	785	M	
786	22.54	16.8	21.33	17.98	C	1b	NA	38	101.5	786	M	
787	21.25	11.305	20.39	11.57	S	1b	NA	38	101.5	787	M	
788	16.99	14.57	16.59	13.95	C	1b	NA	38	101.5	788	M	
789	16.38	14.065	18.3	15.33	C	1b	NA	38	101.5	789	M	
790	8.7	3.965	9.55	4.7	S	1b	NA	38	101.5	790	M	
791	5.07	2.21	4.7	2.33	S	1b	NA	38	101.5	791	M	
792	18.41	14.0625	17.48	14.17	C	1b	NA	38	101.5	792	M	
793	17.41	13.91	0.44	0.21	C	1b	NA	38	101.5	793	M	
794	5.53	1.7775	5.49	2.5	S	1b	NA	38	101.5	794	M	
795	5.37	2.3075	4.1	1.98	S	1b	NA	38	101.5	795	M	
796	8.76	3.2	14.43	7.06	S	1b	NA	38	101.5	796	M	
797	6.31	2.5175	4.67	2.24	S	1b	NA	38	101.5	797	M	
798	6.74	1.6835	6.16	1.55	S	1b	NA	38	101.5	798	M	
799	10.95	2.7375	10.97	2.75	S	1b	NA	38	101.5	799	M	
800	14.97	8.405	16.25	8.75	S	1b	NA	38	101.5	800	M	
801	18.51	9.6875	43.9	21.55	S	1b	NA	38	101.5	801	M	
802	10.38	2.595	10.75	2.69	S	1b	NA	38	101.5	802	M	
803	81.78	80.795	83.94	81.34	C	1a	NA	16	15.6	803	B	
804	36.12	30.82	33.53	33.2	C	1a	NA	16	15.6	804	B	
805	35.29	34.02	43.4	37.51	C	1a	NA	16	15.6	805	B	
806	31.16	29.365	28.54	27.4	C	1a	NA	16	15.6	806	B	
807	15.83	8.74	12.12	6.95	C	1a	NA	16	15.6	807	B	
808	29.14	27.5	30.53	29.63	C	1a	NA	16	15.6	808	B	
809	22.53	21.455	24.68	23.91	C	1a	NA	16	15.6	809	B	
810	19.94	19.59	24.74	24.28	C	1a	NA	16	15.6	810	B	

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCluster	PTNMStage	Lesion1Size	Lesion1Size	DNA input	Row number	Hospital
					ge	ePath	eDe	elDe			
811	26.24	25.915	24.88	24.69	C	1a	NA	16	15.6	811	B
812	23.72	20.365	25.43	23.31	C	1a	NA	16	15.6	812	B
813	9.19	4.595	10.14	5.07	S	1a	NA	16	15.6	813	B
814	7.89	3.945	8.8	4.42	S	1a	NA	16	15.6	814	B
815	7.82	3.91	6.59	3.31	S	1a	NA	16	15.6	815	B
816	7.05	3.525	16.31	8.16	S	1a	NA	16	15.6	816	B
817	5.34	2.67	3.9	1.95	S	1a	NA	16	15.6	817	B
818	15.43	12.155	20.46	15.61	S	1a	NA	16	15.6	818	B
819	12.97	8.605	13.96	8.98	S	1a	NA	16	15.6	819	B
820	9.88	7.64	9.47	7.19	C	1a	NA	16	15.6	820	B
821	9.69	6.775	23.95	18.58	S	1a	NA	16	15.6	821	B
822	78.34	59.335	78.63	61.29	C	1b	NA	35	50.1	822	B
823	42.34	34.15	46.56	36.29	C	1b	NA	35	50.1	823	B
824	80.73	58.91	95.45	77.58	C	1b	NA	35	50.1	824	B
825	39.67	31.3625	46.6	38.46	C	1b	NA	35	50.1	825	B
826	32.42	23.235	42.24	30.36	C	1b	NA	35	50.1	826	B
827	11.63	9.02	10.03	7.55	C	1b	NA	35	50.1	827	B
828	81.45	60.375	66.57	46.85	C	1b	NA	35	50.1	828	B
829	10.59	2.9725	12.1	3.24	S	1b	NA	35	50.1	829	B
830	8.55	2.235	6.22	1.75	S	1b	NA	35	50.1	830	B
831	7.38	2.1725	6.41	1.81	S	1b	NA	35	50.1	831	B
832	6.32	1.925	4.13	1.36	S	1b	NA	35	50.1	832	B
833	25.35	6.71	29.48	7.77	S	1b	NA	35	50.1	833	B
834	9.4	2.35	8.71	2.19	S	1b	NA	35	50.1	834	B
835	5.39	1.675	5.48	2.04	S	1b	NA	35	50.1	835	B
836	5.3	1.5975	3.7	1.8	S	1b	NA	35	50.1	836	B
837	15.27	4.6675	14.84	4.53	S	1b	NA	35	50.1	837	B

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCI	PTNMStage	Lesion1Size	Lesion1Size	DNA input	Row number	Hospital
838	13.71	4.5275	14.35	4.44	5	1b	NA	35	50.1	838	B
839	10.56	2.8025	3.17	0.94	S	1b	NA	35	50.1	839	B
840	39.13	33.525	48.02	45.6	C	1a	25	15	26.5	840	U
841	38.75	37.945	62.5	57.57	C	1a	25	15	26.5	841	U
842	36.14	34.29	37.59	35.02	C	1a	25	15	26.5	842	U
843	29.61	28.59	30.05	28.04	C	1a	25	15	26.5	843	U
844	24.69	23.185	26.89	25.23	C	1a	25	15	26.5	844	U
845	23.22	22.94	27.55	25.98	C	1a	25	15	26.5	845	U
846	12.6	11.8	15.4	15.03	C	1a	25	15	26.5	846	U
847	27.78	26.155	80	50	C	1a	25	15	26.5	847	U
848	28.07	26.165	38.97	36.38	C	1a	25	15	26.5	848	U
849	9.12	4.56	10.93	5.46	S	1a	25	15	26.5	849	U
850	10.4	5.2	9.52	4.76	S	1a	25	15	26.5	850	U
851	9.52	4.76	10.95	5.47	S	1a	25	15	26.5	851	U
852	12.77	6.385	5.91	2.96	S	1a	25	15	26.5	852	U
853	11.31	5.655	10.19	5.1	S	1a	25	15	26.5	853	U
854	10.2	5.17	10.91	5.46	S	1a	25	15	26.5	854	U
855	14.1	7.05	14.48	7.24	S	1a	25	15	26.5	855	U
856	10.66	5.33	10.1	5.05	S	1a	25	15	26.5	856	U
857	15.7	8.745	13.67	7.58	S	1a	25	15	26.5	857	U
858	13.37	7.405	16.98	9.11	S	1a	25	15	26.5	858	U
859	53.46	43.655	41.78	35.9	C	2a	60	50	33	859	U
860	44.19	37.59	41.58	34.67	C	2a	60	50	33	860	U
861	27.54	17.36	33.14	19.86	C	2a	60	50	33	861	U
862	17.47	14.02	16.83	15.04	C	2a	60	50	33	862	U
863	16.96	14.2225	16.89	15.07	C	2a	60	50	33	863	U
864	6.73	1.6825	6.18	1.56	S	2a	60	50	33	864	U

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF	Max VAF in Tumor	Natera Mean Max VAF in tumor	PyCloneCI	pTINMStage	Lesion1Size	Lesion1Size	DNA input	Row number	Hospital
							eDe	eDe			
865	39.88	35.6325	39.2	33.77	C	2a	60	50	33	865	U
866	53.08	46.3475	47.67	41.12	C	2a	60	50	33	866	U
867	38	33.5	21.52	20.38	C	2a	60	50	33	867	U
868	23.08	13.39	23.22	16.57	S	2a	60	50	33	868	U
869	20.18	14.6	33.33	20.24	S	2a	60	50	33	869	U
870	16.14	10.2975	14.71	10.37	S	2a	60	50	33	870	U
871	5.62	3.705	6.11	4.21	S	2a	60	50	33	871	U
872	14.64	3.66	15.33	3.84		2a	60	50	33	872	U
873	11.2	2.8	12.92	3.23	S	2a	60	50	33	873	U
874	10.67	2.6675	10.32	2.58	S	2a	60	50	33	874	U
875	9.76	2.44	8.95	2.26	S	2a	60	50	33	875	U
876	20.26	5.065	15.49	3.89	S	2a	60	50	33	876	U
877	6.13	1.5325	5.87	1.47	S	2a	60	50	33	877	U
878	7.59	1.8975	15.7	3.92	S	2a	60	50	33	878	U
879	16.58	4.145	13.99	3.54	S	2a	60	50	33	879	U
880	53.99	43.445	61.73	39.77	C	1b	40	39	10	880	B
881	14.39	8.9825	15.39	9.03	C	1b	40	39	10	881	B
882	8.99	2.2475	9.27	1.86	S	1b	40	39	10	882	B
883	19	10.855	13.39	6.16	C	1b	40	39	10	883	B
884	19.29	11.9125	17.59	9.32	C	1b	40	39	10	884	B
885	14	9.38	18.98	9.56	C	1b	40	39	10	885	B
886	14.14	9.5525	18.3	10.1	C	1b	40	39	10	886	B
887	27.45	18.0175	50	19.8	C	1b	40	39	10	887	B
888	25.33	12.19	21.62	9.69	C	1b	40	39	10	888	B
889	21.71	13.6	17.51	9.49	C	1b	40	39	10	889	B
890	13.25	10.1825	40	11.45	C	1b	40	39	10	890	B
891	18.27	10.49	14.6	6.37	C	1b	40	39	10	891	B

FIG. 20 (CONT.)

