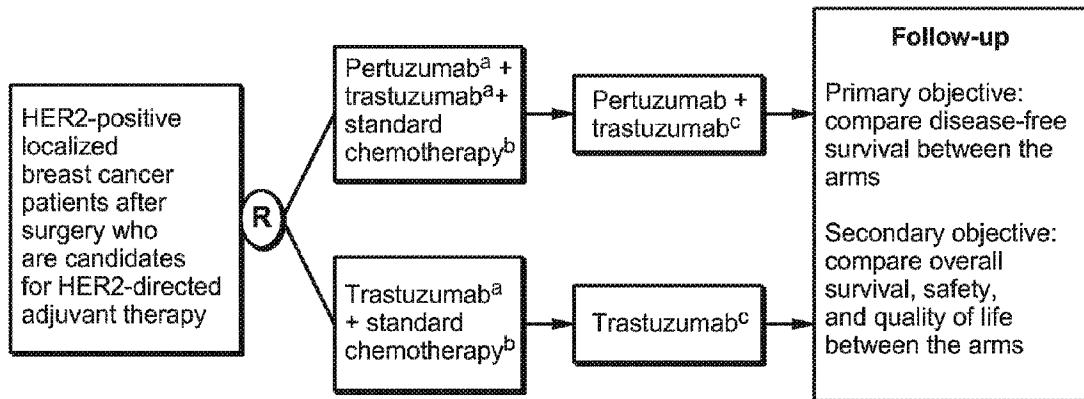


(86) Date de dépôt PCT/PCT Filing Date: 2018/02/28
(87) Date publication PCT/PCT Publication Date: 2018/09/07
(45) Date de délivrance/Issue Date: 2023/04/25
(85) Entrée phase nationale/National Entry: 2019/06/27
(86) N° demande PCT/PCT Application No.: US 2018/020154
(87) N° publication PCT/PCT Publication No.: 2018/160654
(30) Priorités/Priorities: 2017/03/02 (US62/466,239);
2017/03/09 (US62/469,317); 2017/04/18 (US62/486,876)

(51) Cl.Int./Int.Cl. C07K 16/32 (2006.01),
A61K 39/395 (2006.01), A61K 45/06 (2006.01),
A61K 9/00 (2006.01), A61P 35/00 (2006.01),
A61K 39/00 (2006.01)

(72) Inventeurs/Inventors:
BENYUNES, MARK C., US;
ROSS, GRAHAM ALEXANDER, GB


(73) Propriétaires/Owners:
GENENTECH, INC., US;
F. HOFFMANN-LA ROCHE AG, CH

(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre : TRAITEMENT PAR ADJUVANTS DU CANCER DU SEIN HER2 POSITIF

(54) Title: ADJUVANT TREATMENT OF HER2-POSITIVE BREAST CANCER

Schema of APHINITY Clinical Trial

(57) Abrégé/Abstract:

Methods are provided for the adjuvant treatment of operable HER2-positive primary breast cancer in human patients by administration of pertuzumab in addition to chemotherapy and trastuzumab. The methods reduce the risk of recurrence of invasive breast cancer or death for a patient diagnosed with HER2-positive early breast cancer (eBC) compared to administration of trastuzumab and chemotherapy, without pertuzumab.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2018/160654 A3

(43) International Publication Date
07 September 2018 (07.09.2018)

(51) International Patent Classification:

C07K 16/32 (2006.01) A61K 45/06 (2006.01)
A61P 35/00 (2006.01) A61K 39/395 (2006.01)
A61K 9/00 (2006.01) A61K 39/00 (2006.01)

(74) Agent: DREGER, Ginger, R. et al.; c/o Genentech, Inc., 1 DNA Way, Mail Stop 49, South San Francisco, CA 94080 (US).

(21) International Application Number:

PCT/US2018/020154

(22) International Filing Date:

28 February 2018 (28.02.2018)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/466,239	02 March 2017 (02.03.2017)	US
62/469,317	09 March 2017 (09.03.2017)	US
62/486,876	18 April 2017 (18.04.2017)	US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicants: GENENTECH, INC. [US/US]; 1 DNA Way, South San Francisco, CA 94080 (US). F. HOFFMANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse 124, 4070 Basel (CH).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(72) Inventors: BENYUNES, Mark, C.; c/o Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080 (US). ROSS, Graham, Alexander; 12 Digsell Road, Welwyn Garden City, Hertfordshire AL8 7PA (GB).

(54) Title: ADJUVANT TREATMENT OF HER2-POSITIVE BREAST CANCER

Schema of APHINITY Clinical Trial

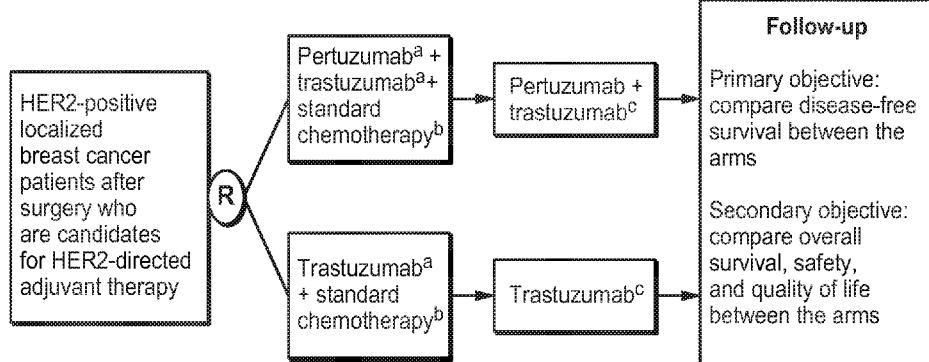


FIG. 6A

(57) Abstract: Methods are provided for the adjuvant treatment of operable HER2-positive primary breast cancer in human patients by administration of pertuzumab in addition to chemotherapy and trastuzumab. The methods reduce the risk of recurrence of invasive breast cancer or death for a patient diagnosed with HER2-positive early breast cancer (eBC) compared to administration of trastuzumab and chemotherapy, without pertuzumab.

WO 2018/160654 A3

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))*

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *with sequence listing part of description (Rule 5.2(a))*

(88) Date of publication of the international search report:

20 December 2018 (20.12.2018)

ADJUVANT TREATMENT OF HER2-POSITIVE BREAST CANCER

Sequence Listing

The instant application contains a Sequence Listing which has been submitted electronically
5 in ASCII format. Said ASCII copy, created on
February 5, 2018, is named P34141-WO_SL.txt and is 33,918 bytes in size.

Field of the Invention

10 The present invention concerns the treatment of operable HER2-positive primary breast cancer in human patients by administration of pertuzumab in addition to chemotherapy and trastuzumab. In particular, the present invention concerns the treatment of operable HER2-positive early breast cancer (eBC) by adjuvant administration of pertuzumab, trastuzumab and chemotherapy.

15 It also concerns an article of manufacture comprising a vial with pertuzumab therein and a package insert providing instructions for adjuvant administration of pertuzumab in combination with trastuzumab and chemotherapy to treat HER2-positive early breast cancer and compositions for use in the methods herein.

Background of the Invention

20 Members of the HER family of receptor tyrosine kinases are important mediators of cell growth, differentiation and survival. The receptor family includes four distinct members including epidermal growth factor receptor (EGFR, ErbB1, or HER1), HER2 (ErbB2 or p185^{neu}), HER3 (ErbB3) and HER4 (ErbB4 or tyro2). Members of the receptor family have been implicated in various types of human malignancy.

25 A recombinant humanized version of the murine anti-HER2 antibody 4D5 (huMAb4D5-8, rhuMAb HER2, trastuzumab or HERCEPTIN[®]; U.S. Patent No. 5,821,337) is clinically active in patients with HER2-overexpressing metastatic breast cancers that have received extensive prior anti-cancer therapy (Baselga *et al.*, *J. Clin. Oncol.* 14:737-744 (1996)).

30 Trastuzumab received marketing approval from the Food and Drug Administration September 25, 1998 for the treatment of patients with metastatic breast cancer whose tumors overexpress the HER2 protein. At present, trastuzumab is approved for use as a single agent or in combination with chemotherapy or hormone therapy in the metastatic setting, and as single agent or in combination with chemotherapy as adjuvant treatment for patients with early-stage HER2-positive breast cancer. Trastuzumab-based therapy is now the recommended treatment for patients with HER2-positive early-stage breast cancer who do not have contraindications for its use (Herceptin[®] 35 prescribing information; NCCN Guidelines, version 2.2011). Trastuzumab plus docetaxel (or

paclitaxel) is a registered standard of care in the first-line metastatic breast cancer (MBC) treatment setting (Slamon et al. *N Engl J Med.* 2001;344(11):783-792.; Marty et al. *J Clin Oncol.* 2005; 23(19):4265-4274).

5 Patients treated with the HER2 antibody trastuzumab are selected for therapy based on HER2 expression. See, for example, WO99/31140 (Paton *et al.*), US2003/0170234A1 (Hellmann, S.), and US2003/0147884 (Paton *et al.*); as well as WO01/89566, US2002/0064785, and US2003/0134344 (Mass *et al.*). See, also, US Patent No. 6,573,043, US Patent No. 6,905,830, and US2003/0152987, Cohen *et al.*, concerning immunohistochemistry (IHC) and fluorescence *in situ* hybridization (FISH) for detecting HER2 overexpression and amplification. Thus, the optimal management of metastatic 10 breast cancer now takes into account not only a patient's general condition, medical history, and receptor status, but also the HER2 status.

15 Pertuzumab (also known as recombinant humanized monoclonal antibody 2C4 (rhuMAb 2C4); Genentech, Inc, South San Francisco) represents the first in a new class of agents known as HER dimerization inhibitors (HDI) and functions to inhibit the ability of HER2 to form active heterodimers or homodimers with other HER receptors (such as EGFR/HER1, HER2, HER3 and HER4). See, for example, Harari and Yarden *Oncogene* 19:6102-14 (2000); Yarden and Sliwkowski. *Nat Rev Mol Cell Biol* 2:127-37 (2001); Sliwkowski *Nat Struct Biol* 10:158-9 (2003); Cho *et al.* *Nature* 421:756-60 (2003); and Malik *et al.* *Pro Am Soc Cancer Res* 44:176-7 (2003).

20 Pertuzumab blockade of the formation of HER2-HER3 heterodimers in tumor cells has been demonstrated to inhibit critical cell signaling, which results in reduced tumor proliferation and survival (Agus *et al.* *Cancer Cell* 2:127-37 (2002)).

25 Pertuzumab has undergone testing as a single agent in the clinic with a phase Ia trial in patients with advanced cancers and phase II trials in patients with ovarian cancer and breast cancer as well as lung and prostate cancer. In a Phase I study, patients with incurable, locally advanced, recurrent or metastatic solid tumors that had progressed during or after standard therapy were treated with pertuzumab given intravenously every 3 weeks. Pertuzumab was generally well tolerated. Tumor regression was achieved in 3 of 20 patients evaluable for response. Two patients had 30 confirmed partial responses. Stable disease lasting for more than 2.5 months was observed in 6 of 21 patients (Agus *et al.* *Pro Am Soc Clin Oncol* 22:192 (2003)). At doses of 2.0-15 mg/kg, the pharmacokinetics of pertuzumab was linear, and mean clearance ranged from 2.69 to 3.74 mL/day/kg and the mean terminal elimination half-life ranged from 15.3 to 27.6 days. Antibodies to pertuzumab were not detected (Allison *et al.* *Pro Am Soc Clin Oncol* 22:197 (2003)).

35 US 2006/0034842 describes methods for treating ErbB-expressing cancer with anti-ErbB2 antibody combinations. US 2008/0102069 describes the use of trastuzumab and pertuzumab in the treatment of HER2-positive metastatic cancer, such as breast cancer. Baselga et al., *J Clin Oncol*, 2007 ASCO Annual Meeting Proceedings Part I, Col. 25, No. 18S (June 20 Supplement), 2007:1004 report the treatment of patients with pre-treated HER2-positive breast cancer, which has progressed

5 during treatment with trastuzumab, with a combination of trastuzumab and pertuzumab. Portera et al., *J Clin Oncol*, 2007 ASCO Annual Meeting Proceedings Part I, Vol. 25, No. 18S (June 20 Supplement), 2007:1028 evaluated the efficacy and safety of trastuzumab + pertuzumab combination therapy in HER2-positive breast cancer patients, who had progressive disease on trastuzumab-based therapy. The authors concluded that further evaluation of the efficacy of combination treatment was required to define the overall risk and benefit of this treatment regimen.

10 Pertuzumab has been evaluated in Phase II studies in combination with trastuzumab in patients with HER2-positive metastatic breast cancer who have previously received trastuzumab for metastatic disease. One study, conducted by the National cancer Institute (NCI), enrolled 11 patients with previously treated HER2-positive metastatic breast cancer. Two out of the 11 patients exhibited a partial response (PR) (Baselga et al., *J Clin Oncol* 2007 ASCO Annual Meeting Proceedings; 25:18S (June 20 Supplement): 1004).

15 The results of a Phase II neoadjuvant study evaluating the effect of a novel combination regimen of pertuzumab and trastuzumab plus chemotherapy (docetaxel) in women with early-stage HER2-positive breast cancer, presented at the CTRC-AACR San Antonio Breast Cancer Symposium (SABCS), December 8-12, 2010, showed that the two HER2 antibodies plus docetaxel given in the neoadjuvant setting prior to surgery significantly improved the rate of complete tumor disappearance (pathological complete response rate, pCR, of 45.8 percent) in the breast by more than half compared to trastuzumab plus docetaxel (pCR of 29.0 percent), p=0.014.

20 The Clinical Evaluation of pertuzumab and trastuzumab (CLEOPATRA) Phase II clinical study assessed the efficacy and safety of pertuzumab plus trastuzumab plus docetaxel, as compared with placebo plus trastuzumab plus docetaxel, as first-line treatment for patients with locally recurrent, unresectable, or metastatic HER2-positive breast cancer. The combination of pertuzumab plus trastuzumab plus docetaxel, as compared with placebo plus trastuzumab plus docetaxel, when 25 used as first-line treatment for HER2-positive metastatic breast cancer, significantly prolonged progression-free survival, with no increase in cardiac toxic effects. (Baselga et al., *N Eng J Med* 2012 366:2, 109-119).

30 The Phase II clinical study NeoSphere assessed the efficacy and safety of neoadjuvant administration of pertuzumab and trastuzumab in treatment-naïve women (patients who has not received any previous cancer therapy) with operable, locally advanced, and inflammatory breast cancer. Patients give pertuzumab and trastuzumab plus docetaxel showed a significantly improved pathological complete response rate compared with those given trastuzumab plus docetaxel, without substantial differences in tolerability (Gianni et al., *Lancet Oncol* 2012 13(1):25-32). Results of 5-year follow-up are reported by Gianni et al., *Lancet Oncol* 2016 17(6):791-800).

35 Adjuvant therapy, in the broadest sense, is treatment given in addition to the primary therapy to kill any cancer cells that may have spread, even if the spread cannot be detected by radiologic or laboratory tests.

Publications or seminars related to adjuvant therapy include: Paik et al., J. Natl. Cancer Inst., 92(24):1991-1998 (2000); Paik et al., J. Natl. Cancer Inst., 94:852-854 (2002); Paik et al. Successful quality assurance program for HER2 testing in the NSABP Trial for Herceptin. San Antonio Breast Cancer Symposium, 2002; Roche P C et al., J. Natl. Cancer Inst., 94(11):855-7 (2002); Albain et al., 5 Proceedings of the American Society of Clinical Oncology Thirty-Eighth Annual Meeting, May 18-21 2002, Orlando, Fla., Abstract 143; The ATAC (Arimidex, Tamoxifen Alone or in Combination) Trialists' Group, Lancet, 359:2131-39 (2002); Geyer et al., 26th Annual San Antonio Breast Cancer Symposium (SABCS), December 2003, Abstract 12; Perez et al., Proc. ASCO, 2005, Abstract 556.

U.S. Patent Publication No. 2004/0014694 (published Jan. 22, 2004) describes a method of 10 adjuvant therapy for the treatment of early breast cancer, comprising administration of docetaxel, doxorubicin and cyclophosphamide.

Adjuvant treatment of breast cancer by administration of HERCEPTIN® is disclosed in U.S. Patent No. 8,591,897.

Patent Publications related to HER2 antibodies include: US Patent Nos. 5,677,171; 15 5,720,937; 5,720,954; 5,725,856; 5,770,195; 5,772,997; 6,165,464; 6,387,371; 6,399,063; 6,015,567; 6,333,169; 4,968,603; 5,821,337; 6,054,297; 6,407,213; 6,639,055; 6,719,971; 6,800,738; 5,648,237; 7,018,809; 6,267,958; 6,695,940; 6,821,515; 7,060,268; 7,682,609; 7,371,376; 6,127,526; 6,333,398; 6,797,814; 6,339,142; 6,417,335; 6,489,447; 7,074,404; 7,531,645; 7,846,441; 7,892,549; 6,573,043; 6,905,830; 7,129,840; 7,344,840; 7,468,252; 7,674,589; 6,949,245; 7,485,302; 7,498,030; 7,501,122; 20 7,537,931; 7,618,631; 7,862,817; 7,041,292; 6,627,196; 7,371,379; 6,632,979; 7,097,840; 7,575,748; 6,984,494; 7,279,287; 7,811,773; 7,993,834; 7,435,797; 7,850,966; 7,485,704; 7,807,799; 7,560,111; 7,879,325; 7,449,184; 7,700,299; 8,591,897; and US 2010/0016556; US 2005/0244929; US 2001/0014326; US 2003/0202972; US 2006/0099201; US 2010/0158899; US 2011/0236383; US 2011/0033460; US 2005/0063972; US 2006/018739; US 2009/0220492; US 2003/0147884; US 25 2004/0037823; US 2005/0002928; US 2007/0292419; US 2008/0187533; US 2003/0152987; US 2005/0100944; US 2006/0183150; US 2008/0050748; US 2010/0120053; US 2005/0244417; US 2007/0026001; US 2008/0160026; US 2008/0241146; US 2005/0208043; US 2005/0238640; US 2006/0034842; US 2006/0073143; US 2006/0193854; US 2006/0198843; US 2011/0129464; US 2007/0184055; US 2007/0269429; US 2008/0050373; US 2006/0083739; US 2009/0087432; US 30 2006/0210561; US 2002/0035736; US 2002/0001587; US 2008/0226659; US 2002/0090662; US 2006/0046270; US 2008/0108096; US 007/0166753; US 2008/0112958; US 2009/0239236; US 2004/008204; US 2009/0187007; US 2004/0106161; US 2011/0117096; US 2004/048525; US 2004/0258685; US 2009/0148401; US 2011/0117097; US 2006/0034840; US 2011/0064737; US 2005/0276812; US 2008/0171040; US 2009/0202536; US 2006/0013819; US 2006/0018899; US 35 2009/0285837; US 2011/0117097; US 2006/0088523; US 2010/0015157; US 2006/0121044; US 2008/0317753; US 2006/0165702; US 2009/0081223; US 2006/0188509; US 2009/0155259; US 2011/0165157; US 2006/0204505; US 2006/0212956; US 2006/0275305; US 2007/0009976; US

2007/0020261; US 2007/0037228; US 2010/0112603; US 2006/0067930; US 2007/0224203; US 2008/0038271; US 2008/0050385; 2010/0285010; US 2008/0102069; US 2010/0008975; US 2011/0027190; US 2010/0298156; US 2009/0098135; US 2009/0148435; US 2009/0202546; US 2009/0226455; US 2009/0317387; and US 2011/0044977.

5

Summary of the Invention

New active treatments are required for patients with HER2-positive breast cancer, which is estimated to account for approximately 6000-8000 deaths per year in the United States, 12,000-15,000 deaths per year in Europe, and 60,000-90,000 deaths per year globally (based on mortality rates for breast cancer overall) (Levi et al., Eur J Cancer Prev 2005;14:497-502; Estimates of 10 worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010;127:2893-917; SEER cancer statistics review, 1975-2008 [Internet]. Bethesda, MD. National Cancer Institute; November 2010 [updated, 2011]; Malvezzi et al., Ann Oncol 2013; 24:792-800). The median age of patients presenting with HER2-positive breast cancer is in the mid-50s, approximately 5 years younger than the general breast cancer population (Breast Cancer Res Treat 2008;110:153-9; Breast Cancer Res 15 2009;11:R31). At a time when the actuarial survival for women is >80 years of age, the median loss of life years per patient is approximately two decades. Improving the results of initial therapy when the disease is still localized to the breast and regional lymph nodes offers the chance of potentially curing the disease, as well as delaying disease recurrence and death in those who are not cured.

The present invention is based, at least in part, on the analysis of the results of a randomized, 20 double-blind, placebo-controlled two-arm Phase III clinical study (Adjuvant Pertuzumab and Herceptin IN Initial TherapY in Breast Cancer (APHINITY), NCT01358877/BO25126) assessing the safety and efficacy of pertuzumab in addition to chemotherapy plus trastuzumab as adjuvant therapy in patients with operable HER2-positive primary cancer.

In a first aspect, the invention concerns a method of reducing the risk of recurrence of 25 invasive breast cancer or death for a patient diagnosed with HER2-positive early breast cancer (eBC), comprising administering to the patient, following surgery, pertuzumab in combination with trastuzumab and chemotherapy, wherein the risk of recurrence of invasive breast cancer or death is reduced compared to administration of trastuzumab and chemotherapy, without pertuzumab.

In one embodiment, the patient remains alive without recurrence of invasive breast cancer for 30 at least one year following said administration.

In a second aspect, the invention concerns a method of adjuvant therapy comprising administering to a human subject with HER2-positive early breast cancer (eBC), following surgery, pertuzumab in combination with trastuzumab and chemotherapy, wherein said therapy reduces the risk of recurrence of invasive breast cancer or death for said patient compared to administration of trastuzumab and chemotherapy, without pertuzumab, for at least one year following administration.

In both aspects, and in various embodiments, the patient may remain alive without recurrence of invasive breast cancer for at least 2 years, or for at least 3 years following administration.

In one embodiment, the patient is lymph node positive.

In a second embodiment, the patient is hormone receptor (HR) negative.

5 In a third embodiment, the risk of recurrence of invasive breast cancer or death is reduced by at least about 5%, or at least about 10%, or at least about 15%, or at least about 20%, or at least about 25% compared to administration of trastuzumab and chemotherapy, without pertuzumab, such as, for example, by at least 19% compared to administration of trastuzumab and chemotherapy, without pertuzumab.

10 In a fourth embodiment, the HER2 positive cancer is characterized by a HER2 expression level of IHC 2+ or 3+.

In a fifth embodiment, the cancer is HER2-amplified, where HER2 amplification may, for example, be determined by fluorescence in situ hybridization (FISH).

15 In a sixth embodiment, the cancer is HER2-mutated, where the HER2 mutation may, for example, be selected from the group consisting of insertions within exon 20 of HER2, deletions around amino acid residues 755-759 of HER2, G309A, G309E, S310F, D769H, D769Y, V777L, P780-Y781insGSP, V842I, R896C and other putative activating mutations found two or more unique specimens.

Pertuzumab and/or trastuzumab may be administered intravenously or subcutaneously.

20 In various embodiments, pertuzumab and trastuzumab are typically administered every three weeks.

According to one administration schedule, pertuzumab is administered as a 840 mg IV loading dose, followed by 420 mg, given by IV every 3 weeks.

25 According to one administration schedule, trastuzumab is administered as a 8 mg/kg intravenous (IV) loading dose, followed by 6 mg/kg, given by IV infusion every 3 weeks.

According to another administration schedule, pertuzumab is administered subcutaneously with a loading dose of 1200 mg followed by 600 mg every 3 weeks.

30 Pertuzumab and trastuzumab may be co-administered subcutaneously as two separate subcutaneous injections, or co-mixed as a single subcutaneous injection, or administered as a single co-formulation for subcutaneous administration.

In one embodiment, pertuzumab and trastuzumab are administered for at least 52 weeks.

In another embodiment, administration of pertuzumab and trastuzumab follows chemotherapy.

35 Chemotherapy may comprise anthracycline-based chemotherapy, or can be non-anthracycline-based chemotherapy.

In one embodiment, chemotherapy comprises administration of 5-fluorouracil + epirubicin or doxorubicin + cyclophosphamide, optionally further comprising administration of a taxane, e.g. docetaxel and/or paclitaxel.

5 In a second embodiment, chemotherapy comprises administration of doxorubicin or epirubicin + cyclophosphamide, optionally further comprising administration of a taxane, e.g. docetaxel and/or paclitaxel.

The non-anthracycline-based chemotherapy may, for example, comprise administration of docetaxel + carboplatin.

10 In another aspect, the invention concerns an article of manufacture comprising a vial with pertuzumab and a package insert wherein the package insert provides instructions to administer said pertuzumab as disclosed herein.

In yet another aspect, the invention concerns an article of manufacture comprising a vial or vials with pertuzumab and trastuzumab and a package insert wherein the package insert provides instructions to administer said pertuzumab and trastuzumab as disclosed herein.

15 In a further embodiment, the invention concerns a composition of pertuzumab for use, in combination with trastuzumab, for treatment of a patient with HER2-positive early breast cancer (eBC) as disclosed herein.

20 In a still further embodiment, the invention concerns the use of pertuzumab in the preparation of a medicament for the of a patient with HER2-positive early breast cancer (eBC), in combination with trastuzumab, as disclosed herein.

These and further aspects and embodiments will be apparent to those skilled in the art based on the disclosure and general knowledge in the pertinent art.

