wo 2010/057199 A2 I 0K 0 AR

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

.. TN
(19) World Intellectual Property Organization- /25 |)| HINIHNN 00000010 0 00 O
A 5 (10) International Publication Number
(43) International Publication Date Vs
20 May 2010 (20.05.2010) WO 2010/057199 A2
(51) International Patent Classification: NA, Ralph R.; 9 Patricia Drive, Downington, PA 19355
GO6F 12/14 (2006.01) GO6F 12/08 (2006.01) (US). CHIN, Edward; 12 Post Run, Newtown Square,
HO4L 9/08 (2006.01) PA 19073 (US). FRENCH, Albert; 355 Grubb Road,

Schwenksville, PA 19473 (US). SUMMERS, Scott; 14
Sugarpine Lane, Collegeville, PA 19426 (US).

(74) Agent: GREGSON, Richard, J.; Unisys Corporation,
Unisys Way, MS/S1-108, Blue Bell, PA 19424-0001

(21) International Application Number:
PCT/US2009/064824

(22) International Filing Date:
17 November 2009 (17.11.2009)

(Us).

(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
(26) Publication Language: English kind of national protection available). AE, AG, AL, AM,
. AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(30) Priority Data: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
12/336,558 17 December 2008 (17.12.2008) Us HN,, HR,, HU: ID: IL, ,IN, ,IS, Jig, Ké, Ké, Kl\;[, KNZ KP:
12/336,568 17 December 2008 (17122008) us KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
12/336,562 17 December 2008 (17.12.2008) Us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
12/336,564 17 December 2008 (17122008) us NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
12/336,559 17 December 2008 (17.12.2008) Us SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,

12/342,636 23 December 2008 (23.12.2008) Us
12/342,610 23 December 2008 (23.12.2008) US (84) Designated States (unless otherwise indicated, for every
12/342,464 23 December 2008 (23.12.2008) Us kind of regional protection available): ARIPO (BW, GH,
12/342,575 23 December 2008 (23.12.2008) Us GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
12/342,438 23 December 2008 (23.12.2008) Us ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TI,
12/342,379 23 December 2008 (23.12.2008) Us TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
12/342,500 23 December 2008 (23.12.2008) Us ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
12/342,414 23 December 2008 (23.12.2008) Us MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
12/342,523 23 December 2008 (23.12.2008) Us TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

ML, MR, NE, SN, TD, TG).
(71) Applicant (for all designated States except US): UNISYS)

CORPORATION [US/US]; Unisys Way, Ms/s1-108, Published:
Blue Bell, PA 19424-0001 (US). — without international search report and to be republished

(72) Inventors: DODGSON, David; 2109 Old Forde Way, upon receipt of that report (Rule 48.2(g))
Lansdale, PA 19446 (US). NEILL, Joseph; 199 West
King Street, Unit 2-2, Malvern, PA 19355 (US). FARI-

(54) Title: STORAGE AND RETRIEVAL OF CRYTOGRAPHICALLY-SPLIT DATA BLOCKS TO/FROM MULTIPLE
STORAGE DEVICES

(57) Abstract: A secure storage appliance is disclosed, along with methods of storing and reading data in a secure storage network
with a virtual disk mapped to the plurality of physical storage devices. The secure storage appliance is configured to present to a
client a virtual disk, the virtual disk mapped to the plurality of physical storage devices. The secure storage appliance is capable of
executing program instructions configured to generate a plurality of secondary data blocks by performing splitting and encrypting
operations on a primary data block received from the client for storage on the virtual disk. For security, the secondary data blocks
are stored at geographically-distributed locations. The secure storage appliance is also capable of executing program instructions
configured to reconstitute the primary data block from at least a portion of the plurality of secondary data blocks stored in shares
on corresponding physical storage devices in response to a request from the client.

WO 2010/057199 PCT/US2009/064824

STORAGE AND RETRIEVAL OF CRYPTOGRAPHICALLY-SPLIT DATA
BLOCKS TO/FROM MULTIPLE STORAGE DEVICES

RELATED APPLICATIONS

The present disclosure claims the benefit of commonly assigned U.S. Patent
Application, Serial No. 12/272,012, entitled “BLOCK LEVEL DATA STORAGE
SECURITY SYSTEM?, filed 17 Nov 2008, Attorney Docket No. TN497. The present

disclosure also claims the benefit of commonly assigned U.S. Patent Application, Serial No.
12/336,558, entitled “DATA RECOVERY USING ERROR STRIP IDENTIFIERS”, filed 17
Dec 2008, Attorney Docket No. TN494.

The present disclosure is related to commonly assigned, and concurrently filed, U.S.
Patent Application, Serial No.12/336,559 entitled “STORAGE SECURITY USING
CRYPTOGRAPHIC SPLITTING”, filed 17 Dec 2008, Attorney Docket No. TN496. The

present disclosure is also related to commonly assigned, U.S. Patent Application, Serial No.
12/336,562, entitled “STORAGE SECURITY USING CRYPTOGRAPHIC SPLITTING”,
filed 17 Dec 2008, Attorney Docket No. TN496A. The present disclosure is related to
commonly assigned, U.S. Patent Application, Serial No. 12/336,564, entitled “STORAGE
SECURITY USING CRYPTOGRAPHIC SPLITTING?”, filed 17 Dec 2008, Attorney Docket

No. TN496B. The present disclosure is related to commonly assigned, U.S. Patent
Application, Serial No. 12/336,568, entitled “STORAGE SECURITY USING
CRYPTOGRAPHIC SPLITTING”, filed 17 Dec 2008, Attorney Docket No. TN504A.

The present disclosure is related to commonly assigned, and concurrently filed, U.S.
Patent Application, Serial No. 12/342,438, entitled “STORAGE AVAILABILITY USING
CRYPTOGRAPHIC SPLITTING”, filed 23 Dec 2008, Attorney Docket No. TN495. The

present disclosure is related to commonly assigned, and concurrently filed, U.S. Patent
Application, Serial No. 12/342,464, entitled “STORAGE AVAILABILITY USING
CRYPTOGRAPHIC SPLITTING”, filed 23 Dec 2008, Attorney Docket No. TN495A.

The present disclosure is related to commonly assigned, and concurrently filed, U.S.
Patent Application, Serial No. 12/342,523, entitled “RETRIEVAL OF
CRYPTOGRAPHICALLY -SPLIT DATA BLOCKS FROM FASTEST-RESPONDING
STORAGE DEVICES ”, filed 23 Dec 2008, Attorney Docket No. TN493A. The present

1

WO 2010/057199 PCT/US2009/064824

disclosure is related to commonly assigned, and concurrently filed, U.S. Patent Application,
Serial No. 12/342,500, entitled “BLOCK-LEVEL DATA STORAGE USING AN
OUTSTANDING WRITE LIST”, filed 23 Dec 2008, Attorney Docket No. TN493B.

The present disclosure is related to commonly assigned, and concurrently filed, U.S.
Patent Application, Serial No. 12/342,636, entitled “STORAGE COMMUNITIES OF
INTEREST USING CRYPTOGRAPHIC SPLITTING?”, filed 23 Dec 2008, Attorney Docket

No. TN498. The present disclosure is related to commonly assigned, and concurrently filed,
U.S. Patent Application, Serial No. 12/342,575, entitled “STORAGE COMMUNITIES OF
INTEREST USING CRYPTOGRAPHIC SPLITTING ”, filed 23 Dec 2008, Attorney Docket

No. TN498A. The present disclosure is related to commonly assigned, and concurrently filed,
U.S. Patent Application, Serial No. 12/342,610, entitled “STORAGE COMMUNITIES OF
INTEREST USING CRYPTOGRAPHIC SPLITTING?”, filed 23 Dec 2008, Attorney Docket
No. TN498B.

The present disclosure is related to commonly assigned, and concurrently filed, U.S.
Patent Application, Serial No. 12/342,379, entitled “SECURE NETWORK ATTACHED
STORAGE DEVICE USING CRYPTOGRAPHIC SPLITTING?”, filed 23 Dec 2008,
Attorney Docket No. TN499.

The present disclosure is related to commonly assigned, and concurrently filed, U.S.
Patent Application, Serial No. 12/342,414, entitled “VIRTUAL TAPE BACKUP
ARRANGEMENT USING CRYPTOGRAPHICALLY SPLIT STORAGE?”, filed 23 Dec
2008, Attorney Docket No. TN508.

These related applications are incorporated by reference herein in its entirety as if it is
set forth in this application.
TECHNICAL FIELD

The present disclosure relates to data storage systems, and security for such systems.

In particular, the present disclosure relates to a block-level data storage security system.

BACKGROUND

Modern organizations generate and store large quantities of data. In many instances,

organizations store much of their important data at a centralized data storage system. It is

WO 2010/057199 PCT/US2009/064824

frequently important that such organizations be able to quickly access the data stored at the
data storage system. In addition, it is frequently important that data stored at the data storage
system be recoverable if the data is written to the data storage system incorrectly or if
portions of the data stored at the repository is corrupted. Furthermore, it is important that
data be able to be backed up to provide security in the event of device failure or other

catastrophic event.

The large scale data centers managed by such organizations typically require mass
data storage structures and storage area networks capable of providing both long-term mass
data storage and access capabilities for application servers using that data. Some data
security measures are usually implemented in such large data storage networks, and are
intended to ensure proper data privacy and prevent data corruption. Typically, data security
is accomplished via encryption of data and/or access control to a network within which the
data is stored. Data can be stored in one or more locations, ¢.g. using a redundant array of

inexpensive disks (RAID) or other techniques.

Mass data storage system 10, illustrated in Figure 1, is an example of an existing mass
data storage system. As shown, an application server 12 (e.g. a database or file system
provider) connects to a number of storage devices 14;-14x providing mass storage of data to
be maintained accessible to the application server via direct connection 15, an IP-based
network 16, and a Storage Area Network 18. Each of the storage devices 14 can host disks

20 of various types and configurations useable to store this data.

The physical disks 20 are made visible/accessible to the application server 12 by
mapping those disks to addressable ports using, for example, logical unit numbering (LUN),
internet SCSI (iSCSI), or common internet file system (CIFS) connection schemes. In the
configuration shown, five disks are made available to the application server 12, bearing
assigned letters I-M. Each of the assigned drive letters corresponds to a different physical
disk 20 (or at least a different portion of a physical disk) connected to a storage device 14,
and has a dedicated addressable port through which that disk 20 is accessible for storage and
retrieval of data. Therefore, the application server 12 directly addresses data stored on the

physical disks 20.

WO 2010/057199 PCT/US2009/064824

A second typical data storage arrangement 30 is shown in Figure 2. The arrangement
30 illustrates a typical data backup configuration useable to tape-backup files stored in a data
network. The network 30 includes an application server 32, which makes a snapshot of data
34 to send to a backup server 36. The backup server 36 stores the snapshot, and operates a
tape management system 38 to record that snapshot to a magnetic tape 40 or other long-term

storage device.

These data storage arrangements have a number of disadvantages. For example, in
the network 10, a number of data access vulnerabilities exist. An unauthorized user can steal
a physical disk 20, and thereby obtain access to sensitive files stored on that disk. Or, the
unauthorized user can exploit network vulnerabilities to observe data stored on disks 20 by
monitoring the data passing in any of the networks 15, 16, 18 between an authorized
application server 12 or other authorized user and the physical disk 20. The network 10 also
has inherent data loss risks. In the network 30, physical data storage can be time consuming,

and physical backup tapes can be subject to failure, damage, or theft.

To overcome some of these disadvantages, systems have been introduced which
duplicate and/or separate files and directories for storage across one or more physical disks.
The files and directories are typically stored or backed up as a monolith, meaning that the
files are logically grouped with other like data before being secured. Although this provides
a convenient arrangement for retrieval, in that a common security construct (e.g. an
encryption key or password) is related to all of the data, it also provides additional risk

exposure if the data is compromised.

For these and other reasons, improvements are desirable.

SUMMARY
In accordance with the following disclosure, the above and other problems are solved

by the following:

In a first aspect, a method for securely storing and retrieving data, the method
comprising receiving, at an electronic computing system, a primary write request that

specifies a primary data block to be written to a primary storage location. The method also

WO 2010/057199 PCT/US2009/064824

comprises cryptographically splitting, at the electronic computing system, the primary data
block into a plurality of secondary data blocks such that the primary data block can be
reconstructed using any subset of the secondary data blocks that includes at least a minimum
number of secondary data blocks and cannot be reconstructed using any subset of the
secondary data blocks that includes fewer than the minimum number of secondary data
blocks, wherein the minimum number of secondary data blocks is less than or equal to a total
number of the secondary data blocks. In addition, the method comprises storing each of the
secondary data blocks at secondary storage locations of different storage devices in a set of
storage devices at a plurality of geographically-separated sites, each of the sites storing at

most the minimum number of secondary data blocks.

In a second aspect, an electronic computing device for securely storing and retrieving
data, the electronic computing system comprising a primary interface that receives a primary
write request that specifies a primary data block to be written to a primary storage location.
The electronic computing device also comprises a write module that causes the electronic
computing device to cryptographically split the primary data block into a plurality of
secondary data blocks such that the primary data block can be reconstructed using any subset
of the secondary data blocks that includes at least a minimum number of secondary data
blocks and cannot be reconstructed using any subset of the secondary data blocks that
includes fewer than the minimum number of secondary data blocks, wherein the minimum
number of secondary data blocks is less than or equal to a total number of the secondary data
blocks. Furthermore, the electronic computing device comprises a secondary interface that
sends secondary write requests to a plurality of storage devices at a plurality of
geographically-separated sites, each of the secondary write requests instructing a different
one of the storage devices to store a different one of the secondary data blocks, wherein each

of the sites stores at most the minimum number of secondary data blocks.

In a third aspect, a computer-readable storage medium comprising instructions that,
when executed by an electronic computing device, cause the electronic computing device to
receive a first primary write request from a client computing device via an electronic
communications network, the first primary write request specifying a first primary data block
to be written to a first primary storage location of a first volume. The instructions also cause

the electronic computing device to cryptographically split the first primary data block into a

5

WO 2010/057199 PCT/US2009/064824

first plurality of secondary data blocks such that the first primary data block can be
reconstructed using any subset of the secondary data blocks that includes at least a minimum
number of secondary data blocks in the first plurality of secondary data blocks and cannot be
reconstructed using any subset of the secondary data blocks in the first plurality of secondary
data blocks that includes fewer than the minimum number of secondary data blocks, wherein
the minimum number of secondary data blocks is less than a total number of the secondary
data blocks in the first plurality of secondary data blocks. In addition, the instructions cause
the electronic computing device to send secondary write requests to different storage devices
in a plurality of storage devices at a plurality of geographically-separated sites, cach of the
sites storing fewer than the minimum number of secondary data blocks in the first plurality of
secondary data blocks. Furthermore, the instructions cause the electronic computing device
to receive a second primary write request from the client computing device via the electronic
communications network, the second primary write request specifying a second primary data
block to be written to a primary storage location of a second volume. The instructions also
cause the electronic computing device to cryptographically split the second primary data
block into a second plurality of secondary data blocks such that the second primary data
block can be reconstructed using any subset of the secondary data blocks that includes at least
the minimum number of secondary data blocks in the second plurality of secondary data
blocks and cannot be reconstructed using any subset of the secondary data blocks in the
second plurality of secondary data blocks that includes fewer than the minimum number of
secondary data blocks, wherein the minimum number of secondary data blocks is less than a
total number of the secondary data blocks in the second plurality of secondary data blocks.
In addition, the instructions cause the electronic computing device to send secondary write
requests to different storage devices in the plurality of storage devices at the plurality of
geographically-separated sites, each of the sites storing fewer than the minimum number of

secondary data blocks in the second plurality of secondary data blocks.

This summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended to

be used to limit the scope of the claimed subject matter.

WO 2010/057199 PCT/US2009/064824

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates an example prior art network providing data storage.

Figure 2 illustrates an example prior art network providing data backup capabilities.

Figure 3 illustrates a data storage system according to a possible embodiment of the
present disclosure.

Figure 4 illustrates a data storage system according to a further possible embodiment
of the present disclosure.

Figure 5 illustrates a portion of a data storage system including a secure storage
appliance, according to a possible embodiment of the present disclosure.

Figure 6 illustrates a block diagram of logical components of a secure storage
appliance, according to a possible embodiment of the present disclosure.

Figure 7 illustrates a portion of a data storage system including a secure storage
appliance, according to a further possible embodiment of the present disclosure;

Figure 8 illustrates dataflow of a write operation according to a possible embodiment
of the present disclosure.

Figure 9 illustrates dataflow of a read operation according to a possible embodiment
of the present disclosure.

Figure 10 illustrates a further possible embodiment of a data storage network
including redundant secure storage appliances, according to a possible embodiment of the
present disclosure.

Figure 11 illustrates incorporation of secure storage appliances in a portion of a data
storage network, according to a possible embodiment of the present disclosure.

Figure 12 illustrates an arrangement of a data storage network according to a possible
embodiment of the present disclosure.

Figure 13 illustrates a physical block structure of data to be written onto a physical
storage device, according to aspects of the present disclosure.

Figure 14 shows a flowchart of systems and methods for providing access to secure
storage in a storage area network according to a possible embodiment of the present
disclosure.

Figure 15 shows a flowchart of systems and methods for reading block-level secured

data according to a possible embodiment of the present disclosure.

WO 2010/057199 PCT/US2009/064824

Figure 16 shows a flowchart of systems and methods for writing block-level secured
data according to a possible embodiment of the present disclosure.

Figure 17 shows a possible arrangement for providing secure storage data backup,
according to a possible embodiment of the present disclosure.

Figure 18 shows a possible arrangement for providing secure storage for a thin client
computing network, according to a possible embodiment of the present disclosure.

Figure 19 is a flowchart that illustrates an example operation of the secure storage
appliance that uses write counters during a write operation.

Figure 20 is a flowchart that illustrates an example operation of the secure storage
appliance that uses write counters during a read operation.

Figure 21 is a flowchart that illustrates an example operation of the secure storage
appliance to retrieve secondary data blocks from a set of fastest-responding storage devices.

Figure 22 is a flowchart that illustrates an example operation of the secure storage
appliance when the secure storage appliance receives a request to change the redundancy
scheme.

Figure 23 is a flowchart that illustrates an example operation of the secure storage
appliance to process a primary /O request using a write-through cache.

Figure 24 is a flowchart that illustrates an example operation of the secure storage
appliance to process primary write requests in the write-through cache.

Figure 25 is a flowchart that illustrates an example operation of the secure storage
appliance to process a primary write request using an outstanding write list.

Figure 26 is a flowchart that illustrates an example operation of the secure storage
appliance to process primary write requests in the outstanding write list.

Figure 27 is a flowchart that illustrates an example operation of the secure storage

appliance to process a primary read request using the outstanding write list.

DETAILED DESCRIPTION

Various embodiments of the present invention will be described in detail with
reference to the drawings, wherein like reference numerals represent like parts and
assemblies throughout the several views. Reference to various embodiments does not limit

the scope of the invention, which is limited only by the scope of the claims attached hereto.

WO 2010/057199 PCT/US2009/064824

Additionally, any examples set forth in this specification are not intended to be limiting and

merely set forth some of the many possible embodiments for the claimed invention.

The logical operations of the various embodiments of the disclosure described herein
are implemented as: (1) a sequence of computer implemented steps, operations, or procedures
running on a programmable circuit within a computer, and/or (2) a sequence of computer
implemented steps, operations, or procedures running on a programmable circuit within a

directory system, database, or compiler.

