Office de la Propriete Canadian CA 2815306 A1 2012/05/03

Intellectuelle Intellectual Property
du Canada Office (21) 2 81 5 306
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
13) A1
(86) Date de dépbt PCT/PCT Filing Date: 2011/09/27 (51) Cl.Int./Int.Cl. GO6F 9/44 (2006.01),
(87) Date publication PCT/PCT Publication Date: 2012/05/03 GO6F 12/06(2000.01), GO6F 15/76(2006.01)

. . : _ (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2013/04/19 MICROSOFT CORPORATION. US

(86) N° demande PCT/PCT Application No.: US 2011/053531
(72) Inventeurs/Inventors:
(87) N publication PCT/PCT Publication No.: 2012/057955 JACOBSON, NEIL A. US:

(30) Priorité/Priority: 2010/10/27 (US12/912,798) REIERSON, KRISTOFER H., US;
MONTGOMERY, ANDREW, US

(74) Agent: SMART & BIGGAR

(54) Titre : APPLICATIONS A ETATS FONCTIONNANT DANS UN ENVIRONNEMENT DIINFONUAGIQUE SANS ETATS
54) Title: STATEFUL APPLICATIONS OPERATING IN A STATELESS CLOUD COMPUTING ENVIRONMENT

CLOUD COMPUTING
PLATFORM FOR STATEFUL
APPLICATIONS

;100
154~ 1965,

APPLICATION A AGE 142 ()
182~ ~158 -~ 140
SEQUENCER CLIENT VIRTUALIZATION
150~ 3 DEVICE LAYER —
APPLICATION i . L~
el STATE APPLICATION
PACKAGE
OPERATING SYSTEM 148 NETWORK £~ 136
132 AF’PSL_:%;_?._EION
HARDWARE PLATFORM -~146
- N H//
144 e | 134
PACKAGE | | | cLoup
GENERATOR | APPLICATION 130 CLOUD | | STORAGE
| SOFTWARE |
: VIRTUALIZATION LAYER |~128 COMPONENTS :
, CLOUD PROCESS f~28 / |
: - - e I :
|1 [OPERATING SYSTEM]~124 o1 0|
| | [_VIRTUAL MACHINE Jj ~25 —~_ |
| | CLOUD |)
| 1 | CLOUD OPERATING | . MANAGEMENT | |
|] SYSTEM 120 SYSTEM | |
102~ | L T _____.|
CLOUD | e—m— oo .
COMPUTING —]

SOFTWARE

PLATFORM 106 112
COMPONENTS TOCAL 114
STORAGE USER
INTERFACE

1047 108~

CLOUD
M ARTW ARE PROCESSOR \ ~116

FABRIC 110~ NETWORK
MEMORY INTERFACE

FIG. 1

(57) Abrégée/Abstract:
A cloud computing environment may use a virtualization layer within a stateless cloud computing process to capture, store, anad
retrieve state information generated by a stateful application executing within the process. The virtualization layer may monitor

S SNV
O - 2.7 20 a0

J "..
KT
e
A

» . _
‘ l an a dH http:/opic.ge.ca + Ottawa/Gatineau K1A 0C9 - hmp./cipo.ge.ca o p1C
OPIC - CIPO 191

CA 2815306 A1 2012/05/03

en 2 815 306
13) A1

(57) Abrege(suite)/Abstract(continued):
various state storage systems to identify changes to stateful items and store the stateful items In a state storage mechanism. Th

virtualization layer may intercept and redirect calls to the stateful items stored In the state storage mechanism. A cloud computir
manager may start and stop the stateless cloud computing process, and may recover the state and resume executing th

application.

D

D «Q

w0 2012/057955 A1 |[HIL ! HYD Y OO0 YN0 0 A

CA 02815306 2013-04-19

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization l{,f:”_ﬂ""’%\
International Bureau wjf)

(43) International Publication Date
3 May 2012 (03.05.2012)

(10) International Publication Number

WO 2012/057935 Al

(51)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

International Patent Classification:
GO6F 9/44 (2006.01) GO6LF 12/08 (2006.01)
GO6F 15/16 (2006.01)

International Application Number:
PCT/US2011/053531

International Filing Date:
27 September 2011 (27.09.2011)

Filing Language: English
Publication Language: English
Priority Data:

12/912,798 27 October 2010 (27.10.2010) Uus

Applicant (for all designated States except US):. MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: JACOBSON, Neil A.; c/o Microsotit Corpora-
tion, LCA - International Patents, One Microsoit Way,
Redmond, Washington 98052-6399 (US). REIERSON,
Kristofer H.; ¢/o Microsott Corporation, LCA - Interna-
tional Patents, One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). MONTGOMERY, Andrew; c/o
Microsolit Corporation, LCA - International Patents, One
Microsoit Way, Redmond, Washington 98052-6399 (US).

(81)

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW .

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZVW), Eurasian (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT,
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: STATEFUL APPLICATIONS OPERATING IN A STATELESS CLOUD COMPUTING ENVIRONMENT

CLCUD COMPUTING
PLATFORM FOR STATEFUL
APPLICATIONS

;100

156
154 \
PR T ATION APPLICATION < By
PACKAGE 142
1 52‘\ 158 o 140
SEQUENCER - CLIENT VIRTUALIZATION
150~ _ DEVILE = 138
APPLICATION 5 o~
IRTVER O 21111 APPLICATION
PACKAGE
OPERATING SYSTEM (148 NETWORK — 136
132 APPLICATION
HARDWARE PLATFORM 145 STATE
\‘ ”/ *
— < tiomn.
144 e : 134
PACKAGE | | | CLOUD
GENERATOR | | APPLICATION 130 CLOUD | | STORAGE
SYSTEM | SOFTWARE |
: VIRTUALIZATION LAYER |28 COMPﬁHB\IENTS :
| CLOUD PROCESS 126 |
: e et e TP .[:{_ - l
|
| | [OPERATING SYSTEM |24 - 1
VIRTUAL MACHINE
s M2z —or05 ! |
| | | CLOUD OPERATING MANAGEMENT | 1
| SYSTEM ~"120 SYSTEM ||
102~ | Lo ___.|
CLOUD | b o o e e e e e e e e e e s
COMPUTING ~]
PLATFORM 106 112
SOFTWARE
COMPONENTS AL 114
STORAGE USER
104-~~A 108~ / INTERFACE
CLOUD
L ARDVARE PROCESSOR \ 116
FABRIC 110~ NETWORK
MEMORY INTERFACE

(57) Abstract: A cloud computing environment may use a virtualization
layer within a stateless cloud computing process to capture, store, and re-
trieve state information generated by a statetul application executing with-
in the process. The virtualization layer may monitor various state storage
systems to 1dentity changes to stateful items and store the statetul items
a state storage mechanism. The virtualization layer may intercept and redi-
rect calls to the stateful items stored in the state storage mechanism. A
cloud computing manager may start and stop the stateless cloud comput-
ing process, and may recover the state and resume executing the applica-

CA 02815306 2013-04-19

wO 2012/057955 A1 I 0HDF D000 0 O A 0 R

— as to the applicant's entitlement to claim the priority of — before the expiration of the time limit for amending the
the earlier application (Rule 4.17(iii)) claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

STATEFUL APPLICATIONS OPERATING IN A STATELESS

CLOUD COMPUTING ENVIRONMENT
Background

[0001] Cloud computing 1s a computing environment in which processes operate
statelessly. In a typical cloud computing environment, a user’s process may operate on a
fabric of hardware platforms within one or more datacenters, and the datacenter operator
may be able to move the user’s process from one server or hardware platform to another.
Since the datacenter operator may perform such moves at different times, the processes
executing on the cloud computing environment may not store state within the processes.
[0002] In contrast to cloud computing processes, many conventional applications may
store state 1n the form of operating system registry settings, configuration files, and other
changes. In order for the application to perform as expected over time, the state for the
application may persist and may be recalled from time to time or when the application 1s
restarted.
Summary

[0003] A cloud computing environment may use a virtualization layer within a stateless
cloud computing process to capture, store, and retrieve state information generated by a
stateful application executing within the process. The virtualization layer may monitor
various state storage systems to 1dentify changes to stateful items and store the stateful
items 1n a state storage mechanism. The virtualization layer may mtercept and redirect
calls to the stateful items stored 1n the state storage mechanism. A cloud computing
manager may start and stop the stateless cloud computing process, and may recover the
state and resume executing the application.
[0004] This Summary 1s provided to introduce a selection of concepts 1in a sitmplified form
that are further described below 1n the Detailed Description. This Summary 1s not
intended to 1dentify key features or essential features of the claimed subject matter, nor 1s
1t intended to be used to limit the scope of the claimed subject matter.

Brief Description of the Drawings
[0005] In the drawings,
[0006] FIGURE 1 1s a diagram 1illustration of an embodiment showing a cloud computing
environment for stateful applications.
[0007] FIGURE 2 1s a flowchart 1llustration of an embodiment showing a method for

creating an application package.

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

[0008] FIGURE 3 1s a flowchart 1llustration of an embodiment showing a method for
starting or resuming a stateful application 1n a stateless process.