Row number	Max VAF in Tumor	Mean VAF in Tumor	Max VAF in tumor	Mean VAF in tumor	Natera Max VAF in tumor	Natera Mean VAF in tumor	PyCloneCluster	pTNMStage	LesionSize	DNA input	Row number	Hospital
892	14.29	3.5725	17.87	3.59	5	1b	40	39	10	892	B	
893	10.48	2.7325	100	29	1b	40	39	10	893	B		
894	22.14	5.535	15.72	3.2	5	1b	40	39	10	894	B	
895	21.62	5.405	20.99	4.2	5	1b	40	39	10	895	B	
896	13.97	3.4925	16.04	3.28	5	1b	40	39	10	896	B	
897	19.51	8.3525	17.06	6.33	5	1b	40	39	10	897	B	
898	13.58	7.3725	10.13	4.1	5	1b	40	39	10	898	B	
899	17.02	12.055	13.29	11.18	C	3a	28	20	18.5	899	U	
900	5.17	4.2375	5.51	4.63	C	3a	28	20	18.5	900	U	
901	6.71	4.875	5.85	5.11	C	3a	28	20	18.5	901	U	
902	7.71	6.69	13.75	11.61	C	3a	28	20	18.5	902	U	
903	5.81	5.3675	5.85	4.8	C	3a	28	20	18.5	903	U	
904	8.1	5.1	7.82	5.69	C	3a	28	20	18.5	904	U	
905	14.18	10.19	12.85	10.94	C	3a	28	20	18.5	905	U	
906	12.9	6.5675	4.15	3.24	C	3a	28	20	18.5	906	U	
907	10.91	5.99	16.67	10.27	C	3a	28	20	18.5	907	U	
908	6	4.1425	5.9	5.11	C	3a	28	20	18.5	908	U	
909	6.85	1.7125	0	0	C	3a	28	20	18.5	909	U	
910	6.41	1.8075	0.02	0.01	C	3a	28	20	18.5	910	U	
911	5.43	1.3575	0.06	0.04	C	3a	28	20	18.5	911	U	

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
1	Adenocarcinoma	0	No	LUL	1a LTX180
2	Adenocarcinoma	0	No	LUL	1a LTX180
3	Adenocarcinoma	0	No	LUL	1a LTX180
4	Adenocarcinoma	0	No	LUL	1a LTX180
5	Adenocarcinoma	0	No	LUL	1a LTX180
6	Adenocarcinoma	0	No	LUL	1a LTX180
7	Adenocarcinoma	0	No	LUL	1a LTX180
8	Adenocarcinoma	0	No	LUL	1a LTX180
9	Adenocarcinoma	0	No	LUL	1a LTX180
10	Adenocarcinoma	0	No	LUL	1a LTX180
11	Adenocarcinoma	0	No	LUL	1a LTX180
12	Adenocarcinoma	0	No	LUL	1a LTX180
13	Adenocarcinoma	0	No	LUL	1a LTX180
14	Adenocarcinoma	0	No	LUL	1a LTX180
15	Adenocarcinoma	0	No	LUL	1a LTX180
16	Adenocarcinoma	0	No	LUL	1a LTX180
17	Adenocarcinoma	0	No	LUL	1a LTX180
18	Adenocarcinoma	0	No	LUL	1b LTX073
19	Adenocarcinoma	0	No	LUL	1b LTX073
20	Adenocarcinoma	0	No	LUL	1b LTX073
21	Adenocarcinoma	0	No	LUL	1b LTX073
22	Adenocarcinoma	0	No	LUL	1b LTX073
23	Adenocarcinoma	0	No	LUL	1b LTX073
24	Adenocarcinoma	0	No	LUL	1b LTX073
25	Adenocarcinoma	0	No	LUL	1b LTX073
26	Adenocarcinoma	0	No	LUL	1b LTX073
27	Adenocarcinoma	0	No	LUL	1b LTX073

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
28	Adenocarcinoma	0	No	LUL	1b LTX073
29	Adenocarcinoma	0	No	LUL	1b LTX073
30	Adenocarcinoma	0	No	LUL	1b LTX073
31	Adenocarcinoma	0	No	LUL	1b LTX073
32	Adenocarcinoma	0	No	LUL	1b LTX073
33	Adenocarcinoma	0	No	LUL	1b LTX073
34	Adenocarcinoma	0	No	LUL	1b LTX073
35	Adenocarcinoma	0	No	LUL	1b LTX073
36	Adenocarcinoma	0	No	LUL	1b LTX073
37	Adenocarcinoma	0	No	LUL	1b LTX073
38	Adenocarcinoma	0	No	LUL	1b LTX073
39	Adenocarcinoma	0	No	LUL	1b LTX073
40	Squamous cell carcinoma	0	no	RUL	1b LTX058
41	Squamous cell carcinoma	0	no	RUL	1b LTX058
42	Squamous cell carcinoma	0	no	RUL	1b LTX058
43	Squamous cell carcinoma	0	no	RUL	1b LTX058
44	Squamous cell carcinoma	0	no	RUL	1b LTX058
45	Squamous cell carcinoma	0	no	RUL	1b LTX058
46	Squamous cell carcinoma	0	no	RUL	1b LTX058
47	Squamous cell carcinoma	0	no	RUL	1b LTX058
48	Squamous cell carcinoma	0	no	RUL	1b LTX058
49	Squamous cell carcinoma	0	no	RUL	1b LTX058
50	Squamous cell carcinoma	0	no	RUL	1b LTX058
51	Squamous cell carcinoma	0	no	RUL	1b LTX058
52	Squamous cell carcinoma	0	no	RUL	1b LTX058
53	Squamous cell carcinoma	0	no	RUL	1b LTX058
54	Squamous cell carcinoma	0	no	RUL	1b LTX058

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
55	Squamous cell carcinoma	0	no	RUL	1b LTX058
56	Squamous cell carcinoma	0	no	RUL	1b LTX058
57	Squamous cell carcinoma	0	no	RUL	1b LTX058
58	Adenocarcinoma	1	No	LLL	2b LTX175
59	Adenocarcinoma	1	No	LLL	2b LTX175
60	Adenocarcinoma	1	No	LLL	2b LTX175
61	Adenocarcinoma	1	No	LLL	2b LTX175
62	Adenocarcinoma	1	No	LLL	2b LTX175
63	Adenocarcinoma	1	No	LLL	2b LTX175
64	Adenocarcinoma	1	No	LLL	2b LTX175
65	Adenocarcinoma	1	No	LLL	2b LTX175
66	Adenocarcinoma	1	No	LLL	2b LTX175
67	Adenocarcinoma	1	No	LLL	2b LTX175
68	Adenocarcinoma	1	No	LLL	2b LTX175
69	Adenocarcinoma	1	No	LLL	2b LTX175
70	Adenocarcinoma	1	No	LLL	2b LTX175
71	Adenocarcinoma	1	No	LLL	2b LTX175
72	Adenocarcinoma	1	No	LLL	2b LTX175
73	Adenocarcinoma	1	No	LLL	2b LTX175
74	Adenocarcinoma	1	No	LLL	2b LTX175
75	Adenocarcinoma	1	No	LLL	2b LTX175
76	Adenocarcinoma	1	No	LLL	2b LTX175
77	Adenocarcinoma	1	No	LLL	2b LTX175
78	Adenocarcinoma	1	No	LLL	2b LTX175
79	Adenocarcinoma	0	Yes	LUL	1a LTX385
80	Adenocarcinoma	0	Yes	LUL	1a LTX185
81	Adenocarcinoma	0	Yes	LUL	1a LTX185

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Label of lung	Madeup name
82	Adenocarcinoma	0	Yes	LUL	1a LTX185
83	Adenocarcinoma	0	Yes	LUL	1a LTX185
84	Adenocarcinoma	0	Yes	LUL	1a LTX185
85	Adenocarcinoma	0	Yes	LUL	1a LTX185
86	Adenocarcinoma	0	Yes	LUL	1a LTX185
87	Adenocarcinoma	0	Yes	LUL	1a LTX185
88	Adenocarcinoma	0	Yes	LUL	1a LTX185
89	Adenocarcinoma	0	Yes	LUL	1a LTX185
90	Adenocarcinoma	0	Yes	LUL	1a LTX185
91	Adenocarcinoma	0	Yes	LUL	1a LTX185
92	Adenocarcinoma	0	Yes	LUL	1a LTX185
93	Adenocarcinoma	0	Yes	LUL	1a LTX185
94	Adenocarcinoma	0	Yes	LUL	1a LTX185
95	Adenocarcinoma	0	Yes	LUL	1a LTX185
96	Adenocarcinoma	0	Yes	LUL	1a LTX185
97	Adenocarcinoma	0	Yes	LUL	1a LTX185
98	Adenocarcinoma	1	No	RUL	2a LTX163
99	Adenocarcinoma	1	No	RUL	2a LTX163
100	Adenocarcinoma	1	No	RUL	2a LTX163
101	Adenocarcinoma	1	No	RUL	2a LTX163
102	Adenocarcinoma	1	No	RUL	2a LTX163
103	Adenocarcinoma	1	No	RUL	2a LTX163
104	Adenocarcinoma	1	No	RUL	2a LTX163
105	Adenocarcinoma	1	No	RUL	2a LTX163
106	Adenocarcinoma	1	No	RUL	2a LTX163
107	Adenocarcinoma	1	No	RUL	2a LTX163
108	Adenocarcinoma	1	No	RUL	2a LTX163