In general the present disclosure relates to a block-level data storage security system.
By block-level, it is intended that the data storage and security performed according to the
present disclosure is not performed based on the size or arrangement of logical files (e.g. on a
per-file or per-directory level), but rather that the data security is based on individual read and
write operations related to physical blocks of data. In various embodiments of the present
disclosure, the data managed by the read and write operations are split or grouped on a
bitwise or other physical storage level. These physical storage portions of files can be stored
in a number of separated components and encrypted. The split, encrypted data improves data
security for the data “at rest” on the physical disks, regardless of the access vulnerabilities of
physical disks storing the data. This is at least in part because the data cannot be
recognizably reconstituted without having appropriate access and decryption rights to
multiple, distributed disks. The access rights limitations provided by such a system also
makes deletion of data simple, in that deletion of access rights (e.g. encryption keys) provides

for effective deletion of all data related to those rights.

The various embodiments of the present disclosure are applicable across a number of
possible networks and network configurations; in certain embodiments, the block-level data
storage security system can be implemented within a storage area network (SAN) or
Network-Attached Storage (NAS). Other possible networks in which such systems can be

implemented exist as well.

Referring now to Figure 3, a block diagram illustrating an example data storage
system 100 is shown, according to the principles of the present disclosure. In the example of
Figure 3, system 100 includes a set of client devices 105A through 105N (collectively, “client

devices 105”). Client devices 105 can be a wide variety of different types of devices. For

9

WO 2010/057199 PCT/US2009/064824

example, client devices 105 can be personal computers, laptop computers, network
telephones, mobile telephones, television set top boxes, network televisions, video gaming
consoles, web kiosks, devices integrated into vehicles, mainframe computers, personal media
players, intermediate network devices, network appliances, and other types of computing

devices. Client devices 105 may or may not be used directly by human users.

Client devices 105 are connected to a network 110. Network 110 facilitates
communication among electronic devices connected to network 110. Network 110 can be a
wide variety of electronic communication networks. For example, network 110 can be a
local-area network, a wide-area network (e.g., the Internet), an extranet, or another type of
communication network. Network 110 can include a variety of connections, including wired
and wireless connections. A variety of communications protocols can be used on network
110 including Ethernet, WiFi, WiMax, Transfer Control Protocol, and many other

communications protocols.

In addition, system 100 includes an application server 115. Application server 115 is
connected to the network 110, which is able to facilitate communication between the client
devices 105 and the application server 115. The application server 115 provides a service to
the client devices 105 via network 110. For example, the application server 115 can provide
a web application to the client devices 105. In another example, the application server 115
can provide a network-attached storage server to the client devices 105. In another example,
the application server 115 can provide a database access service to the client devices 105.

Other possibilities exist as well.

The application server 115 can be implemented in several ways. For example, the
application server 115 can be implemented as a standalone server device, as a server blade, as
an intermediate network device, as a mainframe computing device, as a network appliance, or
as another type of computing device. Furthermore, it should be appreciated that the
application server 115 can include a plurality of separate computing devices that operate like
one computing device. For instance, the application server 115 can include an array of server
blades, a network data center, or another set of separate computing devices that operate as if
one computing device. In certain instances, the application server can be a virtualized
application server associated with a particular group of users, as described in greater detail

below in Figure 18.
10

WO 2010/057199 PCT/US2009/064824

The application server 115 is communicatively connected to a secure storage
appliance 120 that is integrated in a storage area network (SAN) 125. Further, the secure
storage appliance 120 is communicatively connected to a plurality of storage devices 130A
through 130N (collectively, “storage devices 130”). Similar to the secure storage appliance

120, the storage devices 130 can be integrated with the SAN 125.

The secure storage appliance 120 can be implemented in several ways. For example,
the secure storage appliance 120 can be implemented as a standalone server device, as a
server blade, as an intermediate network device, as a mainframe computing device, as a
network appliance, or as another type of computing device. Furthermore, it should be
appreciated that, like the application server 115, the secure storage appliance 120 can include
a plurality of separate computing devices that operate like one computing device. In certain
embodiments, SAN 125 may include a plurality of secure storage appliances. Each of secure
storage appliances 214 is communicatively connected to a plurality of the storage devices
130. In addition, it should be appreciated that the secure storage appliance 120 can be

implemented on the same physical computing device as the application server 115.

The application server 115 can be communicatively connected to the secure storage
appliance 120 in a variety of ways. For example, the application server 115 can be
communicatively connected to the secure storage appliance 120 such that the application
server 115 explicitly sends I/O commands to secure storage appliance 120. In another
example, the application server 115 can be communicatively connected to secure storage
appliance 120 such that the secure storage appliance 120 transparently intercepts 1/0
commands sent by the application server 115. On a physical level, the application server 115
and the secure storage appliance 120 can be connected via a communication interface that can
support a SCSI command set. Examples of such interfaces include Fibre Channel and iSCSI

interfaces.

The storage devices 130 can be implemented in a variety of different ways as well.
For example, one or more of the storage devices 130 can be implemented as disk arrays, tape

drives, JBODs (“just a bunch of disks”), or other types of electronic data storage devices.

In various embodiments, the SAN 125 is implemented in a variety of ways. For

example, the SAN 125 can be a local-area network, a wide-area network (e.g., the Internet),

11

WO 2010/057199 PCT/US2009/064824

an extranet, or another type of electronic communication network. The SAN 125 can include
a variety of connections, including wired and wireless connections. A variety of
communications protocols can be used on the SAN 125 including Ethernet, WiFi, WiMax,
Transfer Control Protocol, and many other communications protocols. In certain
embodiments, the SAN 125 is a high-bandwidth data network provided using, at least in part,
an optical communication network employing Fibre Channel connections and Fibre Channel
Protocol (FCP) data communications protocol between ports of data storage computing

Systems.

The SAN 125 additionally includes an administrator device 135. The administrator
device 135 is communicatively connected to the secure storage appliance 120 and optionally
to the storage devices 130. The administrator device 135 facilitates administrative
management of the secure storage appliance 120 and to storage devices. For example, the
administrator device 135 can provide an application that can transfer configuration
information to the secure storage appliance 120 and the storage devices 130. In another
example, the administrator device 135 can provide a directory service used to store

information about the SAN 125 resources and also centralize the SAN 125.

In various embodiments, the administrator device 135 can be implemented in several
ways. For example, the administrator device 135 can be implemented as a standalone
computing device such as a PC or a laptop, or as another type of computing device.
Furthermore, it should be appreciated that, like the secure storage appliance 120, the
administrator device 135 can include a plurality of separate computing devices that operate as

one computing device.

Now referring to Figure 4, a data storage system 200 is shown according to a possible
embodiment of the present disclosure. The data storage system 200 provides additional
security by way of introduction of a secure storage appliance and related
infrastructure/functionality into the data storage system 200, as described in the generalized

example of Figure 3.

In the embodiment shown, the data storage system 200 includes an application server
202, upon which a number of files and databases are stored. The application server 202 is

generally one or more computing devices capable of connecting to a communication network

12

WO 2010/057199 PCT/US2009/064824

and providing data and/or application services to one or more users (€.g. in a client-server,
thin client, or local account model). The application server 202 is connected to a plurality of
storage systems 204. In the embodiment shown, storage systems 2045 are shown, and are
illustrated as a variety of types of systems including direct local storage, as well as hosted
remote storage. Each storage system 204 manages storage on one or more physical storage
devices 206. The physical storage devices 206 generally correspond to hard disks or other
long-term data storage devices. In the specific embodiment shown, the JBOD storage system
204, connects to physical storage devices 206;, the NAS storage system 204, connects to
physical storage device 206,, the JBOD storage system 2043 connects to physical storage
devices 20637, the storage system 2044 connects to physical storage devices 2065 15, and the
JBOD storage system 2045 connects to physical storage device 206,35. Other arrangements

are possible as well, and are in general a matter of design choice.

In the embodiment shown, a plurality of different networks and communicative
connections reside between the application server 202 and the storage systems 204. For
example, the application server 202 is directly connected to storage system 204, via a JBOD
connection 208, e.g. for local storage. The application server 202 is also communicatively
connected to storage systems 2043 via network 210, which uses any of a number of IP-based
protocols such as Ethernet, WiFi, WiMax, Transfer Control Protocol, or any other of a
number of communications protocols. The application server 202 also connects to storage
systems 204,45 via a storage area network (SAN) 212, which can be any of a number of types

of SAN networks described in conjunction with SAN 125, above.

A secure storage appliance 120 is connected between the application server 202 and a
plurality of the storage systems 204. The secure storage appliance 120 can connect to
dedicated storage systems (e.g. the JBOD storage system 204s in Figure 4), or to storage
systems connected both directly through the SAN 212, and via the secure storage appliance
120 (e.g. the JBOD storage system 2043 and storage system 2044). Additionally, the secure
storage appliance 120 can connect to systems connected via the network 210 (e.g. the JBOD
system 2043). Other arrangements are possible as well. In instances where the secure
storage appliance 120 is connected to a storage system 204, one or more of the physical
storage devices 206 managed by the corresponding system is secured by way of data

processing by the secure storage appliance. In the embodiment shown, the physical storage

13

WO 2010/057199 PCT/US2009/064824

devices 20637, 2061013 are secured physical storage devices, meaning that these devices
contain data managed by the secure storage appliance 120, as explained in further detail

below.

Generally, inclusion of the secure storage appliance 120 within the data storage
system 200 may provide improved data security for data stored on the physical storage
devices. As is explained below, this can be accomplished, for example, by cryptographically
splitting the data to be stored on the physical devices, such that generally each device
contains only a portion of the data required to reconstruct the originally stored data, and that
portion of the data is a block-level portion of the data encrypted to prevent reconstitution by

unauthorized users.

Through use of the secure storage appliance 120 within the data storage system 200, a
plurality of physical storage devices 208 can be mapped to a single volume, and that volume
can be presented as a virtual disk for use by one or more groups of users. In comparing the
example data storage system 200 to the prior art system shown in Figure 1, it can be seen that
the secure storage appliance 120 allows a user to have an arrangement other than one-to-one
correspondence between drive volume letters (in Figure 1, drive letters I-M) and physical
storage devices. In the embodiment shown, two additional volumes are exposed to the
application server 202, virtual disk drives T and U, in which secure copies of data can be
stored. Virtual disk having volume label T is illustrated as containing secured volumes F3
and F7 (i.e. the drives mapped to the iISCSI2 port of the application server 202, as well as a
new drive), thereby providing a secured copy of information on either of those drives for
access by a group of users. Virtual disk having volume label U provides a secured copy of
the data held in DBI1 (i.e. the drive mapped to LUNO3). By distributing volumes across
multiple disks, security is enhanced because copying or stealing data from a single physical
disk will generally be insufficient to access that data (i.e. multiple disks of data, as well as

separately-held encryption keys, must be acquired)

Referring now to Figure 5, a portion of the data storage system 200 is shown,
including details of the secure storage appliance 120. In the embodiment shown, the secure
storage appliance 120 includes a number of functional modules that generally allow the
secure storage appliance to map a number of physical disks to one or more separate,

accessible volumes that can be made available to a client, and presenting a virtual disk to
14

WO 2010/057199 PCT/US2009/064824

clients based on those defined volumes. Transparently to the user, the secure storage

appliance applies a number of techniques to stored and retrieved data to provide data security.

In the embodiment shown, the secure storage appliance 120 includes a core functional
unit 216, a LUN mapping unit 218, and a storage subsystem interface 220. The core
functional unit 216 includes a data conversion module 222 that operates on data written to
physical storage devices 206 and retrieved from the physical storage devices 206. In general,
when the data conversion module 222 receives a logical unit of data (e.g. a file or directory)
to be written to physical storage devices 206, it splits that primary data block at a physical
level (i.e. a “block level”) and encrypts the secondary data blocks using a number of

encryption keys.

The manner of splitting the primary data block, and the number of physical blocks
produced, is dictated by additional control logic within the core functional unit 216. As
described in further detail below, during a write operation that writes a primary data block to
physical storage (e.g. from an application server 202), the core functional unit 216 directs the
data conversion module 222 to split the primary data block received from the application
server 202 into N separate secondary data blocks. Each of the N secondary data blocks is
intended to be written to a different physical storage device 206 within the data storage
system 200. The core functional unit 216 also dictates to the data conversion module 222 the
number of shares (for example, denoted as M of the N total shares) that are required to

reconstitute the primary data block when requested by the application server 202.

The secure storage appliance 120 connects to a metadata store 224, which is
configured to hold metadata information about the locations, redundancy, and encryption of
the data stored on the physical storage devices 206. The metadata store 224 is generally held
locally or in proximity to the secure storage appliance 120, to ensure fast access of metadata
regarding the shares. The metadata store 224 can be, in various embodiments, a database or
file system storage of data describing the data connections, locations, and shares used by the
secure storage appliance. Additional details regarding the specific metadata stored in the

metadata store 224 are described below.

The LUN mapping unit 218 generally provides a mapping of one or more physical

storage devices 206 to a volume. Each volume corresponds to a specific collection of

15

WO 2010/057199 PCT/US2009/064824

physical storage devices 206 upon which the data received from client devices is stored. In
contrast, typical prior art systems assign a LUN (logical unit number) or other identifier to
each physical storage device or connection port to such a device, such that data read
operations and data write operations directed to a storage system 204 can be performed
specific to a device associated with the system. In the embodiment shown, the LUNs
correspond to target addressable locations on the secure storage appliance 120, of which one
or more is exposed to a client device, such as an application server 202. Based on the
mapping of LUNs to a volume, the virtual disk related to that volume appears as a directly-
addressable component of the data storage system 200, having its own LUN. From the
perspective of the application server 202, this obscures the fact that primary data blocks
written to a volume can in fact be split, encrypted, and written to a plurality of physical

storage devices across one or more storage systems 204.

The storage subsystem interface 220 routes data from the core functional unit 216 to
the storage systems 204 communicatively connected to the secure storage appliance 120. The
storage subsystem interface 220 allows addressing various types of storage systems 204.

Other functionality can be included as well.

In the embodiment shown, a plurality of LUNs are made available by the LUN
mapping unit 218, for addressing by client devices. As shown by way of example, LUNs
LUNO4-LUNnn are illustrated as being addressable by client devices. Within the core
functional unit 216, the data conversion module 222 associates data written to each LUN with
a share of that data, split into N shares and encrypted. In the embodiment shown in the
example of Fig. 5, a block read operation or block write operation to LUNO4 is illustrated as
being associated with a four-way write, in which secondary data blocks L04.a through L04.d
are created, and mapped to various devices connected to output ports, shown in Figure 5 as
network interface cards (NICs), a Fibre Channel interface, and a serial ATA interface. An
analogous operation is also shown with respect to LUNOS, but written to a different

combination of shares and corresponding physical disks.

The core functional unit 216, LUN mapping unit 218, and storage subsystem interface
220 can include additional functionality as well, for managing timing and efficiency of data

read and write operations. Additional details regarding this functionality are described in

16

WO 2010/057199 PCT/US2009/064824

another embodiment, detailed below in conjunction with the secure storage appliance

functionality described in Figure 6.

The secure storage appliance 120 includes an administration interface 226 that allows
an administrator to set up components of the secure storage appliance 120 and to otherwise
manage data encryption, splitting, and redundancy. The administration interface 226 handles
initialization and discovery on the secure storage appliance, as well as creation, modifying,
and deletion of individual volumes and virtual disks; event handling; data base
administration; and other system services (such as logging). Additional details regarding

usage of the administration interface 226 are described below in conjunction with Figure 14.

In the embodiment shown of the secure storage appliance 120, the secure storage
appliance 120 connects to an optional enterprise directory 228 and a key manager 230 via the
administration interface 226. The enterprise directory 228 is generally a central repository
for information about the state of the secure storage appliance 120, and can be used to help
coordinate use of multiple secure storage appliances in a network, as illustrated in the
configuration shown in Figure 10, below. The enterprise directory 228 can store, in various
embodiments, information including a remote user table, a virtual disk table, a metadata
table, a device table, log and audit files, administrator accounts, and other secure storage

appliance status information.

In embodiments lacking the enterprise directory 228, redundant secure storage
appliances 214 can manage and prevent failures by storing status information of other secure
storage appliances, to ensure that each appliance is aware of the current state of the other

appliances.

The key manager 230 stores and manages certain keys used by the data storage
system 200 for encrypting data specific to various physical storage locations and various
individuals and groups accessing those devices. In certain embodiments, the key manager
230 stores workgroup keys. Each workgroup key relates to a specific community of
individuals (i.e. a “community of interest”) and a specific volume, thereby defining a virtual
disk for that community. The key manager 230 can also store local copies of session keys for
access by the secure storage appliance 120. Secure storage appliance 120 uses each of the

session keys to locally encrypt data on different ones of physical storage devices 206.

17

WO 2010/057199 PCT/US2009/064824

Passwords can be stored at the key manager 230 as well. In certain embodiments, the key
manager 230 is operable on a computing system configured to execute any of a number of
key management software packages, such as the Key Management Service provided for a

Windows Server environment, manufactured by Microsoft Corp. of Redmond, Washington.

Although the present disclosure provides for encryption keys including session keys
and workgroup keys, additional keys may be used as well, such as a disk signature key,
security group key, client key, or other types of keys. Each of these keys can be stored on
one or more of physical storage devices 206, at the secure storage appliance 120, or in the

key manager 230.

Although Figures 4-5 illustrate a particular arrangement of a data storage system 200
for secure storage of data, additional arrangements are possible as well that can operate
consistently with the concepts of the present disclosure. For example, in certain
embodiments, the system can include a different number or type of storage systems or
physical storage devices, and can include one or more different types of client systems in
place of or in addition to the application server 202. Furthermore, the secure storage
appliance 120 can be placed in any of a number of different types of networks, but does not

require the presence of multiple types of networks as illustrated in the example of Figure 4.

Figure 6 is a block diagram that illustrates example logical components of the secure
storage appliance 120. Figure 6 represents only one example of the logical components of
the secure storage appliance 120, for performing the operations described herein. The
operations of the secure storage appliance 120 can be conceptualized and implemented in

many different ways.

As illustrated in the example of Figure 6, the secure storage appliance 120 comprises
a primary interface 300 and a secondary interface 302. The primary interface 300 enables
secure storage appliance 120 to receive primary I/O requests and to send primary 1/O
responses. For instance, the primary interface 300 can enable secure storage appliance 120 to
receive primary I/O requests (e.g. read and write requests) from the application server device
202 and to send primary I/O responses to the application server 202. Secondary interface
enables the secure storage appliance 120 to send secondary 1/O requests to the storage

systems 204, and to receive secondary I/O responses from those storage systems 204.

18

WO 2010/057199 PCT/US2009/064824

In addition, the secure storage appliance 120 comprises a parser driver 304. The
parser driver 304 generally corresponds to the data conversion module 222 of Figure 5, in
that it processes primary I/O requests to generate secondary 1/0 requests and processes
secondary I/0 responses to generate primary I/O responses. To accomplish this, the parser
driver 304 comprises a read module 305 that processes primary read requests to generate
secondary read requests and processes secondary read responses to generate primary read
responses. In addition, the parser driver 304 comprises a decryption module 308 that enables
the read module 305 to reconstruct a primary data block using secondary blocks contained in
secondary read responses. Example operations performed by the read module 305 are
described below with reference to Fig. 18 and Fig. 21. Furthermore, the parser driver 304
comprises a write module 306 that processes primary write requests to generate secondary
write requests and processes secondary write responses to generate primary write responses.
The parser driver 304 also comprises an encryption module 310 that enables the write module
306 to cryptographically split primary data blocks in primary write requests into secondary
data blocks to put in secondary write requests. An example operation performed by the write

module 306 is described below as well with reference to Figs. 19 and 23.

