一种裂化催化剂

摘要

本发明公开了一种流化裂化催化剂，该催化剂主要由 5～70 重％的裂化活性组元，5～80 重％的粘土和 10～60 重％的粘结剂组成，其特征在于所说的裂化活性组元中含有 Y 型分子筛和以催化剂为基准、含量为 3～20 重％的一种经酸化处理的介孔硅铝材料，所说的介孔硅铝材料，具有拟薄水铝石的物相结构，以氧化物重量计的无水化学表达式为：

\[
(0 - 0.3) \text{Na}_2\text{O} \cdot (40 - 90) \text{Al}_2\text{O}_3 \cdot (10 - 60) \text{SiO}_2
\]

其比表面积为 200～400m²/g，孔容为 0.5～2.0ml/g，平均孔径为 8～20nm，最观察孔径为 5～15nm。所说的酸化处理是在室温至 80℃、0.1～0.3 酸铝比条件下将介孔硅铝材料与无机酸接触 0.5～3 小时。该催化剂不仅具有较好的强度，而且具有活性稳定性高、重油收率低及原油转化能力强的优点。
1. 一种流化裂化催化剂，主要由 5～70 重％的裂化活性组元，5～80 重％的粘土和 10～60 重％的粘结剂组成，其特征在于所述的裂化活性组元中含有 Y 型分子筛和以催化剂为基准、含量为 3～20 重％的一种经酸化处理的介孔硅铝材料，所述的介孔硅铝材料，具有拟薄水铝石的物相结构，以氧化物重量计的无水化学表达式为：(0～0.3)Na₂O·(40～90)Al₂O₃·(10～60)SiO₂，其比表面积为 200～400 m²/g，孔容为 0.5～2.0 ml/g，平均孔径为 8～20 nm，最可几孔径为 5～15 nm，所说的酸化处理是在室温至 80℃，酸铝比 0.1～0.3 的条件下将介孔硅铝材料与无机酸接触 0.5～3 小时。
2. 按照权利要求 1 的催化剂，其中所说的裂化活性组元为 Y 型分子筛和经酸化处理的介孔硅铝材料，以及 MFI 结构硅铝分子筛和/或 beta 沸石。
3. 按照权利要求 1 或 2 的催化剂，其中 Y 型分子筛选自 HY、USY、REUSY、REY、REHY、REDASY 中的一种或多种的混合物或经各种金属氧化物处理得到的 Y 型分子筛。
4. 按照权利要求 2 的催化剂，其中 MFI 结构硅铝分子筛为 ZSM-5 沸石或经稀土改性或经稀土和磷同时改性的 ZSM-5 沸石。
5. 按照权利要求 1 的催化剂，其特征在于所说的经酸化处理的介孔硅铝材料的含量为 5～15 重％。
6. 按照权利要求 1 的催化剂，其中所说的经酸化处理的介孔硅铝材料，孔容为 1.0～2.0 ml/g，平均孔径为 10～20 nm，最可几孔径为 10～15 nm。
7. 按照权利要求 1 的催化剂，所说的酸化处理是在 0.15～0.25 酸铝比条件下将介孔硅铝材料与无机酸接触 1～2 小时。
8. 按照权利要求 1 的催化剂，所说的粘结剂选自硅溶胶、铝溶胶和拟薄水铝石中的一种或两种或三者的混合物。
9. 按照权利要求 1 的催化剂，所说的粘结剂为铝溶胶和拟薄水铝石的混合物。
说明书

一种裂化催化剂

技术领域

本发明是关于一种裂化催化剂，具体地说是关于一种含介孔硅铝材料的流化催化裂化催化剂。

背景技术

催化裂化是一种石油精炼工艺，广泛地应用于石油加工工业中，作为原油二次加工中最重要的加工过程，该工艺是液化石油气、汽油、煤油和柴油的主要生产手段，在炼油厂中占有举足轻重的地位。在催化裂化和加氢裂化工艺中，重质馏分如减压馏分油或更重组分的渣油在催化剂存在下发生反应，转化成汽油、馏出液和其他液态裂化产品以及较轻的四碳以下的气态裂化产品，在这些反应过程中通常需要使用具有高裂化活性的催化材料。

微孔沸石催化剂材料由于其具有优良的择形催化性能和很高的裂化反应活性，而被广泛地应用于石油炼制和加工工业中。但是随着石油资源的日益耗竭以及环境保护等方面的要求，特别是原油日趋变重的增长趋势（>500℃的高沸点组分增加）和市场对轻质油品的大量需求，在石油加工工业中越来越重视对重油和渣油的深度加工，部分炼厂开始掺炼减压渣油，甚至直接以常压渣油为裂化原料。传统的微孔分子筛催化剂由于其孔道较小，对较大的原料分子显示出明显的限制扩散作用，导致表观反应活性降低，在很大程度上限制了大分子的催化反应，因此不适宜应用于重油和渣油等重质馏分的催化裂化反应。

为提高催化裂化的重油选择性，必须使重油馏分的大分子发生转化，同时还要减少中间馏分油和石脑油的进一步转化，这就需要使用孔径较大，对反应物分子没有扩散限制，且具有较高裂化活性的材料。而传统的微孔分子筛仅利于小分子的裂化，因此介孔和大孔催化材料的研究开发越来越受到人们的重视。