Detailed Description
[0009] A cloud computing environment may use a virtualization layer to capture state
changes to an application and persist the state changes when stopping and restarting the
application. The virtualization layer may monitor various storage mechanisms used by
applications to store state, and may create and manage a separate storage mechanism for
the state. The virtualization layer may recognize calls to the storage mechanisms and
redirect such calls to the separate storage mechanism.
[0010] The state of the application may be stored 1nto a cloud storage system, which may
persist the state while stopping and restarting the application. In many embodiments, a
virtual hard disk may be used to store the state, and such a virtual hard disk may be stored
directly on a cloud storage system.
[0011] In some embodiments, multiple copies of the application may be executing, each
having a separate state. When the process executing the application 1s stopped, the state
may be stored, and when the process 1s resumed, the state may be selected from a group of
stored states, the process resumed from the previous state.
[0012] Throughout this specification, like reference numbers signify the same elements
throughout the description of the figures.
[0013] When elements are referred to as being “connected” or “coupled,” the elements can
be directly connected or coupled together or one or more mtervening elements may also be
present. In contrast, when elements are referred to as being “directly connected” or
“directly coupled,” there are no intervening clements present.
[0014] The subject matter may be embodied as devices, systems, methods, and/or
computer program products. Accordingly, some or all of the subject matter may be
embodied 1n hardware and/or 1n software (including firmware, resident software, micro-
code, state machines, gate arrays, ¢tc.) Furthermore, the subject matter may take the form
of a computer program product on a computer-usable or computer-readable storage
medium having computer-usable or computer-readable program code embodied in the
medium for use by or in connection with an instruction execution system. In the context
of this document, a computer-usable or computer-readable medium may be any medium
that can contain, store, communicate, propagate, or transport the program for use by or 1n

connection with the mstruction execution system, apparatus, or device.

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

[0015] The computer-usable or computer-readable medium may be for example, but not
limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or propagation medium. By way of example, and not
limitation, computer-readable media may comprise computer storage media and
communication media.

[0016] Computer storage media includes volatile and nonvolatile, removable and non-
removable media implemented 1n any method or technology for storage of information
such as computer-readable instructions, data structures, program modules, or other data.
Computer storage media includes, but 1s not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information
and may be accessed by an mstruction execution system. Note that the computer-usable or
computer-readable medium can be paper or other suitable medium upon which the
program 1s printed, as the program can be electronically captured via, for instance, optical
scanning of the paper or other suitable medium, then compiled, interpreted, of otherwise
processed 1n a suitable manner, 1f necessary, and then stored 1n a computer memory.
[0017] Communication media typically embodies computer-readable mstructions, data
structures, program modules or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” can be defined as a signal that has one or more of its
characteristics set or changed 1n such a manner as to encode information 1n the signal. By
way of example, and not limitation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless media such as acoustic, RF,
infrared and other wireless media. Combinations of any of the above-mentioned should
also be included within the scope of computer-readable media.

[0018] When the subject matter 1s embodied 1n the general context of computer-executable
instructions, the embodiment may comprise program modules, executed by one or more
systems, computers, or other devices. Generally, program modules include routines,
programs, objects, components, data structures, and the like, that perform particular tasks
or implement particular abstract data types. Typically, the functionality of the program
modules may be combined or distributed as desired 1n various embodiments.

[0019] Figure 1 1s a diagram of an embodiment 100, showing a cloud computing

environment 1n which stateful applications may be executed using stateless cloud

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

computing processes. Embodiment 100 1s a simplified example of a cloud computing
environment and the various components that may allow execution of the stateful
application.

[0020] The diagram of Figure 1 1llustrates functional components of a system. In some
cases, the component may be a hardware component, a software component, or a
combination of hardware and software. Some of the components may be application level
software, while other components may be operating system level components. In some
cases, the connection of one component to another may be a close connection where two
or more components are operating on a single hardware platform. In other cases, the
connections may be made over network connections spanning long distances. Each
embodiment may use different hardware, software, and interconnection architectures to
achieve the described functions.

[0021] Many applications, especially conventional desktop or server applications, may be
stateful. The term stateful 1s used to indicate that the application may operate with and
change the state of the application during installation and use. In many cases, a stateful
application may store configuration information in a system registry, configuration file,
configuration database, or other storage mechanism.

[0022] In an example of a stateful application, an application may allow a user to
customize certain properties or arrange a user interface 1n a particular manner. Those
customizations may constitute the state of the application. In another embodiment, an
application may be frequently updated, with each update constituting a state of the
application.

[0023] In some cloud computing environments, the processes executing in the
environment are inherently stateless. In many such embodiments, the processes may
execute within a datacenter may be moved from one virtual machine on one hardware
platform to another virtual machine on another hardware platform. During such
transitions, the datacenter may move the process around, but may not move any state
associated with various backend components, such as the hardware platform, a virtual
machine, an operating system operating within the virtual machine, or any other
component.

[0024] Such an architecture may allow the cloud computing environment to manage the
underlying hardware and operating systems in a very efficient manner. During periods of
low usage, processes may be consolidated onto a small subset of the hardware platforms

while other hardware platforms are turned off. When new versions of an operating system

4

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

are available, or when upgrades or patches are made to an existing operating system, the
processes may be temporarily suspended or moved to another hardware platform with an
updated operating system, then returned to the original platform an operated with the
updated operating system.

[0025] Many cloud computing services may host many different computing processes and
may provide services for many different customers. Each customer may be responsible
for their own processes, but the cloud computing service may provide hardware and
software support services. The cloud computing service may manage the processes 1n
large datacenters, which may provide physical security, professional management of the
hardware and software infrastructure, high network bandwidth, redundant hardware
platforms, and guaranteed uptime, among other benefits.