In the example of Figure 6, the secure storage appliance 120 also comprises a cache
driver 315. When enabled, the cache driver 315 receives primary I/O requests received by
the primary interface 300 before the primary 1/O requests are received by parser driver 304.
When the cache driver 315 receives a primary read request to read data at a primary storage
location of a virtual disk, the cache driver 315 determines whether a write-through cache 316
at the secure storage appliance 120 contains a primary write request to write a primary data
block to the primary storage location of the virtual disk. If the cache driver 315 determines
that the write-through cache 316 contains a primary write request to write a primary data
block to the primary storage location of the virtual disk, the cache driver 315 outputs a
primary read response that contains the primary data block. When the parser driver 304
receives a primary write request to write a primary data block to a primary storage location of
a virtual disk, the cache driver 315 caches the primary write request in the write-through
cache 316. A write-through module 318 performs write operations to memory from the

write-through cache 316.

19

WO 2010/057199 PCT/US2009/064824

The secure storage appliance 120 also includes an outstanding write list (OWL)
module 326. When enabled, the OWL module 326 receives primary 1/O requests from the
primary interface 300 before the primary I/O requests are received by the parser driver 304.
The OWL module 326 uses an outstanding write list 320 to process the primary 1/O requests.

In addition, the secure storage appliance 120 comprises a backup module 324. The
backup module 324 performs an operation that backs up data at the storage systems 204 to

backup devices, as described below in conjunction with Figures 17-18.

The secure storage appliance 120 also comprises a configuration change module 312.
The configuration change module 312 performs an operation that creates or destroys a
volume, and sets its redundancy configuration. Example redundancy configurations (i.e. “M
of N’ configurations) are described throughout the present disclosure, and refer to the number
of shares formed from a block of data, and the number of those shares required to reconstitute
the block of data. Further discussion is provided with respect to possible redundancy

configurations below, in conjunction with Figures 8-9.

It should be appreciated that many alternate implementations of the secure storage
appliance 120 are possible. For example, a first alternate implementation of the secure
storage appliance 120 can include the OWL module 326, but not the cache driver 315, or vice
versa. In other examples, the secure storage appliance 120 might not include the backup
module 324 or the configuration change module 312. Furthermore, there can be many

alternate operations performed by the various modules of the secure storage appliance 120.

Figure 7 illustrates further details regarding connections to and operational hardware
and software included in secure storage appliance 120, according to a possible embodiment
of the present disclosure. The secure storage appliance 120 illustrates the various operational
hardware modules available in the secure storage appliance to accomplish the data flow and
software module operations described in Figures 4-6, above. In the embodiment shown, the
secure storage appliance 120 is communicatively connected to a client device 402, an
administrative console 404, a key management server 406, a plurality of storage devices 408,

and an additional secure storage appliance 120°.

20

WO 2010/057199 PCT/US2009/064824

In the embodiment shown, the secure storage appliance 120 connects to the client
device 402 via both an IP network connection 401 and a SAN network connection 403. The
secure storage appliance 120 connects to the administrative console 404 by one or more IP
connections 405 as well. The key management server 406 is also connected to the secure
storage appliance 120 by an IP network connection 407. The storage devices 408 are
connected to the secure storage appliance 120 by the SAN network connection 403, such as a
Fibre Channel or other high-bandwidth data connection. Finally, in the embodiment shown,
secure storage appliances 120, 120’ are connected via any of a number of types of
communicative connections 411, such as an IP or other connection, for communicating
heartbeat messages and status information for coordinating actions of the secure storage
appliance 120 and the secure storage appliance 120°. Although in the embodiment shown,
these specific connections and systems are included, the arrangement of devices connected to
the secure storage appliance 120, as well as the types and numbers of devices connected to

the appliance may be different in other embodiments.

The secure storage appliance 120 includes a number of software-based components,
including a management service 410 and a system management module 412. The
management service 410 and the system management module 412 each connect to the
administrative console 404 or otherwise provide system management functionality for the
secure storage appliance 120. The management service 410 and system management module
412 are generally used to set various settings in the secure storage appliance 120, view logs
414 stored on the appliance, and configure other aspects of a network including the secure
storage appliance 120. Additionally, the management service 410 connects to the key
management server 406, and can request and receive keys from the key management server

406 as needed.

A cluster service 416 provides synchronization of state information between the
secure storage appliance 120 and secure storage appliance 120°. In certain embodiments, the
cluster service 416 manages a heartbeat message and status information exchanged between
the secure storage appliance 120 and the secure storage appliance 120°. Secure storage
appliance 120 and secure storage appliance 120’ periodically exchange heartbeat messages to
ensure that secure storage appliance 120 and secure storage appliance 120’ maintain contact.

Secure storage appliance 120 and secure storage appliance 120’ maintain contact to ensure

21

WO 2010/057199 PCT/US2009/064824

that the state information received by each secure storage appliance indicating the state of the
other secure storage appliance is up to date. An active directory services 418 stores the status
information, and provides status information periodically to other secure storage appliances

via the communicative connection 411.

Additional hardware and/or software components provide datapath functionality to
the secure storage appliance 120 to allow receipt of data and storage of data at the storage
devices 408. In the embodiment shown, the secure storage appliance 120 includes a SNMP
connection module 420 that enables secure storage appliance 120 to communicate with client
devices via the IP network connection 401, as well as one or more high-bandwidth data
connection modules, such as a Fibre Channel input module 422 or SCSI input module 424 for
receiving data from the client device 402 or storage devices 408. Analogous data output
modules including a Fibre Channel connection module 421 or SCSI connection module 423
can connect to the storage devices 408 or client device 402 via the SAN network connection

403 for output of data.

Additional functional systems within the secure storage appliance 120 assist in
datapath operations. A SCSI command module 425 parses and forms commands to be sent
out or received from the client device 402 and storage devices 408. A multipath
communications module 426 provides a generalized communications interface for the secure
storage appliance 120, and a disk volume 428, disk 429, and cache 316 provide local data

storage for the secure storage appliance 120.

Additional functional components can be included in the secure storage appliance 120
as well. In the embodiment shown, a parser driver 304 provides data splitting and encryption
capabilities for the secure storage appliance 120, as previously explained. A provider 434
includes volume management information, for creation and destruction of volumes. An
events module 436 generates and handles events based on observed occurrences at the secure

storage appliance (e.g. data errors or communications errors with other systems).

Figures 8-9 provide a top level sense of a dataflow occurring during write and read
operations, respectively, passing through a secure storage appliance, such as the secure
storage appliance described above in conjunction with Figures 3-7. Figure 8 illustrates a

dataflow of a write operation according to a possible embodiment of the present disclosure,

22

WO 2010/057199 PCT/US2009/064824

while Figure 9 illustrates dataflow of a read operation. In the write operation of Figure 8, a
primary data block 450 is transmitted to a secure storage appliance (e.g. from a client device
such as an application server). The secure storage appliance can include a functional block
460 to separate the primary data block into N secondary data blocks 470, shown as S-1
through S-N. In certain embodiments, the functional block 460 is included in a parser driver,
such as parser driver 304, above. The specific number of secondary data blocks can vary in
different networks, and can be defined by an administrative user having access to control
settings relevant to the secure storage appliance. Each of the secondary data blocks 470 can
be written to separate physical storage devices. In the read operation of Figure 9, M
secondary data blocks are accessed from physical storage devices, and provided to the
functional block 460 (e.g. parser driver 304). The functional block 460 then performs an
operation inverse to that illustrated in Figure 8, thereby reconstituting the primary data block
450. The primary data block can then be provided to the requesting device (e.g. a client

device).

In each of Figures 8-9, the N secondary data blocks 470 each represent a
cryptographically split portion of the primary data block 450, such that the functional block
460 requires only M of the N secondary data blocks (where M <= N) to reconstitute the
primary data block 450. The cryptographic splitting and data reconstitution of Figures 8-9
can be performed according to any of a number of techniques. In one embodiment, the parser
driver 304 executes SecureParser software provided by Security First Corporation of Rancho

Santa Margarita, California.

Although, in the embodiment shown in Figure 9, the parser driver 304 uses the N
secondary data blocks 470 to reconstitute the primary data block 450, it is understood that in
certain applications, fewer than all of the N secondary data blocks 470 are required. For
example, when the parser driver 304 generates N secondary data blocks during a write
operation such that only M secondary data blocks are required to reconstitute the primary
data block (where M < N), then data conversion module 60 only needs to read that subset of

secondary data block from physical storage devices to reconstitute the primary data block

450.

For example, during operation of the parser driver 304 a data conversion routine may

generate four secondary data blocks 470, of which two are needed to reconstitute a primary
23

WO 2010/057199 PCT/US2009/064824

data block (i.e. M =2, N =4). In such an instance, two of the secondary data blocks 470 may
be stored locally, and two of the secondary data blocks 470 may be stored remotely to ensure
that, upon failure of a device or catastrophic event at one location, the primary data block 450
can be recovered by accessing one or both of the secondary data blocks 470 stored remotely.
Other arrangements are possible as well, such as one in which four secondary data blocks 470
are stored locally and all are required to reconstitute the primary data block 450 (i.e. M =4, N
=4). At its simplest, a single share could be created (M =N = 1).

Figure 10 illustrates a further possible embodiment of a data storage system 250,
according to a possible embodiment of the present disclosure. The data storage system 250
generally corresponds to the data storage system 200 of Figure 4, above, but further includes
redundant secure storage appliances 214. Each of secure storage appliances 214 may be an
instance of secure storage appliance 120. Inclusion of redundant secure storage appliances
214 allows for load balancing of read and write requests in the data storage system 250, such
that a single secure storage appliance is not required to process every secure primary read
command or primary write command passed from the application server 202 to one of the
secure storage appliances 214. Use of redundant secure storage appliances also allows for
failsafe operation of the data storage system 250, by ensuring that requests made of a failed

secure storage appliance are rerouted to alternative secure storage appliances.

In the embodiment of the data storage system 250 shown, two secure storage
appliances 214 are shown. Each of the secure storage appliances 214 can be connected to
any of a number of clients (e.g. the application server 202), as well as secured storage
systems 204, the metadata store 224, and a remote server 252. In various embodiments, the
remote server 252 could be, for example, an enterprise directory 228 and/or a key manager

230.

The secure storage appliances 214 are also typically connected to each other via a
network connection. In the embodiment shown in the example of Fig. 10, the secure storage
appliances 214 reside within a network 254. In various embodiments, network 254 can be,
for example, an IP-based network, SAN as previously described in conjunction with Figures
4-5, or another type of network. In certain embodiments, the network 254 can include
aspects of one or both types of networks. An example of a particular configuration of such a

network is described below in conjunction with Figures 11-12.
24

WO 2010/057199 PCT/US2009/064824

The secure storage appliances 214 in the data storage system 250 are connected to
cach other across a TCP/IP portion of the network 254. This allows for the sharing of
configuration data, and the monitoring of state, between the secure storage appliances 214.
In certain embodiments there can be two IP-based networks, one for sharing of heartbeat
information for resiliency, and a second for configuration and administrative use. The secure
storage appliance 120 can also potentially be able to access the storage systems 204,

including remote storage systems, across an IP network using a data interface.

In operation, sharing of configuration data, state data, and heartbeat information
between the secure storage appliances 214 allows the secure storage appliances 214 to
monitor and determine whether other secure storage appliances are present within the data
storage system 250. Each of the secure storage appliances 214 can be assigned specific
addresses of read operations and write operations to process. Secure storage appliances 214
can reroute received I/O commands to the appropriate one of the secure storage appliances
214 assigned that operation based upon the availability of that secure storage appliance and
the resources available to the appliance. Furthermore, the secure storage appliances 214 can
avoid addressing a common storage device 204 or application server 202 port at the same
time, thereby avoiding conflicts. The secure storage appliances 214 also avoid reading from

and writing to the same share concurrently to prevent the possibility of reading stale data.

When one of the secure storage appliances 214 fails, a second secure storage
appliance can determine the state of the failed secure storage appliance based upon tracked
configuration data (e.g. data tracked locally or stored at the remote server 252). The
remaining operational one of the secure storage appliances 214 can also access information in
the metadata store 224, including share and key information defining volumes, virtual disks

and client access rights, to either process or reroute requests assigned to the failed device.

As previously described, the data storage system 250 is intended to be exemplary of a
possible network in which aspects of the present disclosure can be implemented; other
arrangements are possible as well, using different types of networks, systems, storage

devices, and other components.

Referring now to Figure 11, one possibility of a methodology of incorporating secure

storage appliances into a data storage network, such as a SAN, is shown according to a

25

WO 2010/057199 PCT/US2009/064824

possible embodiment of the present disclosure. In the embodiment shown, a secure storage
network 500 provides for fully redundant storage, in that each of the storage systems
connected at a client side of the network is replicated in mass storage, and each component of
the network (switches, secure storage appliances) is located in a redundant array of systems,
thereby providing a failsafe in case of component failure. In alternative embodiments, the
secure storage network 500 can be simplified by including only a single switch and/or single
secure storage appliance, thereby reducing the cost and complexity of the network (while

coincidentally reducing the protection from component failure).

In the embodiment shown, an overall secure storage network 500 includes a plurality
of data lines 502a-d interconnected by switches 504a-b. Data lines 502a-b connect to storage
systems 506a-c, which connect to physical storage disks 508a-f. The storage systems 506a-c
correspond generally to smaller-scale storage servers, such as an application server, client
device, or other system as previously described. In the embodiment shown in the example of
Fig. 11, storage system 506a connects to physical storage disks 508a-b, storage system 506b
connects to physical storage disks 508c-d, and storage system 506¢ connects to physical
storage disks 508¢-f. The secure storage network 500 can be implemented in a number of
different ways, such as through use of Fibre Channel or iSCSI communications as the data
lines 502a-d, ports, and other data communications channels. Other high bandwidth

communicative connections can be used as well.

The switches 504a-b connect to a large-scale storage system, such as the mass storage
510 via the data lines 502¢c-d. The mass storage 510 includes, in the embodiment shown, two
data directors 512a-b, which respectively direct data storage and requests for data to one or
more of the back end physical storage devices 514a-d. In the embodiment shown, the
physical storage devices 514a-c are unsecured (i.e. not cryptographically split and encrypted),
while the physical storage device 514d stores secure data (i.e. password secured or other

arrangement).

The secure storage appliances 516a-b also connect to the data lines 502a-d, and each
connect to the secure physical storage devices 518a-¢. Additionally, the secure storage
appliances 516a-b connect to the physical storage devices 520a-c, which can reside at a

remote storage location (e.g. the location of the large-scale storage system, mass storage

510).
26

WO 2010/057199 PCT/US2009/064824

In certain embodiments providing redundant storage locations, the secure storage
network 500 allows a user to configure the secure storage appliances 516a-b such that, using
the M of N cryptographic splitting enabled in each of the secure storage appliances 516a-b, M
shares of data can be stored on physical storage devices at a local location to provide fast
retrieval of data, while another M shares of data can be stored on remote physical storage
devices at a remote location. Therefore, failure of one or more physical disks or secure
storage appliances does not render data unrecoverable, because a sufficient number of shares
of data remain accessible to at least one secure storage appliance capable of reconstituting

requested data.

Figure 12 illustrates a particular cluster-based arrangement of a data storage network
600 according to a possible embodiment of the present disclosure. The data storage network
600 is generally arranged such that clustered secure storage appliances access and store
shares on clustered physical storage devices, thereby ensuring fast local storage and access to
the cryptographically split data. The data storage network 600 is therefore a particular
arrangement of the networks and systems described above in Figures 1-11, in that it

represents an arrangement in which physical proximity of devices is accounted for.

In the embodiment shown, the data storage network 600 includes two clusters, 602a-
b. Each of the clusters 602a-b includes a pair of secure storage appliances 604a-b,
respectively. In the embodiment shown, the clusters 602a-b are labeled as clusters A and B,
respectively, with each cluster including two secure storage appliances 604a-b (shown as
appliances Al and A2 in cluster 602a, and appliances B1 and B2 in cluster 602b,
respectively). The secure storage appliances 604a-b within each of the clusters 602a-b are
connected via a data network 605 (e.g. via switches or other data connections in an 1SCSI,
Fibre Channel, or other data network, as described above and indicated via the nodes and
connecting lines shown within the data network 605) to a plurality of physical storage devices
610. Additionally, the secure storage appliances 604a-b are connected to client devices 612,
shown as client devices C1-C3, via the data storage network 605. The client devices 612 can
be any of a number of types of devices, such as application servers, database servers, or other

types of data-storing and managing client devices.

In the embodiment shown, the client devices 612 are connected to the secure storage

appliances 604a-b such that each of client devices 612 can send 1/O operations (e.g. a read
27

WO 2010/057199 PCT/US2009/064824

request or a write request) to two or more of the secure storage appliances 604a-b, to ensure a
backup datapath in case of a connection failure to one of secure storage appliances 604a-b.
Likewise, the secure storage appliances 604a-b of cach of clusters 602a-b are both connected
to a common set of physical storage devices 610. Although not shown in the example of Fig.
12, the physical storage devices 610 can be, in certain embodiments, managed by separate
storage systems, as described above. Such storage systems are removed from the illustration

of the data storage network 600 for simplicity, but can be present in practice.

An administrative system 614 connects to a maintenance console 616 via a local area
network 618. Maintenance console 616 has access to a secured domain 620 of an IP-based
network 622. The maintenance console 616 uses the secured domain 620 to access and
configure the secure storage appliances 604a-b. One method of configuring the secure

storage appliances is described below in conjunction with Figure 14.

The maintenance console 616 is also connected to both the client devices 612 and the
physical storage devices 610 via the IP-based network 622. The maintenance console 616
can determine the status of each of these devices to determine whether connectivity issues

exist, or whether the device itself has become non-responsive.

Referring now to Figure 13, an example physical block structure of data written onto
one or more physical storage devices is shown, according to aspects of the present disclosure.
The example of Fig. 13 illustrates three strips 700A, 700B, and 700C (collectively, “shares”).
Each of strips 700 is a share of a physical storage device devoted to storing data associated
with a common volume. For example, in a system in which a write operation splits a primary
data block into three secondary data blocks (i.e. N = 3), the strips 700 (shares) would be
appropriately used to store each of the secondary data blocks. As used in this disclosure, a
volume is grouped storage that is presented by a secure storage appliance to clients of secure
storage appliance (e.g. secure storage appliance 120 or 214 as previously described), such
that the storage appears as a contiguous, unitary storage location. Secondary data blocks of a
volume are distributed among strips 700. In systems implementing a different number of
shares (e.g. N=2, 4, 6, etc.), a different, corresponding number of shares would be used. As

basic as a 1 of 1 configuration (M = 1, N = 1) configuration could be used.

28

WO 2010/057199 PCT/US2009/064824

Each of the strips 700 corresponds to a reserved portion of memory of a different one
of physical storage devices (e.g. physical storage devices 206 previously described), and
relates to a particular I/O operation from storage or reading of data to/from the physical
storage device. Typically, each of the strips 700 resides on a different one of physical storage
devices. Furthermore, although three different strips are shown in the illustrative
embodiment shown, more or fewer strips can be used as well. In certain embodiments, each
of the strips 700 begins on a sector boundary. In other arrangements, the each of the strips

700 can begin at any other memory location convenient for management within the share.

Each of strips 700 includes a share label 704, a signature 706, header information 708,
virtual disk information 710, and data blocks 712. The share label 704 is written on cach of
strips 700 in plain text, and identifies the volume and individual share. The share label 704
can also, in certain embodiments, contain information describing other header information for

the strips 700, as well as the origin of the data written to the strip (¢.g. the originating cluster).

The signature 706 contain information required to construct the volume, and is
encrypted by a workgroup key. The signatures 706 contain information that can be used to
identify the physical device upon which data (i.e. the share) is stored. The workgroup key
corresponds to a key associated with a group of one or more users having a common set of
usage rights with respect to data (i.e. all users within the group can have access to common
data.) In various embodiments, the workgroup key can be assigned to a corporate department
using common data, a common group of one or more users, or some other community of

interest for whom common access rights are desired.

