PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6,

GO06T 1/20 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/11607

2 March 2000 (02.03.00)

(21) International Application Number: PCT/US99/19191

(22) International Filing Date: 20 August 1999 (20.08.99)

(30) Priority Data:

60/097,336 20 August 1998 (20.08.98) us

(71) Applicant: RAYCER, INC. {US/US]; 2585 East Bayshore
Road, Palo Alto, CA 94303 (US).

(72) Inventors: DULUK, Jerome, F., Jr.; 950 North California
Avenue, Palo Alto, CA 94303 (US). HESSEL, Richard,
E.; 3225 Flemington Court, Pleasanton, CA 94588 (US).
ARNOLD, Vaughn, T.; 621 Canepa Drive, Scotts Valley,
CA 95066 (US). BENKUAL, Jack; 11661 Timber Spring
Court, Cupertino, CA 95014 (US). BRATT, Joseph, P.;
1045 Oaktree Drive, San Jose, CA 95129 (US). CUAN,
George; 798 Lusterleaf Drive, Sunnyvale, CA 94086 (US).
DODGEN, Steven, L.; 15735 Forest Hill Drive, Boulder
Creek, CA 95006 (US). FANG, Emerson, S.; 1197 Wisteria
Drive, Fremont, CA 94539 (US). GONG, Zhaoyu, G.; 1342
S. Stelling Road, Cupertino, CA 95014 (US). HO, Thomas,
Y.; 40732 Ondina Place, Fremont, CA 94539 (US). HSU,
Hengwei; 4209 Canfield Drive, Fremont, CA 94536 (US).
LI, Sidong; 5598 LeFevre Drive, San Jose, CA 95118 (US).
NG, Sam; 34377 Maybird Circle, Fremont, CA 94555 (US).

PAPAKIPOS, Matthew, N.; 1701 Oak Avenue, Menlo Park,
CA 94025 (US). REDGRAVE, Jason, R.; 278 Martens
Avenue, Mountain View, CA 95040 (US). TRIVEDI,
Sushma, S.; 1208 Rembrandt Drive, Sunnyvale, CA 94087
(US). TUCK, Nathan, D.; 8666 Somerset Avenue, San
Diego, CA 92123 (US).

(74) Agents: ANANIAN, R., Michael et al.; Flehr Hohbach Test
Albritton & Herbert LLP, Suite 3400, 4 Embarcadero
Center, San Francisco, CA 94111-4187 (US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: DEFERRED SHADING GRAPHICS PIPELINE PROCESSOR

(57) Abstract

A Deferred Shading Graphics Processor (DSGP) comprising an AGP
interface, a command fetch and decode (2000), a geometry unit (3000),
a mode extraction (4000) and polygon memory (5000), a sort unit (6000)
and sort memory (7000), a set up unit (8000), a cull unit (9000), a mode
injection (10000), a fragment unit (11000), a texture (12000) and texture
memory (13000), a phong shading (14000), a pixel unit (15000), a backend

unit (16000) coupled to a frame buffer (17000).

F:RDM voBUS
8: 2D COMMANDS
C:VERTEX

D: GOURAUD SHADED, CLIPPED PRIMITIVES
AND MODES

E:SPATIAL INFORMATION
F:PRIMARY COLOR MODES
G:PRIMARY COLOR MODES

5

H:TILE SORTED PRIMATIVES
I:PRIMITIES PER TILE

J:PRIMITIVE INFORMATION & SLOPES
K:VEP XY Z

L:v8P, COVER, PRIM. COLOR, MODES
M: TEXTURE COORDINATES

N: TEXELS

O:YEXT. COLOR

P: V8P COLOR
R: PIXEL COLOR, Z, STENCIL

8: 20 PIXELS

T: PREFETCH

U: SAMPLE

V: SIGNALS TO DISPLAY MONITOR

W: REGISTER R/W OVER BKE /O BUS.

SN8 1NJLNO/LNANI ANTIOVE YIA0 WA HALSIOTY M

AL
AM
AT
AU

BA
BB
BE
BF
BG

BR
BY
CA
CF
CG
CH
CI
CM
CN
Ccu
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
™D
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

35

WO 00/11607 -1- PCT/US99/19191

DEFERRED SHADING GRAPHICS PIPELINE
PROCESSOR

Inventors:

Jerome F. Duluk Jr., Richard E. Hessel, Vaughn T. Arnold, Jack Benkual, Joseph P. Bratt,
George Cuan, Steven L. Dodgen, Emerson S. Fang, Zhaoyu G. Gong, Thomas Y. Ho, Heng-
Wei Hsu, Sidong Li, Sam Ng, Matthew N. Papakipos, Jason R. Redgrave, Sushma S. Trivedi,
Nathan D. Tuck. '

This application claims the benefit under 35 USC Section 1 19(e) of U.S. Provisional Patent
Application Serial No. 60/097,336 filed 20 August 1998 and entitlted GRAPHICS PROCESSOR
WITH DEFERRED SHADING; which is hereby incorporated by reference.

This application is also related to the following U.S. Patent Applications, each of which
are incorporated herein by reference:

Serial No. 09/213,990, filed 17 December 1998, entitled HOW TO DO TANGENT SPACE
LIGHTING IN A DEFERRED SHADING ARCHITECTURE (Atty. Doc. No. A-66397);

Serial No. , filed entited APPARATUS AND METHOD FOR
PERFORMING SETUP OPERATIONS IN A 3-D GRAPHICS PIPELINE USING UNIFIED
PRIMITIVE DESCRIPTORS (Atty. Doc. No. A-66382);

Serial No. filed entitled POST-FILE SORTING SETUP (Atty.
Doc. No. A-66383);

Serial No. , filed entitied TILE RELATIVE Y-VALUES AND
SCREEN RELATIVE X-VALUES (Atty. Doc. No. A-66384);

Serial No. , filed entitted SYSTEM, APARATUS AND

METHOD FOR SPATIALLY SORTING IMAGE DATA IN A THREE-DIMENSIONAL GRAPHICS
PIPELINE (Atty. Doc. No. A-66380);

Serial No. , filed entitted SYSTEM, APPARATUS AND
METHOD FOR GENERATING GUARANTEED CONSERVATIVE MEMORY ESTIMATE FOR
SORTING OBJECT GEOMETRY IN A THREE-DIMENSIONAL GRAPHICS PIPELINE (Atty. Doc.
No. A-66381);

Serial No. , filed entitied SYSTEM, APPARATUS AND
METHOD FOR BALANCING RENDERING RESOURCES IN A THREE-DIMENSIONAL
GRAPHICS PIPELINE (Atty. Doc. No. A-66379),

Serial No. , filed entitted GRAPHICS PROCESSOR WITH
PIPELINE STATE STORAGE AND RETRIEVAL (Atty. Doc. No. A-66378);

Serial No. , filed entitted METHOD AND APPARATUS FOR
GENERATING TEXTURE (Atty. Doc. No. A-66398),

Serial No. , filed entitted APPARATUS AND METHOD FOR
GEOMETRY OPERATIONS IN A 3D GRAPHICS PIPELINE (Atty. Doc. No. A-66373);

Serial No. , filed entitted APPARATUS AND METHOD FOR
FRAGMENT OPERATIONS IN A 3D GRAPHICS PIPELINE (Atty. Doc. No. A-66399); and

Serial No. , filed entitled DEFERRED SHADING GRAPHICS
PIPELINE PROCESSOR (Atty. Doc. No. A-66360).

Serial No. filed entitled METHOD AND APPARATUS FOR PERFORMING

CONSERVATIVE HIDDEN SURFACE REMOVAL IN A GRAPHICS PROCESSOR WITH DEFERRED SHADING
(Attomey Doc. No. A-66386);

Serial No. filed entitted DEFERRED SHADING GRAPHICS PIPELINE
PROCESSOR HAVING ADVANCED FEATURES (Atty. Doc. No. A-66364)

10

15

20

25

30

35

40

WO 00/11607) PCT/US99/19191

Field of the Invention
This invention relates to computing systems generally, to three-dimensional computer
graphics, more particularly, and more most particularly to structure and method for a three-

dimensional graphics processor implementing differed shading and other enhanced features.

BACKGROUND OF THE INVENTION

The Background of the Invention is divided for convenience into several sections which
address particular aspects conventional or traditional methods and structures for processing and
rendering graphical information. The section headers which appear throughout this description
are provided for the convenience of the reader only, as information concerning the invention and

the background of the invention are provided throughout the specification.

Three-dimensional Computer Graphics

Computer graphics is the art and science of generating pictures, images, or other
graphical or pictorial information with a computer. Generation of pictures or images, is commonly
called rendering. Generally, in three-dimensional (3D) computer graphics, geometry that
represents surfaces (or volumes) of objects in a scene is translated into pixels (picture elements)
stored in a frame buffer, and then displayed on a display device. Real-time display devices, such
as CRTs used as computer monitors, refresh the display by continuously displaying the image
over and over. This refresh usually occurs row-by-row, where each row is called a raster line or
scan line. In this document, raster lines are generally numbered from bottom to top, but are
displayed in order from top to bottom.

in a 3D animation, a sequence of images is displayed, giving the illusion of motion in
three-dimensional space. Interactive 3D computer graphics allows a user to change his viewpoint
or change the geometry in real-time, thereby requiring the rendering system to create new images
on-the-fly in real-time.

In 3D computer graphics, each renderable object generally has its own local object
coordinate system, and therefore needs to be translated (or transformed) from object coordinates
to pixel display coordinates. Conceptually, this is a 4-step process: 1) translation (including scaling
for size enlargement or shrink) from object coordinates to world coordinates, which is the
coordinate system for the entire scene; 2) translation from world coordinates to eye coordinates,
based on the viewing point of the scene; 3) translation from eye coordinates to perspective
translated eye coordinates, where perspective scaling (farther objects appear smaller) has been
performed; and 4) translation from perspective translated eye coordinates to pixel coordinates,
also called screen coordinates. Screen coordinates are points in three-dimensional space, and
can be in either screen-precision (i.e., pixels) or object-precision (high precision numbers, usually
floating-point), as described later. These translation steps can be compressed into one or two
steps by precomputing appropriate translation matrices before any translation occurs. Once the
geometry is in screen coordinates, it is broken into a set of pixel color values (that is “rasterized”)

10

15

20

25

30

35

40

WO 00/11607 3 ' PCT/US99/19191
that are stored into the frame buffer. Many techniques are used for generating pixe! color values,
including Gouraud shading, Phong shading, and texture mapping.

A summary of the prior art rendering process can be found in: “Fundamentals of Three-
dimensional Computer Graphics”, by Watt, Chapter 5 The Rendering Process, pages 97 to 113,
published by Addison-Wesley Publishing Company, Reading, Massachusetts, 1989, reprinted
1991, ISBN 0-201-15442-0 (hereinafter referred to as the Watt Reference), and herein
incorporated by reference.

FIG. 1 shows a three-dimensional object, a tetrahedron, with its own coordinate axes
(XoppYonpZony)- THE three-dimensional object is translated, scaled, and placed in the viewing point’s
coordinate system based on (XeyerYeyerZeye)- TE object is projected onto the viewing plane, thereby
correcting for perspective. At this point, the object appears to have become two-dimensional;
however, the object's z-coordinates are preserved so they can be used later by hidden surface
removal techniques. The object is finally translated to screen coordinates, based on
(XscreensYscreemZscreen)s WHET® Zggreen is going perpendicularly into the page. Points on the object now
have their x and y coordinates described by pixel location (and fractions thereof) within the display
screen and their z coordinates in a scaled version of distance from the viewing point.

Because many different portions of geometry can affect the same pixel, the geometry
representing the surfaces closest to the scene viewing point must be determined. Thus, for each
pixel, the visible surfaces within the volume subtended by the pixel’s area determine the pixel color
value, while hidden surfaces are prevented from affecting the pixel. Non-opaque surfaces closer
to the viewing point than the closest opaque surface (or surfaces, if an edge of geometry crosses
the pixel area) affect the pixel color value, while all other non-opaque surfaces are discarded. In
this document, the term “occluded” is used to describe geometry which is hidden by other non-
opaque geometry. '

Many techniques have been developed to perform visible surface determination, and a
survey of these techniques are incorporated herein by reference to: “Computer Graphics:
Principles and Practice”, by Foley, van Dam, Feiner, and Hughes, Chapter 15: Visible-Surface

" Determination, pages 649 to 720, 2nd edition published by Addison-Wesley Publishing Company,

Reading, Massachusetts, 1990, reprinted with corrections 1991, ISBN0-201-12110-7 (hereinafter
referred to as the Foley Reference). In the Foley Reference, on page 650, the terms “image-
precision” and “object-precision” are defined: “Image-precision algorithms are typically performed
at the resolution of the display device, and determine the visibility at each pixel. Object-precision
algorithms are performed at the precision with which each object is defined, and determine the
visibility of each object.”

As a rendering process proceeds, most prior art renderers must compute the color value
of a given screen pixel multiple times because multiple surfaces intersect the volume subtended
by the pixel. The average number of times a pixel needs to be rendered, for a particular scene,
is called the depth complexity of the scene. Simple scenes have a depth complexity near unity,
while complex scenes can have a depth complexity of ten or twenty. As scene models become
more and more complicated, renderers will be required to process scenes of ever increasing depth

complexity. Thus, for most renders, the depth complexity of a scene is a measure of the wasted

10

15

20

25

30

35

40

WO 00/11607 4 , PCT/US99/19191
processing. For example, for a scene with a depth complexity of ten, 90% of the computation is
wasted on hidden pixels. This wasted computation is typical of hardware renderers that use the
simple Z-buffer technique (discussed later herein), generally chosen because it is easily built in
hardware. Methods more complicated than the Z Buffer technique have heretofore generally been
too complex to build in a cost-effective manner. An important feature of the method and apparatus
invention presented here is the avoidance of this wasted computation by eliminating hidden
portions of geometry before they are rasterized, while still being simple enough to build in cost-
effective hardware.

When a point on a surface (frequently a polygon vertex) is translated to screen
coordinates, the point has three coordinates: (1) the x-coordinate in pixel units (generally including
a fraction); (2) the y-coordinate in pixel units (generaily including a fraction); and (3) the z-
coordinate of the point in either eye coordinates, distance from the virtual screen, or some other
coordinate system which preserves the relative distance of surfaces from the viewing point. In this
document, positive z-coordinate values are used for the “look direction” from the viewing point, and
smaller values indicate a position closer to the viewing point.

When a surface is approximated by a set of planar polygons, the vertices of each polygon
are translated to screen coordinates. For points in or on the polygon (other than the vertices), the
screen coordinates are interpolated from the coordinates of vertices, typically by the processes
of edge walking and span interpolation. Thus, a z-coordinate value is generally included in each

pixel value (along with the color value) as geometry is rendered.

Many hardware renderers have been developed, and an example is incorporated herein
by reference: “Leo: A System for Cost Effective 3D Shaded Graphics”, by Deering and Nelison,
pages 101 to 108 of SIGGRAPH93 Proceedings, 1-6 August 1993, Computer Graphics
Proceedings, Annual Conference Series, published by ACM SIGGRAPH, New York, 1993, Soft-
cover ISBN 0-201-58889-7 and CD-ROM ISBN 0-201-56997-3, herein incorporated by references

‘and referred to as the Deering Reference). The Deering Reference includes a diagram of a

generic 3D graphics pipeline (i.e., a renderer, or a rendering system) which is reproduced here
as FIG. 2.

As seen in FIG. 2, the first step within the floating-point intensive functions of the generic
3D graphics pipeline after the data input (Step 212) is the transformation step (Step 214). The
transformation step is also the first step in the outer loop of the flow diagram, and also includes
“get next polygon”. The second step, the clip test, checks the polygon to see if it is at least partially
contained in the view volume (sometimes shaped as a frustum) (Step 216). If the polygon is not
in the view volume, it is discarded; otherwise processing continues. The third step is face
determination, where polygons facing away from the viewing point are discarded (Step 218).
Generally, face determination is applied only to objects that are closed volumes. The fourth step,
lighting computation, generally includes the set up for Gouraud shading and/or texture mapping
with multiple light sources of various types, but could also be set up for Phong shading or one of
many other choices (Step 222). The fifth step, clipping, deletes any portion of the polygon that is

10

15

20

25

30

35

40

WO 00/11607 5 PCT/US99/19191
outside of the view volume because that portion would not project within the rectangular area of
the viewing plane (Step 224). Generally, polygon clipping is done by splitting the polygon into two
smaller polygons that both project within the area of the viewing plane. Polygon clipping is
computationally expensive. The sixth step, perspective divide, does perspective correction for the
projection of objects onto the viewing plane (Step 226). At this point, the points representing
vertices of polygons are converted to pixel space coordinates by step seven, the screen space
conversion step (Step 228). The eighth step (Step 230), set up for incremental render, computes
the various begin, end, and increment values needed for edge walking and span interpolation
(e.g.: x, y, and z-coordinates; RGB color; texture map space u- and v-coordinates; and the like).

Within the drawing intensive functions, edge walking (Step 232) incrementally generates
horizontal spans for each raster line of the display device by incrementing values from the
previously generated span (in the same polygon), thereby “walking” vertically along opposite
edges of the polygon. Similarly, span interpolation (Step 234) “walks” horizontally along a span
to generate pixel values, including a z-coordinate value indicating the pixel’s distance from the
viewing point. Finally, the z-buffered blending also referred to as Testing and Blending (Step 236)
generates a final pixel color value. The pixel values also include color values, which can be
generated by simple Gouraud shading (i.e., interpolation of vertex color values) or by more
computationally expensive techniques such as texture mapping (possibly using multiple texture
maps blended together), Phong shading (i.e., per-fragment lighting), and/or bump mapping
(perturbing the interpolated surface normal). After drawing intensive functions are completed, a
double-buffered MUX output look-up table operation is performed (Step 238). In this figure the
blocks with rounded corners typically represent functions or process operations, while sharp
cornered rectangles typically represent stored data or memory.

By comparing the generated z-coordinate value to the corresponding value stored in the
Z Buffer, the z-buffered blend either keeps the new pixel values (if it is closer to the viewing point
than previously stored value for that pixel location) by writing it into the frame buffer, or discards
the new pixel values (if it is farther). At this step, antialiasing methods can biend the new pixel

" color with the old pixel color. The z-buffered blend generally includes most of the per-fragment

operations, described below.

The generic 3D graphics pipeline includes a double buffered frame buffer, so a double
buffered MUX is also included. An output lookup table is included for translating color map values.
Finally, digital to analog conversion makes an analog signal for input to the display device.

A major drawback to the generic 3D graphics pipeline is its drawing intensive functions
are not deterministic at the pixel level given a fixed number of polygons. That is, given a fixed
number of polygons, more pixel-level computation is required as the average polygon size
increases. However, the floating-point intensive functions are proportional to the number of
polygons, and independent of the average polygon size. Therefore, it is difficult to balance the
amount of computational power between the floating-point intensive functions and the drawing
intensive functions because this balance depends on the average polygon size.

Prior art Z buffers are based on conventional Random Access Memory (RAM or DRAM),
Video RAM (VRAM), or special purpose DRAMs. One example of a special purpose DRAM is

10

15

20

25

30

35

40

WO 00/11607 6 ’ PCT/US99/19191
presented in “FBRAM: A new Form of Memory Optimized for 3D Graphics”, by Deering, Schiapp,
and Lavelle, pages 167 to 174 of SIGGRAPH94 Proceedings, 24-29 July 1994, Computer
Graphics Proceedings, Annual Conference Series, published by ACM SIGGRAPH, New York,
1994, Soft-cover ISBN 0201607956, and herein incorporated by reference.

Pipeline Stat

OpenGL is a software interface to graphics hardware which consists of several hundred
functions and procedures that allow a programmer to specify objects and operations to produce
graphical images. The objects and operations include appropriate characteristics to produce color
images of three-dimensional objects. Most of OpenGL (Version 1.2) assumes or requires a that
the graphics hardware include a frame buffer even though the object may be a point, line,
polygon, or bitmap, and the operation may be an operation on that object. The general features
of OpenGL (just one example of a graphical interface) are described in the reference “The
OpenGL® Graphics System: A Specification (Version 1.2) edited by Mark Segal and Kurt Akeley,
Version 1.2, March 1998; and hereby incorporated by reference. Although reference is made to
OpenGL, the invention is not limited to structures, procedures, or methods which are compatible
or consistent with OpenGL, or with any other standard or non-standard graphical interface.
Desirably, the inventive structure and method may be implemented in a manner that is consistent
with the OpenGL, or other standard graphical interface, so that a data set prepared for one of the
standard interfaces may be processed by the inventive structure and method without modification.
However, the inventive structure and method provides some features not provided by OpenGL,
and even when such generic input/output is provided, the implementation is provided in a different
manner.

The phrase “pipeline state” does not have a single definition in the prior-art. The OpenGL
specification, for example, sets forth the type and amount of the graphics rendering machine or
pipeline state in terms of items of state and the number of bits and bytes required to store that
state information. In the OpenGL definition, pipeline state tends to include object vertex pertinent

“information including for example, the vertices themselves the vertex normals, and color as well

as “non-vertex” information.

When information is sent into a graphics renderer, at least some object geometry
information is provided to describe the scene. Typically, the object or objects are specified in
terms of vertex information, where an object is modeled, defined, or otherwise specified by points,
lines, or polygons (object primitives) made up of one or more vertices. In simple terms, a vertex
is a location in space and may be specified for example by a three-space (x,y,z) coordinate
relative to some reference origin. Associated with each vertex is other information, such as a
surface normal, color, texture, transparency, and the like information pertaining to the
characteristics of the vertex. This information is essentially “per-vertex” information. Unfortunately,
forcing a one-to-one relationship between incoming information and vertices as a requirement for
per-vertex information is unnecessarily restrictive. For example, a color value may be specified
in the data stream for a particular vertex and then not respecified in the data stream until the color

10

15

20

25

30

35

40

WO 00/11607 ’ 7. ' PCT/US99/19191
changes for a subsequent vertex. The color value may still be characterized as per-vertex data
even though a color value is not explicitly included in the incoming data stream for each vertex.

Texture mapping presents an interesting example of information or data which could be
considered as either per-vertex information or pipeline state information. For each object, one or
more texture maps may be specified, each texture map being identified in some manner, such as
with a texture coordinate or coordinates. One may consider the texture map to which one is
pointing with the texture coordinate as part of the pipeline state while others might argue that itis
per-vertex information.

Other information, not related on a one-to-one basis to the geometry object primitives,
used by the renderer such as lighting location and intensity, material settings, reflective properties,
and other overall rules on which the renderer is operating may more accurately be referred to as
pipeline state. One may consider that everything that does not or may not change on a per-vertex
basis is pipeline state, but for the reasons described, this is not an entirely unambiguous definition.
For example, one may define a particular depth test to be applied to certain objects to be
rendered, for example the depth test may require that the z-value be strictly “greater-than” for
some objects and “greater-than-or-equal-to” for other objects. These particular depth tests which
change from time to time, may be considered to be pipeline state at that time. Parameters
considered to be renderer (pipeline) state in OpenGL are identified in Section 6.2 of the afore
referenced OpenGL Specification (Version 1.2, at pages 193-217).

Essentially then, there are two types of data or information used by the renderer:
(1) primitive data which may be thought of as per-vertex data, and (ii) pipeline state data (or simply
pipeline state) which is everything else. This distinction should be thought of as a guideline rather
than as a specific rule, as there are ways of implementing a graphics renderer treating certain
information items as either pipeline state or non-pipeline state.

Per-Fragment Operations
In the generic 3D graphics pipeline, the “z-buffered biend” step actually incorporates many

“smaller “per-fragment” operational steps. Application Program Interfaces (APls), such as OpenGL

(Open Graphics Library) and D3D, define a set of per-fragment operations (See Chapter 4 of
Version 1.2 OpenGL Specification). We briefly review some exemplary OpenGL per-fragment
operations so that any generic similarities and differences between the inventive structure and
method and conventional structures and procedures can be more readily appreciated.

Under OpenGL, a frame buffer stores a set of pixels as a two-dimensional array. Each
picture-element or pixe! stored in the frame buffer is simply a set of some number of bits. The
number of bits per pixel may vary depending on the particular GL implementation or context.

Corresponding bits from each pixel in the frame buffer are grouped together into a bit
plane; each bit plane containing a single bit from each pixel. The bit planes are grouped into
several logical buffers referred to as the color, depth, stencil, and accumulation buffers. The color
buffer in turn includes what is referred to under OpenGL as the front left buffer, the front right
buffer, the back left buffer, the back right buffer, and some additional auxitiary buffers. The values
stored in the front buffers are the vaiues typically displayed on a display monitor while the contents

10

15

20

25

30

35

40

WO 00/11607 _8- : PCT/US99/19191
of the back buffers and auxiliary buffers are invisible and not displayed. Stereoscopic contexts
display both the front left and the front right buffers, while monoscopic contexts display only the
front left buffer. In general, the color buffers must have the same number of bit planes, but
particular implementations of context may not provide right buffers, back buffers, or auxiliary
buffers at all, and an implementation or context may additionally provide or not provide stencil,
depth, or accumulation buffers.

Under OpenGL, the color buffers consist of either unsigned integer color indices or R, G,
B, and, optionally, a number “A” of unsigned integer values; and the number of bit planes in each
of the color buffers, the depth buffer (if provided), the stencil buffer (if provided), and the
accumulation buffer (if provided), is fixed and window dependent. If an accumulation buffer is
provided, it should have at least as many bit planes per R, G, and B color component as do the
color buffers.

A fragment produced by rasterization with window coordinates of (x,, Y,,) modifies the pixel
in the frame buffer at that location based on a number of tests, parameters, and conditions.
Noteworthy among the several tests that are typically performed sequentially beginning with a
fragment and its associated data and finishing with the final output stream to the frame buffer are
in the order performed (and with some variation among APis): 1) pixel ownership test; 2) scissor
test; 3) alpha test; 4) Color Test; 5) stencil test; 6) depth test; 7) blending; 8) dithering; and
9) logicop. Note that the OpenGL does not provide for an explicit “color test” between the alpha
test and stencil test. Per-Fragment operations under OpenGL are applied after all the color

computations.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the nature and objects of the invention, reference should
be made to the foliowing detailed description taken in conjunction with the accompanying
drawings, in which:

FIG. 1 shows a three-dimensional object, a tetrahedron, with its own coordinate axes.

FIG. 2 is a diagrammatic illustration showing an exemplary generic 3D graphics pipeline
or renderer.

FIG. 3 is an illustration showing an exemplary embodiment of the inventive Deferred
Shading Graphics Processor (DSGP).

FIG. 4 is an illustration showing an alternative exemplary embodiment of the inventive
Deferred Shading Graphics Processor (DSGP).

SUMMARY
in one aspect the invention provides structure and method for a deferred graphics pipeline
processor. The pipeline processor advantageously includes one or more of a command fetch and
decode unit, geometry unit, a mode extraction unit and a polygon memory, a sort unit and a sort
memory, setup unit, a cull unit ,a mode injection unit, a fragment unit, a texture unit, a Phong
lighting unit, a pixel unit, and backend unit coupled to a frame buffer. Each of these units may also

10

15

20

25

30

35

40

WO 00/11607 9. PCT/US99/19191
be used independently in connection with other processing schemes and/or for processing data
other than graphical or image data.

In another aspect the invention provides a command fetch and decode unit
communicating inputs of data and/or command from an external computer via a communication
channel and converting the inputs into a series of packets, the packets including information items
selected from the group consisting of colors, surface normals, texture coordinates, rendering
information, lighting, blending modes, and buffer functions.

In still another aspect, the invention provides structure and method for a geometry unit
receiving the packets and performing coordinate transformations, decomposition of all polygons
into actual or degenerate triangles, viewing volume clipping, and optionaily per-vertex lighting and
color calculations needed for Gouraud shading.

In still another aspect, the invention provides structure and method for a mode extraction
unit and a polygon memory associated with the polygon unit, the mode extraction unit receiving
a data stream from the geometry unit and separating the data stream into vertices data which are
communicated to a sort unit and non-vertices data which is sent to the polygon memory for
storage.

In still another aspect, the invention provides structure and method for a sort unit and a
sort memory associated with the sort unit, the sort unit receiving vertices from the mode extraction
unit and sorts the resulting points, lines, and triangles by tile, and communicating the sorted
geometry by means of a sort block output packet representing a complete primitive in tile-by-tile
order, to a setup unit.

In still another aspect, the invention provides structure and method for a setup unit
receiving the sort block output packets and calculating spatial derivatives for lines and triangles
on a tile-by-tile basis one primitive at a time, and communicating the spatial derivatives in packet
form to a cull unit.

In still another aspect, the invention provides structure and method for a cull unit receiving

one tile worth of data at a time and having a Magnitude Comparison Content Addressable Memory

‘ (MCCAM) Cull sub-unit and a Subpixel Culi sub-unit, the MCCAM Cull sub-unit being operable to

discard primitives that are hidden completely by previously processed geometry, and the Subpixel
Cull sub-unit processing the remaining primitives which are partly or entirely visible, and
determines the visible fragments of those remaining primitives, the Subpixel Cull sub-unit
outputting one stamp worth of fragments at a time.

In still another aspect, the invention provides structure and method for a mode injection
unit receiving inputs from the cull unit and retrieving mode information including colors and
material properties from the Polygon Memory and communicating the mode information to one or
more of a fragment unit, a texture unit, a Phong unit, a pixel unit, and a backend unit; at least some
of the fragment unit, the texture unit, the Phong unit, the pixel unit, or the backend unit including
a mode cache for cache recently used mode information; the mode injection unit maintaining
status information identifying the information that is already cached and not sending information
that is already cached, thereby reducing communication bandwidth.

10

15

20

25

30

35

40

WO 00/11607 10 ‘ PCT/US99/19191

In still another aspect, the invention provides structure and method for a fragment unit
for interpolating color values for Gouraud shading, interpolating surface normals for Phong
shading and texture coordinates for texture mapping, and interpolating surface tangents if bump
maps representing texture as a height field gradient are in use; the fragment unit performing
perspective corrected interpolation using barycentric coefficients.

in still another aspect, the invention provides structure and method for a texture unit and
a texture memory associated with the texture unit; the texture unit applying texture maps stored
in the texture memory, to pixel fragments; the textures being MIP-mapped and comprising a series
of texture maps at different levels of detail, each map representing the appearance of the texture
at a given distance from an eye point; the texture unit performing tri-linear interpolation from the
texture maps to produce a texture value for a given pixel fragment that approximate the correct
level of detail; the texture unit communicating interpolated texture values to the Phong unit on a
per-fragment basis.

In still another aspect, the invention provides structure and method for a Phong lighting
unit for performing Phong shading for each pixel fragment using material and lighting information
supplied by the mode injection unit, the texture colors from the texture unit, and the surface normal
generated by the fragment unit to determine the fragment’s apparent color; the Phong block
optionally using the interpolated height field gradient from the texture unit to perturb the fragment’s
surface normal before shading if bump mapping is in use.

In still another aspect, the invention provides structure and method for a pixel unit
receiving one stamp worth of fragments at a time, referred to as a Visible Stamp Portion, where
each fragment has an independent color value, and performing pixel ownership test, scissor test,
alpha test, stencil operations, depth test, blending, dithering and logic operations on each sample
in each pixel, and after accumulating a tile worth of finished pixels, blending the samples within
each pixel to antialias the pixels, and communicating the antialiased pixels to a Backend unit.

In still another aspect, the invention provides structure and method for backend unit

coupled to the pixel unit for receiving a tile’s worth of pixels at a time from the pixel unit, and

" storing the pixels into a frame buffer.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

Deferred Shading Graphics Processor (DSGP) 1000

Am embodiment of the inventive Deferred Shading Graphics Processor (DSGP) 1000 is
illustrated in FIG. 3 and described in detail hereinafter. An alternative embodiment of the invention
is illustrated in FIG. 4. The detailed description which follows is with reference to FIG. 3 and
FIG. 4, without further specific reference. Computer graphics is the art and science of generating
pictures or images with a computer. This picture generation is commonly referred to as rendering.
The appearance of motion, for example in a 3-Dimensional animation is achieved by displaying
a sequence of images. Interactive 3-Dimensional (3D) computer graphics allows a user to change
his or her viewpoint or to change the geometry in real-time, thereby requiring the rendering system

10

15

20

25

30

35

40

WO 00/11607 " PCT/US99/19191

to create new images on-the-fly in real-time. Therefore, real-time performance in color, with high
quality imagery is becoming increasingly important.

The invention is directed to a new graphics processor and method and encompasses
numerous substructures including specialized subsystems, subprocessors, devices, architectures,
and corresponding procedures. Embodiments of the invention may include one or more of
deferred shading, a tiled frame buffer, and multiple-stage hidden surface removal processing, as
well as other structures and/or procedures. In this document, this graphics processor is
hereinafter referred to as the DSGP (for Deferred Shading Graphics Processor), or the DSGP
pipeline, but is sometimes referred to as the pipeline.

This present invention includes numerous embodiments of the DSGP pipeline.
Embodiments of the present invention are designed to provide high-performance 3D graphics with
Phong shading, subpixel anti-aliasing, and texture- and bump-mapping in hardware. The DSGP
pipeline provides these sophisticated features without sacrificing performance.

The DSGP pipeline can be connected to a computer via a variety of possible interfaces,
including but not limited to for example, an Advanced Graphics Port (AGP) and/or a PCl bus
interface, amongst the possible interface choices. VGA and video output are generally also
included. Embodiments of the invention supports both OpenGL and Direct3D APIs. The OpenGL
specification, entitied “The OpenGL Graphics System: A Specification (Version 1.2)" by Mark
Segal and Kurt Akeley, edited by Jon Leech, is included incorporated by reference.

The inventive structure and method provided for packetized communication between the
functional blocks of the pipeline.

The term "Information” as used in this description means data and/or commands, and
further includes any and all protocol handshaking, headers, address, or the like. Information may
be in the form of a single bit, a plurality of bits, a byte, a plurality of bytes, packets, or any other
form. Data also used synonymously with information in this application. The phase "information
items" is used to refer to one or more bits, bytes, packets, signal states, addresses, or the like.
Distinctions are made between information, data, and commands only when it is important to make

" a distinction for the particular structure or procedure being described. Advantageously,

embodiments of the inventive processor provides unique physical addresses for the host, and

supports packetized communication between blocks.

» Host Processor (HOST)

The host may be any general purpose computer, workstation, specialized processor, or

the like, capable of sending commands and data to the Deferred Shading Graphics Processor.
The AGP bus connects the Host to the AGI which communicates with the AGP bus. AGI
implements AGP protocols which are known in the art and not described in detail here.

CFD communicates with AGI to tell it to get more data when more data can be handied,
and sometimes CFD will receive a command that will stimulate it to go out and get additional
commands and data from the host, that is it may stimulate AGI to fetch additional Graphics
Hardware Commands (GHC).

10

15

20

25

30

35

40

WO 00/11607 12 PCT/US99/19191
* Advanced Graphics Interface (AGI)

The AGI block is responsible for implementing all the functionality mandated by the AGP
and/or PCI specifications in order to send and receive data to host memory or the CPU. This
block should completely encapsulate the asynchronous boundary between the AGP bus and the
rest of the chip. The AGI block should implement the optional Fast Write capability in the AGP 2.0
specification in order to allow fast transfer of commands. The AGI block is connected to the
Read/Write Controller, the DMA Controller and the Interrupt Control Registers on CFD.

» Command Fetch & Decode (CFD) 2000

Command Fetch and Decode (CFD) 2000 handles communication with the host computer
through the AGI 1/O bus also referred to as the AGP bus. CFD is the unit between the AGP/AGI
interface and the hardware that actually draws pictures, and receives an input consisting of
Graphics Hardware Commands (GHC) from Advanced Graphics Interface (AGI) and converts this
input into other steams of data, usually in the form of a series of packets, which it passes to the
Geometry (GEO) block 3000 , to the 2-Dimensional Graphics Engine block (TDG) 18000, and to
Backend (BKE) 16000. In one embodiment, each of the AGI, TDG, GEO, and CFD are co-located
on a common integrated circuit chip. The Deferred Shading Graphics Processor (DSGP) 1000
(also referred to as the "graphics pipeline” or simply as "pipeline” in this document) is largely,
though not exclusively, packet communication based. Most of what the CFD does is to route data
for other blocks. A stream of data is received from the host via AGI and this stream may be
considered to be simply a steam of bits which includes command and control (including
addresses) and any data associated with the commands or control. At this stage, these bits have
not been categorized by the pipeline nor packetized, a task for which CFD is primarily responsible.
The commands and data come across the AGP bus and are routed by CFD to the blocks which
consume them. CFD also does some decoding and unpacking of received commands, manages
the AGP interface, and gets involved in Direct Memory Access (DMA) transfers and retains some
state for context switches. Context switches (in the form of a command token) include may be

“received by CFD and in simple terms identify a pipeline state switching event so that the pipeline

(or portions thereof) can grab the current (old) state and be ready to receive new state information.
CFD identifies and consumes the context switch command token.

Most of the input stream comprises commands and data. This data includes geometrical
object data. The descriptions of these geometrical objects can include colors, surface normals,
texture coordinates, as well as other descriptors as described in greater detail below. The input
stream also contains rendering information, such as lighting, blending modes, and buffer functions.
Data routed to 2DG can include texture and image data.

In this description, it will be realized that certain signals or packets are generated in a unit,
other signals or packets are consumed by a unit (that is the unit is the final destination of the
packet), other signals or packets are merely passed through a unit unchanged, while still others
are modified in some way. The modification may for example include a change in format, a
splitting of a packet into other packets, a combining of packets, a rearrangement of packets, or
derivation of related information from one or more packets to form a new packet. In general, this

10

15

20

25

30

35

40

WO 00/11607 i PCT/US99/19191
description identifies the packet or signal generator block and the signal or packet consuming
block, and for simplicity of description may not describe signals or packets that merely pass
through or are propagated through blocks from the generating unit to the consuming unit. Finally,
it will be appreciated that in at least one embodiment of the invention, the functional blocks are
distributed among a plurality of chips (three chips in the preferred embodiment exclusive of
memory) and that some signal or packet communication paths are followed via paths that attempt
to get a signal or packet onto or off of a particular chip as quickly as possible or via an available
port or pin, even though that path does not pass down the pipeline in "linear" manner. These are
implementation specific architectural features, which are advantageous for the particular
embodiments described, but are not features or limitations of the invention as a whole. For
example, in a single chip architecture, alternate paths may be provided.

We now describe the CFD-TDG Interface 2001 in terms of information communicated
(sent and/or received) over the interface with respect to the list of information items identified in
Table 1. CFD-TDG Interface 2001 includes a 32-bit (31:0) command bus and a sixty-four bit
(63:0) data bus. (The data bus may alternatively be a 32-bit bus and sequential write operations
used to communicate the data when required.) The command bus communicates commands
atomically written to the AGI from the host (or written using a DMA write operation). Data
associated with a command will or may come in later write operations over the data bus. The
command and the data associated with the command (if any) are identified in the table as
"command bus" and "data bus" respectively, and sometimes as a "header bus". Unless otherwise
indicated relative to particular signals or packets, command, data, and header are separately
communicated between blocks as an implementation decision or because there is an advantage
to having the command or header information arrive separately or be directed to a separate sub-
block within a pipeline unit. These details are described in the detailed description of the particular
pipeline blocks in the related applications.

CFD sends packets to GEO. A Vertex_1 packet is output to GEO when a vertex is read
by CFD and GEO is operating in fult performance vertex mode, a Vertex_2 packet is output when

"GEOis operating in one-half performance vertex mode, a Vertex_3 packet is output when GEO

is operating in one-third performance vertex mode. These performance modes are described in
greater detail relative to GEO below. Reference to an action, process, or step in a major functional
block, such as in CFD, is a reference to such action, process, or step either in that major block as
a whole or within a portion of that major block. Propagated Mode refers to propagation of signals
through a block. Consumed Mode refers to signals or packets that are consumed by the receiving
unit. The Geometry Mode Packet (GMD) is sent whenever a Mode Change command is read by
CFD. The Geometry Material Packet (MAT) is sent whenever a Materiai Command is detected
by CFD. The ViewPort Packet (VP) is sent whenever a ViewPort Offset is detected by CFD. The
Bump Packet (BMP) and Matrix Packet (MTX) are also sent by CFD. The Light Color Packet
(LITC) is sent whenever a Light Color Command is read by CFD. The Light State Packet (LITS)
is sent whenever a Light State Command is read by CFD. -

There is also a communication path between CFD and BKE. The stream of bits arriving
at CFD from AGI are either processed by CFD or directed unprocessed to 2DG based on the

10

15

20

25

30

35

40

45

50

WO 00/11607 1 PCT/US99/19191
address arriving with the input. This may be thought of as an almost direct communication path
or link between AGI and 2DG as the amount of handling by CFD for 2DG bound signals or packets
is minimal and without interpretation.

More generally, in at least one embodiment of the invention, the host can send values to
or retrieve values from any unit in the pipeline based on a source or destination address.
Furthermore, each pipeline unit has some registers or memory areas that can be read from or
written to by the host. In particular the host can retrieve data or values from BKE. The backend
bus (BKE bus) is driven to a large extent by 2DG which can push or pull data. Register reads and
writes may also be accomplished via the multi-chip communication loop.

>

[Vertex_1 Command Bus Full performance vertex cmd.
Vertex_1 Data Bus Full performance vertex data
Vertex_2 Command Bus Half performance vertex cmd.
[Vertex_2 Data Bus Half performance vertex data
[Vertex_3 Command Bus Third performance vertex cmd.
Vertex_3 Data Bus Third performance vertex data
Consumed Mode - Geometry Mode (GMD) Command Bus Mode Change cmd.
Consumed Mode - Geometry Mode (GMD) Data Bus

Consumed Mode - Material Packet (MAT) Command Bus Material cmd.

Consumed Mode - Material Packet (MAT) Data Bus Material data

Consumed Mode - ViewPort Packet (VP) Command Bus
013 |Consumed Mode - ViewPort Packet (VP) Data Bus
0141Consumed Mode - Bump Packet (BMP) Command Bus

015 JConsumed Mode - Bump Packet (BMP) Data Bus

016 |[Consumed Mode - Light Color Packet (LITC) Command Bus
017 JConsumed Mode - Light Color Packet (LITC) Data Bus

018 JConsumed Mode - Light State Packet (LITS) Command Bus
019 [Consumed Mode - Light State Packet (LITS) Data Bus

020 [Consumed Mode - Matrix Packet (MTX) Command Bus

021 JConsumed Mode - Matrix Packet (MTX) Data Bus

022 |Propagated Mode Command Bus

023 [Propagated Mode Data Bus

024 Propagated Vertex Command Bus

The Geometry block (GEQ) 3000 is the first computation unit at the front end of DSGP and
receives inputs primarily from CFD over the CFD-GEO Interface 2001. GEO handles four major
tasks: transformation of vertex coordinates and normals; assembly of vertices into triangles, lines,
and points; clipping; and per-vertex lighting calculations needed for Gouraud shading. First, the
Geometry block transforms incoming graphics primitives into a uniform coordinate space, the so
called “world space”. Then it clips the primitives to the viewing volume, or frustum. in addition to
the six planes that define the viewing volume (left, right, top, bottom, front, and back), DSGP 1000
provides six user-definable clipping planes. After clipping, the GEO breaks polygons with more
than three vertices into sets of triangles, to simplify processing. Finally, if there is any Gouraud
shading in the frame, GEO calculates the vertex colors that the FRG 11000 uses to perform the
shading.

DSGP can operate in maximum performance mode when only a certain subset of its
operational features are in use. In performance mode (P-mode), GEO carries out only a subset

10

15

20

25

30

35

40

WO 00/11607 e PCT/US99/19191
of all possible operations for each primitive. As more operational features are selectively enabled,
the pipeline moves through a series of lower-performance modes, such as half-performance (V2P-
mode), one-third performance ('sP-mode), one-fourth performance (¥sP-mode), and the like. GEO
is organized to provide so that each of a plurality of GEO computational elements may be used
for required computations. GEO reuses the available computational elements to process
primitives at a slower rate for the non-performance mode settings.

The DSGP front end (primarily AG] and CFD) deals with fetching and decoding the
Graphics Hardware Commands (GHC), and GEO receives from CFD and loads the necessary
transform matrices (Matrix Packet (MTX)), material and light parameters (e.g. Geometry Material
Packet (MAT), Bump Packet (BMP), Light Color Packet (LITC), Light State Packet (LITS)) and
other mode settings (e.g. Geometry Mode (GMD), ViewPort Packet (VP}) into GEO input registers.

At its output, GEO sends transformed vertex coordinates (e.g. Spatial Packet), normals,
generated and/or transformed texture coordinates (e.g. TextureA, TextureB Packets), and per-
vertex colors, including generated or propagated vertex (e.g. Color Full, Color Half, Color Third,
Color Other, Spatial), to the Mode Extraction block (MEX) 4000 and to the Sort block (SRT) 6000.
MEX stores the color data (which actually includes more than just color) and modes in the Polygon
memory (PMEM) 5000. SRT organizes the per-vertex “spatial” data by tile and writes it into the
Sort Memory (SMEM) 7000. Certain of these signals are fixed length while others are variable
length and are identified in the GEO-MEX Interface 3001 in Table 2.

GEO operates on vertices that define geometric primitives:points, lines, triangles,
quadralaterals, and polygons. It performs coordinate transformations and shading operations on
a per-vertex basis. Only during a primitive assembly procedural phase does GEO group vertices
together into lines and triangles (in the process, it breaks down quadrilaterals and polygons into
sets of triangles). It performs clipping and surface tangent generation for each primitive.

For the Begin Frame, End Frame, Clear, Cull Modes, Spatial Modes, Texture A
Front/Back, Texture B Front/Back, Material Front/Back, Light, PixelModes, and Stipple packets
indicated as being Propagated Mode from CFD to GEO to MEX, these packets are propagated

" from CFD to GEO to MEX. Spatial Packet, Begin Frame, End Frame, Clear, and Cull Modes are

ailso communicated from MEX to SRT. The bits that will form the packets arrive over the AGP,
CFD interprets them and forms them into packets. GEO receives them from CFD and passes
them on (propagates them) to MEX. MEX stores them into memory PMEM 5000 for subsequent
use. The Color Full, Color Half, Color Third, and Color Other identify what the object or primitive
looks like and are created by GEO from the received Vertex_1, Vertex_2, or Vertex_3. The
Spatial Packet identifies the location of the primitive or object. Table 2 identifies signals and
packets communicated over the MEX-PMEM-MIJ Interface. Table 3 identifies signals and packets
communicated over the GEO->MEX Interface.

[Table 2. MEX-PMEM-MLJ Interface

Color Full Generated or propagated vertex
Color Half Generated or propagated vertex
Color Third Generated or propagated vertex

Color Other Generated or propagated vertex

WO 00/11607 PCT/US99/19191

-16 -
Spatial Modes Propagated Mode from CFD
exture A Propagated Mode from CFD (variable Length)
exture B Propagated Mode from CFD (variable Length)
Material Propagated Mode from CFD (variable Length)
Light Propagated Mode from CFD (variable Length)
PixelModes Propagated Mode from CFD (variable Length)
Stipple Propagated Mode from CFD (variable Length)
[Table 3. GEO->MEX Interface
Color Fuli Generated by GEO - Generated or propagated vertex
Color Half Generated by GEO - Generated or propagated vertex
Color Third Generated by GEO - Generated or propagated vertex
Color Other Generated by GEO - Generated or propagated vertex
Spatial Packet Generated by GEO - Generated or propagated vertex
egin Frame Propagated Mode from CFD to GEO to MEX
End Frame Propagated Mode from CFD to GEO to MEX
Clear Propagated Mode from CFD to GEO to MEX
Cull Modes Propagated Mode from CFD to GEO to MEX
Spatial Modes Propagated Mode from CFD to GEO to MEX
exture A Front/Back Propagated Mode from CFD to GEO to MEX (variable Length)
exture B Front/Back Propagated Mode from CFD to GEO to MEX (variable Length)
Material Front/Back Propagated Mode from CFD to GEO to MEX (variable Length)
Light Propagated Mode from CFD to GEO to MEX (variable Length)
PixelModes Propagated Mode from CFD to GEO to MEX (variable Length)
Stipple Propagated Mode from CFD to GEO to MEX (variable Length)

30

35

40

45

* Mode Extraction (MEX) 4000 and Polygon Memory (PMEM) 5000
The Mode Extraction biock 4000 receives an input information stream from GEO as a
sequence of packets. The input information stream includes several information items from GEO,
including Color Full, Color Half, Color Third, Color Other, Spatial, Begin Frame, End Frame, Clear,
Spatial Modes, Cull Modes, Texture A Front/Back, Texture B Front/Back, Material Front/Back,
Light, PixelModes, and Stipple, as already described in Table 2 for the GEO-MEX Interface 3100.
The Color Full, Color Half, Color Third, Color Other packets are collectively referred to as Color
Vertices or Color Vertex.
MEX separates the input stream into two parts: (i) spatial information, and (ii) shading
information. Spatial information consist of the Spatial Packet, Begin Frame, End Frame, Clear,

- Cull Modes packets, and are sent to SRT 6000. Shading information includes lights (e.g. Light

Packet), colors (e.g. Color Full, Color Half, Color Third, Color Other packets), texture modes (e.g.
Texture A Front/Back, Texture B Front/Back packets), and other signals and packets (e.g. Spatial
Modes, Material Front/Back, PixelModes, and Stipple packets), and is stored in a special buffer
called the Polygon Memory (PMEM) 5000, where it can be retrieved by Mode Injection (MIJ) block
10000. PMEM is desirably double buffered, so MIJ can read data for one frame, while the MEX
is storing data for the next frame.

The mode data (e.g. PixelMode, Spatial Mode) stored in PMEM conceptually may be
placed into three major categories: per-frame data (such as lighting and including the Light
packet), per-primitive data (such as material properties and including the Material Front/Back,
Stipple, Texture A Front/Back, and Texture B Front/Back packets) and per-vertex data (such as
color and including the Color Full, Color Half, Color Third, Color Other packets). In fact, in the
preferred embodiment, MEX makes no actual distinction between these categories as although

10

15

20

25

30

35

40

WO 00/11607 17 PCT/US99/19191

some types of mode data has a greater likelihood of changing frequently (or less frequently), in
reality any mode data can change at any time.

For each spatial packet MEX receives, it repackages it with a set of pointers into PMEM.
The set of pointers includes a color Address, a colorOffset, and a colorType which are used to
retrieve shading information from PMEM. The Spatial Packet also contains fields indicating
whether the vertex represents a point, the endpoint of a line, or the corner of a triangle. The
Spatial Packet also specifies whether the current vertex forms the last one in a given object
primitive (i.e., “completes” the primitive). In the case of triangle "strips” or "fans", and line "strips"
or "loops", the vertices are shared between adjacent primitives. In this case, the packets indicate
how to identify the other vertices in each primitive.

MEX, in conjunction with the MIJ, is responsible for the management of shaded graphics
state information. In a traditional graphics pipeline the state changes are typically incremental; that
is, the value of a state parameter remains in effect until it is explicitly changed. Therefore, the
applications only need to update the parameters that change. Furthermore, the rendering of
primitives is typically in the order received. Points, lines, triangle strips, triangle fans, polygons,
quads, and quad strips are examples of graphical primitives. Thus, state changes are accumulated
until the spatial information for a primitive is received, and those accumulated states are in effect
during the rendering of that primitive.

In DSGP, most rendering is deferred until after hidden surface removal. Visibility
determination may not be deferred in all instances. GEO receives the primitives in order, performs
all vertex operations (transformations, vertex lighting, clipping, and primitive assembly), and sends
the data down the pipeline. SRT receives the time ordered data and bins it by the tiles it touches.
(Within each tile, the list is in time order.) The Cull (CUL) block 9000 receives the data from SRT
in tile order, and culls out parts of the primitives that definitely (conservative culling) do not
contribute to the rendered images. CUL generates Visible Stamp Portions (VSPs), where a VSP
corresponds to the visible portion of a polygon on the stamp as described in greater detail relative
to CUL. The Texture (TEX) block 12000 and the Phong Shading (PHG) block 14000 receive the

' VSPs and are respectively responsible for texturing and lighting fragments. The Pixel (P1X) block

15000 consumes the VSPs and the fragment colors to generate the final picture.

A primitive may touch many tiles and therefore, unlike traditional rendering pipelines, may
be visited many times (once for each tile it touches) during the course of rendering the frame. The
pipeline must remember the graphics state in effect at the time the primitive entered the pipeline
(rather than what may be referred to as the current state for a primitive now entering the pipeline),
and recall that state every time it is visited by the pipeline stages downstream from SRT. MEX is
a logic block between GEO and SRT that collects and saves the temporally ordered state change
data, and attaches appropriate pointers to the primitive vertices in order to associate the correct
state with the primitive when it is rendered. MIJ is responsible for the retrieval of the state and any
other information associated with the state pointer (referred to here as the MLM Pointer, or MLMP)
when it is needed. MUJ is also responsible for the repackaging of the information as appropriate.
An example of the repackaging occurs when the vertex data in PMEM is retrieved and bundled
into triangle input packets for FRG.

10

15

20

25

30

35

40

WO 00/11607 18- PCT/US99/19191

The graphics shading state affects the appearance of the rendered primitives. Different
parts of the DSGP pipeline use different state information. Here, we are only concerned with the
pipeline stages downstream from GEO. DSGP breaks up the graphics state into several
categories based on how that state information is used by the various pipeline stages. The proper
partitioning of the state is important. It can affect the performance (by becoming bandwidth and
access limited), size of the chips (larger caches and/or logic complications), and the chip pin
count.

MEX block is responsible for the following functionality: (a) receiving data packets from
GEO,; (b) performing any reprocessing needed on those data packets; (c) appropriately saving the
information needed by the shading portion of the pipeline in PMEM for retrieval later by MIJ; (d)
attaching state pointers to primitives sent to SRT, so that MIJ knows the state associated with this
primitive; (d) sending the information needed by SRT, Setup (STP), and CUL to SRT, SRT acting
as an intermediate stage and propagating the information down the pipeline; and (e) handling
PMEM and SMEM overflow. The state saved in PMEM is partitioned and used by the functional
blocks downstream from MIJ, for example by FRG, TEX, PHG, and PIX. This state is partitioned
as described elsewhere in this description.

The SRT-STP-CUL part of the pipeline converts the primitives into VSPs. These VSPs
are then textured and lit by the FRG-TEX-PHG part of the pipeline. The VSPs output from CUL
to MIJ are not necessarily ordered by primitives. In most cases, they will be in the VSP scan order
on the tile, i.e. the VSPs for different primitives may be interleaved. The FRG-TEX-PHG part of
the pipeline needs to know which primitive a particular VSP belongs to. MIJ decodes the color
pointer, and retrieves needed information from the PMEM. The color pointer consists of three
parts, the colorAddress, colorOffset, and colorType.

MEX thus accumulates any state changes that have happened since the last state save.
and keeps a state vector on chip. The state changes become effective as soon as a vertex is
encountered. MEX attaches a colorPointer (or color address), a colorOffset, and a colorType with

every primitive vertex sent to SRT. The colorPointer points to a vertex entry in PMEM. The

" colorOffset is the number of vertices separating the vertex at the colorPointer to the dual-oct that

is used to store the MLMP applicable to this primitive.

The colorType tells the MIJ how to retrieve the complete primitive from the PMEM.
Vertices are stored in order, so the vertices in a primitive are adjacent, except in the case of
triangle fans. For points, we only need the vertex pointed to by the colorPointer. For lines we
need the vertex pointed to by ColorPointer and the vertex before this. For triangle strips, we need
the vertex at colorPointer and two previous vertices. For triangle fans we need the vertex at
colorPointer, the vertex before that, and the first vertex after MLMP.

MEX does not generally need to know the contents of most of the packets received by it.
It only needs to know their type and size. There are some exceptions to this generalization which
are now described.

For certain packets, including colorFull, colorHalf, colorThird, colorOther packets , MEX
needs to know the information about the primitive defined by the current vertex. In particular, MEX
needs to know its primitive type (point, line, triangle strip, or triangle fan) as identified by the

10

15

20

25

30

35

40

WO 00/11607 19- PCT/US99/19191
colPrimType field, and if a triangle - whether it is front facing or back facing. This information is
used in saving appropriate vertex entries in an on-chip storage to be able to construct the primitive
in case of a memory overflow. This information is encapsulated in a packet header sent by GEO
to MEX.

MEX accumulates material and texture data for both front and back faces of the triangle.
Only one set of state is written to PMEM based on the Front bit or flag indicator contained in the
colorFull, colorHalf, colorThird, colorOther, TextureA, TextureB, and Material packets. Note that
the front/back orientation does not change in a triangle strip or triangle fan. The Front bit is used
to associate correct TextureA, TextureB parameters and Material parameters with the primitive.
If a mesh changes orientation somewhere within the mesh, GEO will break that mesh into two or
more meshes such that each new mesh is either entirely front facing or entirely back facing.

Similarly, for the Spatial Modes packet, MEX needs to be able to strip away one of the
LineWidth and PointWidth attributes of the Spatial Mode Packet depending on the primitive type.
If the vertex defines a point then LineWidth is thrown away and if the vertex defines a line, then
PointWidth is thrown away. MEX passes down only one of the line or point width to SRT in the
form of a LinePointWidth in the MEX-SRT Spatial Packet.

In the case of Clear control packets, MEX examines to see if SendToPixel flag is set. If
this flag is set, then MEX saves the PixelMode data received in the PixelMode Packet from GEO
in PMEM (if necessary) and creates an appropriate ColorPointer to attach to the output clear
packet so that it may be retrieved by MIJ when needed. Table 4 identifies signals and packets
communicated over the MEX-SRT Interface.

able 4. MEX->SRT Interface
MEX->SRT Interface - Spatial
MEX->SRT Interface - Cull Modes
MEX->SRT Interface - Begin Frame
MEX->SRT Interface - End Frame
MEX->SRT Interface - Clear

"« Sort (SRT) 6000 and Sort Memory (SMEM) 7000

The Sort (SRT) block 6000 receives several packets from MEX, including Spatial, Cull
Modes, EndFrame, BeginFrame, and Clear Packets. For the vertices received from MEX, SRT
sorts the resulting points, lines, and triangles by tile. SRT maintains a list of vertices representing
the graphic primitives, and a set of Tile Pointer Lists, one list for each tile in the frame, in a
desirably double-buffered Sort Memory (SMEM) 7000. SRT determines that a primitive has been
completed. When SRT receives a vertex that completes a primitive (such as the third vertex in a
triangle), it checks to see which tiles the primitive touches. For each Tile a primitive touches, SRT
adds a pointer to the vertex to that tile’s Tile Pointer List. When SRT has finished sorting all the
geometry in a frame, it sends the primitive data (Primitive Packet) to STP. Each SRT output packet
(Primitive Packet) represents a complete primitive. SRT sends its output in: (i) tile-by-tile order:
first, all of the primitives that touch a given tile; then, all of the primitives that touch the next tile;
and so on; or (ii) in sorted transparency mode order. This means that SRT may send the same

10

15

20

25

30

35

40

WO 00/11607 2 PCT/US99/19191
primitive many times, once for each tile it touches. SRT also sends to STP CuliMode,
BeginFrame, EndFrame, BeginTile, and Clear Packets.

SRT is located in the pipeline between MEX and STP. The primary function of SRT is to
take in geometry and determine which tiles that geometry covers. SRT manages the SMEM,
which stores all the geometry for an entire scene before it is rasterized, along with a small amount
of mode information. SMEM is desirably a double buffered list of vertices and modes. One SMEM
page collects a scene’s geometry (vertex-by-vertex and mode-by-mode), while the other SMEM
page is sending its geometry (primitive by primitive and mode by mode) down the rest of the
pipeline. SRT includes two processes that operate in parallel: (a) the Sort Write Process; and
(b) the Sort Read Process. The Sort Write Process is the “master” of the two, because it initiates
the Sort Read Process when writing is completed and the read process is idle. This also
advantageously keeps SMEM from filling and overflowing as the write process limits the number
of reads that may otherwise fill the SMEM buffer. In one embodiment of the invention SMEM is
located on a separate chip different from the chip on which SRT is located, however, they may
advantageously located on the same chip or substrate. For this reason, the communication paths
between SRT and SMEM are not described in detail here, as in at least one embodiment, the
communications would be performed within the same functional block (e.g. the Sort block). The
manner in which SRT interacts with SMEM are described in the related applications.

An SRT-MUWJ interface is provided to propagates Prefetch Begin Frame, Prefetch End
Frame, and Prefetch Begin Tile. In fact these packets are destined to BKE via MIlJ and PIX, and
the provision of this SRT-MIJ-PIX-BKE communication path is used because MIJ represents the
last block on the chip on which SRT is located. Prefetch packets go around the pipleline so BKE
can do read operations from the Frame Buffer ahead of time, that is earlier than if the same
packets were to propagate through the pipeline. MiJ has a convenient communication channel
to the chip that contains BKE, and PIX is located on the same chip as BKE, the ultimate consumer
of the packet. Therefore, sending the packet to MIJ is an implementation detail rather than a item

of architectural design. On the other hand, the use of alternative paths described to facilitate

" communications between blocks on different physical chips is beneficial to this embodiment.

Table 5 identifies signals and packets communicated over the SRT-MIJ-PIX-BKE Interface, and
Table 6 identifies signals and packets communicated over the SRT-STP Interface.

Table 5. SRT-MIJ-PIX-BKE Interface
ISRT-MIJ Interface - Prefetch Begin Tile
ISRT-MIJ Interface - Prefetch End Frame
SRT-MIJ Interface - Prefetch Begin Frame

able 6. SRT->STP Interface
RT->STP Interface - Primitive Packet
SRT->STP Interface - Cull Modes
RT->STP Interface - Begin Frame
RT->STP Interface - End Frame
RT->STP Interface - Begin Tile
SRT->STP Interface - Clear

10

15

20

25

30

35

40

WO 00/11607 o1. PCT/US99/19191
* Setup (STP) 8000

The Setup (STP) block 8000 receives a stream of packets (Primitive Packet, Cull Modes,
Begin Frame, End Frame, Begin Tile, and Clear Packets) from SRT. These packets have spatial
information about the primitives to be rendered. The primitives and can be filied triangles, line
triangles, lines, stippled lines, and points. Each of these primitives can be rendered in aliased or
anti-aliased mode. STP provides unified primitives descriptions for triangles and line segments,
post tile sorting setup and tile relative y-values and screen relative x-values. SRT sends primitives
to STP (and other pipeline stages downstream) in tile order. Within each tile the data is organized
in either "time order” or "sorted transparency order". STP processes one tile’s worth of data, one
primitive at a time. When it's done with a primitive, it sends the data on to CUL in the form of a
Primitive Packet. CUL receives data from STP in tile order (in fact in the same order that STP
receives primitives from SRT), and culls out or removes parts of the primitives that definitely do
not contribute to the rendered images. (It may leave some parts of primitives if it cannot determine
for certain that they will not contribute to the rendered image.) STP also breaks stippled lines into
separate line segments (each a rectangular region), and computes the minimum z value for each
primitive within the tile. Each Primitive Packet output from STP represents one primitive: a
triangle, line segment, or point. The other inputs to STP including CullModes, BeginFrame,
EndFrame, BeginTile, and Clear. Some packets are not used by STP but are merely propagated
or passed through to CUL. '

STP prepares the incoming primitives from SRT for processing (culling) by CUL. The CUL
culling operation is accomplished in two stages. We briefly describe culling here so that the
preparatory processing performed by STP in anticipation of culling may be more readily
understood. The first stage, a magnitude comparison content addressable memory based cuiling
operation (M-Cull), allows detection of those elements in a rectangular memory array whose
content is greater than a given value. In one embodiment of the invention a magnitude
comparison content addressable type memory is used. (By way of example but not limitation, U.S.
Patent Number 4,996,666, by Jerome F. Duluk Jr., entitled “Content-Addressable Memory System

. Capable of Fully Parallel Magnitude Comparisons”, granted February 26, 1991 herein incorporated

by reference describes a structure for a particular magnitude comparison content addressable
type memory.) The second stage (S-Cull) refines on this search by doing a sample-by-sample
content comparison. STP produces a tight bounding box and minimum depth value Zmin for the
part of the primitive intersecting the tile for M-Cull. The M-Cull stage marks the stamps in the
bounding box that may contain depth values less than Zmin. The S-Cull stage takes these
candidate stamps, and if they are a part of the primitive, computes the actual depth value for
samples in that stamp. This more accurate depth value is then used for comparison and possible
discard on a sample by sample basis. In addition to the bounding box and Zmin for M-Cull, STP
also computes the depth gradients, line slopes, and other reference parameters such as depth and
primitive intersection points with the tile edge for the S-Cull stage. CUL produces the VSPs used
by the other pipeline stages.

STP is therefore responsible for receiving incoming primitives from SRT in the form of
Primitive Packets, and processing these primitives with the aid of information received in the

10

15

20

25

30

35

40

WO 00/11607 PCT/US99/19191
-22.

CullModes, BeginFrame, EndFrame, BeginTile, and Clear packets; and outputting primitives

(Primitive Packet), as well as CullModes, BeginFrame, EndFrame, BeginTile, and Clear packets.

Table 7 identifies signals and packets communicated over the STP-CUL Interface.

Table 7. STP->CUL Interface
STP->CUL Interface - Primitive Packet
STP->CUL Interface - Cull Modes
ISTP->CUL Interface - Begin Frame
STP->CUL Interface - End Frame
STP->CUL interface - Begin Tile
STP->CUL Interface - Clear

* Cull (CUL) 9000

The Cull (CUL) block 9000 performs two main high-level functions. The primary function
is to remove geometry that is guaranteed to not affect the final results in the frame buffer (i.e., a
conservative form of hidden surface removal). The second function is to break primitives into units
of stamp portions, where a stamp portion is the intersection of a particular primitive with a
particular stamp. The stamp portion amount is determined by sampling. CUL is one of the more
complex blocks in DSGP 1000, and processing within CUL is divided primarily into two steps:
magnitude comparison content addressable memory culling(M-Cull), and Subpixel Cull (S-Cull).
CUL accepts data one tile’s worth at a time. M-Cull discards primitives that are hidden completely
by previously processed geometry. S-Cull takes the remaining primitives (which are partly or
entirely visible), and determines the visible fragments. S-Cull outputs one stamp’s worth of
fragments at a time, called a Visible Stamp Portion (VSP), a stamp based geometry entity. [n one
embodiment, a stamp is a 2x2 pixel area of the image. Note that a Visible Stamp Portion produced
by CUL contains fragments from only a single primitive, even if multiple primitives touch the stamp.
Colors from multiple touching VSPs are combined later, in the Pixel (PIX) block. Each pixel in a
VSP is divided up into a number of samples to determine how much of the pixel is covered by a

given fragment. PIX uses this information when it blends the fragments to produce the final color

* for the pixel.

CUL is responsible for: (a) pre-shading hidden surface removal; and (b) breaking down
primitive geometry entities (triangles, lines and points) into stamp based geometry entities (VSPs).
In general, CUL performs conservative culling or removal of hidden surfaces. CUL can only
conservatively remove hidden surfaces, rather than exactly removing hidden surfaces, because
it does not handle some “fragment operations” such as alpha test and stencil test, the results of
which may sometimes be required to make such exact determination. CUL's sample z-buffer can
hold two depth values, but CUL can only store the attributes of one primitive per sample. Thus,
whenever a sample requires blending colors from two pieces of geometry, CUL has to send the
first primitive (using time order) down the pipeline, even though there may be later geometry that
hides both pieces of the blended geometry.

CUL receives STP Output Primitive Packets that each describe, on a per tile basis, either
a triangle, a line or a point. SRT is the unit that bins the incoming geometry entities to tiles.
Recall that STP pre-processed the primitives to provide more detailed geometric information in

10

15

20

25

30

35

40

WO 00/11607 3 PCT/US99/19191
order to permit CUL to do the hidden surface removal. STP pre-calculates the slope value for all
the edges, the bounding box of the primitive within the tile, (front most) minimum depth value of
the primitive within the tile, and other relevant data, and sends this data to CUL in the form of
packets. Recall that prior to SRT, MEX has already extracted the information of color, light,
texture and related mode data and placed it in PMEM for later retrieval by MIJ, CUL only gets the
mode data that is relevant to CUL and colorPointer (or colorAddress), that points to color, light,
and texture data stored in PMEM.

CUL sends one VSP (Vsp Packet) at a time to MlJ, and MIJ reconnects the VSP with its
color, light and texture data retrieved from PMEM and sends both the VSP and its associated
color, light and texture data in the form of a packet to FRG and later stages in the pipeline.
Associated color is stored in PMEM. CUL outputs Vsps to MIJ and included with the Vsps is a
pointer into polygon memory (PMEM) so that the associated color, light, and texture data for the
Vsp can be retrieved from the memory. Table 8 identifies signals and packets communicated over
thee CUL-MIJ Interface.

able 8. CUL->MUJ Interface Description
CUL-MIJ interface - Vsp (Visible Stamp Portion)
CUL-MIJ Interface - Begin Tile
CUL-MIJ Interface - Begin Frame
CUL-MIJ Interface - End Frame
CUL-MIJ Interface - Clear

« Mode Injection (ML) 10000

The Mode Injection (MIJ) block 10000 in conjunction with MEX is responsible for the
management of graphics state related information. MIJ retrieves mode information—such as
colors, material properties, and so on—earlier stored in PMEM by MEX, and injects it into the
pipeline to pass downstream as required. To save bandwidth, individual downstream blocks
cache recently used mode information so that when cached there is no need use bandwidth to
communicated the mode information from MIJ to the destination needing it. MIJ keeps track of

" what information is cached downstream, and by which block, and only sends information as

necessary when the needed information is not cached.

MIJ receives VSP packets from the CUL block. Each VSP packet corresponds to the
visible portion of a primitive on the 2x2 pixel stamp. The VSPs output from the Cull block to MlJ
block are not necessarily ordered by primitives. In most cases, they will be in the VSP scan order
on the tile, that is, the VSPs for different primitives may be interleaved. In order to light, texture
and composite the fragments in the VSPs, the pipeline stages downstream from the MIJ block
need information about the type of the primitive (i.e. point, line, triangle, line-mode triangle); its
geometry such as window and eye coordinates, normal, color, and texture coordinates at the
vertices of the primitive; and the rendering state such as the PixelModes, TextureA, TextureB,
Light, Material, and Stipple applicable to the primitive. This information is saved in the polygon
memory by MEX.

10

15

20

25

30

35

40

WO 00/11607 04 PCT/US99/19191

MEX also attaches ColorPointers (ColorAddress, ColorOffset, and ColorType) to each
primitive sent to SRT, which is in turn passed on to each of the VSPs of that primitive. MIJ
decodes this pointer to retrieve the necessary information from the polygon memory. MIJ starts
working on a frame after it receives a BeginFrame packet from CUL. The VSP processing for the
frame begins when CUL is done with the first tile in the frame and MI1J receives the first VSP for
that tile. The color pointer consists of three parts, the ColorAddress, ColorOffset, and ColorType.
The ColorAddress points to the ColorVertex that completes the primitive. ColorOffset provides
the number of vertices separating the ColorAddress from the dualoct that contains the
MLM_Pointer. The MLM_Pointer (Material Light Mode Pointer) is periodically generated by MEX
and stored into PMEM and provides a series of pointers to find the shading modes that are used
for a particular primitive. ColorType contains information about the type of the primitive, size of
each ColorVertex, and the enabled edges for line mode triangles. The ColorVertices making up
the primitive may be 2, 4, 6, or 9 dualocts long. MIJ decodes the ColorPointer to obtain addresses
of the dualocts containing the MLM_Pointer, and all the ColorVertices that make up the primitive.
The MLM_Pointer (MLMP) contains the dualoct address of the six state packets in polygon
memory.

MIJ is responsible for the following: (a) Routing various control packets such as
BeginFrame, EndFrame, and BeginTile to FRG and PIX; (b) Routing prefetch packets from SRT
to PIX ;(c) Determining the ColorPointer for all the vertices of the primitive corresponding to the
VSP; (d) Determining the location of the MLMP in PMEM and retrieving it; (e) Determining the
location of various state packets in PMEM,; (f) Determining which packets need to be retrieved,;
(g) Associating the state with each VSP received from CUL; (h) Retrieving the state packets and
color vertex packets from PMEM; (i) Depending on the primitive type of the VSP, MIJ retrieves the
required vertices and per-vertex data from PMEM and constructs primitives; (j) Keeping track of
the-contents of the Color, TexA, TexB, Light, and Material caches (for FRG, TEX, and PHG) and
PixelMode and Stipple caches (for PIX) and associating the appropriate cache pointer to each
cache miss data packet; and (k) Sending data to FRG and PIX.

MIJ may also be responsible for (I) Processing stalls in the pipeline, such as for example
stalls caused by lack of PMEM memory space; and (m) Signaling to MEX when done with stored
data in PMEM so that the memory space can be released and used for new incoming data.
Recall that MEX writes to PMEM and MiJ reads from PMEM. A communication path is provided
between MEX and MIJ for memory status and control information relative to PMEM usage and
availability. MIJ thus deals with the retrieval of state as well as the per-vertex data needed for
computing the final colors for each fragment in the VSP. MIJ is responsible for the retrieval of the
state and any other information associated with the state pointer (MLMP) when it is needed. Itis
also responsible for the repackaging of the information as appropriate. An example of the
repackaging occurs when the vertex data in PMEM is retrieved and bundled into primitive input
packets for FRG. In at least one embodiment of the invention, the data contained in the VSP
communicated from MIJ to FRG may be different than the data in the VSP communicated between
MiJ and PIX. The VSP communicated to FRG also includes an identifier added upstream in the
pipeline that identifies the type of a Line (VspLin), Point (VspPnt), or Triangle (VspTri). The Begin

WO 00/11607 o5 PCT/US99/19191

Tile packet is communicated to both PIX and to FRG from MIJ. Table 9 identifies signals and
packets communicated over the MIJ-PIX Interface, and Table 10 identifies signals and packets

communicated over the MIJ-FRG Interface.

10

15

20

25

30

35

40

45

WO 00/11607 PCT/US99/19191
-26-

able 9. MiJ->PIX Interface
MIJ-PIX Interface - Vsp
MIJ-PIX Interface - Begin Tile
MIJ-PIX Interface - Begin Frame
MiJ-PIX Interface - End Frame
MiJ-PIX Interface - Clear
MIJ-PIX Interface - PixelMode Fill
MIJ-PIX Interface - Stipple Fill
MIJ-PIX interface - Prefetch Begin Tile
MIJ-PIX interface - Prefetch End Frame
MIJ-PIX Interface - Prefetch Begin Frame

able 10. MIJ->FRG Interface
MIJ-FRG Interface - Vsp (VspTri, VspLin, VspPnt)
MIJ-FRG Interface - Begin Tile
MIJ-FRG Interface - Color Cache Fill 0 (CCFill0)
MIJ-FRG Interface - Color Cache Fill 1 (CCFill1)
MIJ-FRG Interface - Color Cache Fill 2 (CCFill2)
MIJ-FRG Interface - TexA Fill Packet
MIJ-FRG Interface - TexB Fill Packet
MIJ-FRG Interface - Material Fill Packet
MIJ-FRG Interface - Light Fill Packet

* Fragment (FRG) 11000

The Fragment (FRG) biock 11000 is primarily responsible for interpolation. It interpolates
color values for Gouraud shading, surface normals for Phong shading, and texture coordinates
for texture mapping. It also interpolates surface tangents for use in the bump mapping algorithm,
if bump maps are in use. FRG performs perspective corrected interpolation using barycentric
coefficients in at least one embodiment of the invention.

FRG is located after CUL and MIJ and before TEX, and PHG (including BUMP when
bump mapping is used) . In one embodiment, FRG receives VSPs that contain up to four
fragments that need to be shaded. The fragments in a particular VSP always belong to the same
primitive, therefore the fragments share the primitive data defined at vertices, including all the
mode settings. FRG's main function is the receipt of VSPs (Vsp Packets), and interpolation of the

* polygon information provided at the vertices for all active fragments in a VSP. For this

interpolation task it also utilizes packets received from other blocks.

At the output of FRG we still have VSPs. VSPs contain fragments. FRG can perform the
interpolations of a given fragment in parallel, and fragments within a particular VSP can be done
in an arbitrary order. Fully interpolated VSPs are forwarded by FRG to the TEX, and PHG in the
same order as received by FRG. In addition, part of the data sent to TEX may include Level-of-
Detail (LOD or A) values. In one embodiment, FRG interpolates values using perspective
corrected barycentric interpolation.

PHG receives full and not full performance VSP (Vsp-FullPerf, Vsp-NotFullPerf), Texture-
B Mode Cache Fill Packet (TexBFill),light cache Fill packet (LtFill), Material Cache Fill packet
(MtFill), and Begin Tile Packet (BeginTile) from FRG over header and data busses. Note that
here, full performance and not-full performance Vsp are communicated. At one level of the
pipeline, four types are supported (e.g. full, ¥z, 1/3, and 1/4 performance), and these are written
to PMEM and read back to MIJ. However, in one embodiment, only three types are

10

15

20

25

30

35

40

45

WO 00/11607 o7. PCT/US99/19191
communicated from MIJ to FRG, and only two types from FRG to PHB. Not full performance here
refers to ¥z performance or iess. These determinations are made based on available bandwidth
of on-chip communication and off-chip communications and other implementation related factors.

We note that in one embodiment, FRG and TEX are coupled by several busses, a 48-bit
(47:0) Header Bus, a 24-bit (23:0) R-Data Interface Bus, a 48-bit (47:0) ST-Data Interface Bus ,
and a 24-bit (23:0) LOD-Data Interface Bus. VSP data is communicated from FRG to TEX over
each of these four busses. A TexA Fill Packet, a TexB Fill Packet, and a Begin Tile Packet are
also communicated to TEX over the Header Bus. Multiple busses are conveniently used;
however, a single bus, though not preferred, may alternatively be used. Table 11 identifies signals
and packets communicated over the FRG-PHG Interface, and Table 12 identifies signals and
packets communicated over the FRG-TEX Interface.

able 11. FRG->PHG Interface
FRG->PHB Full Performance Vsp
FRG->PHB Not Full Performance Vsp (%2, 1/3, etc.)
FRG->PHB Begin Tile
FRG->PHB Material Fill Packet
FRG->PHB Light Fill Packet
FRG->PHB TexB Fill Packet
FRG->PHB Begin Tile

able 12. FRG->TEX Interface
FRG->TEX Header Bus - Vsp
FRG->TEX ST-Data Bus- Vsp
FRG-TEX R-Data Bus - Vsp
FRG-TEX LOD-Data Bus - Vsp
FRG->TEX Header Bus - Begin Tile
FRG->TEX Header Bus - TexA Cache Fill Packet
FRG->TEX Header Bus - TexB Cache Fill Packet

* Texture (TEX) 12000 and Texture Memory (TMEM) 13000

The Texture block 12000 applies texture maps to the pixel fragments. Texture maps are

* stored in the Texture Memory (TMEM) 13000. TMEM need only be single-buffered. It is loaded

from the host (HOST) computer’s memory using the AGP/AGI interface. A single polygon can use
up to four textures. Textures are advantageously mip-mapped, that is, each texture comprises a
plurality or series of texture maps at different levels of detail, each texture map representing the
appearance of the texture at a given magnification or minification. To produce a texture value for
a given pixel fragment, TEX performs tri-linear interpolation (though other interpolation procedures
may be used) from the texture maps, to approximate the correct level of detail for the viewing
distance. TEX also performs other interpolation methods, such as anisotropic interpolation. TEX
supplies interpolated texture values (generally as RGBA color values) in the form of Vsp Packets
to the PHG on a per-fragment basis. Bump maps represent a special kind of texture map. Instead
of a color, each texel of a bump map contains a height field gradient.

Polygons are used in 3D graphics to define the shape of objects. Texture mapping is a
technique for simulating surface textures by coloring polygons with detailed images or patterns.
Typically, a single texture map will cover an entire object that consists of many polygons. A texture

10

15

20

25

30

35

40

WO 00/11607 08 PCT/US99/19191
map consists of one or more nominally rectangular arrays of RGBA color. In one embodiment of
the invention, these rectangular arrays are about 2kB by 2kB in size. The user supplies
coordinates, either manually or automatically in GEO, into the texture map at each vertex. These
coordinates are interpolated for each fragment, the texture values are looked up in the texture map
and the color assigned to the fragment.

Because objects appear smaller when they're farther from the viewer, texture maps must
be scaied so that the texture pattern appears the same size relative to the object being textured.
Scaling and filtering a texture image for each fragment is an expensive proposition. Mip-mapping
allows the renderer to avoid some of this work at run-time. The user provides a series of texture
arrays at successively lower resolutions, each array representing the texture at a specified level
of detail (LOD or 1). Recall that FRG calculates a level of detail value for each fragment, based
on its distance from the viewer, and TEX interpolates between the two closest mip-map arrays to
produce a texture value for the fragment. For example, if a fragment has 1=0.5, TEX interpolates
between the availabie arrays representing I=0 and I=1. TEX identifies texture arrays by virtual
texture number and LOD.

In addition to the normal path between TMEM and TEX, there is a path from host (HOST)
memory to TMEM via AGI, CFD, 2DG to TMEM which may be used for both read and write
operations. TMEM stores texture arrays that TEX is currently using. Software or firmware
procedures manage TMEM, copying texture arrays from host memory into TMEM. It also
maintains a table of texture array addresses in TMEM. TEX sends filtered texels in a VSP packet
to PHG and PHG interprets these. Table 13 identifies signals and packets communicated over the
TEX-PHG Interface.

Table 13. TEX->PHG Interface
[TEX->PHB Interface - Vsp

* Phong Shading (PHG or PHB) 14000

The Phong (PHG or PHB) block 14000 is located after TEX and before PIX in DSGP 1000
and performs Phong shading for each pixel fragment. Generic forms of Phong shading are known
in the art and the theoretical underpinnings of Phong shading are therefore not described here in
detail, but rather are described in the related applications. PHG may optionally but desirably
inciude Bump Mapping (BUMP) functionality and structure. TEX sends only texel data contained
within Vsp Packets and PHG receives Vsp Packets from TEX, in one embodiment this occurs via
a 36-bit (35:0) Textel-Data Interface bus. FRG sends per-fragment data (in VSPs) as well as
cache fill packets that are passed through from MIJ. It is noted that in one embodiment, the cache
fill packets are stored in RAM within PHG untit needed. Fully interpolated stamps are forwarded
by FRG to PHG (as well as to TEX and BUMP within PHG) in the same order as received by FRG.
Recall that PHG receives full performance VSP (Vsp-FullPerf) and not full performance VSP (Vsp-
NotFullPerf) packets as well as Texture-B Mode Cache Fill Packet (TexBFill), Light Cache Fill
packet (LtFill), Material Cache Fill packet (MtFill), and Begin Tile Packet (BeginTile) from FRG
over header and data busses. Recall also that MIJ keeps track of the contents of the Color, TexA,

10

15

20

25

30

35

40

WO 00/11607 -29.- PCT/US99/19191

TexB, Light, and Material caches for PHG (as well as for FRG and TEX) and associates the
appropriate cache pointer to each cache miss data packet.

PHG uses the material and lighting information supplied by MIJ, the texture colors from
TEX, and the interpolated data generated by FRG, to determine a fragment's apparent color. PHG
calculates the color of a fragment by combining the color, material, geometric, and lighting
information received from FRG with the texture information received from TEX. The resultis a
colored fragment, which is forwarded to P1X where it is blended with any color information already
residing in the frame buffer (FRM). PHG is primarily geometry based and does not care about the
concepts of frames, tiles, or screen-space.

PHG has three internal caches: the light cache (Lt Cache Fill Packet from MlJ), the
material cache (Material Cache Fill Packet from MIJ), and the textureB (TexB) cache.

Only the results produced by PHG are sent to PIX. These include a packet that specifies
the properties of a fragment (Color Packet), a packet that specifies the properties of a fragment
(Depth_Color Packet), a packet that specifies the properties of a fragment (Stencil_Color Packet),
a packet that specifies the properties of a fragment (Colorindex Packet), a packet that specifies
the properties of a fragment (Depth_Colorindex Packet), and a packet that specifies the properties
of a fragment (Stencil_Colorindex Packet). Table 14 identifies signals and packets communicated
over the PHG-PIX Interface,

able 14. PHG->PIX Interface
PHB->PIX Interface - Color
PHB->PIX Interface - Depth_Color
PHB->PIX Interface - Stencil_Color
PHB->PIX Interface - Colorindex
PHB->PIX Interface - Depth_Colorindex
PHB->PIX Interface-Stencil Colorindex

* Pixel (PIX) 15000

The Pixel (PI1X) block 15000 is the last block before BKE in the 3D pipeline and receives
VSPs, where each fragment has an independent color value. It is responsible for graphics API
per-fragment and other operations including scissor test, alpha test, stencil operations, depth test,
blending, dithering, and logic operations on each sample in each pixel (See for example, OpenGL
Spec 1.1, Section 4.1, “Per-Fragment Operations,” herein incorporated by reference).The pixel
ownership test is a part of the window system (See for example Ch. 4 of the OpenGL 1.1
Specification, herein incorporated by reference) and is done in the Backend. When PIX has
accumulated a tile’s worth of finished pixels, it blends the sampies within each pixel (thereby
performing antialiasing of pixels) and sends them to the Backend (BKE) block 16000, to be stored
in the frame buffer (FRM) 17000. In addition to this blending, the PIX performs stencil testing,
alpha blending, and antialiasing of pixels. When it accumulates a tile’s worth of finished pixels,
it sends them to BKE to be stored in the frame buffer FRM. In addition to these operations, Pixel
performs sample accumulation for antialiasing.

The pipeline stages before PIX convert the primitives into VSPs. SRT collects the
primitives for each tile. CUL receives the data from SRT in tile order, and culls out or removes

10

15

20

25

30

35

40

WO 00/11607 PCT/US99/19191

-30-

parts of the primitives that definitely do not contribute to the rendered images. CUL generates the
VSPs. TEX and PHG also receive the VSPs and are responsibie for the texturing and lighting of
the fragments respectively.

PIX receives VSPs (Vsp Packet) and mode packets (Begin Tile Packet, BeginFrame
Packet, EndFrame Packet, Clear Packet, PixelMode Fill Packet, Stipple Fill Packet, Prefetch Begin
Tile Packet, Prefetch End Frame Packet, and Prefetch Begin Frame Packet) from MIJ, while
fragment colors (Color Packet, Depth_Color Packet, Stencil_Color Packet, Colorindex Packet,
Depth_Colorindex Packet, and Stencil_Colorindex Packet) for the VSPs are received from PHG.
PHG can also supply per-fragment z-coordinate and stencil values for VSPs.

Fragment colors (Color Packet, Depth_Color Packet, Stencil_Color Packet, Colorindex
Packet, Depth_Colorindex Packet, and Stencil_Colorindex Packet) for the VSPs arrive at PIX in
the same order as the VSPs arrive. PIX processes the data for each visible sample according to
the applicable mode settings. A pixel output (PixelOut) subunit processes the pixel samples to
generate color values, z values, and stencil values for the pixels. When PIX finishes processing
all stamps for the current Tile, it signals the pixel out subunit to output the color buffers, z-buffers,
and stencil buffers holding their respective values for the Tile to BKE.

BKE prepares the current tile buffers for rendering of geometry (VSPs) by PIX. This may
involve loading the existing color values, z values, and stencil values from the frame buffer. BKE
includes a RAM (RDRAM) memory controller for the frame buffer.

PIX also receives some packets bound for BKE from MIJ. An input filter appropriately
passes these packets on to a BKE Prefetch Queue, where they are processed in the order
received. It is noted that several of the functional blocks, including PIX, have an "input filter" that
selectively routes packets or other signals through the unit, and selectively "captures” other
packets or signals for use within the unit.

Some packets are also sent to a queue in the pixel output subunit. As described herein
before, PIX receives inputs from MiJ and PHG. There are two input queues to handle these two
inputs. The data packets from MIJ go to the VSP queue and the fragment Color packets and the
fragment depth packets from PHG go to the Color queue. PIX may also receive some packets
bound for BKE. Some of the packets are aiso copied into the input queue of the pixel output
subunit.

BKE and the pixel output subunit process the data packets in the order received. MIJ
places the data packets in a PIX input First-In-First-Out (FIFO) buffer memory. A PIX input filter
examines the packet header, and sends the data bound for BKE to BKE, and the data packets
needed by PIX to the VSP queue. The majority of the packets received from MIJ are bound for
the VSP queue, some go only to BKE, and some are copied into the VSP queue as well as sent
to BKE and pixel output subunit of PIX.

Communication between PIX and BKE occurs via control lines and a plurality of tile
buffers, in one embodiment the tile buffers comprise eight RAMs. Each tile buffer is 2 16 x 16
buffer which BKE controls. PIX requests tile buffers from BKE via the control lines, and BKE either
acquires the requested memory from the Frame buffer (FRM) or allocates it directly when it is
available. PIX then informs BKE when it is finished with the tile buffers via the control lines.

10

15

20

25

30

35

40

WO 00/11607 PCT/US99/19191

-39 -

» Backend (BKE) 16000

The Backend (BKE) 16000 receives pixels from PIX, and stores them into the frame buffer
(FRM) 17000. Communication between BKE and PIX is achieved via the control lines and tile
buffers as described above, and not packetized. BKE also (optionally but desirable) sends a tile’s
worth of pixels back to PIX, because specific Frame Buffer (FRM) values can survive from frame
to frame and there is efficiency in reusing them rather than recomputing them. For example,
stencil bit values can be constant over many frames, and can be used in all those frames.

In addition to controlling FRM, BKE performs 2D drawing and sends the finished frame
to the output devices. It provides the interface between FRM and the Display (or computer
monitor) and video output.

BKE mostly interacts with PIX to read and write 3D tiles, and with the 2D graphics engine
(TDG) 18000 to perform Biit operations. CFD uses the BKE bus to read display lists from FRM.
The BKE Bus (including a BKE Input Bus and a BKE Output Bus) is the interconnect that
interfaces BKE with the Two-Dimensional Graphics Engine (TDG) 18000, CFD, and AGI, and is
used to read and write into the FRM Memory and BKE registers. AGI reads and writes BKE
registers and the Memory Mapped Frame Buffer data. External client units (AGI, CFD and TDG)
perform memory read and write through the BKE. The main BKE functions are: (a) 3D Tile read,
(b) 3D Tile write using Pixel Ownership, (c) Pixel Ownership for write enables and overlay
detection, (d) Scanout using Pixel Ownership, (e) Fixed ratio zooms, (f) 3D Accumulation Buffer,
(g) Frame Buffer read and writes, (h) Color key to Windows ID (winid) map, (i) VGA, and (j)
RAMDAC.

The 3D pipeline's interaction with BKE is driven by BeginFrame, BeginTile, and EndFrame
packets. Prefetch versions of these packets are sent directly from SRT to the BKE so that the tiles
can-be prefetched into the PIX-BKE pixel buffers.

BKE interfaces with P1X using a pixBus and a prefetch queue. The pixBus is a 64-bit bus
at each direction and is used to read and write the pixel buffers. There are up to 8 pixel buffers,

‘each holding 32 bit color or depth values for a single tile. If the window has both color and depth

planes enabled then two buffers are allocated. BKE read or writes to a single buffer at a time. BKE
first writes the color buffer and then if needed the depth buffer values. PIX receives BeginFrame
and BeginTile packets from the prefetch queue. These packets bypass the 3D pipeline units to
enable prefetching of the tile buffers. The packets are duplicated for this purpose, the remaining
units receiving them ordered with other VSP and mode packets. In addition to BeginFrame and
BeginTile packets, BKE receives End of Frame packets that mainly is used to send a
programmable interrupt. A pixel ownership unit (POBox) performs all necessary pixel ownership
functions. it provides the pixel write mask for 3D tile writes. It also determines if there is an overlay
(off-screen) buffer on scan out. It includes the window ID table that holds the parameters of 64
windows. A set of 16 bounding boxes (BB) and an 8-bit WinID map per-pixel mechanisms are
used in determining the pixel ownership. Pixel ownership for up to 16 pixels at time can be
performed as a single operation. The 2DG and AGI can perform register read and writes using
the bkeBus. These registers are typically 3D independent registers. Register updates in

10

15

20

25

30

35

40

WO 00/11607 2 PCT/US99/19191
synchronization with the 3D pipe are performed as mode operations or are set in Begin or End
packets. CFD reads Frame Buffer resident compiled display lists and interleaved vertex arrays
using the bkeBus. CFD issues read requests of four dualocts (64 Bytes) at a time when reading
large lists. TDG reads and writes the Frame Buffer for 2D Blits. The source and destination couid
be the host memory, the Frame Buffer, the auxiliary ring for the Texture Memory and context
switch state for the GEO and CFD.

In one embodiment, the BkeBus is a 72-bit input and 64-bit output bus with few
handshaking signals. Arbitration is performed by BKE. Oniy one unit can own the bus at a time.
The bus is fully pipelined and multiple requests can be on the fly at any given cycle. The external
client units that perform memory read and write through the BKE are AGI and TDG, and CFD
reads from the Frame Buffer via AGI's bkeBus interface. A MemBus is the internal bus used to
access the Frame Buffer memory.

BKE effectively owns or controls the Frame Buffer and any other unit that needs to access
(read from or write to) the frame buffer must communicate with BKE. PIX communicates with BKE
via control signals and tile buffers as already described. BKE communicates with FRM (RAMBUS
RDRAM) via conventional memory communication means. The 2DG block communicates with
BKE as well, and can push data into the frame buffer and pull data out of the frame buffer and
communicate the data to other locations.

* Frame Buffer (FRM) 17000

The Frame Buffer (FRM) 17000 is the memory controlled by BKE that holds all the color
and depth values associated with 2D and 3D windows. [t includes the screen buffer that is
displayed on the monitor by scanning-out the pixel colors at refresh rate. |t also holds off-screen
overlay and .buffers (p-buffers), display lists and vertex arrays, and accumulation buffers. The
screen buffer and the 3D p-buffers can be dual buffered. In one embodiment, FRM comprises
RAMBUS RD random access memory.

The Two-Dimensional Graphics (TDG or 2DG) Block 18000 is also referred to as the two-
dimensional graphics engine, and is responsible for two-dimensional graphics (2D graphics)
processing operations. TDG is an optional part of the inventive pipeline, and may even be
considered to be a different operational unit for processing two-dimensional data.

The TDG mostly talks to the bus interface AGI unit, the front end CFD unit and the
backend BKE unit. In most desired cases (PULL), all 2D drawing commands are passed through
from the CFD unit (AGP master or faster write). In low performance cases (PUSH), the commands
can be programmed from AGI (in PIO mode from PCI slave). The return data from register or
memory read is passed to the AGI. One the other side, to write or read the memory, the TDG
passes memory request packets (including the address, data and byte enable) to the BKE or
receives the memory read return data from the BKE. To process the auxiliary ring command, TDG
also talks to everybody else on the ring.

10

15

20

25

30

35

40

WO 00/11607 23 PCT/US99/19191

We first describe certain input packets to BKE. The 2D source request and data return
packet received as an input from AGI is used to handle the 2D data pull-in/push-out from/to the
AGP memory. The PCl packet received as an input from AGI is used to handle all slave mode
memory or /O read or write accesses. The 2D command packet received as an input from CFD
is used to pass formatted commands. The frame buffer write request acknowledge and read
return data packet received as an input from BKE is used to pass the DRDRAM data returned from
the BKE, in response to an earlier frame buffer read request. The auxiliary ring input packet
received as an input from BKE moves uni-directionally from unit to unit. TDG receives it from BKE,
takes proper actions and then deliver this packet or a new packet to the next unit AGI.

The 2D AGP data request and data out packet sent to AGI is used to send the AGP
master read/write request to AGI and follow the write request, the data output packet to the AGI.
The PCI write acknowledge and read return data packet sent to AGI is used to acknowledge the
reception of PCl memory or /O write data, and also handles the return of PCI memory or /O read
data. The auxiliary ring output packet sent to AGI moves uni-directionally from unit to unit; TDG
receives it from BKE, takes proper actions and then deliver this packet or a new packet to the next
unit AGI. The 2D command acknowledge packet sent to CFD is used to acknowledge the
reception of the command data from CFD. The frame buffer read/write request and read data
acknowledge packet sent to BKE passes the frame buffer read or write command to the BKE. For
read, both address and byte enable lines are used, and for write command data lines are also
meaningful.

In one particular embodiment of the invention, support of a "2D-within-3D" implementation
is conveniently provided using pass-thru 2D commands (referred to as "Tween" Packets) from
BKE unit. The 2D pass-thru command (tween) packet received as an input from BKE is used to
pass formatted 2D drawing command packets that is in the 3D pipeline. The 2D command pass-
thru (tween) acknowledge packet sent to BKE is used to acknowledge the reception of the
command data from BKE.

The Display (DIS) may be considered a separate monitor or display device, particularly
when the signal conditioning circuitry for generating analog signais from the final digital input are
provided in BKE/FRM.

« Multi-Chip Architect

in one embodiment the inventive structure is disposed on a set of three separate chips
(Chip 1, Chip 2, and Chip 3) plus additional memory chips. Chip 1 includes AGI, CFD, GEO, PIX,
and BKE. Chip 2 includes MEX, SRT, STP, and CULL. Chip 3 includes FRG, TEX, and PHG.
PMEM, SMEM, TMEM, and FRM are provided on seprate chips. An interchip communication ring
is provided to couple the units on the chips for communication. In other embodiments of the
invention, all functional blocks are provided on a single chip (common semiconductor substrate)
which may also include memory (PMEM, SMEM, TMEM, and the like) or memory may be provided
on a separate chip or set of chips.

10

15

20

25

30

35

40

WO 00/11607 24 PCT/US99/19191
* Additional Description

The invention provides numerous innovative structures, methods, and procedures. The
structures take many forms including individual circuits, including digital and circuits, computer
architectures and systems, pipeline architectures and processor connectivity. Methodologically,
the invention provides a procedure for deferred shading and numerous other innovative
procedures for use with a deferred shader as well as having applicability to non-deferred shaders
and data processors generally. Those workers having ordinary skill in the art will appreciate that
although the numerous inventive structures and procedures are described relative to a three-
dimensional graphical processor, that many of the innovations have clear applicability to two-
dimensional processing, and to data processing and manipulation are involved generally. For
example, many of the innovations may be implemented in the context of general purpose
computing devices, systems, and architectures. It should also be understood that while some
embodiments may require or benefit from hardware implementation, at least some of the
innovations are applicable to either hardware or software/firmware implementations and
combinations thereof.

A brief list of some of the innovative features provided by the above described inventive
structure and method is provided immediately below. This list is exemplary, and should not be
interpreted as a limitation. It is particularly noted that the individual structures and procedures
described herein may be combined in various ways, and that these combinations have not been
individually listed. Furthermore, while this list focuses on the application of the innovations to a
three-dimensional graphics processor, the innovations may readily be applied to a general
purpose computing machine having the structures and/or operation described in this specification
and illustrated in the figures.

The invention described herein provides numerous inventive structures and methods,
included, but not limited to structure and procedure for : Three-Dimensional Graphics Deferred
Shader Architecture; Conservative Hidden Surface Removal; Tile Prefetch; Context Switching;
Multipass by SRT for Better Antialiasing; Selection of Sample Locations; Sort Before Setup; Tween

"Packets; Packetized Data Transfer; Alpha Test, Blending, Stippled Lines, and the like; Chip

Partitioning; Object Tags (especially in Deferred Shading Architecture); Logarithmic Normalization
in Color Space (Floating Point Colors); Backend Microarchitecture; Pixel Zooming During Scanout;
Virtual Block Transfer (BLT) on Scanout; Pixel Ownership; Window ID; Blocking and Non-blocking
Interrupt Mechanism; Queuing Mechanisms; Token Insertion for Vertex Lists; Hidden Surface
Removal; Tiled Content Addressable Z-buffer; three-stage Z-buffer Process; dealing with Alpha
Test and Stencil in a Deferred Shader; Sending Stamps Downstream with Z Ref and Dz/dx and
Dx/dy; Stamp Portion Memory Separate from the Z-buffer Memory; Sorted Transparency
Algorithm; Finite State Machine per Sample; a SAM Implementation; Fragment Microarchitecture;
GEO Microarchitecture; Pipestage Interleaving; Polygon Clipping Algorithm; 2-Dimensional Block
Microarchitecture; Zero-to-one Inclusive Multiplier (Mul-18p); Integer-floating-integer (Ifi) Match
Unit; Taylor Series Implementation; Math Block Construction Method; Multi-chip Communication
Ring Graphics; How to Deal with Modes in a Deferred Shader; Mode Catching; MLM Pointer
Storage; Clipped Polygons in Sort Whole in Polygon Memory; Phong/bump Microarchitecture;

10

15

20

WO 00/11607 PCT/US99/19191

-35-

Material-tag-based Resource Allocation of Fragment Engines; Dynamic Microcode Generation for
Texture Environment and Lighting; How to Do Tangent Space Lighting in a Deferred Shading
Architecture; Variable Scale Bump Maps; Automatic Basis Generation; Automatic Gradient-field
Generation Normal Interpolation by Doing Angle and Magnitude Separately; Post-tile-sorting Setup
'Operations in Deferred Shader; Unified Primitive Description; Tile-relative Y-values and Screen
Relative X-values; Hardware Tile Sorting; Enough Space Look ahead Mechanism; Touched Tile
Implementation; Texture Re-use Matching Registers (Including Deferred Shader); Samples
Expanded to Pixels (Texture Miss Handling); Tile Buffers and Pixel Buffers (Texture
Microarchitecture); and packetized data transfer in a processor.

All publications, patents, and patent applications mentioned in this specification are herein
incorporated by reference to the same extent as if each individual publication or patent application
was specifically and individually indicated to be incorporated by reference.

The foregoing descriptions of specific embodiments of the present invention have been
presented for purposes of illustration and description. They are not intended to be exhaustive or
to limit the invention to the precise forms disclosed, and obviously many modifications and
variations are possible in light of the above teaching. The embodiments were chosen and
described in order to best explain the principles of the invention and its practical application, to
thereby enable others skilled in the art to best use the invention and various embodiments with
various modifications as are suited to the particular use contemplated. it is intended that the scope

of the invention be defined by the claims appended hereto and their equivalents.

10

16

20

25

30

35

40

WO 00/11607 PCT/US99/19191
-36 -
We Claim:
1. A deferred graphics pipeline processor comprising:
a command fetch and decode unit, a geometry unit, a mode extraction unit and a polygon
memory, a sort unit and a sort memory, a setup unit, a cull unit ,a2 mode injection unit, a fragment

unit, a texture unit, a Phong lighting unit, a pixel unit, and a backend unit coupled to a frame buffer.

2. A deferred graphics pipeline processor comprising:

(a) a command fetch and decode unit communicating inputs of data and/or command from
an external computer via a communication channel and converting said inputs into a series of
packets, said packets including information items selected from the group consisting of colors,
surface normals, texture coordinates, rendering information, lighting, blending modes, and buffer
functions;

(b) a geometry unit receiving said packets and performing coordinate transformations,
decomposition of all polygons into actual or degenerate triangles, viewing volume clipping, and
optionally per-vertex lighting and color calculations needed for Gouraud shading;

(c) a mode extraction unit and a polygon memory associated with said polygon unit, said
mode extraction unit receiving a data stream from said geometry unit and separating said data
stream into vertices data which are communicated to a sort unit and non-vertices data which is
sent to said polygon memory for storage;

(d) a sort unit and a sort memory associated with said sort unit, said sort unit receiving
vertices from said mode extraction unit and sorts the resulting points, lines, and triangles by tile,
and communicating said sorted geometry by means of a sort block output packet representing a
complete primitive in tile-by-tile order, to a setup unit;

(e) a setup unit receiving said sort block output packets and calculating spatial derivatives
for lines and friangles on a tile-by-tile basis one primitive at a time, and communicating said spatial
derivatives in packet form to a cull unit;

(f) a cull unit receiving one tile worth of data at a time and having a Magnitude Comparison

" Content Addressable Memory (MCCAM) Cull sub-unit and a Subpixel Cull sub-unit, said MCCAM

Cull sub-unit being operable to discard primitives that are hidden completely by previously
processed geometry, and said Subpixel Cull sub-unit processing the remaining primitives which
are partly or entirely visible, and determines the visible fragments of those remaining primitives,
said Subpixel Cull sub-unit outputting one stamp worth of fragments at a time;

(g) a2 mode injection unit receiving inputs from said cull unit and retrieving mode
information including colors and material properties from said Polygon Memory and
communicating said mode information to one or more of a fragment unit, a texture unit, a Phong
unit, a pixel unit, and a backend unit; at least some of said fragment unit, said texture unit, said
Phong unit, said pixel unit, or said backend unit including a mode cache for cache recently used
mode information; said mode injection unit maintaining status information identifying the
information that is already cached and not sending information that is already cached, thereby
reducing communication bandwidth;

10

15

20

25

WO 00/11607 a7 PCT/US99/19191
(h) a fragment unit for interpolating color values for Gouraud shading, interpolating
surface normals for Phong shading and texture coordinates for texture mapping, and interpolating
surface tangents if bump maps representing texture as a height field gradient are in use; said
fragment unit performing perspective corrected interpolation using barycentric coefficients;

(i) a texture unit and a texture memory associated with said texture unit; said texture unit
applying texture maps stored in said texture memory, to pixel fragments; said textures being MIP-
mapped and comprising a series of texture maps at different levels of detail, each map
representing the appearance of the texture at a given distance from an eye point; said texture unit
performing tri-linear interpolation from said texture maps to produce a texture value for a given
pixel fragment that approximate the correct level of detail; said texture unit communicating
interpolated texture values to said Phong unit on a per-fragment basis;

(i) a Phong lighting unit for performing Phong shading for each pixel fragment using
material and lighting information supplied by said mode injection unit, said texture colors from said
texture unit, and said surface normal generated by said fragment unit to determine the fragment’s
apparent color; said Phong block optionally using said interpolated height field gradient from said
texture unit to perturb the fragment’s surface normal before shading if bump mapping is in use;
and

(k) a pixel unit receiving one stamp worth of fragments at a time, referred to as a Visible
Stamp Portion, where each fragment has an independent color value, and performing pixel
ownership test, scissor test, alpha test, stencil operations, depth test, blending, dithering and logic
operations on each sample in each pixel, and after accumulating a tile worth of finished pixels,
blending the samples within each pixel to antialias the pixels, and communicating said antialiased
pixels to a Backend unit;

(1) said backend unit coupled to said pixel unit for receiving a tile’s worth of pixels at a time
from said pixel unit, and storing said pixels into a frame buffer.

PCT/US99/19191

1/4

WO 00/11607

:oo._OmP\
U918 v -
Keidstp - AN
uo 109fqo__ -’ .
. fA M N

/ Y3

\ o})

: / o .

* (4]

. 5 .
» .

- ,_.
- sueld "
O . SuIMIA OJUO “
L payoafoid 103(qo | . akay
soeds
[eUOISUSWIIP-331) : /
ur 303(qo

oueld Suimala

T~ jurod Surmara

WO 00/11607

2/4

FIG. £

Generic 3D Graphics
Pipeline

)

data input

212 \4
—

24—~

transformation W

16 — clip test
21¢ -] face determination
21T~ vertex lighting
229~ clip (if needed)
214~ perspective divide
118~ screen space
conversion
270 ~ set up for
| incremental render
AL \{r' edge walk w
13(| span interpolation

7,7,75—\L z-buffered blend

242 - frame buffer
2y double buffered MUX |
{ output lookup tabl;c_J
2Yg — digital to analog
conversion

-

PCT/US99/19191

floating-point
intensive functions

drawing intensive
functions

WO 00/11607 3/4 PCT/US99/19191
— 0 Y] 3 CHIP 1
: J<l, : A: GRAPHICS HARDWARE COMMANDS (GHC)
: FROM /O BUS
5 CFD |
——_— | 2000 | B: 2D COMMANDS
| ST S G:VERTEX
| : GEO :
| : 3000 ; D: GOURAUD SHADED, CLIPPED PRIMITIVES
: : AND MODES
: [mEX _Ff\ PMEM E:SPATIAL INFORMATION
| Ir | 4000 =] 5000 F:PRIMARY COLOR MODES
I | : Jwl : G:PRIMARY COLOR MODES
| _ 4| SRT [N SMEM
| i— [7] so00 Y| 7000 H:TILE SORTED PRIMATIVES
s : | : L I:PRIMITIES PER TILE
a | | . | SETUP J:PRIMITIVE INFORMATION & SLOPES
2} | : 2] 8000
@ | : K:VSP X,Y,Z
ml = 0 oL _-
ol e CULL | : L:VSP, COVER, PRIM. COLOR, MODES
g (o 1:] %99 [~cHIP2 M: TEXTURE COORDINATES
ml (9 | - N: TEXELS
3 | | : MU A G
@ I ;- - | 10000 N\~ O:TEXT. COLOR
21 : R P: VSP COLOR
81 11 [rrac |
S | Iy = 11000 | R: PIXEL COLOR, Z, STENCIL
Z | : Ic: - IsD S: 2D PIXELS
c ="' :
5! el TEX W\ TMEM | 1 prereTCH
o L >1:| 12000 N——| 13000
S0 :%I oL U: SAMPLE
r:
S : | "1 [PHONG V: SIGNALS TO DISPLAY MONITOR
@! | | P 14000 | "CHIP3
Sl : W: REGISTER R/W OVER BKE 1/0 BUS
Loy ! sondabinnio
Lo b eix g
: | —> 15000 :-CHIP 1
| : :
| | E'E]EP o E:};-BUFFERS
Cr %
== ..l_==3 BKE r——=
2DGR n——:sr———_i 16000 —J DISPLAY |
18000 N\—V/ Dl —
i‘x; GRAPHICS PIPELINE 1000
FRAME FIG. 3
17000

PCT/US99/19191

4/4

WO 00/11607

Kowepy
Qa0g/ ainxe]

0anZ ¢

Odd OJU] UG} JGA
090/’
dSA ojuf Bujpeys dSA
Oju] Z dSA
CIN
900Q7
dSA
000b e Kowe AowaN
uos uobAjod
0002l - 0005 Bjeg
000 '
]
4)
[}
saafjwpd fepedg '
Qo0% ool et
9009 009 ¥ 0 ao '

B 2/7 |

108899A1d 1SOH UO

leceovrnrecrcwmerrrrreeevwwr ==

puexoeg

0go8 1 oalL

pusjuoiy

Kowasy
1SOH

Aedsig

sng
dov

INTERNATIONAL SEARCH REPORT International application No.
PCT/US99/19191

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GO6T 01/20
US CL :345/506
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 345/506, 501, 502, 503, 505, 522, 430, 426, 507-509.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
none

Blectronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WEST, search terms: command (fetch or decode), mode extraction, polygon, setup, cull, mode injection, fragment, texture,

lighting

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,699,497 A (ERDAHL et al) 16 December 1997, abstract, | 1 and 2

figure 10, column 2, lines 5-37 and column 8, line 50 to column 10,

line 2.

D Further documents are listed in the continuation of Box C. D See patent family annex.

Special categories of cited documents: "T" later document published after the internationai filing date or priority
date and not in conflict with the application but cited to understand

A" document defining the general state of the art which is not considered the principle or theory underlying the invention
to be of particular relevance
"E" earlier document published on or after the international filing date X document of particular relevance; the claimed mvention cannot be
considered novel or cannot be considered to involve an inventive step
"Lt document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other . .
special reason (as specified) Y document of particular relevance: the clained invention cannot be
considered to involve an nventive step when the document is
"Oo* document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
P documcn_l publish:d_pnor to the international filing date but later than g » document member of the same patent family
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
P
23 DECEMBER 1999 18 JAN 7000
Name and mailing address of the ISA/US Authorized officer .
Commissioner of Patents and Trademarks
Box PCT UN
Washington, D.C. 20231 KEEM. T 4
Facsimile No. (703) 305-3230 Telephone No. (703) 3059660

Form PCT/ISA/210 (second sheet)(July 1992) x

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