均匀可调，孔径分布集中，比表面积和孔体积大，吸附能力强；但由于该类分子筛的孔壁结构为无定型结构，因此水热稳定性差且酸性较弱，无法满足催化裂化操作条件，工业应用受到很大的限制。

为解决介孔分子筛水热稳定性差的问题，大量的研究工作就集中于提高分子筛孔壁厚度上，采用中性模板剂可以得到孔壁较厚的分子筛，但其酸性较弱的缺点仍旧存在。在 CN 1349929A 中公开了一种新型的介孔分子筛，在这种分子筛的孔壁上引入了沸石的初级和次级结构单元，使其具有传统沸石分子筛的基本结构，该介孔分子筛具有强酸性和平超低水热稳定性。但是，这种介孔分子筛的不足在于需使用价格昂贵的模板剂，且孔径仅有 2.7 nm 左右，对于重油中的大分子裂化反应仍有较大的空间位阻效应，高温水热条件下结构易塌陷，裂化活性较差，因此至今尚未见其大规模工业应用。

在催化裂化领域中，硅铝材料由于其具有较强的酸性中心和很好的裂化性能而得以广泛的应用。介孔概念的提出，又为新型催化剂的制备提供了可能，但目前的研究结果多集中在使用昂贵的有机模板剂和有机硅源，并且多数要经过高温水热后处理过程。US5051385 中公开了一种单分散介孔硅铝复合材料，先将酸性无机铝盐和硅溶胶进行混合后加入碱，得到的硅铝材料的铝含量在 5～40 重%，孔径介于 20～50 nm，比表面积达到 50～100 m²/g。US4708945 中公开的方法是在多孔一水软铝石上负载氧化硅粒子或水合氧化硅，再将所得复合物于 600℃以上水热处理，制得氧化硅负载在类一水软铝石表面上的催化剂，这种材料的表面积为 100～200 m²/g，平均孔径 7～7.5 nm。在 US4440872 中公开了系列酸裂化催化剂，其中一些催化剂的载体是通过在 γ-Al₂O₃ 上浸渍硅烷，然后经 500℃焙烧或水蒸汽处理后制得。US2394796 公开了在多孔水合氧化铝上浸渍四氯化硅或四乙基硅，然后经水解获得硅铝复合材料。CN 1353008 中采用无机铝盐和硅玻璃为原料，经过沉淀、解胶等过程形成稳定清晰的硅铝溶胶，后经干燥得到白色凝胶，在 350 ℃～650 ℃条件下煅烧 1～20 小时后得到硅铝催化材料。

在 CN1565733A 中公开了一种介孔硅铝材料，该硅铝材料具有拟薄水铝石的物相结构，其孔径分布集中，比表面积大于 200～400 m²/g，孔容为 0.5～2.0 ml/g，平均孔径介于 8～20 nm，最可及孔径为 5～15 nm。该介孔硅铝材料的制备不需使用有机模板剂，合成成本低，得到的硅铝材料具有高的裂化活性和水热稳定性，在催化裂化反应中表现出良好的大分子裂化性能。
发明内容

本发明人意外地发现，当将上述 CN1565733A 中所说的介孔硅铝材料经酸化处理后作为活性组元的一部分加入裂化催化剂后，所制备的催化剂不仅表现在强度有明显提高，利于催化剂的工业应用，而且表现在水热活性稳定性也有所提高。

因此，本发明的目的是在现有技术的基础上，提供一种催化剂强度高、水热活性稳定性好的裂化催化剂。

本发明提供的裂化催化剂，主要由裂化活性组元、粘土和粘结剂组成，其中所说的裂化活性组元中含有 Y 型分子筛和一种经酸化处理的介孔硅铝材料。

更具体地说，本发明提供的裂化催化剂主要由 5～70 重％的裂化活性组元，5～80 重％的粘土和 10～60 重％的粘结剂组成，其特征在于所说的裂化活性组元中含有 Y 型分子筛和以催化剂为基准、含量为 3～20 重％、优选 5～15 重％的一种经酸化处理的介孔硅铝材料，所说的介孔硅铝材料，具有微薄水铝石的物相结构，以氧化物重量计的无水化学表达式为：(0～0.3) Na₂O · (40～90) Al₂O₃ · (10～60) SiO₂，其比表面积为 200～400 m²/g，孔容为 0.5～2.0 ml/g，平均孔径为 8～20 nm，可及孔径为 5～15 nm，所说的酸化处理是在室温至 80℃，0.1～0.3 酸铝比条件下将介孔硅铝材料与无机酸接触 0.5～3 小时。

所说的裂化活性组元在催化剂中的含量为 5～70 重％，优选 15～60 重％，含有 Y 型分子筛和一种经酸化处理的介孔硅铝材料，还可以含有 MFI 结构硅铝分子筛和（或）beta 沸石。

所说的 Y 型分子筛选自 HY、USY、REUSY、REY、REHY、REDASY 中的一种或多种的混合物，或经各种金属氧化物处理得到的 Y 型分子筛。所说的含稀土的 Y 型分子筛（REUSY、REY、REHY、REDASY）中的稀土含量以 RE₂O₃ 计为 0.5～20 重％。