[0026] Some cloud computing environments may operate multiple datacenters which may
be located around the world. Such environments may allow users to have their processes
and applications executing 1n different time zones to allow faster connections and lower
network costs when providing access to employees or customers around the globe.

[0027] Many cloud computing environments may also offer cloud storage. Cloud storage,
sometimes also known as blob storage, may be a data storage system that may operate in a
datacenter. In many embodiments, cloud storage may provide storage for data and
executable code as a service. Such services may manage the hardware and software
infrastructure separate from the data storage service, and the user may not be exposed to
the hardware and infrastructure. From a user’s perspective, the cloud storage system may
appear as an infinite sized storage system with high uptime and high reliability.

[0028] In order to operate a conventional, stateful application 1n a stateless process, a
virtualization layer may be used to capture all read and write calls to arcas where state
may be stored, and redirect the calls to a separate state which may be stored 1n a cloud
storage system.

[0029] The virtualization layer may operate within a stateful process and may monitor the
read and write operations of executable code within an application. In some embodiments,
the virtualization layer may be configured to 1identify certain subsets of the read and write
operations as being state-related operations and other operations as not being state-related.
For each of the state-related read and write operations, the virtualization layer may redirect
the operations to an application state storage object.

[0030] For example, a typical stateful application may write changes to an operating

system registry or a configuration file. Those write operations may be captured by the

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

virtualization layer and redirected to an application state storage object that may be stored
1n a cloud storage object.

[0031] In some embodiments, the virtualization layer may store the application state
storage object on a local storage object accessible by the stateless cloud process. In such
embodiments, a cloud process management system may send a command to the
virtualization layer when the cloud process may be stopped. The cloud process
management system may 1ssue such commands when the process may be moved to
another virtual machine or otherwise paused for mamtenance or other reasons.

[0032] In such an embodiment, the virtualization layer may write any changes from the
locally stored application state to an object 1n cloud storage. Such embodiments may also
periodically update the cloud storage object with any changes during normal operations.
In other embodiments, the virtualization layer may redirect read and write operations
directly to the cloud storage object.

[0033] Embodiments where the read and write operations are stored locally and then are
copied to the cloud storage object may be usetul for stateful applications that perform a
large number of frequent accesses to the application state. Such applications may operate
slower when the application state may be stored over a network connection to a cloud
storage object. Other embodiments where the application may access the application state
infrequently may be more suitable for reading and writing directly to the cloud storage
object.

[0034] In some embodiments, the applications may be loaded and stored 1n the form of
packages. A package may contain all of the various components of an application,
including all executable code, executable libraries, and application state. The package
may be created by a packaging system that may use the virtualization layer along with a
sequencer. The sequencer may 1dentify all of the executable code consumed by the
application, including libraries, assemblies, and other components that may or may not be
distributed with the application itself. A package may be created that contains the
application executables, along with any data files consumed by the application. In some
embodiments, the package may include the application state, while 1n other embodiments,
the application state may be stored in a separate storage object.

[0035] Embodiment 100 1llustrates a cloud computing platform 102 that may have provide
stateless cloud processes that may be managed by a user, and various hardware and

software infrastructure that may be managed by a cloud computing provider.

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

[0036] The cloud computing platform 102 may have a cloud computing fabric 104 made
up of many hardware computing platforms, along with various software components 106.
[0037] The cloud computing fabric 104 may consist of many server computers. In some
embodiments, a single datacenter may have many hundreds or thousands, or even
hundreds of thousands of hardware platforms. The hardware platforms may each have a
processor 108, local memory 110, and local storage 112. In some cases, the hardware
platforms may have a user interface 114 and network interface 116.

[0038] As part of the software components 106, the cloud computing environment 102
may have a set of cloud software components 118. The cloud software components 118
may be managed by the cloud service provider and may not be exposed to a user.

[0039] The cloud software components 118 may include a cloud operating system 120 as
well as a cloud management system 121. The cloud operating system 120 may operate as
a hypervisor to host one or more virtual machines 122 on each hardware platform. Each
virtual machine 122 may have an operating system 124 on which stateless cloud processes
126 may execute.

[0040] The cloud management system 121 may manage the various components of the
cloud computing services. The cloud management system 121 may be capable of
performing functions such as moving virtual machines from one hardware platform to
another, starting, stopping, and pausing virtual machines, allocating resources to different
processes, and performing other management services. The cloud management system
121 may be a system used by a cloud services supplier to update operating systems,
upgrade or repair hardware, and otherwise manage the hardware and software within a
datacenter.

[0041] A cloud process 126 may be exposed to a user so that the user may execute an
application within the cloud computing environment 102. The cloud process 126 may be a
stateless process and may not be capable of saving and restoring any state information
over the lifetime of the process.

[0042] A virtualization layer 128 and stateful application 130 may be executed by the
stateless cloud process 126. The application 130 may be registered with the virtualization
layer 128 so that the virtualization layer 128 may monitor executable code associated with
the application 130 to detect and state changes.