Brief Description of the Drawings

FIG. 1 provides a schematic of the HER2 protein structure, and amino acid sequences for 25 Domains I-IV (SEQ ID Nos. 1-4, respectively) of the extracellular domain thereof.

FIGs. 2A and 2B depict alignments of the amino acid sequences of the variable light (V_L) (FIG. 2A) and variable heavy (V_H) (FIG. 2B) domains of murine monoclonal antibody 2C4 (SEQ ID Nos. 5 and 6, respectively); V_L and V_H domains of variant 574/pertuzumab (SEQ ID NOs. 7 and 8, respectively), and human V_L and V_H consensus frameworks (hum κ1, light kappa subgroup I; humIII, 30 heavy subgroup III) (SEQ ID Nos. 9 and 10, respectively). Asterisks identify differences between variable domains of pertuzumab and murine monoclonal antibody 2C4 or between variable domains of pertuzumab and the human framework. Complementarity Determining Regions (CDRs) are in brackets.

FIGs. 3A and 3B show the amino acid sequences of pertuzumab light chain (Fig. 3A; SEQ

ID NO. 11) and heavy chain (Fig. 3B; SEQ ID No. 12). CDRs are shown in bold. Calculated molecular mass of the light chain and heavy chain are 23,526.22 Da and 49,216.56 Da (cysteines in reduced form). The carbohydrate moiety is attached to Asn 299 of the heavy chain.

FIGs. 4A and 4B show the amino acid sequences of trastuzumab light chain (Fig. 4A; SEQ 5 ID NO. 13) and heavy chain (Fig. 4B; SEQ ID NO. 14), respectively. Boundaries of the variable light and variable heavy domains are indicated by arrows.

FIGs. 5A and 5B depict a variant pertuzumab light chain sequence (Fig. 5A; SEQ ID NO. 15) and a variant pertuzumab heavy chain sequence (Fig. 5B; SEQ ID NO. 16), respectively.

FIG. 6A is the schema of the APHINITY clinical trial evaluating efficacy of adjuvant 10 pertuzumab based therapy in operable HER2-positive early breast cancer (cBC) as described in Example 1. Notes: ^atrastuzumab 6 mg/kg IV q3 weeks, pertuzumab 420 mg IV q3 weeks; ^beither anthracycline-based regimen with a taxane, or Taxotere with carboplatin; ^cHER2 therapy for 1 year (52 weeks). Abbreviations: HER: human epidermal growth-factor receptor; IV: intravenous; q3 weeks: every 3 weeks.

15 FIG. 6B shows the study design of the APHINITY clinical trial, using anthracycline based chemotherapy

FIG. 6C shows the study design of the APHINITY clinical trial, using non-anthracycline based chemotherapy.

FIG. 7A shows the efficacy results, using invasive Disease Free Survival (iDFS) as primary 20 clinical endpoint, in patients treated with pertuzumab + trastuzumab (n=2400) and placebo + trastuzumab (n=2404), respectively, as described in Example 1.

FIG. 7B shows a Kaplan-Meier plot of Distant Recurrence-Free Interval (months) in patients treated with pertuzumab + trastuzumab (n=2400) and placebo + trastuzumab (n=2404), respectively, as described in Example 1.

25 FIG. 8A shows the efficacy results (iDFS) in node positive breast cancer patients treated with pertuzumab + trastuzumab (n=1503) and placebo + trastuzumab (n=1502), respectively, as described in Example 1.

FIG. 8B shows a Kaplan-Meier plot of Time to First IDFS event (months) by treatment 30 regimen in node positive cohort of breast cancer patients treated with pertuzumab + trastuzumab (n=1503) and placebo + trastuzumab (n=1502), respectively, as described in Example 1.

FIG. 8C shows a Kaplan-Meier plot of Time to First IDFS event (months) by treatment regimen in node negative cohort of breast cancer patients treated with pertuzumab + trastuzumab (n=987) and placebo + trastuzumab (n=902), respectively, as described in Example 1.

5 FIG. 9A shows the efficacy results (iDFS) in central hormone receptor negative breast cancer patients treated with pertuzumab + trastuzumab (n=864) and placebo + trastuzumab (n=858), respectively, as described in Example 1.

FIG. 9B shows a Kaplan-Meier plot of Time to First IDFS event (months) by treatment regimen in central hormone receptor negative patients treated with pertuzumab + trastuzumab (n=864) and placebo + trastuzumab (n=858), respectively, as described in Example 1.

10 FIG. 9C shows a Kaplan-Meier plot of Time to First IDFS event (months) by treatment regimen in central hormone receptor positive patients treated with pertuzumab + trastuzumab (n=1536) and placebo + trastuzumab (n=1546), respectively, as described in Example 1.

15 FIG. 10 shows a Kaplan-Meier plot of Time to First IDFS event (months), showing censored patients, by Treatment Regimen (patients treated with pertuzumab (Ptz) + trastuzumab (H) + chemo (n=2400) and placebo (Pla) + trastuzumab + chemo (n=2404), respectively), ITT population, as described in Example 1.

Detailed Description of the Preferred Embodiments

I. Definitions

20 The term “chemotherapy” as used herein refers to treatment comprising the administration of a chemotherapy, as defined hereinbelow.

“Survival” refers to the patient remaining alive, and includes overall survival as well as progression free survival.

25 “Overall survival” or “OS” refers to the patient remaining alive for a defined period of time, such as 1 year, 5 years, etc. from the time of diagnosis or treatment. For the purposes of the clinical trial described in the example, overall survival (OS) is defined as the time from the date of randomization of patient population to the date of death from any cause.

30 “Progression free survival” or “PFS” refers to the patient remaining alive, without the cancer progressing or getting worse. For the purpose of the clinical trial described in the example, progression free survival (PFS) is defined as the time from randomization of study population to the first documented progressive disease, or unmanageable toxicity, or death from any cause, whichever occurs first. Disease progression can be documented by any clinically accepted methods, such as, for example, radiographical progressive disease, as determined by Response Evaluation Criteria in Solid

Tumors (RECIST) (Therasse et al., *J Natl Ca Inst* 2000; 92(3):205-216), carcinomatous meningitis diagnosed by cytologic evaluation of cerebral spinal fluid, and/or medical photography to monitor chest wall recurrences of subcutaneous lesions.

“Disease free survival” or “DFS” refers to the patient remaining alive, without return of the cancer, for a defined period of time such as about 1 year, about 2 years, about 3 years, about 4 years, about 5 years, about 10 years, etc., from initiation of treatment or from initial diagnosis. In the studies underlying the present invention, DFS was analyzed according to the intent-to-treat principle, ie, patients were evaluated on the basis of their assigned therapy. The events used in the analysis of DFS typically include local, regional and distant recurrence of cancer, occurrence of secondary cancer, death from any cause in patients without a prior event (breast cancer recurrence or second primary cancer).

“Invasive Disease-Free Survival” of “iDFS”, as defined herein is the time a patient lives without return of invasive breast cancer at any site or death from any cause after adjuvant treatment. In other words, iDFS is defined as the patient remaining alive (surviving) without return of invasive disease after adjuvant treatment for a defined period of time, such as about 1 year, about 2 years, about 3 years, about 4 years, about 5 years, about 10 years, etc., from initiation of treatment or from initial diagnosis. In one embodiment, iDFS is at about 1 year, or about 3 years, from initiation of treatment.

By “extending survival” is meant increasing overall or progression free survival in a patient treated in accordance with the present invention relative to an untreated patient and/or relative to a patient treated with one or more approved anti-tumor agents, but not receiving treatment in accordance with the present invention. In a particular example, “extending survival” means extending progression-free survival (PFS) and/or overall survival (OS) of cancer patients receiving the combination therapy of the present invention (e.g. treatment with a combination of pertuzumab, trastuzumab and a chemotherapy) relative to patients treated with trastuzumab and the chemotherapy only. In another particular example, “extending survival” means extending progression-free survival (PFS) and/or overall survival (OS) of cancer patients receiving the combination therapy of the present invention (e.g. treatment with a combination of pertuzumab, trastuzumab and a chemotherapy) relative to patients treated with pertuzumab and the chemotherapy only.

30 An “objective response” refers to a measurable response, including complete response (CR) or partial response (PR).

By “complete response” or “CR” is intended the disappearance of all signs of cancer in response to treatment. This does not always mean the cancer has been cured.

35 “Partial response” or “PR” refers to a decrease in the size of one or more tumors or lesions, or in the extent of cancer in the body, in response to treatment.

A “HER receptor” is a receptor protein tyrosine kinase which belongs to the HER receptor family and includes EGFR, HER2, HER3 and HER4 receptors. The HER receptor will generally

comprise an extracellular domain, which may bind an HER ligand and/or dimerize with another HER receptor molecule; a lipophilic transmembrane domain; a conserved intracellular tyrosine kinase domain; and a carboxyl-terminal signaling domain harboring several tyrosine residues which can be phosphorylated. The HER receptor may be a "native sequence" HER receptor or an "amino acid sequence variant" thereof. Preferably the HER receptor is native sequence human HER receptor.

The expressions "ErbB2" and "HER2" are used interchangeably herein and refer to human HER2 protein described, for example, in Semba *et al.*, *PNAS (USA)* 82:6497-6501 (1985) and Yamamoto *et al.* *Nature* 319:230-234 (1986) (Genebank accession number X03363). The term "erbB2" refers to the gene encoding human ErbB2 and "neu" refers to the gene encoding rat p185^{neu}.

10 Preferred HER2 is native sequence human HER2.

Herein, "HER2 extracellular domain" or "HER2 ECD" refers to a domain of HER2 that is outside of a cell, either anchored to a cell membrane, or in circulation, including fragments thereof. The amino acid sequence of HER2 is shown in FIG. 1. In one embodiment, the extracellular domain of HER2 may comprise four domains: "Domain I" (amino acid residues from about 1-195; SEQ ID 15 NO:1), "Domain II" (amino acid residues from about 196-319; SEQ ID NO:2), "Domain III" (amino acid residues from about 320-488; SEQ ID NO:3), and "Domain IV" (amino acid residues from about 489-630; SEQ ID NO:4) (residue numbering without signal peptide). See Garrett *et al.* *Mol. Cell.* 11: 495-505 (2003), Cho *et al.* *Nature* 421: 756-760 (2003), Franklin *et al.* *Cancer Cell* 5:317-328 (2004), and Plowman *et al.* *Proc. Natl. Acad. Sci.* 90:1746-1750 (1993), as well as FIG.1 herein.

20 "HER3" or "ErbB3" herein refer to the receptor as disclosed, for example, in US Pat. Nos. 5,183,884 and 5,480,968 as well as Kraus *et al.* *PNAS (USA)* 86:9193-9197 (1989).

A "low HER3" cancer is one which expresses HER3 at a level less than the median level for HER3 expression in the cancer type. In one embodiment, the low HER3 cancer is epithelial ovarian, peritoneal, or fallopian tube cancer. HER3 DNA, protein, and/or mRNA level in the cancer can be 25 evaluated to determine whether the cancer is a low HER3 cancer. See, for example, US Patent No. 7,981,418 for additional information about low HER3 cancer. Optionally, a HER3 mRNA expression assay is performed in order to determine that the cancer is a low HER3 cancer. In one embodiment, HER3 mRNA level in the cancer is evaluated, e.g. using polymerase chain reaction (PCR), such as quantitative reverse transcription PCR (qRT-PCR). Optionally, the cancer expresses HER3 at a 30 concentration ratio equal or lower than about 2.81 as assessed qRT-PCR, e.g. using a COBAS z480® instrument.

A "HER dimer" herein is a noncovalently associated dimer comprising at least two HER receptors. Such complexes may form when a cell expressing two or more HER receptors is exposed to an HER ligand and can be isolated by immunoprecipitation and analyzed by SDS-PAGE as 35 described in Sliwkowski *et al.*, *J. Biol. Chem.*, 269(20):14661-14665 (1994), for example. Other proteins, such as a cytokine receptor subunit (e.g. gp130) may be associated with the dimer. Preferably, the HER dimer comprises HER2.

A "HER heterodimer" herein is a noncovalently associated heterodimer comprising at least two different HER receptors, such as EGFR-HER2, HER2-HER3 or HER2-HER4 heterodimers.

5 A "HER antibody" is an antibody that binds to a HER receptor. Optionally, the HER antibody further interferes with HER activation or function. Preferably, the HER antibody binds to the HER2 receptor. HER2 antibodies of interest herein are pertuzumab and trastuzumab.

10 "HER activation" refers to activation, or phosphorylation, of any one or more HER receptors. Generally, HER activation results in signal transduction (e.g. that caused by an intracellular kinase domain of a HER receptor phosphorylating tyrosine residues in the HER receptor or a substrate polypeptide). HER activation may be mediated by HER ligand binding to a HER dimer comprising the HER receptor of interest. HER ligand binding to a HER dimer may activate a kinase domain of one or more of the HER receptors in the dimer and thereby results in phosphorylation of tyrosine residues in one or more of the HER receptors and/or phosphorylation of tyrosine residues in additional substrate polypeptides(s), such as Akt or MAPK intracellular kinases.

15 "Phosphorylation" refers to the addition of one or more phosphate group(s) to a protein, such as a HER receptor, or substrate thereof.

20 An antibody which "inhibits HER dimerization" is an antibody which inhibits, or interferes with, formation of a HER dimer. Preferably, such an antibody binds to HER2 at the heterodimeric binding site thereof. The most preferred dimerization inhibiting antibody herein is pertuzumab or MAb 2C4. Other examples of antibodies which inhibit HER dimerization include antibodies which bind to EGFR and inhibit dimerization thereof with one or more other HER receptors (for example EGFR monoclonal antibody 806, MAb 806, which binds to activated or "untethered" EGFR; see Johns *et al.*, *J. Biol. Chem.* 279(29):30375-30384 (2004)); antibodies which bind to HER3 and inhibit dimerization thereof with one or more other HER receptors; and antibodies which bind to HER4 and inhibit dimerization thereof with one or more other HER receptors.

25 A "HER2 dimerization inhibitor" is an agent that inhibits formation of a dimer or heterodimer comprising HER2.

30 A "heterodimeric binding site" on HER2, refers to a region in the extracellular domain of HER2 that contacts, or interfaces with, a region in the extracellular domain of EGFR, HER3 or HER4 upon formation of a dimer therewith. The region is found in Domain II of HER2 (SEQ ID NO: 15). Franklin *et al.* *Cancer Cell* 5:317-328 (2004).

35 A HER2 antibody that "binds to a heterodimeric binding site" of HER2, binds to residues in Domain II (SEQ ID NO: 2) and optionally also binds to residues in other of the domains of the HER2 extracellular domain, such as domains I and III, SEQ ID NOs: 1 and 3), and can sterically hinder, at least to some extent, formation of a HER2-EGFR, HER2-HER3, or HER2-HER4 heterodimer. Franklin *et al.* *Cancer Cell* 5:317-328 (2004) characterize the HER2-pertuzumab crystal structure, deposited with the RCSB Protein Data Bank (ID Code IS78), illustrating an exemplary antibody that binds to the heterodimeric binding site of HER2.

An antibody that “binds to domain II” of HER2 binds to residues in domain II (SEQ ID NO: 2) and optionally residues in other domain(s) of HER2, such as domains I and III (SEQ ID NOs: 1 and 3, respectively). Preferably the antibody that binds to domain II binds to the junction between domains I, II and III of HER2.

5 For the purposes herein, “pertuzumab” and “rhuMAb 2C4”, which are used interchangeably, refer to an antibody comprising the variable light and variable heavy amino acid sequences in SEQ ID NOs: 7 and 8, respectively. Where pertuzumab is an intact antibody, it preferably comprises an IgG1 antibody; in one embodiment comprising the light chain amino acid sequence in SEQ ID NO: 11 or 15, and heavy chain amino acid sequence in SEQ ID NO: 12 or 16. The antibody is optionally 10 produced by recombinant Chinese Hamster Ovary (CHO) cells. The terms “pertuzumab” and “rhuMAb 2C4” herein cover biosimilar versions of the drug with the United States Adopted Name (USAN) or International Nonproprietary Name (INN): pertuzumab.

15 For the purposes herein, “trastuzumab” and “rhuMAb4D5”, which are used interchangeably, refer to an antibody comprising the variable light and variable heavy amino acid sequences from within SEQ ID Nos: 13 and 14, respectively. Where trastuzumab is an intact antibody, it preferably comprises an IgG1 antibody; in one embodiment comprising the light chain amino acid sequence of SEQ ID NO: 13 and the heavy chain amino acid sequence of SEQ ID NO: 14. The antibody is optionally produced by Chinese Hamster Ovary (CHO) cells. The terms “trastuzumab” and “rhuMAb4D5” herein cover biosimilar versions of the drug with the United States Adopted Name 20 (USAN) or International Nonproprietary Name (INN): trastuzumab.

The term "antibody" herein is used in the broadest sense and specifically covers monoclonal antibodies, polyclonal antibodies, multispecific antibodies (*e.g.* bispecific antibodies), and antibody fragments, so long as they exhibit the desired biological activity.

25 "Humanized" forms of non-human (*e.g.*, rodent) antibodies are chimeric antibodies that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a hypervariable region of the recipient are replaced by residues from a hypervariable region of a non-human species (donor antibody) such as mouse, rat, rabbit or nonhuman primate having the desired specificity, affinity, and capacity. In some instances, framework region (FR) residues of the human 30 immunoglobulin are replaced by corresponding non-human residues. Furthermore, humanized antibodies may comprise residues that are not found in the recipient antibody or in the donor antibody. These modifications are made to further refine antibody performance. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the hypervariable loops correspond to those of a non- 35 human immunoglobulin and all or substantially all of the FRs are those of a human immunoglobulin sequence. The humanized antibody optionally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin. For further details,

see Jones *et al.*, *Nature* 321:522-525 (1986); Riechmann *et al.*, *Nature* 332:323-329 (1988); and Presta, *Curr. Op. Struct. Biol.* 2:593-596 (1992). Humanized HER2 antibodies specifically include trastuzumab (HERCEPTIN®) as described in Table 3 of U.S. Patent 5,821,337; and humanized 2C4 antibodies such as

5 pertuzumab as described and defined herein.

An "intact antibody" herein is one which comprises two antigen binding regions, and an Fc region. Preferably, the intact antibody has a functional Fc region.

10 "Antibody fragments" comprise a portion of an intact antibody, preferably comprising the antigen binding region thereof. Examples of antibody fragments include Fab, Fab', F(ab')₂, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragment(s).

15 "Native antibodies" are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies among the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end. The constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light-chain variable domain is aligned with the variable domain of the heavy chain. Particular amino acid residues are believed to form an interface between the light chain and heavy chain variable domains.

20 The term "hypervariable region" when used herein refers to the amino acid residues of an antibody which are responsible for antigen-binding. The hypervariable region generally comprises amino acid residues from a "complementarity determining region" or "CDR" (e.g. residues 24-34 (L1), 50-56 (L2) and 89-97 (L3) in the light chain variable domain and 31-35 (H1), 50-65 (H2) and 95-102 (H3) in the heavy chain variable domain; Kabat *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)) and/or those residues from a "hypervariable loop" (e.g. residues 26-32 (L1), 50-52 (L2) and 91-96 (L3) in the light chain variable domain and 26-32 (H1), 53-55 (H2) and 96-101 (H3) in the heavy chain variable domain; Chothia and Lesk *J. Mol. Biol.* 196:901-917 (1987)). "Framework Region" or "FR" residues are those variable domain residues other than the hypervariable region residues as herein defined.

25 The term "Fc region" herein is used to define a C-terminal region of an immunoglobulin heavy chain, including native sequence Fc regions and variant Fc regions. Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof. The C-terminal lysine (residue 447 according to the EU numbering

system) of the Fc region may be removed, for example, during production or purification of the antibody, or by recombinantly engineering the nucleic acid encoding a heavy chain of the antibody. Accordingly, a composition of intact antibodies may comprise antibody populations with all K447 residues removed, antibody populations with no K447 residues removed, and antibody populations having a mixture of antibodies with and without the K447 residue.

5 Unless indicated otherwise, herein the numbering of the residues in an immunoglobulin heavy chain is that of the EU index as in Kabat *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991).

10 The “EU index as in Kabat” refers to the residue numbering of the human IgG1 EU antibody.

A “functional Fc region” possesses an “effector function” of a native sequence Fc region. Exemplary “effector functions” include C1q binding; complement dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (*e.g.* B cell receptor; BCR), etc. Such effector functions generally 15 require the Fc region to be combined with a binding domain (*e.g.* an antibody variable domain) and can be assessed using various assays as herein disclosed, for example.

20 A “native sequence Fc region” comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature. Native sequence human Fc regions include a native sequence human IgG1 Fc region (non-A and A allotypes); native sequence human IgG2 Fc region; native sequence human IgG3 Fc region; and native sequence human IgG4 Fc region as well as naturally occurring variants thereof.

25 A “variant Fc region” comprises an amino acid sequence which differs from that of a native sequence Fc region by virtue of at least one amino acid modification, preferably one or more amino acid substitution(s). Preferably, the variant Fc region has at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent polypeptide, *e.g.* from about one to about ten amino acid substitutions, and preferably from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent polypeptide. The variant Fc region herein will preferably possess at least about 80% homology with a native sequence Fc region and/or with an Fc region of a parent polypeptide, and most preferably at least about 90% 30 homology therewith, more preferably at least about 95% homology therewith.

35 Depending on the amino acid sequence of the constant domain of their heavy chains, intact antibodies can be assigned to different “classes”. There are five major classes of intact antibodies: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into Asubclasses@ (isotypes), *e.g.*, IgG1, IgG2, IgG3, IgG4, IgA, and IgA2. The heavy-chain constant domains that correspond to the different classes of antibodies are called α , δ , ϵ , γ , and μ , respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.

A “naked antibody” is an antibody that is not conjugated to a heterologous molecule, such as a cytotoxic moiety or radiolabel.

An “affinity matured” antibody is one with one or more alterations in one or more hypervariable regions thereof which result an improvement in the affinity of the antibody for antigen, 5 compared to a parent antibody which does not possess those alteration(s). Preferred affinity matured antibodies will have nanomolar or even picomolar affinities for the target antigen. Affinity matured antibodies are produced by procedures known in the art. Marks *et al.* *Bio/Technology* 10:779-783 (1992) describes affinity maturation by VH and VL domain shuffling. Random mutagenesis of CDR and/or framework residues is described by: Barbas *et al.* *Proc Natl. Acad. Sci. USA* 91:3809-3813 10 (1994); Schier *et al.* *Gene* 169:147-155 (1995); Yelton *et al.* *J. Immunol.* 155:1994-2004 (1995); Jackson *et al.*, *J. Immunol.* 154(7):3310-9 (1995); and Hawkins *et al.*, *J. Mol. Biol.* 226:889-896 (1992).

A “deamidated” antibody is one in which one or more asparagine residues thereof has been derivitized, *e.g.* to an aspartic acid, a succinimide, or an iso-aspartic acid.

15 The terms “cancer” and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth.

“Early-stage breast cancer” or “early breast cancer” or “eBC”, as used herein, refers to breast cancer that has not spread beyond the breast or the axillary lymph nodes. Such cancer is generally treated with neoadjuvant or adjuvant therapy.

20 An “advanced” cancer is one which has spread outside the site or organ of origin, either by local invasion or metastasis. Accordingly, the term “advanced” cancer includes both locally advanced and metastatic disease, such as “advanced breast cancer”.

A “refractory” cancer is one which progresses even though an anti-tumor agent, such as a chemotherapy, is being administered to the cancer patient. An example of a refractory cancer is one 25 which is platinum refractory.

A “recurrent” cancer is one which has regrown, either at the initial site or at a distant site, after a response to initial therapy, such as surgery.

A “locally recurrent” cancer is cancer that returns after treatment in the same place as a previously treated cancer.

30 A “non-resectable” or “unresectable” cancer is not able to be removed (resected) by surgery.

“Adjuvant therapy” or “adjuvant treatment” or “adjuvant administration” refers to systemic therapy given after surgery. Adjuvant treatment may be given after definitive surgery, where no evidence of residual disease can be detected, so as to reduce the risk of disease recurrence. The goal of adjuvant therapy is to prevent recurrence of the cancer, and therefore to reduce the chance of 35 cancer-related death.

“Definitive surgery” refers to complete removal of tumor and surrounding tissue as well as any involved lymph nodes. Such surgery includes lumpectomy, mastectomy, such as total

mastectomy plus axillary dissection, double mastectomy etc.

"Node-positive" or "lymph node positive" breast cancer is breast cancer that has spread to the regional lymph nodes (usually those under the arm). Subjects with node-positive breast cancer herein included those with 1-3 involved nodes; 4-9 involved nodes; and 10 or more involved nodes.

5 Subjects with 4 or more involved nodes are at higher risk of recurrence than those with less or no involved nodes.

"Estrogen receptor (ER) positive" cancer is cancer which tests positive for expression of ER. Conversely, "ER negative" cancer tests negative for such expression. Analysis of ER status can be performed by any method known in the art. For the purpose of the studies herein, ER-positive tumors 10 are defined as ≥ 10 fmol/mg cytosol protein by the Dextran-coated charcoal or sucrose-density gradient method, or positive (using individual laboratory criteria) by the enzyme immunoassay (EIA) method, or by immunocytochemical assay.

"Cancer recurrence" herein refers to a return of cancer following treatment, and includes return of cancer in the breast, as well as distant recurrence, where the cancer returns outside of the 15 breast.