所说的介孔硅铝材料，具有微薄水铝石的物相结构，以氧化物重量计的无水化学表达式为：(0～0.3) Na₂O · (40～90) Al₂O₃ · (10～60) SiO₂，其比表面积为 200～400 m²/g，孔容为 0.5～2.0 ml/g，优选 1.0～2.0 ml/g，平均孔径为 8～20 nm，优选 10～20 nm，最可及孔径为 5～15 nm，优选 10～15 nm，该介孔硅铝材料在 CN1565733A 中有详尽的说明，在此不再繁述，本发明人将其酸化处理，应用于裂化催化剂中。所说的酸化处理是指将介孔硅铝材料
与无机酸接触的过程，该过程的条件为室温至80℃，酸溶重量比为0.1～0.3，优选0.15～0.25，酸化时间为0.5～3小时，优选1～2小时。所说的无机酸选自盐酸、硝酸等常用的无机酸，在实施例中，发明人以36%的盐酸为代表进行酸化处理过程，但并不因此而限制所用无机酸的范围。

本发明提供的裂化催化剂中，活性组元还可以含有MFI结构分子筛和/或beta沸石。其中，MFI结构分子筛可选自ZSM-5沸石或与其同属MFI结构的硅铝分子筛，可以为稀土改性或经稀土和磷酸改性的ZSM-5沸石（简记为ZRP，如CN1093101A中记载）。当所选的裂化活性组元中含有MFI结构分子筛和/或beta沸石时，具有MFI结构的硅铝分子筛与Y型分子筛的重量比为0.025～1，优选0.1～0.5；beta沸石与Y型分子筛的重量比为0.025～0.8。

所说的粘土选自可作为催化剂组分的各种粘土，如高岭土、蒙脱土、膨润土等，其在催化剂中的含量为5～80重%，优选15～60重%。

所说的粘结剂可以选自硅溶胶、铝溶胶和拟薄水铝石中的一种或两种或三者的混合物，其中优选的粘结剂为铝溶胶和拟薄水铝石的双铝粘结剂。所说的粘结剂在催化剂中的含量以SiO₂和/或Al₂O₃计，为10～60重%，优选20～50重%。

本发明提供的催化剂是将Y型分子筛或Y型分子筛与MFI结构分子筛和/或beta沸石与经酸化处理过的介孔硅铝材料、粘土和粘结剂混合均匀后，经过喷雾、焙烧、洗涤、干燥制得。

本发明提供的催化剂具有如下优点：1）催化剂具有更高的强度，即更低的磨损指数，例如，其磨损指数均在2.5×h⁻¹以下，普遍存在2.0×h⁻¹以下，而对比催化剂的磨损指数均大于2.6×h⁻¹，普遍存在3.0×h⁻¹以上，因此更利于催化剂的工业应用；2）催化剂的水热稳定性也有所提高，从重油微反的数据可以看出，加入酸化处理的介孔硅铝材料作为部分裂化活性组元有利于降低重油收率和提高原油转化率。

具体实施方式

下面的实施例将对本发明作进一步说明，但并不意味而限制本发明的内容。

在各实施例中，所用介孔材料的Na₂O、Al₂O₃、SiO₂的含量及催化剂中的稀土含量用X射线荧光法测定，磨损指数用鹅颈管强度仪测定（参见《石油化工分析方法（RIPP实验方法）》，杨翠等编，科学出版社，1990年出版）。
比表面积和孔体积等参数用低温氮吸附仪测定。

用于轻油微反和重油微反评价的催化剂需预先在固定床老化装置上分别进行 800℃，100%水气老化 4 小时和 17 小时处理。

轻油微反的评价条件为：剂油比 1.28，质量空速 40.11h⁻¹，反应温度 460℃，原料油为馏程 221-335℃的大港直馏轻柴油。

重油微反的评价条件为：剂油比 2.94，催化剂藏量 5g，反应温度 500℃，再生温度 600℃，原料油为减压瓦斯油。

实施例 1

介孔硅铝材料采用 CN1565733A 中实施例 1 的介孔硅铝材料 SA-1，SA-1 的制备过程如下：取 100ml 浓度为 90gAl₂O₃/L 的 Al₂(SO₄)₃ 溶液置于烧杯中，在搅拌条件下将氨水逐滴加入，直至体系 pH=8，中和成胶温度为 55℃；再搅拌条件下加入 50ml 含量为 60gSiO₂/L 的水玻璃，升温至 80℃老化 4 小时；用 NH₄Cl 溶液按沉淀物（干基）：铵盐：H₂O=1：0.8：15 的重量比，在 60℃下对硅铝沉淀物进行离子交换以除去其中的钠离子，交换重复进行两次，每次进行 0.5 小时，每次交换后进行水洗过滤，然后在 120℃下干燥 15小时，在 600℃下焙烧 3 小时。SA-1 的化学组成为 0.12 Na₂O·73.7 Al₂O₃·26.2 SiO₂，其比表面积为 362 m²/g，孔容为 1.19 ml/g，平均孔径为 12.8 nm，最可几孔径为 10 nm。将 SA-1 制备成浆液，在 60℃下加入浓度为 36% 的盐酸（化学纯，北京化工厂生产）进行酸化处理，酸铝比为 0.20，酸化时间为 1.5 小时，过滤后得到酸化的介孔硅铝材料，编号为 SH-SA-1。