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
109	Adenocarcinoma	1	No	RUL	2a LTX163
110	Adenocarcinoma	1	No	RUL	2a LTX163
111	Adenocarcinoma	1	No	RUL	2a LTX163
112	Adenocarcinoma	1	No	RUL	2a LTX163
113	Adenocarcinoma	1	No	RUL	2a LTX163
114	Adenocarcinoma	1	No	RUL	2a LTX163
115	Adenocarcinoma	1	No	RUL	2a LTX163
116	Adenocarcinoma	1	No	RUL	2a LTX163
117	Squamous cell carcinoma	0	No	RUL	1a LTX111
118	Squamous cell carcinoma	0	No	RUL	1a LTX111
119	Squamous cell carcinoma	0	No	RUL	1a LTX111
120	Squamous cell carcinoma	0	No	RUL	1a LTX111
121	Squamous cell carcinoma	0	No	RUL	1a LTX111
122	Squamous cell carcinoma	0	No	RUL	1a LTX111
123	Squamous cell carcinoma	0	No	RUL	1a LTX111
124	Squamous cell carcinoma	0	No	RUL	1a LTX111
125	Squamous cell carcinoma	0	No	RUL	1a LTX111
126	Squamous cell carcinoma	0	No	RUL	1a LTX111
127	Squamous cell carcinoma	0	No	RUL	1a LTX111
128	Squamous cell carcinoma	0	No	RUL	1a LTX111
129	Squamous cell carcinoma	0	No	RUL	1a LTX111
130	Squamous cell carcinoma	0	No	RUL	1a LTX111
131	Squamous cell carcinoma	0	No	RUL	1a LTX111
132	Squamous cell carcinoma	0	No	RUL	1a LTX111
133	Squamous cell carcinoma	0	No	RUL	1a LTX111
134	Squamous cell carcinoma	0	No	RUL	1a LTX111
135	Squamous cell carcinoma	0	No	RUL	1a LTX111

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
136	Squamous cell carcinoma	0	No	LUL	1b LTX032
137	Squamous cell carcinoma	0	No	LUL	1b LTX032
138	Squamous cell carcinoma	0	No	LUL	1b LTX032
139	Squamous cell carcinoma	0	No	LUL	1b LTX032
140	Squamous cell carcinoma	0	No	LUL	1b LTX032
141	Squamous cell carcinoma	0	No	LUL	1b LTX032
142	Squamous cell carcinoma	0	No	LUL	1b LTX032
143	Squamous cell carcinoma	0	No	LUL	1b LTX032
144	Squamous cell carcinoma	0	No	LUL	1b LTX032
145	Squamous cell carcinoma	0	No	LUL	1b LTX032
146	Squamous cell carcinoma	0	No	LUL	1b LTX032
147	Squamous cell carcinoma	0	No	LUL	1b LTX032
148	Squamous cell carcinoma	0	No	LUL	1b LTX032
149	Squamous cell carcinoma	0	No	LUL	1b LTX032
150	Squamous cell carcinoma	0	No	LUL	1b LTX032
151	Squamous cell carcinoma	0	No	LUL	1b LTX032
152	Squamous cell carcinoma	0	No	LUL	1b LTX032
153	Squamous cell carcinoma	0	No	LUL	1b LTX032
154		0	No	RUL	1b LTX126
155		0	No	RUL	1b LTX126
156		0	No	RUL	1b LTX126
157		0	No	RUL	1b LTX126
158		0	No	RUL	1b LTX126
159		0	No	RUL	1b LTX126
160		0	No	RUL	1b LTX126
161		0	No	RUL	1b LTX126
162		0	No	RUL	1b LTX126

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
163		0	No	RUL	1b LTX126
164		0	No	RUL	1b LTX126
165		0	No	RUL	1b LTX126
166		0	No	RUL	1b LTX126
167		0	No	RUL	1b LTX126
168		0	No	RUL	1b LTX126
169		0	No	RUL	1b LTX126
170		0	No	RUL	1b LTX126
171		0	No	RUL	1b LTX126
172		0	No	RUL	1b LTX126
173	Adenocarcinoma	2	Yes	LUL	3a LTX210
174	Adenocarcinoma	2	Yes	LUL	3a LTX210
175	Adenocarcinoma	2	Yes	LUL	3a LTX210
176	Adenocarcinoma	2	Yes	LUL	3a LTX210
177	Adenocarcinoma	2	Yes	LUL	3a LTX210
178	Adenocarcinoma	2	Yes	LUL	3a LTX210
179	Adenocarcinoma	2	Yes	LUL	3a LTX210
180	Adenocarcinoma	2	Yes	LUL	3a LTX210
181	Adenocarcinoma	2	Yes	LUL	3a LTX210
182	Adenocarcinoma	2	Yes	LUL	3a LTX210
183	Adenocarcinoma	2	Yes	LUL	3a LTX210
184	Adenocarcinoma	2	Yes	LUL	3a LTX210
185	Adenocarcinoma	2	Yes	LUL	3a LTX210
186	Adenocarcinoma	2	Yes	LUL	3a LTX210
187	Adenocarcinoma	2	Yes	LUL	3a LTX210
188	Adenocarcinoma	2	Yes	LUL	3a LTX210
189	Adenocarcinoma	2	Yes	LUL	3a LTX210

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
190	Adenocarcinoma	2	Yes	LUL	3a LTX210
191	Adenocarcinoma	2	Yes	LUL	3a LTX210
192	Squamous cell carcinoma	0	No	RLL	1b LTX093
193	Squamous cell carcinoma	0	No	RLL	1b LTX093
194	Squamous cell carcinoma	0	No	RLL	1b LTX093
195	Squamous cell carcinoma	0	No	RLL	1b LTX093
196	Squamous cell carcinoma	0	No	RLL	1b LTX093
197	Squamous cell carcinoma	0	No	RLL	1b LTX093
198	Squamous cell carcinoma	0	No	RLL	1b LTX093
199	Squamous cell carcinoma	0	No	RLL	1b LTX093
200	Squamous cell carcinoma	0	No	RLL	1b LTX093
201	Squamous cell carcinoma	0	No	RLL	1b LTX093
202	Squamous cell carcinoma	0	No	RLL	1b LTX093
203	Squamous cell carcinoma	0	No	RLL	1b LTX093
204	Squamous cell carcinoma	0	No	RLL	1b LTX093
205	Squamous cell carcinoma	0	No	RLL	1b LTX093
206	Squamous cell carcinoma	0	No	RLL	1b LTX093
207	Squamous cell carcinoma	0	No	RLL	1b LTX093
208	Squamous cell carcinoma	0	No	RLL	1b LTX093
209	Squamous cell carcinoma	0	No	RLL	1b LTX093
210	Adenocarcinoma	0	No	RUL	1b LTX001
211	Adenocarcinoma	0	No	RUL	1b LTX001
212	Adenocarcinoma	0	No	RUL	1b LTX001
213	Adenocarcinoma	0	No	RUL	1b LTX001
214	Adenocarcinoma	0	No	RUL	1b LTX001
215	Adenocarcinoma	0	No	RUL	1b LTX001
216	Adenocarcinoma	0	No	RUL	1b LTX001

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
217	Adenocarcinoma	0	No	RUL	1b LTX001
218	Adenocarcinoma	0	No	RUL	1b LTX001
219	Adenocarcinoma	0	No	RUL	1b LTX001
220	Adenocarcinoma	0	No	RUL	1b LTX001
221	Adenocarcinoma	0	No	RUL	1b LTX001
222	Adenocarcinoma	0	No	RUL	1b LTX001
223	Adenocarcinoma	0	No	RUL	1b LTX001
224	Adenocarcinoma	0	No	RUL	1b LTX001
225	Adenocarcinoma	0	No	RUL	1b LTX001
226	Adenocarcinoma	0	No	RUL	1b LTX001
227	Adenocarcinoma	?	No	LUL	1a LTX115
228	Adenocarcinoma	?	No	LUL	1a LTX115
229	Adenocarcinoma	?	No	LUL	1a LTX115
230	Adenocarcinoma	?	No	LUL	1a LTX115
231	Adenocarcinoma	?	No	LUL	1a LTX115
232	Adenocarcinoma	?	No	LUL	1a LTX115
233	Adenocarcinoma	?	No	LUL	1a LTX115
234	Adenocarcinoma	?	No	LUL	1a LTX115
235	Adenocarcinoma	?	No	LUL	1a LTX115
236	Adenocarcinoma	?	No	LUL	1a LTX115
237	Adenocarcinoma	?	No	LUL	1a LTX115
238	Adenocarcinoma	?	No	LUL	1a LTX115
239	Adenocarcinoma	?	No	LUL	1a LTX115
240	Adenocarcinoma	?	No	LUL	1a LTX115
241	Adenocarcinoma	?	No	LUL	1a LTX115
242	Adenocarcinoma	?	No	LUL	1a LTX115
243	Adenocarcinoma	?	No	LUL	1a LTX115