A subject at "high risk of cancer recurrence" is one who has a greater chance of experiencing recurrence of cancer, for example, relatively young subjects (e.g., less than about 50 years old), those with positive lymph nodes, particularly 4 or more involved lymph nodes (including 4-9 involved lymph nodes, and 10 or more involved lymph nodes), those with tumors greater than 2 cm in 20 diameter, those with HER2-positive breast cancer, and those with hormone receptor negative breast cancer (i.e., estrogen receptor (ER) negative and progesterone receptor (PR) negative). A subject's risk level can be determined by a skilled physician. Generally, such high risk subjects will have lymph node involvement (for example with 4 or more involved lymph nodes); however, subjects without lymph node involvement are also high risk, for example if their tumor is greater or equal to 2 25 cm.

"Progesterone receptor (PR) positive" cancer is cancer which tests positive for expression of PR. Conversely, "PR negative" cancer tests negative for such expression. Analysis of PR status can be performed by any method known in the art. For the purpose of the studies herein, acceptable methods include the Dextran-coated charcoal or sucrose-density gradient methods, enzyme immunoassay (EIA) techniques, and immunocytochemical assays.

"Neoadjuvant therapy" or "neoadjuvant treatment" or "neoadjuvant administration" refers to systemic therapy given prior to surgery.

Herein, "initiation of treatment" refers to the start of a treatment regimen following surgical removal of the tumor. In one embodiment, such may refer to administration of AC following 35 surgery. Alternatively, this can refer to an initial administration of the HER2 antibody and/or chemotherapeutic agent.

By an "initial administration" of a HER2 antibody and chemotherapeutic agent is meant a

first dose of the HER2 antibody or chemotherapeutic agent as part of a treatment schedule.

By "curing" cancer herein is meant the absence of cancer recurrence at about 4 or about 5 years after beginning adjuvant therapy.

5 "Metastatic" cancer refers to cancer which has spread from one part of the body (e.g. the breast) to another part of the body.

Herein, a "patient" or "subject" is a human patient. The patient may be a "cancer patient," i.e. one who is suffering or at risk for suffering from one or more symptoms of cancer, in particular breast cancer.

10 A "patient population" refers to a group of cancer patients. Such populations can be used to demonstrate statistically significant efficacy and/or safety of a drug, such as pertuzumab and/or trastuzumab.

A "relapsed" patient is one who has signs or symptoms of cancer after remission.

Optionally, the patient has relapsed after adjuvant or neoadjuvant therapy.

15 A cancer or biological sample which "displays HER expression, amplification, or activation" is one which, in a diagnostic test, expresses (including overexpresses) a HER receptor, has amplified HER gene, and/or otherwise demonstrates activation or phosphorylation of a HER receptor.

20 A cancer or biological sample which "displays HER activation" is one which, in a diagnostic test, demonstrates activation or phosphorylation of a HER receptor. Such activation can be determined directly (e.g. by measuring HER phosphorylation by ELISA) or indirectly (e.g. by gene expression profiling or by detecting HER heterodimers, as described herein).

25 A cancer cell with "HER receptor overexpression or amplification" is one which has significantly higher levels of a HER receptor protein or gene compared to a noncancerous cell of the same tissue type. Such overexpression may be caused by gene amplification or by increased transcription or translation. HER receptor overexpression or amplification may be determined in a diagnostic or prognostic assay by evaluating increased levels of the HER protein present on the surface of a cell (e.g. via an immunohistochemistry assay; IHC). Alternatively, or additionally, one may measure levels of HER-encoding nucleic acid in the cell, e.g. via *in situ* hybridization (ISH), including fluorescent *in situ* hybridization (FISH; see WO98/45479 published October, 1998) and chromogenic *in situ* hybridization (CISH; see, e.g. Tanner et al., *Am. J. Pathol.* 157(5): 1467-1472 (2000); Bella et al., *J. Clin. Oncol.* 26: (May 20 suppl; abstr 22147) (2008)), southern blotting, or polymerase chain reaction (PCR) techniques, such as quantitative real time PCR (qRT-PCR). One may also study HER receptor overexpression or amplification by measuring shed antigen (e.g., HER extracellular domain) in a biological fluid such as serum (see, e.g., U.S. Patent No. 4,933,294 issued June 12, 1990; WO91/05264 published April 18, 1991; U.S. Patent 5,401,638 issued March 28, 1995; 30 and Sias et al. *J. Immunol. Methods* 132: 73-80 (1990)). Aside from the above assays, various *in vivo* assays are available to the skilled practitioner. For example, one may expose cells within the body of the patient to an antibody which is optionally labeled with a detectable label, e.g. a radioactive

isotope, and binding of the antibody to cells in the patient can be evaluated, *e.g.* by external scanning for radioactivity or by analyzing a biopsy taken from a patient previously exposed to the antibody.

A “HER2-positive” cancer comprises cancer cells which have higher than normal levels of HER2, such as HER2-positive breast cancer. Optionally, HER2-positive cancer has an 5 immunohistochemistry (IHC) score of 2+ or 3+ and/or an *in situ* hybridization (ISH) amplification ratio ≥ 2.0 .

Herein, an “anti-tumor agent” refers to a drug used to treat cancer. Non-limiting examples of anti-tumor agents herein include chemotherapy agents, HER dimerization inhibitors, HER antibodies, antibodies directed against tumor associated antigens, anti-hormonal compounds, cytokines, EGFR-targeted drugs, anti-angiogenic agents, tyrosine kinase inhibitors, growth inhibitory agents and antibodies, cytotoxic agents, antibodies that induce apoptosis, COX inhibitors, farnesyl transferase inhibitors, antibodies that binds oncofetal protein CA 125, HER2 vaccines, Raf or ras inhibitors, liposomal doxorubicin, topotecan, taxane, dual tyrosine kinase inhibitors, TLK286, EMD-7200, pertuzumab, trastuzumab, erlotinib, and bevacizumab.

15 The “epitope 2C4” is the region in the extracellular domain of HER2 to which the antibody 2C4 binds. In order to screen for antibodies which bind essentially to the 2C4 epitope, a routine cross-blocking assay such as that described in *Antibodies, A Laboratory Manual*, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Preferably the antibody blocks 2C4's binding to HER2 by about 50% or more. Alternatively, epitope mapping can be performed to 20 assess whether the antibody binds essentially to the 2C4 epitope of HER2. Epitope 2C4 comprises residues from Domain II (SEQ ID NO: 2) in the extracellular domain of HER2. 2C4 and pertuzumab binds to the extracellular domain of HER2 at the junction of domains I, II and III (SEQ ID NOs: 1, 2, and 3, respectively). Franklin *et al.* *Cancer Cell* 5:317-328 (2004).

25 The “epitope 4D5” is the region in the extracellular domain of HER2 to which the antibody 4D5 (ATCC CRL 10463) and trastuzumab bind. This epitope is close to the transmembrane domain of HER2, and within Domain IV of HER2 (SEQ ID NO: 4). To screen for antibodies which bind 30 essentially to the 4D5 epitope, a routine cross-blocking assay such as that described in *Antibodies, A Laboratory Manual*, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988), can be performed. Alternatively, epitope mapping can be performed to assess whether the antibody binds essentially to the 4D5 epitope of HER2 (*e.g.* any one or more residues in the region from about residue 529 to about residue 625, inclusive of the HER2 ECD, residue numbering including signal peptide).

35 “Treatment” refers to both therapeutic treatment and prophylactic or preventative measures. Those in need of treatment include those already with cancer as well as those in which cancer is to be prevented. Hence, the patient to be treated herein may have been diagnosed as having cancer or may be predisposed or susceptible to cancer.

The term “effective amount” refers to an amount of a drug effective to treat cancer in the

patient. The effective amount of the drug may reduce the number of cancer cells; reduce the tumor size; inhibit (*i.e.*, slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit (*i.e.*, slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the 5 cancer. To the extent the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic. The effective amount may extend progression free survival (*e.g.* as measured by Response Evaluation Criteria for Solid Tumors, RECIST, or CA-125 changes), result in an objective response (including a partial response, PR, or complete response, CR), increase overall survival time, and/or improve one or more symptoms of cancer (*e.g.* as assessed by FOSI).

10 The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (*e.g.* At²¹¹, I¹³¹, I¹²⁵, Y⁹⁰, R¹⁸⁶, R¹⁸⁸, Sm¹⁵³, Bi²¹², P³² and radioactive isotopes of Lu), chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof.

15 A "chemotherapy" is use of a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents, used in chemotherapy, include alkylating agents such as thiotepa and CYTOXAN® cyclophosphamide; alkyl sulfonates such as busulfan, improsulfan and piposulfan; aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines including altretamine, triethylenemelamine, triethylenephosphoramide, 20 triethylenethiophosphoramide and trimethylololomelamine; TLK 286 (TELCYTA™); acetogenins (especially bullatacin and bullatacinone); delta-9-tetrahydrocannabinol (dronabinol, MARINOL®); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan (HYCAMTIN®), CPT-11 (irinotecan, CAMPTOSAR®), acetylcamptothecin, scopolactin, and 9-aminocamptothecin); bryostatin; callystatin; CC-1065 (including its adozelesin, 25 carzelesin and bizelesin synthetic analogues); podophyllotoxin; podophyllinic acid; teniposide; cryptophycins (particularly cryptophycin 1 and cryptophycin 8); dolastatin; duocarmycin (including the synthetic analogues, KW-2189 and CB1-TM1); eleutherobin; pancratistatin; a sarcodictyin; spongistatin; nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, 30 novembichin, phenesterine, prednimustine, trofosfamide, uracil mustard; nitrosureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimustine; bisphosphonates, such as clodronate; antibiotics such as the enediyne antibiotics (*e.g.*, calicheamicin, especially calicheamicin gamma1I and calicheamicin omega1I (see, *e.g.*, Agnew, *Chem Int'l. Ed. Engl.*, 33: 183-186 (1994)) and anthracyclines such as annamycin, AD 32, alcarubicin, daunorubicin, doxorubicin, 35 dexrazoxane, DX-52-1, epirubicin, GPX-100, idarubicin, valrubicin, KRN5500, menogaril, dynemicin, including dynemicin A, an esperamicin, neocarzinostatin chromophore and related

chromoprotein enediyne antibiotic chromophores, aclacinomysins, actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabacin, carminomycin, carzinophilin, chromomycinis, dactinomycin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN® doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin, liposomal doxorubicin, and deoxydoxorubicin), esorubicin, marcellomycin, mitomycins such as mitomycin C, mycophenolic acid, nogalamycin, olivomycins, peplomycin, potfiromycin, puromycin, quelamycin, rodorubicin, streptonigrin, streptozocin, tubercidin, ubenimex, zinostatin, and zorubicin; folic acid analogues such as denopterin, pterofterin, and trimetrexate; purine analogs such as fludarabine, 6-mercaptopurine, thiamiprime, and thioguanine; pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxuryidine, doxifluridine, enocitabine, and floxuridine; androgens such as calusterone, dromostanolone propionate, epitostanol, mepitiostane, and testolactone; anti-adrenals such as aminoglutethimide, mitotane, and trilostane; folic acid replenisher such as folinic acid (leucovorin); aceglatone; anti-folate anti-neoplastic agents such as ALIMTA®, LY231514 pemetrexed, dihydrofolate reductase inhibitors such as methotrexate, anti-metabolites such as 5-fluorouracil (5-FU) and its prodrugs such as UFT, S-1 and capecitabine, and thymidylate synthase inhibitors and glycinamide ribonucleotide formyltransferase inhibitors such as raltitrexed (TOMUDEX™, TDX); inhibitors of dihydropyrimidine dehydrogenase such as eniluracil; aldophosphamide glycoside; aminolevulinic acid; amsacrine; bestabucil; bisantrene; edatraxate; defofamine; demecolcine; diaziquone; el fornithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate; hydroxyurea; lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins; mitoguazone; mitoxantrone; moperanmol; nitraerine; pentostatin; phenamet; pirarubicin; losoxantrone; 2-ethylhydrazide; procarbazine; PSK7 polysaccharide complex (JHS Natural Products, Eugene, OR); razoxane; rhizoxin; sizofiran; spirogermanium; tenuazonic acid; triaziquone; 2,2',2"-trichlorotriethylamine; trichothecenes (especially T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine (ELDISINE®, FILDESIN®); dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; taxanes; chlorambucil; gemcitabine (GEMZAR®); 6-thioguanine; mercaptopurine; platinum; platinum analogs or platinum-based analogs such as cisplatin, oxaliplatin and carboplatin; vinblastine (VELBAN®); etoposide (VP-16); ifosfamide; mitoxantrone; vincristine (ONCOVIN®); vinca alkaloid; vinorelbine (NAVELBINE®); novantrone; edatrexate; daunomycin; aminopterin; xeloda; ibandronate; topoisomerase inhibitor RFS 2000; difluoromethylhydorlnithine (DMFO); retinoids such as retinoic acid; pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone, and FOLFOX, an abbreviation for a treatment regimen with oxaliplatin (ELOXATIN™) combined with 5-FU and leucovorin.

Also included in this definition are anti-hormonal agents that act to regulate or inhibit hormone action on tumors such as anti-estrogens and selective estrogen receptor modulators (SERMs), including, for example, tamoxifen (including NOLVADEX® tamoxifen), raloxifene, droloxifene, 4-hydroxytamoxifen, trioxifene, keoxifene, LY117018, onapristone, and FARESTON® toremifene; aromatase inhibitors; and anti-androgens such as flutamide, nilutamide, bicalutamide, leuprolide, and goserelin; as well as troxacitabine (a 1,3-dioxolane nucleoside cytosine analog); antisense oligonucleotides, particularly those that inhibit expression of genes in signaling pathways implicated in aberrant cell proliferation, such as, for example, PKC-alpha, Raf, H-Ras, and epidermal growth factor receptor (EGF-R); vaccines such as gene therapy vaccines, for example, ALLOVECTIN® vaccine, LEUVECTIN® vaccine, and VAXID® vaccine; PROLEUKIN® rIL-2; LURTOTECAN® topoisomerase 1 inhibitor; ABARELIX® rmRH; and pharmaceutically acceptable salts, acids or derivatives of any of the above.

A “taxane” is a chemotherapy which inhibits mitosis and interferes with microtubules. Examples of taxanes include Paclitaxel (TAXOL®; Bristol-Myers Squibb Oncology, Princeton, N.J.); cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel or *nab*-paclitaxel (ABRAXANE™; American Pharmaceutical Partners, Schaumburg, Illinois); and Docetaxel (TAXOTERE®; Rhône-Poulenc Rorer, Antony, France).

An “anthacycline” is a type of antibiotic that comes from the fungus *Streptococcus peucetius*, examples include: Daunorubicin, Doxorubicin, Epirubicin, and any other anthracycline chemotherapeutic agents, including those listed before.

“Anthracycline-based chemotherapy” refers to a chemotherapy regimen that consists of or includes one or more anthracycline. Examples include, without limitation, 5-FU, epirubicin, and cyclophosphamide (FEC); 5-FU, doxorubicin, and cyclophosphamide (FAC); doxorubicin and cyclophosphamide (AC); epirubicin and cyclophosphamide (EC); dose-dense doxorubicin and cyclophosphamide (ddAC), and the like.

For the purposes herein, “carboplatin-based chemotherapy” refers to a chemotherapy regimen that consists of or includes one or more Carboplatins. An example is TCH (Docetaxel/TAXOL®, Carboplatin, and trastuzumab/HERCEPTIN®).

An “aromatase inhibitor” inhibits the enzyme aromatase, which regulates estrogen production in the adrenal glands. Examples of aromatase inhibitors include: 4(5)-imidazoles, aminoglutethimide, MEGASE® megestrol acetate, AROMASIN® exemestane, formestan, fadrozole, RIVISOR® vorozole, FEMARA® letrozole, and ARIMIDEX® anastrozole. In one embodiment, the aromatase inhibitor herein is letrozole or anastrozole.

An “antimetabolite chemotherapy” is use of an agent which is structurally similar to a metabolite, but cannot be used by the body in a productive manner. Many antimetabolite chemotherapy interferes with the production of the nucleic acids, RNA and DNA. Examples of

antimetabolite chemotherapeutic agents include gemcitabine (GEMZAR®), 5-fluorouracil (5-FU), capecitabine (XELODA™), 6-mercaptopurine, methotrexate, 6-thioguanine, pemetrexed, raltitrexed, arabinosylcytosine ARA-C cytarabine (CYTOSAR-U®), dacarbazine (DTIC-DOME®), azacytosine, deoxycytosine, pyridimidene, fludarabine (FLUDARA®), cladribine, 2-deoxy-D-glucose etc.

5 By “chemotherapy-resistant” cancer is meant that the cancer patient has progressed while receiving a chemotherapy regimen (*i.e.* the patient is “chemotherapy refractory”), or the patient has progressed within 12 months (for instance, within 6 months) after completing a chemotherapy regimen.

10 The term “platin” is used herein to refer to platinum based chemotherapy, including, without limitation, cisplatin, carboplatin, and oxaliplatin.

The term “fluoropyrimidine” is used herein to refer to an antimetabolite chemotherapy, including, without limitation, capecitabine, floxuridine, and fluorouracil (5-FU).

15 In the context of the present invention, “chemotherapy” is used to refer to any chemotherapy used for the treatment of invasive breast cancer, including standard of care anthracycline-based chemotherapy and non-anthracycline-based chemotherapy. In one embodiment, chemotherapy comprises administration of 5-fluorouracil + epirubicin or doxorubicin + cyclophosphamide, optionally further comprising administration of a taxane, *e.g.* docetaxel and/or paclitaxel. In another embodiment, chemotherapy comprises administration of doxorubicin or epirubicin + cyclophosphamide, optionally further comprising administration of a taxane, *e.g.* docetaxel and/or 20 paclitaxel. The non-anthracycline-based chemotherapy may, for example, comprise administration of docetaxel + carboplatin.

25 A “fixed” or “flat” dose of a therapeutic agent herein refers to a dose that is administered to a human patient without regard for the weight (WT) or body surface area (BSA) of the patient. The fixed or flat dose is therefore not provided as a mg/kg dose or a mg/m² dose, but rather as an absolute amount of the therapeutic agent.

30 A “loading” dose herein generally comprises an initial dose of a therapeutic agent administered to a patient, and is followed by one or more maintenance dose(s) thereof. Generally, a single loading dose is administered, but multiple loading doses are contemplated herein. Usually, the amount of loading dose(s) administered exceeds the amount of the maintenance dose(s) administered and/or the loading dose(s) are administered more frequently than the maintenance dose(s), so as to achieve the desired steady-state concentration of the therapeutic agent earlier than can be achieved with the maintenance dose(s).

35 A “maintenance” dose herein refers to one or more doses of a therapeutic agent administered to the patient over a treatment period. Usually, the maintenance doses are administered at spaced treatment intervals, such as approximately every week, approximately every 2 weeks, approximately every 3 weeks, or approximately every 4 weeks, preferably every 3 weeks.

“Intravenous” administration refers to administering a drug (e.g. trastuzumab and/or pertuzumab and/or chemotherapy) into a vein of a patient, e.g. by infusion (slow therapeutic introduction into the vein).

5 “Subcutaneous” administration refers to administering a drug (e.g. trastuzumab and/or pertuzumab and/or chemotherapy) beneath the skin of the patient.

“Infusion” or “infusing” refers to the introduction of a drug-containing solution into the body through a vein for therapeutic purposes. Generally, this is achieved via an intravenous (IV) bag.

10 An “intravenous bag” or “IV bag” is a bag that can hold a solution which can be administered via the vein of a patient. In one embodiment, the solution is a saline solution (e.g. about 0.9% or about 0.45% NaCl). Optionally, the IV bag is formed from polyolefin or polyvinyl chloride.

By “co-administering” is meant intravenously administering two (or more) drugs during the same administration, rather than sequential infusions of the two or more drugs. Generally, this will involve combining the two (or more) drugs into the same IV bag prior to co-administration thereof.

15 “Cardiac toxicity” refers to any toxic side effect resulting from administration of a drug or drug combination. Cardiac toxicity can be evaluated based on any one or more of: incidence of symptomatic left ventricular systolic dysfunction (LVSD) or congestive heart failure (CHF), or decrease in left ventricular ejection fraction (LVEF).

20 The phrase “without increasing cardiac toxicity” for a drug combination including pertuzumab refers to an incidence of cardiac toxicity that is equal or less than that observed in patients treated with drugs other than pertuzumab in the drug combination (e.g. equal or less than that resulting from administration of trastuzumab and the chemotherapy, e.g. Docetaxel).

A “vial” is a container suitable for holding a liquid or lyophilized preparation. In one embodiment, the vial is a single-use vial, e.g. a 20-cc single-use vial with a stopper.

25 A “package insert” is a leaflet that, by order of the Food and Drug Administration (FDA) or other Regulatory Authority, must be placed inside the package of every prescription drug. The leaflet generally includes the trademark for the drug, its generic name, and its mechanism of action; states its indications, contraindications, warnings, precautions, adverse effects, and dosage forms; and includes instructions for the recommended dose, time, and route of administration.

30 The expression “safety data” concerns the data obtained in a controlled clinical trial showing the prevalence and severity of adverse events to guide the user regarding the safety of the drug, including guidance on how to monitor and prevent adverse reactions to the drug. Table 3 and Table 4 herein provide safety data for pertuzumab. The safety data comprises any one or more (e.g. two, three, four or more) of the most common adverse events (AEs) or adverse reactions (ADRs) in Tables 3 and 4. For example, the safety data comprises information about neutropenia, febrile neutropenia, 35 diarrhea and/or cardiac toxicity as disclosed herein.

“Efficacy data” refers to the data obtained in controlled clinical trial showing that a drug effectively treats a disease, such as cancer.

By "stable mixture" when referring to a mixture of two or more drugs, such as pertuzumab and trastuzumab," means that each of the drugs in the mixture essentially retains its physical and chemical stability in the mixture as evaluated by one or more analytical assays. Exemplary analytical assays for this purpose include: color, appearance and clarity (CAC), concentration and turbidity analysis, particulate analysis, size exclusion chromatography (SEC), ion-exchange chromatography (IEC), capillary zone electrophoresis (CZE), image capillary isoelectric focusing (iCIEF), and potency assay. In one embodiment, mixture has been shown to be stable for up to 24 hours at 5°C or 30°C.

A drug that is administered "concurrently" with one or more other drugs is administered 10 during the same treatment cycle, on the same day of treatment as the one or more other drugs, and, optionally, at the same time as the one or more other drugs. For instance, for cancer therapies given every 3-weeks, the concurrently administered drugs are each administered on day-1 of a 3-week cycle.

II. Antibody and Chemotherapy Compositions

15 The HER2 antigen to be used for production of antibodies may be, *e.g.*, a soluble form of the extracellular domain of a HER2 receptor or a portion thereof, containing the desired epitope. Alternatively, cells expressing HER2 at their cell surface (*e.g.* NIH-3T3 cells transformed to overexpress HER2; or a carcinoma cell line such as SK-BR-3 cells, see Stancovski *et al.* *PNAS (USA)* 88:8691-8695 (1991)) can be used to generate antibodies. Other forms of HER2 receptor useful for 20 generating antibodies will be apparent to those skilled in the art.

Various methods for making monoclonal antibodies herein are available in the art. For example, the monoclonal antibodies may be made using the hybridoma method first described by Kohler *et al.*, *Nature*, 256:495 (1975), by recombinant DNA methods (U.S. Patent No. 4,816,567).

25 The anti-HER2 antibodies used in accordance with the present invention, trastuzumab and pertuzumab, are commercially available.

(i) Humanized antibodies

Methods for humanizing non-human antibodies have been described in the art. Preferably, a 30 humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers (Jones *et al.*, *Nature*, 321:522-525 (1986); Riechmann *et al.*, *Nature*, 332:323-327 (1988); Verhoeyen *et al.*, *Science*, 239:1534-1536 (1988)), by substituting hypervariable region sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567) 35 wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically

human antibodies in which some hypervariable region residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies is very important to reduce antigenicity. According to the so-called "best-fit" 5 method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable-domain sequences. The human sequence which is closest to that of the rodent is then accepted as the human framework region (FR) for the humanized antibody (Sims *et al.*, *J. Immunol.*, 151:2296 (1993); Chothia *et al.*, *J. Mol. Biol.*, 196:901 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a 10 particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter *et al.*, *Proc. Natl. Acad. Sci. USA*, 89:4285 (1992); Presta *et al.*, *J. Immunol.*, 151:2623 (1993)).

It is further important that antibodies be humanized with retention of high affinity for the antigen and other favorable biological properties. To achieve this goal, according to a preferred 15 method, humanized antibodies are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin 20 sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, *i.e.*, the analysis of residues that influence the ability of the candidate immunoglobulin to bind its antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody characteristic, such as increased affinity for the target antigen(s), is achieved. In general, the 25 hypervariable region residues are directly and most substantially involved in influencing antigen binding.

US Patent No. 6,949,245 describes production of exemplary humanized HER2 antibodies which bind HER2 and block ligand activation of a HER receptor.

Humanized HER2 antibodies specifically include trastuzumab as described in Table 3 of U.S. 30 Patent 5,821,337; and humanized 2C4 antibodies such as pertuzumab as described and defined herein.

The humanized antibodies herein may, for example, comprise nonhuman hypervariable region residues incorporated into a human variable heavy domain and may further comprise a framework region (FR) substitution at a position selected from the group consisting of 69H, 71H and 35 73H utilizing the variable domain numbering system set forth in Kabat *et al.*, *Sequences of Proteins of Immunological Interest*, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991). In one embodiment, the humanized antibody comprises FR substitutions at two or all of

positions 69H, 71H and 73H.