The header information 708 contains session keys used to encrypt and decrypt the
volume information included in the virtual disk information 710, described below. The
header information 708 is also encrypted by the workgroup key. In certain embodiments, the
header information 708 includes headers per section of data. For example, the header
information 708 may include one header for each 64 GB of data. In such embodiments, it
may be advantageous to include at least one empty header location to allow re-keying of the

data encrypted with a preexisting session key, using a new session key.

The virtual disk information 710 includes metadata that describes a virtual disk, as it

is presented by a secure storage appliance. The virtual disk information 710, in certain

29

WO 2010/057199 PCT/US2009/064824

embodiments, includes names to present the virtual disk, a volume security descriptor, and
security group information. The virtual disk information 710 can be, in certain embodiments,
encrypted by a session key associated with the physical storage device upon which the strips

700 are stored, respectively.

The secondary data blocks 712 correspond to a series of memory locations used to
contain the cryptographically split and encrypted data. Each of the secondary data blocks
712 contains data created at a secure storage appliance, followed by metadata created by the
secure storage appliance as well. The N secondary data blocks created from a primary data
block are combined to form a stripe 714 of data. The metadata stored alongside each of the
secondary data blocks 712 contains an indicator of the header used for encrypting the data.
In one example implementation, each of the secondary data blocks 712 includes metadata that
specifies a number of times that the secondary data block has been written. A volume

identifier and stripe location of an primary data block an be stored as well.

It is noted that, although a session key is associated with a volume, multiple session
keys can be used per volume. For example, a volume may include one session key per 64 GB
block of data. In this example, each 64 GB block of data contains an identifier of the session
key to use in decrypting that 64 GB block of data. The session keys used to encrypt data in
cach strip 700 can be of any of a number of forms. In certain embodiments, the session keys
use an AES-256 Counter with Bit Splitting. In other embodiments, it may be possible to
perform bit splitting without encryption. Therefore, alongside each secondary data block

712, an indicator of the session key used to encrypt the data block may be provided.

A variety of access request prioritization algorithms can be included for use with the
volume, to allow access of only quickest-responding physical storage devices associated with
the volume. Status information can be stored in association with a volume and/or share as
well, with changes in status logged based on detection of event occurrences. The status log
can be located in a reserved, dedication portion of memory of a volume. Other arrangements

are possible as well.

It is noted that, based on the encryption of session keys with workgroup keys and the

encryption of the secondary data blocks 712 in each strip 700 with session keys, it is possible

30

WO 2010/057199 PCT/US2009/064824

to effectively delete all of the data on a disk or volume (i.e. render the data useless) by

deleting all workgroup keys that could decrypt a session key for that disk or volume.

Referring now to Figures 14-16, basic example flowcharts of setup and use of the
networks and systems disclosed herein are described. Although these flowcharts are intended
as example methods for administrative and 1/0 operations, such operations can include
additional steps/modules, can be performed in a different order, and can be associated with
different number and operation of modules. In certain embodiments, the various modules can

be executed concurrently.

Figure 14 shows a flowchart of systems and methods 800 for providing access to
secure storage in a storage area network according to a possible embodiment of the present
disclosure. The methods and systems 800 correspond to a setup arrangement for a network
including a secure data storage system such as those described herein, including one or more
secure storage appliances. The embodiments of the methods and systems described herein
can be performed by an administrative user or administrative software associated with a

secure storage appliance, as described herein.

Operational flow is instantiated at a start operation 802, which corresponds to initial
introduction of a secure storage appliance into a network by an administrator or other
individuals of such a network in a SAN, NAS, or other type of networked data storage
environment. Operational flow proceeds to a client definition module 804 that defines
connections to client devices (i.e. application servers or other front-end servers, clients, or
other devices) from the secure storage appliance. For example, the client definition module
804 can correspond to mapping connections in a SAN or other network between a client such

as application server 202 and a secure storage appliance 120 of Figure 4.

Operational flow proceeds to a storage definition module 806. The storage definition
module 806 allows an administrator to define connections to storage systems and related
physical storage devices. For example, the storage definition module 806 can correspond to

discovering ports and routes to storage devices 206 within the system 200 of Figure 4, above.

Operational flow proceeds to a volume definition module 808. The volume definition

module 808 defines available volumes by grouping physical storage into logical

31

WO 2010/057199 PCT/US2009/064824

arrangements for storage of shares of data. For example, an administrator can create a
volume, and assign a number of attributes to that volume. A storage volume consists of
multiple shares or segments of storage from the same or different locations. The
administrator can determine a number of shares into which data is cryptographically split, and
the number of shares required to reconstitute that data. The administrator can then assign
specific physical storage devices to the volume, such that each of the N shares is stored on
particular devices. The volume definition module 808 can generate session keys for storing
data on each of the physical storage devices, and store that information in a key server and/or
on the physical storage devices. In certain embodiments, the session keys generated in the
volume definition module 808 are stored both on a key server connected to the secure storage
appliance and on the associated physical storage device (e.g. after being encrypted with an
appropriate workgroup key generated by the communities of interest module 810, below).
Optionally, the volume definition module 808 includes a capability of configuring
preferences for which shares are first accessed upon receipt of a request to read data from

those shares.

Operational flow proceeds to a communities of interest module 8§10. The
communities of interest module 810 corresponds to creation of one or more groups of
individuals having interest in data to be stored on a particular volume. The communities of
interest 810 module further corresponds to assigning of access rights and visibility to

volumes to one or more of those groups.

In creating the groups via the communities of interest module 810, one or more
workgroup keys may be created, with each community of interest being associated with one
or more workgroup keys. The workgroup keys are used to encrypt access information (e.g.
the session keys stored on volumes created during operation of the volume definition module
808) related to shares, to ensure that only individuals and devices from within the community
of interest can view and access data associated with that group. Once the community of
interest is created and associated with a volume, client devices identified as part of the
community of interest can be provided with a virtual disk, which is presented to the client

device as if it is a single, unitary volume upon which files can be stored.

In use, the virtual disks appear as physical disks to the client and support SCSI or

other data storage commands. Each virtual disk is associated on a many-to-one basis with a
32

WO 2010/057199 PCT/US2009/064824

volume, thereby allowing multiple communities of interest to view common data on a volume
(e.g. by replicating the relevant session keys and encrypting those keys with relevant
workgroup keys of the various communities of interest). A write command will cause the
data to be encrypted and split among multiple shares of the volume before writing, while a

read command will cause the data to be retrieved from the shares, combined, and decrypted.

Operational flow terminates at end operation 812, which corresponds to completion of

the basic required setup tasks to allow usage of a secure data storage system.

Figure 15 shows a flowchart of systems and methods 820 for reading block-level
secured data according to a possible embodiment of the present disclosure. The methods and
systems 820 correspond to a read or input command related to data stored via a secure storage
appliance, such as those described herein. Operational flow in the system 820 begins at a
start operation 822. Operational flow proceeds to a receive read request module 824, which
corresponds to receipt of a primary read request at a secure storage appliance from a client
device (e.g. an application server or other client device, as illustrated in Figures 3-4). The
read request generally includes an identifier of a virtual disk from which data is to be read, as

well as an identifier of the requested data.

Operational flow proceeds to an identity determination module 826, which
corresponds to a determination of the identity of the client from which the read request is
received. The client’s identity generally corresponds with a specific community of interest.
This assumes that the client’s identity for which the secure storage appliance will access a

workgroup key associated with the virtual disk that is associated with the client.

Operational flow proceeds to a share determination module 828. The share
determination module 828 determines which shares correspond with a volume that is
accessed by way of the virtual disk presented to the user and with which the read request is
associated. The shares correspond to at least a minimum number of shares needed to
reconstitute the primary data block (i.c. at least M of the N shares). In operation, a read
module 830 issues secondary read requests to the M shares, and receives in return the

secondary data blocks stored on the associated physical storage devices.

33

WO 2010/057199 PCT/US2009/064824

A success operation 832 determines whether the read module 830 successfully read
the secondary data blocks. The success operation may detect for example, that data has been
corrupted, or that a physical storage device holding one of the M requested shares has failed,
or other errors. If the read is successful, operational flow branches “yes” to a reconstitute
data module 834. The reconstitute data module 834 decrypts a session key associated with
cach share with the workgroup key accessed by the identity determination module 826. The
reconstitute data module 834 provides the session key and the encrypted and
cryptographically split data to a data processing system within the secure storage appliance,
which reconstitutes the requested data in the form of an unencrypted block of data physical
disk locations in accordance with the principles described above in Figures 8-9 and 13. A
provide data module 836 sends the reconstituted block of data to the requesting client device.
A metadata update module 838 updates metadata associated with the shares, including, for
example, access information related to the shares. From the metadata update module 838,

operational flow proceeds to an end operation 840, signifying completion of the read request.

If the success operation 832 determines that not all of the M shares are successfully
read, operational flow proceeds to a supplemental read operation 842, which determines
whether an additional share exists from which to read data. If such a share exists (e.g. M <
N), then the supplemental read operation reads that data, and operational flow returns to the
success operation 832 to determine whether the system has now successfully read at least M
shares and can reconstitute the primary data block as requested. If the supplemental read
operation 842 determines that no further blocks of data are available to be read (e.g. M =N or
M + failed reads > N), operational flow proceeds to a fail module 844, which returns a failed
read response to the requesting client device. Operational flow proceeds to the update
metadata module 838 and end operation 840, respectively, signifying completion of the read

request.

Optionally, the fail module 844 can correspond to a failover event in which a backup
copy of the data (e.g. a second N shares of data stored remotely from the first N shares) are
accessed. In such an instance, once those shares are tested and failed, a fail message is sent

to a client device.

In certain embodiments, commands and data blocks transmitted to the client device

can be protected or encrypted, such as by using a public/private key or symmetric key
34

WO 2010/057199 PCT/US2009/064824

encryption techniques, or by isolating the data channel between the secure storage appliance
and client. Other possibilities exist for protecting data passing between the client and secure

storage appliance as well.

Furthermore, although the system 820 of Figure 15 illustrates a basic read operation,
it is understood that certain additional cases related to read errors, communications errors, or
other anomalies may occur which can alter the flow of processing a read operation. For
example, additional considerations may apply regarding which M of the N shares to read
from upon initially accessing physical storage disks 206. Similar considerations apply with
respect to subsequent secondary read requests to the physical storage devices in case those

read requests fail as well.

Figure 16 shows a flowchart of systems and methods 850 for writing block-level
secured data according to a possible embodiment of the present disclosure. The systems and
methods 850 as disclosed provide a basic example of a write operation, and similarly to the

read operation of Figure 15 additional cases and different operational flow may be used.

In the example systems and methods 850 disclosed, operational flow is instantiated at
a start operation 852. Operational flow proceeds to a write request receipt module 854,
which corresponds to receiving a primary write request from a client device (e.g. an
application server as shown in Figures 3-4) at a secure storage appliance. The primary write
request generally addresses a virtual disk, and includes a block of data to be written to the

virtual disk.

Operational flow proceeds to an identity determination module 856, which determines
the identity of the client device from which the primary write request is received. After
determining the identity of the client device, the identity determination module 856 accesses
a workgroup key based upon the identity of the client device and accesses the virtual disk at
which the primary write request is targeted. Operational flow proceeds to a share
determination module 858, which determines the number of secondary data blocks that will
be created, and the specific physical disks on which those shares will be stored. The share
determination module 858 obtains the session keys for each of the shares that are encrypted

with the workgroup key obtained in the identity determination module 856 (e.g. locally, from

35

WO 2010/057199 PCT/US2009/064824

a key manager, or from the physical disks themselves). These session keys for each share are

decrypted using the workgroup key.

Operational flow proceeds to a data processing module 860, which provides to the
parser driver 304 the share information, session keys, and the primary data block. The parser
driver 304 operates to cryptographically split and encrypt the primary data block, thereby
generating N secondary data blocks to be written to N shares in accordance with the
principles described above in the examples of Figures 8-9 and 13. Operational flow proceeds
to a secondary write module 862 which transmits the share information to the physical

storage devices for storage.

Operational flow proceeds to a metadata storage module 864, which updates a
metadata repository by logging the data written, allowing the secure storage appliance to
track the physical disks upon which data has been written, and with what session and
workgroup keys the data can be accessed. Operational flow terminates at an end operation

866, which signifies completion of the write request.

As previously mentioned, in certain instances additional operations can be included in
the system 850 for writing data using the secure storage appliance. For example,
confirmation messages can be returned to the secure storage appliance confirming successful

storage of data on the physical disks. Other operations are possible as well.

Now referring to Figures 17-18 of the present disclosure, certain applications of the
present disclosure are discussed in the context of (1) data backup systems and (2) secure
network thin client network topology used in the business setting. Figure 17 shows an
example system 900 for providing secure storage data backup, according to a possible
embodiment of the present disclosure. In the system 900 shown, a virtual tape server 902 is
connected to a secure storage appliance 904 via a data path 906, such as a SAN network
using Fibre Channel or iSCSI communications. The virtual tape server 902 includes a
management system 908, a backup subsystem interface 910, and a physical tape interface
912. The management system 908 provides an administrative interface for performing
backup operations. The backup subsystem interface 910 receives data to be backed up onto
tape, and logs backup operations. A physical tape interface 912 queues and coordinates

transmission of data to be backed up to the secure storage appliance 904 via the network.

36

WO 2010/057199 PCT/US2009/064824

The virtual tape server 902 is also connected to a virtual tape management database 914 that

stores data regarding historical tape backup operations performed using the system 900.

The secure storage appliance 904 provides a virtual tape head assembly 916 which is
analogous to a virtual disk but appears to the virtual tape server 902 to be a tape head
assembly to be addressed and written to. The secure storage appliance 904 connects to a
plurality of tape head devices 918 capable of writing to magnetic tape, such as that typically
used for data backup. The secure storage appliance 904 is configured as described above.
The virtual tape head assembly 916 provides an interface to address data to be backed up,
which is then cryptographically split and encrypted by the secure storage appliance and
stored onto a plurality of distributed magnetic tapes using the tape head devices 918 (as

opposed to a generalized physical storage device, such as the storage devices of Figures 3-4).

In use, a network administrator could allocate virtual disks that would be presented to
the virtual tape head assembly 916. The virtual tape administrator would allocate these disks
for storage of data received from the client through the virtual tape server 902. As data is
written to the disks, it would be cryptographically split and encrypted via the secure storage
appliance 904.

The virtual tape administrator would present virtual tapes to a network (e.g. an IP or
data network) from the virtual tape server 902. The data in storage on the tape head devices
918 is saved by the backup functions provided by the secure storage appliance 904. These
tapes are mapped to the virtual tapes presented by the virtual tape head assembly 916.

Information is saved on tapes as a collection of shares, as previously described.

An example of a tape backup configuration illustrates certain advantages of a virtual
tape server over the standard tape backup system as described above in conjunction with
Figure 2. In one example of a tape backup configuration, share 1 of virtual disk A, share 1 of
virtual disk B, and other share 1’s can be saved to a tape using the tape head devices 918.
Second shares of each of these virtual disks could be stored to a different tape. Keeping the
shares of a virtual tape separate preserves the security of the information, by distributing that
information across multiple tapes. This is because more than one tape is required to
reconstitute data in the case of a data restoration. Data for a volume is restored by restoring

the appropriate shares from the respective tapes. In certain embodiments an interface that can

37

WO 2010/057199 PCT/US2009/064824

automatically restore the shares for a volume can be provided for the virtual tape assembly.

Other advantages exist as well.

Now referring to Figure 18, one possible arrangement of a thin client network
topology is shown in which secure storage is provided. In the network 950 illustrated, a
plurality of thin client devices 952 are connected to a consolidated application server 954 via

a secured network connection 956.

The consolidated application server 954 provides application and data hosting
capabilities for the thin client devices 952. In addition, the consolidated application server
954 can, as in the example embodiment shown, provide specific subsets of data,
functionality, and connectivity for different groups of individuals within an organization. In
the example embodiment shown, the consolidated application server 954 can connect to
separate networks and can include separate, dedicated network connections for payroll,
human resources, and finance departments. Other departments could have separate dedicated
communication resources, data, and applications as well. The consolidated application server
954 also includes virtualization technology 958, which is configured to assist in managing

separation of the various departments’ data and application accessibility.

The secured network connection 956 is shown as a secure Ethernet connection using
network interface cards 957 to provide network connectivity at the server 954. However, any

of a number of secure data networks could be implemented as well.

The consolidated application server 954 is connected to a secure storage appliance
960 via a plurality of host bus adapter connections 961. The secure storage appliance 960 is
generally arranged as previously described in Figures 3-16. The host bus adapter connections
961 allow connection via a SAN or other data network, such that cach of the dedicated
groups on the consolidated application server 954 has a dedicated data connection to the
secure storage appliance 960, and separately maps to different port logical unit numbers
(LUNS). The secure storage appliance 960 then maps to a plurality of physical storage
devices 962 that are either directly connected to the secure storage appliance 960 or

connected to the secure storage appliance 960 via a SAN 964 or other data network.

38

WO 2010/057199 PCT/US2009/064824

In the embodiment shown, the consolidated application server 954 hosts a plurality of
guest operating systems 955, shown as operating systems 955a-c. The guest operating
systems 955 host user-group-specific applications and data for each of the groups of
individuals accessing the consolidated application server. Each of the guest operating
systems 955a-c have virtual LUNs and virtual NIC addresses mapped to the LUNs and NIC
addresses within the server 954, while virtualization technology 958 provides a register of the
mappings of LUNS and NIC addresses of the server 954 to the virtual LUNs and virtual NIC
addresses of the guest operating systems 955a-c. Through this arrangement, dedicated guest
operating systems 955 can be mapped to dedicated LUN and NIC addresses, while having
data that is isolated from that of other groups, but shared across common physical storage

devices 962.

As illustrated in the example of Figure 18, the physical storage devices 962 provide a
typical logistical arrangement of storage, in which a few storage devices are local to the
secure storage appliance, while a few of the other storage devices are remote from the secure
storage appliance 960. Through use of (1) virtual disks that are presented to the various
departments accessing the consolidated application server 954 and (2) shares of virtual disks
assigned to local and remote storage, cach department can have its own data securely stored

across a plurality of locations with minimal hardware redundancy and improved security.

Although Figures 17-18 present a few options for applications of the secure storage
appliance and secure network storage of data as described in the present disclosure, it is
understood that further applications are possible as well. Furthermore, although each of these
applications is described in conjunction with a particular network topology, it is understood
that a variety of network topologies could be implemented to provide similar functionality, in

a manner consistent with the principles described herein.

Fig. 19 is a flowchart that illustrates a first example operation 1300 of secure storage
appliance 120. It should be understood that operation 1300 is provided for purposes of
explanation only and does not represent a sole way of practicing the techniques of this
disclosure. Rather, secure storage appliance 120 may perform other operations that include
more or fewer steps than operation 1300 or may perform the steps of operation 1300 in a

different order.

39

WO 2010/057199 PCT/US2009/064824

Operation 1300 begins when write module 306 receives a primary write request that
specifies a primary data block to write to a primary storage location at a virtual disk (1302).
In one example implementation, the primary storage location may be a range of disk sector
addresses. The disk sector addresses specified by the primary storage location may be virtual
disk sector addresses in the sense that storage devices 206 may not actually have disk sectors
associated with the disk sector addresses, but application server device 1006 may output
primary read requests and primary write requests as though disk sectors associated with the

disk sector addresses actually exist.

Write module 306 then updates a write counter associated with the primary storage
location at the virtual disk (1303). The write counter associated with the primary storage
location may be a variety of different types of data. In a first example, the write counter
associated with the primary storage location may be an integer. In this first example, write
module 306 may update the write counter associated with the primary storage location by
incrementing the write counter. In a second example, the write counter associated with the
primary storage location may be an alphanumeric string. In this example, write module 306
may update the write counter associated with the primary storage location by shifting

characters in the alphanumeric string.