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
244	Adenocarcinoma	?	No	LUL	1a LTX115
245	Adenocarcinoma	?	No	LUL	1a LTX115
246	Adenocarcinoma	0	Yes	RUL	1a LTX062
247	Adenocarcinoma	0	Yes	RUL	1a LTX062
248	Adenocarcinoma	0	Yes	RUL	1a LTX062
249	Adenocarcinoma	0	Yes	RUL	1a LTX062
250	Adenocarcinoma	0	Yes	RUL	1a LTX062
251	Adenocarcinoma	0	Yes	RUL	1a LTX062
252	Adenocarcinoma	0	Yes	RUL	1a LTX062
253	Adenocarcinoma	0	Yes	RUL	1a LTX062
254	Adenocarcinoma	0	Yes	RUL	1a LTX062
255	Adenocarcinoma	0	Yes	RUL	1a LTX062
256	Adenocarcinoma	0	Yes	RUL	1a LTX062
257	Adenocarcinoma	0	Yes	RUL	1a LTX062
258	Adenocarcinoma	0	Yes	RUL	1a LTX062
259	Adenocarcinoma	0	Yes	RUL	1a LTX062
260	Adenocarcinoma	0	Yes	RUL	1a LTX062
261	Adenocarcinoma	0	Yes	RUL	1a LTX062
262	Adenocarcinoma	0	Yes	RUL	1a LTX062
263	Adenocarcinoma	0	Yes	RUL	1a LTX062
264	Adenocarcinoma	0	Yes	RUL	1a LTX062
265	Adenocarcinoma	0	Yes	RUL	1a LTX062
266	Adenocarcinoma	0	No	RUL	1b LTX092
267	Adenocarcinoma	0	No	RUL	1b LTX092
268	Adenocarcinoma	0	No	RUL	1b LTX092
269	Adenocarcinoma	0	No	RUL	1b LTX092
270	Adenocarcinoma	0	No	RUL	1b LTX092

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Makeup name
271	Adenocarcinoma	0	No	RUL	1b LTX092
272	Adenocarcinoma	0	No	RUL	1b LTX092
273	Adenocarcinoma	0	No	RUL	1b LTX092
274	Adenocarcinoma	0	No	RUL	1b LTX092
275	Adenocarcinoma	0	No	RUL	1b LTX092
276	Adenocarcinoma	0	No	RUL	1b LTX092
277	Adenocarcinoma	0	No	RUL	1b LTX092
278	Adenocarcinoma	0	No	RUL	1b LTX092
279	Adenocarcinoma	0	No	RUL	1b LTX092
280	Adenocarcinoma	0	No	RUL	1b LTX092
281	Adenocarcinoma	0	No	RUL	1b LTX092
282	Adenocarcinoma	0	No	RUL	1b LTX092
283	Adenocarcinoma	0	No	RUL	1b LTX092
284	Adenocarcinoma	0	No	RUL	1b LTX092
285	Adenocarcinoma	0	No	RUL	1b LTX092
286	Adenocarcinoma	0	No	RUL	1b LTX092
287	Squamous cell carcinoma	1	Yes	RML	2a LTX107
288	Squamous cell carcinoma	1	Yes	RML	2a LTX107
289	Squamous cell carcinoma	1	Yes	RML	2a LTX107
290	Squamous cell carcinoma	1	Yes	RML	2a LTX107
291	Squamous cell carcinoma	1	Yes	RML	2a LTX107
292	Squamous cell carcinoma	1	Yes	RML	2a LTX107
293	Squamous cell carcinoma	1	Yes	RML	2a LTX107
294	Squamous cell carcinoma	1	Yes	RML	2a LTX107
295	Squamous cell carcinoma	1	Yes	RML	2a LTX107
296	Squamous cell carcinoma	1	Yes	RML	2a LTX107
297	Squamous cell carcinoma	1	Yes	RML	2a LTX107

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
298	Squamous cell carcinoma	1	Yes	RML	2a LTx107
299	Squamous cell carcinoma	1	Yes	RML	2a LTx107
300	Squamous cell carcinoma	1	Yes	RML	2a LTx107
301	Squamous cell carcinoma	1	Yes	RML	2a LTx107
302	Squamous cell carcinoma	1	Yes	RML	2a LTx107
303	Squamous cell carcinoma	1	Yes	RML	2a LTx107
304	Squamous cell carcinoma	1	Yes	RML	2a LTx107
305	Squamous cell carcinoma	1	Yes	RML	2a LTx107
306	Squamous cell carcinoma	0	No	RUL	1b LTx085
307	Squamous cell carcinoma	0	No	RUL	1b LTx085
308	Squamous cell carcinoma	0	No	RUL	1b LTx085
309	Squamous cell carcinoma	0	No	RUL	1b LTx085
310	Squamous cell carcinoma	0	No	RUL	1b LTx085
311	Squamous cell carcinoma	0	No	RUL	1b LTx085
312	Squamous cell carcinoma	0	No	RUL	1b LTx085
313	Squamous cell carcinoma	0	No	RUL	1b LTx085
314	Squamous cell carcinoma	0	No	RUL	1b LTx085
315	Squamous cell carcinoma	0	No	RUL	1b LTx085
316	Squamous cell carcinoma	0	No	RUL	1b LTx085
317	Squamous cell carcinoma	0	No	RUL	1b LTx085
318	Squamous cell carcinoma	0	No	RUL	1b LTx085
319	Squamous cell carcinoma	0	No	RUL	1b LTx085
320	Squamous cell carcinoma	0	No	RUL	1b LTx085
321	Squamous cell carcinoma	0	No	RUL	2a LTx028
322	Squamous cell carcinoma	0	No	RUL	2a LTx028
323	Squamous cell carcinoma	0	No	RLL	2a LTx028
324	Squamous cell carcinoma	0	No	RLL	2a LTx028

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
325	Squamous cell carcinoma	0	NO	RLL	2a LTX028
326	Squamous cell carcinoma	0	NO	RLL	2a LTX028
327	Squamous cell carcinoma	0	NO	RLL	2a LTX028
328	Squamous cell carcinoma	0	NO	RLL	2a LTX028
329	Squamous cell carcinoma	0	NO	RLL	2a LTX028
330	Squamous cell carcinoma	0	NO	RLL	2a LTX028
331	Squamous cell carcinoma	0	NO	RLL	2a LTX028
332	Squamous cell carcinoma	0	NO	RLL	2a LTX028
333	Squamous cell carcinoma	0	NO	RLL	2a LTX028
334	Squamous cell carcinoma	0	NO	RLL	2a LTX028
335	Squamous cell carcinoma	0	NO	RLL	2a LTX028
336	Squamous cell carcinoma	0	NO	RLL	2a LTX028
337	Squamous cell carcinoma	0	NO	RLL	2a LTX028
338	Squamous cell carcinoma	0	NO	RLL	2a LTX028
339	Squamous cell carcinoma	0	NO	RLL	2a LTX028
340	Squamous cell carcinoma	0	yes	RUL	1a LTX025
341	Squamous cell carcinoma	0	yes	RUL	1a LTX025
342	Squamous cell carcinoma	0	yes	RUL	1a LTX025
343	Squamous cell carcinoma	0	yes	RUL	1a LTX025
344	Squamous cell carcinoma	0	yes	RUL	1a LTX025
345	Squamous cell carcinoma	0	yes	RUL	1a LTX025
346	Squamous cell carcinoma	0	yes	RUL	1a LTX025
347	Squamous cell carcinoma	0	yes	RUL	1a LTX025
348	Squamous cell carcinoma	0	yes	RUL	1a LTX025
349	Squamous cell carcinoma	0	yes	RUL	1a LTX025
350	Squamous cell carcinoma	0	yes	RUL	1a LTX025
351	Squamous cell carcinoma	0	yes	RUL	1a LTX025