An exemplary humanized antibody of interest herein comprises variable heavy domain complementarity determining residues GFTFTDYTMX (SEQ ID NO: 17), where X is preferably D or S; DVNPNSGGSIYNQRFKG (SEQ ID NO:18); and/or NLGPSFYFDY (SEQ ID NO:19),

5 optionally comprising amino acid modifications of those CDR residues, *e.g.* where the modifications essentially maintain or improve affinity of the antibody. For example, an antibody variant for use in the methods of the present invention may have from about one to about seven or about five amino acid substitutions in the above variable heavy CDR sequences. Such antibody variants may be prepared by affinity maturation, *e.g.*, as described below.

10 The humanized antibody may comprise variable light domain complementarity determining residues KASQDV SIGVA (SEQ ID NO:20); SASYX¹X²X³, where X¹ is preferably R or L, X² is preferably Y or E, and X³ is preferably T or S (SEQ ID NO:21); and/or QQYYIYPYT (SEQ ID NO:22), *e.g.* in addition to those variable heavy domain CDR residues in the preceding paragraph.

Such humanized antibodies optionally comprise amino acid modifications of the above CDR 15 residues, *e.g.* where the modifications essentially maintain or improve affinity of the antibody. For example, the antibody variant of interest may have from about one to about seven or about five amino acid substitutions in the above variable light CDR sequences. Such antibody variants may be prepared by affinity maturation, *e.g.*, as described below.

The present application also contemplates affinity matured antibodies which bind HER2.

20 The parent antibody may be a human antibody or a humanized antibody, *e.g.*, one comprising the variable light and/or variable heavy sequences of SEQ ID Nos. 7 and 8, respectively (*i.e.* comprising the VL and/or VH of pertuzumab). An affinity matured variant of pertuzumab preferably binds to HER2 receptor with an affinity superior to that of murine 2C4 or pertuzumab (*e.g.* from about two or about four fold, to about 100 fold or about 1000 fold improved affinity, *e.g.* as assessed using a 25 HER2-extracellular domain (ECD) ELISA). Exemplary variable heavy CDR residues for substitution include H28, H30, H34, H35, H64, H96, H99, or combinations of two or more (*e.g.* two, three, four, five, six, or seven of these residues). Examples of variable light CDR residues for alteration include L28, L50, L53, L56, L91, L92, L93, L94, L96, L97 or combinations of two or more (*e.g.* two to three, four, five or up to about ten of these residues).

30 Humanization of murine 4D5 antibody to generate humanized variants thereof, including trastuzumab, is described in U.S. Pat. Nos. 5,821,337, 6,054,297, 6,407,213, 6,639,055, 6,719,971, and 6,800,738, as well as Carter et al. PNAS (USA), 89:4285-4289 (1992). HuMAb4D5-8 (trastuzumab) bound HER2 antigen 3-fold more tightly than the mouse 4D5 antibody, and had secondary immune function (ADCC) which allowed for directed cytotoxic activity of the humanized 35 antibody in the presence of human effector cells. HuMAb4D5-8 comprised variable light (V_L) CDR residues incorporated in a V_L κ subgroup I consensus framework, and variable heavy (V_H) CDR residues incorporated into a V_H subgroup III consensus framework. The antibody further comprised

framework region (FR) substitutions as positions: 71, 73, 78, and 93 of the V_H (Kabat numbering of FR residues; and a FR substitution at position 66 of the V_L (Kabat numbering of FR residues). trastuzumab comprises non-A allotype human γ 1 Fc region.

Various forms of the humanized antibody or affinity matured antibody are contemplated. For 5 example, the humanized antibody or affinity matured antibody may be an antibody fragment. Alternatively, the humanized antibody or affinity matured antibody may be an intact antibody, such as an intact IgG1 antibody.

(ii) Pertuzumab compositions

In one embodiment of a HER2 antibody composition, the composition comprises a mixture 10 of a main species pertuzumab antibody and one or more variants thereof. The preferred embodiment herein of a pertuzumab main species antibody is one comprising the variable light and variable heavy amino acid sequences in SEQ ID Nos. 5 and 6, and most preferably comprising a light chain amino acid sequence of SEQ ID No. 11, and a heavy chain amino acid sequence of SEQ ID No. 12 (including deamidated and/or oxidized variants of those sequences). In one embodiment, the 15 composition comprises a mixture of the main species pertuzumab antibody and an amino acid sequence variant thereof comprising an amino-terminal leader extension. Preferably, the amino-terminal leader extension is on a light chain of the antibody variant (e.g. on one or two light chains of the antibody variant). The main species HER2 antibody or the antibody variant may be a full length antibody or antibody fragment (e.g. Fab or F(ab=)2 fragments), but preferably both are full length 20 antibodies. The antibody variant herein may comprise an amino-terminal leader extension on any one or more of the heavy or light chains thereof. Preferably, the amino-terminal leader extension is on one or two light chains of the antibody. The amino-terminal leader extension preferably comprises or 25 consists of VHS-. Presence of the amino-terminal leader extension in the composition can be detected by various analytical techniques including, but not limited to, N-terminal sequence analysis, assay for charge heterogeneity (for instance, cation exchange chromatography or capillary zone 30 electrophoresis), mass spectrometry, etc. The amount of the antibody variant in the composition generally ranges from an amount that constitutes the detection limit of any assay (preferably N-terminal sequence analysis) used to detect the variant to an amount less than the amount of the main species antibody. Generally, about 20% or less (e.g. from about 1% to about 15%, for instance from 35 5% to about 15%) of the antibody molecules in the composition comprise an amino-terminal leader extension. Such percentage amounts are preferably determined using quantitative N-terminal sequence analysis or cation exchange analysis (preferably using a high-resolution, weak cation-exchange column, such as a PROPAC WCX-10™ cation exchange column). Aside from the amino-terminal leader extension variant, further amino acid sequence alterations of the main species antibody and/or variant are contemplated, including but not limited to an antibody comprising a C-terminal lysine residue on one or both heavy chains thereof, a deamidated antibody variant, etc.

Moreover, the main species antibody or variant may further comprise glycosylation variations, non-limiting examples of which include antibody comprising a G1 or G2 oligosaccharide structure attached to the Fc region thereof, antibody comprising a carbohydrate moiety attached to a light chain thereof (e.g. one or two carbohydrate moieties, such as glucose or galactose, attached to 5 one or two light chains of the antibody, for instance attached to one or more lysine residues), antibody comprising one or two non-glycosylated heavy chains, or antibody comprising a sialidated oligosaccharide attached to one or two heavy chains thereof etc.

The composition may be recovered from a genetically engineered cell line, e.g. a Chinese Hamster Ovary (CHO) cell line expressing the HER2 antibody, or may be prepared by peptide 10 synthesis.

For more information regarding exemplary pertuzumab compositions, see US Patent Nos. 7,560,111 and 7,879,325 as well as US 2009/0202546A1.

(iii) Trastuzumab compositions

The trastuzumab composition generally comprises a mixture of a main species antibody 15 (comprising light and heavy chain sequences of SEQ ID NOS: 13 and 14, respectively), and variant forms thereof, in particular acidic variants (including deamidated variants). Preferably, the amount of such acidic variants in the composition is less than about 25%, or less than about 20%, or less than about 15%. See, U.S. Pat. No. 6,339,142. See, also, Harris et al., *J. Chromatography, B* 752:233-245 (2001) concerning forms of trastuzumab resolvable by cation-exchange chromatography, including 20 Peak A (Asn30 deamidated to Asp in both light chains); Peak B (Asn55 deamidated to isoAsp in one heavy chain); Peak 1 (Asn30 deamidated to Asp in one light chain); Peak 2 (Asn30 deamidated to Asp in one light chain, and Asp102 isomerized to isoAsp in one heavy chain); Peak 3 (main peak form, or main species antibody); Peak 4 (Asp102 isomerized to isoAsp in one heavy chain); and Peak 25 C (Asp102 succinimide (Asu) in one heavy chain). Such variant forms and compositions are included in the invention herein.

(iv) Chemotherapy

Standard chemotherapy for the treatment of HER2-positive early breast cancer (eBC) includes, without limitation, anthracycline-containing and non-anthracycline containing 30 chemotherapies, such as treatment with one or more of doxorubicin, epirubicin, 5-fluorouracil + epirubicin, doxorubicin + cyclophosphamide, and taxanes (e.g. docetaxel or paclitaxel). Standard chemotherapy, as used in the methods of the present invention, specifically includes 1) 3-4 cycles (q3w) of 5-fluorouracil + epirubicin or doxorubicin + cyclophosphamide followed by either 4 cycles (q3w) of docetaxel or 12 weekly cycles of paclitaxel. 2) 4 cycles (q3w) of doxorubicin or epirubicin + cyclophosphamide followed by either 4 cycles (q3w) of docetaxel or 12 weekly cycles of 35 paclitaxel, and 3) (non-anthracycline chemotherapy therapy) 6 cycles (q3w) of docetaxel + carboplatin, as described in Example 1. The drugs used in the various standard chemotherapy

regimens are commercially available and administered in accordance with local prescribing information and as described in Example 1.

III. Selecting Patients for Therapy

5 Detection of HER2 can be used to select patients for treatment in accordance with the present invention. Several FDA-approved commercial assays are available to identify HER2-positive cancer patients. These methods include HERCEPTEST® (Dako) and PATHWAY® HER2 (immunohistochemistry (IHC) assays) and PathVysion® and HER2 FISH pharmDx™ (FISH assays). Users should refer to the package inserts of specific assay kits for information on the validation and 10 performance of each assay.

For example, HER2 overexpression may be analyzed by IHC, *e.g.* using the HERCEPTEST® (Dako). Paraffin embedded tissue sections from a tumor biopsy may be subjected to the IHC assay and accorded a HER2 protein staining intensity criteria as follows:

15 Score 0 no staining is observed or membrane staining is observed in less than 10% of tumor cells.

Score 1+ a faint/barely perceptible membrane staining is detected in more than 10% of the tumor cells. The cells are only stained in part of their membrane.

Score 2+ a weak to moderate complete membrane staining is observed in more than 10% of the tumor cells.

20 Score 3+ a moderate to strong complete membrane staining is observed in more than 10% of the tumor cells.

Those tumors with 0 or 1+ scores for HER2 overexpression assessment may be characterized as HER2-negative, whereas those tumors with 2+ or 3+ scores may be characterized as HER2-positive.

25 Tumors overexpressing HER2 may be rated by immunohistochemical scores corresponding to the number of copies of HER2 molecules expressed per cell, and can be determined biochemically:

0 = 0-10,000 copies/cell,

1+ = at least about 200,000 copies/cell,

30 2+ = at least about 500,000 copies/cell,

3+ = at least about 2,000,000 copies/cell.

Overexpression of HER2 at the 3+ level, which leads to ligand-independent activation of the tyrosine kinase (Hudziak *et al.*, *Proc. Natl. Acad. Sci. USA*, 84:7159-7163 (1987)), occurs in approximately 30% of breast cancers, and in these patients, relapse-free survival and overall survival 35 are diminished (Slamon *et al.*, *Science*, 244:707-712 (1989); Slamon *et al.*, *Science*, 235:177-182 (1987)).

The presence of HER2 protein overexpression and gene amplification are highly correlated, therefore, alternatively, or additionally, the use of *in situ* hybridization (ISH), e.g. fluorescent *in situ* hybridization (FISH), assays to detect gene amplification may also be employed for selection of patients appropriate for treatment in accordance with the present invention. FISH assays such as the 5 INFORM™ (sold by Ventana, Arizona) or PathVysion® (Vysis, Illinois) may be carried out on formalin-fixed, paraffin-embedded tumor tissue to determine the extent (if any) of HER2 amplification in the tumor.

Most commonly, HER2-positive status is confirmed using archival paraffin-embedded tumor tissue, using any of the foregoing methods.

10 Preferably, HER2-positive patients having a 2+ or 3+ IHC score or who are FISH or ISH positive are selected for treatment in accordance with the present invention.

See also US Patent No. 7,981,418 for alternative assays for screening patients for therapy with pertuzumab, and the Examples.

IV. Pharmaceutical Formulations

15 Therapeutic formulations of the HER2 antibodies used in accordance with the present invention are prepared for storage by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (*Remington's Pharmaceutical Sciences* 16th edition, Osol, A. Ed. (1980)), generally in the form of lyophilized formulations or aqueous solutions. Antibody crystals are also contemplated (see US Pat Appln 2002/0136719).

20 Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl 25 paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrans; chelating agents such as EDTA; sugars such as sucrose, 30 mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG). Lyophilized antibody formulations are described in WO 97/04801.

Lyophilized antibody formulations are described in U.S. Pat. Nos. 6,267,958, 6,685,940 and 35 6,821,515.

In one embodiment, the trastuzumab formulation is a sterile, white to pale yellow

preservative-free lyophilized powder for intravenous (IV) administration, comprising 440 mg trastuzumab, 400 mg .alpha₁, α -trehalose hydrate, 9.9 mg L-histidine-HCl, 6.4 mg L-histidine, and 1.8 mg polysorbate 20, USP. Reconstitution of 20 mL of bacteriostatic water for injection (BWFI), containing 1.1% benzyl alcohol as a preservative, yields a multi-dose solution containing 21 mg/mL 5 trastuzumab, at pH of approximately 6.0. For further details, see the trastuzumab prescribing information.

In another embodiment, a trastuzumab formulation e.g. suitable for subcutaneous administration, is disclosed in U.S. Patent No. 9,345,661. This formulation comprises

- 10 (a) about 100 to about 150 mg/ml trastuzumab;
- (b) about 1 to about 50 mM of a buffering agent providing a pH of 5.5.+-2.0;
- (c) about 150 to about 250 mM of α , α -trehalose dihydrate or sucrose as a first stabilizer and about 5 to about 15 mM methionine as a second stabilizer;
- (d) about 0.01 to about 0.08% of a nonionic surfactant; and
- (e) about 1'000 to 16'000 U/ml of at least one hyaluronidase enzyme.

15 In one embodiment, the pertuzumab formulation for therapeutic use comprises 30 mg/mL pertuzumab in 20mM histidine acetate, 120mM sucrose, 0.02% polysorbate 20, at pH 6.0. An alternate pertuzumab formulation comprises 25 mg/mL pertuzumab, 10 mM histidine-HCl buffer, 240 mM sucrose, 0.02% polysorbate 20, pH 6.0.

20 In another embodiment, the pertuzumab formulation for therapeutic use is suitable for subcutaneous administration and comprises 600 mg pertuzumab at a concentration of 60 mg/ml, 600 mg trastuzumab at a concentration of 60 mg/ml, 1,000 U/mL rHuPH20, 20 mM His-HCl pH 5.5, 105 mM trehalose, 100 mM sucrose, 0.04% polysorbate 20, 10 mM methionine, and sterile water for injection up to a total volume of 10 ml, which may be contained in a 15-ml vial.

25 In a further embodiment, the pertuzumab formulation for therapeutic use is suitable for subcutaneous administration and comprises 1,200 mg pertuzumab at a concentration of 80 mg/ml, 600 mg trastuzumab at a concentration of 40 mg/ml, 1,000 U/mL rHuPH20, 20 mM His-HCl pH 5.5, 70 mM trehalose, 133 mM sucrose, 0.04% polysorbate 20, 10 mM methionine, and sterile water for injection up to a total volume of 15 ml, which may be contained in a 20-ml vial.

30 In a still further embodiment, a co-formulation of pertuzumab and trastuzumab, e.g. suitable for subcutaneous administration comprises a single fixed dose of about 600 mg of pertuzumab and a single fixed dose of about 600 mg of trastuzumab, or a single fixed dose of about 1200 mg of pertuzumab and a single fixed dose of about 600 mg of trastuzumab, and a hyaluronidase enzyme, such as recombinant human hyaluronidase (rHuPH20), in an amount sufficient to result in an increase 35 in the dispersion of the pertuzumab and trastuzumab contained in the same liquid formulation during subcutaneous administration, such as at a concentration of at least about 600 U/mL, or at a concentration of between about 600 U/ml and about 2,000 U/ml, e.g. at a concentration of about 1,000 U/mL.

In further embodiments, a co-formulation of pertuzumab and trastuzumab, e.g. suitable for subcutaneous administration, comprises:

600 mg pertuzumab at a concentration of 60 mg/ml, 600 mg trastuzumab at a concentration of 60 mg/ml, 1,000 U/mL rHuPH20, 20 mM His-HCl pH 5.5, 105 mM trehalose, 100 mM sucrose,

5 0.04% polysorbate 20, 10 mM methionine, and sterile water for injection up to a total volume of 10 ml, or

1,200 mg pertuzumab at a concentration of 80 mg/ml, 600 mg trastuzumab at a concentration of 40 mg/ml, 1,000 U/mL rHuPH20, 20 mM His-HCl pH 5.5, 70 mM trehalose, 133 mM sucrose, 0.04% polysorbate 20, 10 mM methionine, and sterile water for injection up to a total volume of 15

10 ml.

The formulation of the placebo used in the clinical trials described in the Examples is equivalent to pertuzumab, without the active agent.

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Various drugs which can be combined with the HER dimerization inhibitor are described in the Method Section below. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The formulations to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

20

V. Treatment Methods

The invention concerns a method for the treatment of HER2-positive early breast cancer comprising adjuvant administration to a patient with HER2-positive early breast cancer of an effective amount of a combination pertuzumab, trastuzumab, and standard chemotherapy, wherein such administration increases reaches a primary and/or secondary efficacy endpoint, such as increase 25 in Disease-Free Survival (DFS), in particular invasive Disease-Free Survival (iDFS) relative to administration of trastuzumab with standard chemotherapy, without administration of pertuzumab.

In one embodiment, the patient treated in accordance with the present invention has been diagnosed with HER2-positive, node-positive early breast cancer.

30

In another embodiment, the patient treated in accordance with the present invention has been diagnosed with HER2-positive, hormone-receptor negative breast cancer.

In one embodiment, pertuzumab, trastuzumab and chemotherapy are administered following one of the following schedules: pertuzumab IV and trastuzumab IV q3w in combination with chemotherapy according to one of the following schedules (as per attending physician's discretion):

1) 3-4 cycles (q3w) or 5-fluorouracil + epirubicin or doxorubicin + cyclophosphamide followed by 35 either 4 cycles (q3w) (q3w) of docetaxel or 12 weekly cycles of paclitaxel; 2) 4 cycles (q3w) of

doxorubicin or epirubicin + cyclophosphamide followed by either 4 cycles (q3w) or docetaxel or 12 weekly cycles of paclitaxel; 3) (non-anthracycline therapy) 6 cycles (q3w) of docetaxel + carboplatin.

In one embodiment trastuzumab and/or pertuzumab are administered intravenously. In other embodiment, trastuzumab and/or pertuzumab are administered subcutaneously (e.g. via a co-

5 formulation including both trastuzumab and pertuzumab which is suitable for subcutaneous administration).

In one embodiment pertuzumab iv is administered with a loading dose of 840 mg followed by 420 mg every 3 weeks.

10 In one embodiment trastuzumab iv is administered with a loading dose of 8 mg/mg followed by 6 mg/kg every 3 weeks.

In one embodiment pertuzumab sc is administered with a loading dose of 1200 mg followed by 600 mg every 3 weeks.

In one embodiment trastuzumab sc is administered with a loading dose of 600 mg followed by 600 mg every 3 weeks.

15 Additional dosages and schedules for chemotherapy used to treat HER2-positive early breast cancer are disclosed in the examples below, but other dosages and schedules are known and contemplated according to the invention herein.

VI. Articles of Manufacture

20 In another embodiment of the invention, an article of manufacture containing materials useful for the treatment of breast cancer is provided. The article of manufacture comprises a vial with a fixed dose of the HER2 (pertuzumab), wherein the fixed dose is approximately 420 mg, approximately 525 mg, approximately 600 mg, approximately 840 mg, or approximately 1050 mg, or approximately 1200 mg of the HER antibody.

25 The article of manufacture preferably further comprises a package insert. The package insert may provide instructions to administer the fixed dose to a breast cancer patient, intravenously or subcutaneously.

In one embodiment, the article of manufacture comprises two vials, wherein a first vial contains a fixed dose of approximately 840 mg of pertuzumab, and a second vial contains a fixed dose of approximately 420 mg of pertuzumab.

30 In another embodiment, the article of manufacture comprises two vials, wherein a first vial contains a fixed dose of approximately 1200 mg of pertuzumab, and a second vial contains a fixed dose of approximately 600 mg of pertuzumab.

35 In one embodiment of an article of manufacture herein comprises an intravenous (IV) bag containing a stable mixture of pertuzumab and trastuzumab suitable for administration to a cancer patient. Optionally, the mixture is in saline solution; for example comprising about 0.9% NaCl or about 0.45% NaCl. An exemplary IV bag is a polyolefin or polyvinyl chloride infusion bag, e.g. a

250mL IV bag. According to one embodiment of the invention, the mixture includes about 420mg or about 840mg of pertuzumab and from about 200mg to about 1000mg of trastuzumab (e.g. from about 400mg to about 900mg of trastuzumab).

5 Optionally, the mixture in the IV bag is stable for up to 24 hours at 5°C or 30°C. Stability of the mixture can be evaluated by one or more assays selected from the group consisting of: color, appearance and clarity (CAC), concentration and turbidity analysis, particulate analysis, size exclusion chromatography (SEC), ion-exchange chromatography (IEC), capillary zone electrophoresis (CZE), image capillary isoelectric focusing (iCIEF), and potency assay.

10 **VII. Deposit of Biological Materials**

The following hybridoma cell lines have been deposited with the American Type Culture Collection, 10801 University Boulevard, Manassas, VA 20110-2209, USA (ATCC):

	Antibody Designation	ATCC No.	Deposit Date
	4D5	ATCC CRL 10463	May 24, 1990
15	2C4	ATCC HB-12697	April 8, 1999

TABLE 1
TABLE OF SEQUENCES

5

description	SEQ ID NO	FIG.
HER2 domain I	1	1
HER2 domain II	2	1
HER2 domain III	3	1
HER2 domain IV	4	1
2C4 variable light	5	2A
2C4 variable heavy	6	2B
574/pertuzumab variable light	7	2A
574/pertuzumab variable heavy	8	2B
human V _L consensus framework	9	2A
Human V _H consensus framework	10	2B
pertuzumab light chain	11	3A
pertuzumab heavy chain	12	3B
trastuzumab light chain	13	4A
trastuzumab heavy chain	14	4B
Variant pertuzumab light chain	15	5A
Variant pertuzumab heavy chain	16	5B
GFTFTDYTMX	17	
DVNPNSGGSIYNQRFKG	18	
NLGPSFYFDY	19	
KASQDV SIGVA	20	
SASYX ¹ X ² X ³	21	
QQYYIYPY	22	

10

Further details of the invention are illustrated by the following non-limiting Example.

15 A list of abbreviations and definition of terms, as used throughout the specification, including the Examples, is provided in the following Table 2.

Abbreviation	Definition
AC	doxorubicin (Adriamycin [®]) plus cyclophosphamide
ADCC	antibody-dependent cell-mediated cytotoxicity
AE	adverse event
ARDS	acute respiratory distress syndrome
ATA	anti-therapeutic antibody
BCS	breast-conserving surgery
bpCR	breast pathologic complete response
BSA	body surface area
CALGB	Cancer and Leukemia Group B
CBE	clinical breast examination
CHF	congestive heart failure
CISH	chromogenic in situ hybridization
CR	complete response
CSR	Clinical Study Report
CT	computed tomography
CTCAE	Common Terminology Criteria for Adverse Events
D	Docetaxel
DCarbH	docetaxel, carboplatin, and trastuzumab (Herceptin [®]) (also known as TCH)
DCIS	ductal carcinoma in situ
dd	dose-dense
ddAC	dose-dense doxorubicin (Adriamycin [®]) plus cyclophosphamide
DFS	disease-free survival
EBC or eBC	early breast cancer
EBCTCG	Early Breast Cancer Trialists' Collaborative Group
ECG	electrocardiogram
ECHO	echocardiogram
ECOG	Eastern Cooperative Oncology Group
eCRF	electronic Case Report Form
EDC	electronic data capture
EFS	event-free survival
EGFR	epidermal growth factor receptor
ER	estrogen receptor
ESMO	European Society for Medical Oncology
FFPE	formalin-fixed paraffin-embedded
FISH	fluorescent in situ hybridization
GCG	German Breast Group
G-CSF	granulocyte colony-stimulating factor
H	<i>Herceptin</i>

Abbreviation	Definition
HER2	human epidermal growth factor receptor 2
HR	hazard ratio
IB	Investigator's Brochure
IBC	inflammatory breast cancer
ICH	International Conference on Harmonisation
iDFS	invasive disease-free survival
IMP	investigational medicinal product
IND	investigational new drug
ISH	in situ hybridization
ITT	intent-to-treat
IV	Intravenous
IUD	intrauterine device
IxRS	interactive voice/web response system
LABC	locally advanced breast cancer
LCIS	lobular carcinoma in situ
LPLV	last patient, last visit
LVEF	left ventricular ejection fraction
LVSD	left ventricular systolic dysfunction
MAPK	mitogen-activated protein kinase
MBC	metastatic breast cancer
MRI	magnetic resonance imaging
mRNA	messenger RNA
MUGA	multiple-gated acquisition scan
NCCN	National Comprehensive Cancer Network
NCCTG	North Central Cancer Treatment Group
NCI	National Cancer Institute
NSABP	National Surgical Adjuvant Breast and Bowel Project
NYHA	New York Heart Association
OS	overall survival
P	Paclitaxel
pCR	pathological complete response

Abbreviation	Definition
PET	positron emission tomography
PFS	progression-free survival
PgR	progesterone receptor
PH	<i>Perjeta</i> [®] and <i>Herceptin</i> [®]
PI3K	phosphoinositol 3-kinase
Pla	Placebo
PR	partial response
PVC	polyvinyl chloride
RCB	Residual Cancer Burden
RCR	Roche Clinical Repository
RECIST	Response Evaluation Criteria in Solid Tumors
RT	radiotherapy
SD	stable disease
SISH	silver in situ hybridization
SLN	sentinel lymph node
SLNB	sentinel lymph node biopsy
SWFI	sterile water for injection
T	paclitaxel (Taxol [®])
TCH	docetaxel (Taxotere [®]), cyclophosphamide, and trastuzumab (Herceptin [®]) (abbreviated to DCarbH in this document)
TH	paclitaxel plus <i>Herceptin</i> [®]
tpCR	total pathologic complete response
ULN	upper limit of normal

EXAMPLE 1

A Phase III Study of Pertuzumab in Addition to Chemotherapy and Trastuzumab as Adjuvant Therapy in Participants With HER2-Positive Primary Breast Cancer.