将拟薄水铝石（固含量 65.8% 重%，山东铝厂生产）加入定量去离子水中，搅拌均匀后，加入浓度为 36% 的盐酸进行酸化处理，酸铝比控制在 0.15～0.2，此时浆液 pH 值约为 1.0～1.2，搅拌 40 分钟后，升温至 65℃静止酸化 1 小时，此时浆液 pH 值约为 3.0。停止加热后，再分别加入高岭土浆液（含量为 40% 重%，中国高岭土公司生产）、铝溶胶（Al₂O₃ 含量 21.5% 重%，齐鲁催化剂厂生产）及酸化的介孔硅铝材料 SH-SA-1，搅拌 20 分钟后，再向混合浆液中加入 REHY 分子筛（RE₂O₃ 12.3% 重%，Na₂O 5.1% 重%，硅铝比 4.7，齐鲁催化剂厂生产），继续搅拌 20 分钟后喷雾干燥制成微球催化剂。将该微球催化剂在 500℃下焙烧 1 小时，再于 60℃用(NH₄)₂SO₄ 洗涤 ((NH₄)₂SO₄：催化剂：H₂O=0.5：1：10) 至 Na₂O<0.25 重%，最后用大量去离子水淋洗，过滤后于 110℃烘干，得到催化剂 C-1。

催化剂 C-1 的组成为：REHY 分子筛 35.0%、高岭土 28.0%、拟薄水铝石 25.0%、铝溶胶 7.0%、酸化的介孔硅铝材料 SH-SA-1 5.0%。

测试及评价结果列于表 1 中。

对比例 1

按实施例 1 中所述的方法制备对比催化剂，其中所加入的介孔硅铝材料
为未经酸化处理的介孔硅铝材料 SA-1，得到对比催化剂 DB-1。

对比催化剂 DB-1 的组成为：REHY 分子筛 35.0%、高岭土 28.0%、拟薄水铝石 25.0%、铝溶胶 7.0%、介孔硅铝材料 SA-1 5.0%。

测试及评价结果列于表 1 中。

对比例 2

称取定量拟薄水铝石和介孔硅铝材料 SA-1，加水制成浆液，搅拌均匀后，在 60℃下加入浓度为 36%的盐酸一起进行酸化处理，酸铝比为 0.20，酸化处理 1.5 小时，酸化后加入高岭土浆液和铝溶胶，继续搅拌 20 分钟后，再加入 REHY 分子筛，搅拌 20 分钟后喷成微球催化剂，焙烧、洗涤、烘干后得到对比催化剂 DB-1’。

对比催化剂 DB-1’的组成为：REHY 35.0%、高岭土 28.0%、拟薄水铝石 25.0%、铝溶胶 7.0%、与拟薄水铝石同时酸化的介孔硅铝材料 SA-1 5.0%。

测试及评价结果列于表 1 中。

表 1

<table>
<thead>
<tr>
<th>催化剂</th>
<th>C-1</th>
<th>DB-1</th>
<th>DB-1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>磨损指数，%h⁻¹</td>
<td>1.8</td>
<td>3.1</td>
<td>2.6</td>
</tr>
<tr>
<td>孔体积，mL/g</td>
<td>0.46</td>
<td>0.44</td>
<td>0.46</td>
</tr>
<tr>
<td>堆密度，g/L</td>
<td>0.60</td>
<td>0.63</td>
<td>0.61</td>
</tr>
<tr>
<td>微反活性，wt%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800℃/4hr</td>
<td>73</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>800℃/17hr</td>
<td>52</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>物料平衡，wt%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>干气</td>
<td>1.54</td>
<td>1.50</td>
<td>1.57</td>
</tr>
<tr>
<td>液化气</td>
<td>15.37</td>
<td>15.42</td>
<td>15.40</td>
</tr>
<tr>
<td>汽油</td>
<td>51.09</td>
<td>50.54</td>
<td>50.65</td>
</tr>
<tr>
<td>柴油</td>
<td>18.52</td>
<td>18.37</td>
<td>18.50</td>
</tr>
<tr>
<td>重油</td>
<td>8.05</td>
<td>8.61</td>
<td>8.34</td>
</tr>
<tr>
<td>焦炭</td>
<td>5.43</td>
<td>5.56</td>
<td>5.54</td>
</tr>
<tr>
<td>转化率，wt %</td>
<td>73.43</td>
<td>73.02</td>
<td>73.16</td>
</tr>
</tbody>
</table>
由表 1 可见，与对比剂 DB-1 相比，加入酸化的介孔硅铝材料后，催化剂 C-1 的强度明显提高，更利于催化剂的工业应用；催化剂的水热活性稳定性也有所提高，从重油微反的数据可以看出，介孔硅铝材料经酸化后有利于重油转化率和原油转化率的提高。C-1 与对比剂 DB-1’相比，对介孔材料进行独立酸化更利于强度及裂化活性的提高。

实施例 2～4

实施例 2～4 用以说明经酸化后的介孔硅铝材料的不同取代量对催化剂物化性能及裂化性能的影响。

对拟薄水铝石进行酸化处理后，加入高岭土浆液、铝溶胶及酸化的介孔硅铝材料 SH-SA-1，搅拌 20 分钟后，再向混合浆液中加入 REHY 分子筛，搅拌 20 分钟后喷成微球催化剂，焙烧、洗涤、烘干后得到催化剂 C-2～4，其中酸化的介孔硅铝材料 SH-SA-1 的用量分别为 8%，12%和 16%。