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
352	Squamous cell carcinoma	0	yes	RUL	1a LTX025
353	Squamous cell carcinoma	0	yes	RUL	1a LTX025
354	Squamous cell carcinoma	0	yes	RUL	1a LTX025
355	Squamous cell carcinoma	0	yes	RUL	1a LTX025
356	Squamous cell carcinoma	0	yes	RUL	1a LTX025
357	Squamous cell carcinoma	0	yes	RUL	1a LTX025
358	Squamous cell carcinoma	0	yes	RUL	1a LTX025
359	Squamous cell carcinoma	0	No	RUL	1a LTX120
360	Squamous cell carcinoma	0	No	RUL	1a LTX120
361	Squamous cell carcinoma	0	No	RUL	1a LTX120
362	Squamous cell carcinoma	0	No	RUL	1a LTX120
363	Squamous cell carcinoma	0	No	RUL	1a LTX120
364	Squamous cell carcinoma	0	No	RUL	1a LTX120
365	Squamous cell carcinoma	0	No	RUL	1a LTX120
366	Squamous cell carcinoma	0	No	RUL	1a LTX120
367	Squamous cell carcinoma	0	No	RUL	1a LTX120
368	Squamous cell carcinoma	0	No	RUL	1a LTX120
369	Squamous cell carcinoma	0	No	RUL	1a LTX120
370	Squamous cell carcinoma	0	No	RUL	1a LTX120
371	Squamous cell carcinoma	0	No	RUL	1a LTX120
372	Squamous cell carcinoma	0	No	RUL	1a LTX120
373	Squamous cell carcinoma	0	No	RUL	1a LTX120
374	Squamous cell carcinoma	0	No	RUL	1a LTX120
375	Squamous cell carcinoma	0	No	RUL	1a LTX120
376	Squamous cell carcinoma	0	No	RUL	1a LTX120
377	Adenocarcinoma	0	No	LUL	1b LTX041
378	Adenocarcinoma	0	No	LUL	1b LTX041

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Medup name
379	Adenocarcinoma	0	No	LUL	1b LTX041
380	Adenocarcinoma	0	No	LUL	1b LTX041
381	Adenocarcinoma	0	No	LUL	1b LTX041
382	Adenocarcinoma	0	No	LUL	1b LTX041
383	Adenocarcinoma	0	No	LUL	1b LTX041
384	Adenocarcinoma	0	No	LUL	1b LTX041
385	Adenocarcinoma	0	No	LUL	1b LTX041
386	Adenocarcinoma	0	No	LUL	1b LTX041
387	Adenocarcinoma	0	No	LUL	1b LTX041
388	Adenocarcinoma	0	No	LUL	1b LTX041
389	Adenocarcinoma	0	No	LUL	1b LTX041
390	Adenocarcinoma	0	No	LUL	1b LTX041
391	Adenocarcinoma	0	No	LUL	1b LTX041
392	Adenocarcinoma	0	No	LUL	1b LTX041
393	Adenocarcinoma	0	No	LUL	1b LTX041
394	Adenocarcinoma	0	No	LUL	1b LTX041
395	Adenocarcinoma	0	No	LUL	1b LTX041
396	Adenocarcinoma	2	No	RUL	3a LTX097
397	Adenocarcinoma	2	No	RUL	3a LTX097
398	Adenocarcinoma	2	No	RUL	3a LTX097
399	Adenocarcinoma	2	No	RUL	3a LTX097
400	Adenocarcinoma	2	No	RUL	3a LTX097
401	Adenocarcinoma	2	No	RUL	3a LTX097
402	Adenocarcinoma	2	No	RUL	3a LTX097
403	Adenocarcinoma	2	No	RUL	3a LTX097
404	Adenocarcinoma	2	No	RUL	3a LTX097
405	Adenocarcinoma	2	No	RUL	3a LTX097

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
406	Adenocarcinoma	2	No	RUL	3a LTX097
407	Adenocarcinoma	2	No	RUL	3a LTX097
408	Adenocarcinoma	2	No	RUL	3a LTX097
409	Adenocarcinoma	2	No	RUL	3a LTX097
410	Adenocarcinoma	2	No	RUL	3a LTX097
411	Adenocarcinoma	2	No	RUL	3a LTX097
412	Adenocarcinoma	2	No	RUL	3a LTX097
413	Adenocarcinoma	2	No	RUL	3a LTX097
414	Adenocarcinoma	2	No	RUL	3a LTX097
415	Adenocarcinoma	0	Yes	LUL	1b LTX055
416	Adenocarcinoma	0	Yes	LUL	1b LTX055
417	Adenocarcinoma	0	Yes	LUL	1b LTX055
418	Adenocarcinoma	0	Yes	LUL	1b LTX055
419	Adenocarcinoma	0	Yes	LUL	1b LTX055
420	Adenocarcinoma	0	Yes	LUL	1b LTX055
421	Adenocarcinoma	0	Yes	LUL	1b LTX055
422	Adenocarcinoma	0	Yes	LUL	1b LTX055
423	Adenocarcinoma	0	Yes	LUL	1b LTX055
424	Adenocarcinoma	0	Yes	LUL	1b LTX055
425	Adenocarcinoma	0	Yes	LUL	1b LTX055
426	Adenocarcinoma	0	Yes	LUL	1b LTX055
427	Adenocarcinoma	0	Yes	LUL	1b LTX055
428	Adenocarcinoma	0	Yes	LUL	1b LTX055
429	Adenocarcinoma	0	Yes	LUL	1b LTX055
430	Adenocarcinoma	0	Yes	LUL	1b LTX055
431	Adenocarcinoma	0	Yes	LUL	1b LTX055
432	Adenocarcinoma	0	Yes	LUL	1b LTX055

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
433	Adenocarcinoma	0	Yes	LUL	1b LTX055
434	Adenocarcinoma	0	Yes	LUL	1b LTX055
435	Adenocarcinoma	0	Yes	LUL	1b LTX055
436	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
437	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
438	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
439	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
440	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
441	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
442	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
443	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
444	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
445	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
446	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
447	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
448	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
449	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
450	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
451	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
452	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
453	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
454	Squamous cell carcinoma	1	Yes	LUL	2b LTX165
455	Squamous cell carcinoma	1	Yes	RUL	3a LTX021
456	Adenocarcinoma	2	Yes	RUL	3a LTX021
457	Adenocarcinoma	2	Yes	RLL	3a LTX021
458	Adenocarcinoma	2	Yes	RLL	3a LTX021
459	Adenocarcinoma	2	Yes	RLL	3a LTX021

FIG. 20 (CONT.)

Row number	Pathological type	L.N status	Vasc inv?	Lobe of lung	Madeup name
460	Adenocarcinoma	2	Yes	RLL	3a LTX021
461	Adenocarcinoma	2	Yes	RLL	3a LTX021
462	Adenocarcinoma	2	Yes	RLL	3a LTX021
463	Adenocarcinoma	2	Yes	RLL	3a LTX021
464	Adenocarcinoma	2	Yes	RLL	3a LTX021
465	Adenocarcinoma	2	Yes	RLL	3a LTX021
466	Adenocarcinoma	2	Yes	RLL	3a LTX021
467	Adenocarcinoma	2	Yes	RLL	3a LTX021
468	Adenocarcinoma	2	Yes	RLL	3a LTX021
469	Adenocarcinoma	2	Yes	RLL	3a LTX021
470	Adenocarcinoma	2	Yes	RLL	3a LTX021
471	Adenocarcinoma	2	Yes	RLL	3a LTX021
472	Adenocarcinoma	2	Yes	RLL	3a LTX021
473	Adenocarcinoma	2	Yes	RLL	3a LTX021
474	Adenocarcinoma	2	Yes	RLL	3a LTX021
475	Squamous cell carcinoma	0	YES	RML	1b LTX059
476	Squamous cell carcinoma	0	YES	RML	1b LTX059
477	Squamous cell carcinoma	0	YES	RML	1b LTX059
478	Squamous cell carcinoma	0	YES	RML	1b LTX059
479	Squamous cell carcinoma	0	YES	RML	1b LTX059
480	Squamous cell carcinoma	0	YES	RML	1b LTX059
481	Squamous cell carcinoma	0	YES	RML	1b LTX059
482	Squamous cell carcinoma	0	YES	RML	1b LTX059
483	Squamous cell carcinoma	0	YES	RML	1b LTX059
484	Squamous cell carcinoma	0	YES	RML	1b LTX059
485	Squamous cell carcinoma	0	YES	RML	1b LTX059
486	Squamous cell carcinoma	0	YES	RML	1b LTX059

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
487	Squamous cell carcinoma	0	YES	RML	1b LTX059
488	Squamous cell carcinoma	0	YES	RML	1b LTX059
489	Squamous cell carcinoma	0	YES	RML	1b LTX059
490	Squamous cell carcinoma	0	YES	RML	1b LTX059
491	Squamous cell carcinoma	0	YES	RML	1b LTX059
492	Squamous cell carcinoma	0	YES	RML	1b LTX059
493	Adenocarcinoma	1	No	RLL	2a LTX084
494	Adenocarcinoma	1	No	RLL	2a LTX084
495	Adenocarcinoma	1	No	RLL	2a LTX084
496	Adenocarcinoma	1	No	RLL	2a LTX084
497	Adenocarcinoma	1	No	RLL	2a LTX084
498	Adenocarcinoma	1	No	RLL	2a LTX084
499	Adenocarcinoma	1	No	RLL	2a LTX084
500	Adenocarcinoma	1	No	RLL	2a LTX084
501	Adenocarcinoma	1	No	RLL	2a LTX084
502	Adenocarcinoma	1	No	RLL	2a LTX084
503	Adenocarcinoma	1	No	RLL	2a LTX084
504	Adenocarcinoma	1	No	RLL	2a LTX084
505	Adenocarcinoma	1	No	RLL	2a LTX084
506	Adenocarcinoma	1	No	RLL	2a LTX084
507	Adenocarcinoma	2	Yes	RUL	3a LTX135
508	Adenocarcinoma	2	Yes	RUL	3a LTX135
509	Adenocarcinoma	2	Yes	RUL	3a LTX135
510	Adenocarcinoma	2	Yes	RUL	3a LTX135
511	Adenocarcinoma	2	Yes	RUL	3a LTX135
512	Adenocarcinoma	2	Yes	RUL	3a LTX135
513	Adenocarcinoma	2	Yes	RUL	3a LTX135