[0043] In some embodiments, the application 130 may be provided to the cloud computing
platform 102 1n the form of a package. The package may include the executable code as

well as an 1nitial state of the application. The 1nitial state may be the state of the

7

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

application 130 as initially installed and configured. After the application 130 begins
operation, the virtualization layer 128 may create and maintain a second set of state
information that may be differences between the mitial state and the current state.

[0044] In such embodiments, the virtualization layer 128 may include various differencing
mechanisms that may 1dentify changes made to the 1nitial state and may store those
changes m a separate change database. The differencing mechanism may be able to return
the application 130 to a stored state by loading the 1nitial state, then applying the separate
change database to re-create the current state.

[0045] In some embodiments, the application 130 may be mstalled and executed without
using a package. In such embodiments, a script or other mechanism may first 1nstall and
execute the virtualization layer 128 on the cloud process 126, then the application 130 may
be installed and executed. During the installation process of the application 130, the
virtualization layer 128 may redirect read and write operations that may affect the
application state into a database or other storage mechanism.

[0046] The virtualization layer 128 may store the application state 136 1n cloud storage
134, which may be accessed over a network 132.

[0047] In some embodiments, the virtualization layer 128 may read and write directly to
the cloud storage 134 for cach read and write operation to the application state 136. In
some such embodiments, the application state 136 may be stored 1n a virtual hard disk. A
virtual hard disk containing the application state 136 may be mounted to the cloud process
126 when the cloud process 126 1s started and may provide a simple mechanism by which
a virtualization layer 128 may perform read and write operations to the application state
136.

[0048] In other embodiments, the virtualization layer 128 may maintain a local application
state within the cloud process 126. In such embodiments, the cloud management system
121 may 1ssue a stop command for the cloud process 126, upon receiving such a
command, the virtualization layer 128 may write the locally stored application state to the
application state 136 stored 1n the cloud storage 134.

[0049] The cloud storage 134 may include an application package 138 as well as an
executable virtualization layer 140. In some embodiments, an installer package may
contain the virtualization layer’s executable components along with an application
package. The executable virtualization layer 140 and application package 138 may be
loaded 1nto a cloud process 126 when the application 130 1s being started. In many

embodiments, the loading and execution of the virtualization layer 128 and application

3

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

130 may be defined 1n a script or other executable. In some cases, a user may manually
cause the virtualization layer 128 to be loaded and configured, and then may manually
load and start the application 130.

[0050] The application 130 may be a server application, where various client devices 142
may access the application 130 over a network 132. The network 132 may be a local area
network, wide arca network, the Internet, or other network configuration.

[0051] As a server application, the application 130 may respond to communication
initiated by the client devices 142. An example of such an application may be an email or
messaging system that may store email messages 1n a database. Client devices 142 may
access the email messages 1n the database by using a web browser, email client, or other
client-based software. In another example, the application 130 may be a website that
allows clients to access the website using a web browser.

[0052] When the application packages are used, a package generation system 144 may
create an 1nitial version of an application package. The package generation system 144
may have a hardware platform 146, which may include a processor, random access
memory, local storage, and user and network interfaces, along with an operating system
148 on which various applications may operate.

[0053] A virtualization layer 150 may be used with a sequencer 152 to install and execute
the application 154 to create an application package 156. In many embodiments, the
application package 156 may include an application state 158, which may be an 1nitial
application state 158.

[0054] Figure 2 1s a flowchart 1llustration of an embodiment 200 showing a method for
creating an application package. The process of embodiment 200 1s a sitmplified example
of how an application package may be created using a virtualization layer and prepared for
execution.

[0055] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some
embodiments, various operations or set of operations may be performed 1n parallel with
other operations, either 1n a synchronous or asynchronous manner. The steps selected here
were chosen to illustrate some principles of operations 1n a simplified form.

[0056] Embodiment 200 1s an example of a method for creating an application package.
The application package may define an mitial or baseline state for an application. In some

embodiments, the application package may be installed and executed 1n a cloud process.

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

Such embodiments may include a management application or script that may install a
virtualization layer and load the application package for execution.

[0057] The application package may contain all of the executables called by an
application, including libraries, assemblies, or various additional components, along with
any application state stored by the application during installation or normal operation. The
process of embodiment 200 may be performed to 1dentify the various executables and to
capture the state of the application during installation or normal operation. All of the
components that are 1dentified may be added to the package, and the package may be used
to re-create the application at the state at which the process of embodiment 200 ends.
[0058] The operations of embodiment 200 may be those operations performed by the
package generator system 114 and specifically by the sequencer 152 and virtualization
layer 150.

[0059] The system may start up 1n block 202. A virtualization layer may be loaded 1n
block 204.

