The present disclosure relates to bone resurfacing. One embodiment includes a method for preparing an implant site in bone, comprising establishing a first working axis extending from said bone establishing a second working axis extending from said bone, the second working axis is displaced from the first working axis creating a first socket in the bone by reaming about the first working axis and creating a second socket in the bone, adjacent the first socket, by reaming about the second working axis.
BONE RESURFACING SYSTEM AND METHOD

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation-in-part of U.S. patent application Serial No. 12/027,121 filed February 06, 2008, which claims the benefit of U.S. provisional patent application Serial No. 60/888,382, filed February 6, 2007 and which is itself a continuation-in-part of U.S. patent application Serial No. 11/359,891, filed February 22, 2006, which itself is a continuation-in-part of U.S. patent application Serial No. 10/373,463, filed February 24, 2003, which is a continuation-in-part application of application Serial No. 10/162,533 (now U.S. Patent No. 6,679,917), filed June 4, 2002, which is itself a continuation-in-part application of application Serial No. 10/024,077 (now U.S. Patent No. 6,610,067), filed December 17, 2001, which is itself a continuation-in-part application of application Serial No. 09/846,657 (now U.S. Patent No. 6,520,964), filed May 1, 2001, which claims the benefit of U.S. provisional application Serial No. 60/201,049, filed May 1, 2000. This application is also a continuation-in-part of U.S. patent application Serial No. 11/169,326, filed June 28, 2005 (which claims the benefit of U.S. provisional patent application Serial No. 60/583,549, filed June 28, 2004) which is also a continuation-in-part of U.S. patent application Serial No. 10/994,453, filed November 22, 2004 (which claims the benefit of U.S. provisional patent application Serial No. 60/523,810, filed November 20, 2003), which is also a continuation-in-part of U.S. patent application Serial No. 10/308,718, filed December 3, 2002. This application also claims the benefit of U.S. Provisional Application Serial No. 61/033,136, filed March 3, 2008. The entire disclosures of all of which applications and/or patents are incorporated herein by reference.
FIELD

[0002] This disclosure relates to devices and methods for the repair of bone surfaces, and particularly to bony articulating joint surfaces.

BACKGROUND

[0003] Articular cartilage, found at the ends of articulating bone in the body, is typically composed of hyaline cartilage, which has many unique properties that allow it to function effectively as a smooth and lubricious load-bearing surface. When injured, however, hyaline cartilage cells are not typically replaced by new hyaline cartilage cells. Healing is dependent upon the occurrence of bleeding from the underlying bone and formation of scar or reparative cartilage called fibrocartilage. While similar, fibrocartilage does not possess the same unique aspects of native hyaline cartilage and tends to be far less durable.

[0004] In some cases, it may be necessary or desirable to repair the damaged articular cartilage using an implant. While implants may be successfully used, the implant should have a shape substantially corresponding to the articular cartilage proximate the area where the implant is to be placed in order to maximize the patient’s comfort, minimize damage to surrounding areas, and maximize the functional life of the implant.

BRIEF DESCRIPTION OF THE DRAWINGS
Features and advantages of the present invention are set forth by description of embodiments consistent with the present invention, which description should be considered in conjunction with the accompanying drawings wherein:

FIG. 1 is a plain view illustrating an excision;
FIG. 2 is a plain view of a drill guide and a tip;
FIG. 3 is a side view of the drill guide of FIG. 2 disposed about the articular surface;
FIG. 4 is a side view of a pin and the drill guide of FIG. 2;
FIG. 5 is a plan view of centering shaft and the pin of FIG. 4;
FIG. 6 is a side view of the centering shaft of FIG. 5 and the pin of FIG. 4 disposed about the articular surface;
FIG. 7 is a plan view of a contract probe, the centering shaft of FIG. 5, and the pin of FIG. 4;
FIG. 7a is an enlarged view of measuring indicia of the contract probe of FIG. 7;
FIG. 8 depicts measurements taken along the anterior-posterior (AP) plane and the medial-lateral (ML) plane using the contact probe of FIG. 7;
FIG. 9 depicts a sizing card;
FIG. 10 is a side view of a surface reamer, the centering shaft of FIG. 5, and the pin of FIG. 4;
FIG. 11 is a cross-sectional view of a surface reamer of FIG. 10, the centering shaft of FIG. 5, and the pin of FIG. 4;
FIG. 12 is a perspective view of a guide block and a drill guide;
FIG. 13 is a side plan view of the guide block and drill guide shown in FIG. 12;
FIG. 14 is a side plan view of the guide block and drill guide shown in FIG. 12 disposed about the articular surface;

FIG. 15 is a side plan view of the guide block and drill guide shown in FIG. 13 including additional pins;

FIG. 16 is a side plan view of the guide block and drill guide shown in FIG. 15 being removed;

FIG. 17 is a side plan view of the pins disposed about the articular surface and a reamer;

FIG. 17a is an enlarged view of the shoulder/stop of the reamer of FIG. 17;

FIG. 18 is a side plan view of an implant sizing trial;

FIGS. 19 and 20 are a side and end plan view of the implant sizing trial of FIG. 18 disposed about the articular surface;

FIG. 21 is a perspective view of a pilot drill and the implant sizing trial of FIG. 18;

FIG. 22 is a side plan view of the pilot drill of FIG. 21 disposed about the articular surface;

FIG. 23 is a perspective view of a step drill;

FIG. 24 is a perspective view of a tap;

FIG. 25 is a perspective view of a tapered post and a driver;

FIG. 26 depicts the tapered post of FIG. 25 disposed about the articular surface;

FIG. 27 depicts the tapered post of FIG. 25 and the implant sizing trial of FIG. 18 disposed about the articular surface;

FIGS. 28-29 depict the tapered post of FIG. 25 being fully advanced within the articular surface;
FIG. 30 depicts a reamer disposed about the tapered post of FIG. 25;
FIG. 31 is the bone-facing surface of an implant;
FIG. 32 is the bone-facing surface of an implant of FIG. 31 with an adhesive;
FIG. 33 depicts the implant of FIG. 31 mating with the tapered post of FIG. 25;
FIG. 34 is a perspective view of a guide handle assembly;
FIG. 35 is a plan view of a guide handle assembly of FIG. 34;
FIG. 35a is an enlarged cross-sectional view of the guide handle assembly of FIG. 35;
FIG. 36 is a perspective view of the guide handle assembly of FIG. 34 and a driver;
FIG. 36a is an enlarged cross-sectional view of the guide handle assembly and the driver of FIG. 36;
FIG. 37 depicts the tapered post being advanced along the guide pin;
FIG. 37a is an enlarged cross-sectional view of FIG. 37;
FIG. 38 is a perspective view of a trial, placement gauge, and guide handle;
and
FIG. 39 is a side plan view of the trial, placement gauge, and guide handle of FIG. 38 disposed about the articular surface.

DETAILED DESCRIPTION
As an overview, the present disclosure is directed to systems and methods for bone resurfacing and for preparing an implant site to resurface bone. While the following detailed description will proceed with reference to resurfacing the femoral condyle of the knee joint, the concepts, methodologies and systems described herein may be applied to any bony surface, for example, articulating joints of the ankle, hip and/or shoulder. In at least one embodiment, the present disclosure may feature a system and method for resurfacing at least a portion of an articular surface having a defect by replacing a portion of the articular surface with an implant. The implant may comprise a load bearing surface having a contour and/or shape substantially corresponding to the patient's original articular surface about the defect site which may be configured to engage an adjacent articular surface. The present disclosure will describe a system and method for replacing a portion of the articular surface of the femoral condyle; however, it should be understood that the system and method according to the present disclosure may also be used to resurface articular surfaces other than the femoral condyle.

As an initial matter, many of the devices described herein comprise cannulated components configured to be arranged over other components. The degree to which the cannulated passageway (i.e., internal diameter of the passageway/cavity) of a first component corresponds to the external diameter of the component over which it is being placed may be close enough to generally eliminate excessive movement. Excessive movement may be defined as an amount of movement that may result in misalignment of the implant relative to the articular surface.

Referring now to FIG. 1, an incision 10 may be created proximate the patient's knee 12 to provide access to the defect 14 on the patient's articular surface 16, for example, using a scalpel 18 or the like. Once the incision 10 is created, a drill
guide 20, FIG. 2, may be advanced against the articular surface 16. The drill guide 20 may include a cannulated shaft 22, a proximal end 23 comprising an AP arcuate shaped tip 24 and a first and a second ML prong 26a, 26b, and optionally a handle 28. The AP arcuate shaped tip 24 may include two ends 30a, 30b which may be generally aligned in a first plane and the ML two prongs 26a, 26b may be arranged in a second plane. These two planes may be configured to be substantially perpendicular to each other as shown. In addition, the AP arcuate shaped tip 24 and the two ML prongs 26a, 26b may be both coupled to the shaft 22 of the drill guide 20 and moveable with respect to each other by way of a biasing device (not shown) such as a spring or the like.

[0009] Turning now to FIG. 3, because the AP arcuate shaped tip 24 and the two ML prongs 26a, 26b are moveable with respect to each other, the drill guide 20 may be advanced against the articular surface 16 until the ends 30a, 30b of the AP arcuate shaped tip 24 contact the articular surface 16 generally along the anterior-posterior (AP) plane of the articular surface 16 and the two ML prongs 26a, 26b contact the articular surface 16 generally along the medial-lateral (ML) plane of the articular surface 16. The four points of contact (i.e., ends 30a, 30b and prongs 26a, 26b) of the drill guide 20 may be proximate, but generally not within, the defect site 14 and may be used to establish a reference axis 32 (or first working axis 32) extending from the bone. In one embodiment, the reference axis may extend generally approximately normal to the articular surface 16 about the defect site 14, however, in other embodiments reference axis may extend from the bone but not necessarily normal to the bone.

[0010] Turning now to FIG. 4, with the four points of the drill guide 20 against the articular surface, a threaded guide pin 34 may be advanced through the cannulated
drill guide 20 along the reference axis 32 and into the bone beneath the defect site 14, for example using a drill or the like. To that end, arcuate shaped tip 24 of the drill guide 20 may also include a bore or passageway aligned with the lumen in the cannulated handle. The guide pin 34 may include one or more indicia 36 (for example, but not limited to, laser markings or the like) on the shaft 38 of the guide pin 34 that may be used to control the depth of the guide pin 34 into the bone. By way of example, the indicia 36 on the guide pin 34 may be set relative to the length of the drill guide 20 such that the depth of the guide pin 34 is set when the indicia 36 is aligned with the distal end 40 of the drill guide 20 (i.e., the end opposite the AP arcuate shaped tip 24 and the ML prongs 26a, 26b). Once the guide pin 34 is coupled to the bone, the drill and the drill guide 20 may be removed leaving just the guide pin 34 coupled to the bone and extending along the reference axis 32 (i.e., substantially normal to the original articular surface about the defect site 14). It should be noted that the cannulated passageway of the drill guide 20 may have an internal diameter substantially corresponding to the outer diameter of the guide pin 34.

[0011] Turning now to FIG. 5, a centering shaft 40 may be advanced over the guide pin 34. The centering shaft 40 may be cannulated and may comprise a tap 42 at a first end of the cannulated shaft 44. At least a portion of the tap 42 (for example, a portion proximate the first end of the cannulated shaft 44) may extend radially outwardly beyond the outer surface of the cannulated shaft 44 to form a shoulder or abutting surface 45. The centering shaft 40 may be advanced into the bone until a marking 46 (such as, but not limited to, a laser marking or the like) is substantially flush with the original articular surface 16 over the defect site 14 as generally shown in FIG. 6. As may be appreciated, the alignment of the marking 46 with the original articular
surface 16 of the defect site 14 may have to be estimated. In addition, it should be noted that the marking 46 may not be aligned to be flush with the actual defect site 14.

[0012] Next, measurements of the patient's articular surface may be taken in order to determine the appropriate contour of the implant. Referring to FIG. 7, one or more contact probes 50 may be advanced over the centering shaft 40 and/or the guide pin 34. The contact probe 50 may comprise a cannulated shaft 52 and an outrigger 54 extending radially outwardly and axially outwardly from a distal end 55 of the cannulated shaft 52. A first and a second contact probe 50a, 50b may be provide having outriggers 54 extending radially outwardly at a distance of 40 mm and 20 mm, respectively. Of course, other distances are also possible depending on the size of the implant to be delivered as well as the geometry of the defect site 14 and/or the articular surface 16.

[0013] The contact probe 50 may also include measuring indicia 56, which may optionally be disposed in a portion of a handle 58. A close up of one embodiment of the measuring indicia 56 is shown in FIG. 7a. The measuring indicia 56 may include a plurality of measurement markings 60 indicating relative distances. In use, the contact probe 50 may be placed over the centering shaft 40 such that the distal end 62 of the outrigger 54 contacts the articular surface 16. A measurement may be taken by based on the alignment of at least one marking on the centering shaft 40 (for example, the second end 64 of the centering shaft) with the plurality of measurement markings 60.

[0014] Turning now to FIG. 8, a first (and optionally a second) measurement of the patient's articular surface 16 proximate the defect site 14 may be taken along the AP plane using the first contact probe 50a by placing the distal end 62 of the 40 mm outrigger 54 against the patient's articular surface 16. In addition, a first (and
optionally a second) measurement of the patient's articular surface proximate the defect site may be taken along the ML plane using the second contact probe by placing the distal end of the 20 mm outrigger against the patient's articular surface. The size of the outriggers may be selected based on the size of the defect site such that the distal end of the outrigger contacts the articular surface and not the defect site.

The measurements obtained from the contact probes may be recorded onto a sizing card, FIG. 9. The sizing card may include a first area graphically representing the AP and the ML planes. In particular, a first and a second query box may be provided to fill in the first and second AP measurements and a first and a second query box may be provided to fill in the first and second ML measurements. The query boxes may optionally be connected by a circle representing the size of the outrigger of the first contact probe while query boxes may optionally be connected by a circle representing the size of the outrigger of the second contact probe. The sizing card may also include query boxes providing to fill in the maximum values of the AP plane and the ML plane, respectively.

Based on the maximum values of the AP and ML plane in query boxes, the offset values of the implant and test implant may be determined. As shown, the surgeon may select from a set of implants having predetermined offset values. The values correspond to the AP measurement, ML measurement, and depth of the implant/test implant. It should be noted that the offset values of the implant/test implant may be used in combination with known geometrical ratios of the articular surface for a particular region of the articular surface. These geometric ratios may be found in published literature and may be utilized, for example, when the
implant is placed proximate the interface between the posterior and distal regions of the articular surface. If further accuracy is desired (for example, but not limited to, defects extending further towards the posterior region and/or the anterior regions of the articular surfaces), the contour of the implant and articular surface may be determined as described in U.S. Patent Application Serial No. 12/027,121 entitled System and Method for Joint Resurface Repair filed February 6, 2008, which is fully incorporated herein by reference.

[0017] Turning now to FIG. 10, the diameter of a surface reamer 80 may be selected based on, for example, the maximum ML value (e.g., the value filled in query box 78b of sizing card 70). The surface reamer 80 may include a cannulated shaft 82 configured to be disposed over the centering shaft 40 and/or the guide pin 34 along the reference axis 32 and coupled to a drill 81. The surface reamer 80 may also include one or more cutting surfaces 84 and a shoulder 86 disposed about the opening 88 of the cannulated shaft 82.

[0018] The surface reamer 80 may be advanced over the centering shaft 40 and/or the guide pin 34 along the reference axis 32 until the shoulder 86 of the surface reamer 80 abuts against the shoulder 45 of the centering shaft 40 as shown in FIG. 11. The contact between the two shoulders 86, 45 may be configured to control the depth of the excision in the articular surface. The cutters 84 may optionally be positioned about the surface reamer 80 to leave more material proximate the centering shaft 40 and/or the guide pin 34 along the reference axis 32 to facilitate removal and insertion of devices further along the method. Once the articular surface 16 has been excised about the reference axis 32, the surface reamer 80 and the centering shaft 40 may be removed.
[0019] A guide block 90, FIG. 12, may be selected based on the maximum AP measurement value taken previously (e.g., the value filled in query box 78a of sizing card 70). The guide block 90 may be used to establish one or more working axis (for example, a superior and inferior working axis) for excising the articular surface 16 on either side of the reference axis along the AP plane. The guide block 90 may include a body 92 having an arcuate shaped interior surface 94 configured to contact the articular surface 16 along at least two points (e.g., the two end regions of the guide block 90). The guide block 90 may comprise a first bushing 95 defining a passageway or bore sized to receive the guide pin 34. The guide block 90 may be configured to be coupled to the drill guide 20. For example, according to one embodiment the AP arcuate shaped tip 24 may be removed from the drill guide 20 as shown in FIG. 12 and the guide block 90 may be coupled to the drill guide 20 with the first bushing 95 aligned with the cannulated passageway of the drill guide 20 as generally shown in FIG. 13.

[0020] Turning now to FIG. 14, the first bushing 95 of the guide block 90 may be advanced along the guide pin 34 towards the articular surface 16, for example using the drill guide 20, such that the guide block 90 is generally aligned along the AP plane of the articular surface 16 and the ML prongs 26a, 26b of the drill guide 20 contact the bone within the excision site 98 formed by the surface reamer 80. The guide block 90 may include a superior and inferior pin sleeve receiver 99a, 99b configured to removably receive a superior and inferior pin sleeve 100a, 100b, respectively. The superior and inferior pin sleeve 100a, 100b may be provided to facilitate proper alignment of the inferior and superior working axis.

[0021] For example, a first and a second threaded pin 102a, 102b, FIG. 15, may be advanced through the superior and inferior pin sleeve 100a, 100b (for example, using...
a drill or the like) along the superior and inferior axis 101a, 101b. The depth of the pins 102a, 102b may be controlled using markings (for example, but not limited to, laser markings) disposed on the shaft 104 of the pins 102a, 102b.

[0022] Once the superior and inferior pins 102a, 102b are coupled to the bone, the superior and inferior pin sleeves 100a, 100b may be removed from the superior and inferior pin sleeve receivers 99a, 99b. Turning now to FIG. 16, the guide block 90 may now be removed from the articular surface along the guide pin 34. The superior and inferior pin sleeve receivers 99a, 99b may be provided with slots 104a, 104b configured to allow the superior and inferior pins 102a, 102b to pass through the guide block 90 as the guide block 90 is slid along the guide pin 34.

[0023] Once the guide block is removed and the superior and inferior pins 102a, 102b have been established, the guide pin 34 may be removed. Next, a first and a second cannulated reamer 110, FIG. 17, may be advanced over the superior and inferior pins 102a, 102b to excise a first and a second portion of the articular surface 16 about the superior and inferior pins 102a, 102b. The reamer 110 may have one or more cutting surfaces 112 and may be provided with a depth stop 114 configured to control the depth of the excision sites about the superior and inferior pins 102a, 102b. According to one embodiment, the depth stop 114, FIG. 17a, may comprise a shoulder or stop 116 disposed within the cannulated passageway 118 of the reamer 110. The shoulder or stop 116 may be configured to engage with a distal end of the superior and inferior pins 102a, 102b, thereby preventing the reamer 110 from being advanced any further along the superior and inferior pins 102a, 102b and controlling the depth of the excision sites.

[0024] Turning now to FIG. 18, an implant sizing trial 120 may be selected based on the measurements taken of the articular surface 16. The implant sizing trial 120 may
comprise a shape/contour generally corresponding to the shape/contour of the implant to be delivered. The implant sizing trial 120 may comprise a threaded opening 122 configured to be concentrically disposed about the working axis 32. The threaded opening 122 may also be configured to be threadably engaged with a cannulated shaft/handle 126. The implant sizing trial 120 may also include superior and inferior slots 128a, 128b configured to allow the implant sizing trial 120 to be advanced over the superior and inferior pins 102a, 102b as it is inserted into the excision sites 98 in the articular surface 16. Once the implant sizing trial 120 is inserted into the excision sites 98 in the articular surface 16, the fitment of the implant sizing trial 120 along the AP and ML planes may be confirmed visually as generally shown in FIGS. 19 and 20.

[0025] With the implant sizing trial 120 inserted within the excision sites 98 and the fitment confirmed, a cannulated pilot drill 130, FIG. 21, may be advanced through the handle 126 and the implant sizing trial 120 into the bone along the reference axis 32. The pilot drill 130 may also include a depth control device such as, but not limited to, a marking (e.g., a laser marking or the like). With the cannulated pilot drill 130 secured in the bone, the implant sizing trial 120 and handle 126 may be removed and the guide pin 34 may be advanced through the cannulated passageway of the pilot drill 130 into the bone along the reference axis 32 as shown in FIG. 22. Again, the depth of the guide pin 34 may be controlled by way of a marking 132 (e.g., a laser marking or the like) along the shaft of the guide pin 34. For example, the depth of the guide pin 34 may be set once the laser marking 132 is flush with the end of the pilot drill 130.

[0026] Turning now to FIG. 23, a cannulated step drill 134 may be advanced over the pilot drill 130 and the guide pin 34 into the articular surface 16 about the reference
axis 32. The use of the pilot drill 130 and the cannulated step drill 134 may be configured to incrementally provide a larger opening in the bone about the reference axis 32 in the articular surface 16 to reduce the potential of chipping the bone about the reference axis 32. The cannulated step drill 134 may also include a depth stop for controlling the depth of the step drill 134 into the bone, for example, as generally described above with respect to FIG. 17a.

[0027] Once the depth of the step drill 134 is set, the step drill 134 and the pilot drill 130 may be removed and a cannulated tap 136 may be advanced over the guide pin 34 as generally shown in FIG. 24. The depth that the tap 136 is advanced into the bone may be controlled based on a marking (e.g., a laser marking) on the guide pin 32. The tap 136 may be configured to provide a threaded opening 138 in the bone about the reference axis 32 to threadably receive the implant post as will be described below.

[0028] With the opening about the reference axis 32 tapped, the tap 136 may be removed and the tapered post 140, FIG. 25, may be advanced over the guide pin 34 at least partially into the threaded opening 138, for example, using a hex driver 142. The tapered post 140 may include a tapered and threaded first end 144 and a second end 145 having a tapered exterior surface 146, for example, as described in U.S. Patent Nos. 6,520,964, 6,610,067 and 6,679,917, all of which are fully incorporated herein by reference. The second end 145 may also include a hex-shaped internal cavity 147 configured to engage with a corresponding hex-shaped driver 148 of the hex driver 142. Both the tapered post 140 and the hex driver 142 may be cannulated such that they may be advanced over the guide pin 34.

[0029] Referring now to FIG. 26, the tapered post 140 may be advanced along the guide pin 34 and partially inserted into the threaded opening 138 (for example, approximately half way) using the hex driver 142. According to one embodiment, the
tapered post 140 may be inserted in the threaded opening 138 such at least most of the threaded end 144 is within the threaded opening 138. Once the tapered post 140 is partially received in the threaded opening 138, the hex driver 142 may be removed.

[0030] Turning now to FIG. 27, the implant sizing trial 120 may be placed into the excision sites 98. As can be seen, the second end 145 of the tapered post 140 may at least partially extend through the threaded opening 122 of the implant sizing trial 120. Using the hex driver 142, the implant sizing trial 120 may be fully advanced into the threaded opening 138 as generally shown in FIG. 28. The hex driver 142 may include a flared end 150 which may engage a shoulder 152 disposed about the opening 122 in the implant sizing trial 120 as shown in FIG. 29. The engagement of the flared end 150 and the shoulder 152 may control the final depth of the tapered post 140 into the threaded opening 138 in the bone.

[0031] Once the tapered post 140 is fully advanced into the threaded opening 138, the hex driver 142, implant sizing trial 120 and superior and inferior pins 102a, 102b may be removed. Optionally, a cannulated reamer 160, FIG. 30, may be advanced over the guide pin 34 to remove any excess material about the reference axis 32. The depth of the reaming may be controlled when the shoulder 162 of the reamer 160 contacts the end of the tapered post 140 in a manner similar to that of FIG. 11 described above. The reaming may be provided to extra material left about the reference axis 32 during the reaming discussed with respect to FIGS. 10 and 11. This extra material may have been left to prevent accidental chipping during the subsequent operations.

[0032] After the final reaming, the reamer 160 and the guide pin 32 may be removed leaving behind only the tapered post 140 in the bone. Next, the implant 170, FIG. 31, may be selected base on the measurements taken of the patient's articular surface 16.
As discussed previously, the implant 170 may have a load bearing surface including a contour based on the measurements taken of the patient's articular surface 16 such that the load bearing surface generally corresponds to the patient's original articular surface 16. According to one embodiment, the implant 170 may include an implant as described in U.S. Patent Application Serial No. 10/373,463 filed February 24, 2003, U.S. Patent No. 6,679,917 issued January 20, 2004, U.S. Patent No. 6,610,067 issued August 26, 2003, U.S. Patent No. 6,520,964 issued February 18, 2003, and U.S. Provisional Application Serial No. 60/201,049 filed May 1, 2000, all of which are fully incorporated hereby incorporated by reference.

[0033] The bone facing surface 172 of the implant 170 may include indicia 176 representing either posterior and/or anterior sides of the implant 170. This indicia 176 may be used by the surgeon to properly align the implant 170 along the AP and ML planes within the excision site 98. The implant 170 may be inserted into the excision site 98 using a grasping device 178 such as, but not limited to, a suction cup coupled to a handle.

[0034] Turning now to FIG. 32, an adhesive 180 (such as, but not limited to, bone cement or the like) may be applied to the bone facing surface 172 by way of a dispenser 182, for example a dispenser as described in U.S. Patent Application Serial No. 12/031,534 entitled Bone Cement Delivery Device filed on February 14, 2008 which is fully incorporated herein by reference. The implant 170 may include a female opening configured to frictionally engage with the tapered second end of the tapered post 140. For example, the implant 170 may be mated in the excision site 98 and to the tapered post 140 using an impactor 184 and hammer 186 as shown in FIG. 33.
According to another embodiment, the tapered post 140 may be advanced into the bone as follows. After forming a threaded opening 138 (for example, but not limited to, as described above with respect to FIG. 24), an implant sizing trial 220 may be advanced along the guide pin 34 into the excision site 98 as generally shown in FIG. 34. The implant sizing trial 220 may be similar to the implant sizing trial 120 described above, however, the implant sizing trial 220 according to this embodiment may include a threaded opening 222 having a diameter large enough to allow the tapered post 140 to be advanced along the guide pin 34 (and therefore the reference axis 32) through the threaded opening 222 and into the bone. The implant sizing trial 220 may be advanced along the guide pin 34 using a guide handle assembly 250. The guide handle assembly 250 may include a cannulated shaft 252 to receive the guide pin 34 and may also include a flared end 254 configured to receive the tapered second end 145 of the tapered post 140.

For example, turning to FIG. 35, the guide handle assembly 250 and the tapered post 140 are shown together with the implant sizing trial 220. As can be seen, the flared end 254 of the guide handle assembly 250 may be configured to engage with a shoulder 156 of the implant sizing trial 220 proximate the threaded opening 222. Referring now to FIG. 35a, a close up of the flared end 254 of the guide handle assembly 250 and the tapered post 140 is shown. The flared end 254 may define an internal cavity 260 configured to at least partially receive the tapered post 140. In particular, the internal cavity 260 may include a tapered portion 262 configured to frictional engage with the tapered second end 145 of the tapered post 140. Additionally, as can be seen, the flared end 254 of the guide handle assembly 250 may include a shoulder 264 configured to engage against the shoulder 256 of the implant sizing trial 220. At this point, the tapered post 140 may or may not be
partially received within the threaded opening 138. The final depth of the tapered post 140 may also not be set.

[0037] Turning now to FIG. 36, the tapered post 140 may be partially advanced into the threaded opening 138 using a hex driver 270. For example, the hex driver 270 may be advanced along the guide pin 34 and the reference axis 32 through the cannulated passageway of the guide handle assembly 250. The hex driver 270, FIG. 36a, may include a male hex adapter 272 configured to engage with a corresponding female hex adapter 147 of the tapered post 140.

[0038] With the shoulder 264 of the guide handle assembly 250 abutting against the shoulder 256 of the implant sizing trial 220, the tapered post 140 may be advanced along the guide pin 34 and the reference axis 32 as shown in FIG. 37 using the hex driver 270. According to one embodiment, the tapered post 140 is advanced most of the way into the bone and the depth may be set based on a marking 276 (for example a laser marking or the like) on the shaft 278 of the hex driver 270. This marking 276 may be used to set the tapered post 140 close to the final depth in the bone, for example by aligning the marking 276 with the distal end of the guide handle assembly 250. Alternatively, it may be possible to set the final depth of the tapered post 140 based on this marking 276 and the guide handle assembly 250. As may be seen in FIG. 37a, flared end 254 of the guide handle assembly 250 may include a threaded region 277 that may engage with the threaded opening 222 of the implant sizing trial 220. Additionally, the tapered second end 154 of the tapered post 140 may be at least partially removed from the tapered portion 262 of the flared end 254 of the guide handle assembly 250 once the marking 276 is aligned with the guide handle assembly 250.
[0039] Turning now **FIG. 38**, the hex driver 270 and the guide handle assembly 250 may be removed and a placement gauge 280 may be advanced along the guide pin 34 towards the implant sizing trial 220. The placement gauge 280 may be used to set the final depth of the tapered post within the bone. The placement gauge 280 may be advanced along the guide pin 34 using the guide handle assembly 250. As shown in **FIG. 39**, the placement gauge 280 may include a tapered female cavity 290 configured to engage with the tapered second end 145 of the tapered post 140 in a manner substantially the same as the implant will ultimately engage with the tapered post 140.

[0040] With the tapered female cavity 290 of the placement gauge 280 frictionally engaged with the tapered post 140, the placement gauge 280 and the tapered post 140 may be advanced along the guide pin 34 using the hex driver 270 until a shoulder 282 of the placement gauge 280 abuts against the shoulder 256 of the implant sizing trial 220. The final depth of the implant 140 may be set based on the implant sizing trial 140 (and in particular, the depth of the shoulder/boss 256) and the depth of the tapered post 140 within the tapered cavity 290 of the placement gauge 280.

[0041] Once the tapered post 140 is set in the bone, the hex driver 270, placement gauge 280, and the implant sizing trial 220 may be removed. Once removed, the guide pin 34 may be removed and (if still in place), the pins 102a, 102b may also be removed. The implant may then be coupled to the tapered post 140 as generally described above.

[0042] The following patents or patent applications filed by the applicant or assignee of the present invention are hereby incorporated by reference in their entireties:

- U.S. Patent No. 6,520,964 entitled System and method for joint resurface repair;
• U.S. Patent No. 6,610,067 entitled System and method for joint resurface repair;
• U.S. Patent No. 7,029,479 entitled System and method for joint resurface repair;
• U.S. Patent No. 6,679,917 entitled System and method for joint resurface repair;
• U.S. Patent No. 7,163,541 entitled Tibial resurfacing system;
• U.S. Patent Application No. 10/373,463 entitled System and method for joint resurface repair;
• U.S. Patent Application No. 11/359,891 entitled Articular surface implant;
• U.S. Patent Application No. 10/618,887 entitled System and method for joint resurface repair;
• U.S. Patent Application No. 10/760,965 entitled System and method for joint resurface repair;
• U.S. Patent Application No. 12/027,121 entitled System and method for joint resurface repair;
• U.S. Patent Application No. 10/789,545 entitled Articular Surface Implant;
• U.S. Patent Application No. 11/461,240 entitled System and method for articular surface repair;
• U.S. Patent Application No. 11/169,326 entitled System for articular surface replacement;
• U.S. Patent Application No. 11/209,170 entitled System and method for retrograde procedure;
• U.S. Patent Application No. 11/359,892 entitled Articular surface implant and
delivery system;
• U.S. Patent Application No. 11/326,133 entitled System and method for
retrograde procedure;
• U.S. Patent Application No. 11/551,912 entitled Retrograde excision system
and apparatus;
• U.S. Patent Application No. 12/001,473 entitled Retrograde resection
apparatus and method;
• U.S. Patent Application No. 11/779,044 entitled System and method for
tissues resection; and

[0043] As mentioned above, the present disclosure is not intended to be limited to a
system or method which must satisfy one or more of any stated or implied object or
feature of the present disclosure and should not be limited to the preferred, exemplary,
or primary embodiment(s) described herein. The foregoing description of a preferred
embodiment of the present disclosure has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit the present disclosure to
the precise form disclosed. Obvious modifications or variations are possible in light
of the above teachings. The embodiment was chosen and described to provide the
best illustration of the principles of the present disclosure and its practical application
to thereby enable one of ordinary skill in the art to utilize the present disclosure in
various embodiments and with various modifications as is suited to the particular use
contemplated. All such modifications and variations are within the scope of the
present disclosure.
Claims

1. A method for preparing an implant site in bone, comprising:
 establishing a first working axis extending from said bone;
 establishing a second working axis extending from said bone, said second working axis is displaced from said first working axis;
 creating a first socket in said bone by reaming about said first working axis;
 and
 creating a second socket in said bone, adjacent said first socket, by reaming about said second working axis.

2. The method of claim 1, wherein said first and second working axes are established, in part, by advancing first and second guide pins into said bone, said guide pins extending from said bone.

3. The method of claim 1, wherein said first and second working axes are established by placing a guide block onto the surface of the bone such that at least two opposing points of the guide blocks contact said bone, said guide block having first and second bores therein defining the location of said first and second working axes with respect to said bone.

4. The method of claim 1, further comprising:
 establishing a third working axis extending from said bone, said third working axis is displaced from said first and second working axes; and
 creating a third socket in said bone, adjacent said first and second sockets, by reaming about said third working axis.

5. The method of claim 1, further comprising:
advancing a centering shaft into and extending from said bone along said first working axis;

measuring a plurality of points from a fixed position along said centering shaft to said bone, said plurality of point indicative of the curvature of said bone in at least one plane; and

selecting, based on said plurality of points, an implant having a bone-facing surface and a load-bearing surface that substantially matches said curvature of said bone.