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
514	Adenocarcinoma	2	Yes	RUL	3a LTX135
515	Adenocarcinoma	2	Yes	RUL	3a LTX135
516	Adenocarcinoma	2	Yes	RUL	3a LTX135
517	Adenocarcinoma	2	Yes	RUL	3a LTX135
518	Adenocarcinoma	2	Yes	RUL	3a LTX135
519	Adenocarcinoma	2	Yes	RUL	3a LTX135
520	Adenocarcinoma	2	Yes	RUL	3a LTX135
521	Adenocarcinoma	2	Yes	RUL	3a LTX135
522	Adenocarcinoma	2	Yes	RUL	3a LTX135
523	Adenocarcinoma	2	Yes	RUL	3a LTX135
524	Adenocarcinoma	2	Yes	RUL	3a LTX135
525	Adenocarcinoma	2	Yes	RUL	3a LTX135
526	Adenocarcinoma	0	No	RUL	1b LTX048
527	Adenocarcinoma	0	No	RUL	1b LTX048
528	Adenocarcinoma	0	No	RUL	1b LTX048
529	Adenocarcinoma	0	No	RUL	1b LTX048
530	Adenocarcinoma	0	No	RUL	1b LTX048
531	Adenocarcinoma	0	No	RUL	1b LTX048
532	Adenocarcinoma	0	No	RUL	1b LTX048
533	Adenocarcinoma	0	No	RUL	1b LTX048
534	Adenocarcinoma	0	No	RUL	1b LTX048
535	Adenocarcinoma	0	No	RUL	1b LTX048
536	Adenocarcinoma	0	No	RUL	1b LTX048
537	Adenocarcinoma	0	No	RUL	1b LTX048
538	Adenocarcinoma	0	No	RUL	1b LTX048
539	Adenocarcinoma	0	No	RUL	1b LTX048
540	Adenocarcinoma	0	No	RUL	1b LTX048

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
541	Adenocarcinoma	0	No	RUL	1b LTX048
542	Adenocarcinoma	0	No	RUL	1b LTX048
543	Adenocarcinoma	0	No	RUL	1b LTX048
544	Adenocarcinoma	0	No	LUL	2b LTX046
545	Adenocarcinoma	0	No	LUL	2b LTX046
546	Adenocarcinoma	0	No	LUL	2b LTX046
547	Adenocarcinoma	0	No	LUL	2b LTX046
548	Adenocarcinoma	0	No	LUL	2b LTX046
549	Adenocarcinoma	0	No	LUL	2b LTX046
550	Adenocarcinoma	0	No	LUL	2b LTX046
551	Adenocarcinoma	0	No	LUL	2b LTX046
552	Adenocarcinoma	0	No	LUL	2b LTX046
553	Adenocarcinoma	0	No	LUL	2b LTX046
554	Adenocarcinoma	0	No	LUL	2b LTX046
555	Adenocarcinoma	0	No	LUL	2b LTX046
556	Adenocarcinoma	0	No	LUL	2b LTX046
557	Adenocarcinoma	0	No	LUL	2b LTX046
558	Adenocarcinoma	0	No	LUL	2b LTX046
559	Adenocarcinoma	0	No	LUL	2b LTX046
560	Adenocarcinoma	0	No	LUL	2b LTX046
561	Adenocarcinoma	0	No	LUL	2b LTX046
562	Adenocarcinoma	0	No	RUL	1b LTX036
563	Adenocarcinoma	0	No	RUL	1b LTX036
564	Adenocarcinoma	0	No	RUL	1b LTX036
565	Adenocarcinoma	0	No	RUL	1b LTX036
566	Adenocarcinoma	0	No	RUL	1b LTX036
567	Adenocarcinoma	0	No	RUL	1b LTX036

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
568	Adenocarcinoma	0	No	RUL	1b LTX036
569	Adenocarcinoma	0	No	RUL	1b LTX036
570	Adenocarcinoma	0	No	RUL	1b LTX036
571	Adenocarcinoma	0	No	RUL	1b LTX036
572	Adenocarcinoma	0	No	RUL	1b LTX036
573	Adenocarcinoma	0	No	RUL	1b LTX036
574	Adenocarcinoma	0	No	RUL	1b LTX036
575	Adenocarcinoma	0	No	RUL	1b LTX036
576	Adenocarcinoma	0	No	RUL	1b LTX036
577	Adenocarcinoma	0	No	RUL	1b LTX036
578	Adenocarcinoma	0	No	RUL	1b LTX036
579	Adenocarcinoma	0	No	RUL	1b LTX036
580	Adenocarcinoma	0	No	RUL	1b LTX036
581	Adenocarcinoma	0	No	RUL	1b LTX036
582	Squamous cell carcinoma	0	No	LUL	2a LTX022
583	Squamous cell carcinoma	0	No	LUL	2a LTX022
584	Squamous cell carcinoma	0	No	LUL	2a LTX022
585	Squamous cell carcinoma	0	No	LUL	2a LTX022
586	Squamous cell carcinoma	0	No	LUL	2a LTX022
587	Squamous cell carcinoma	0	No	LUL	2a LTX022
588	Squamous cell carcinoma	0	No	LUL	2a LTX022
589	Squamous cell carcinoma	0	No	LUL	2a LTX022
590	Squamous cell carcinoma	0	No	LUL	2a LTX022
591	Squamous cell carcinoma	0	No	LUL	2a LTX022
592	Squamous cell carcinoma	0	No	LUL	2a LTX022
593	Squamous cell carcinoma	0	No	LUL	2a LTX022
594	Squamous cell carcinoma	0	No	LUL	2a LTX022

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
595	Squamous cell carcinoma	0	No	LUL	2a LTX022
596	Squamous cell carcinoma	0	No	LUL	2a LTX022
597	Squamous cell carcinoma	0	No	LUL	2a LTX022
598	Squamous cell carcinoma	0	No	LUL	2a LTX022
599	Squamous cell carcinoma	0	No	LUL	2a LTX022
600	Squamous cell carcinoma	0	No	LUL	2a LTX022
601	Squamous cell carcinoma	0	No	LUL	2a LTX022
602	Adenocarcinoma	0	yes	RML	1b LTX049
603	Adenocarcinoma	0	yes	RML	1b LTX049
604	Adenocarcinoma	0	yes	RML	1b LTX049
605	Adenocarcinoma	0	yes	RML	1b LTX049
606	Adenocarcinoma	0	yes	RML	1b LTX049
607	Adenocarcinoma	0	yes	RML	1b LTX049
608	Adenocarcinoma	0	yes	RML	1b LTX049
609	Adenocarcinoma	0	yes	RML	1b LTX049
610	Adenocarcinoma	0	yes	RML	1b LTX049
611	Adenocarcinoma	0	yes	RML	1b LTX049
612	Adenocarcinoma	0	yes	RML	1b LTX049
613	Adenocarcinoma	0	yes	RML	1b LTX049
614	Adenocarcinoma	0	yes	RML	1b LTX049
615	Adenocarcinoma	0	yes	RML	1b LTX049
616	Adenocarcinoma	0	yes	RML	1b LTX049
617	Adenocarcinoma	0	yes	RML	1b LTX049
618	Adenocarcinoma	0	yes	RML	1b LTX049
619	Adenocarcinoma	0	yes	RML	1b LTX049
620	Adenocarcinoma	0	yes	RML	1b LTX049
621	Squamous cell carcinoma	1	YES	RLL	2a LTX063

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
622	Squamous cell carcinoma	1	YES	RLL	2a LTX063
623	Squamous cell carcinoma	1	YES	RLL	2a LTX063
624	Squamous cell carcinoma	1	YES	RLL	2a LTX063
625	Squamous cell carcinoma	1	YES	RLL	2a LTX063
626	Squamous cell carcinoma	1	YES	RLL	2a LTX063
627	Squamous cell carcinoma	1	YES	RLL	2a LTX063
628	Squamous cell carcinoma	1	YES	RLL	2a LTX063
629	Squamous cell carcinoma	1	YES	RLL	2a LTX063
630	Squamous cell carcinoma	1	YES	RLL	2a LTX063
631	Squamous cell carcinoma	1	YES	RLL	2a LTX063
632	Squamous cell carcinoma	1	YES	RLL	2a LTX063
633	Squamous cell carcinoma	1	YES	RLL	2a LTX063
634	Squamous cell carcinoma	1	YES	RLL	2a LTX063
635	Squamous cell carcinoma	1	YES	RLL	2a LTX063
636	Squamous cell carcinoma	1	YES	RLL	2a LTX063
637	Squamous cell carcinoma	1	YES	RLL	2a LTX063
638	Squamous cell carcinoma	1	YES	RLL	2a LTX063
639	Squamous cell carcinoma	1	YES	RLL	2a LTX063
640	Squamous cell carcinoma	1	YES	RLL	2a LTX063
641	Adenocarcinoma	0	No	LLL	1b LTX144
642	Adenocarcinoma	0	No	LLL	1b LTX144
643	Adenocarcinoma	0	No	LLL	1b LTX144
644	Adenocarcinoma	0	No	LLL	1b LTX144
645	Adenocarcinoma	0	No	LLL	1b LTX144
646	Adenocarcinoma	0	No	LLL	1b LTX144
647	Adenocarcinoma	0	No	LLL	1b LTX144
648	Adenocarcinoma	0	No	LLL	1b LTX144