[0060] Storage objects to monitor may be defined 1in block 206. The storage objects may
be configuration files, configuration databases, registries, or other objects. The objects
may be registered with the virtualization layer so that the virtualization layer may monitor
those objects for changes and may save those changes 1n an application state storage
system, which may be created in block 208. In some embodiments, the virtualization layer
may monitor all objects 1n the system for changes. Other embodiments may monitor
changes for specific processes.

[0061] Different embodiments may use different storage systems in which to store
application state information. In one embodiment, an application or service may maintain
a separate registry, database, configuration file, or other storage object and may respond to
read and write requests for application state information. In some embodiments, such
functions may be performed by a virtualization layer.

[0062] The virtualization layer may create redirection paths for the monitored storage
objects 1n block 210. The redirection paths may redirect read and write calls that may be
directed to the monitored storage objects to redirect to the application state storage objects.
[0063] Within the application, the services or executables that may create and consume the
application state may be 1dentified 1n block 212. In some embodiments, the services or
executables may be individually 1identified before executing the application. In other

embodiments, the services or executables may be 1dentified after executing the

10

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

application, and may be 1dentified by those services or executables that are associated with
the application and that read or write to the monitored objects.

[0064] The application may begin execution 1in block 214. In some embodiments, the
application may begin an 1nstallation process. In other embodiments, the application may
merely begin execution.

[0065] During execution or installation, a change to one of the monitored storage objects
may be detected 1in block 216. When the change 1s detected i block 216, the change may
be stored 1n block 218. In some embodiments, the operations of blocks 216 and 218 may
be performed during an 1nstallation of the application and may generate an initial or
golden state of the application.

[0066] At some point during execution, an end command may be received 1n block 220,
after which the application and the state storage objects may be saved into an application
package. In many embodiments, the executables and data files associated with the
application may also be 1dentified and stored 1n the application package.

[0067] Figure 3 1s a flowchart 1llustration of an embodiment 300 showing a method for
starting and resuming a stateful application within a stateless platform such as a stateless
cloud platform The process of embodiment 300 1s a simplified example of how an
application may be started or resumed 1n a cloud computing environment. Within a cloud
computing environment, an application executing on a stateless cloud computing platform
ay be paused and resumed as the cloud computing service provider may move the process
to different hardware or software platforms in order to perform hardware or software
maintenance, upgrade the hardware or software, or for managing the processes within a
data center.

[0068] Other embodiments may use different sequencing, additional or fewer steps, and
different nomenclature or terminology to accomplish similar functions. In some
embodiments, various operations or set of operations may be performed 1n parallel with
other operations, either 1n a synchronous or asynchronous manner. The steps selected here
were chosen to 1llustrate some principles of operations in a sismplified form.

[0069] Embodiment 300 represents a method that may be performed to load and execute a
stateful application within a stateless process. A virtualization layer may be used to
redirect read and write calls that may be associated with the application state.

[0070] The process of embodiment 300 may use a virtual hard disk that contains the
application state. A virtual hard disk may be a software representation of a hard disk

storage device. Virtual hard disks may be mounted and manipulated 1n similar manners as

11

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

physical hard disk storage devices, but may be moved, replicated, backed up, and have
other operations performed as 1f the virtual hard disk were a simple computer file.

[0071] In many embodiments, a virtual hard disk may be mounted and accessed over a
network connection. In some such embodiments where the virtual hard disk may be
accessed very frequently, the network connection may consume a large amount of
bandwidth. Depending on the performance considerations of the network, including
overall bandwidth and latency, some embodiments may move a virtual hard disk to a local
storage device or to another storage device that may be nearby the local processor to
maximize performance.

[0072] A cloud storage system, sometimes known as blob storage, may be used to store
virtual hard disks that contain application state. In such embodiments, the virtual hard
disk may be accessed through a network connection to the cloud storage system. In
embodiments where the application state may be accessed frequently or where the latency
or bandwidth of the network connection to the cloud storage system adversely affects
performance, a copy of the application state may be placed on a local storage device for
the cloud process executing the application. In such embodiments, the application state
may be periodically synchronized with a virtual hard disk on a cloud storage system.
[0073] Embodiment 300 1llustrates a method for starting or resuming a stateful application
within a stateless platform such as a stateless cloud computing platform The process of
embodiment 300 may be performed by a user when 1nitially starting the application. In
some cases, embodiment 300 may be performed by a cloud service provider when the
cloud service provider halts and resumes the process to perform maintenance, adjust
capacity, or for other reasons.

[0074] The cloud process may be started in block 302. The cloud process may be a
stateless process where no system or application state may be stored or maintained.

[0075] A virtualization layer may be loaded 1n block 304. The virtualization layer may
monitor calls to read and write to specific storage objects, such as configuration files,
directories that include configuration information, configuration databases, registries, or
other storage objects. The virtualization layer may redirect those calls into an application
state storage object or set of storage objects that may be stored on a virtual hard disk.
[0076] After loading the virtualization layer in block 304, the application to be executed
may be associated with the virtualization layer monitoring in block 306. The association
mechanism may be different for various embodiments. In some embodiments, the

virtualization layer may be associated with specific executables within the application for

12

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

monitoring. In some embodiments, the virtualization layer may be associated with
specific storage objects for monitoring.