Next, encryption module 310 cryptographically splits the primary data block into a
plurality of secondary data blocks (1304). As explained above, encryption module 310 may
cryptographically split the primary data block into the plurality of secondary data blocks in a
variety of ways. For example, encryption module 310 may cryptographically split the
primary data block into the plurality of secondary data blocks using the SECUREPARSER™
algorithm developed by SecurityFirst Corp. of Rancho Santa Margarita, California.

After encryption module 310 cryptographically splits the primary data block into the
plurality of secondary data blocks, write module 306 attaches the updated write counter to
cach of the secondary data blocks (1306). Write module 306 may attach the updated write
counter to each of the secondary data blocks in a variety of ways. For example, write module
306 may append the updated write counter to the ends of each of the secondary data blocks,
append the updated write counter to the beginnings of each of the secondary data blocks, or

insert the updated write counter at some location in the middle of the secondary data blocks.

40

WO 2010/057199 PCT/US2009/064824

As described above, the storage locations of a storage device are divided into shares.
Each share is reserved for data associated with a volume. In other words, a volume has a
share of the storage locations of a storage device. Each volume has shares of each of storage
devices 206. For example, storage locations “1000” through “2000” of storage device 206A
may be reserved for data associated with a first volume and storage locations “2000” through
“3000” of storage device 206A may be reserved for data associated with a second volume.
Furthermore, in this example, storage locations “1000” through “2000” of storage device
206B may be reserved for data associated with the first volume and storage locations “2000”
through “3000” of storage device 206B may be reserved for data associated with the second

volume.

After attaching the updated write counter to the secondary data blocks, write module
306 identifies a set of secondary storage locations, the set of secondary storage locations
containing a secondary storage location for each of the secondary data blocks (1308). In one
example implementation, secure storage appliance 120 stores a volume map that contains
entries that map virtual disks to volumes. In addition, secure storage appliance 120 stores a
different primary storage map for each volume. A primary storage map for a volume
contains entries that map primary storage locations to intermediate storage locations. An
intermediate storage location is a primary storage location relative to a volume. For example,
primary storage location “1000” of a first virtual disk may map to intermediate storage
location “2000” of a volume and primary storage location “3000” of a second virtual disk
may map to intermediate storage location “2000.” In addition, secure storage appliance 120
stores a different secondary storage map for each volume. A secondary storage map for a
volume contains entries that map intermediate storage locations to secondary storage
locations within the volume’s shares of storage devices 206. For example, secondary storage
locations “2500” through “3500” of storage device 206A may be reserved for data associated
with the volume, secondary storage locations “4000” through “5000” of storage device 206B
may be reserved for data associated with the volume, and secondary storage locations “2000”
through “3000” of storage device 206C may be reserved for data associated with the volume.
In this example, the secondary storage map may contain an entry that maps intermediate
storage location “2000” to secondary location “3000” of storage device 206A, secondary
storage location “4256” of storage device 206B, and secondary storage location “2348” of

storage device 206C. In this example implementation, write module 306 identifies the
41

WO 2010/057199 PCT/US2009/064824

secondary storage locations for each of the secondary data blocks by first using the volume
map to identify a primary associated with the virtual disk specified by the primary write
request. Write module 306 then uses the volume storage map of the identified volume to
identify an intermediate storage location for the primary storage location. Next, write module
306 then uses the secondary storage map to identify the set of secondary storage locations

associated with the intermediate storage location.

In a second example implementation, secure storage appliance 120 stores a map that
contains entries that directly map primary storage locations of virtual disks to sets of
secondary storage locations of storage devices 206. In a third example implementation,
secure storage appliance 120 uses arithmetic formulas to identify sets of secondary storage

locations for virtual storage locations of virtual disks.

After write module 306 identifies the secondary storage locations for each of the
secondary data blocks, write module 306 generates a set of secondary write requests (1309).
Each of the secondary write requests generated by write module 306 instructs one of storage
devices 206 to store one of the secondary data blocks at one of the identified secondary
storage locations. For example, a first one of the secondary write requests instructs storage
device 206A to store a first one of the secondary data blocks at a first one of the identified
secondary storage locations, a second one of the secondary write requests instructs storage
device 206B to store a second one of the secondary data blocks at a second one of the
identified secondary storage locations, and so on. Next, write module 306 sends via
secondary interface 1202 secondary write requests to a plurality of storage devices 206
(1310). In one example implementation, write module 306 sends the secondary write
requests concurrently. In other words, write module 306 may send one or more of the

secondary write requests before another one of the secondary write requests finishes.

Write module 306 then determines whether all of the secondary write requests were
successful (1314). Write module 306 may determine that one of the secondary write requests
was not successfully completed when write module 306 received a response that indicates
that one of storage devices 206 did not successfully complete the secondary write request. In
addition, write module 306 may determine that one of the secondary write requests was not
successfully completed when write module 306 did not receive a response from one of

storage devices 206 within a timeout period. Furthermore, write module 306 may determine
42

WO 2010/057199 PCT/US2009/064824

that a secondary write request sent to a storage device was successful when write module 306
receives a secondary write response from the storage device indicating that secondary write

request was completed successfully.

If one or more of the secondary write requests were not successful (“NO” of 1314),
write module 306 resends the one or more secondary write requests that were not successful
(1316). Subsequently, write module 306 may again determine whether all of the secondary

write requests were successful (1314), and so on.

If write module 306 determines that all of the secondary write requests were
successful (“YES” of 1314), write module 306 may send via primary interface 1200 a
primary write response that indicates that the primary write request was completed

successfully (1320).

Fig. 20 is a flowchart that illustrates an example operation 1400 of read module 305 in
secure storage appliance 120. Operation 1400 that uses write counters during a read
operation. It should be understood that operation 1400 is provided for purposes of
explanation only and does not represent a sole way of practicing the techniques of this
disclosure. Rather, secure storage appliance 120 may perform other operations that include
more or fewer steps than operation 1400 or may perform the steps of operation 1400 in a

different order.

Operation 1400 begins when read module 305 in secure storage appliance 120
receives a primary read request that specifies a primary storage location at a virtual disk
(1401). When secure storage appliance 120 receives the primary read request, read module
305 identifies secondary storage locations associated with the primary storage location of the
virtual disk (1402). Read module 305 may identify the secondary storage locations
associated with the primary storage location of the virtual disk using a volume map, an
intermediate storage location map, and a secondary location map, as described above with

regard to Fig. 4.

After read module 305 identifies the secondary storage locations, read module 305
generates a set of secondary read requests (1403). Each of the secondary read requests is a

request to retrieve a data block stored at one of the identified secondary storage locations.

43

WO 2010/057199 PCT/US2009/064824

After generating the secondary read requests, read module 305 sends the secondary read
requests to ones of storage devices 206 (1404). As described in detail below with reference
to Fig. 21, read module 305 may send secondary read requests to selected ones of storage
devices 206. Read module 305 may send the secondary read requests concurrently. In other
words, read module 305 may send one or more of the secondary read requests before one or

more other ones of the secondary read requests have completed.

Subsequently, read module 305 receives from storage devices 206 secondary read
responses that are responsive to the secondary read requests (1406). Each of the secondary

read responses contains a secondary data block.

After read module 305 receives the secondary read responses, read module 305
determines whether all of the write counters attached to each of the secondary data blocks are
equivalent (1408). In one example implementation, the write counters may be equivalent
when the write counters are mathematically equal. In another example, the write counters

may be equivalent when the write counters are multiples of a common number.

If read module 305 determines that all of the write counters are equivalent (“YES” of
1408), decryption module 308 reconstructs the primary data block using any minimal set of
the secondary data blocks contained in the secondary read responses (1414). The minimal set
of the secondary data blocks includes at least the minimum number of secondary data blocks
required to reconstruct the primary data block. Furthermore, each of the secondary data
blocks in the minimal set of secondary data blocks must have an equivalent write counter. In
addition, the write counters of the secondary data blocks in the minimal set of the secondary
data blocks must be greater than the write counters of any other set of the secondary data
blocks that has the minimum number of secondary data blocks whose write counters are
equivalent. For example, if only three secondary data blocks are required to reconstruct the
primary data block and read module 305 received five secondary read responses, decryption
module 308 may use any three of the five secondary data blocks in the secondary read

responses to reconstruct the primary data block.

On the other hand, if read module 305 determines that one of the write counters is not
equivalent to another one of the write counters (“NO” of 1408), read module 305 determines

whether the secondary read responses include a minimal set of secondary data blocks (1410).

44

WO 2010/057199 PCT/US2009/064824

If the secondary read responses do not include a minimal set of secondary data blocks (“NO”
of 1412), read module 305 may output a primary read response that indicates that the primary
read response failed (1414). In one example implementation, read module 305 may not have
sent secondary read requests to all of the data storage devices that store secondary data blocks
associated with the primary data block. In this example implementation, when the secondary
read responses do not include a minimal set of secondary data blocks (“NO” of 1412), read
module 305 may output secondary read requests to ones of the data storage devices that read
module 305 did not previously send secondary request requests to. Furthermore, in this
example implementation, read module 305 may loop back and again determine whether the

received secondary read responses include a minimal set of secondary data blocks.

On the other hand, if the secondary read responses include a minimal set of secondary
data blocks (“YES” 1412), read module 305 reconstructs the primary data block using the
secondary data blocks in the minimal set of secondary data blocks (1416).

After read module 305 reconstructs the primary data block, read module 305 sends to
the device that sent the primary read request a primary read response that contains the
primary data block (1418). For example, if application server device 1006 sent the primary
read request, read module 305 sends to application server device 1006 a primary read

response that contains the primary data block.

Fig. 21 is a flowchart that illustrates a second alternate example operation 1700 of
read module 305 in secure storage appliance 120 to retrieve secondary data blocks from
storage devices 206. It should be understood that operation 1700 is provided for purposes of
explanation only and does not represent a sole way of practicing the techniques of this
disclosure. Rather, secure storage appliance 120 may perform other operations that include
more or fewer steps than operation 1700 or may perform the steps of operation 1700 in a

different order.

Initially, read module 305 receives a primary read request for data stored at a primary
storage location (1702). After receiving the primary read request, read module 305 identifies
a minimum number of secondary data blocks M required to reconstruct the primary data
block. (1704). As used in this disclosure, the letter “AM” is used to designate the minimum

number of secondary storage blocks required to reconstruct a primary data block. Each

45

WO 2010/057199 PCT/US2009/064824

volume may have a different value for M. In one example implementation, read module 305
may identify the value of M for a volume by accessing a configuration table that contains an
entry that indicates the value of M for the volume. For example, read module 305 may
determine that the value of M for a particular volume is three, meaning that a minimum of

three secondary data blocks are required to reconstruct the primary data block of the volume.

Next, read module 305 identifies the M fastest-responding ones of storage devices 206
(1706). The set of fastest-responding storage devices are the storage devices that are
expected to respond fastest to requests sent by secure storage appliance 120 to the storage
devices. Read module 305 may identify the fastest-responding storage devices in a variety of
ways. In a first example, read module 305 calculates expected response time statistics for
cach of storage devices 206. For instance, read module 305 may calculate an expected
response time statistic that indicates that the average time it takes for storage device 206A to
respond to a read request sent from secure storage appliance 120 is 0.5 seconds and may
calculate an expected response time statistic that indicates that the average time it takes for
storage device 206B to respond to a read request sent from secure storage appliance 120 is
0.8 seconds. In this first example, read module 305 uses the expected response time statistics
to identify the M fastest-responding storage devices. Read module 305 may acquire the
expected response time statistics by periodically sending messages to storage devices 206 and
determining how long each of storage devices 206 take to respond to the messages. In one
example implementation, the expected response time statistic for one of storage devices 206
is the average of the times it took the storage device to respond to the most recent fifteen

mcssages.

In a second example, read module 305 calculates expected response time statistics for
cach of storage devices 206 as described in the first example. However, in this second
example, read module 305 also tracks the current busyness of each storage devices 206. In
this second example, read module 305 accounts for the current busyness of each of storage
devices 206 when identifying the M fastest-responding storage devices. For instance, if the
expected response time statistics indicate that storage device 206A has the fastest average
response time, but storage device 206A is currently very busy, read module 305 might not
include storage device 206A among the M fastest-responding storage devices. To implement

this, read module 305 may maintain a running count of the number of I/O requests

46

WO 2010/057199 PCT/US2009/064824

outstanding to cach of storage devices 206. In this example, it is assumed that any current
I/0 request is about halfway complete. Consequently, the expected response time of one of
storage devices 206 is equal to (N + 0.5) * R, where N is the number of I/O requests

outstanding for the storage device and R is the average response time for the storage device.

Ones of storage devices 206 may have different response times for a variety of
reasons. For example, a first subset of storage devices 206 may be physically located at a
first data center and a second subset of the storage devices may be physically located at a
second data center. In this example, the first data center and the second data center are
geographically separated from one another. For instance, the first data center may be located
in Asia and the second data center may be located in Europe. In this example, both the first
data center and the second data center may store at least a minimum number of the shares of
cach volume to reconstruct the data of each volume. Separating data centers in this manner
may be useful to prevent data loss in the event a catastrophe occurs at one of the geographic
locations. In another instance, both the first data center and the second data center store
fewer than the minimum number of shares of each volume to reconstruct the data of each
volume. In this instance, distributing the shares in this manner may protect the data of the

volumes in the event that all data at one of the data centers is compromised.

After read module 305 identifies the M fastest-responding storage devices, read
module 305 generates a set of secondary read requests (1708). The set of secondary read
requests includes one read request for each of the M fastest-responding storage devices. Each
of the secondary read requests specifies a secondary storage location associated with at the

primary storage location specified by the primary read request.

After generating the secondary storage requests, read module 305 exclusively sends
secondary read requests to the identified storage devices (1710). In other words, read module
305 does not send secondary read requests to ones of storage devices 206 that are not among
the M fastest-responding storage devices. Read module 305 may send the secondary read

requests concurrently.

Subsequently, read module 305 determines whether all of the secondary read requests
were successful (1712). Secondary read requests might not be successful for a variety of

reasons. For example, a secondary read request might not be successful when one of storage

47

WO 2010/057199 PCT/US2009/064824

devices 206 does not respond to one of the secondary read requests. In another example, a
secondary read request might not be successful when one of storage devices 206 sends to
secure storage appliance 120 a secondary read response that indicates that the storage device

is unable to read the data requested by one of the secondary read requests.

If read module 305 determines that one or more of the secondary read requests have
not been successful (“NO” of 1712), read module 305 may send a new secondary read
request to a next fastest-responding storage device (1714). For example, suppose M =2,
storage devices 206 includes four storage devices, and the expected response time for the four
storage devices are 0.4 seconds, 0.5 seconds, 0.6 seconds, and 0.7 seconds, respectively. In
this example, read module 305 would have sent secondary read requests to the first storage
device and the second storage device. However, because there has been an error reading
from either the first storage device or the second storage device, read module 305 sends a
secondary read request to the third storage device. Alternatively, if read module 305
determines that one or more of the secondary read requests have not been successful, read
module 305 may send new secondary read requests to each storage device that stores a
secondary data block associated with the primary data block, but was not among the
identified fastest-responding storage devices. After sending the secondary read request to the
next fastest-responding storage device, read module 305 may determine again whether all of

the secondary read requests have been successful (1712).

If read module 305 determines that all of the secondary write requests were successful
(“YES” of 1712), read module 305 uses the secondary data blocks in the secondary read
responses to reconstruct the primary data block stored virtually at the primary storage
location specified by the primary read request (1716). After reconstructing the primary data
block, read module 305 sends a primary read response containing the primary data block to

the sender of the primary read request (1718).

Fig. 22 is a flowchart that illustrates an example operation 1800 of secure storage
appliance 120 when secure storage appliance 120 receives a request to change the
redundancy scheme. It should be understood that operation 1800 is provided for purposes of
explanation only and does not represent a sole way of practicing the techniques of this

disclosure. Rather, secure storage appliance 120 may perform other operations that include

48

WO 2010/057199 PCT/US2009/064824

more or fewer steps than operation 1800 or may perform the steps of operation 1800 in a

different order.

Initially, configuration change module 312 receives a request to change the
redundancy configuration of a volume (1802). The “redundancy configuration” of a volume
is described in terms of a two numbers: M and N. As described above, the number M
designates the minimum number of secondary storage blocks required to reconstruct a
primary data block. The number N designates the number of secondary data blocks generated
for each primary data block. In one example implementation, configuration change module
312 may receive the configuration change request via primary interface 1200. In another
example implementation, configuration change module 312 may receive the configuration

change request via an administrative interface.

The configuration change request instructs secure storage appliance 120 to change the
redundancy configuration of data stored in storage devices 206. For example, a volume may
currently be using a redundancy configuration where M=3 and N=5 (i.e., a 3/5 redundancy
configuration). A 3/5 redundancy configuration is a redundancy configuration in which five
secondary data blocks are written to different ones of storage devices 206 for a primary data
block and in which a minimum of three secondary data blocks are required to completely
reconstruct the primary data block. In this example, the request to change the redundancy
configuration of the volume may instruct secure storage appliance 120 to start implementing
a 4/8 redundancy configuration for the volume. A 4/8 redundancy configuration is a
redundancy configuration in which eight secondary data blocks are written to different ones
of storage devices 206 for a primary data block and in which a minimum of four secondary

data blocks are required to completely reconstruct the primary data block.

After receiving the request to change the redundancy configuration of the volume,
configuration change module 312 determines whether all stripes in the source version of the
volume have been processed (1804). As explained above, a “stripe” is a set of secondary data
blocks that can be used to reconstruct a primary data block. A volume contains one stripe for
cach primary data block of the volume. If fewer than all of the stripes in the source version
of the volume have been processed (“NO” of 1804), configuration change module 312 selects
one of the unprocessed stripes in the source version of the volume (1806). Configuration

change module 312 may select one of the unprocessed stripes in the source version of the
49

WO 2010/057199 PCT/US2009/064824

volume in a variety of ways. For example, configuration change module 312 may select one
of the unprocessed stripes in the source version of the volume randomly from the

unprocessed stripes in the source version of the volume.

Configuration change module 312 then sends secondary read requests for secondary
data blocks in the selected stripe (1808). In one example implementation, configuration
change module 312 exclusively sends secondary read requests to the M fastest-responding
storage devices that store secondary data blocks of the volume. Read module 305 may send

the secondary read requests concurrently.

After sending secondary read requests for secondary data blocks in the selected stripe,
configuration change module 312 may receive at least a minimal set of secondary data blocks
in the selected stripe (1810). For example, if the redundancy configuration of the source
version of the volume is a 3/5 redundancy configuration, configuration change module 312

may receive three of the five secondary data blocks of the selected stripe.

When configuration change module 312 receives at least a minimal set of secondary
data blocks in the selected stripe, configuration change module 312 uses decryption module
308 to reconstruct the primary data block of the selected stripe using the received secondary
data blocks in the selected stripe (1812).

After using decryption module 308 to reconstruct the primary data block of the
selected stripe, configuration change module 312 uses encryption module 310 to generate
secondary data blocks for the primary data block using the new redundancy configuration
(1814). For example, if the new redundancy scheme is a 4/8 redundancy configuration,

encryption module 310 generates eight secondary data blocks.

Next, configuration change module 312 generates a set of secondary write requests to
write the new secondary data blocks to secondary storage locations of the destination version
of the volume at the destination storage devices (1816). Configuration change module 312

then sends the secondary write requests to appropriate ones of storage devices 206 (1816).

After sending the secondary write requests, configuration change module 312 updates

stripe metadata to indicate that the selected stripe has been processed (1820). Configuration

50

WO 2010/057199 PCT/US2009/064824

change module 312 then loops back and again determines whether all stripes in the source

version of the volume have been processed (1804), and so on.