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc Inv?	Lobe of lung	Madeup name
649	Adenocarcinoma	0	No	LUL	1b LTX144
650	Adenocarcinoma	0	No	LUL	1b LTX144
651	Adenocarcinoma	0	No	LUL	1b LTX144
652	Adenocarcinoma	0	No	LUL	1b LTX144
653	Adenocarcinoma	0	No	LUL	1b LTX144
654	Adenocarcinoma	0	No	LUL	1b LTX144
655	Adenocarcinoma	0	No	LUL	1b LTX144
656	Adenocarcinoma	0	No	LUL	1b LTX144
657	Adenocarcinoma	0	No	LUL	1b LTX144
658	Adenocarcinoma	0	No	LUL	1b LTX144
659	Adenocarcinoma	0	No	LUL	1b LTX144
660	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
661	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
662	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
663	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
664	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
665	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
666	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
667	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
668	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
669	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
670	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
671	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
672	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
673	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
674	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
675	Squamous cell carcinoma	0	Yes	LUL	2b LTX038

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
676	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
677	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
678	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
679	Squamous cell carcinoma	0	Yes	LUL	2b LTX038
680	Adenocarcinoma	0	No	RLL	1a LTX034
681	Adenocarcinoma	0	No	RLL	1a LTX034
682	Adenocarcinoma	0	No	RLL	1a LTX034
683	Adenocarcinoma	0	No	RLL	1a LTX034
684	Adenocarcinoma	0	No	RLL	1a LTX034
685	Adenocarcinoma	0	No	RLL	1a LTX034
686	Adenocarcinoma	0	No	RLL	1a LTX034
687	Adenocarcinoma	0	No	RLL	1a LTX034
688	Adenocarcinoma	0	No	RLL	1a LTX034
689	Adenocarcinoma	0	No	RLL	1a LTX034
690	Adenocarcinoma	0	No	RLL	1a LTX034
691	Adenocarcinoma	0	No	RLL	1a LTX034
692	Adenocarcinoma	0	No	RLL	1a LTX034
693	Adenocarcinoma	0	No	RLL	1a LTX034
694	Adenocarcinoma	0	No	RLL	1a LTX034
695	Adenocarcinoma	0	No	RLL	1a LTX034
696	Adenocarcinoma	0	No	RLL	1a LTX034
697	Adenocarcinoma	0	No	RLL	1a LTX034
698	Adenocarcinoma	0	No	LLL	1b LTX013
699	Adenocarcinoma	0	No	LLL	1b LTX013
700	Adenocarcinoma	0	No	LLL	1b LTX013
701	Adenocarcinoma	0	No	LLL	1b LTX013
702	Adenocarcinoma	0	No	LLL	1b LTX013

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
703	Adenocarcinoma	0	No	LLL	1b LTX013
704	Adenocarcinoma	0	No	LLL	1b LTX013
705	Adenocarcinoma	0	No	LLL	1b LTX013
706	Adenocarcinoma	0	No	LLL	1b LTX013
707	Adenocarcinoma	0	No	LLL	1b LTX013
708	Adenocarcinoma	0	No	LLL	1b LTX013
709	Adenocarcinoma	0	No	LLL	1b LTX013
710	Adenocarcinoma	0	No	LLL	1b LTX013
711	Adenocarcinoma	0	No	LLL	1b LTX013
712	Adenocarcinoma	0	No	LLL	1b LTX013
713		0	No	LLL	1a LTX065
714		0	No	LLL	1a LTX065
715		0	No	LLL	1a LTX065
716		0	No	LLL	1a LTX065
717		0	No	LLL	1a LTX065
718		0	No	LLL	1a LTX065
719		0	No	LLL	1a LTX065
720		0	No	LLL	1a LTX065
721		0	No	LLL	1a LTX065
722		0	No	LLL	1a LTX065
723		0	No	LLL	1a LTX065
724		0	No	LLL	1a LTX065
725		0	No	LLL	1a LTX065
726		0	No	LLL	1a LTX065
727		0	No	LLL	1a LTX065
728	Squamous cell carcinoma	0	No	LUL	1b LTX149
729	Squamous cell carcinoma	0	No	LUL	1b LTX149

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
730	Squamous cell carcinoma	0	No	LUL	1b LTX149
731	Squamous cell carcinoma	0	No	LUL	1b LTX149
732	Squamous cell carcinoma	0	No	LUL	1b LTX149
733	Squamous cell carcinoma	0	No	LUL	1b LTX149
734	Squamous cell carcinoma	0	No	LUL	1b LTX149
735	Squamous cell carcinoma	0	No	LUL	1b LTX149
736	Squamous cell carcinoma	0	No	LUL	1b LTX149
737	Squamous cell carcinoma	0	No	LUL	1b LTX149
738	Squamous cell carcinoma	0	No	LUL	1b LTX149
739	Squamous cell carcinoma	0	No	LUL	1b LTX149
740	Squamous cell carcinoma	0	No	LUL	1b LTX149
741	Squamous cell carcinoma	0	No	LUL	1b LTX149
742	Squamous cell carcinoma	0	No	LUL	1b LTX149
743	Squamous cell carcinoma	0	No	LUL	1b LTX149
744	Squamous cell carcinoma	0	No	LUL	1b LTX149
745	Adenocarcinoma	0	No	LLL	2b LTX102
746	Adenocarcinoma	0	No	LLL	2b LTX102
747	Adenocarcinoma	0	No	LLL	2b LTX102
748	Adenocarcinoma	0	No	LLL	2b LTX102
749	Adenocarcinoma	0	No	LLL	2b LTX102
750	Adenocarcinoma	0	No	LLL	2b LTX102
751	Adenocarcinoma	0	No	LLL	2b LTX102
752	Adenocarcinoma	0	No	LLL	2b LTX102
753	Adenocarcinoma	0	No	LLL	2b LTX102
754	Adenocarcinoma	0	No	LLL	2b LTX102
755	Adenocarcinoma	0	No	LLL	2b LTX102
756	Adenocarcinoma	0	No	LLL	2b LTX102

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Label of lung	Madeup name
757	Adenocarcinoma	0	No	LLL	2b LTX102
758	Adenocarcinoma	0	No	LLL	2b LTX102
759	Adenocarcinoma	0	No	LLL	2b LTX102
760	Adenocarcinoma	0	No	LLL	2b LTX102
761	Adenocarcinoma	0	No	LLL	2b LTX102
762	Adenocarcinoma	0	No	LLL	2b LTX102
763	Adenocarcinoma	0	No	LLL	2b LTX102
764	Adenocarcinoma	0	No	LLL	2b LTX102
765	Squamous cell carcinoma	0	No	RLL	1b LTX015
766	Squamous cell carcinoma	0	No	RLL	1b LTX015
767	Squamous cell carcinoma	0	No	RLL	1b LTX015
768	Squamous cell carcinoma	0	No	RLL	1b LTX015
769	Squamous cell carcinoma	0	No	RLL	1b LTX015
770	Squamous cell carcinoma	0	No	RLL	1b LTX015
771	Squamous cell carcinoma	0	No	RLL	1b LTX015
772	Squamous cell carcinoma	0	No	RLL	1b LTX015
773	Squamous cell carcinoma	0	No	RLL	1b LTX015
774	Squamous cell carcinoma	0	No	RLL	1b LTX015
775	Squamous cell carcinoma	0	No	RLL	1b LTX015
776	Squamous cell carcinoma	0	No	RLL	1b LTX015
777	Squamous cell carcinoma	0	No	RLL	1b LTX015
778	Squamous cell carcinoma	0	No	RLL	1b LTX015
779	Squamous cell carcinoma	0	No	RLL	1b LTX015
780	Squamous cell carcinoma	0	No	RLL	1b LTX015
781	Squamous cell carcinoma	0	No	RLL	1b LTX015
782	Squamous cell carcinoma	0	No	RLL	1b LTX015
783	Squamous cell carcinoma	0	No	RLL	1b LTX015