[0077] In block 310, the cloud storage may be searched for virtual hard disks that may
contain a previous state for the application. After selecting the appropriate virtual hard
disk 1 block 312, the virtual hard disk may be mounted in block 314. In some
embodiments, multiple virtual hard disks may be created for different versions of the
application. For example, a nightly or weekly backup operation may create different
versions of the application state.

[0078] In some embodiments, multiple instances of an application may be executing, cach
on a separate stateless thread. An example may be for an application that may be
organized with a load balancing system where two, three, or even hundreds of instances of
the application may be managed by a load balancing system to respond to large loads. In
such an embodiment, each instance of the application may have an individual virtual hard
disk that may contain the application state for the particular instance of the application.
[0079] In such an instance, the virtual hard disks that may contain application state may be
placed 1n a pool of virtual hard disks. As the application load increases, a new stateless
process may be created and one of the virtual hard disks from the pool may be selected
and used to provide application state for the application instance. When the virtual hard
disk 1s mounted 1n block 314, that virtual hard disk may be unavailable for other processes
to mount.

[0080] Once the virtual hard disk 1s mounted 1n block 314, the virtual hard disk may be
associated with the virtualization layer in block 316. The association of block 316 may
involve 1dentifying the application state storage objects on the virtual hard disk and
registering those storage objects with the virtualization layer.

[0081] In some embodiments, the virtual hard disk may contain the application executable
code, which may or may not be 1n the form of an application package. In some
embodiments, the application executable or application package may be separately loaded.
[0082] When an application package 1s used, the application package may include an
initial or ‘golden’ copy of the application state. As the application 1s used, the changes to
the application state may be created and stored 1n a separate application state storage
object. In such embodiments, a differencing mechanism may be used to keep the nitial
application state unchanged, but may apply the changes to the initial application state and
store those changes 1n a second set of storage objects 1n the virtual hard disk.

[0083] The application may begin or resume operation 1n block 318.

13

10

15

20)

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

[0084] During operation of the application, calls to the monitored state locations may be
monitored 1n block 320. When a read operation may be encountered in block 322, the
read operation may be redirected to the appropriate storage object within the virtual hard
disk 1n block 324. In embodiments where a differencing mechanism may be employed
and an 1nitial version and a current version of the application state are separately stored,
the differencing mechanism may determine which storage object to access to retrieve the
requested state information.

[0085] When a write operation may be encountered in block 322, the write operation may
be redirected to the appropriate storage object on the virtual hard disk 1n block 326. In
embodiments where the application state has a copy stored locally, the stored copy of the
application state on the virtual hard disk may be updated 1in block 328.

[0086] The foregoing description of the subject matter has been presented for purposes of
1llustration and description. It 1s not intended to be exhaustive or to limit the subject
matter to the precise form disclosed, and other modifications and variations may be
possible 1n light of the above teachings. The embodiment was chosen and described 1n
order to best explain the principles of the invention and its practical application to thereby
enable others skilled 1n the art to best utilize the invention 1n various embodiments and
various modifications as are suited to the particular use contemplated. It 1s intended that
the appended claims be construed to include other alternative embodiments except insofar

as limited by the prior art.

14

10

15

20)

25

30

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

CLAIMS

1. A method comprising:

starting a cloud process, said cloud process being stateless and having a cloud
storage;

loading and executing a virtualization layer on said cloud process, said
virtualization layer that captures state changes and redirects said state changes to said
cloud storage system;

executing a stateful application on said cloud process such that said virtualization

layer 1dentifies a state change and stores said state changes on said cloud system.

2. The method of claim 1, said cloud process operating on a virtual machine.
3. The method of claim 2, said cloud process operating 1in a datacenter.
4, The method of claim 1, said cloud storage comprising a virtual hard disk, said

virtualization layer being configured to store said state changes n said virtual hard disk.

5. The method of claim 1, said stateful application being stored 1n a package.
6. The method of claim 5, said package comprising said state changes.

7. The method of claim 5, said state changes being separate from said package.
3. The method of claim 1 further comprising:

starting a second cloud process;

loading said virtualizing layer;

loading said stateful application;

loading said state changes; and

executing said stateful application with said state changes.
9. The method of claim &8 further comprising:

selecting said state changes from a plurality of said state changes, each of said
plurality of state changes comprising state changes for a plurality of instances of said
cloud processes.
10. The method of claim 9, each of said plurality of state changes being created by a

different cloud process.

11. The method of claim 9, each of plurality of instances being stored 1n a virtual hard
disk.
12. The method of claim 11, each of said plurality of instances being a different

version of said state changes for a single of said cloud processes.