If all of the stripes in the source version of the volume have been processed (“YES” of
1804), configuration change module 312 outputs an indication that the configuration change

process is complete (1822).

As aresult of processing all of the stripes in the source version of the volume, the
source version of the volume and the destination version of the volume are synchronized. In
other words, the source version of the volume and the destination version of the volume
contain data representing the same primary data blocks. In one example implementation, an
administrator is able to configure configuration change module 312 to maintain the
synchronization of the source version of the volume and the destination version of the volume
until the administrator chooses to break the synchronization of the source version of the
volume and the destination version of the volume. To maintain the synchronization of the
source version of the volume and the destination version of the volume, configuration change
module 312 may use encryption module 310 to cryptographically split primary data blocks in
incoming primary write requests into sets of secondary data blocks in both redundancy
configurations and send secondary write requests to write the secondary data blocks in the
original redundancy configuration and secondary write requests to write secondary data

blocks in the new redundancy configuration.

Fig. 23 and Fig. 24 illustrate operations used in a first alternative implementation of
secure storage appliance 120. As described below, the operations illustrated in Fig. 23 and

Fig. 24 use write-through cache 316 when processing primary write operations.

Fig. 23 is a flowchart that illustrates an example operation 1900 of secure storage
appliance 120 to process a primary write request using write-through cache 316. It should be
understood that operation 1900 is provided for purposes of explanation only and does not
represent a sole way of practicing the techniques of this disclosure. Rather, secure storage
appliance 120 may perform other operations that include more or fewer steps than operation

1900 or may perform the steps of operation 1900 in a different order.

51

WO 2010/057199 PCT/US2009/064824

As discussed above, secure storage appliance 120 may provide a plurality of volumes.
Each volume is a separate logical disk. Because each volume is a separate logical disk,
application server device 1006 may treat cach volume like a separate disk. For example,
application server device 1006 may send to secure storage appliance 120 a primary read
request to read a set of data at blocks “1000” to “2000” of a first volume and may send to
secure storage appliance 120 a primary request to read a set of data at blocks “1000” to
“2000” of a second volume. While each volume is a separate logical disk, data in each of the
volumes may actually be stored at storage devices 206. For instance, data in a first volume

and data in a second volume may actually be stored at storage device 206A.

Initially, write module 306 initializes a queue in write-through cache 316 for each
volume provided by secure storage appliance 120 (1902). Each of the volumes has a status of
either “clean” or “dirty.” A volume has a status of “clean” when the volume’s queue does not
contain references to any outstanding secondary write requests to the volume. A volume has
a status of “dirty”” when the volume’s queue contains one or more references to outstanding
secondary write requests to the volume. The status of a volume is written to each of the
storage devices that stores data associated with the volume. In this way, the status of a
volume on a storage device indicates to an administrator whether the storage device stores

up-to-date data of the volume.

Subsequently, cache driver 315 receives an incoming primary I/O request for a
primary storage location at a virtual disk associated with one of the volumes (1904). Cache
driver 315 may receive the incoming primary I/O request before parser driver 1204 receives
the incoming primary I/O request. Upon receiving the incoming primary 1/O request, cache
driver 315 determines whether the incoming primary 1/O request is a primary read request or

a primary write request (1906).

If the incoming primary 1/O request is an incoming primary read request (“YES” of
1906), cache driver 315 determines whether write-through cache 316 contains a primary
write request to write a primary data block to a primary storage location that is also specified
by the incoming primary read request (1908). For example, if write-through cache 316
contains a primary write request to write a primary data block to primary storage location
“1000” and the incoming primary read request is to read data at primary storage location

“1000,” cache driver 315 may determine that the write-through cache 316 contains a primary
52

WO 2010/057199 PCT/US2009/064824

write request to write a primary data block to a primary storage location that is also specified

by the incoming primary read request.

If cache driver 315 determines that write-through cache 316 contains a primary write
request to write a primary data block to a primary storage location that is also specified by the
incoming primary read request (“YES” of 1908), cache driver 315 returns a primary read
response that contains the primary data block in the primary write request in write-through
cache 316 (1910). On the other hand, if cache driver 315 determines that write-through cache
316 does not contain a primary write request to write a primary data block to a primary
storage location that is also specified by the incoming primary read request (“NO” of 1908),
cache driver 315 provides the incoming primary read request to read module 305 so that read
module 305 may take steps to retrieve the primary data block at the primary storage location

specified by the incoming primary read request (1912).

If the incoming primary 1/O request is an incoming primary write request (“NO” of
1906), cache driver 315 determines whether write-through cache 316 contains a primary
write request to write a primary data block to a primary storage location that is also specified
by the primary write request (1914). If cache driver 315 determines that write-through cache
316 contains a primary write request to write a primary data block to a primary storage
location that is also specified by the incoming primary write request (“YES” of 1914), cache
driver 315 updates the primary write request in write-through cache 316 such that the primary
write request specifies the primary data block specified by the incoming primary write
request (1916). Otherwise, if cache driver 315 determines that write-through cache 316 does
not contain a primary write request to write a primary data block to a primary storage location
that is also specified by the incoming primary write request (“NO” of 1914), cache driver 315
adds the incoming primary write request to write-through cache 316 (1918).

After cache driver 315 either updates the primary write request in write-through cache
316 or adds the primary write request to write-through cache 316, cache driver 315
determines whether the volume’s queue contains a reference to the primary write request
(1920). If cache driver 315 determines that the volume’s queue contains a reference to the
primary write request (“YES” of 1920), cache driver 315 does not need to perform any
further action with regard to the primary write request (1922).

53

WO 2010/057199 PCT/US2009/064824

If cache driver 315 determines that the volume’s queue does not contain a reference to
the primary write request (“NO” of 1920), cache driver 315 adds a reference to the primary
write request (1918). The reference to the primary write request may indicate a location of
the primary write request in write-through cache 316. After adding the reference to the
volume’s queue, cache driver 315 then sends an event notification to write-through module
318 (1926). An event notification is a notification that an event has occurred. In this context,

the event is the updating of the primary write request in write-through cache 316.

Cache driver 315 then marks the volume associated with the incoming primary write
request as dirty (1928). In one example implementation, when cache driver 315 marks the
volume as dirty, cache driver 315 may output secondary write requests to each of storage
devices 206 that has a share devoted to storing data associated with the volume. In this
example implementation, each of the secondary write requests instructs the storage devices to

store metadata that indicates that the volume is dirty.

Fig. 24 is a flowchart that illustrates an example operation 2000 of a write-through
module 318 in secure storage appliance 120 to process primary write requests in write-
through cache 316. It should be understood that operation 2000 is provided for purposes of
explanation only and does not represent a sole way of practicing the techniques of this
disclosure. Rather, secure storage appliance 120 may perform other operations that include
more or fewer steps than operation 2000 or may perform the steps of operation 2000 in a

different order.

Initially, write-through module 318 receives an event notification from cache driver
315 (2002). Prior to receiving the event notification, write-through module 318 may be in a

suspended state to conserve processing resources of secure storage appliance 120.

In response to receiving the event notification, write-through module 318 selects a
volume (2004). In some example implementations, write-through module 318 selects the
volume on a random basis. In other example implementations, write-through module 318
selects the volume on a deterministic basis. After write-through module 318 selects the
volume, write-through module 318 determines whether there are one or more references to
primary write requests in a queue in write-through cache 316 associated with the selected

volume (2006). If there are no references to primary write requests in the queue in write-

54

WO 2010/057199 PCT/US2009/064824

through cache 316 associated with the selected volume (“NO” of 2006), write-through

module 318 may loop back and again select a volume (2004).

On the other hand, if there are one or more references to primary write requests in the
queue in write-through cache 316 associated with the selected volume (“YES” of 2006),
write-through module 318 selects one of the references to primary write requests in the queue
in write-through cache 316 associated with the selected volume (2008). In some example
implementations, write-through module 318 selects the reference on a random basis. In other
example implementations, write-through module 318 selects the reference on a deterministic
basis. For instance, write-through module 318 may select the reference to an oldest primary

write request in the selected volume’s queue in write-through cache 316.

Write-through module 318 then provides the primary write request indicated by the
selected reference (i.e., the indicated primary write request) to write module 306 (2010).
When write module 306 receives the indicated primary write request, write module 306
performs an operation to execute the indicated primary write request. For example, write
module 306 may perform the example operation illustrated in Fig. 19 to execute the indicated
primary write request. In another example, write module 306 may perform the example

operation illustrated in Fig. 23 to execute the indicated primary write request.

After write-through module 318 provides to write module 306 the indicated primary
write request , write-through module 318 receives a primary write response from write
module 306 (2012). Write-through module 318 then determines whether the primary write
response indicates that the indicated primary write request was successfully executed (2014).
For example, the primary write response may indicate that the indicated primary write request
was not successful when write module 306 did not receive a secondary write response from a

storage device within a timeout period.

If write-through module 318 determines that the primary write response indicates that
the indicated primary write request was not performed successfully (“NO” of 2014), write-
through module 318 determines whether all queues in write-through cache 316 are empty
(2016). If all queues in write-through cache 316 are empty (“YES” of 2016), write-through

module 318 waits until another event notification is received (2002). If all queues in write-

55

WO 2010/057199 PCT/US2009/064824

through cache 316 are not empty (“NO” of 2016), write-through module 318 selects one of

the volumes (2004), and so on.

If write-through module 318 determines that the primary write response indicates that
the indicated primary write request was performed successfully (“YES” of 2014), write-
through module 318 removes the selected reference from the selected volume’s queue in
write-through cache 316 (2018). In one example implementation, the indicated primary write
request is not removed from write-through cache 316 until the indicated primary write
request becomes outdated or is replaced by more recent primary write requests. After
removing the selected reference, write-through module 318 determines whether there are any
remaining references in the selected volume’s queue in write back cache 1216 (2020). If
there are remaining references in the selected volume’s queue in write back cache 1216
(“YES” of 2020), write-through module 318 determines whether all queues in write-through
cache 1016 are empty, as discussed above (2016). If there are no remaining references in the
selected volume’s queue in write-through cache 316 (“NO” if 2020), write-through module
318 marks the status of the selected volume as clean (2022). In one example implementation,
to mark the status of the selected volume as clean, write-through module 318 may output
secondary write requests to cach of storage devices 206 that has a share devoted to storing
data associated with the volume. In this example implementation, each of the secondary
write requests instructs the storage devices to store metadata that indicates that the volume is
clean. Furthermore, in some example implementations, write-through module 318 marks the
status of the queue as “clean” only after waiting a particular period of time after removing the
selected primary write request from the selected volume’s queue. Waiting this period of time
may prevent the selected volume from thrashing between the “clean” status and the “dirty”
status. After marking the status of the queue as “clean”, write-through module 318 may
determine whether all of the queues in write-through cache 316 are empty, as described

above (2016).

Figs. 25-27 illustrate operations used in a second alternative implementation of secure
storage appliance 120. As described below with reference to Fig. 25, in this alternative
implementation of secure storage appliance 120, write module 306 uses outstanding write list
320 to temporarily store primary write requests that cannot be completed immediately.

Furthermore, as described below with reference to Fig. 26, OWL module 326 attempts to

56

WO 2010/057199 PCT/US2009/064824

complete primary write requests stored in outstanding write list 320. As described below
with reference to Fig. 27, read module 305 uses outstanding write list 320 to respond to some

primary read requests.

Fig. 25 is a flowchart that illustrates an example operation 2100 of secure storage
appliance 120 to process a primary write request using an outstanding write list 320. It
should be understood that operation 2100 is provided for purposes of explanation only and
does not represent a sole way of practicing the techniques of this disclosure. Rather, secure
storage appliance 120 may perform other operations that include more or fewer steps than

operation 2100 or may perform the steps of operation 2100 in a different order.

Initially, OWL module 326 receives a primary write request to write a primary data
block to a primary storage location of a volume (2102). After OWL module 326 receives the
primary write request, OWL module 326 determines whether the primary write request can
be completed at the current time (2104). There may be a variety of circumstances in which a
primary write request cannot be completed. For example, OWL module 326 may be unable
to complete a primary write request when one or more of storage devices 206 are not
currently available. In a second example, the selected primary write request to write a
secondary data block to a secondary storage location at storage device 206A cannot be
completed at the current time because a backup operation is currently occurring at one or

more of storage devices 206.

If OWL module 326 determines that the primary write request can be completed at the
current time (“YES” of 2104), OWL module 326 provides the primary write request to write
module 306 (2106). When write module 306 receives the primary write request, write
module 306 performs an operation to securely write the primary write request. For instance,
write module 306 may use operation 1300 in FIG. 19 or another operation to securely write

the primary write request.

Subsequently, OWL module 326 determines whether the primary write request was
successful (2108). If the OWL module 326 determines that the primary write request was
successful (“YES” of 2108), the OWL module 326 outputs a primary write response

indicating that the primary write request was successful (2110).

57

WO 2010/057199 PCT/US2009/064824

On the other hand, if the OWL module 326 determines that the primary write request
was not successful (“NO” of 2108) or if the primary write request cannot be completed at the
current time (“NO” of 2104), OWL module 326 writes the primary write request to
outstanding write list 320 (2112). Outstanding write list 320 is a secure storage medium at
secure storage appliance 120. All data in outstanding write list 320 may be encrypted such
that it would be very difficult to access the data in outstanding write list 320 without an

appropriate decryption key.

Outstanding write list 320 may be implemented in a variety of ways. For example,
outstanding write list 320 may be implemented as a set of linked lists. In this example, each
of the linked lists is associated with a different volume provided by secure storage appliance
120. Each of the linked lists comprises an ordered set of elements. Each of the elements
contains a primary write request. For instance, the linked list associated with a first volume
may comprise four elements, each of which contain one primary write request. In this
example, OWL module 326 may write the selected secondary write request to outstanding
write list 320 by adding an element to a linked list associated with a volume specified by the

primary write request.

After OWL module 326 writes the primary write request to outstanding write list 320,
OWL module 326 marks the primary storage location specified by the primary write request
as locked (2114). After marking the primary storage location specified by the primary write
request as locked, write module 306 outputs a primary write response that indicates that the

primary write request was completed successfully (2110).

Fig. 26 is a flowchart that illustrates an example operation 2200 of OWL module 326
in secure storage appliance 120 that writes secondary write requests in the outstanding write
list to storage devices. It should be understood that operation 2200 is provided for purposes
of explanation only and does not represent a sole way of practicing the techniques of this
disclosure. Rather, secure storage appliance 120 may perform other operations that include
more or fewer steps than operation 2200 or may perform the steps of operation 2200 in a

different order.

Initially, OWL module 326 determines whether outstanding write list 320 is empty
(2202). In other words, OWL module 326 determines whether outstanding write list 320

58

WO 2010/057199 PCT/US2009/064824

contains any outstanding primary write requests. If OWL module 326 determines that
outstanding write list 320 is empty (“YES” of 2202), OWL module 326 may wait a period of
time (2204). After waiting, OWL module 326 may again determine whether outstanding
write list 320 is empty (2202).

If OWL module 326 determines that outstanding write list 320 is not empty (“NO” of
2202), OWL module 326 selects one of the primary write requests in outstanding write list
320 (2206). In some example implementations, OWL module 326 may select the secondary

write request on a random or a deterministic basis.

After selecting the primary write request, OWL module 326 provides the selected
primary write request to write module 306 (2208). When write module 306 receives the
primary write request, write module 306 performs an operation to securely write the primary
write request. For instance, write module 306 may use operation 1300 in Fig. 19 or another

operation to securely write the primary write request.

Subsequently, OWL module 326 determines whether the primary write request was
completed successfully (2210). If the primary write request was not completed successfully
(“NO” of 2210), OWL module 326 may loop back and again determine whether the
outstanding write list is empty (2202).

As explained above with reference to Fig. 25, write module 306 locked the primary
storage location specified by the selected primary write request when OWL module 326
added the selected primary write request to outstanding write list 320. As explained below
with reference to Fig. 27, when OWL module 326 receives a primary read request to read
data at the primary storage location when the primary storage location is locked, read module
305 uses the primary read request in outstanding write list 320 to respond to the primary read

request.

Hence, when OWL module 326 determines that the primary write request was
completed successfully (“YES” of 2210), OWL module 326 removes the lock on the primary
storage location specified by the selected primary write request (2212). After removing the
lock on the primary storage location specified by the selected primary write request, OWL

module 326 removes the primary write request from outstanding write list 320 (2214).

59

WO 2010/057199 PCT/US2009/064824

Removing the selected primary write request from outstanding write list 320 may free up data
storage space in outstanding write list 320. OWL module 326 then loops back and again

determines whether the outstanding write list is empty (2202).

Fig. 27 is a flowchart that illustrates an example operation 2300 of secure storage
appliance 120 to process a primary read request using the outstanding write list. It should be
understood that operation 2300 is provided for purposes of explanation only and does not
represent a sole way of practicing the techniques of this disclosure. Rather, secure storage
appliance 120 may perform other operations that include more or fewer steps than operation

2300 or may perform the steps of operation 2300 in a different order.

Initially, OWL module 326 receives a primary read request (2302). The primary read
request comprises an instruction to retrieve data stored in a volume at a primary storage
location. After receiving the primary read request, OWL module 326 determines whether

there is a lock on the primary storage location (2304).

If OWL module 326 determines that there is no lock on the primary storage location
(“NO” of 2304), OWL module 326 provides the primary read request to read module 305
(2306). When read module 305 receives the primary read request, read module 305 performs
an operation to read data of the volume at primary storage location. For instance, read
module 305 may perform the example operation 1400 illustrated in Fig. 20, the example
operation 1700 illustrated in Fig. 21, or another operation. After providing the primary read
request to read module 305, OWL module 326 receives a primary read response from the
read module 305 (2308). OWL module 326 may then send the primary read response to a
sender of the primary read request (2310).

On the other hand, if OWL module 326 determines that there is a lock on the primary
storage location (“YES” of 2304), OWL module 326 identifies in outstanding write list 320 a
primary write request that comprises an instruction to write primary data block to the primary
storage location (2312). After identifying the primary write request, OWL module 326 sends
to the sender of the primary read request a primary read response that contains the primary
data block (2314). In this way, read module 305 uses the primary data block stored in

outstanding write list 320 to respond to the primary read request.

60

WO 2010/057199 PCT/US2009/064824

Fig. 28 is a flowchart illustrating an example operation 2400 of backup module 324 in
secure storage appliance 120. It should be understood that operation 2400 is provided for
purposes of explanation only and does not represent a sole way of practicing the techniques
of this disclosure. Rather, secure storage appliance 120 may perform other operations that
include more or fewer steps than operation 2400 or may perform the steps of operation 2400

in a different order.

Initially, backup module 324 receives a request to perform a backup operation that
backs up data stored at storage devices 206 to a set of backup devices (2402). Backup
module 324 may receive the request to perform the backup operation in a variety of ways. In
a first example, backup module 324 may receive the request to perform the backup operation
as an invocation of a function by a process operating on secure storage application 1008 or
another device. In a second example, backup module 324 may receive the request to perform
the backup operation via an administrative interface of secure storage appliance 120. In a
third example, backup module 324 may receive the request from application server device
1006. In the example of Fig. 28, the set of backup devices includes one backup device for

cach one of storage devices 206.

When backup module 324 receives the request to perform the backup operation,
backup module 324 determines whether all of storage devices 206 have been backed up
(2404). If one or more of storage device 206 have not yet been backed up (“NO” of 2404),
backup module 324 selects one of storage devices 206 that has not yet been backed up
(2406). After selecting the storage device, backup module 324 copies all of the data at the
selected storage device to the backup device associated with the selected storage device
(2408). Backup module 324 may then loop back and again determine whether all of storage
devices 206 have been backed up (2404). If all of storage devices 206 have been backed up
(“YES” of 2404), backup module 324 reports that the backup operation is complete.