Purpose

This randomized, double-blind, placebo-controlled, two-arm Phase III study (Adjuvant Pertuzumab and Perception In Initial Therapy of Breast Cancer, APHINITY, NCT01358877) currently enrolling 4806 patients, to assess the safety and efficacy of pertuzumab in addition to chemotherapy plus trastuzumab as adjuvant therapy in participants with operable HER2-positive primary breast cancer. This study is carried out in collaboration with the Breast International Group (BIG).

Study Design

15 A schematic representation of the study design is shown in FIGS. 6A, 6B, and 6C. Patients

enrolled in the study underwent surgery and were randomized to one of two treatment groups (1:1) to receive either:

- PERJETA® and Herceptin with six to eight cycles of chemotherapy (anthracycline or non-anthracycline containing regimen), followed by PERJETA® and HERCEPTIN® every three weeks for a total of one year (52 weeks) of treatment. In particular, in this experimental arm, participants receive pertuzumab IV and trastuzumab IV q3w for 1 year of treatment in combination with chemotherapy according to one of the following schedules (as per Investigator's discretion): 1) 3-4 cycles (q3w) of 5-fluorouracil + epirubicin or doxorubicin + cyclophosphamide followed by either 4 cycles (q3w) of docetaxel or 12 weekly cycles of paclitaxel. 2) 4 cycles (q3w) of doxorubicin or epirubicin + cyclophosphamide followed by either 4 cycles (q3w) of docetaxel or 12 weekly cycles of paclitaxel. 3) (Non-Anthracycline therapy) 6 cycles (q3w) of docetaxel + carboplatin.
- Placebo and HERCEPTIN® with six to eight cycles of chemotherapy (anthracycline or non-anthracycline containing regimen), followed by placebo and Herceptin every three weeks for a total of one year (52 weeks) of treatment. In particular, in this placebo comparator arm participants receive placebo IV and trastuzumab IV q3w for 1 year of treatment in combination with chemotherapy according to one of the following schedules (as per Investigator's discretion): 1) 3-4 cycles (q3w) of 5-fluorouracil + epirubicin or doxorubicin + cyclophosphamide followed by either 4 cycles (q3w) of docetaxel or 12 weekly cycles of paclitaxel. 2) 4 cycles (q3w) of doxorubicin or epirubicin + cyclophosphamide followed by either 4 cycles (q3w) of docetaxel or 12 weekly cycles of paclitaxel. 3) (Non-Anthracycline therapy) 6 cycles (q3w) of docetaxel + carboplatin.
- Drug Pertuzumab: Participants received pertuzumab loading dose of 840 mg IV in Cycle 1, followed by 420 mg IV q3w.
- Drug Trastuzumab: Participants received trastuzumab at a loading dose of 8 milligrams per kilogram (mg/kg) followed by 6 mg/kg IV q3w.
- Drug: 5-Fluorouracil: Participants may receive 5-fluorouracil 500-600 milligrams per square meter (mg/m^2) IV q3w.
- Drug: Carboplatin: Participants may receive carboplatin dose of 6 times Area Under the Concentration Time Curve (AUC) (maximum dose of 900 mg) IV q3w.
- Drug: Cyclophosphamide: Participants may receive cyclophosphamide 500-600 mg/m^2 IV q3w.
- Drug: Docetaxel: Participants may receive docetaxel either 75 mg/m^2 IV q3w, or 100 mg/m^2 IV q3w, or 75 mg/m^2 IV q3w for first cycle followed by 100 mg/m^2 IV q3w.
- Drug: Doxorubicin: Participants may receive doxorubicin 50 mg/m^2 IV q3w.
- Drug: Epirubicin: Participants may receive epirubicin 90-120 mg/m^2 IV q3w.
- Drug: Paclitaxel: Participants may receive paclitaxel 80 mg/m^2 IV once weekly.

35 Radiotherapy and/or endocrine therapy could be initiated at the end of adjuvant therapy. The

APHINITY study allowed for standard adjuvant chemotherapy regimens to be used. Both lymph node-positive and lymph node-negative participants were eligible for enrolment (see below).

Eligibility

5 Ages eligible for study: 18 year and older (adult, senior)

Sexes eligible for study: All

Accepts healthy volunteers: No

Inclusion Criteria

10 • Non-metastatic operable primary invasive HER2-positive carcinoma of the breast that is histologically confirmed, and adequately excised

10 • Lymph node positive disease, or node negative disease (pN0) and a tumor size of >1.0 cm. Patients with pN0 tumors and a tumor size between 0.5-1.0 cm were initially eligible if at least one of the following features was present: grade 3, both hormone receptors negative, or age <35 years. Patients with pN0 were no longer eligible under a protocol amendment after 3655 patients were randomized.

15 • Eastern Cooperative Oncology Group (ECOG) performance status less than or equal to (</=) 1

• The interval between definitive surgery for breast cancer and the first dose of chemotherapy must be no more than 8 weeks (56 days). The first cycle of chemotherapy must be administered within 7 days of randomization or on Day 56, whichever occurs first

20 • Known hormone receptor status (estrogen receptor and progesterone receptor)

• Baseline LVEF greater than or equal to (>/=) 55 percent (%) measured by echocardiogram (ECHO) or Multiple-Gated Acquisition (MUGA) Scan

25 • Confirmed HER2 positive status, which requires confirmation that the patient's breast cancer has an immunohistochemistry score 3+ in >10% immunoreactive cells or c-erbB2 gene amplification by in situ hybridization (ratio of c-erbB2 gene signals to centromere 17 signals ≥ 2).

• Women of childbearing potential and male participants with partners of childbearing potential must agree to use effective contraception (as defined by the protocol) by the participant and/or partner for the duration of the study treatment and for at least 7 months after the last dose of study drug.

30 • **Exclusion Criteria**

• History of any prior (ipsi- and/or contralateral) invasive breast cancer

• History of non-breast malignancies within the 5 years prior to study entry, except for carcinoma in situ of the cervix, carcinoma in situ of the colon, melanoma in situ, and basal cell and squamous cell carcinomas of the skin

35 • Any "clinical" T4 tumor as defined by Primary tumor/regional lymph nodes/distant metastasis (TNM), including inflammatory breast cancer

- Any previous systemic chemotherapy for cancer or radiotherapy for cancer
- Prior use of anti-HER2 therapy for any reason or other prior biologic or immunotherapy for cancer
- Concurrent anti-cancer treatment in another investigational trial
- Serious cardiac or cardiovascular disease or condition
- Other concurrent serious diseases that may interfere with planned treatment including severe pulmonary conditions/illness
- Abnormal laboratory tests immediately prior to randomization
- Pregnant or lactating women
- Sensitivity to any of the study medications or any of the ingredients or excipients of these medications

Outcome Measures

A complete list of primary and secondary outcome measures of the study are listed below.

One primary efficacy endpoint of the APHINITY study is iDFS, which is the time a patient 15 lives without return of invasive breast cancer at any site or death from any cause after adjuvant treatment.

The stratified log-rank test was used to compare IDFS between the two treatment groups. The Kaplan-Meier approach was used to estimate 3-year IDFS percents for each treatment group. The stratified Cox proportional hazards model was used to estimate the hazard ratio (HR) between 20 the two treatment groups and its 95% confidence interval (CI). The primary analysis was based on the intent-to-treat (ITT) population. The study was designed to have 80% power to detect a hazard ratio of 0.75 at a 5%, 2-sided significance level. A 3-year IDFS percentage of 89.2% was assumed for the placebo group on the basis of the findings of the BCIRG 006 study (NCT00021255). Under these assumptions approximately 379 IDFS events are required for the primary analysis of IDFS.

Secondary efficacy endpoints include cardiac and overall safety, overall survival, disease free 25 survival and health-related quality of life.

Distant Recurrence-Free Interval (DRFI) is defined as the time between randomization and the date of distant breast cancer recurrence. Patients without distant disease recurrence at the time of analysis will be censored at the date of death or last known alive date. The definitive (final event-driven) OS analysis is planned when 640 deaths have occurred. The first interim analysis of OS is be 30 made available at the time of the primary analysis of IDFS, with limited information compared to the definitive analysis. Two subsequent interim analysis will be performed. For regulatory purposes, the overall alpha-level will be controlled at 0.05 for the four OS analyses. The adjusted two-sided significance level at the first interim analysis of OS is <0.00001.

35 Patients who receive any amount of study treatment (chemotherapy or targeted therapy) were included in safety analyses by the treatment patients actually received. Patients who received

adjuvant pertuzumab are in the pertuzumab safety analysis population arm. Patients who received study medication but no pertuzumab are in the placebo safety analysis population arm.

Primary cardiac endpoint was severe congestive heart failure (CHF), defined as: heart failure NYHA Class III or IV and a drop in LVEF of at least 10 EF points from baseline and to below 50% or cardiac death. Cardiac death was identified by the APHINITY Cardiac Advisory Board (CAB).

5 A secondary cardiac endpoint was defined as an asymptomatic or mildly symptomatic (NYHA Class II) significant drop in LVEF by MUGA scan or ECHO, confirmed by a second LVEF assessment within approximately 3 weeks showing also a significant drop OR as confirmed by the APHINITY CAB.

10 **Primary Outcome Measures**

- Invasive Disease-Free Survival (iDFS) Duration (Excluding Second Primary Non-Breast Cancers as IDFS Event), as Assessed Using Radiologic, Histologic Examinations or Laboratory Findings [Time Frame: Randomization until protocol defined IDFS event (excluding second primary non-breast cancers) (up to 12 years overall)]

15 • Percentage of Participants with Both a Heart Failure of New York Heart Association (NYHA) Class III or IV and a Drop in Left Ventricular Ejection Fraction (LVEF) of at least 10 Points from Baseline and to Below 50 Percent (%) [Time Frame: Baseline up to 12 years (assessed every 12 weeks up to first 12 months; months 18, 24, 30, 36, 48, 60 and every 12 months thereafter up to 12 years overall)]

20 **Secondary Outcome Measures**

- IDFS Duration (Including Second Primary Non-Breast Cancers as IDFS Event), as Assessed Using Radiologic, Histologic Examinations or Laboratory Findings [Time Frame: Randomization until protocol defined IDFS event (including second primary non-breast cancers) (up to 12 years overall)]

25 • Disease-Free Survival (DFS) Duration (Including Second Primary Non-Breast Cancers or Contralateral or Ipsilateral Ductal Carcinoma in-Situ as an Event), as Assessed Using Radiologic, Histologic Examinations or Laboratory Findings [Time Frame: Randomization until protocol defined DFS event (including second primary non-breast cancers or contralateral or ipsilateral ductal carcinoma in-situ) (up to 12 years overall)]

30 • Overall Survival (OS) [Time Frame: Randomization until death due to any cause (up to 12 years overall)]

- Recurrence-Free Interval (RFI), as Assessed Using Radiologic, Histologic Examinations or Laboratory Findings [Time Frame: Randomization until local, regional or distant breast cancer recurrence (up to 12 years overall)]

35 • Distant Recurrence-Free Interval (DRFI), as Assessed Using Radiologic, Histologic Examinations or Laboratory Findings [Time Frame: Randomization until distant breast cancer recurrence (up to 12 years overall)]

- Percentage of Participants with Adverse Events [Time Frame: Baseline up to 12 years]
- Percentage of Participants with Asymptomatic or Mildly Symptomatic (NYHA Class II) Drop in Left Ventricular Ejection Fraction (LVEF) of at least 10 Points from Baseline and to

5 Below 50% [Time Frame: Baseline up to 12 years (assessed every 12 weeks up to first 12 months; months 18, 24, 30, 36, 48, 60 and every 12 months thereafter up to 12 years overall)]

- LVEF Measurements Over the Course of the Study [Time Frame: Baseline up to 12 years (assessed every 12 weeks up to first 12 months; months 18, 24, 30, 36, 48, 60 and every 12 months thereafter up to 12 years overall)]

10 • European Organization for Research and Treatment of Cancer Quality of Life Questionnaire - Core 30 (EORTC QLQ-C30) Score [Time Frame: Baseline, Weeks 10, 13, 19, and 25; 28-days after last dose of study medication (Week 56); and Months 18, 24, and 36]

- European Organization for Research and Treatment of Cancer Breast Cancer Module Quality of Life (EORTC QLQ BR23) Functional Scale Score [Time Frame: Baseline, Weeks 10, 13, 15, 19, and 25; 28-days after last dose of study medication (Week 56); and Months 18, 24, and 36]
- European Quality of Life-5 Dimensions (EQ-5D) Questionnaire Score [Time Frame: Baseline, Weeks 10, 13, 19, and 25; 28-days after last dose of study medication (Week 56); and Months 18, 24, and 36.]

Formulation, Packaging, and Handling

20 PERJETA® is provided as a single-use formulation containing 30 mg/mL pertuzumab formulated in 20 mM L-histidine (pH 6.0), 120 mM sucrose, and 0.02% polysorbate-20. Each 20-cc vial contains approximately 420 mg of pertuzumab (14.0 mL/vial). For further details, refer to the PERJETA® IB or local prescribing information for PERJETA®.

Labeling of PERJETA®

25 PERJETA® will be labeled according to the regulatory requirements in each country, as well as in accordance with International Conference of Harmonisation (ICH) Good Clinical Practice. The study Sponsor will provide PERJETA® to all study sites labeled for investigational use only.

Storage of PERJETA®

30 Vials of PERJETA® are shipped at a temperature ranging from 2°C-8°C (36°F-46°F), and must be placed in a refrigerator (same temperature range) immediately upon receipt to ensure optimal retention of physical and biochemical integrity, and should remain refrigerated until immediately prior to use. Temperature logs must be maintained (in accordance with local pharmacy practice) on the refrigerator to ensure proper storage conditions. If a temperature deviation from the allowed 2°C-8°C is found either during shipment or storage, contact the Sponsor to determine if the drug is still appropriate for use.

The PERJETA® vials may not be shaken. All vials should be stored within the outer carton and protected from light. The medication must not be used beyond the use by date information provided on the IMP kit label.

Preparation of PERJETA®

5 Because the PERJETA® formulation does not contain a preservative, the vial seal may only be punctured once. Any remaining solution should be discarded.

The indicated volume of PERJETA® solution should be withdrawn from the vials and added to a 250-cc IV bag of 0.9% sodium chloride injection. The bag should be gently inverted to mix the solution, but should not be shaken vigorously. The solution should be visually inspected for 10 particulates and discoloration prior to administration. The entire volume within the bag should be administered as a continuous IV infusion. The volume contained in the administration tubing should be completely flushed using a 0.9% sodium chloride injection.

15 The solution of PERJETA® for infusion, diluted in polyvinyl chloride (PVC) or non-PVC polyolefin bags containing 0.9% sodium chloride injection, may be stored at 2°C-8°C (36°F-46°F) for up to 24 hours prior to use. Diluted PERJETA® has been shown to be stable for up to 24 hours at room temperature (2°C-25°C). However, because diluted PERJETA® contains no preservative, the aseptically diluted solution should be stored refrigerated (2°C-8°C) for no more than 24 hours.

20 A rate-regulating device may be used for all study-drug infusions. When the study drug IV bag is empty, 50 mL of 0.9% sodium chloride injection may be added to the IV bag or an additional bag may be hung, and the infusion may be continued for a volume equal to that of the tubing to ensure complete delivery of the study drug.

25 If extravasation of the study drug infusion occurs, the following steps should be taken:
Discontinue the infusion.
Treat the extravasation according to institutional guidelines for extravasation of a non-caustic agent.

If a significant volume of the study drug infusion remains, restart the infusion at a more proximal site in the same limb or on the other side.

Formulation of HERCEPTIN®

30 HERCEPTIN® (lyophilized formulation) for use in this study will be supplied by the Sponsor, as a freeze-dried preparation. All HERCEPTIN® is supplied for parenteral IV administration; subcutaneous HERCEPTIN® is not permitted in this study. HERCEPTIN® is formulated in histidine, trehalose, and polysorbate 20. HERCEPTIN® for use in this study will be supplied by the Sponsor in vials containing a freeze-dried preparation for parenteral administration. For IV administration, each vial of HERCEPTIN® is reconstituted with Sterile Water for Injection 35 (SWFI) dependent on the vial size, as follows:

HERCEPTIN® 440-mg vial is mixed with 20.0 mL of SWFI (not supplied)

HERCEPTIN® 150-mg vial is mixed with 7.2 mL of SWFI (not supplied)

Use of other reconstitution solvents is not allowed. The reconstituted solution contains 21 mg/mL trastuzumab and will be added to 250 mL of 0.9% sodium chloride injection for administration to the patient. None of the HERCEPTIN® formulations contains a preservative. The product is not intended to be stored after reconstitution and dilution unless this has taken place under 5 aseptic conditions. Therefore, once the infusion is prepared, it is for single use only and should be administered promptly. The dose must be infused within 8 hours after reconstitution unless aseptically prepared and stored at 2°C-8°C (maximum refrigerated storage time is 24 hours). Each HERCEPTIN® vial provided for this study is to be used as a **SINGLE DOSE VIAL ONLY**. Each vial should not be used for more than one administration of *Herceptin* and not for more than 10 1 patient at a time. **DO NOT FREEZE HERCEPTIN THAT HAS BEEN RECONSTITUTED.**

Labeling of HERCEPTIN®

HERCEPTIN® will be labeled according to the regulatory requirements in each country, as well as in accordance with ICH Good Clinical Practice. The study Sponsor will provide HERCEPTIN® to all study sites labeled for investigational use only.

15 *Storage of HERCEPTIN®*

Vials of HERCEPTIN® are shipped with cool packs at a temperature ranging from 2°C to 8°C (36°F to 46°F) and must be placed in a refrigerator (same temperature range) immediately upon receipt to ensure optimal retention of physical and biochemical integrity. Temperature logs must be maintained (in accordance with local pharmacy practice) on the refrigerator to ensure proper storage 20 conditions. Do not use beyond the use by date stamped on the vial. **DO NOT FREEZE.**

HERCEPTIN® may be sensitive to shear-induced stress (e.g., agitation or rapid expulsion from a syringe). **DO NOT SHAKE.** Vigorous handling of solutions of HERCEPTIN® results in aggregation of the protein and may create cloudy solutions. HERCEPTIN® should be carefully handled during reconstitution. Causing excessive foaming during reconstitution or shaking the 25 reconstituted HERCEPTIN® may result in problems with the amount of HERCEPTIN® that can be withdrawn from the vial.

Preparation of HERCEPTIN®

Appropriate aseptic technique should be used when preparing the study drug. Each vial of HERCEPTIN® is reconstituted with SWFI as described above. HERCEPTIN® should be carefully 30 handled during reconstitution. Causing excessive foaming during reconstitution or shaking the reconstituted HERCEPTIN® may result in problems with the amount of HERCEPTIN® that can be withdrawn from the vial.

The following instructions have to be followed:

1. Using a sterile syringe, slowly inject the sterile water for injection in the vial 35 containing the lyophilized HERCEPTIN®, directing the stream into the lyophilized cake.
2. Swirl vial gently to aid reconstitution. **DO NOT SHAKE!**

Slight foaming of the product upon reconstitution is not unusual. Allow the vial to stand undisturbed for approximately 5 minutes. The reconstituted HERCEPTIN® results in a colorless to pale yellow transparent solution and should be essentially free of visible particulates.

Do not refrigerate or freeze HERCEPTIN® that has been reconstituted.

5

Drug Preparation: Dilution

The reconstituted solution will be added to an infusion bag containing 250 mL of 0.9% Sodium Chloride Injection, United States Pharmacopeia. Once the infusion is prepared, it should be administered immediately. If diluted aseptically, it may be stored for a maximum of 24 hours from reconstitution (do not store above 30°C).

10

Results

The study met its primary endpoint and showed that adjuvant (after surgery) treatment with the PERJETA®-HERCEPTIN® combination significantly reduced the risk of recurrence of invasive disease or death (invasive Disease Free Survival; iDFS) in people with HER2-positive eBC compared to HERCEPTIN® and chemotherapy alone. The results presented in 7 A&B, 8 A-C, 9 A-C 15 discussed below represent the results of the study's primary analysis of iDFS (based on data collected on the electronic Case Report Form "eCRF").

15

Primary Endpoint:

- As shown in FIG. 7A, Hazard Ratio (HR) for iDFS was 0.81; [95% CI 0.66-1.00; p = 0.0446], representing a 19% reduction in the risk of recurrence of invasive breast cancer or death for patients in the PERJETA®-HERCEPTIN® arm compared with the HERCEPTIN® control arm. See also the Kaplan-Meier plot shown in FIG. 7B.

20

The corresponding estimates of three-year iDFS rates were:

- PERJETA®, HERCEPTIN® and chemotherapy arm = 94.06%
- Placebo, HERCEPTIN® and chemotherapy (control) arm = 93.24%

25

Efficacy

The study met its primary study endpoint with a statistically significant improvement of invasive disease free survival (iDFS) with a hazard ratio of 0.81 (95% CI, 0.66 to 1.00; P=0.0446) in favor of the pertuzumab group. After a median follow-up of 45.4 months, 171 (7.1%) iDFS events were reported in patients randomized to the pertuzumab group, and 210 (8.7%) events in patients 30 randomized to the control group. The estimate of iDFS at 3-years was 94.1% in the pertuzumab group and 93.2% in the placebo group. Distant recurrence occurred as first iDFS even in 112 (4.7%) patients and 139 (5.8%) patients, in the pertuzumab and control group, respectively, whereas the numbers of patients with local recurrences were 16 (1.1%) and 34 (1.4%), respectively. Central nervous system (CNS) metastases occurred as the first iDFS event in 1.9% and 1.8% of patients in 35 the pertuzumab and control group, respectively. A visceral or CNS site of first distant recurrence was more common than bone.

In a secondary analysis, second primary non-breast cancer events were also considered as

iDFS events. The number of events increased to 189 and 230 in the pertuzumab and control group, respectively, resulting in a statistically significant hazard ratio of 0.82 (95% CI, 0.68 to 0.99; P=0.043).

5 The cardiac and overall safety profile of the PERJETA®-HERCEPTIN® combination was consistent with previous studies of PERJETA® and no new safety signals were identified.

10 Although the positive effects of including pertuzumab in the treatment regimen were homogenously observed in various subgroups of patients, subgroup analyses for iDFS revealed that the treatment effect was the most pronounced in the lymph node positive (FIGs. 8A and 8B) and hormone receptor (HR) negative patients (FIGs. 9A and 9B). As shown in FIG. 8A, in patients with node-positive disease, there were 139 (9.2%) iDFS events in the pertuzumab group and 181 (12.1%) iDFS events in the placebo group. The 3-year iDFS percents were 92.0% in the pertuzumab group and 90.2% in the placebo group. The hazard ratio was 0.77 (95% CI 0.62-0.96; P=0.0188). The curves of the Kaplan-Meier plot started to separate 2 years after randomization (FIG. 8B). In contrast, patients with node-negative disease showed a very low number of iDFS events (32 [3.6%] with pertuzumab and 29 [3.2%] with placebo) and no treatment effect was detectable (hazard ratio 1.13 (95% CI 0.68-1.86; P=0.6436) (FIG. 8C).

15 In patients with hormone-receptor-negative tumors, there were 71 (8.2%) iDFS events in the for pertuzumab group 91 (10.6%) in the for placebo group, leading to a hazard ratio of 0.76 (0.56-1.04; P=0.0847). The 3 year iDFS percents were 92.8% in the pertuzumab group and 91.2% in the placebo group (FIGs. 9A and 9B). The number of events was very low in patients with hormone-receptor-positive tumors (100 [6.5%] in the pertuzumab group and 119 [7.7%] in the placebo group), resulting in a hazard ratio of 0.86 (0.66-1.13) (P=0.2771). The 3 year iDFS percents were 94.8% in the pertuzumab group and 94.4% in the placebo group (FIG. 9C).

20 At the time of this primary endpoint analysis a first interim analysis for overall survival was performed, with 80 deaths in the pertuzumab arm and 89 deaths in the placebo arm. There was no significant treatment effect at this early point of time (hazard ratio 0.89; 95% CI 0.66-1.21; P=0.4673).

25 FIG. 10 and Tables 3 and 4 below present the results of the APHINITY study's pre-specified sensitivity analysis of the primary iDFS endpoint, based on the stratification factors data collected by 30 the Interactive web/voice Response System "IxRS".