催化剂 C-2 的组成为：REHY 35.0%、高岭土 28.0%、拟薄水铝石 22.0%、铝溶胶 7.0%、SH-SA-1 8.0%。

催化剂 C-3 的组成为：REHY 35.0%、高岭土 28.0%、拟薄水铝石 18.0%、铝溶胶 7.0%、SH-SA-1 12.0%。

催化剂 C-4 的组成为：REHY 35.0%、高岭土 25.0%、拟薄水铝石 17.0%、铝溶胶 7.0%、SH-SA-1 16.0%。

测试及评价结果列于表 2 中。

对比例 3～5

按实施例 2～4 中所述的方法制备对比例催化剂，其中所加入的介孔硅铝材料为 SA-1，得到对比例催化剂 DB-2～4。

对比例催化剂 DB-2 的组成为：REHY 35.0%、高岭土 28.0%、拟薄水铝石 22.0%、铝溶胶 7.0%、介孔硅铝材料 SA-1 8.0%。

对比例催化剂 DB-3 的组成为：REHY 35.0%、高岭土 28.0%、拟薄水铝石 18.0%、铝溶胶 7.0%、介孔硅铝材料 SA-1 12.0%。

对比例催化剂 DB-4 的组成为：REHY 35.0%、高岭土 25.0%、拟薄水铝石 17.0%、铝溶胶 7.0%、介孔硅铝材料 SA-1 16.0%。

测试及评价结果列于表 2 中。
表 2

<table>
<thead>
<tr>
<th>催化剂</th>
<th>C-2</th>
<th>DB-2</th>
<th>C-3</th>
<th>DB-3</th>
<th>C-4</th>
<th>DB-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>磨损指数，%h^{-1}</td>
<td>1.8</td>
<td>3.2</td>
<td>2.1</td>
<td>3.4</td>
<td>2.5</td>
<td>3.7</td>
</tr>
<tr>
<td>孔体积，mL/g</td>
<td>0.47</td>
<td>0.44</td>
<td>0.48</td>
<td>0.45</td>
<td>0.49</td>
<td>0.47</td>
</tr>
<tr>
<td>堆密度，g/L</td>
<td>0.60</td>
<td>0.62</td>
<td>0.62</td>
<td>0.63</td>
<td>0.63</td>
<td>0.66</td>
</tr>
<tr>
<td>微反活性，wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>800℃/4hr</td>
<td>72</td>
<td>71</td>
<td>73</td>
<td>72</td>
<td>73</td>
<td>72</td>
</tr>
<tr>
<td>800℃/17hr</td>
<td>52</td>
<td>52</td>
<td>53</td>
<td>52</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>物料平衡，wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>干气</td>
<td>1.58</td>
<td>1.50</td>
<td>1.68</td>
<td>1.47</td>
<td>1.62</td>
<td>1.71</td>
</tr>
<tr>
<td>液化气</td>
<td>15.21</td>
<td>15.38</td>
<td>15.33</td>
<td>15.45</td>
<td>15.31</td>
<td>15.28</td>
</tr>
<tr>
<td>汽油</td>
<td>51.19</td>
<td>50.65</td>
<td>51.11</td>
<td>50.80</td>
<td>51.27</td>
<td>50.83</td>
</tr>
<tr>
<td>柴油</td>
<td>18.43</td>
<td>18.22</td>
<td>18.32</td>
<td>18.16</td>
<td>18.11</td>
<td>18.08</td>
</tr>
<tr>
<td>重油</td>
<td>8.00</td>
<td>8.57</td>
<td>8.01</td>
<td>8.48</td>
<td>7.98</td>
<td>8.43</td>
</tr>
<tr>
<td>焦炭</td>
<td>5.59</td>
<td>5.68</td>
<td>5.55</td>
<td>5.64</td>
<td>5.71</td>
<td>5.67</td>
</tr>
<tr>
<td>转化率，wt%</td>
<td>73.57</td>
<td>73.21</td>
<td>73.80</td>
<td>73.36</td>
<td>73.91</td>
<td>73.60</td>
</tr>
</tbody>
</table>

由表 2 可见，与相应的对比例相比，使用酸化的介孔硅铝材料均能提高催化剂的强度和原油转化率，并有效降低重油收率；随取代量的增加，催化剂强度降低，但原油转化率和重油转化率却有所提高，这与介孔硅铝材料本身具有一定的裂化活性有关。

实施例 5～7

实施例 5～7 是说明用酸化的介孔硅铝材料 SH-SA-1 取代催化剂中的不同组分对催化剂物化性能及裂化性能的影响。

喷制催化剂的具体过程同实施例 1，但在制备过程中用酸化的介孔硅铝材料 SH-SA-1 分别取代活性组元分子筛、高岭土和粘结剂中的一种或两种或三者的混合物，制成催化剂 C-5～7。