15

10

15

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

13. A system comprising;:

a cloud computing environment having cloud processes, each of said cloud
processes being stateless processes executing on a cloud computing hardware fabric;

a virtualization layer operable within a cloud process, said virtualization layer that
captures state changes to said cloud process and stores said state changes to a cloud
storage;

a cloud process management system that:

starts a first cloud process;

loads said virtualization layer within said first cloud process so that state changes
made to said first cloud process are captured and stored in said cloud storage; and

executes a stateful application within said virtualization layer.

14, The system of claim 13, said cloud process management system that further:
creates a virtual hard disk within said cloud storage .
15. The system of claim 14, said cloud process management system that further:
stores said virtual hard disk at a predefined interval to create a plurality of versions

of said virtual hard disk.

16

WO 2012/057955

CA 02815306 2013-04-19
PCT/US2011/053531

1/3

CLOUD COMPUTING
PLATFORM FOR STATEFUL

APPLICATIONS
100

154 156
APPLICATION A akAGE
152 158 140
SEQUENCER VIRTIRSZRTION
150
VIRTUALIZATION
LAYER
148
146
144 B 134
PACKAGE | | | cLoup
GENERATOR | | APPLICATION 130 CLOUD | STORAGE
SYSTEM | SOFTWARE |
: VIRTUALIZATION LAYER 128 ~OMPONENTS :
. CLOUD PROCESS 196 ,
I I
1 |
: : OPERATING SYSTEM {124 :
| [URTUALWACHINE] '
' ' | VIRTUAL MACHINE 199 |
| | I
| 1 | CLOUD OPERATING MANAGEMENT |
|| SYSTEM 120 SYSTEM |
102 N __________ :
CLOUD o e e e e
COMPUTING ~
PLATFORM 106

SOFTWARE

112
COMPONENTS _LOCAL
STORAGE

114
USER
104 108 INTERFACE

CLoun = | [PROCESSOR
ARDWARE PROCESSOR 116
FABRIC 110 NETWORK

MEMORY INTERFACE

CA 02815306 2013-04-19

WO 2012/057955 PCT/US2011/053531
2/3
START UP SYSTEM 202

LOAD VIRTUALIZATION LAYER 204

IDENTIFY STORAGE OBJECTS TO 5086
MONITOR

CREATE APPLICATION STATE 508
STORAGE

CREATE REDIRECTION PATHS FOR 910

MONITORED STORAGE OBJECTS
IDENTIFY MONITORED SERVICES/ 519
EXECUTABLES IN APPLICATION

BEGIN EXECUTION OF APPLICATION 214

YES

213 STORE CHANGE

220

200 STORE APPLICATION
METHOD FOR CREATING AND STATE STORAGE IN 222

APPLICATION PACKAGE APPLICATION PACKAGE

CA 02815306 2013-04-19
WO 2012/057955 PCT/US2011/053531

3/3

METHOD FOR STARTING/
RESUMING STATEFUL

APPLICATION
START CLOUD PROCESS 302 300
LOAD VIRTUALIZATION LAYER 304
LOAD APPLICATION 306
ASSOCIATE APPLICATION WITH
VIRTUALIZATION LAYER 308
MONITORING
SEARCH CLOUD STORAGE FOR
VIRTUAL HARD DISKS WITH 310
PREVIOUS STATE FOR APPLICATION
SELECT APPROPRIATE VIRTUAL 319
HARD DISK
MOUNT VIRTUAL HARD DISK 314
ASSOCIATE VIRTUAL HARD DISK 316
WITH VIRTUALIZATION LAYER
RESUME OPERATING APPLICATION 318
MONITOR CALLS INTO MONITORED 390
STATE LOCATIONS
399 324
READ/ READ REDIRECT READS TO AREA
WRITE? WITHIN VIRTUAL HARD DISK

WRITE

REDIRECT WRITES TO VIRTUAL 396
HARD DISK

UPDATE STORED COPY OF VIRTUAL 398
HARD DISK

CLOUD COMPUTING
PLATFORM FOR STATEFUL

APPLICATIONS
100

154 150
APPLICATION A kAGE
152 159 140
SEQUENCER V'RTEQ'\—('EZQT'ON
150
VIRTUALIZATION
LAYER
148
146
144 e 134
PACKAGE | | cLoup
GENERATOR | | APPLICATION 130 CLOUD | STORAGE
SYSTEM | SOFTWARE |
: VIRTUALIZATION LAYER 7128 = OMPONENTS :
| CLOUD PROCESS 126 ,
| |
I |
| |OPERATING SYSTEM |»~124 |
| [VIRTUAL MACHINE | |
"' | VIRTUAL MACHINE [i_~125 X
| | |
| | | CLOUD OPERATING MANAGEMENT | 1
| | SYSTEM 120 SYSTEM |
102 T . |
CLOUD A
COMPUTING —~
PLATFORM 106

SOFTWARE

112
COMPONENTS —LOCAL 114
STORAGE UUSER
104 108 INTERFACE

CLouD = | [PROCESSOR
ARDWARE PROCESSOR 116
FABRIC 110 NETWORK

MEMORY INTERFACE

FIG. 1

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - abstract drawing