Table 3 Efficacy Results from APHINITY Clinical Study

	PERJETA + trastuzumab + chemotherapy N=2400	Placebo + trastuzumab + chemotherapy N=2404
Invasive Disease Free Survival (IDFS)		
Number (%) of patients with event	171 (7.1%)	210 (8.7%)
HR [95% CI] ¹	0.82 [0.67, 1.00]	
p-value (Log-Rank test, stratified ¹)	0.047	
3 year event-free rate ² , % [95% CI]	94.1 [93.1, 95.0]	93.2 [92.2, 94.3]
IDFS including second primary non-breast cancer		
Number (%) of patients with event	189 (7.9%)	230 (9.6%)
HR [95% CI] ¹	0.83 [0.68, 1.00]	
3 year event-free rate ² , % [95% CI]	93.5 [92.5, 94.5]	92.5 [91.4, 93.6]
Disease Free Survival (DFS)		
Number (%) of patients with event	192 (8.0%)	236 (9.8%)
HR [95% CI] ¹	0.82 [0.68, 0.99]	
3 year event-free rate ² , % [95% CI]	93.4 [92.4, 94.4]	92.3 [91.2, 93.4]
Overall Survival (OS)³		
Number (%) of patients with event	80 (3.3%)	89 (3.7%)
HR [95% CI] ¹	0.89 [0.66, 1.21]	
3 year event-free rate ² , % [95% CI]	97.7 [97.0, 98.3]	97.7 [97.1, 98.3]

HR=Hazard Ratio, CI=Confidence Interval

¹ All analyses stratified by nodal status, protocol version, central hormone receptor status, and adjuvant chemotherapy regimen. Stratification factors are defined according to the randomization data for IDFS.5 ² 3-year event-free rate derived from Kaplan-Meier estimates³ Data from first interim analysis**Table 4 Efficacy Results by Baseline Disease Characteristics and Adjuvant Chemotherapy from APHINITY Clinical Study¹**

Population	Number of events/Total N (%)		IDFS at 3 year (%), 95% CI)		Unstratified HR (95% CI)
	PERJETA + trastuzumab + chemotherapy	Placebo + trastuzumab + chemotherapy	PERJETA + trastuzumab + chemotherapy	Placebo + trastuzumab + chemotherapy	
Hormone Receptor Status					
Negative	71/864 (8.2%)	91/858 (10.6%)	92.8 (90.8, 94.3)	91.2 (89.0, 92.9)	0.76 (0.56, 1.04)
Positive	100/1536 (6.5%)	119/1546 (7.7%)	94.8 (93.5, 95.8)	94.4 (93.1, 95.4)	0.86 (0.66, 1.13)
Nodal Status					
Negative	32/897 (3.6%)	29/902 (3.2%)	97.5 (96.3, 98.4)	98.4 (97.3, 99.0)	1.13 (0.68, 1.86)
Positive	139/1503 (9.2%)	181/1502 (12.1%)	92.0 (90.5, 93.3)	90.2 (88.5, 91.6)	0.77 (0.62, 0.96)

Adjuvant Chemotherapy Regimen					
Anthracycline	139/1865 (7.4%)	171/1877 (9.1%)	93.8 (92.6, 94.8)	93.0 (91.8, 94.1)	0.82 (0.66, 1.03)
Non-Anthracycline	32/535 (6.0%)	39/527 (7.4%)	94.9 (92.6, 96.6)	94.0 (91.5, 95.8)	0.82 (0.51, 1.31)

¹Exploratory analyses without adjusting multiple comparisons, therefore, results are considered descriptive.

Safety

In patients with hormone-receptor-negative tumors, there were 71 (8.2%) IDFS events in the 5 for pertuzumab arm 91 (10.6%) in the for placebo arm, leading to a hazard ratio of 0.76 (0.56-1.04; P=0.0847). The 3 year IDFS percents were 92.8% in the pertuzumab arm and 91.2% in the placebo arm. The number of events was very low in patients with hormone-receptor-positive tumors (100 [6.5%] in the pertuzumab arm and 119 [7.7%] in the placebo arm), resulting in a hazard ratio of 0.86 (0.66-1.13) (P=0.2771). The 3 year IDFS percents were 94.8% in the pertuzumab arm and 94.4% in 10 the placebo arm.

At the time of this primary endpoint analysis a first interim analysis for overall survival was performed, with 80 deaths in the pertuzumab arm and 89 deaths in the placebo arm. There was no significant treatment effect at this early point of time (hazard ratio 0.89; 95% CI 0.66-1.21; P=0.4673).

15 Cardiac Safety

Patients who received at least one dose of study treatment (chemotherapy or targeted therapy) were included in safety analyses by the treatment patients actually received. Patients who received pertuzumab for adjuvant treatment are in the pertuzumab safety analysis population group. Patients who received study medication but no pertuzumab are in the control safety analysis 20 population group.

Primary cardiac endpoint was severe congestive heart failure (CHF), defined as: heart failure NYHA Class III or IV and a drop in LVEF of at least 10 EF points from baseline and to below 50% or cardiac death. Cardiac death was prospectively defined by the APHINITY Cardiac Advisory Board (CAB).

25 A secondary cardiac endpoint was defined as an asymptomatic or mildly symptomatic (NYHA Class II) significant drop in LVEF by MUGA scan or ECHO, confirmed by a second LVEF assessment within approximately 3 weeks showing also a significant drop OR as confirmed by the APHINITY CAB.

Discussion

30 The APHINITY study is a large, adequately powered, placebo-controlled, phase III clinical study. Treatment effect was homogenous throughout all subgroups; however, at this early time point of analysis it appeared best detectable in patient at higher risk of relapse due to lymph node involvement or negative hormone-receptor status. The safety profile of pertuzumab given for one

year in this combination was favorable and no new safety signal was observed when compared to the safety reported in in the metastatic or neoadjuvant settings.

Evaluation of patient benefit always has to relate the effect size with potential risks from side effects. A grade ≥ 3 diarrhea occurred in an excess of 6.2% with the addition of pertuzumab and

5 might be not sufficiently treatable with anti-diarrheic medication and lead therefore to treatment discontinuation. Nevertheless the overall treatment discontinuation rate was only 2.9% higher with pertuzumab compared to placebo. Most importantly no statistical difference could be detected with regard to cardiac toxicity despite the large number of patients. Assuming that type of cardiac toxicity of pertuzumab is comparable to the type induced by trastuzumab, most cardiac events will be
10 observed already at the current time of analysis and late cardiac events will be infrequent. The cardiac safety of pertuzumab was already demonstrated in previous trials in the metastatic setting (Swain et al., Oncologist. 2013; 18(3):257-64) and even for simultaneous application with trastuzumab and epirubicin in the neoadjuvant setting (Schneeweiss et al., Ann. Oncol. 2013
24(9):278-84).

15 The importance of the finding of the APHINITY study goes beyond the application of pertuzumab as adjuvant treatment. This adjuvant study was also considered as a proof-of-concept for the surrogacy of pathological complete response (pCR) observed in neoadjuvant studies for long-term outcome. The NeoSphere study reported an increase of pCR rate from 29.0% after a 12 weeks treatment of docetaxel and trastuzumab to 45.8% after the same treatment but with the addition of
20 pertuzumab (Gianni et al., Lancet Oncol. 2012 13(1):25-32). Corresponding 5-year progression-free survival rates were 81% (95% CI 71%-87%) without and 86% (95% CI 77%-91%) with pertuzumab; but the trial was not sufficiently powered to show statistical significant differences. Taking into account the stronger chemotherapy including a taxane and an anthracycline (or carboplatin), the effect size observed in the APHINITY study corresponds well to the reported neoadjuvant effect on
25 reaching a pCR.

30 In conclusion, the APHINITY trial demonstrates that pertuzumab significantly improves IDFS in patients with operable HER2-positive breast cancer when added to chemotherapy and trastuzumab and no new safety signals were identified. Although further aspects, such as the efficacy or longer or shorter durations of treatment, will need to be further explored, this trial represents a landmark for the treatment of patients with HER2 positive EBC.

35 While certain embodiments of the present invention have been shown and described herein, it will be understood by those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures

within the scope of these claims and their equivalents be covered thereby.

WHAT IS CLAIMED IS:

1. A composition of pertuzumab for use in combination with trastuzumab and taxane-based chemotherapy, in adjuvant treatment of HER2-positive early breast cancer in a patient after definitive surgery for the breast cancer, and following adjuvant treatment with anthracycline-based chemotherapy, without increasing cardiac toxicity,

wherein the patient has lymph node positive disease, hormone receptor negative disease, or lymph node positive and hormone receptor negative disease,

wherein the patient has a baseline left ventricular ejection fraction (LVEF) of $\geq 55\%$ pre-treatment, and

the anthracycline-based chemotherapy comprises:

3 cycles of 5-fluorouracil (5-FU) + epirubicin + cyclophosphamide every 3 weeks;
4 cycles of 5-FU + epirubicin + cyclophosphamide every 3 weeks;
3 cycles of 5-FU + doxorubicin + cyclophosphamide every 3 weeks;
4 cycles of 5-FU + doxorubicin + cyclophosphamide every 3 weeks;
4 cycles of doxorubicin + cyclophosphamide every 3 weeks; or
4 cycles of epirubicin + cyclophosphamide every 3 weeks,

wherein the taxane-based chemotherapy comprises:

4 cycles of docetaxel every 3 weeks; or
12 cycles of paclitaxel every week,

wherein the pertuzumab, trastuzumab and taxane-based chemotherapy are for administration in combination, after the anthracycline-based chemotherapy,

wherein the pertuzumab and trastuzumab are for administration every 3 weeks for a total of 52 weeks starting on Day 1 of the first cycle of taxane-based chemotherapy,

wherein an initial dose of pertuzumab is 840 mg followed every 3 weeks by 420 mg pertuzumab and wherein an initial dose of trastuzumab is 8 mg/kg followed every 3 weeks by 6mg/kg trastuzumab,

wherein the cardiac toxicity is a LVEF decline ≥ 10 points from baseline and a drop to less than 50%,

wherein cardiac toxicity in the patient is not increased compared to cardiac toxicity in a patient treated with trastuzumab, taxane-based chemotherapy and anthracycline-based chemotherapy without pertuzumab, and

wherein the adjuvant treatment increases invasive disease free survival at 3 years from initial administration of the anthracycline-based chemotherapy compared to a patient treated with

trastuzumab, taxane-based chemotherapy and anthracycline-based chemotherapy without pertuzumab.

2. The composition for use of claim 1, wherein the patient has lymph node positive disease.

3. The composition for use of claim 1, wherein the patient has hormone receptor negative disease.

4. The composition for use of claim 1, wherein the patient has lymph node positive and hormone receptor negative disease.

5. The composition for use of any one of claims 1 to 4, wherein the patient has not received anti-HER2 therapy prior to treatment.

6. The composition for use of any one of claims 1 to 5, wherein the anthracycline-based chemotherapy comprises 3 cycles of 500-600 mg/m² 5-FU + 90-120 mg/m² epirubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

7. The composition for use of any one of claims 1 to 5, wherein the anthracycline-based chemotherapy comprises 4 cycles of 500-600 mg/m² 5-FU + 90-120 mg/m² epirubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

8. The composition for use of any one of claims 1 to 5, wherein the anthracycline-based chemotherapy comprises 3 cycles of 500-600 mg/m² 5-FU + 50 mg/m² doxorubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

9. The composition for use of any one of claims 1 to 5, wherein the anthracycline-based chemotherapy comprises 4 cycles of 500-600 mg/m² 5-FU + 50 mg/m² doxorubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

10. The composition for use of any one of claims 1 to 5, wherein the anthracycline-based chemotherapy comprises 4 cycles of 60 mg/m² doxorubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

11. The composition for use of any one of claims 1 to 5, wherein the anthracycline-based chemotherapy comprises 4 cycles of 90-120 mg/m² epirubicin + 500-600 mg/m² cyclophosphamide

every 3 weeks.

12. The composition for use of any one of claims 1 to 11, wherein the taxane-based chemotherapy comprises 4 cycles of 75 mg/m^2 or 100 mg/m^2 docetaxel every 3 weeks.

13. The composition for use of any one of claims 1 to 11, wherein the taxane-based chemotherapy comprises 12 cycles of 80 mg/m^2 paclitaxel every week.

14. Use of pertuzumab in the preparation of a medicament for the adjuvant treatment of HER2-positive early breast cancer in a patient, in combination with trastuzumab and taxane-based chemotherapy, after definitive surgery for the breast cancer, and following adjuvant treatment with anthracycline-based chemotherapy, without increasing cardiac toxicity,

wherein the patient has lymph node positive disease, hormone receptor negative disease, or lymph node positive and hormone receptor negative disease,

wherein the patient has a baseline left ventricular ejection fraction (LVEF) of $\geq 55\%$ pre-treatment, and

the anthracycline-based chemotherapy comprises:

3 cycles of 5-fluorouracil (5-FU) + epirubicin + cyclophosphamide every 3 weeks;

4 cycles of 5-FU + epirubicin + cyclophosphamide every 3 weeks;

3 cycles of 5-FU + doxorubicin + cyclophosphamide every 3 weeks;

4 cycles of 5-FU + doxorubicin + cyclophosphamide every 3 weeks;

4 cycles of doxorubicin + cyclophosphamide every 3 weeks; or

4 cycles of epirubicin + cyclophosphamide every 3 weeks,

wherein the taxane-based chemotherapy comprises:

4 cycles of docetaxel every 3 weeks; or

12 cycles of paclitaxel every week,

wherein the pertuzumab, trastuzumab and taxane-based chemotherapy are for administration in combination, after the anthracycline-based chemotherapy,

wherein the pertuzumab and trastuzumab are for administration every 3 weeks for a total of 52 weeks starting on Day 1 of the first cycle of taxane-based chemotherapy,

wherein an initial dose of pertuzumab is 840 mg followed every 3 weeks by 420 mg pertuzumab and wherein an initial dose of trastuzumab is 8 mg/kg followed every 3 weeks by 6mg/kg trastuzumab,

wherein the cardiac toxicity is a LVEF decline ≥ 10 points from baseline and a drop to less than 50%,

wherein cardiac toxicity in the patient is not increased compared to cardiac toxicity in a patient treated with trastuzumab, taxane-based chemotherapy and anthracycline-based chemotherapy

without pertuzumab, and

wherein the adjuvant treatment increases invasive disease free survival at 3 years from initial administration of the anthracycline-based chemotherapy compared to a patient treated with trastuzumab, taxane-based chemotherapy and anthracycline-based chemotherapy without pertuzumab.

15. The use of claim 14, wherein the patient has lymph node positive disease.
16. The use of claim 14, wherein the patient has hormone receptor negative disease.
17. The use of claim 14, wherein the patient has lymph node positive and hormone receptor negative disease.
18. The use of any one of claims 14 to 17, wherein the patient has not received anti-HER2 therapy prior to treatment.
19. The use of any one of claims 14 to 18, wherein the anthracycline-based chemotherapy comprises 3 cycles of 500-600 mg/m² 5-FU + 90-120 mg/m² epirubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.
20. The use of any one of claims 14 to 18, wherein the anthracycline-based chemotherapy comprises 4 cycles of 500-600 mg/m² 5-FU + 90-120 mg/m² epirubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.
21. The use of any one of claims 14 to 18, wherein the anthracycline-based chemotherapy comprises 3 cycles of 500-600 mg/m² 5-FU + 50 mg/m² doxorubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.
22. The use of any one of claims 14 to 18, wherein the anthracycline-based chemotherapy comprises 4 cycles of 500-600 mg/m² 5-FU + 50 mg/m² doxorubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.
23. The use of any one of claims 14 to 18, wherein the anthracycline-based chemotherapy comprises 4 cycles of 60 mg/m² doxorubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.
24. The use of any one of claims 14 to 18, wherein the anthracycline-based

chemotherapy comprises 4 cycles of 90-120 mg/m² epirubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

25. The use of any one of claims 14 to 24, wherein the taxane-based chemotherapy comprises 4 cycles of 75 mg/m² or 100 mg/m² docetaxel every 3 weeks.

26. The use of any one of claims 14 to 24, wherein the taxane-based chemotherapy comprises 12 cycles of 80 mg/m² paclitaxel every week.

27. Pertuzumab for use in combination with trastuzumab and taxane-based chemotherapy in the adjuvant treatment of HER2-positive early breast cancer in a patient after definitive surgery for the breast cancer, and following adjuvant treatment with anthracycline-based chemotherapy, without increasing cardiac toxicity,

wherein the patient has lymph node positive disease, hormone receptor negative disease, or lymph node positive and hormone receptor negative disease,

wherein the patient has baseline left ventricular ejection fraction (LVEF) of $\geq 55\%$ pre-treatment, and

the anthracycline-based chemotherapy comprises:

3 cycles of 5-fluorouracil (5-FU) + epirubicin + cyclophosphamide every 3 weeks;
4 cycles of 5-FU + epirubicin + cyclophosphamide every 3 weeks;
3 cycles of 5-FU + doxorubicin + cyclophosphamide every 3 weeks;
4 cycles of 5-FU + doxorubicin + cyclophosphamide every 3 weeks;
4 cycles of doxorubicin + cyclophosphamide every 3 weeks; or
4 cycles of epirubicin + cyclophosphamide every 3 weeks,

wherein the taxane-based chemotherapy comprises:

4 cycles of docetaxel every 3 weeks; or
12 cycles of paclitaxel every week,

wherein the pertuzumab, trastuzumab and taxane-based chemotherapy are for administration in combination after the anthracycline-based chemotherapy,

wherein the pertuzumab and trastuzumab are for administration every 3 weeks for a total of 52 weeks starting on Day 1 of the first cycle of taxane-based chemotherapy,

wherein an initial dose of pertuzumab is 840 mg followed every 3 weeks by 420 mg pertuzumab and wherein an initial dose of trastuzumab is 8 mg/kg followed every 3 weeks by 6mg/kg trastuzumab,

wherein the cardiac toxicity is a LVEF decline ≥ 10 points from baseline and a drop to less than 50%,

wherein cardiac toxicity in the patient is not increased compared to cardiac toxicity in a

patient treated with trastuzumab, taxane-based chemotherapy and anthracycline-based chemotherapy without pertuzumab,

wherein the adjuvant treatment increases invasive disease free survival at 3 years from initial administration of the anthracycline-based chemotherapy compared to a patient treated with trastuzumab, taxane-based chemotherapy and anthracycline-based chemotherapy without pertuzumab.

28. Pertuzumab for the use of claim 27, wherein the patient has lymph node positive disease.

29. Pertuzumab for the use of claim 27, wherein the patient has hormone receptor negative disease.

30. Pertuzumab for the use of claim 27, wherein the patient has lymph node positive and hormone receptor negative disease.

31. Pertuzumab for the use of any one of claims 27 to 30, wherein the patient has not received anti-HER2 therapy prior to treatment.

32. Pertuzumab for the use of any one of claims 27 to 31, wherein the anthracycline-based chemotherapy comprises 3 cycles of 500-600 mg/m² 5-FU + 90-120 mg/m² epirubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

33. Pertuzumab for the use of any one of claims 27 to 31, wherein the anthracycline-based chemotherapy comprises 4 cycles of 500-600 mg/m² 5-FU + 90-120 mg/m² epirubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

34. Pertuzumab for the use of any one of claims 27 to 31, wherein the anthracycline-based chemotherapy comprises 3 cycles of 500-600 mg/m² 5-FU + 50 mg/m² doxorubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

35. Pertuzumab for the use of any one of claims 27 to 31, wherein the anthracycline-based chemotherapy comprises 4 cycles of 500-600 mg/m² 5-FU + 50 mg/m² doxorubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

36. Pertuzumab for the use of any one of claims 27 to 31, wherein the anthracycline-based chemotherapy comprises 4 cycles of 60 mg/m² doxorubicin + 500-600 mg/m²

cyclophosphamide every 3 weeks.

37. Pertuzumab for the use of any one of claims 27 to 31, wherein the anthracycline-based chemotherapy comprises 4 cycles of 90-120 mg/m² epirubicin + 500-600 mg/m² cyclophosphamide every 3 weeks.

38. Pertuzumab for the use of any one of claims 27 to 37, wherein the taxane-based chemotherapy comprises 4 cycles of 75 mg/m² or 100 mg/m² docetaxel every 3 weeks.

39. Pertuzumab for the use of any one of claims 27 to 37, wherein the taxane-based chemotherapy comprises 12 cycles of 80 mg/m² paclitaxel every week.

40. A composition of pertuzumab for use in combination with trastuzumab and non-anthracycline containing chemotherapy, in adjuvant treatment of HER2-positive early breast cancer in a patient after definitive surgery for the breast cancer, without increasing cardiac toxicity,

wherein the patient has lymph node positive disease, hormone receptor negative disease, or lymph node positive and hormone receptor negative disease,

wherein the patient has a baseline left ventricular ejection fraction (LVEF) of $\geq 55\%$ pre-treatment,

wherein the non-anthracycline containing chemotherapy comprises 6 cycles of docetaxel + carboplatin every 3 weeks,

wherein the pertuzumab and trastuzumab are for administration in combination every 3 weeks for a total of 52 weeks starting on Day 1 of the first cycle of non-anthracycline containing chemotherapy,

wherein an initial dose of pertuzumab is 840 mg followed every 3 weeks by 420 mg pertuzumab and wherein an initial dose of trastuzumab is 8 mg/kg followed every 3 weeks by 6mg/kg trastuzumab,

wherein the cardiac toxicity is a LVEF decline ≥ 10 points from baseline and a drop to less than 50%,

wherein cardiac toxicity in the patient is not increased compared to cardiac toxicity in a patient treated with trastuzumab and non-anthracycline containing chemotherapy without pertuzumab, and

wherein the adjuvant treatment increases invasive disease free survival at 3 years from initial administration of the non-anthracycline containing chemotherapy compared to a patient treated with trastuzumab and non-anthracycline containing chemotherapy without pertuzumab.

41. The composition for use of claim 40, wherein the patient has lymph node positive

disease.

42. The composition for use of claim 40, wherein the patient has hormone receptor negative disease.

43. The composition for use of claim 40, wherein the patient has lymph node positive and hormone receptor negative disease.

44. The composition for use of any one of claims 40 to 43, wherein the patient has not received anti-HER2 therapy prior to treatment.

45. The composition for use of any one of claims 40 to 44, wherein the non-anthracycline containing chemotherapy comprises 6 cycles of 75 mg/m^2 docetaxel + 6 times Area Under the Concentration Time Curve (AUC6) carboplatin every 3 weeks.

46. Use of pertuzumab in the preparation of a medicament for the adjuvant treatment of HER2-positive early breast cancer in a patient, in combination with trastuzumab and non-anthracycline containing chemotherapy, after definitive surgery for the breast cancer, without increasing cardiac toxicity,

wherein the patient has lymph node positive disease, hormone receptor negative disease, or lymph node positive and hormone receptor negative disease,

wherein the patient has a baseline left ventricular ejection fraction (LVEF) of $\geq 55\%$ pre-treatment,

wherein the non-anthracycline containing chemotherapy comprises 6 cycles of docetaxel + carboplatin every 3 weeks,

wherein the pertuzumab and trastuzumab are for administration in combination every 3 weeks for a total of 52 weeks starting on Day 1 of the first cycle of non-anthracycline containing chemotherapy,

wherein an initial dose of pertuzumab is 840 mg followed every 3 weeks by 420 mg pertuzumab and wherein an initial dose of trastuzumab is 8 mg/kg followed every 3 weeks by 6mg/kg trastuzumab,

wherein the cardiac toxicity is a LVEF decline ≥ 10 points from baseline and a drop to less than 50%,

wherein cardiac toxicity in the patient is not increased compared to cardiac toxicity in a patient treated with trastuzumab and non-anthracycline containing chemotherapy without pertuzumab, and

wherein the adjuvant treatment increases invasive disease free survival at 3 years from initial administration of the non-anthracycline containing chemotherapy compared to a patient treated with trastuzumab and non-anthracycline containing chemotherapy without pertuzumab.

47. The use of claim 46, wherein the patient has lymph node positive disease.
48. The use of claim 46, wherein the patient has hormone receptor negative disease.
49. The use of claim 46, wherein the patient has lymph node positive and hormone receptor negative disease.
50. The use of any one of claims 46 to 49, wherein the patient has not received anti-HER2 therapy prior to treatment.
51. The use of any one of claims 46 to 50, wherein the non-anthracycline containing chemotherapy comprises 6 cycles of 75 mg/m^2 docetaxel + 6 times Area Under the Concentration Time Curve (AUC6) carboplatin every 3 weeks.
52. Pertuzumab for use in combination with trastuzumab and non-anthracycline containing chemotherapy in the adjuvant treatment of HER2-positive early breast cancer in a patient after definitive surgery for the breast cancer, without increasing cardiac toxicity,
 - wherein the patient has lymph node positive disease, hormone receptor negative disease, or lymph node positive and hormone receptor negative disease,
 - wherein the patient has a baseline left ventricular ejection fraction (LVEF) of $\geq 55\%$ pre-treatment,
 - wherein the non-anthracycline containing chemotherapy comprises 6 cycles of docetaxel + carboplatin every 3 weeks,
 - wherein the pertuzumab and trastuzumab are for administration in combination every 3 weeks for a total of 52 weeks starting on Day 1 of the first cycle of non-anthracycline containing chemotherapy,
 - wherein an initial dose of pertuzumab is 840 mg followed every 3 weeks by 420 mg pertuzumab and wherein an initial dose of trastuzumab is 8 mg/kg followed every 3 weeks by 6mg/kg trastuzumab,
 - wherein the cardiac toxicity is a LVEF decline ≥ 10 points from baseline and a drop to less than 50%,

wherein cardiac toxicity in the patient is not increased compared to cardiac toxicity in a patient treated with trastuzumab and non-anthracycline containing chemotherapy without pertuzumab, and

wherein the adjuvant treatment increases invasive disease free survival at 3 years from initial administration of the non-anthracycline containing chemotherapy compared to a patient treated with trastuzumab and non-anthracycline containing chemotherapy without pertuzumab.