As discussed above, each of storage devices 206 may store data associated with a
plurality of different volumes and secondary data blocks of the data each of the volumes are
distributed among storage devices 206. Consequently, when backup module 324 copies the
data at one of storage devices 206 to one of the backup devices, data associated with the
plurality of different volumes is copied to the backup device. Because each of the backup

devices is a physically separate device, it may be difficult to reconstruct the data associated
61

WO 2010/057199 PCT/US2009/064824

with a volume from individual ones of the backup devices. For example, if a thief steals one
of the backup devices, it would be difficult, if not impossible, for the thief to reconstruct the

data of a volume.

It is recognized that the above networks, systems, and methods operate using
computer hardware and software in any of a variety of configurations. Such configurations
can include computing devices, which generally include a processing device, one or more
computer readable media, and a communication device. Other embodiments of a computing
device are possible as well. For example, a computing device can include a user interface, an
operating system, and one or more software applications. Several example computing
devices include a personal computer (PC), a laptop computer, or a personal digital assistant
(PDA). A computing device can also include one or more servers, one or more mass storage

databases, and/or other resources.

A processing device is a device that processes a set of instructions. Several examples
of a processing device include a microprocessor, a central processing unit, a microcontroller,
a field programmable gate array, and others. Further, processing devices may be of any
general variety such as reduced instruction set computing devices, complex instruction set
computing devices, or specially designed processing devices such as an application-specific

integrated circuit device.

Computer readable media includes volatile memory and non-volatile memory and can
be implemented in any method or technology for the storage of information such as computer
readable instructions, data structures, program modules, or other data. In certain
embodiments, computer readable media is integrated as part of the processing device. In
other embodiments, computer readable media is separate from or in addition to that of the
processing device. Further, in general, computer readable media can be removable or non-
removable. Several examples of computer readable media include, RAM, ROM, EEPROM
and other flash memory technologies, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium that can be used to store desired information and that
can be accessed by a computing device. In other embodiments, computer readable media can
be configured as a mass storage database that can be used to store a structured collection of

data accessible by a computing device.
62

WO 2010/057199 PCT/US2009/064824

A communications device establishes a data connection that allows a computing
device to communicate with one or more other computing devices via any number of
standard or specialized communication interfaces such as, for example, a universal serial bus
(USB), 802.11 a/b/g network, radio frequency, infrared, serial, or any other data connection.
In general, the communication between one or more computing devices configured with one
or more communication devices is accomplished via a network such as any of a number of
wireless or hardwired WAN, LAN, SAN, Internet, or other packet-based or port-based

communication networks.

The above specification, examples and data provide a complete description of the
manufacture and use of the composition of the invention. Since many embodiments of the
invention can be made without departing from the spirit and scope of the invention, the

invention resides in the claims hereinafter appended.

63

WO 2010/057199 PCT/US2009/064824

Claims:

1. A method for securely storing and retrieving data, the method comprising:

receiving, at an electronic computing system, a primary write request that specifies a
primary data block to be written to a primary storage location;

cryptographically splitting, at the electronic computing system, the primary data block
into a plurality of secondary data blocks such that the primary data block can be
reconstructed using any subset of the secondary data blocks that includes at least a minimum
number of secondary data blocks and cannot be reconstructed using any subset of the
secondary data blocks that includes fewer than the minimum number of secondary data
blocks, wherein the minimum number of secondary data blocks is less than or equal to a total
number of the secondary data blocks; and

storing each of the secondary data blocks at secondary storage locations of different
storage devices in a set of storage devices at a plurality of geographically-separated sites,

cach of the sites storing at most the minimum number of secondary data blocks.

2. The method of claim 1, wherein storing each of the secondary data blocks
comprises sending, from the electronic computing system to the storage devices, concurrent
secondary write requests to write the secondary data blocks at the secondary storage

locations.

3. The method of claim 1, further comprising:

receiving, at the electronic computing system, a primary read request to retrieve data
stored virtually at a primary storage location associated with the secondary storage locations;

sending, from the electronic computing system to at least the minimum number of the
storage devices, secondary read requests to retrieve data stored at the secondary storage
locations;

receiving, at the electronic computing system from ones of the storage devices,
secondary read responses that are responsive to the secondary read requests, the secondary

read responses containing ones of the secondary data blocks;

64

WO

2010/057199 PCT/US2009/064824

reconstructing the primary data block using the secondary data blocks contained in the

secondary read responses; and

after reconstructing the primary data block, sending, from the electronic computing

system, a primary read response that contains the primary data block.

4. The method of claim 3, further comprising after receiving the primary read

request, using, at the electronic computing system, a location map to identify the secondary

storage locations.

5. The method of claim 3, wherein sending the secondary read requests

comprises sending the secondary read requests via a storage arca network (SAN).

6. The method of claim 1, wherein receiving the primary write request comprises

receiving the primary write request from an application server device via a SAN.

blocks,

7. The method of claim 1,
wherein the primary write request is a first primary write request,

wherein the plurality of secondary data blocks is a first plurality of secondary data

wherein the primary data block is a first primary data block,
wherein the primary storage location is associated with a first volume, and
wherein the method further comprises:

receiving, at the electronic computing system, a second primary write request
that specifies a second primary data block to be written to a primary storage location
of a second volume;

cryptographically splitting, at the electronic computing system, the second
primary data block into a second plurality of secondary data blocks; and

storing each of the secondary data blocks in the second plurality of secondary

data blocks at secondary storage locations of different ones of the storage devices.

8. The method of claim 7, wherein the method further comprises copying each of

the storage devices to separate backup devices.

65

WO 2010/057199 PCT/US2009/064824

9. The method of claim 7,
wherein the method further comprises:
generating, at the electronic computing system, a first set of session keys using
a first workgroup key associated with the first volume, the first set of session keys
comprising a different session key for each of the secondary data blocks in the first
plurality of secondary data blocks;
storing the first set of session keys at the electronic computing system;
generating, at the electronic computing system, a second set of session keys
using a second workgroup key associated with the second volume, the second set of
session keys comprising a different session key for each of the secondary data blocks
in the second plurality of secondary data blocks; and
storing the second set of session keys at the electronic computing system; and
wherein cryptographically splitting the first primary data block comprises encrypting
cach of the secondary data blocks in the first plurality of secondary data blocks with a
corresponding session key in the first set of session keys; and
wherein cryptographically splitting the second primary data block comprises
encrypting each of the secondary data blocks in the second plurality of secondary data blocks

with a corresponding session key in the second set of session keys.

10. The method of claim 1, wherein cryptographically splitting the primary data
block comprises cryptographically splitting the primary data block into the plurality of
secondary data blocks using a SECUREPARSER ™ algorithm.

11. An electronic computing device for securely storing and retrieving data, the
electronic computing system comprising:

a primary interface that receives a primary write request that specifies a primary data
block to be written to a primary storage location;

a write module that causes the electronic computing device to cryptographically split
the primary data block into a plurality of secondary data blocks such that the primary data
block can be reconstructed using any subset of the secondary data blocks that includes at least

a minimum number of secondary data blocks and cannot be reconstructed using any subset of

66

WO 2010/057199 PCT/US2009/064824

the secondary data blocks that includes fewer than the minimum number of secondary data
blocks, wherein the minimum number of secondary data blocks is less than or equal to a total
number of the secondary data blocks; and

a secondary interface that sends secondary write requests to a plurality of storage
devices at a plurality of geographically-separated sites, each of the secondary write requests
instructing a different one of the storage devices to store a different one of the secondary data

blocks, wherein each of the sites stores at most the minimum number of secondary data
blocks.

12. The electronic computing device of claim 11,

wherein the primary interface is configured to receive a primary read request to
retrieve a primary data block stored virtually at the primary storage location;

wherein the secondary interface sends to at least the minimum number of the storage
devices secondary read requests to retrieve data stored at the secondary storage locations and
receives from ones of the storage devices secondary read responses that are responsive to the
secondary read requests, the secondary read responses containing ones of the secondary data
blocks; and

wherein the electronic computing device comprises a read module that causes the
electronic computing device to reconstruct the primary data block using the secondary data
blocks contained in the secondary read responses and to send via the primary interface a

primary read response that contains the primary data block.

13. The electronic computing device of claim 12, wherein the write module and
the read module comprise a processing unit that executes instructions that cause the
processing unit to cryptographically split the primary data block into the plurality of

secondary data blocks and to reconstruct the primary data block.

14. The electronic computing device of claim 12, wherein the secondary interface

sends the secondary read requests via a storage area network (SAN).

15. The electronic computing device of claim 11,

67

WO 2010/057199 PCT/US2009/064824

wherein the primary interface receives the primary write request from an application
server device; and
wherein the electronic computing device presents a plurality of volumes to the

application server device.

16. The electronic computing device of claim 11, wherein the write module

encrypts each of the secondary data blocks with a different session key.

17. A computer-readable storage medium comprising instructions that, when
executed by an electronic computing device, cause the electronic computing device to:

receive a first primary write request from a client computing device via an electronic
communications network, the first primary write request specifying a first primary data block
to be written to a first primary storage location of a first volume;

cryptographically split the first primary data block into a first plurality of secondary
data blocks such that the first primary data block can be reconstructed using any subset of the
secondary data blocks that includes at least a minimum number of secondary data blocks in
the first plurality of secondary data blocks and cannot be reconstructed using any subset of
the secondary data blocks in the first plurality of secondary data blocks that includes fewer
than the minimum number of secondary data blocks, wherein the minimum number of
secondary data blocks is less than a total number of the secondary data blocks in the first
plurality of secondary data blocks;

send secondary write requests to different storage devices in a plurality of storage
devices at a plurality of geographically-separated sites, each of the sites storing fewer than
the minimum number of secondary data blocks in the first plurality of secondary data blocks;

receive a second primary write request from the client computing device via the
electronic communications network, the second primary write request specifying a second
primary data block to be written to a primary storage location of a second volume;

cryptographically split the second primary data block into a second plurality of
secondary data blocks such that the second primary data block can be reconstructed using any
subset of the secondary data blocks that includes at least the minimum number of secondary
data blocks in the second plurality of secondary data blocks and cannot be reconstructed

using any subset of the secondary data blocks in the second plurality of secondary data blocks

68

WO 2010/057199 PCT/US2009/064824

that includes fewer than the minimum number of secondary data blocks, wherein the
minimum number of secondary data blocks is less than a total number of the secondary data
blocks in the second plurality of secondary data blocks; and

send secondary write requests to different storage devices in the plurality of storage
devices at the plurality of geographically-separated sites, each of the sites storing fewer than

the minimum number of secondary data blocks in the second plurality of secondary data
blocks.

18. The computer-readable storage medium of claim 17, further comprising
instructions that, when executed by the electronic computing device, cause the electronic
computing device to:

use a SECUREPARSER ™ algorithm to cryptographically split the first primary data
block into the first plurality of secondary data blocks; and

use the SECUREPARSER ™ algorithm to cryptographically split the second primary
data block into the second plurality of secondary data blocks.

19. The computer-readable storage medium of claim 17, further comprising
instructions that, when executed by the electronic computing device, cause the electronic
computing device to:

receive a primary read request to retrieve data stored virtually at the first primary
storage location;

use a location map to identify the secondary storage locations associated with the first
primary storage location;

send to ones of the storage devices secondary read requests to retrieve data stored at
the secondary storage locations associated with the first primary storage location;

receive secondary read responses that are responsive to the secondary read requests,
the secondary read responses containing secondary data blocks in the first plurality of
secondary data blocks;

reconstructing the first primary data block using the secondary data blocks contained
in the secondary read responses; and

sending a primary read response that is responsive to the primary read request and that

contains the first primary data block.

69

WO 2010/057199 PCT/US2009/064824

20. The computer-readable storage medium of claim 17, further comprising
instructions that, when executed by the electronic computing device, cause the
electronic computing device to copy data at each of the storage devices to

separate backup devices.

21. A method for securely storing and retrieving data, the method comprising:

cryptographically splitting, at an electronic computing system, a primary data block
into a plurality of secondary data blocks such that the primary data block can be
reconstructed using any subset of the secondary data blocks that includes at least a minimum
number of secondary data blocks, wherein the minimum number of secondary data blocks is
less than a total number of the secondary data blocks;

storing each of the secondary data blocks at a different storage device in a set of
storage devices;

receiving, at the electronic computing system, a primary read request to retrieve data
stored virtually at a primary storage location;

automatically identifying, at the electronic computing system, a set of fastest-
responding storage devices in the set of storage devices, the set of fastest-responding storage
devices including fewer storage devices than the set of storage devices, the set of fastest-
responding storage devices including at least as many storage devices as the minimum
number of secondary data blocks required to reconstruct the primary data block, and the set
of fastest-responding storage devices being those ones of the storage devices that are
expected to respond fastest to secondary read requests sent by the electronic computing
System;

exclusively sending, from the electronic computing system to the storage devices in
the set of fastest-responding storage devices, secondary read requests to retrieve data stored at
secondary storage locations associated with the primary storage location;

receiving, at the electronic computing system from the storage devices in the set of
fastest-responding storage devices, secondary read responses that are responsive to the

secondary read requests, the secondary read responses containing ones of the secondary data
blocks;

70

WO 2010/057199 PCT/US2009/064824

reconstructing the primary data block using exclusively the secondary data blocks
contained in the secondary read responses; and

sending, from the electronic computing system, a primary read response that is
responsive to the primary read request, the primary read response containing the primary data

block.

22. An clectronic computing system for securely storing and retrieving data, the
electronic computing system comprising:
a processing unit;
a primary interface;
a secondary interface; and
a system memory comprising instructions that, when executed by the processing unit,
cause the processing unit to:

cryptographically split a primary data block into a plurality of secondary data
blocks such that the primary data block can be reconstructed using any subset of the
secondary data blocks that includes at least a minimum number of the secondary data
blocks and such that the primary data block cannot be reconstructed using any subset
of the secondary data blocks that includes fewer than the minimum number of the
secondary data blocks, wherein the minimum number of the secondary data blocks is
less than a total number of the secondary data blocks;

store each of the secondary data blocks at secondary storage locations at
different storage devices in a plurality of storage devices, each of the secondary
storage locations being associated with a primary storage location;

receive, via the primary interface, a primary read request to retrieve data
stored virtually at a primary storage location;

automatically identify, in response to receiving the primary read request, the
secondary storage locations at the storage devices that are associated with the primary
storage location;

automatically identify, a set of fastest-responding storage devices in the set of
storage devices, the set of fastest-responding storage devices including fewer storage
devices than the set of storage devices, the set of fastest-responding storage devices

including at least as many storage devices as the minimum number of secondary data

71

WO 2010/057199 PCT/US2009/064824

blocks, and the set of fastest-responding storage devices being those ones of the
storage devices that are expected to respond fastest to secondary read requests sent by
the electronic computing system;

exclusively send, via the secondary interface to the storage devices in the set
of fastest-responding storage devices, secondary read requests to retrieve data stored
at the identified secondary storage locations at the storage devices in the set of fastest-
responding storage devices;

receive, via the secondary interface from the storage devices in the set of
fastest-responding storage devices, secondary read responses that are responsive to
the secondary read requests, the secondary read responses containing ones of the
secondary data blocks;

reconstruct the primary data block using exclusively the secondary data blocks
contained in the secondary read responses; and

send, via the primary interface, a primary read response that is responsive to

the primary read request, the primary read response containing the primary data block.

23. A computer-readable storage medium comprising instructions that, when
executed at an electronic computing device, cause the electronic computing device to:

receive a primary write request to write a primary data block at a primary storage
location;

cryptographically split the primary data block into a plurality of secondary data blocks
such that the primary data block can be reconstructed using any subset of the secondary data
blocks that includes at least a minimum number of the secondary data blocks and such that
the primary data block cannot be reconstructed using any subset of the secondary data blocks
that includes fewer than the minimum number of the secondary data blocks, wherein the
minimum number of the secondary data blocks is less than a total number of the secondary
data blocks;

store cach of the secondary data blocks at secondary storage locations at different
storage devices in a plurality of storage devices, each of the secondary storage locations
being associated with the primary storage location;

receive a primary read request to retrieve data stored virtually at the primary storage

location;

72

WO 2010/057199 PCT/US2009/064824

automatically identify, in response to receiving the primary read request, the
secondary storage locations at the storage devices that are associated with the primary storage
location;

automatically identify, a set of fastest-responding storage devices in the set of storage
devices, the set of fastest-responding storage devices including fewer storage devices than the
set of storage devices, the set of fastest-responding storage devices including at least as many
storage devices as the minimum number of secondary data blocks, and the set of fastest-
responding storage devices being those ones of the storage devices that are expected to
respond fastest to secondary read requests sent by the electronic computing system;

exclusively send to the storage devices in the set of fastest-responding storage
devices, secondary read requests to retrieve data stored at the identified secondary storage
locations at the storage devices in the set of fastest-responding storage devices;

receive from the storage devices in the set of fastest-responding storage devices,
secondary read responses that are responsive to the secondary read requests, the secondary
read responses containing ones of the secondary data blocks;

reconstruct the primary data block using exclusively the secondary data blocks
contained in the secondary read responses; and

send a primary read response that is responsive to the primary read request, the

primary read response containing the primary data block.

24. A method for securely writing and reading data, the method comprising:

receiving, at a secure storage appliance, a primary read request for a primary data
block at a primary storage location of a volume provided by the secure storage appliance;

in response to receiving the primary read request, determining, at the secure storage
appliance, whether the primary storage location is locked;

when the primary storage location is locked, retrieving the primary data block from an
outstanding write list that stores primary write requests that could not be completed when the
primary write requests were received by the secure storage appliance;

when the primary storage location is not locked,

sending, from the secure storage appliance to at least M storage devices in a
plurality of N storage devices that store secondary data blocks that result from

cryptographically splitting the primary data block, secondary read requests to read

73

WO 2010/057199 PCT/US2009/064824

ones of the secondary data blocks, wherein M designates a minimum number of
secondary data blocks required to reconstruct the primary data block and N designates
a number of secondary storage blocks generated by cryptographically splitting the
primary data block, wherein M is less than N,

receiving, at the secure storage appliance, secondary read responses sent by
the storage devices, the secondary read responses containing the secondary data
blocks; and

reconstructing, at the secure storage appliance, the primary data block using
the secondary data blocks contained in the secondary read responses; and
sending, from the secure storage appliance, a primary read response that is responsive

to the primary read request, the primary read response containing the primary data block.

25. An electronic computing device comprising;:
a processing unit;
a primary interface;
a secondary interface; and
a system memory comprising instructions that, when executed by the processing unit,
cause the processing unit to:
receive a primary read request for a primary data block at a primary storage
location of a volume provided by the electronic computing device;
in response to receiving the primary read request, determine whether the
primary storage location is locked;
when the primary storage location is locked, retrieve the primary data block
from an outstanding write list that stores primary write requests that could not be
completed when the primary write requests were received by the secure storage
appliance;
when the primary storage location is not locked,
send, to at least M storage devices in a plurality of N storage devices
that store secondary data blocks that result from cryptographically splitting the
primary data block, secondary read requests to read ones of the secondary data
blocks, wherein M designates a minimum number of secondary data blocks

required to reconstruct the primary data block and N designates a number of

74

WO 2010/057199 PCT/US2009/064824

secondary storage blocks generated by cryptographically splitting the primary
data block, wherein M is less than N,
receive secondary read responses sent by the storage devices, the
secondary read responses containing the secondary data blocks; and
reconstruct the primary data block using the secondary data blocks
contained in the secondary read responses; and
send a primary read response that is responsive to the primary read request, the

primary read response containing the primary data block.