6. The method of claim 5, further comprising:

selecting a guide block having a curvature based on said plurality of points;

advancing said guide block to said bone about said first working axis, said guide block comprising at least two opposing points configured to contact said bone at different locations and first and second bores therein defining the location of said first and second working axes with respect to said bone.

7. The method of claim 5, further comprising:

advancing a sizing trial implant into, at least in part, said first and second sockets, said sizing trial implant having a curvature of at least one surface thereof based on said plurality of points; and

confirming that said sizing trial implant fits within said first and second sockets.

8. The method of claim 5, further comprising:

applying bone adhesive to said implant; and

installing said implant, at least in part, into said first and second sockets in the bone.

9. The method of claim 1, further comprising:
advancing a cannulated drill guide to contact said bone, said cannulated drill
guide comprising a cannulated handle and a first arcuate tip section removably
coupled to a distal end of said cannulated handle, said first arcuate tip section
comprising first and second bone contacting points and a bore aligned with a lumen of
said cannulated handle, wherein said first working axis is defined extending from said
bone through said bore and said lumen; and
installing a first guide pin into said bone through said lumen and said bore and
along said first working axis.
10. The method of claim 9, further comprising:
advancing a cannulated bone centering shaft over said first guide pin, said
bone centering shaft comprising a cannulated tap portion and a cannulated shaft, a
shoulder portion between said tap portion and said shaft, and at least one visual
marker on said cannulated shaft;
driving said tap portion into said bone to a predetermined depth;
advancing a cannulated contact probe over said centering shaft, said contact
probe comprising an outrigger extending radially from a cannulated shaft, said
outrigger comprising a contact point, and a handle comprising visual measuring
indicia configured to align with said visual marker, wherein said visual measuring
indicia and said visual marker configured to visually display a depth of said contact
point when said contact point is advanced to contact said bone;
determining a plurality of depth measurements in at least one plane and
determining a curvature based on at least one said depth measurement; and
advancing a first reamer over said centering shaft and rotating said reamer
about said centering shaft to create said first socket in said bone.
11. The method of claim 9, further comprising:
removably coupling a guide block onto said distal end of said cannulated handle, said guide block comprising a body portion having a curvature based on at least one said depth measurement, first and second bone contacting points, a first bore aligned with a lumen of said cannulated handle, and a second bore spaced apart from said first bore, said second bore defining said second working axis; advancing said guide block and cannulated handle over said first guide pin; and installing a second guide pin into said bone through said second bore and along said second working axis.

12. The method of claim 11, further comprising: removably coupling a cannulated bushing into said second bore prior to installing said second guide pin.

13. The method of claim 11, further comprising: advancing a second reamer over said second guide pin and rotating said reamer about said second guide pin to create said second socket in said bone.

14. The method of claim 11, further comprising: advancing a cannulated tap over said first guide pin and into said bone to tap area of bone surrounding said first guide pin; advancing a tapered post over said first guide pin into the tapped area of bone to secure said tapered post into said bone.

15. The method of claim 14, further comprising: selecting an implant comprising a load-bearing surface that substantially matches said curvature of said bone and having a curvature based on at least one said depth measurement, said implant is dimensioned to fit within, at least, said first and
second sockets, said implant also comprising a bone-facing surface comprising a recess configured to mate with the taper of said tapered post;

installing said implant into said first and second sockets by mating said recess with said tapered post.

16. The method of claim 15, further comprising:

applying adhesive to said bone-facing surface prior to said installing said implant.
Fig. 9

1. Maximum AP
 Maximum ML

2. Select Femoral UniCAPTM offset values
 If no match is found, use the next highest offset value
 - 6.0 x 2.0 x 1.0 mm
 - 6.0 x 3.0 x 1.0 mm
 - 7.0 x 2.0 x 1.0 mm
 - 7.0 x 3.0 x 1.0 mm
 - 8.0

Sizing Card
Apply cement to underside of Femoral Component.
A CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC(8)</th>
<th>USPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61F 2/30 (2009 01)</td>
<td>623/18 11</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC(8)</th>
<th>USPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61F 2/30 (2009 01)</td>
<td>623/18 11</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Pathbase

C DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2006/0020343 A1 (EK) 26 January 2006 (26 01 2006) entire document</td>
<td>1, 3, 5, 9, 11, 14, 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2, 4, 7, 8, 10, 12, 13, 16</td>
</tr>
<tr>
<td>Y</td>
<td>US 2004/013087 A1 (SANFORD et al) 05 August 2004 (05 08 2004) entire document</td>
<td>2, 12, 13</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

- **X** Special categories of cited documents
- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed
- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **X** document member of the same patent family

Date of the actual completion of the international search
01 April 2009

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No 571-273-3201

Date of mailing of the international search report
01 JUN 2009

Authorized officer
Blame R Copenhaver
PCT Helpdesk 571-272-4300
PCTsp 571 272 7774

Form PCT/ISA/2 10 (second sheet) (April 2005)