催化剂 C-5 的组成为：REHY 30.0%、高岭土 28.0%、拟薄水铝石 25.0%、铝溶胶 7.0%、酸化的介孔硅铝材料 SH-SA-1 10.0%。

催化剂 C-6 的组成为：REHY 35.0%、高岭土 23.0%、拟薄水铝石 25.0%
%、铝溶胶 7.0%、酸化的介孔硅铝材料 SH-SA-1 10.0%。
催化剂 C-7 的组成为：REHY 30.0%、高岭土 26.0%、拟薄水铝石 22.0%
%、铝溶胶 7.0%、酸化的介孔硅铝材料 SH-SA-1 15.0%。
测试及评价结果列于表 3 中。

对比例 6～8
按实施例 5～7 中所述的方法制备对比催化剂，其中所加入的介孔硅铝
材料为未经酸化处理的介孔硅铝材料 SA-1，得到对比催化剂 DB-5～7。
对比催化剂 DB-5 的组成为：REHY 30.0%、高岭土 28.0%、拟薄水铝石
25.0%、铝溶胶 7.0%、介孔硅铝材料 SA-1 10.0%。
对比催化剂 DB-6 的组成为：REHY 35.0%、高岭土 23.0%、拟薄水铝石
25.0%、铝溶胶 7.0%、介孔硅铝材料 SA-1 10.0%。
对比催化剂 DB-7 的组成为：REHY 30.0%、高岭土 26.0%、拟薄水铝石
22.0%、铝溶胶 7.0%、介孔硅铝材料 SA-1 15.0%。
测试及评价结果列于表 3 中。

表 3

<table>
<thead>
<tr>
<th>催化剂</th>
<th>C-5</th>
<th>DB-5</th>
<th>C-6</th>
<th>DB-6</th>
<th>C-7</th>
<th>DB-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>磨损指数，%h⁻¹</td>
<td>1.6</td>
<td>2.9</td>
<td>2.0</td>
<td>3.2</td>
<td>1.9</td>
<td>3.5</td>
</tr>
<tr>
<td>孔体积，mL/g</td>
<td>0.48</td>
<td>0.45</td>
<td>0.48</td>
<td>0.46</td>
<td>0.47</td>
<td>0.45</td>
</tr>
<tr>
<td>堆密度，g/L</td>
<td>0.60</td>
<td>0.61</td>
<td>0.61</td>
<td>0.63</td>
<td>0.60</td>
<td>0.62</td>
</tr>
<tr>
<td>微反活性，wt%</td>
<td>800℃/4hr</td>
<td>71</td>
<td>70</td>
<td>73</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>800℃/17hr</td>
<td>52</td>
<td>51</td>
<td>53</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>物料平衡，wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>干气</td>
<td>1.68</td>
<td>1.63</td>
<td>1.68</td>
<td>1.57</td>
<td>1.72</td>
<td>1.73</td>
</tr>
<tr>
<td>液化气</td>
<td>15.27</td>
<td>15.45</td>
<td>15.56</td>
<td>15.75</td>
<td>15.42</td>
<td>15.69</td>
</tr>
<tr>
<td>汽油</td>
<td>50.67</td>
<td>50.25</td>
<td>51.05</td>
<td>50.48</td>
<td>50.91</td>
<td>50.26</td>
</tr>
<tr>
<td>柴油</td>
<td>18.43</td>
<td>18.14</td>
<td>18.09</td>
<td>18.18</td>
<td>18.15</td>
<td>17.90</td>
</tr>
<tr>
<td>重油</td>
<td>8.26</td>
<td>8.77</td>
<td>7.88</td>
<td>8.30</td>
<td>8.11</td>
<td>8.70</td>
</tr>
<tr>
<td>焦炭</td>
<td>5.69</td>
<td>5.76</td>
<td>5.54</td>
<td>5.62</td>
<td>5.69</td>
<td>5.72</td>
</tr>
<tr>
<td>转化率，wt %</td>
<td>73.31</td>
<td>73.09</td>
<td>74.03</td>
<td>73.52</td>
<td>73.74</td>
<td>73.40</td>
</tr>
</tbody>
</table>
由表3可见，与相应的对比例相比，使用酸化的介孔硅铝材料均能提高催化剂的强度和原油转化率，并有效降低重油收率。当取代催化剂中的载体时，裂化活性最强，因所用的介孔材料具有一定的裂化活性；当取代催化剂中的裂化活性分子筛时，由于介孔材料的裂化活性低于分子筛，因此重油转化率稍有下降。

实施例8～10

实施例8～10中的催化剂的制备过程同实施例1，但在制备过程中裂化活性组元分子筛选用Y型分子筛，ZSM-5分子筛（Na2O 2.8%，硅铝比60，齐鲁催化剂厂生产）和beta沸石（硅铝比30，齐鲁催化剂厂生产）中的一种或两种或三者的混合物，制得催化剂C-8、C-9、C-10。

催化剂C-8的组成为：REHY 32.0%，ZSM-5分子筛 3.0%，高岭土 27.0%、拟薄水铝石 23.0%、铝溶胶 7.0%、酸化的介孔硅铝材料SH-SA-1 8.0%。

催化剂C-9的组成为：REY（Na2O 3.2%，硅铝比5.4，长岭催化剂厂生产）30.0%、beta沸石 5.0%、高岭土 25.0%、拟薄水铝石 21.0%、铝溶胶 7.0%、酸化的介孔硅铝材料SH-SA-1 12.0%。