53. Pertuzumab for the use of claim 52, wherein the patient has lymph node positive disease.

54. Pertuzumab for the use of claim 52, wherein the patient has hormone receptor negative disease.

55. Pertuzumab for the use of claim 52, wherein the patient has lymph node positive and hormone receptor negative disease.

56. Pertuzumab for the use of any one of claims 52 to 55, wherein the patient has not received anti-HER2 therapy prior to treatment.

57. Pertuzumab for the use of any one of claims 52 to 56, wherein the non-anthracycline containing chemotherapy comprises 6 cycles of 75 mg/m^2 docetaxel + 6 times Area Under the Concentration Time Curve (AUC6) carboplatin every 3 weeks.

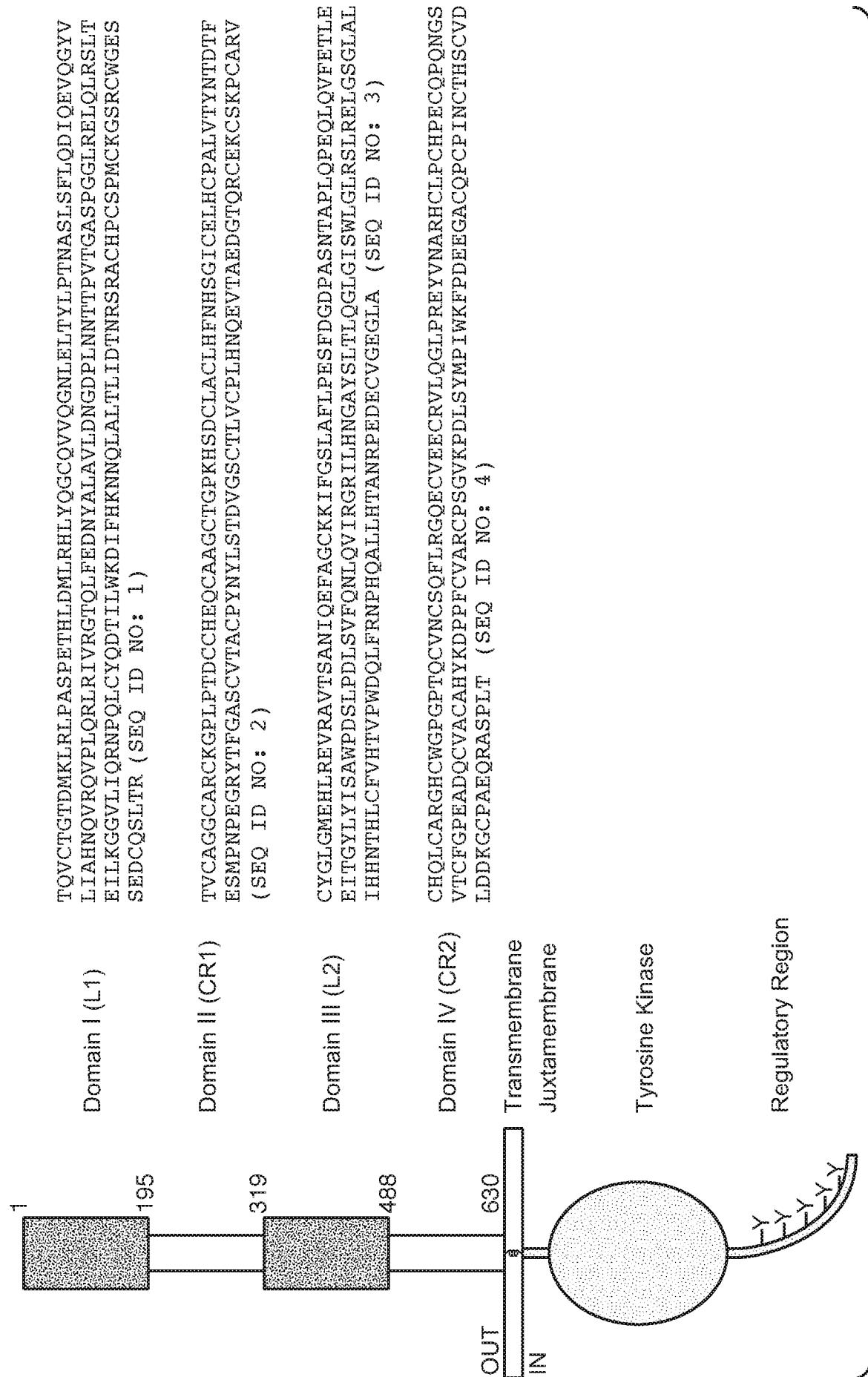


FIG. 1

2 / 17

Variable Light

	10	20	30	40
2C4	DTVMTQSHKIMSTSVGDRVSITC	[KASQDV SIGVA]	WYQQRP	
	** * * * *	*		*

574	DIQMTQSPSSLSASVGDRVTITC	[KASQDV SIGVA]	WYQQKP	
		*	** * *	

hum κI	DIQMTQSPSSLSASVGDRVTITC	[RASQ SIS NYLA]	WYQQKP	
--------	-------------------------	-----------------	--------	--

	50	60	70	80
2C4	GQSPKLLIY	[SASYRYT]	GVPDRFTGSGSGTDF TFTI SSVQA	
	**		*	*

574	GKAPKLLIY	[SASYRYT]	GVPSRFSGSGSGTDF TLT ISSLQP	
		*	*****	

hum κI	GKAPKLLIY	[AASSLES]	GVPSRFSGSGSGTDF TLT ISSLQP	
--------	-----------	-----------	----------------------------	--

	90	100		
2C4	EDLAVYYC	[QQYYIYPYT]	FGGGTKLEIK	(SEQ ID NO:5)
	*	*	*	*

574	EDFATYYC	[QQYYIYPYT]	FGQGTKVEIK	(SEQ ID NO:7)
		***	*	

hum κI	EDFATYYC	[QQYN SLPWT]	FGQGTKVEIK	(SEQ ID NO:9)
--------	----------	--------------	------------	---------------

FIG. 2A**Variable Heavy**

	10	20	30	40
2C4	EVQLQQSGPELVKPGTSVKISCKAS	[GFTFTOYTMO]	WVKQS	
	** * * * * *** *			**

574	EVQLVESGGGLVQPGGSLRLSCAAS	[GFTFTDYTMD]	WVRQA	
			***	*

hum III	EVQLVESGGGLVQPGGSLRLSCAAS	[GFTFSSYAMS]	WVRQA	
---------	---------------------------	--------------	-------	--

	50	a	60	70	80
2C4	HGKSLEWIG	[DVNPNSGGSIYNQRFKG]	KASLTVDRSSRIVYM		
	*	*	***	***	**** *

574	PGKGLEWVA	[DVNPNSGGSIYNQRFKG]	RFTLSVDRSKNTLYL		
		*****	***	****	*

hum III	PGKGLEWVA	[VISG DGGSTYYADSVKG]	RFTISRDNSKNTLYL		
---------	-----------	----------------------	-----------------	--	--

	abc	90	100ab	110
2C4	ELRSLTFEDTAVYYCAR	[NLGPSFYFDY]	WGQGTTLT VSS	(SEQ ID NO:6)
	***	**		**

574	QMNSLRAEDTAVYYCAR	[NLGPSFYFDY]	WGQGTLVTVSS	(SEQ ID NO:8)

hum III	QMNSLRAEDTAVYYCAR	[GRVG SLYDY]	WGQGTLVTVSS	(SEQ ID NO:10)
---------	-------------------	--------------	-------------	----------------

FIG. 2B

3 / 17

Amino Acid Sequence for Pertuzumab Light Chain

1	10	20	30	40	50	60
DIQM T QSPSSLSASVGDRV T IT C KAS Q D V S I G V A W Y Q Q K P G K A P K L L I Y S A S Y R Y T G V P S						
70	80	90	100	110	120	
R F S G G S G T D F T L T I S S L Q P E D F A T Y Y C Q Q Y I I Y P T F G Q G T K V E I K R T V A A P S V F I F P P						
130	140	150	160	170	180	
S D E Q L K S G T A S V V C L N N F P R E A K V Q W K V D N A L Q G N S Q E S V T E Q D S K D S T Y S L S S T L T						
190	200	210				
L S K A D Y E K H K V Y A C E V T H Q G L S P V T K S F N R G E C						

(SEQ ID NO: 11)

FIG. 3A**Amino Acid Sequence for Pertuzumab Heavy Chain**

1	10	20	30	40	50	60
E V Q L V E S G GG L V Q P G GS L R L S C A A S G F T F T D Y T M D W V R Q A P G K G L E W V A D V N P N S G GS I Y						
70	80	90	100	110	120	
N Q R F K G R F T L S V D R S K N T L Y L Q M N S L R A E D T A V Y Y C A R N L G P S F Y F D Y W G Q G T L V T V S SA						
130	140	150	160	170	180	
S T K G P S V F P L A P S S K S T S GG T A A L G C L V K D Y F P E P V T V W N S G A L T S G V H T F P A V L Q S SG						
190	200	210	220	230	240	
L Y S L S S V V T V P S S L G T Q T Y I C N V N H K P S N T K V D K V E P K S C D K T H T C P P C A P E L L GG P						
250	260	270	280	290	300	
S V F L F P P K P K D T L M I S R T P E V T C V V D V S H E D P E V K F N W Y V D G V E V H N A K T K P R E E Q Y N S						
310	320	330	340	350	360	
T Y R V V S V L T V L H Q D W L N G K E Y K C K V S N K A L P A P I E K T I S K A K G Q P R E P Q V Y T L P P S R E E M						
370	380	390	400	410	420	
T K N Q V S L T C L V K G F P S D I A V E W E S N G Q P E N N Y K T P P V L D S G F F L Y S K L T V D K S R W Q						
430	440	448				
Q G N V F S C S V M H E A L H N H Y T Q K S L S L S P G						

(SEQ ID NO: 12)

FIG. 3B

4 / 17

Trastuzumab Light Chain

1	15	30	45
DIQMTQSPSSLSASVGDRVТИTCRASQDVNTAVAWYQQKPGKAPK			
46	60	75	90
LLIYSASFLYSGVPSRFSGSRSGTDFTLTISLQPEDFATYYCQQ			
91	105	120	135
HYTTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL			
136	150	165	180
LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT			
181	195	210 214	
LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 13)			

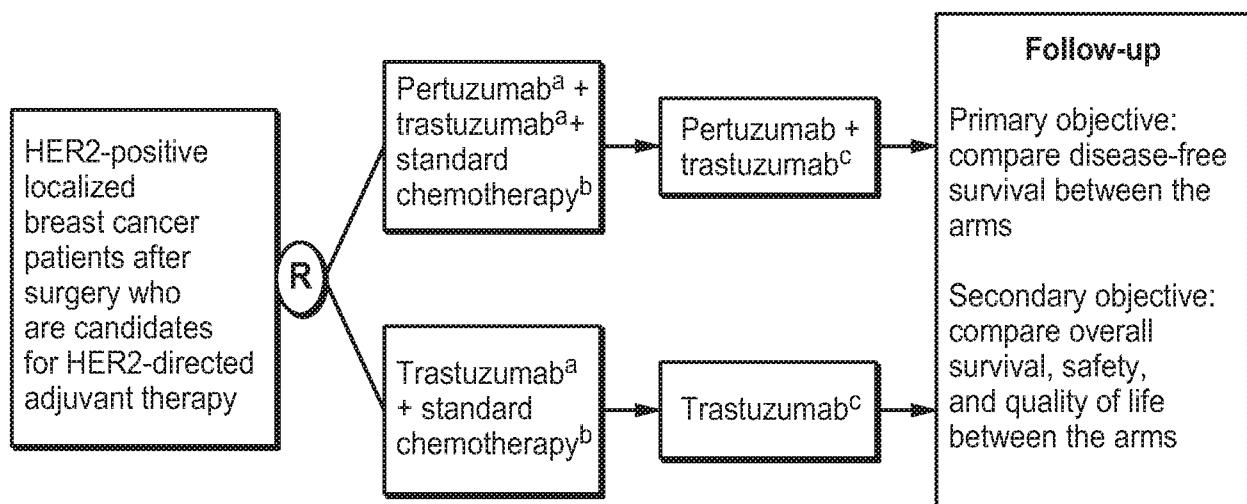
FIG. 4A

Trastuzumab Heavy Chain

1	15	30	45
EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGL			
46	60	75	90
EWVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNSLRAED			
91	105	120	135
TAVYYCSRGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSS			
136	150	165	180
KSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAPLQSS			
181	195	210	225
GLYSLSSVVTVPSSSLGTQTYICNVNHPNSNTKVDKKVEPKSCDK			
226	240	255	270
THTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS			
271	285	300	315
HEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQD			
316	330	345	360
WLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREE			
361	375	390	405
MTKNQVSLTCLVKGFYPSDIAVEWESNGQOPENNYKTPPVLDSDG			
406	420	435	449
SFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG			
(SEQ ID NO: 14)			

FIG. 4B

5 / 17


Pertuzumab Variant Light Chain

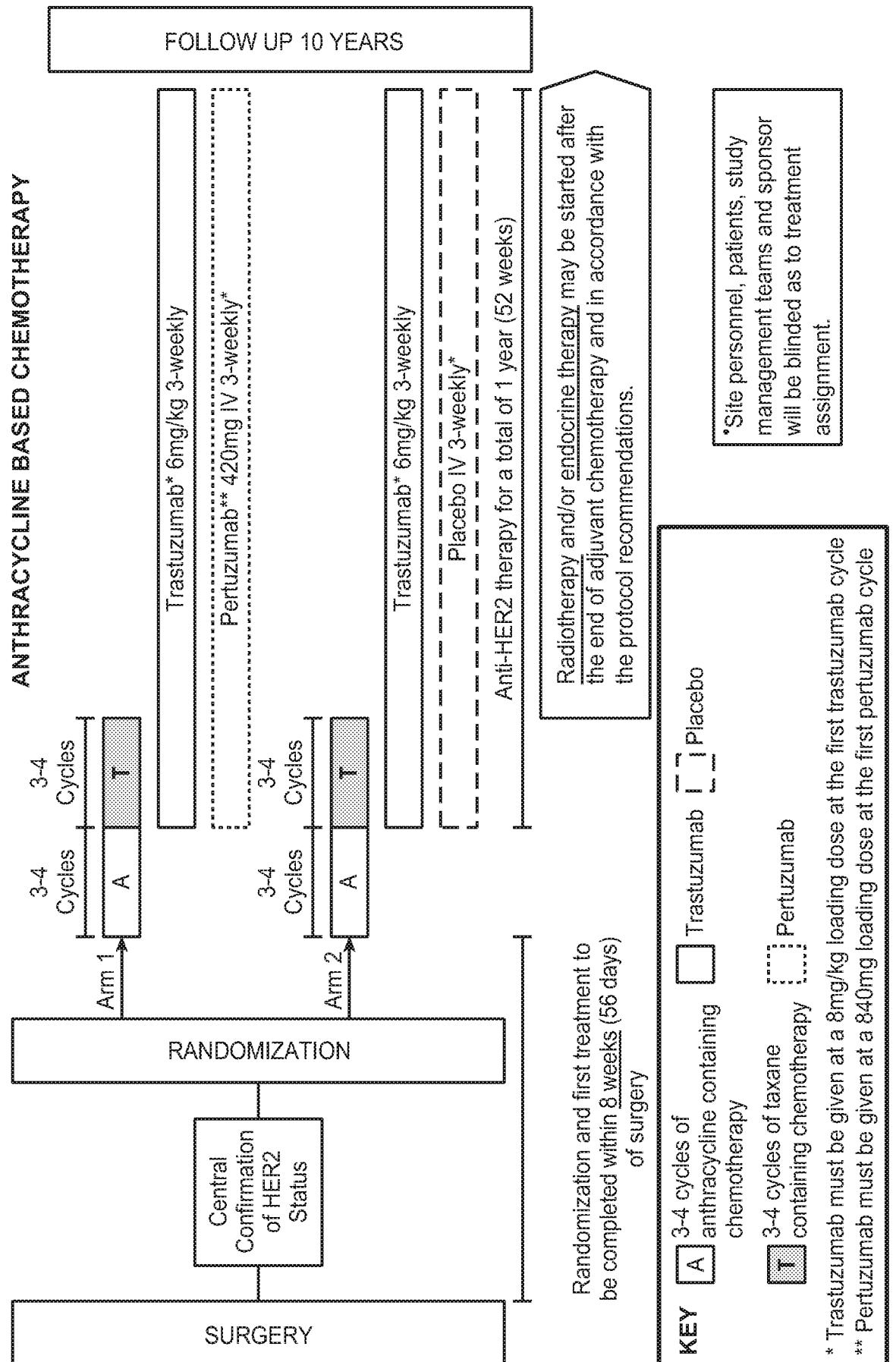

1	15	30	45
VHSIDIQMTQSPSSLSASVGDRVТИTCKASQDVSIGVAWYQQKPGK			
46	60	75	90
APKLLIYSASYRYTGVPSSRFSGSGSGTDFTLTISLQPEDFATYY			
91	105	120	135
CQQYYIYPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV			
136	150	165	180
VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS			
181	195	210	217
TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO: 15)			

FIG. 5A**Pertuzumab Variant Heavy Chain**

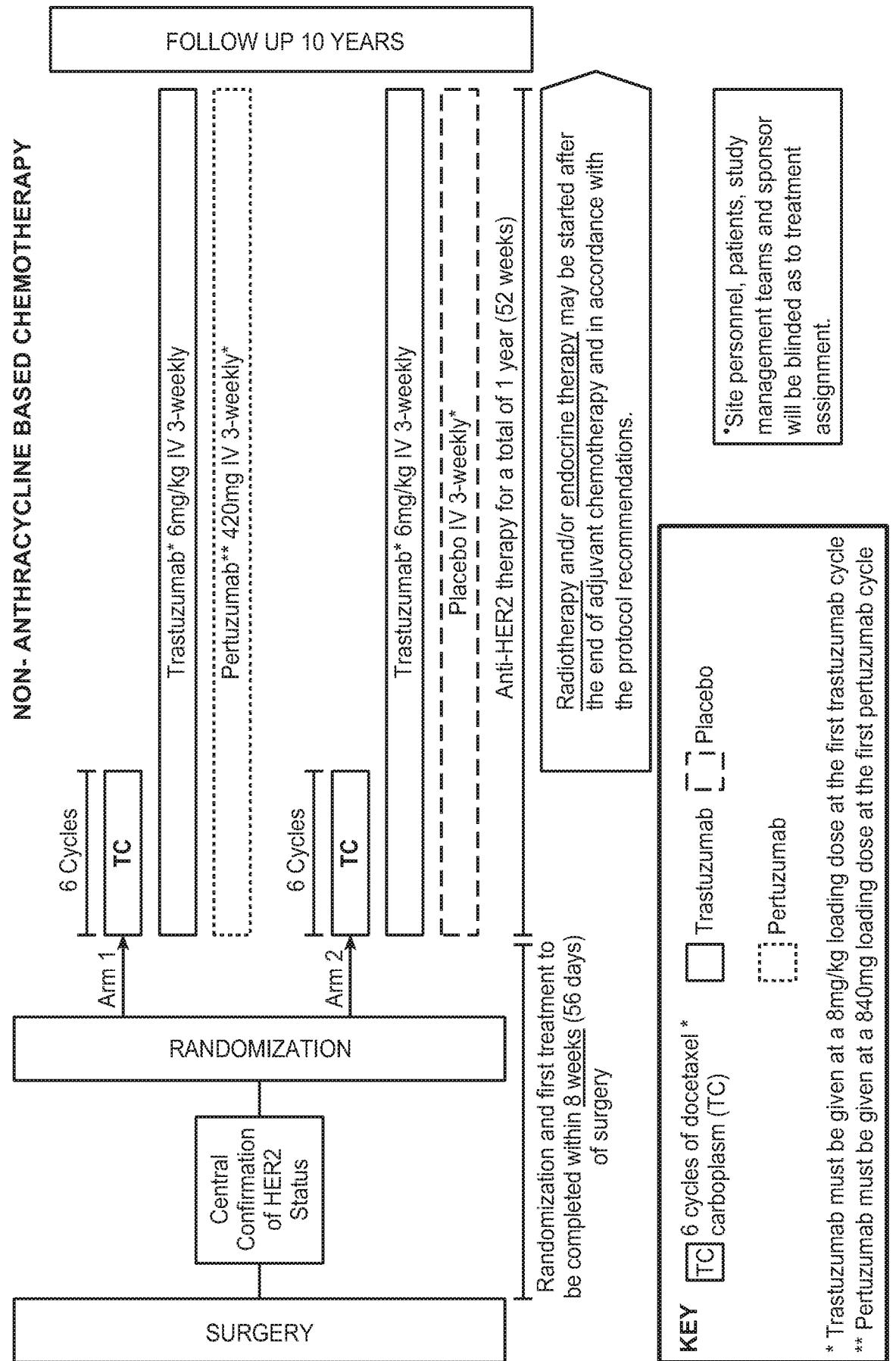

1	15	30	45
EVQLVESGGGLVQPGGSLRLSCAASGFTFTDVTMDWVRQAPGKGL			
46	60	75	90
EWVADVNPNSGGSIYNQRFKGRFTLSVDRSKNTLYLQMNSLRAED			
91	105	120	135
TAVYYCARNLGPSPFYFDYWGQGTLVTVSSASTKGPSVPLAPSSK			
136	150	165	180
STSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG			
181	195	210	225
LYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKT			
226	240	255	270
HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH			
271	285	300	315
EDPEVKFNWYVDGVEVHNAAKTKPREEQYNSTYRVVSVLTVLHQDW			
316	330	345	360
LNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM			
361	375	390	405
TKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTPPVLDSDGS			
406	420	435	449
FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK			
(SEQ ID NO: 16)			

FIG. 5B

Schema of APHINITY Clinical Trial**FIG. 6A**

FIG. 6B

9 / 17

Efficacy IDFS (ITT)

			3 Yr IDFS		
	HR	P Value	Ptz+Tras n=2400	Pla+Tras n=2404	Δ 3 Yr IDFS
Primary Endpoint IDFS	0.81 (CI: 0.66, 1.00)	0.0446*	94.06% (CI: 93.01, 95.03)	93.24% (CI: 92.21, 94.26)	0.82%
Pts with Event			171 Events	210 Events	

*The p value shown in this table is based on stratification factor data taken from the eCRF. In a sensitivity analysis based on strat factor data from the IxRS system (FDA Analysis), the p-value from stratified log-rank test was 0.0471.