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Label of lung	Madeup name
784	Adenocarcinoma	0	No	RLL	1b LTX074
785	Adenocarcinoma	0	No	RLL	1b LTX074
786	Adenocarcinoma	0	No	RLL	1b LTX074
787	Adenocarcinoma	0	No	RLL	1b LTX074
788	Adenocarcinoma	0	No	RLL	1b LTX074
789	Adenocarcinoma	0	No	RLL	1b LTX074
790	Adenocarcinoma	0	No	RLL	1b LTX074
791	Adenocarcinoma	0	No	RLL	1b LTX074
792	Adenocarcinoma	0	No	RLL	1b LTX074
793	Adenocarcinoma	0	No	RLL	1b LTX074
794	Adenocarcinoma	0	No	RLL	1b LTX074
795	Adenocarcinoma	0	No	RLL	1b LTX074
796	Adenocarcinoma	0	No	RLL	1b LTX074
797	Adenocarcinoma	0	No	RLL	1b LTX074
798	Adenocarcinoma	0	No	RLL	1b LTX074
799	Adenocarcinoma	0	No	RLL	1b LTX074
800	Adenocarcinoma	0	No	RLL	1b LTX074
801	Adenocarcinoma	0	No	RLL	1b LTX074
802	Adenocarcinoma	0	No	RLL	1b LTX074
803	Adenocarcinoma	?	No	LUL	1a LTX075
804	Adenocarcinoma	?	No	LUL	1a LTX075
805	Adenocarcinoma	?	No	LUL	1a LTX075
806	Adenocarcinoma	?	No	LUL	1a LTX075
807	Adenocarcinoma	?	No	LUL	1a LTX075
808	Adenocarcinoma	?	No	LUL	1a LTX075
809	Adenocarcinoma	?	No	LUL	1a LTX075
810	Adenocarcinoma	?	No	LUL	1a LTX075

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
811	Adenocarcinoma	?	No	LUL	1a LTX075
812	Adenocarcinoma	?	No	LUL	1a LTX075
813	Adenocarcinoma	?	No	LUL	1a LTX075
814	Adenocarcinoma	?	No	LUL	1a LTX075
815	Adenocarcinoma	?	No	LUL	1a LTX075
816	Adenocarcinoma	?	No	LUL	1a LTX075
817	Adenocarcinoma	?	No	LUL	1a LTX075
818	Adenocarcinoma	?	No	LUL	1a LTX075
819	Adenocarcinoma	?	No	LUL	1a LTX075
820	Adenocarcinoma	?	No	LUL	1a LTX075
821	Adenocarcinoma	?	No	LUL	1a LTX075
822	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
823	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
824	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
825	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
826	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
827	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
828	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
829	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
830	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
831	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
832	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
833	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
834	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
835	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
836	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
837	Squamous cell carcinoma	0	Yes	RLL	1b LTX033

FIG. 20 (CONT.)

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
838	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
839	Squamous cell carcinoma	0	Yes	RLL	1b LTX033
840	Adenocarcinoma	0	No	RLL	1a LTX091
841	Adenocarcinoma	0	No	RLL	1a LTX091
842	Adenocarcinoma	0	No	RLL	1a LTX091
843	Adenocarcinoma	0	No	RLL	1a LTX091
844	Adenocarcinoma	0	No	RLL	1a LTX091
845	Adenocarcinoma	0	No	RLL	1a LTX091
846	Adenocarcinoma	0	No	RLL	1a LTX091
847	Adenocarcinoma	0	No	RLL	1a LTX091
848	Adenocarcinoma	0	No	RLL	1a LTX091
849	Adenocarcinoma	0	No	RLL	1a LTX091
850	Adenocarcinoma	0	No	RLL	1a LTX091
851	Adenocarcinoma	0	No	RLL	1a LTX091
852	Adenocarcinoma	0	No	RLL	1a LTX091
853	Adenocarcinoma	0	No	RLL	1a LTX091
854	Adenocarcinoma	0	No	RLL	1a LTX091
855	Adenocarcinoma	0	No	RLL	1a LTX091
856	Adenocarcinoma	0	No	RLL	1a LTX091
857	Adenocarcinoma	0	No	RLL	1a LTX091
858	Adenocarcinoma	0	No	RLL	1a LTX091
859	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
860	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
861	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
862	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
863	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
864	Squamous cell carcinoma	0	Yes	RUL	2a LTX076

FIG. 20 (CONT.)

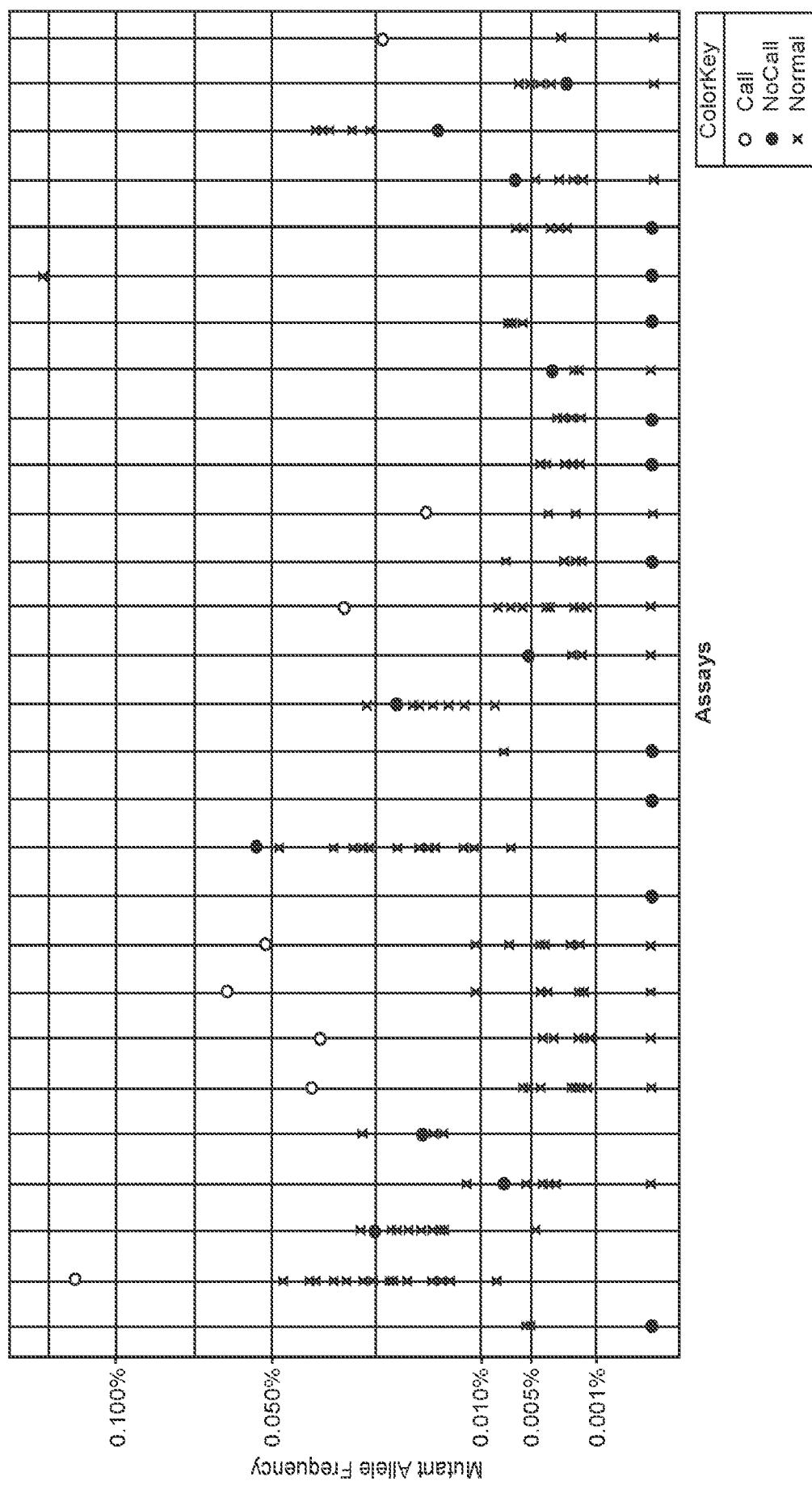

Row number	Pathological type	LN status	Vasc inv?	Lobe of lung	Madeup name
865	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
866	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
867	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
868	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
869	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
870	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
871	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
872	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
873	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
874	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
875	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
876	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
877	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
878	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
879	Squamous cell carcinoma	0	Yes	RUL	2a LTX076
880	Adenocarcinoma	?	No	RLL	1b LTX160
881	Adenocarcinoma	?	No	RLL	1b LTX160
882	Adenocarcinoma	?	No	RLL	1b LTX160
883	Adenocarcinoma	?	No	RLL	1b LTX160
884	Adenocarcinoma	?	No	RLL	1b LTX160
885	Adenocarcinoma	?	No	RLL	1b LTX160
886	Adenocarcinoma	?	No	RLL	1b LTX160
887	Adenocarcinoma	?	No	RLL	1b LTX160
888	Adenocarcinoma	?	No	RLL	1b LTX160
889	Adenocarcinoma	?	No	RLL	1b LTX160
890	Adenocarcinoma	?	No	RLL	1b LTX160
891	Adenocarcinoma	?	No	RLL	1b LTX160

FIG. 20 (CONT.)

FIG. 20 (CONT.)

171 / 171

FIG. 21