催化剂C-10的组成为：USY（Na2O 0.7%，硅铝比6.8，齐鲁催化剂厂生产） 30.0%、ZSM-5分子筛 2.0%、beta沸石 3.0%、高岭土 27.0%、拟薄水铝石 23.0%、铝溶胶 7.0%、酸化的介孔硅铝材料SH-SA-1 8.0%。

测试及评价结果列于表4中。

对比例9～11

按实施例8～10中所述的方法制备对比催化剂，其中所加入的介孔硅铝材料为未经酸化处理的介孔硅铝材料SA-1，得到对比催化剂DB-8、DB-9、DB-10。

对比催化剂DB-8的组成为：REHY 32.0%、ZSM-5分子筛 3.0%、高岭土 27.0%、拟薄水铝石 23.0%、铝溶胶 7.0%、介孔硅铝材料SA-1 8.0%。

对比催化剂DB-9的组成为：REY 30.0%、beta沸石 5.0%、高岭土 25.0%、拟薄水铝石 21.0%、铝溶胶 7.0%、介孔硅铝材料SA-1 12.0%。

对比催化剂DB-10的组成为：USY 30.0%、ZSM-5分子筛 2.0%、beta沸石 3.0%、高岭土 27.0%、拟薄水铝石 23.0%、铝溶胶 7.0%、介孔硅铝材料
SA-1 8.0%。

测试及评价结果列于表 4 中。

<table>
<thead>
<tr>
<th>表 4</th>
<th>催化剂</th>
<th>C-8</th>
<th>DB-8</th>
<th>C-9</th>
<th>DB-9</th>
<th>C-10</th>
<th>DB-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>磨损指数，%h^{-1}</td>
<td>1.8</td>
<td>3.2</td>
<td>2.0</td>
<td>3.5</td>
<td>1.9</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>孔体积，mL/g</td>
<td>0.46</td>
<td>0.44</td>
<td>0.47</td>
<td>0.46</td>
<td>0.45</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>堆密度，g/L</td>
<td>0.60</td>
<td>0.62</td>
<td>0.61</td>
<td>0.63</td>
<td>0.60</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>微反活性，wt%</td>
<td>800℃/4hr</td>
<td>71</td>
<td>70</td>
<td>72</td>
<td>71</td>
<td>71</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>800℃/17hr</td>
<td>51</td>
<td>49</td>
<td>52</td>
<td>51</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>物料平衡，wt%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>干气</td>
<td>1.71</td>
<td>1.75</td>
<td>1.68</td>
<td>1.74</td>
<td>1.73</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>液化气</td>
<td>15.18</td>
<td>15.26</td>
<td>15.19</td>
<td>15.10</td>
<td>14.93</td>
<td>14.78</td>
<td></td>
</tr>
<tr>
<td>汽油</td>
<td>50.89</td>
<td>50.38</td>
<td>51.04</td>
<td>50.50</td>
<td>51.00</td>
<td>50.72</td>
<td></td>
</tr>
<tr>
<td>柴油</td>
<td>17.99</td>
<td>17.82</td>
<td>17.83</td>
<td>17.67</td>
<td>18.03</td>
<td>17.85</td>
<td></td>
</tr>
<tr>
<td>重油</td>
<td>8.52</td>
<td>8.91</td>
<td>8.41</td>
<td>8.95</td>
<td>8.46</td>
<td>8.87</td>
<td></td>
</tr>
<tr>
<td>焦炭</td>
<td>5.71</td>
<td>5.88</td>
<td>5.85</td>
<td>6.04</td>
<td>5.85</td>
<td>5.98</td>
<td></td>
</tr>
<tr>
<td>转化率，wt%</td>
<td>73.49</td>
<td>73.27</td>
<td>73.76</td>
<td>73.38</td>
<td>73.51</td>
<td>73.28</td>
<td></td>
</tr>
</tbody>
</table>

由表 4 可见，与相应的对比例相比，使用酸化的介孔硅铝材料均能提高催化剂的强度和原油转化率，并有效降低重油收率。在相同的分子筛含量和介孔材料含量下，分子筛的类型不影响原油转化，重油转化率仍可保持较高，其仅对产品分布有一定影响。

实施例 11

介孔硅铝材料采用 CN1565733A 中实施例 2 的介孔硅铝材料 SA-2。SA-2 的制备过程如下：取 100ml 浓度为 90gAl₂O₃/L 的 Al₂(ⅢSO₄)₃溶液置于烧杯中，在搅拌条件下将氨水逐滴加入，直至体系 pH=8，中和成胶温度为 55℃；在搅拌条件下加入 100ml 含量为 60gSiO₂/L 的水玻璃，升温至 80℃ 老化 4 小时；用 NH₄Cl 溶液按沉淀物（干基）：铵盐：H₂O=1：0.8：15 的重量比，在 60℃ 下对硅铝沉淀物进行离子交换以除去其中的钠离子，交换重复进行两次，每次进行 0.5 小时，每次交换后进行水洗过滤，然后在 120℃ 下干燥 15 小时，在 600℃ 下焙烧 3 小时。SA-2 的化学组成为 0.09 Na₂O·59.1 Al₂O₃·40.8 SiO₂，其比表面积为 315 m²/g，孔容为 1.26 ml/g，平均孔径为 14.5 nm，最可几孔径为 12 nm。将该介孔材料制备成浆液，在 50℃ 下加入浓度为 36%的盐酸进行酸化处理，酸铝比为 0.15，酸化时间为 1.5 小时，过滤后得到酸化的介孔硅铝材料，编号为 SH-SA-2。
制备过程同实施例 1，得到催化剂 C-11。
催化剂 C-11 的组成为：REHY 35.0%、高岭土 28.0%、拟薄水铝石 21.0%
%、铝溶胶 8.0%、酸化的介孔硅铝材料 SH-SA-2 8.0%。
测试及评价结果列于表 5 中。

对比例 12
按实施例 11 中所述的方法制备对比催化剂，其中所加入的介孔硅铝材料
为介孔硅铝材料 SA-2，得到对比催化剂 DB-11。
对比催化剂 DB-11 的组成为：REHY 35.0%、高岭土 28.0%、拟薄水铝石
21.0%、铝溶胶 8.0%、介孔硅铝材料 SA-2 8.0%。
测试及评价结果列于表 5 中。

对比例 13
按照对比例 2 的方法、实施例 11 的催化剂组成制备对比催化剂，得到
对比催化剂 DB-11’。
对比催化剂 DB-11’ 的组成为：REHY 35.0%、高岭土 28.0%、拟薄水铝石
21.0%、铝溶胶 8.0%、与拟薄水铝石同时酸化的介孔硅铝材料 SA-2 8.0%。
测试及评价结果列于表 5 中。

表 5

<table>
<thead>
<tr>
<th>催化剂</th>
<th>C-11</th>
<th>DB-11</th>
<th>DB-11’</th>
</tr>
</thead>
<tbody>
<tr>
<td>磨损指数，%h⁻¹</td>
<td>1.6</td>
<td>2.9</td>
<td>2.3</td>
</tr>
<tr>
<td>孔体积，mL/g</td>
<td>0.46</td>
<td>0.44</td>
<td>0.45</td>
</tr>
<tr>
<td>堆密度，g/L</td>
<td>0.60</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>微反活性，wt% 800°C/4hr</td>
<td>73</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>800°C/17hr</td>
<td>52</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>物料平衡，wt%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>干气</td>
<td>1.54</td>
<td>1.77</td>
<td>1.63</td>
</tr>
<tr>
<td>液化气</td>
<td>14.52</td>
<td>14.76</td>
<td>14.54</td>
</tr>
<tr>
<td>汽油</td>
<td>51.09</td>
<td>50.23</td>
<td>50.74</td>
</tr>
<tr>
<td>柴油</td>
<td>18.32</td>
<td>18.10</td>
<td>18.20</td>
</tr>
<tr>
<td>重油</td>
<td>8.45</td>
<td>9.01</td>
<td>8.78</td>
</tr>
<tr>
<td>焦炭</td>
<td>6.08</td>
<td>6.13</td>
<td>6.11</td>
</tr>
<tr>
<td>转化率，wt%</td>
<td>73.23</td>
<td>72.89</td>
<td>73.02</td>
</tr>
</tbody>
</table>
由表 5 可见，与对比例相比，使用酸化的介孔硅铝材料可明显提高催化剂的强度和原油转化率，并有效降低重油收率。但用介孔硅铝材料与拟薄水铝石一起酸化得到的结果稍差。与实施例 2 相比，使用硅含量较高的介孔硅铝材料 SA-2 时，虽对强度等参数没有明显影响，但其相应的原油转化率及重油转化率均降低，这与不同组成的介孔硅铝材料的酸性有关。

实施例 12

本实施例中催化剂的制备过程同实施例 1，但在制备过程中仅以拟薄水铝石为粘结剂，制得催化剂 C-12。

催化剂 C-12 的组成为：REHY 分子筛 35.0%、高岭土 28.0%、拟薄水铝石 27.0%、酸化的介孔硅铝材料 SH-SA-1 10.0%。测试及评价结果列于表 6 中。

实施例 13

本实施例中催化剂的制备过程同实施例 1，但在制备过程中仅以铝溶胶为粘结剂，制得催化剂 C-13。

催化剂 C-13 的组成为：REHY 分子筛 35.0%、高岭土 37.0%、铝溶胶 18.0%、酸化的介孔硅铝材料 SH-SA-1 10.0%。测试及评价结果列于表 6 中。

| 表 6 |
|-----------------|-----|-----|
| 催化剂 | C-12 | C-13 |
| 磨损指数，%h⁻¹ | 2.4 | 1.7 |
| 孔体积，mL/g | 0.47 | 0.43 |
| 堆密度，g/L | 0.60 | 0.62 |
| 微反活性，wt% 800℃/4hr | 72 | 70 |
| 800℃/17hr | 51 | 51 |
| 物料平衡，wt% | | |
| 干气 | 1.64 | 1.55 |
| 液化气 | 14.72 | 14.65 |
| 汽油 | 50.64 | 50.81 |
| 柴油 | 18.37 | 18.35 |
| 重油 | 8.47 | 8.66 |
| 焦炭 | 6.16 | 5.98 |
| 转化率，wt% | 73.16 | 72.99 |