FIG. 7A

10 / 17

Kaplan-Meier Plot of Time to First IDFS Event (Months) by Treatment Regimen, ITT Population
Protocol: BIG 4-11/BO25126/TOC4939G

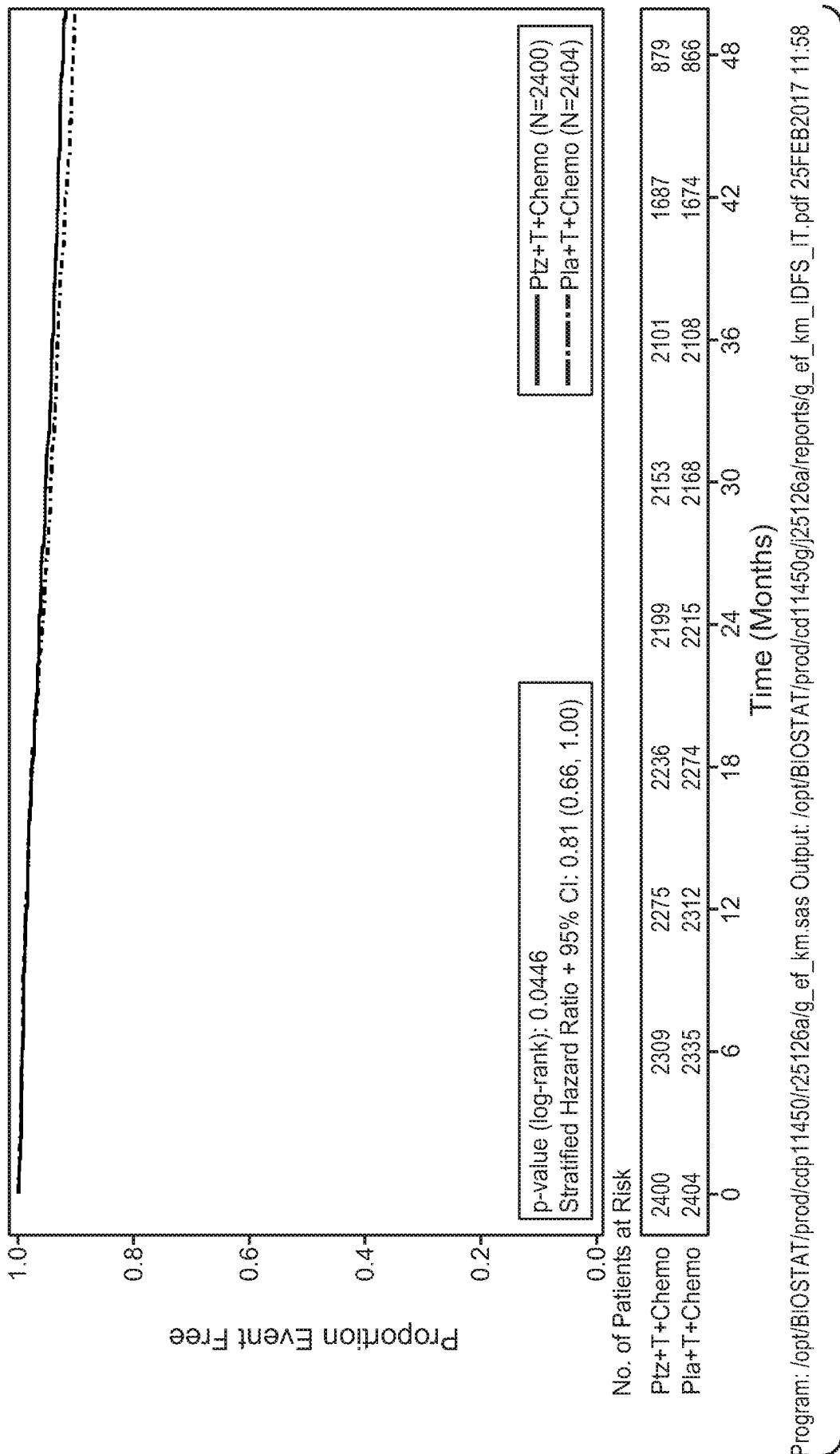


FIG. 7B

11 / 17

Efficacy IDFS (Nodal Status)

			3 Yr IDFS		
	HR	P Value	Ptz+Tras n=1503	Pla+Tras n=1502	Δ 3 Yr IDFS
Node Positive	0.77 (CI: 0.62, 0.96)	0.0188	91.99% (CI: 90.05, 93.29)	90.15% (CI: 89.62, 91.69)	1.84%
Pts with Event			139 Events	181 Events	

FIG. 8A

12 / 17

Kaplan-Meier Plot of Time to First IDFS Event (Months) by Treatment Regimen, Node Positive
Cohort, ITT Population
Protocol: BIG 4-11/BO25126/TOC4939G

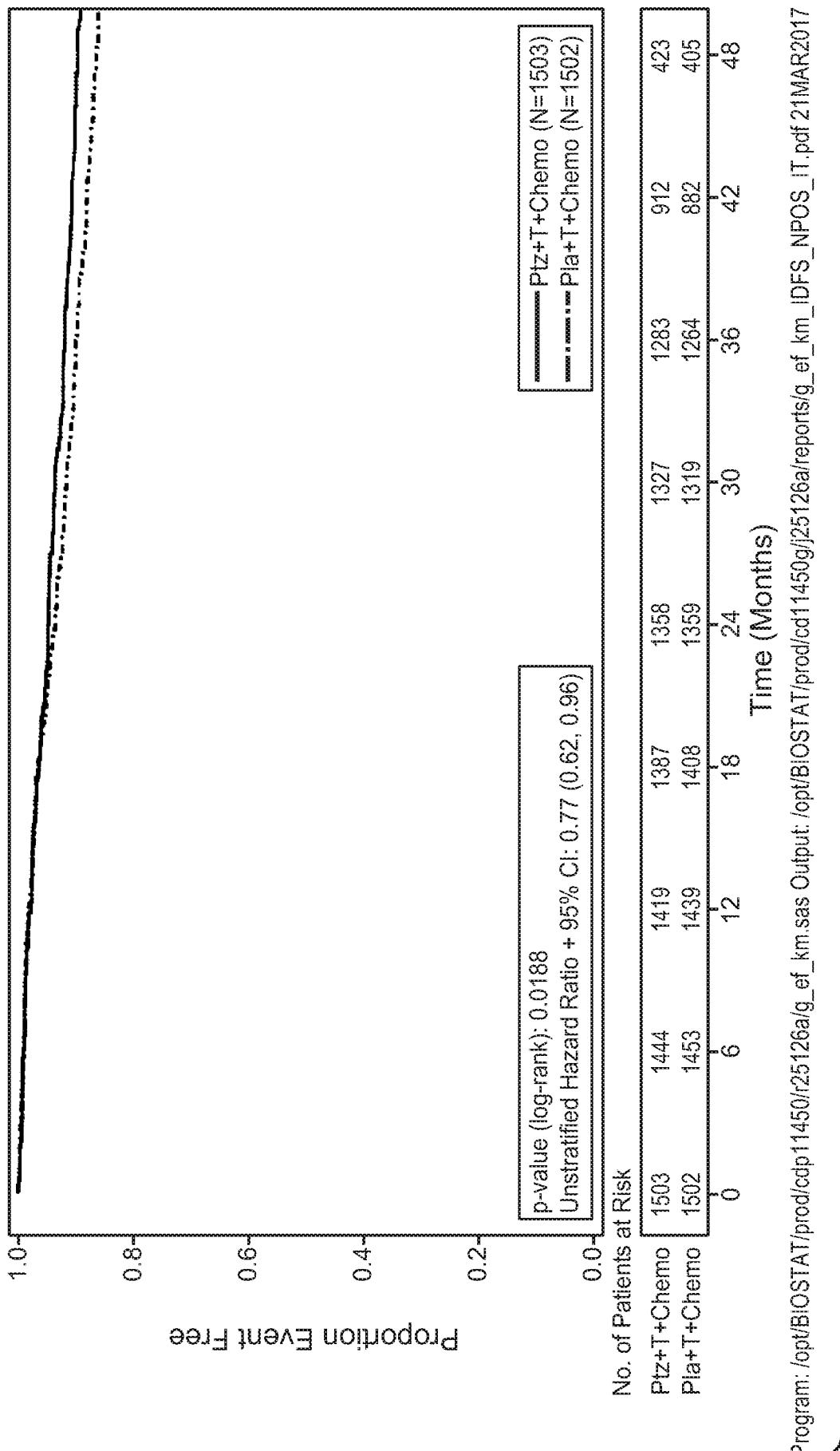


FIG. 8B

13 / 17

Kaplan-Meier Plot of Time to First IDFS Event (Months) by Treatment Regimen, Node Negative
Cohort, ITT Population
Protocol: BIG 4-11/BO25126/TOC4939G

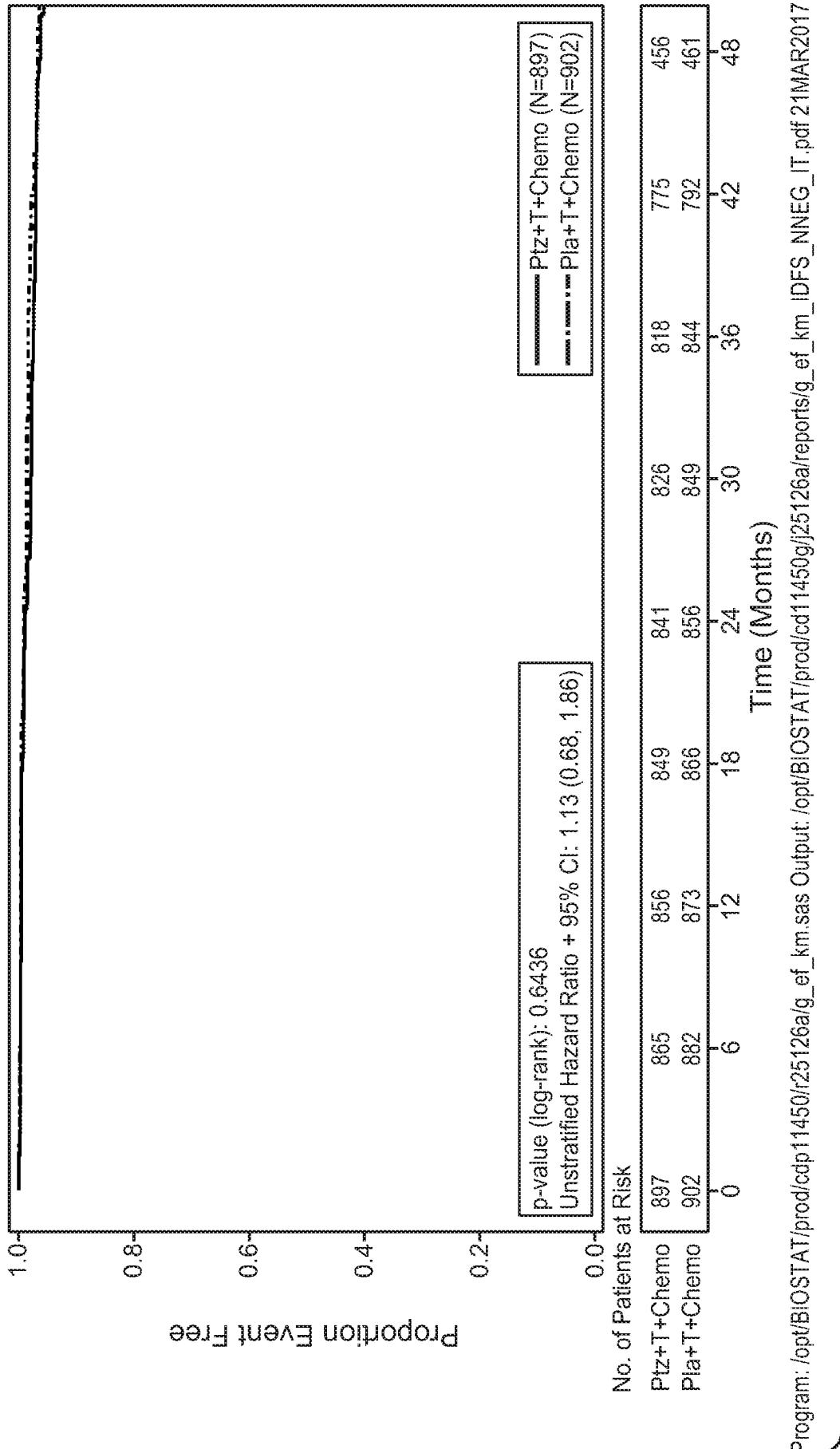


FIG. 8C

14 / 17

Efficacy IDFS (HR Status)

			3 Yr IDFS		
	HR	P Value	Ptz+Tras n=864	Pla+Tras n=858	Δ 3 Yr IDFS
HR Negative	0.76 (CI: 0.56, 1.04)	0.0847	92.71% (CI: 91.01, 94.53)	91.2% (CI: 89.24, 93.12)	1.51%
Pts with Event			71 Events	91 Events	

FIG. 9A

15 / 17

Kaplan-Meier Plot of Time to First DFS Event (Months) by Treatment Regimen, Central Hormone Receptor Negative Patients, ITT Population
Protocol: BIG 4-11/BO25126/TOC4939G

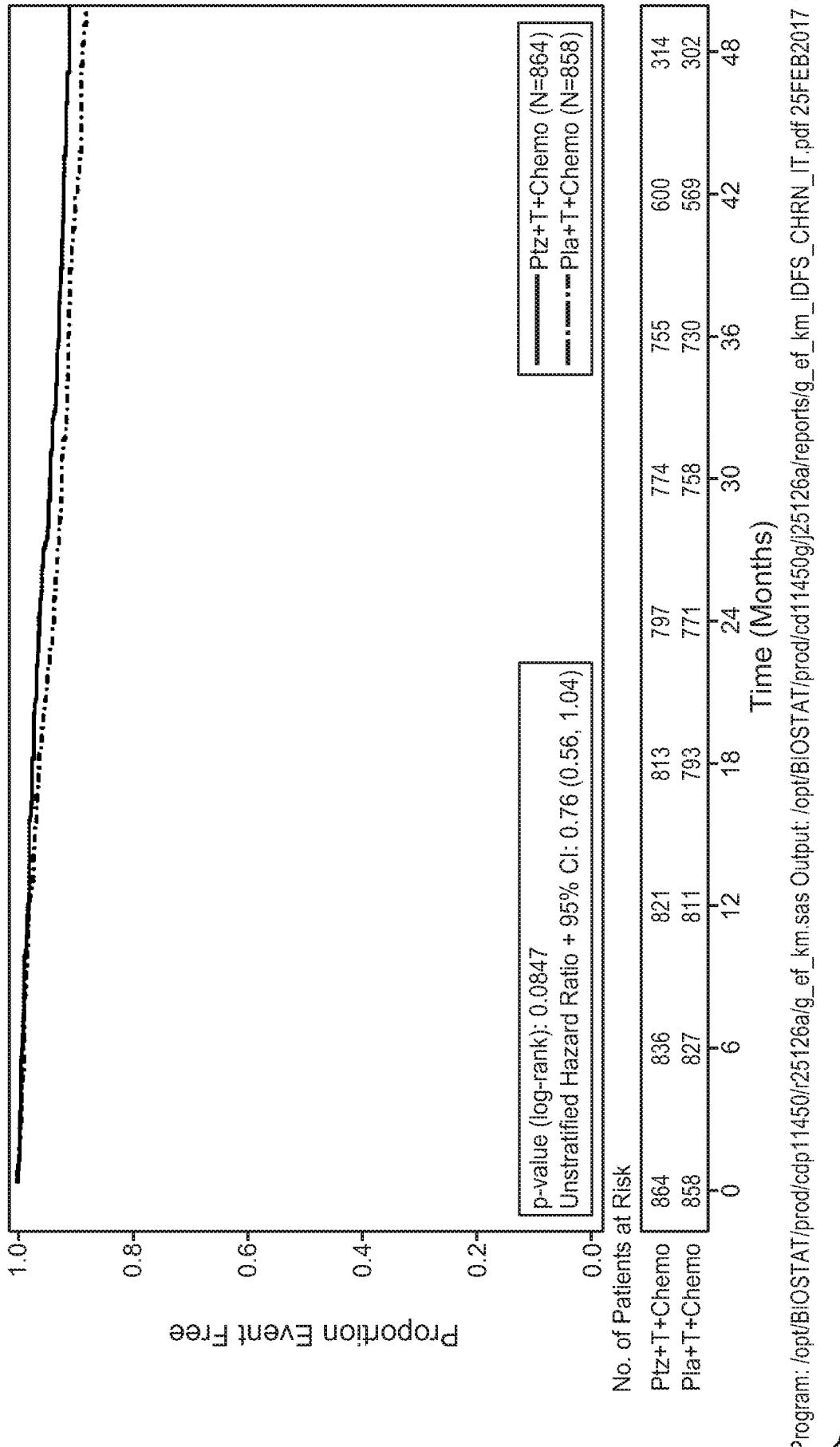


FIG. 9B

16 / 17

Kaplan-Meier Plot of Time to First DFS Event (Months) by Treatment Regimen, Central Hormone Receptor Positive Cohort, ITT Population
Protocol: BIG 4-11/BO25126/TOC4939G

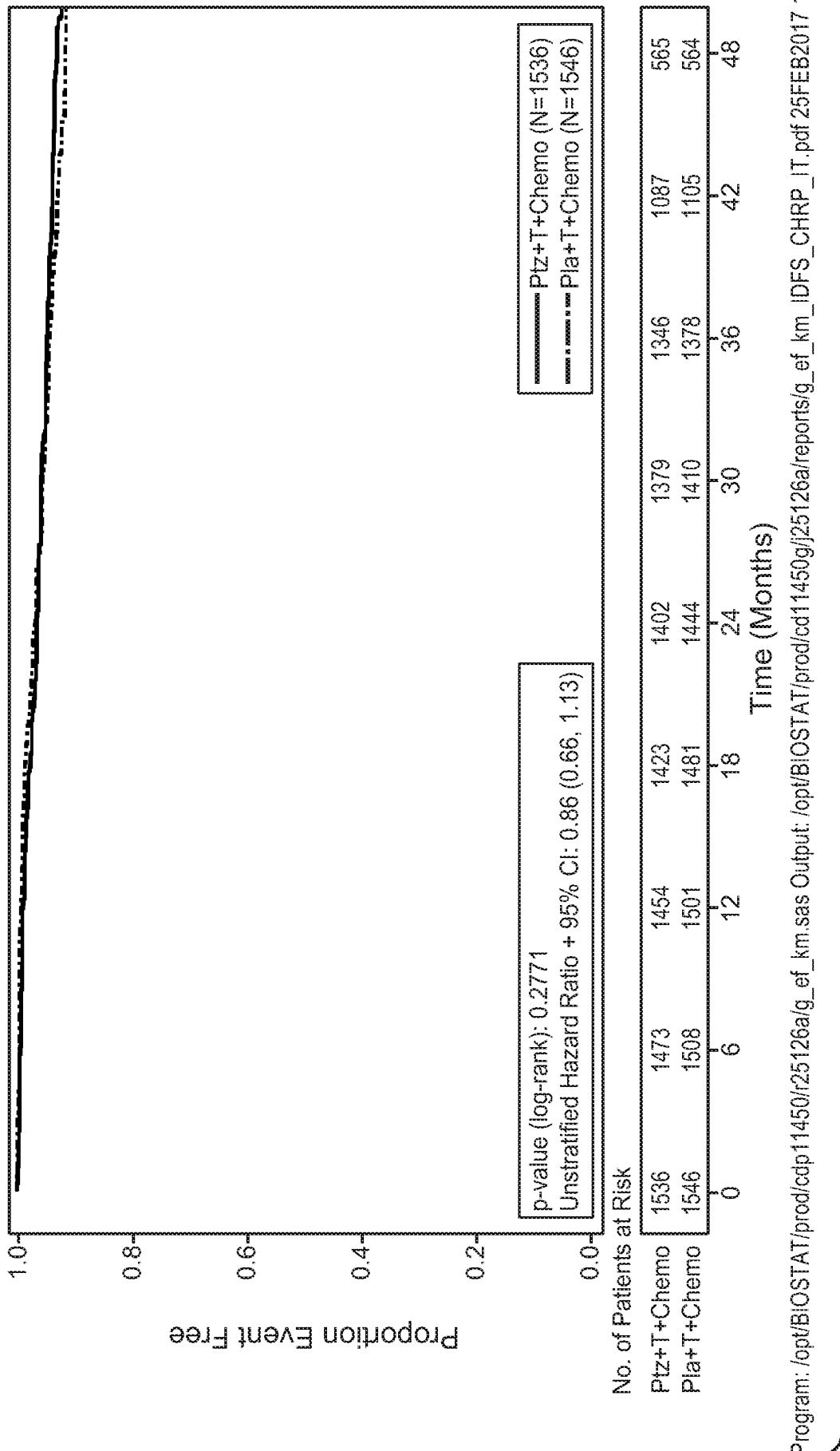


FIG. 9C

17 / 17

Cut-Off Date: 19DEC2016
 Kaplan-Meier Plot of Time to First IDFS Event (Months), showing censored patients,
 by Treatment Regimen, ITT Population
 Protocol: BIG 4-11/BO25126/TOC4939G

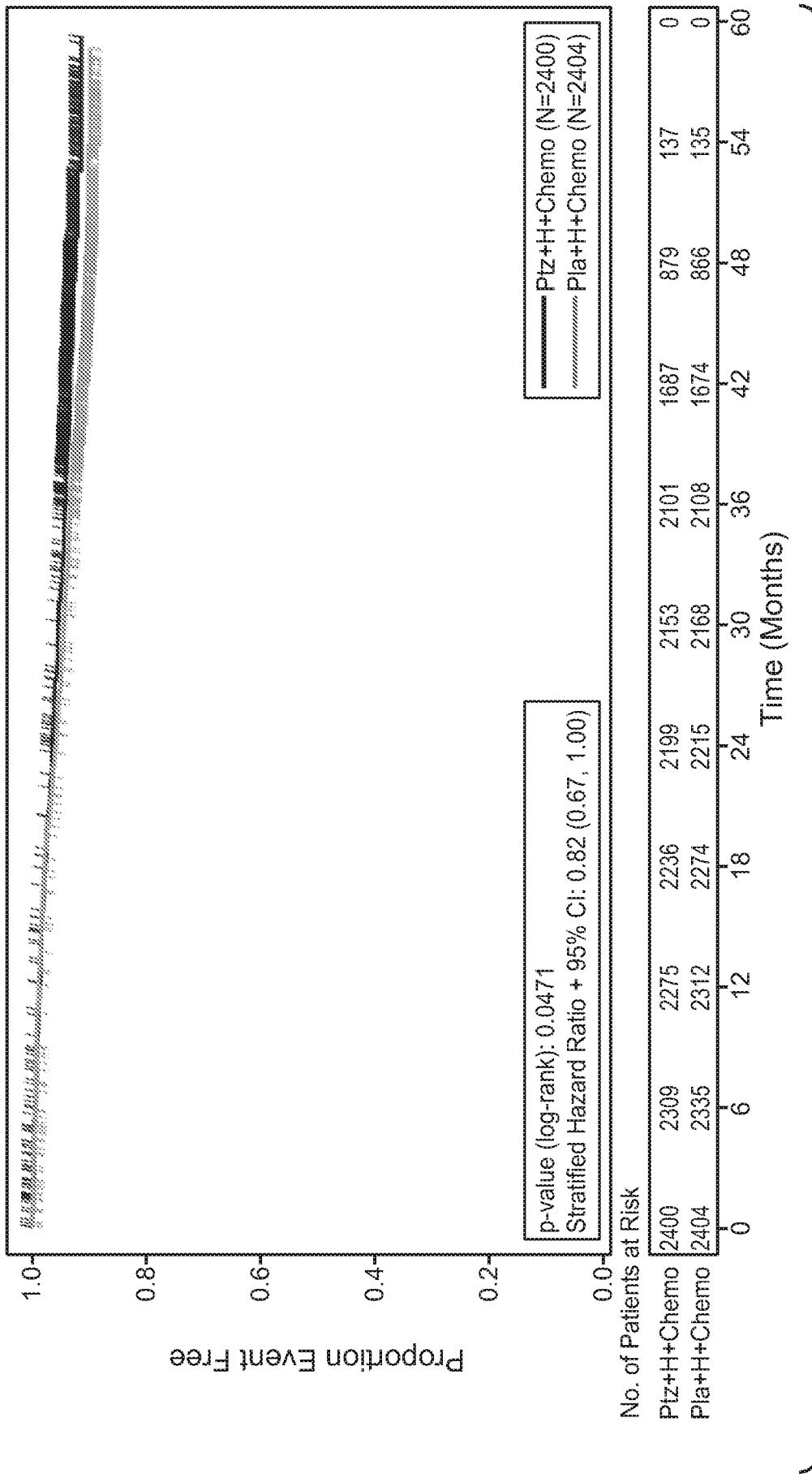
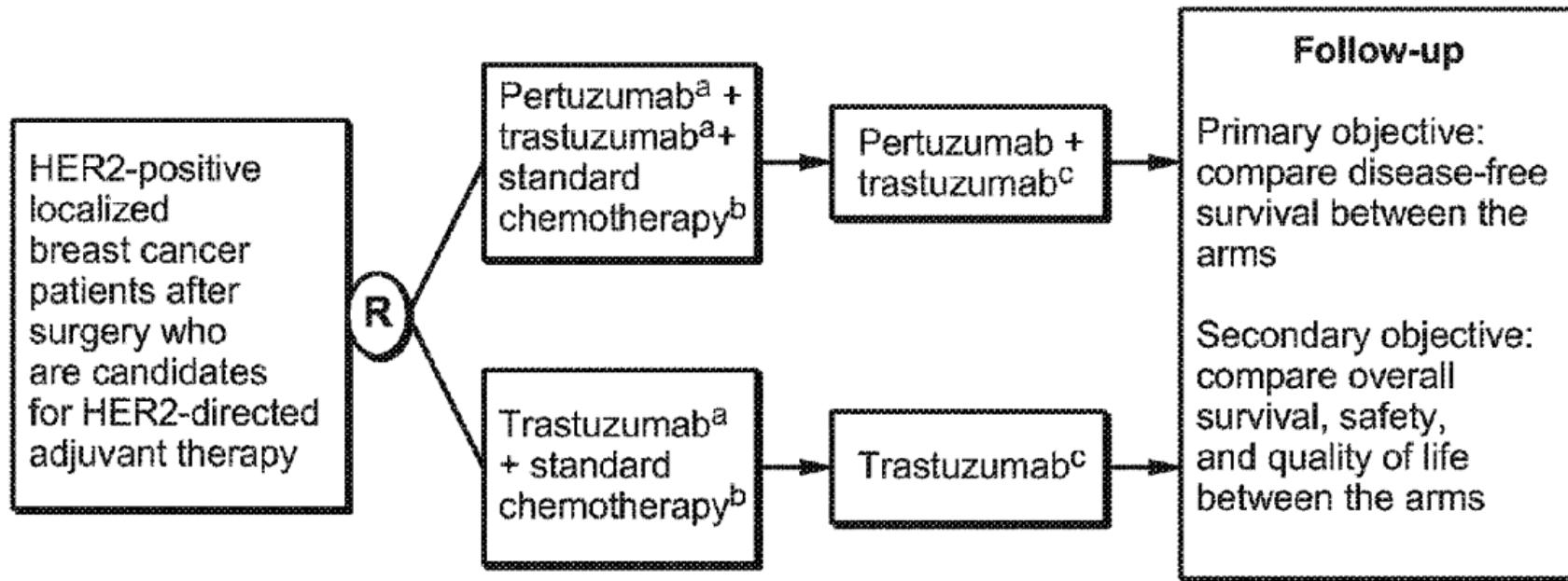



FIG. 10

Schema of APHINITY Clinical Trial