26. A computer-readable storage medium comprising instructions that, when
executed at an electronic computing device, cause the electronic computing device to:
receive a primary write request to store a primary data block at a primary storage
location;
in response to receiving the primary write request, determine whether the primary
storage location is locked;
in response to determining that the primary storage location is locked, write the
primary write request to an outstanding write list;
in response to determining that the primary storage location is not locked, determine
whether the primary write request can be completed;
when it is determined that the primary write request cannot be completed:
lock the primary storage location; and
write the primary write request to the outstanding write list; and
when it is determined that the primary write request can be completed:
cryptographically split the primary data block into the secondary data blocks;
send, to the storage devices, secondary write requests to write the secondary
data blocks;
receive a primary read request for the primary data block at the primary storage
location of a volume provided by the electronic computing device;
in response to receiving the primary read request, determine whether the primary

storage location is locked;

75

WO 2010/057199 PCT/US2009/064824

when the primary storage location is locked, retrieve the primary data block from an
outstanding write list that stores primary write requests that could not be completed at the
time when the primary write requests were received by the secure storage appliance;
when the primary storage location is not locked,
send, to at least M storage devices in a plurality of NV storage devices that store
secondary data blocks that result from cryptographically splitting the primary data
block, secondary read requests to read ones of the secondary data blocks, wherein M
designates a minimum number of secondary data blocks required to reconstruct the
primary data block and N designates a number of secondary storage blocks generated
by cryptographically splitting the primary data block, wherein M is less than ¥,
receive secondary read responses sent by the storage devices, the secondary
read responses containing the secondary data blocks; and
reconstruct the primary data block using the secondary data blocks contained
in the secondary read responses; and
send a primary read response that is responsive to the primary read request, the

primary read response containing the primary data block.

76

WO 2010/057199

PCT/US2009/064824
1/27
Application Server
~
12 I: F1
Files DB’s J: F2
. K: F3
| File System | <
L: F4
n) (K) (L) (M)]
LUNO CIFS01 iSCSI2 || LUNO2 | LUNOB \M' DB1

LUNO1I CIFS01 iSCSI02]||... LUNO2 | LUNO3 |.

=
—

!

!

|_\
N
oo
|_\
Iz

E
ﬂ«.
al

20 20

FIG. 1
(Prior Art)

10

WO 2010/057199 PCT/US2009/064824

2/27
36
Production 32 Backup/DR Server/ WorkFlow
. . - Backup/Restore B
Appllcatlorﬁvr - Standby Prod Apps o Mount tape 50
o Copy B to Tape 50
] - Development Sys
Production Apps A

and data

Tape Mgmt System 38

A

Backup” Clienf’

- SnapShot Co DB . Catal o]
P 34["’(Y L1, £ File Xfer X o9 °Zj’ Out-of- Band Robotics
— [1] B” T - -c | R At Bty 4
)] File System | |_§]
L=l
Data Path
30 '

(Prior Art)

WO 2010/057199

3/27

PCT/US2009/064824

STORAGE DEVICE
130A

STORAGE DEVICE
130N

nin
rice

SAN
125

SECURE STORAGE

APPLIANCE
120

APPLICATION
SERVER DEVICE

115

WO 2010/057199

PCT/US2009/064824
4/27
_ . 202 (" 1: F1
Application Server / J: F2
K: F3
Files DB’s Files DBs L: F4
| File System | < .II\.,ISI:I):%1
() () ®W_ @ Te oF7
| LUNof |_ciFso1 | [iscsi2 || Luno? | Lunob] LUNO|4 | LUNO|5 - S

\ U: sDB1
120
SA

212
v
02|L“‘L03|| Lso|[Ls1]
A A

M:»Z%G 2067 2068 ¢ ==== ..'

|

o

RS

[EN P

WO 2010/057199 PCT/US2009/064824

5/27
120 I,”Enterprise RN
sure Storage Appliance / , Directory '\
)
! (opt) 2281
; FC EC !
et Target coo \
] d Target 2§ '
od [Luno3 ¥
3
LUN Mapping Unit 21 =
o
o
=4
Data Conversion Module < L
222 5
- 3
L04.b L04.c L04.d o
c

L05.b L05.c L05.d

el | el

Secure Parser
Meta Data

(mappings)

Storage Subsystem Interface 22

lioa | [iso| [Ls1] [Lunag

000
NIC FC SATA
Initiator SAS

224

WO 2010/057199

6/27

PCT/US2009/064824

SECURE STORAGE APPLIANCE

120
CKUP MODULE PRIMARY INTERFACE OWL MoDULE
324 300 326
)NFIGURATION
ANGE MODULE
312
WRITE-THROUGH WRITE-THROUGH
ACHE DRIVER
315 CACHE P MODULE
_ 316 318
PARSER DRIVER
304
DECRYPTION ENCRYPTION
MODULE MODULE
308 310

i

305

READ MODULE

i

WRITE MODULE

306

/\

WO 2010/057199

<heartbeat£ 120"

SSA

PCT/US2009/064824

411

)4 KEY
NIN. MANAGEMENT
SOLE SERVER
406
|
~120 .
SSA ™~
S Application I 407
> 410 Manage_ment <«
Service
416
Backup Cluster _}~
System .
- Management Module Service
1 Venas 324
Active
Logs Directory config. dataj
414 418 '
— SNMP Provider Events \
420 434 436
Kernel
scsl Write-Through Volume 428
T™MD Cache
425 316 426 MPIO
FC iSCSI | Parser Driver Disk 429
TMD | TMD 304 .
422 | 404 Pl N
1 // \423
<~ 7 421 S
403

Data

Writes
—

| Original Data V

WO 2010/057199

8/27

460

7

Shreds and Encrypts
into M of N Shares

(Shares can be local
or remote)

FIG. 8

111

PCT/US2009/064824

460

T

Reconstitutes and
Decrypts M of N
Shares

(Only M shares
required to reconstitute
original data)

Data
Reads

FIG. 9

| ejeq [euibup I\

450

WO 2010/057199

9/27
202
/
7
‘iles DB’s Files DBs
File System |
() (K) (L) (M) M (V)

} |_ciFso1 | | cirsom|| Lunop | Lunob| Lunok [Lunob

PCT/US2009/064824

i

v - V e !V

| _cod[co3l||[cod[cod]| || Loz rLo3|[Leo][Le1]

|—
——>
N

o

=~
>
2
o
=~

[8]
—>

|o

204,

2063] 2064 2065

v

)
ﬁ@!
A

e

254

WO 2010/057199

Storage Network

10/27

8 502as. ,502b 50z
" D ©
12 T
oHe ©
Juie N s
e 506a @ 2042
EIHO @
T1
)580 @ A2
T1 1"
- [©
sd = @
| | 5060 O ®
o H2 D2
%89 11 T2
A H3
e @ 504b
1
/ O @ A1
)8f | @ T2 12
p A2 A2
«»| | 506¢C T2 12
/ pr—— 51 6bl
e \\ S__..on \/
i i
o Vi a/ |
i / |

J2.LUNs

Secure j

518b

PCT/US2009/064824
502d
Mass Storage 51423
N—Clear _~
@ [] HO1.LUNs
N—01-19
@ 514b
512a —<lear—]
[] HO1.LUNs
N—20-39
514c
@ N—Clear_~
@ [] HotLuns
~——40-49
5120 | —— 514
- NSecure
— | AO01 & AD2
LUNs
2079~
510
520a \\
\
\
SSA1 \
Config.Sys \
(At Mass \

618

N

622

WO 2010/057199

Admin.
System
614

|
! 620

616
Console

11/27

Secure
Domain

SSA

A1
604a

PCT/US2009/064824

SSA

A2
604b

SSA

B1
604a

602a

602b

SSA

B2
604b

610

Client

C1
612

Client
C2
612

Client

C3
612

.12

up

n

WO 2010/057199

12/27
Share Share Share
Label Label Label
704 704 704
Signature Signature Signature
706 706 706
Header Header Header
Information Information Information
708 708 708
Virtual Virtual Virtual
Disk Disk Disk
Information Information Information
710 710 710
Secondary Secondary Secondary
Data Data Data
Blocks Blocks Blocks
712 712 712

PCT/US2009/064824

WO 2010/057199 PCT/US2009/064824

13/27
802
804
\ Define
Connections To
Clients
806 I
Define
] Connections to
Storage Shares
808
K Define Volumes
810
‘.| DefineCOI/
Virtual Disks

812
/

800
FIG. 14

WO 2010/057199

PCT/US2009/064824
14/27
822
824
\ Receive Read
Request
826
\ Determine
Identity
828
\ Determine Shares
830
Read from M of N
Shares
832 842

ead Additiona
Share?

Successful Read?

834 844
/
Reconstitute Data Failed Read L
836 _
Provide Data to
Client
et

WO 2010/057199

852
854
\\ Receive Write
Request
856 I
\ Determine
Identity
858
Determine Shares
860
| Encrypt/Split into
N Shares
862
Write to N Shares
864

866 /_lﬁ
N

15/27

Store Metadata

PCT/US2009/064824

918

WO 2010/057199 PCT/US2009/064824
16/27
902 .
/irtual Tape Server / 904 \ Secure Appliance
Virtual Tape Mgmt Sys Admin/Config/Mgmt GUI
-
910 To/From To_IFrom
< Bk-Up Svr Physical Tape 912 \
Backup Subsystem Physical Tape (o] = —p %
Interface Interface Olg-%f-?and § % -
obotics [~ | Mof N
z 4 (Optional) S | 5 |[20ta NE
- : Hile Systd¢m | -_-_-%Cl--—_- T ---_:; 2 g A -
TI. I El Data Path \ 5 Z z
] 96 |3] |3 —»
[LUN| lLun1 | lLunz |
-

Vir Tape Mgmt “DB”
\ /

->Tape 50 VT disk image 914
->Tape 173 VT disk image /

-> 50.VTI on Tape xx 1
->173.VTl on Tape yy

~

/

900

FIG. 17

WO 2010/057199

17/27

Client 954
Ients Consolidated Server
> Phone, etc) —
vNICs vHBA$
O—F ° Guest 0S
3 <] 0o
‘ot % Wics (Payroll) gg L
vNICs Guest OS vHBA$
Secure ‘|3 8 uzsh 8
Ethernet \E v'RIICs () VHBAS
A o
-f“] .*'; 2
VT O— vNICs HBAL
/ \ O = o Guest OS vo
: Q V§||CS (Finance) vaBAs
Virtualization
957 Technology 998

950

PCT/US2009/064824

SSA Appliance

B

HBAl o o o

LUN | COI=PR,

WGK=PR,
LUN 20f4
EN—| COI=HR,
:l WGK=HR,
LUN | 30f5
LUN | COI=FN,
: WGK=FN,
LUN| 20of4

SAS/SATA
(Local for fast acc:

[Lo]

SAS/SATA
(Local for fast ac

SAS/SATA
(Local for fast ac

[LUN| [Lun|[Lun|[Lun]

P

FIG. 18

961

WO 2010/057199

Pl

RECEIVE PRIMARY WRITE
REQUEST

v A

UPDATE WRITE COUNTER

v A

CRYPTOGRAPHICALLY SPLIT
ORIGINAL DATA INTO DATA
BLOCKS

v A

ATTACH UPDATED WRITE
COUNTER TO DATA BLOCKS

v A

IDENTIFY SECONDARY STORAGE
LOCATIONS

v A

GENERATE SECONDARY WRITE
REQUESTS

v A

SEND SECONDARY WRITE
REQUESTS

18/27

302

303

304

306

308

309

310

PCT/US2009/064824

1300
/_

I

ALL SECONDARY WRITE NO
REQUESTS SUCCESSFUL?

lYES A

SEND PRIMARY WRITE RESPONSE

314

320

1316

RESEND SECONDARY WRITE
REQUEST

FIG. 19

WO 2010/057199

19/27

1401

RECEIVE PRIMARY READ REQUEST

Y 1402

IDENTIFY SECONDARY STORAGE
LOCATIONS

GENERATE SECONDARY READ
REQUESTS

Y 1404

SEND SECONDARY READ
REQUESTS

RECEIVE SECONDARY READ
RESPONSES

ALL WRITE COUNTERS
EQUIVALENT?

<

NO
Y

YES
Y

YES

1412

SECONDARY READ RESPONSES
NO
INCLUDE MINIMAL SET OF
SECONDARY DATA BLOCKS?

1416

RECONSTRUCT ORIGINAL DATA
USING MINIMAL SET OF DATA

BLOCKS
y 1418
OUTPUT PRIMARY READ
RESPONSE COMPRISING BLOCK OF |

PCT/US2009/064824

1400
/_

1410

RECONSTRUCT ORIGINAL DATA
USING ANY MINIMAL SET OF —
SECONDARY DATA BLOCKS

1414

OUTPUT PRIMARY READ
RESPONSE INDICATING FAILURE

ORIGINAL DATA

FIG. 20

WO 2010/057199 PCT/US2009/064824
20/27

1702 o 1700

RECEIVE PRIMARY READ REQUEST

l 1704

IDENTIFY MINIMUM NUMBER OF
DATA BLOCKS M

l 1706

IDENTIFY THE M FASTEST-
RESPONDING STORAGE DEVICES

l 1708
GENERATE SECONDARY REQUEST
REQUESTS
l 1710

EXCLUSIVELY SEND SECONDARY
READ REQUESTS TO IDENTIFIED
STORAGE DEVICES

l 712 714
SEND SECONDARY READ REQUEST
TO NEXT FASTEST-RESPONDING

LL SECONDARY READ REQUESTS\ NO

2
SUCCESSFUL? STORAGE DEVICE
l YES 1716
RECONSTRUCT PRIMARY DATA
BLock
l 1718

SEND PRIMARY READ RESPONSE
CONTAINING PRIMARY DATA
BLOCK

FIG. 21

WO 2010/057199 PCT/US2009/064824
21/27
— 1800
1802
RECEIVE REQUEST TO CHANGE
REDUNDANCY CONFIGURATION OF
A VOLUME
l l 1804 1822
YES
ALL STRIPES PROCESSED? CONFIGURATION CHANGE
PROCESS COMPLETE
NO
1806 1814
GENERATE NEW SECONDARY
SELECT UNPROCESSED STRIPE —> DATA BLOCKS USING NEwW
REDUNDANCY CONFIGURATION
l 1808 l 1816
SEND SECONDARY READ GENERATE SECONDARY WRITE
REQUESTS REQUESTS
l 1810 l 1818
RECEIVE SECONDARY DATA SEND SECONDARY WRITE
BLOCKS IN SELECTED STRIPE REQUESTS
l 1812 l 1820
RECONSTRUCT PRIMARY DATA UPDATE STATUS BLOCK FOR
BLOCK OF SELECTED STRIPE SELECTED STRIPE

FIG. 22

WO 2010/057199 PCT/US2009/064824
22/27

1902
e 1900
INITIALIZE QUEUES IN WRITE-
THROUGH CACHE
Y 1904
RECEIVE PRIMARY I/O REQUEST
FOR A VOLUME
Y 1906
PRIMARY READ REQUEST? / NO
y YES 1908 1914
NO/ PRIMARY WRITE REQUEST TO PRIMARY WRITE REQUEST TO NO
PRIMARY STORAGE LOCATION IN PRIMARY STORAGE LOCATION IN
WRITE-THROUGH CACHE? WRITE-THROUGH CACHE?
y YES 1910 y YES 1916
RETURN PRIMARY DATA BLOCK IN __| UPDATE PRIMARY WRITE REQUEST
PRIMARY WRITE REQUEST IN WRITE-THROUGH CACHE
1912 1918
PROVIDE PRIMARY READ REQUEST ADD PRIMARY WRITE REQUEST TO
Ly -«
To READ MODULE WRITE-THROUGH CACHE
L 2 ~1920
REFERENCE TO PRIMARY WRITE \, NO
REQUEST IN VOLUME’S QUEUE?
y YES 1922

No FURTHER ACTION NEEDED

1924

ADD REFERENCE TO PRIMARY
WRITE REQUEST TO VOLUME’S j—
QUEUE

L 2 1926

SEND EVENT NOTIFICATION TO
WRITE-THROUGH MODULE

v 1928

MARK VOLUME AS DIRTY

FIG. 23

WO 2010/057199

2002
—> RECEIVE EVENT NOTIFICATION
l 2004
> SELECT VOLUME
l 2006

ASSOCIATED WITH SELECTED

WRITE REQUESTS IN QUEUE
VOLUME?

lYES 2008

SELECT REQUEST IN QUEUE
ASSOCIATED WITH SELECTED
VOLUME

l 2010
PROVIDE SELECTED PRIMARY

WRITE REQUEST TO WRITE

PCT/US2009/064824

2000
A/_

2012

RECEIVE PRIMARY WRITE
RESPONSE

l 2014
< SELECTED PRIMARY WRITE NO

REQUEST SUCCESSFUL?

lYES 2018

REMOVE SELECTED SECONDARY
WRITE REQUEST FROM QUEUE

l 2020
ANY REMAINING WRITE
REQUESTS IN QUEUE ASSOCIATED
WITH SELECTED VoLume? / YES
l NO 2022

MARK STATUS OF SELECTED
VOLUME As CLEAN

MODULE
2016
2
N6< ALL QUEUES EMPTY? ><
YES

FIG. 24

WO 2010/057199

YES

—— | AND METADATA TO OUTSTANDING

24/27

2102
RECEIVE PRIMARY WRITE
REQUEST
Y 2104
PRIMARY STORAGE LOCATION
LOCKED?
y VO 2110

NO CAN PRIMARY WRITE
REQUEST BE COMPLETED?

y VES 2112

PROVIDE PRIMARY WRITE
REQUEST TO WRITE MODULE

Y 2114
PRIMARY WRITE REQUEST
SUCCESSFUL?
NO
Y 2116

MARK PRIMARY STORAGE
LOCATION AS LOCKED

WRITE PRIMARY WRITE REQUEST

WRITE LIST

OUTPUT PRIMARY WRITE
RESPONSE INDICATING SUCCESS

FIG. 25

> YES

.

PCT/US2009/064824

2100
/_

WO 2010/057199

25727

START
l 2202
YES QOUTSTANDING WRITE LIST
EmMPTY?

NO
2206

SELECT PRIMARY WRITE REQUEST
IN OUTSTANDING WRITE LIST

l 2208

PROVIDE PRIMARY WRITE
REQUEST TO WRITE MODULE

l 2210
PRIMARY WRITE REQUEST NO

SUCCESSFUL?
YES

2212

REMOVE LocK ON PRIMARY WRITE

LOCATION

l 2214

REMOVE PRIMARY WRITE
REQUEST FROM OUTSTANDING

WRITE LIST

2204

WAIT

FIG. 26

PCT/US2009/064824

2200
/_

WO 2010/057199 PCT/US2009/064824
26/27

RECEIVE PRIMARY READ REQUEST

l 2304 2312
LocK ON PRIMARY STORAGE IDENTIFY MOST RECENT PRIMARY
LOCATION SPECIFIED BY PRIMARY YES WRITE REQUEST IN OUTSTANDING

READ REQUEST? WRITE LIST

lNO 2306 l 2314

PROVIDE PRIMARY READ REQUEST
TO READ MODULE

SEND PRIMARY READ RESPONSE

l 2308
RECEIVE PRIMARY READ
RESPONSE
lYES 2310

SEND PRIMARY READ RESPONSE

FIG. 27

WO 2010/057199 PCT/US2009/064824
27127

2400
2402 re

RECEIVE BACKUP REQUEST

¢ 2404

YES <A|_|_ STORAGE DEVICES BACKED>
ur?

l"o 2406

SELECT STORAGE DEVICE

l 2408
CoPY ALL DATA AT SELECTED

STORAGE DEVICE TO BACKUP
DEVICE

2410

REPORT BACKUP OPERATION
COMPLETE

FIG. 28

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - claims
	Page 74 - claims
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings

