(12) STANDARD PATENT (11) Application No. AU 2016270616 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(51)

(21)
(87)
(30)

(31)

(74)

(56)

Title
Advanced arithmetic coder

International Patent Classification(s)

HO4N 19/70 (2014.01) HO4N 19/184 (2014.01)
HO3M 7/40 (2006.01) HO4N 19/46 (2014.01)
HO4N 19/13 (2014.01) HO4N 19/91 (2014.01)

HO4N 19/146 (2014.01)
Application No: 2016270616 (22) Date of Filing: 2016.05.27
WIPO No: WO16/196287

Priority Data

Number (32) Date (33) Country
15/166,044 2016.05.26 us
62/168,503 2015.05.29 us
Publication Date: 2016.12.08

Accepted Journal Date: 2020.06.25

Applicant(s)
Qualcomm Incorporated

Inventor(s)
Zhang, Li;Chen, Jianle;Zhao, Xin;Li, Xiang;Liu, Hongbin;Chen, Ying;Karczewicz, Marta

Agent / Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

Related Art

BELYAEYV E ET AL, "Binary Arithmetic Coding System with Adaptive Probability
Estimation by Virtual Sliding Window™", 2006 IEEE TENTH INTERNATIONAL
SYMPOSIUM, IEEE, (2006-06-28), ISBN 978-1-4244-0216-8, pages 1 -5

wO 2016/196287 A1 |1 N0F V000 00O 0 00O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

8 December 2016 (08.12.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/196287 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:

HO4N 19/70 (2014.01) HO4N 19/91 (2014.01)
HO3M 7/40 (2006.01) HO4N 19/184 (2014.01)
HO4N 19/46 (2014.01) HO4N 19/146 (2014.01)
HO4N 19/13 (2014.01)

International Application Number:
PCT/US2016/034647

International Filing Date:
27 May 2016 (27.05.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/168,503 29 May 2015 (29.05.2015) US
15/166,044 26 May 2016 (26.05.2016) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: ZHANG, Li; 5775 Morechouse Drive, San
Diego, California 92121-1714 (US). CHEN, Jianle; 5775
Morehouse Drive, San Diego, California 92121-1714 (US).
ZHAOQ, Xin; 5775 Morehouse Drive, San Diego, Califor-
nia 92121-1714 (US). LI, Xiang; 5775 Morehouse Drive,
San Diego, California 92121-1714 (US). LIU, Hongbin;
Room 9-202, 37th Building, Longhuayuan 2nd Section,
Huilongguan, Changping District, Beijing 102208 (CN).

(74

(8D

(84)

CHEN, Ying; 5775 Morehouse Drive, San Diego, Califor-
nia 92121-1714 (US). KARCZEWICZ, Marta; 5775
Morehouse Drive, San Diego, California 92121-1714 (US).

Agent: ROSENBERG, Brian M.; Shumaker & Sietfett,
P.A., 1625 Radio Drive, Suite 300, Woodbury, Minnesota
55125 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(34

Title: ADVANCED ARITHMETIC CODER

OBTAIN, FROM VIDEO BISTREAM, BIN STRING TO BE
DECODED USING CONTEXT-BASED ENTROPY CODING
PROCESS

1202

FOR CONTEXT OF PLU

DETERMINE WINDOW SIZE OF PLURALITY OF WINDOWS SIZES
RALITY OF CONTEXTS

1204

y

DECODE, BASED ON PROBABILITY STATE OF CONTEXT, BIN

1206

UPDATE PROBABILITY STATE OF CONTEXT BASED ON
DETERMINED WINDOW SIZE AND THE ENCODED BIN

1208

FIG.

12

(57) Abstract: An example method of entropy coding video data includes determining a window size of a plurality of window sizes
for a context of a plurality of contexts used in a context-adaptive coding process to entropy code a value for a syntax element of the
video data; entropy coding, based on a probability state of the context, a bin of the value for the syntax element; updating a probabil -
ity state of the context based on the window size and the coded bin. The example method also includes entropy coding a next bin
with the same context based on the updated probability state of the context.

WO 2016/196287 A1 |00V T O A O

Published: — before the expiration of the time limit for amending the
— with international search report (Art. 21(3)) claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2016/196287 PCT/US2016/034647

ADVANCED ARITHMETIC CODER

[0001] This application claims the benefit of U.S. Provisional Application No.
62/168,503 filed May 29, 2015, the entire content of which is incorporated herein by

reference.

TECHNICAL FIELD
[0002] This disclosure relates to video coding and, more particularly, to techniques for

binary arithmetic coding of video data.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, digital
cameras, digital recording devices, digital media players, video gaming devices, video
game consoles, cellular or satellite radio telephones, video teleconferencing devices, and
the like. Digital video devices implement video compression techniques, such as those
described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard, and extensions of such standards, to transmit, receive and
store digital video information more efficiently.

[0004] Video compression techniques include spatial prediction and/or temporal
prediction to reduce or remove redundancy inherent in video sequences. For block-
based video coding, a video frame or slice may be partitioned into blocks. Each block
can be further partitioned. Blocks in an intra-coded (I) frame or slice are encoded using
spatial prediction with respect to reference samples in neighboring blocks in the same
frame or slice. Blocks in an inter-coded (P or B) frame or slice may use spatial
prediction with respect to reference samples in neighboring blocks in the same frame or
slice or temporal prediction with respect to reference samples in other reference frames.
Spatial or temporal prediction results in a predictive block for a block to be coded.
Residual data represents pixel differences between the original block to be coded and
the predictive block.

[0005] An inter-coded block is encoded according to a motion vector that points to a

block of reference samples forming the predictive block, and the residual data indicating

WO 2016/196287 PCT/US2016/034647

the difference between the coded block and the predictive block. An intra-coded block
is encoded according to an intra-coding mode and the residual data. For further
compression, the residual data may be transformed from the pixel domain to a transform
domain, resulting in residual transform coefficients, which then may be quantized. The
quantized transform coefficients, initially arranged in a two-dimensional array, may be
scanned in a particular order to produce a one-dimensional vector of transform
coefficients for entropy coding.

[0006] Various entropy coding processes may utilized to code residual transform
coefficients, motion vector information, syntax elements, and other associated
information. Examples of various entropy coding and other data compression processes
include context-adaptive variable length coding (CAVLC), context-adaptive binary
arithmetic coding (CABAC), probability interval partitioning entropy coding (PIPE),

Golomb coding, Golomb-Rice coding, and exponential Golomb coding.

SUMMARY

[0007] In general, this disclosure describes techniques for performing video coding.
More particularly, this disclosure describes example techniques for performing context-
based entropy coding with different window sizes. In some examples, the techniques
described in this disclosure may enable performance of CABAC with different window
sizes. In other examples, the techniques described in this disclosure may be applied to
other entropy coders which use contexts for coding symbols, such as context-based
variable length coding.

[0008] In one example, a method for entropy coding of video data includes determining
a window size of a plurality of window sizes for a context of a plurality of contexts used
in a context-adaptive entropy coding process (e.g., a CABAC or CAVLC process) to
entropy code a value for a syntax element. In this example, the method also includes
entropy coding a bin of the value for the syntax element, and updating a probability
state of the context based on the window size and the coded bin. In this example, the
method also includes entropy coding the next bin with the same context based on the
updated probability state of the context.

[0009] In another example, an apparatus for entropy coding of video data includes one
or more processors and a memory configured to store a plurality of contexts used in a

context-adaptive entropy coding process to entropy code a value for a syntax element of

WO 2016/196287 PCT/US2016/034647

the video data. In this example, the one or more processors are configured to determine
a window size for a context of the plurality of contexts. In this example, the one or
more processors are further configured to entropy code a bin of the value for the syntax
element based on a probability state of the context, update the probability state of the
context based on the window size and the coded bin; and code, based on the updated
probability state of the context, the next bin with the same context based on the updated
probability state of the context.

[0010] In another example, an apparatus for entropy coding of video data includes
means for determining a window size of a plurality of window sizes for a context of a
plurality of contexts used in a context-adaptive coding process to entropy code a value
for a syntax element of the video data; means for entropy coding, based on a probability
state of the context, a bin of the value for the syntax element; means for updating the
probability state of the context model based on the window size and the coded bin. In
this example, the apparatus also includes means for entropy coding a next bin with the
same context based on the updated probability state of the context model.

[0011] In another example, a computer-readable storage medium stores instructions
that, when executed, cause one or more processors of a video coding device to
determine a window size of a plurality of window sizes for a context of a plurality of
contexts used in a context-adaptive coding process to entropy code a value for a syntax
element of the video data; entropy code, based on a probability state of the context, a
bin of the value for the syntax element; update the probability state of the context based
on the window size and the coded bin; and entropy code a next bin with the same
context based on the updated probability state of the context model.

[0012] In another example, a computer-readable storage medium stores video data that,
when processed by a video decoding device, cause one or more processors of the video
decoding device to determine a window size of a plurality of window sizes for a context
of a plurality of contexts used in a context-adaptive coding process to entropy code a
value for a syntax element; entropy code, based on a probability state of the context, a
bin of the value for the syntax element; update the probability state of the context based
on the window size and the coded bin; and entropy code a next bin with the same
context based on the updated probability state of the context model.

[0013] The details of one or more aspects of the disclosure are set forth in the

accompanying drawings and the description below. Other features, objects, and

WO 2016/196287 PCT/US2016/034647

advantages of the techniques described in this disclosure will be apparent from the

description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0014] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system.

[0015] FIGS. 2A and 2B are conceptual diagrams illustrating a range update process in
binary arithmetic coding.

[0016] FIG. 3 is a conceptual diagram illustrating an output process in binary arithmetic
coding.

[0017] FIG. 4 is a block diagram illustrating an example video encoder.

[0018] FIG. 5 is a block diagram illustrating a context adaptive binary arithmetic coder
in a video encoder.

[0019] FIG. 6 is a block diagram illustrating an example video decoder.

[0020] FIG. 7 is a block diagram illustrating a context adaptive binary arithmetic coder
in a video decoder.

[0021] FIG. 8 illustrates a binary arithmetic encoding process for a given bin value
using a regular coding mode.

[0022] FIG. 9 is a conceptual diagram illustrating an example transform scheme based
on residual quadtree.

[0023] FIG. 10 is a conceptual diagram illustrating an example coefficient scan based
on coefficient groups.

[0024] FIG. 11 is a flowchart illustrating an example process for performing context-
based entropy encoding with different window sizes, in accordance with one or more
techniques of this disclosure.

[0025] FIG. 12 is a flowchart illustrating an example process for performing context-
based entropy decoding with different window sizes, in accordance with one or more

techniques of this disclosure.

DETAILED DESCRIPTION

[0026] The techniques of this disclosure are generally related to an entropy coding
module in block-based hybrid video coding. These techniques may be applied to any
existing video codecs, such as HEVC (High Efficiency Video Coding) or these

WO 2016/196287 PCT/US2016/034647

techniques may be an efficient coding tool in any future video coding standards or other
proprietary or non-proprietary coding techniques. For purposes of example and
explanation, the techniques of this disclosure are generally described with respect to
HEVC (or ITU-T H.265) and/or ITU-T H.264. Additionally, for purposes of example
and explanation, the techniques of this disclosure are generally described with respect to
CABAC coders, although it is understood that the techniques of this disclosure may be
applicable to other context-based entropy coders, such as context-adaptive variable-
length coders.

[0027] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques for coding data according to a CABAC design
with variable window sizes. As shown in FIG. 1, system 10 includes a source device 12
that provides encoded video data to be decoded at a later time by a destination device
14. In particular, source device 12 provides the video data to destination device 14 via a
computer-readable medium 16. Source device 12 and destination device 14 may
comprise any of a wide range of devices, including desktop computers, notebook (i.e.,
laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called
“smart” phones, so-called “smart” pads, televisions, cameras, display devices, digital
media players, video gaming consoles, video streaming device, or the like. In some
cases, source device 12 and destination device 14 may be equipped for wireless
communication.

[0028] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In one example, computer-readable medium 16 may comprise
a communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate

communication from source device 12 to destination device 14.

WO 2016/196287 PCT/US2016/034647

[0029] In some examples, encoded data may be output from output interface 22 to a
storage device. Similarly, encoded data may be accessed from the storage device by
input interface. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[0030] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming
video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding of digital video stored on a
data storage medium, or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.
[0031] In the example of FIG. 1, source device 12 includes video source 18, video
encoder 20, and output interface 22. Destination device 14 includes input interface 28,
video decoder 30, and display device 31. In accordance with this disclosure, video
encoder 20 of source device 12 may be configured to apply the techniques for coding
data according to an enhanced CABAC design. In other examples, a source device and
a destination device may include other components or arrangements. For example,

source device 12 may receive video data from an external video source 18, such as an

WO 2016/196287 PCT/US2016/034647

external camera. Likewise, destination device 14 may interface with an external display
device, rather than including an integrated display device.

[0032] The illustrated system 10 of FIG. 1 is merely one example. Techniques for
coding data according to an enhanced CABAC design may be performed by any digital
video encoding and/or decoding device. Although generally the techniques of this
disclosure are performed by a video encoding device, the techniques may also be
performed by a video encoder/decoder, typically referred to as a “CODEC.” Moreover,
the techniques of this disclosure may also be performed by a video preprocessor.

Source device 12 and destination device 14 are merely examples of such coding devices
in which source device 12 generates coded video data for transmission to destination
device 14. In some examples, devices 12, 14 may operate in a substantially symmetrical
manner such that each of devices 12, 14 include video encoding and decoding
components. Hence, system 10 may support one-way or two-way video transmission
between video devices 12, 14, e.g., for video streaming, video playback, video
broadcasting, or video telephony.

[0033] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video from a video content provider. As a further alternative,
video source 18 may generate computer graphics-based data as the source video, or a
combination of live video, archived video, and computer-generated video. In some
cases, if video source 18 is a video camera, source device 12 and destination device 14
may form so-called camera phones or video phones. As mentioned above, however, the
techniques described in this disclosure may be applicable to video coding in general,
and may be applied to wireless and/or wired applications. In each case, the captured,
pre-captured, or computer-generated video may be encoded by video encoder 20. The
encoded video information may then be output by output interface 22 onto a computer-
readable medium 16.

[0034] Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission, or non-transient storage media (that is, non-
transitory storage media), such as a hard disk, flash drive, compact disc, digital video
disc, Blu-ray disc, or other computer-readable media. In some examples, a network
server (not shown) may receive encoded video data from source device 12 and provide
the encoded video data to destination device 14, e.g., via network transmission.

Similarly, a computing device of a medium production facility, such as a disc stamping

WO 2016/196287 PCT/US2016/034647

facility, may receive encoded video data from source device 12 and produce a disc
containing the encoded video data. When processed by a video decoding device, the
encoded video data on the disc may cause the video decoding device to decode the
video data according to various examples disclosed herein. Therefore, computer-
readable medium 16 may be understood to include one or more computer-readable
media of various forms, in various examples.

[0035] Input interface 28 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include
syntax information defined by video encoder 20, which is also used by video decoder
30, that includes syntax elements that describe characteristics and/or processing of
blocks and other coded units, e.g., GOPs. Display device 32 displays the decoded video
data to a user, and may comprise any of a variety of display devices such as a cathode
ray tube (CRT), a liquid crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display device.

[0036] Video encoder 20 and video decoder 30 may operate according to a video coding
standard, such as the High Efficiency Video Coding (HEVC) standard, also referred to
as ITU-T H.265. Alternatively, video encoder 20 and video decoder 30 may operate
according to other proprietary or industry standards, such as the ITU-T H.264 standard,
alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or
extensions of such standards. The techniques of this disclosure, however, are not
limited to any particular coding standard. Other examples of video coding standards
include MPEG-2 and ITU-T H.263. Although not shown in FIG. 1, in some aspects,
video encoder 20 and video decoder 30 may each be integrated with an audio encoder
and decoder, and may include appropriate MUX-DEMUX units, or other hardware and
software, to handle encoding of both audio and video in a common data stream or
separate data streams. If applicable, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the user datagram protocol
(UDP).

[0037] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store

instructions for the software in a suitable, non-transitory computer-readable medium and

WO 2016/196287 PCT/US2016/034647

execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0038] In general, according to HEVC, a video frame or picture may be divided into a
sequence of treeblocks or largest coding units (LCU) that include both luma and chroma
samples. Syntax data within a bitstream may define a size for the LCU, which is a
largest coding unit in terms of the number of pixels. A slice includes a number of
consecutive treeblocks in coding order. A video frame or picture may be partitioned into
one or more slices. Each treeblock may be split into coding units (CUs) according to a
quadtree. In general, a quadtree data structure includes one node per CU, with a root
node corresponding to the treeblock. If a CU is split into four sub-CUs, the node
corresponding to the CU includes four leaf nodes, each of which corresponds to one of
the sub-CUs.

[0039] Each node of the quadtree data structure may provide syntax data for the
corresponding CU. For example, a node in the quadtree may include a split flag,
indicating whether the CU corresponding to the node is split into sub-CUs. Syntax
elements for a CU may be defined recursively, and may depend on whether the CU is
split into sub-CUs. If a CU is not split further, it is referred as a leaf-CU. In this
disclosure, four sub-CUs of a leaf-CU will also be referred to as leaf-CUs even if there
is no explicit splitting of the original leaf-CU. For example, if a CU at 16x16 size is not
split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs although the
16x16 CU was never split.

[0040] A CU has a similar purpose as a macroblock of the H.264 standard, except that a
CU does not have a size distinction. For example, a treeblock may be split into four
child nodes (also referred to as sub-CUs), and each child node may in turn be a parent
node and be split into another four child nodes. A final, unsplit child node, referred to
as a leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU.
Syntax data associated with a coded bitstream may define a maximum number of times
a treeblock may be split, referred to as a maximum CU depth, and may also define a
minimum size of the coding nodes. Accordingly, a bitstream may also define a smallest
coding unit (SCU). This disclosure uses the term “block” to refer to any of a CU,
prediction unit (PU), or transform unit (TU), in the context of HEVC, or similar data

WO 2016/196287 PCT/US2016/034647
10

structures in the context of other standards (e.g., macroblocks and sub-blocks thereof in
H.264/AVC).

[0041] A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and is generally square in shape. The size of the CU may range from 8x8
pixels up to the size of the treeblock with a maximum size, e.g., 64x64 pixels or greater.
Each CU may contain one or more PUs and one or more TUs. Syntax data associated
with a CU may describe, for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU is skip or direct mode encoded,
intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be
partitioned to be non-square in shape. Syntax data associated with a CU may also
describe, for example, partitioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square (e.g., rectangular) in shape.

[0042] The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs within
a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a
quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT
may be referred to as transform units (TUs). Pixel difference values associated with the
TUs may be transtformed to produce transform coefficients, which may be quantized.
[0043] A leaf-CU may include one or more prediction units (PUs). In general, a PU
represents a spatial area corresponding to all or a portion of the corresponding CU, and
may include data for retrieving and/or generating a reference sample for the PU.
Moreover, a PU includes data related to prediction. For example, when the PU is intra-
mode encoded, data for the PU may be included in a residual quadtree (RQT), which
may include data describing an intra-prediction mode for a TU corresponding to the PU.
The RQT may also be referred to as a transform tree. In some examples, the intra-
prediction mode may be signaled in the leaf-CU syntax, instead of the RQT. As another
example, when the PU is inter-mode encoded, the PU may include data defining motion
information, such as one or more motion vectors, for the PU. The data defining the
motion vector for a PU may describe, for example, a horizontal component of the
motion vector, a vertical component of the motion vector, a resolution for the motion

vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference

WO 2016/196287 PCT/US2016/034647
11

picture to which the motion vector points, and/or a reference picture list (e.g., List O,
List 1, or List C) for the motion vector.

[0044] A leaf-CU having one or more PUs may also include one or more transform
units (TUs). The transform units may be specified using an RQT (also referred to as a
TU quadtree structure), as discussed above. For example, a split flag may indicate
whether a leaf-CU is split into four transform units. Then, each transform unit may be
split further into further sub-TUs. When a TU is not split further, it may be referred to
as a leaf-TU. Generally, for intra coding, all the leaf-TUs belonging to a leaf-CU share
the same intra prediction mode. That is, the same intra-prediction mode is generally
applied to calculate predicted values for all TUs of a leaf-CU. For intra coding, a video
encoder may calculate a residual value for each leaf-TU using the intra prediction mode,
as a difference between the portion of the CU corresponding to the TU and the original
block. A TU is not necessarily limited to the size of a PU. Thus, TUs may be larger or
smaller than a PU. For intra coding, a PU may be collocated with a corresponding leaf-
TU for the same CU. In some examples, the maximum size of a leaf-TU may
correspond to the size of the corresponding leaf-CU.

[0045] Moreover, TUs of leat-CUs may also be associated with respective quadtree data
structures, referred to as residual quadtrees (RQTs). That is, a leat~-CU may include a
quadtree indicating how the leaf-CU is partitioned into TUs. The root node of a TU
quadtree generally corresponds to a leaf-CU, while the root node of a CU quadtree
generally corresponds to a treeblock (or LCU). TUs of the RQT that are not split are
referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to
leaf-CU and leaf-TU, respectively, unless noted otherwise.

[0046] A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard.

[0047] As an example, prediction may be performed for PUs of various sizes.

Assuming that the size of a particular CU is 2Nx2N, intra-prediction may be performed

WO 2016/196287 PCT/US2016/034647
12

on PU sizes of 2Nx2N or NxN, and inter-prediction may be performed on symmetric
PU sizes of 2Nx2N, 2NxN, Nx2N, or NxN. Asymmetric partitioning for inter-
prediction may also be performed for PU sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N.
In asymmetric partitioning, one direction of a CU is not partitioned, while the other
direction is partitioned into 25% and 75%. The portion of the CU corresponding to the
25% partition is indicated by an “n” followed by an indication of “Up”, “Down,” “Left,”
or “Right.” Thus, for example, “2NxnU” refers to a 2Nx2N CU that is partitioned
horizontally with a 2Nx0.5N PU on top and a 2Nx1.5N PU on bottom.

[0048] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0049] Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise syntax data describing a method or mode of generating predictive pixel data in
the spatial domain (also referred to as the pixel domain) and the TUs may comprise
coefticients in the transform domain following application of a transform, e.g., a
discrete cosine transform (DCT), an integer transform, a wavelet transform, or a
conceptually similar transform to residual video data. The residual data may correspond
to pixel differences between pixels of the unencoded picture and prediction values
corresponding to the PUs. Video encoder 20 may form the TUs to include quantized
transform coefficients representative of the residual data for the CU. That is, video
encoder 20 may calculate the residual data (in the form of a residual block), transform
the residual block to produce a block of transform coefficients, and then quantize the
transform coefticients to form quantized transform coefficients. Video encoder 20 may
form a TU including the quantized transform coefficients, as well as other syntax
information (e.g., splitting information for the TU).

[0050] As noted above, following any transforms to produce transform coefficients,

video encoder 20 may perform quantization of the transform coefficients. Quantization

WO 2016/196287 PCT/US2016/034647
13

generally refers to a process in which transform coefficients are quantized to possibly
reduce the amount of data used to represent the coefficients, providing further
compression. The quantization process may reduce the bit depth associated with some
or all of the coefficients. For example, an n-bit value may be rounded down to an m-bit
value during quantization, where # is greater than m.

[0051] Following quantization, the video encoder may scan the transform coefficients,
producing a one-dimensional vector from the two-dimensional matrix including the
quantized transform coefficients. The scan may be designed to place higher energy (and
therefore lower frequency) coefficients at the front of the array and to place lower
energy (and therefore higher frequency) coefficients at the back of the array. In some
examples, video encoder 20 may utilize a predefined scan order to scan the quantized
transform coefficients to produce a serialized vector that can be entropy encoded. In
other examples, video encoder 20 may perform an adaptive scan. After scanning the
quantized transform coefficients to form a one-dimensional vector, video encoder 20
may entropy encode the one-dimensional vector, e.g., according to the context-adaptive
binary arithmetic coding (CABAC) design described in this disclosure. Video encoder
20 may also entropy encode syntax elements associated with the encoded video data for
use by video decoder 30 in decoding the video data.

[0052] In general, video decoder 30 performs a substantially similar, albeit reciprocal,
process to that performed by video encoder 20 to decode encoded data. For example,
video decoder 30 inverse quantizes and inverse transforms coefficients of a received TU
to reproduce a residual block. Video decoder 30 uses a signaled prediction mode (intra-
or inter-prediction) to form a predicted block. Then video decoder 30 combines the
predicted block and the residual block (on a pixel-by-pixel basis) to reproduce the
original block. Additional processing may be performed, such as performing a
deblocking process to reduce visual artifacts along block boundaries. Furthermore,
video decoder 30 may decode syntax elements using CABAC in a manner substantially
similar to, albeit reciprocal to, the CABAC encoding process of video encoder 20.
[0053] This disclosure may generally refer to video encoder 20 “signaling” certain
information to another device, such as video decoder 30. It should be understood,
however, that video encoder 20 may signal information by associating certain syntax
elements with various encoded portions of video data. That is, video encoder 20 may
“signal” data by storing certain syntax elements to headers of various encoded portions

of video data. In some cases, such syntax elements may be encoded and stored (e.g.,

WO 2016/196287 PCT/US2016/034647
14

stored to storage device 32) prior to being received and decoded by video decoder 30.
Thus, the term “signaling” may generally refer to the communication of syntax or other
data for decoding compressed video data, whether such communication occurs in real-
or near-real-time or over a span of time, such as might occur when storing syntax
elements to a medium at the time of encoding, which then may be retrieved by a
decoding device at any time after being stored to this medium.

[0054] The following section will describe BAC and CABAC techniques in more detail.
BAC, in general, is a recursive interval-subdividing procedure. BAC is used to encode
bins in the CABAC process in the H.264/AVC and H.265/HEVC video coding
standards. The output of the BAC coder is a binary stream that represents a value or
pointer to a probability within a final coded probability interval. The probability
interval is specified by a range and a lower end value. Range is the extension of the
probability interval. Low is the lower bound of the coding interval.

[0055] Application of arithmetic coding to video coding is described in D. Marpe, H.
Schwarz, and T. Wiegand “Context-Based Adaptive Binary Arithmetic Coding in the
H.264/AVC Video Compression Standard,” IEEE Trans. Circuits and Systems for
Video Technology, vol. 13, no. 7, July 2003. CABAC involves three main functions,
namely, binarization, context modeling, and arithmetic coding. Binarization refers to
the function of mapping syntax elements to binary symbols (or “bins”). Binary symbols
may also be referred to as “bin strings.” Context modeling refers to the function of
estimating the probability of the various bins. Arithmetic coding refers to the
subsequent function of compressing the bins to bits, based on the estimated probability.
Various devices and/or modules thereof, such as a binary arithmetic coder, may perform
the function of arithmetic coding.

[0056] Several different binarization processes are used in HEVC, including unary (U),
truncated unary (TU), kth-order Exp-Golomb (EGk), and fixed length (FL). Details of
various binarization processes are described in V. Sze and M. Budagavi, “High
throughput CABAC entropy coding in HEVC,” IEEE Transactions on Circuits and
Systems for Video Technology (TCSVT), vol. 22, no. 12, pp. 1778-1791, December
2012.

[0057] Each context (i.e., probability model) in CABAC is represented by a state. Each
state (o) implicitly represents a probability (p,) of a particular symbol (e.g., a bin) being
the Least Probable Symbol (LPS). A symbol can be an LPS or a Most Probable Symbol
(MPS). Symbols are binary, and as such, the MPS and the LPS canbe O or 1. The

WO 2016/196287 PCT/US2016/034647
15

probability is estimated for the corresponding context and used (implicitly) to entropy
code the symbol using the arithmetic coder.
[0058] The process of BAC is handled by a state machine that changes its internal
values ‘range’ and ‘low’ depending on the context to code and the value of the bin being
coded. Depending on the state of a context (that is, its probability), the range is divided
into rangeMPS, (range of the most probable symbol in state;) and rangel PSS, (range of
the least probable symbol in state;). In theory, the rangel PS, value of a probability
state,1s derived by a multiplication:

rangel.PS,= range X p; ,
where p, 1s the probability to select the LPS. Of course, the probability of MPS is 1-p,.
Equivalently, the rangeMPS;is equal to range minus rangel.PS,. BAC iteratively
updates the range depending on the state of the context bin to code, the current range,
and the value of the bin being coded (i.e,, is the bin equal to the LPS or the MPS).
[0059] FIGS. 2A and 2B show examples of this process at bin #. In example 100 of
FIG. 2A, at bin n the range at bin 2 includes the RangeMPS and RangelLPS given by the
probability of the LPS (p,) given a certain context state (o). Example 100 shows the
update of the range at bin n+1 when the value of bin n is equal to the MPS. In this
example, the low stays the same, but the value of the range at bin n+1 is reduced to the
value of RangeMPS at bin n. Example 102 of FIG. 2B shows the update of the range at
bin n+1 when the value of bin n is not equal to the MPS (i.e., equal to the LPS). In this
example, the low is moved to the lower range value of Rangel.PS at bin n. In addition,
the value of the range at bin n+1 is reduced to the value of RangeLPS at bin n.
[0060] In HEVC, the range is expressed with 9 bits and the low with 10 bits. There is a
renormalization process to maintain the range and low values at sufficient precision.
The renormalization occurs whenever the range is less than 256. Therefore, the range is
always equal or larger than 256 after renormalization. Depending on the values of range
and low, the BAC outputs to the bitstream, a ‘0,” or a ‘1,” or updates an internal variable
(called BO: bits-outstanding) to keep for future outputs. FIG. 3 shows examples of
BAC output depending on the range. For example, a ‘1’ is output to the bitstream when
the range and low are above a certain threshold (e.g., 512). A ‘0’ is output to the
bitstream when the range and low are below a certain threshold (e.g., 512). Nothing is
output to the bitstream when the range and lower are between certain thresholds.

Instead, the BO value is incremented and the next bin is encoded.

WO 2016/196287 PCT/US2016/034647
16

[0061] In the CABAC context model of HEVC, there are 128 states. There are 64
possible LPS probabilities (denoted by state o) that can be from 0 to 63. Each MPS can
be zero or one. As such, the 128 states are 64 state probabilities times the 2 possible
values for MPS (0 or 1). Therefore, the probability models may be stored as 7-bit
entries. In each 7-bit entry, 6 bits may be allocated for representing the probability
state, and 1 bit may be allocated for the most probable symbol (MPS) in the applicable
context memory.
[0062] To reduce the computation of deriving LPS ranges (rangelPS,), results for all
cases are pre-calculated and stored as approximations in a look-up table in HEVC.
Therefore, the LPS range can be obtained without any multiplication by using a simple
table lookup. Avoiding multiplication can be important for some devices or
applications, since this operation may cause significant latency in many hardware
architectures.
[0063] A 4-column pre-calculated LPS range table may be used instead of the
multiplication. The range is divided into four segments. The segment index can be
derived by the question (range>>6)&3. In effect, the segment index is derived by
shifting and dropping bits from the actual range. The following Table 1 shows the
possible ranges and their corresponding indexes.

TABLE 1 — Range Index
Range 256-319 320-383 384-447 448-511
(range>>6) & 3 0 1 2 3

[0064] The LPS range table has then 64 entries (one for each probability state) times 4
(one for each range index). Each entry is the Range LPS, that is, the value of
multiplying the range times the LPS probability. An example of part of this table is
shown in the following Table 2. Table 2 depicts probability states 9-12. In one
proposal for HEVC, the probability states may range from 0-63

WO 2016/196287 PCT/US2016/034647
17

TABLE 2 — RangeLLPS

Prob State (o) | RangeLPS
Index 0 Index Index 2 Index 3
9 90 110 130 150
10 85 104 123 142
11 81 99 117 135
12 77 94 111 128

[0065] In each segment (i.e., range value), the LPS range of each probability state o is
pre-defined. In other words, the LPS range of a probability statesis quantized into four
values (i.e., one value for each range index). The specific LPS range used at a given
point depends on which segment the range belongs to. The number of possible LPS
ranges used in the table is a trade-off between the number of table columns (i.e., the
number of possible LPS range values) and the LPS range precision. Generally
speaking, more columns results in smaller quantization errors of LPS range values, but
also increases the need for more memory to store the table. Fewer columns increases
quantization errors, but also reduces the memory needed to store the table.
[0066] As described above, each LPS probability state has a corresponding probability.
In HEVC, 64 representative probability values p, €[0.01875, 0.5] are derived for the
LPS (least probable symbol) in accordance with Equation (1), below, which is a
recursive equation.

Do = A*xps_qforallo=1,..,63

with @ = (2222) /63

[0067] In the example above, both the chosen scaling factor ¢ ~ 0.9492 and the

(1)

cardinality N = 64 of the set of probabilities represent a good compromise between the
accuracy of probability representation and the desire for fast adaptation. In some
examples, a value of a closer to 1 may result in slow adaptation with higher accuracy
(“steady-state behavior”), while faster adaptation can be achieved for the non-stationary
case with decreasing values of « at the cost of reduced accuracy. The scaling factor a
may correspond to a window size that indicates a number of previously encoded bins
which have significant influence to the current up-date. The probability of the MPS
(most probable symbol) is equal to 1 minus the probability of the LPS (least probable

WO 2016/196287 PCT/US2016/034647
18

symbol). In other words, the probability of the MPS can be represented by the formula
(1 -LPS), where ‘LPS’ represents the probability of the LPS. Therefore, the probability
range that can be represented by CABAC in HEVC is [0.01875, 0.98125 (=1-0.01875)].
[0068] CABAC is adaptive because the probability states of a context used to code bits
(or “bins”) of a value for a syntax element are updated in order to follow the signal
statistics (i.e., the values of previously coded bins, e.g., for the syntax element). The
update process is as follows. For a given probability state, the update depends on the
state index and the value of the encoded symbol identified either as an LPS or an MPS.
As a result of the updating process, a new probability state is derived, which includes a
potentially modified LPS probability estimate and, if necessary, a modified MPS value.
[0069] Context switching may occur after the coding of each bin. In the event of a bin
value equaling the MPS, a given state index is simply incremented by 1. This for all
states except when an MPS occurs at state index 62, where the LPS probability is
already at its minimum (or equivalently, the maximum MPS probability is reached). In
this case, the state index remains fixed until an LPS is seen, or the last bin value is
encoded (a special end state is used for the special case of the last bin value). When an
LPS occurs, the state index is changed by decrementing the state index by a certain
amount, as shown in the equation below. This rule applies in general to each occurrence
of a LPS with the following exception. Assuming a LPS has been encoded at the state
with index 6=0, which corresponds to the equi-probable case, the state index remains
fixed, but the MPS value will be toggled such that the value of the LPS and MPS will be
interchanged. In all other cases, no matter which symbol has been encoded, the MPS
value will not be altered. In general, a video coder may derive the new probability state
in accordance with Equation (2), below, which shows a relation between a given LPS
probability p,;4 and its updated counterpart pyep .

max(@ * Poia, Pe2), if a MPS occurs)
a*pog+(1—a), if alLPSoccurs

Prow = |
[0070] To reduce the complexity, a video coder may implement CABAC such that all
transition rules can be realized by at most two tables each having a number of entries.
As one example, all transition rules may be realized by at most two tables that each have
128 entries of 7-bit unsigned integer values (e.g., Tables 3 and 4, below). As another
example, all transition rules may be realized by at most two tables that each have 63

entries of 6-bit unsigned integer values (e.g., Table 9-41 of HEVC). Given a state index

WO 2016/196287 PCT/US2016/034647
19

i, after updating, a video coder may define as the new state index TransIdxMPS[1]
when a MPS values is coded, or TransIdxLPS[i] when a LPS values is coded.
Table 3

TransIdxMPS[128 | =
{

2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,

66, 67, 68, 69, 70, 71, 72,73, 74, 75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,

98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 124, 125, 126, 127

3
Table 4

TransIdxLLPS[128 | =

{
1,0,0,1,2,3,4,5,4,5,8,9,8,9, 10, 11,

12,13, 14, 15, 16, 17, 18, 19, 18, 19, 22, 23, 22, 23, 24, 25,
26,27, 26,27, 30, 31, 30, 31, 32, 33, 32, 33, 36, 37, 36, 37,
38,39, 38, 39, 42, 43, 42, 43, 44, 45, 44, 45, 46, 47, 48, 49,
48,49, 50, 51, 52, 53, 52, 53, 54, 55, 54, 55, 56, 57, 58, 59,
58,59, 60, 61, 60, 61, 60, 61, 62, 63, 64, 65, 64, 65, 66, 67,
66, 67, 66, 67, 68, 69, 68, 69, 70, 71, 70, 71, 70, 71, 72, 73,
72,73, 72, 73, 74,75, 74,75, 74, 75, 76, 77, 76, 77, 126, 127
3

[0071] In some examples, a video coder may determine state transitions with a single
table TransIdxLPS, which determines, for a given state index o, the new updated state
index TransIdxLPS [c] in case an LPS has been observed. The MPS-driven transitions
can be obtained by a simple (saturated) increment of the state index by the fixed value
of 1, resulting in an updated state index min(6+1, 62).

[0072] As discussed above, context modeling provides accurate probability estimation,
which is a contributing factor for achieving higher coding efficiency. Accordingly,
context modeling is an adaptive process. Different contexts can be used for different
bins, and the probability of the contexts may be updated based on the values of
previously-coded bins. Bins with similar distributions often share the same context.
The context for each bin can be selected based on the type of syntax element, bin
position in syntax element (binldx), luma/chroma information, neighboring information,
etc.

[0073] Before coding a given slice, the probability models are initialized based on one

or more pre-defined values. For example, given an input quantization parameter

WO 2016/196287 PCT/US2016/034647
20

denoted by qp and the pre-defined value denoted by initVal, the 7-bit entry of the
probability model (denoted by state and MPS) could be derived in accordance with
Equations (3), below.

qp =Clip3(0, 51, qp);

slope = (initVal >>4)*5 - 45;

offset = ((initVal &15)<<3)-16;

initState= min(max(1, (((slope * qp) >>4) + offset)), 126),

MPS = (initState >= 64),

state index = ((mpState? (initState - 64) : (63 - initState)) <<1) + MPS;

)

[0074] The derived state index implicitly includes the MPS information. More
specifically, when the state index is an even value, the MPS value is equal to O.
Conversely, when the state index is an odd value, the MPS value is equal to 1. The
value of “initVal” is in a range of [0, 255] with 8-bit precision. The pre-defined value
“initVal” is slice-dependent. In other words, three sets of context initialization
parameters for the probability models are used, one each in I, P, and B slices,
respectively. In this way, a video encoding device configured to perform CABAC is
enabled to choose for these slice types between three initialization tables such that a
better fit to different coding scenarios and/or different types of video content can be
achieved.

[0075] According to HEVC, another tool could be applied to allow one P (or B) slice to
be initialized with B (or P) slices. Conversely, the tool could be applied to allow one B
slice to be initialized with P slices. The related syntax elements are described in Table 5
below (which corresponds to Section 7.3.6.1 of HEVC), and the related semantics and
decoding process are described below, after Table 5.

Table 5

slice_segment header() { Descriptor

first_slice_segment _in_pic_flag u(l)

if(nal unit type >= BLA W _LP && nal unit type <=
RSV IRAP VCL23)

no_output_of prior_pics_flag u(l)

slice_pic_parameter_set_id ue(v)

if('first_slice segment in_pic flag) {

if(dependent slice segments enabled flag)

dependent slice_segment_flag u(l)

slice_segment_address u(v)

WO 2016/196287 PCT/US2016/034647

21

}

if(!dependent slice segment flag) {

for(1=0;1<num_extra_slice header bits; i++)

slice_reserved flag[i | u(l)
slice_type ue(v)
if(output flag present flag)

pic_output flag u(l)
if(separate_colour plane flag == 1)

colour_plane_id u(2)
if(nal unit type != IDR_ W _RADL && nal unit type != IDR N LP)

: slice_pic_order_cnt_Isb u(v)
short_term_ref pic_set sps_flag u(l)
if(!short term ref pic set sps flag)

short term_ref pic set(num_short term_ref pic_sets)
else if(num_short term_ref pic sets > 1)
short_term_ref pic_set idx u(v)
if(long term ref pics present flag) {
}
}
if(sps_temporal mvp enabled flag)
slice_temporal mvp_enabled flag u(l)
}
if(sample adaptive offset enabled flag) {

slice sao luma_flag u(l)

slice_sao _chroma_ flag u(l)
}
if(slice type == P || slice type == B) {

num_ref idx_active override flag u(l)

if(num_ref idx active override flag) {

num_ref idx 10 _active_minusl ue(v)
if(slice type == B)
num_ref idx I1_active_minusl ue(v)
}
if(lists_modification present flag && NumPocTotalCurr>1)
ref pic_lists modification()

if(slice type == B)

mvd 11 _zero flag u(l)

if(cabac_init present flag)

WO 2016/196287 PCT/US2016/034647
22

cabac_init_flag u(l)

if(slice_temporal mvp enabled flag) {

if(slice type == B)

collocated from 10 flag u(l)

if((collocated from 10 flag && num_ref idx 10 active minusl >

0) [l
0))

(!collocated from 10 flag && num ref idx 11 active minusl >

collocated ref idx ue(v)

}

if((weighted pred flag && slice type == P) |
=B))

(weighted bipred flag && slice type =

pred weight table()

five_ minus_max_num_merge cand ue(v)

}

byte alignment()

}

[0076] Semantics for the syntax elements of Table 5 may be defined as follows:

[0077] cabac init present flag equal to 1 specifies that cabac_init_flag is present in
slice headers referring to the PPS. cabac_init_present flag equal to O specifies that
cabac_init_flag is not present in slice headers referring to the PPS.

[0078] cabac init flag specifies the method for determining the initialization table used
in the initialization process for context variables, as defined in the decoding process
described below. When cabac init flag is not present, it is inferred to be equal to 0.
[0079] Descriptors:

[0080] ae(v): context-adaptive arithmetic entropy-coded syntax element.

[0081] b(8): byte having any pattern of bit string (8 bits).

[0082] f(n): fixed-pattern bit string using n bits written (from left to right) with the left
bit first.

[0083] se(v): signed integer O-th order Exp-Golomb-coded syntax element with the left
bit first.

[0084] u(n): unsigned integer using n bits. When n is "v" in the syntax table, the
number of bits varies in a manner dependent on the value of other syntax elements.
[0085] ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the
left bit first.

[0086] Table 9-4 of HEVC provides the context index (ctxIdx) for which initialization
is needed for each of the three initialization types. Table 9-4 further includes the table

WO 2016/196287 PCT/US2016/034647
23

number (ctxTable) that includes the values of initValue needed for the initialization.
For P and B slice types, the derivation of initType depends on the value of the
cabac init_flag syntax element. A video coder may derive Tthe variable initType is
derived asusing operations described by the followsfollowing pseudocode:
if(slice type == 1)
initType=0
else if(slice_type == P)
initType = cabac_init flag? 2 : 1
else
initType = cabac_init flag? 1:2
[0087] A new arithmetic coder is described in Alshin et al., “Multi-parameter
probability up-date for CABAC,” Document: JCTVC-F254, JCT-VC of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 6 Meeting: Torino, IT, 14-22 July, 2011
(hereinafter “JCTVC- F254”) and Alshin et al., “CE1 (subset B): Multi-parameter
probability up-date for CABAC,” Document: JCTVC-G764, JCT-VC of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11, " Meeting: Geneva, CH, 21-30 November,
2011 (hereinafter “JCTVC- G764”). In JCTVC-F254 and JCTV-G764, every
probability represented as integer number from 1 to 32767. So all calculations are
carried out with 16 bits precision. Instead of look-up tables (e.g., TransIdxMPS and
TransIdxLPS as discussed above) and exponential mesh for probability which are
utilized in AVC CABAC, the coder proposed in JCTVC-F254 and JCTV-G764 utilizes
uniform mesh and explicit calculation with a multiplication free formula for probability
update.
[0088] Suppose that probability p; is represented by the probability index, which is an
integer number P; from 0 to 2" (with k equal to 15 for example) (e.g., as shown by
Equation (4), below).
pi=Py/2" C))
[0089] Following the most frequently used following formula for the probability update
in modern arithmetic codecs (e.g., as shown by Equation (5), below).
Prew = o +(1- &) Pota ®)
[0090] In Equation (5), y is equal to “zero” if current symbol matches with most
probable symbol (MPS) otherwise y is equal to “one”. This formula (i.e., Equation (5))
provides estimating value for probability of least probable symbol (LPS). Similar to the

above discussion, the parameter @ may correspond to a window size that indicates a

WO 2016/196287 PCT/US2016/034647
24

number of previously encoded bins which have significant influence to the current up-
date.
[0091] If we assume that the window size (W) is power of two (W =1/2™ M is a
positive integer), and given the Pi in equation (4) as the input pog, the updated
probability index could be rewritten in shown below in Equation (6).

P, = ((2% >> M) + P, — (P, >> M) (6)
[0092] In the one-probability update model proposed by JCTVC-F254 and JCTV-G764,
M is fixed for all the contexts and only one register is used to record the updated
probabilities. In one example, M is set equal to 6. That is, the window size is equal to
64. The probability update process could be represented by Equation (7), below.

Prew = ((25) >> 6) + P,— (P, >> 6) (7)
[0093] The main idea of technique proposed by JCTVC-F254 and JCTV-G764 is to use
several probability estimations (instead of only one) with different window sizes and
combine them as weighted average for next bin probability prediction. Equations (8)
and (9), below, illustrate an example of the technique proposed by JCTVC-F254 and
JCTV-G764. The calculations in Equation (8) for each probabilities p; are independent.

Pi new = Wi y+H(1- W) pi o1d C)

P new =2 Pi new)
[0094] The calculations in Equation (8) for each probabilities p; are independent.

[0095] In the method proposed by JCTVC-F254 and JCTV-G764, the linear
combination for probability estimation consists of two summands corresponding Wo=16
and W1=256 (W, =1/a,) as shown in Equations (10) and (11). In Equations (10) and
(11), Y =2" iflast coding bin is “1” and Y=0 if last coding bin is “0”, “>>M” is right
arithmetic shift for M bits.

Py = (Y>>4) + Py — (Py>>4) (10)
P, =(Y>>8) + P, — (P>>8) (11)
P = (Py +P1+1)>>1 (12)

[0096] For short transition period, only short distance prediction (i.e., smaller window
size) with fast updating speed is preferable. But after stabilization near optimal value
two-probability update model is more accurate for majority of contexts. JCTVC-F254
and JCTV-G764 propose to introduce a counter of updates since last initialization.
After every up-date the counter increases by one. Until the counter exceeds some
threshold only short “window size” model as defined by Equation (10) will be used.

When the counter reaches threshold we should switch to more accurate two-probability

WO 2016/196287 PCT/US2016/034647
25

update model as defined by Equation (12), above. The range calculation process
proposed by JCTVC-F254 and JCTV-G764 is performed with a 512x64 lookup table.
[0097] According to the method proposed by JCTVC-F254 and JCTV-G764, a different
context initialization method is applied. Specifically, two-parameters (denoted by

asCtxInit[O] and asCtxInit[1], respectively) are pre-defined for each context as shown

in Equations (13).
Int iQPreper = I slice ? 37 : 40;
Int c=asCtxInit[0 J+asCtxInit[1]*(1Qp - iQPreper); (13)

1PO= min(max(1, ¢), 32767),

[0098] For one-probability update model, the context is represented by iPO with 15-bit
precision. For two-probabilities update model, another variable iP1 is firstly set equal
to iP0 and the counter of how many bins have been coded are further required. In the
method proposed by JCTVC-F254 and JCTV-G764, both asCtxInit[O] and

asCtxInit[1] are stored in 16-bit.

[0099] However, in some examples, the above-described techniques (i.e., the CABAC
techniques of HEVC and the modification proposed by JCTVC-F254 and JCTV-G764)
may have one or more problems which may reduce coding efficiency and/or sub-
optimally utilize coder system resources.

[0100] As one example, in the above-described look-up table based arithmetic coder
technique (e.g., as used in HEVC or H.264/AVC) the probability update is based on
fixed tables (i.e., TransIdxLPS and TransIdxMPS) with a fixed window size. This use
of fixed window size results in the updating speed being fixed. However, the
frequencies that syntax elements occur and are needed to be coded may be quite
different for a given CTU or slice. The limitation of a fixed updating speed combined
with syntax elements occurring at different frequencies for a given CTU or slice may
result in the estimated probabilities of less frequently occurring syntax elements being
suboptimal. For example, for one CU, up to 2 values of inter pred idc may be
signalled, while the transform coefficients within one CU may be coded several times.
In this case, when using the same updating speed for these syntax elements, the
estimated probability of inter pred idc equal to 1 may be still suboptimal after coding
one whole slice even though the probability of transform coefficients may have become
relatively optimal.

[0101] As another example, in the above-described arithmetic coder based on counter

technique (e.g., as proposed by JCTVC-F254 and JCTV-G764), the probability updating

WO 2016/196287 PCT/US2016/034647
26

speed is fixed while the high precision (e.g., possible probability index could be [1, 2" -
1] results in low efficiency for syntax elements which are less frequently selected,
which may not be desirable.

[0102] As another example, in the two-probabilities update model component of the
arithmetic coder based on counter technique, two status parameters (probability indices)
have to be stored and updated, which may undesirably restrict the throughput of the
CABAC process.

[0103] As yet another example, in image/video coding systems, hundreds of contexts
may be used. In the technique proposed by JCTVC-F254 and JCTV-G764, 32 bits are
required per context while only 8 bits are enough for the arithmetic coder in HEVC.
Therefore, the storage of pre-defined values for context initialization in the technique
proposed by JCTVC-F254 and JCTV-G764 is increased by 300%, which may be
undesirable for hardware implementation in terms of storage.

[0104] In accordance with one or more techniques of this disclosure, a video coder (e.g.,
video encoder 20 and/or video decoder 30) may use different window sizes for different
contexts. For instance, as opposed to HEVC which uses a fixed window size for all
contexts, a video coder may use a first window size when updating a first context and
use a second, different, window size when updating a second context. In some
examples, a video coder may use relatively smaller window sizes for contexts that are
infrequently used and may use relatively larger window sizes for contexts that are
frequently used. By using window sizes that are more closely tailored to the frequencies
at which the contexts are used, a video coder may update the contexts with a more
favorable compromise between accuracy and adaption speed that using a fixed window
size for all contexts. In this way, the techniques of this disclosure may improve the
efficiency of CABAC, which may enable a video coder to reduce the number of bits
needed to encode video data.

[0105] The techniques described in this disclosure may be performed, for example,
within a video encoder, video decoder, or combined video encoder-decoder (CODEC).
In particular, such techniques may be performed in an entropy encoding unit of a video
encoder and/or an entropy decoding unit of a video decoder. The techniques may be
performed, for example, within a CABAC process, which may be configured to support
video coding, such as video coding according to aspects of the HEVC standard Entropy
encoding and decoding units may be apply coding processes in a reciprocal or inverse

manner, e.g., to encode or decode any of a variety of video data, such as quantized

WO 2016/196287 PCT/US2016/034647
27

transform coefficients associated with residual video data, motion vector information,
syntax elements, and other types of information that may be useful in a video encoding
and/or video decoding process.

[0106] FIG. 4 is a block diagram illustrating an example of a video encoder 20 that may
be configured to utilize techniques for BAC coding, as described in this disclosure. The
video encoder 20 will be described in the context of HEVC coding for purposes of
illustration, but without limitation of this disclosure as to other coding standards or
methods. Moreover, video encoder 20 may be configured to implement techniques in
accordance with the range extensions of HEVC.

[0107] Video encoder 20 may perform intra- and inter-coding of video blocks within
video slices. Intra-coding relies on spatial prediction to reduce or remove spatial
redundancy in video within a given video picture. Inter-coding relies on temporal
prediction or inter-view prediction to reduce or remove temporal redundancy in video
within adjacent pictures of a video sequence or reduce or remove redundancy with video
in other views.

[0108] In the example of FIG. 4, video encoder 20 includes video data memory 40,
prediction processing unit 42, reference picture memory 64, summer 50, transform
processing unit 52, quantization processing unit 54, and entropy encoding unit 56.
Prediction processing unit 42, in turn, includes motion estimation unit 44, motion
compensation unit 46, and intra-prediction unit 48. For video block reconstruction,
video encoder 20 also includes inverse quantization processing unit 58, inverse
transform processing unit 60, and summer 62. A deblocking filter (not shown in FIG. 4)
may also be included to filter block boundaries to remove blockiness artifacts from
reconstructed video. If desired, the deblocking filter would typically filter the output of
summer 62. Additional loop filters (in loop or post loop) may also be used in addition
to the deblocking filter.

[0109] Video data memory 40 may store video data to be encoded by the components of
video encoder 20. The video data stored in video data memory 40 may be obtained, for
example, from video source 18. Reference picture memory 64 is one example of a
decoding picture buffer (DPB) that stores reference video data for use in encoding video
data by video encoder 20 (e.g., in intra- or inter-coding modes, also referred to as intra-
or inter-prediction coding modes). Video data memory 40 and reference picture
memory 64 may be formed by any of a variety of memory devices, such as dynamic

random access memory (DRAM), including synchronous DRAM (SDRAM),

WO 2016/196287 PCT/US2016/034647
28

magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory
devices. Video data memory 40 and reference picture memory 64 may be provided by
the same memory device or separate memory devices. In various examples, video data
memory 40 may be on-chip with other components of video encoder 20, or off-chip
relative to those components.

[0110] During the encoding process, video encoder 20 receives a video picture or slice
to be coded. The picture or slice may be divided into multiple video blocks. Motion
estimation unit 44 and motion compensation unit 46 perform inter-predictive coding of
the received video block relative to one or more blocks in one or more reference
pictures to provide temporal compression or provide inter-view compression. Intra-
prediction unit 48 may alternatively perform intra-predictive coding of the received
video block relative to one or more neighboring blocks in the same picture or slice as
the block to be coded to provide spatial compression. Video encoder 20 may perform
multiple coding passes (e.g., to select an appropriate coding mode for each block of
video data).

[0111] Moreover, a partition unit (not shown) may partition blocks of video data into
sub-blocks, based on evaluation of previous partitioning schemes in previous coding
passes. For example, the partition unit may initially partition a picture or slice into
LCUs, and partition each of the LCUs into sub-CUs based on rate-distortion analysis
(e.g., rate-distortion optimization). Prediction processing unit 42 may further produce a
quadtree data structure indicative of partitioning of an LCU into sub-CUs. Leaf-node
CUs of the quadtree may include one or more PUs and one or more TUs.

[0112] Prediction processing unit 42 may select one of the coding modes, intra or inter,
e.g., based on error results, and provides the resulting intra- or inter-coded block to
summer 50 to generate residual block data and to summer 62 to reconstruct the encoded
block for use as a reference picture. Prediction processing unit 42 also provides syntax
elements, such as motion vectors, intra-mode indicators, partition information, and other
such syntax information, to entropy encoding unit 56.

[0113] Motion estimation unit 44 and motion compensation unit 46 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 44, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video picture relative to a

predictive block within a reference picture (or other coded unit) relative to the current

WO 2016/196287 PCT/US2016/034647
29

block being coded within the current picture (or other coded unit). A predictive block is
a block that is found to closely match the block to be coded, in terms of pixel difference,
which may be determined by sum of absolute difference (SAD), sum of square
difference (SSD), or other difference metrics. In some examples, video encoder 20 may
calculate values for sub-integer pixel positions of reference pictures stored in reference
picture memory 64. For example, video encoder 20 may interpolate values of one-
quarter pixel positions, one-eighth pixel positions, or other fractional pixel positions of
the reference picture. Therefore, motion estimation unit 44 may perform a motion
search relative to the full pixel positions and fractional pixel positions and output a
motion vector with fractional pixel precision.

[0114] Motion estimation unit 44 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from one
or more reference picture lists (RPLs) which identify one or more reference pictures
stored in reference picture memory 64. Motion estimation unit 44 sends the calculated
motion vector to entropy encoding unit 56 and motion compensation unit 46. In some
examples, motion estimation unit 44 may send an indication of the selected reference
picture to entropy encoding unit 56.

[0115] Motion compensation, performed by motion compensation unit 46, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation unit 44. Again, motion estimation unit 44 and motion compensation
unit 46 may be functionally integrated, in some examples. Upon receiving the motion
vector for the PU of the current block, motion compensation unit 46 may locate the
predictive block to which the motion vector points in one of the reference picture lists
(RPLs). Summer 50 forms a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current block being coded, forming pixel
difference values, as discussed below. In general, motion estimation unit 44 performs
motion estimation relative to luma components, and motion compensation unit 46 uses
motion vectors calculated based on the luma components for both chroma components
and luma components. Prediction processing unit 42 may also generate syntax elements
associated with the video blocks and the video slice for use by video decoder 30 in
decoding the video blocks of the video slice.

[0116] Intra-prediction unit 48 may intra-predict a current block, as an alternative to the

inter-prediction performed by motion estimation unit 44 and motion compensation unit

WO 2016/196287 PCT/US2016/034647
30

46, as described above. In particular, intra-prediction unit 48 may determine an intra-
prediction mode to use to encode a current block. In some examples, intra-prediction
unit 48 may encode blocks using various intra-prediction modes, e.g., during separate
encoding passes, and intra-prediction unit 48 may select an appropriate intra-prediction
mode to use from a plurality of intra-prediction modes.

[0117] For example, intra-prediction unit 48 may calculate rate-distortion values using a
rate-distortion analysis for the various tested intra-prediction modes, and select the
intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bitrate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 48 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block. In some examples, each of
the plurality of intra-prediction modes may have a corresponding mode index, which
may be signaled (i.e., to a video decoder) by intra-prediction unit 48.

[0118] Video encoder 20 forms a residual video block by subtracting the prediction
data from prediction processing unit 42 from the original video block being coded.
Summer 50 represents the component or components that perform this subtraction
operation.

[0119] Transform processing unit 52 applies a transform, such as a discrete cosine
transform (DCT) or a conceptually similar transform, to the residual block, producing a
video block comprising residual transform coefficient values. Transform processing
unit 52 may perform other transforms which are conceptually similar to DCT. Wavelet
transforms, integer transforms, sub-band transforms or other types of transforms could
also be used. In any case, transform processing unit 52 applies the transform to the
residual block, producing a block of residual transform coefficients. The transform may
convert the residual information from a pixel value domain to a transform domain, such
as a frequency domain.

[0120] Transform processing unit 52 may send the resulting transform coefficients to
quantization processing unit 54. Quantization processing unit 54 quantizes the
transform coefficients to further reduce bit rate. The quantization process may reduce
the bit depth associated with some or all of the coefficients. The degree of quantization

may be modified by adjusting a quantization parameter. In some examples,

WO 2016/196287 PCT/US2016/034647
31

quantization processing unit 54 may then perform a scan of the matrix including the
quantized transform coefficients. Alternatively, entropy encoding unit 56 may perform
the scan.

[0121] Once the transform coefficients are scanned into the one-dimensional array, the
entropy encoding unit 56 may apply entropy coding such as context-adaptive variable
length coding (CAVLC), context-adaptive binary arithmetic coding (CABAC),
probability interval partitioning entropy coding (PIPE), Golomb coding, Golomb-Rice
coding, exponential Golomb coding, syntax-based context-adaptive binary arithmetic
coding (SBAC), or another entropy coding methodology to the coefficients. Although
reference is made to a variety of different entropy coding processes, in accordance with
examples of this disclosure, entropy encoding unit 56 may be configured to perform
BAC coding as described above.

[0122] To perform CAVLC, the entropy encoding unit 56 may select a variable length
code for a symbol to be transmitted. Codewords in VLC may be constructed such that
relatively shorter codes correspond to more likely symbols, while longer codes
correspond to less likely symbols. In this way, the use of VLC may achieve a bit
savings over, for example, using equal-length codewords for each symbol to be
transmitted.

[0123] To perform CABAC, the entropy encoding unit 56 may select a context to apply
to a certain context to encode symbols to be transmitted. The context may relate to, for
example, whether neighboring values are non-zero or not. The entropy encoding unit 56
may also entropy encode syntax elements, such as the signal representative of the
selected transform. Following the entropy coding by the entropy encoding unit 56, the
resulting encoded video may be transmitted to another device, such as the video decoder
30, or archived for later transmission or retrieval.

[0124] In accordance with one or more techniques of this disclosure, entropy encoding
unit 56 may select different window sizes when entropy encoding data (e.g., syntax
element values represented as a one-dimensional binary vector) for use by a video
decoder, such as video decoder 30, in decoding the video data. Further details of one
example of entropy encoding unit 56 are discussed below with reference to FIG. 5.
[0125] Inverse quantization processing unit 58 and inverse transform processing unit 60
apply inverse quantization and inverse transformation, respectively, to reconstruct the

residual block in the pixel domain, e.g., for later use as a reference block.

WO 2016/196287 PCT/US2016/034647
32

[0126] Motion compensation unit 46 may also apply one or more interpolation filters to
the reference block to calculate sub-integer pixel values for use in motion estimation.
Summer 62 adds the reconstructed residual block to the motion compensated prediction
block produced by motion compensation unit 46 to produce a reconstructed video block
for storage in reference picture memory 64. The reconstructed video block may be used
by motion estimation unit 44 and motion compensation unit 46 as a reference block to
inter-code a block in a subsequent video picture. In some examples, such as where the
current picture is used as a reference picture to predict the current picture, motion
compensation unit 46 and/or summer 62 may update the version of the current picture
stored by reference picture memory 64 at regular intervals while coding the current
picture. As one example, motion compensation unit 46 and/or summer 62 may update
the version of the current picture stored by reference picture memory 64 after coding
each block of the current picture. For instance, where the samples of the current block
are stored in reference picture memory 64 as initialized values, motion compensation
unit 46 and/or summer 62 may update the samples of the current of the current picture
stored by reference picture memory 64 with the reconstructed samples for the current
block.

[0127] A filtering unit (not shown) may perform a variety of filtering processes. For
example, the filtering unit may perform deblocking. That is, the filtering unit may
receive a plurality of reconstructed video blocks forming a slice or a frame of
reconstructed video and filter block boundaries to remove blockiness artifacts from a
slice or frame. In one example, the filtering unit evaluates the so-called “boundary
strength” of a video block. Based on the boundary strength of a video block, edge
pixels of a video block may be filtered with respect to edge pixels of an adjacent video
block such that the transition from one video block are more difficult for a viewer to
perceive.

[0128] In some examples, motion compensation unit 46 and/or summer 62 may update
the version of the current picture stored by reference picture memory 64 before the
filtering performs the filtering (e.g., deblocking and/or SAO) to the samples. For
instance, the filtering unit may wait until the whole picture is coded before applying the
filtering. In this way, motion estimation unit 44 may use the current picture as a
reference before applying the filtering. In some examples, the filtering unit may
perform the filtering as the version of the current picture stored by reference picture

memory 64 is updated. For instance, the filtering unit may apply the filtering as each

WO 2016/196287 PCT/US2016/034647
33

block is updated. In this way, motion estimation unit 44 may use the current picture as
a reference after applying the filtering.

[0129] While a number of different aspects and examples of the techniques are
described in this disclosure, the various aspects and examples of the techniques may be
performed together or separately from one another. In other words, the techniques
should not be limited strictly to the various aspects and examples described above, but
may be used in combination or performed together and/or separately. In addition, while
certain techniques may be ascribed to certain units of video encoder 20 (such as intra
prediction unit 48, motion compensation unit 46, or entropy encoding unit 56) it should
be understood that one or more other units of video encoder 20 may also be responsible
for carrying out such techniques.

[0130] FIG. 5 is a block diagram of an example entropy encoding unit 56 that may be
configured to perform CABAC in accordance with the techniques of this disclosure. A
syntax element 118 is input into the entropy encoding unit 56. If the syntax element is
already a binary-value syntax element (e.g., a flag or other syntax element that only has
a value of 0 and 1), the step of binarization may be skipped. If the syntax element is a
non-binary valued syntax element (e.g., a syntax element that may have values other
than 1 or 0), the non-binary valued syntax element is binarized by binarizer 120.
Binarizer 120 performs a mapping of the non-binary valued syntax element into a
sequence of binary decisions. These binary decisions are often called “bins.” For
example, for transform coefficient levels, the value of the level may be broken down
into successive bins, each bin indicating whether or not the absolute value of coefficient
level is greater than some value. For example, bin 0 (sometimes called a significance
flag) indicates if the absolute value of the transform coefficient level is greater than O or
not. Bin 1 indicates if the absolute value of the transform coefficient level is greater
than 1 or not, and so on. A unique mapping may be developed for each non-binary
valued syntax element.

[0131] Each bin produced by binarizer 120 is fed to the binary arithmetic coding side of
entropy encoding unit 56. That is, for a predetermined set of non-binary valued syntax
elements, each bin type (e.g., bin 0) is coded before the next bin type (e.g., bin 1).
Coding may be performed in either regular mode or bypass mode. In bypass mode,
bypass coding engine 126 performs arithmetic coding using a fixed probability model,
for example, using Golomb-Rice or exponential Golomb coding. Bypass mode is

generally used for more predictable syntax elements.

WO 2016/196287 PCT/US2016/034647
34

[0132] Coding in regular mode involves performing CABAC. Regular mode CABAC
is for coding bin values where the probability of a value of a bin is predictable given
then values of previously coded bins. The probability of a bin being an LPS is
determined by context modeler 122. Context modeler 122 outputs the bin value and the
probability state for the context (e.g., the probability state o, including the value of the
LPS and the probability of the LPS occurring). The context may be an initial context
for a series of bins, or may be determined based on the coded values of previously
coded bins. As described above, context modeler 122 may update the state based on
whether or not the received bin was the MPS or the LPS. After the context and
probability state c is determined by context modeler 122, regular coding engine 124
performs BAC on the bin value.

[0133] In accordance with one or more techniques of this disclosure, as opposed to
using the same value of a variable used to update a probability state in a binary
arithmetic coding process (e.g., one or more of a window size, or a scaling factor (o), or
a fixed probability updating speed), entropy encoding unit 56 may use different values
of the variable for different contexts and/or different syntax elements. For instance,
context modeler 122 may determine, for a context of a plurality of context, a value of a
variable used to update a probability state in a binary arithmetic coding process, and
update the probability state based on the determined value.

[0134] In some examples, the window size used by context modeler 122 to determine
the next probability state may be made dependent on context. For instance, context
modeler 122 may use different window sizes for different contexts. As one example,
context modeler 122 may determine a first window size for a first context of a plurality
of contexts and determine a second window size for a second context of the plurality of
contexts that is different than the first window size.

[0135] In some examples, when incorporating the above context dependent updating
method to the counter-based arithmetic coders, such as in JCTVC-F254 and JCTV-
G764, the value of window size may be dependent on context. In addition, each context
may be further associated with a window size in addition to the probability Pi from
Equation (4).

[0136] In some examples, context modeler 122 may use window sizes W that may be
equal to 2™, where M may be a positive integer. Therefore, each context may have its
own M value, which may be different from other contexts, though some context models

may have the same M value.

WO 2016/196287 PCT/US2016/034647
35

[0137] In some examples, context modeler 122 may determine the windows sizes from
a pre-defined set of window sizes. Some example predefined window sizes are 16, 32,
64, and 128, though other window sizes are contemplated. For instance, a set of
possible M values may be pre-defined, e.g., M could range from 4 to 7, inclusive. In
some examples, context modeler 122 may cause an indication of the set of possible
window sizes (e.g., an indication of a set of possible M values) to be signaled in a slice
header or a parameter set, including a picture parameter set, an active parameter set, a
sequence parameter set, or a video parameter set.

[0138] In some examples, the window sizes (e.g., values of M) associated with each
context may be pre-defined. In some examples, the window sizes may be further
dependent on the slice types and/or temporal identifiers (e.g., referred to as temporalld
in HEVC). In some examples, the window sizes may be further dependent on the
picture types (or NAL unit types), e.g., whether a picture is a random access picture or
not.

[0139] In some examples, context modeler 122 may cause the window sizes (e.g.,
values of M) associated with each context to be signaled in the bitstream, such as in
slice header/picture parameter set/active parameter set/sequence parameter set. For
instance, a default window size for each context may be firstly pre-defined. For each
respective context model, context modeler 122 may encode a respective syntax element
(e.g., a flag) that indicates whether the default window size is used for the respective
context. If the default window size is not used for a respective context, context modeler
122 may differentially encode the actual used window size based on the default window
size. In some examples, context modeler 122 may organize the syntax elements (i.e.,
that indicate whether the default window size is used) of all contexts together, and
utilize run-length coding to code these syntax elements. In some examples, context
modeler 122 may utilize a mapping table when coding the difference between the
actually used window size and the default window size. For example, where the default
M value is equal to 6, the possible M values are 4, 5, 6, and 7. The mapping table may
be defined as:

Actual M value 4 5 6 7
Value to be coded 0 1 - 2
[0140] In some examples, context modeler 122 may directly code the difference

between the actual window size and the default window size for each context. For

WO 2016/196287 PCT/US2016/034647
36

instance, where the default M value is 4, context modeler 122 may code M-4 for each
context.

[0141] In some examples, context modeler 122 may code a first syntax element that
indicates whether all window sizes for contexts in a current slice are inherited (i.e., set
equal to) window sizes for corresponding contexts in a previously coded slice. In one
example, the “previously decoded slice” may be defined as the previously coded slices
which have the same slice type, or both the same slice type and quantization parameter,
or both the same slice type and temporal layer, as the current slice and/or the same
initialized quantization parameters. In some examples, the previous slice may be
required to belong to a picture that is present in the DPB and may be used for the
current picture as a reference picture, in particular, as in HEVC based platform, the
previous slice may be required to belong to a picture in reference picture set (RPS), or
even a picture in one of the following subsets of the RPS: RefPicSetStCurrBefore,
RefPicSetStCurrAfter, and RefPicSetLtCurr.

[0142] In some examples, context modeler 122 may code a first syntax element that
indicates whether a default window size is used for a plurality of contexts (e.g., in a
current slice). Where the default window size is not used for the plurality of contexts,
context modeler 122 may code a second syntax element that indicates the window size
for the context. For instance, context modeler 122 may code a second syntax element
that indicates a difference between the window size for the context and the default
window size.

[0143] In another example, context modeler 122 may derive the window sizes, e.g.,
based on coded information from previous slices or pictures. For instance, context
modeler 122 may track the coded bins in a previous slice associated with one context.
For each candidate of possible window sizes, context modeler 122 may obtain the bits
consumed for coding these bins, and selectthe window size which results in the
minimum bits for coding these bins as the window size for this context. Context
modeler 122 may use the selected window size for coding the following slices/pictures.
[0144] In some examples, the ‘window size’ used to determine the next probability state
or probability update speed in arithmetic coders may be syntax element specific, e.g.,
where the context is shared among different syntax elements. For instance, when using
a context to encode a bin of a syntax element, context modeler 122 may determine the

window size for the context based on the syntax element. As one example, the window

WO 2016/196287 PCT/US2016/034647
37

size used to update a state of a context when coding bins of the coding unit split syntax
element and coding unit skip flag syntax element may be the same, e.g., 16 (i.e., M=4).
[0145] In accordance with one or more techniques of this disclosure, context modeler
122 may adaptively determine different window sizes when entropy encoding data (e.g.,
syntax elements representing the one-dimensional vector and/or other syntax elements)
for use by video decoder 30 in decoding the video data. For instance, for each context,
context modeler 122 may calculate the bits of coding a recorded bin string with different
window sizes and select the one with minimum bit. Where the window sizes are
selected from a pre-defined set of window sizes, context modeler 122 may determine,
for respective window sizes of a pre-defined set of window sizes, respective quantities
of bits used to encode a bin string with a context, and select the window size of the pre-
defined set of window sizes that corresponds to the smallest quantity of bits as the
window size for the context.

[0146] In some examples, the above technique(s) may be applicable to specific
contexts. That is, a subset of the contexts may use the updated ‘window sizes’ rather
than the default one. In some examples, the above technique(s) may be applicable to
specific slice types.

[0147] Returning to FIG. 4, in some cases, the entropy encoding unit 56 or another unit
of video encoder 20 may be configured to perform other coding functions, in addition to
entropy coding. For example, entropy encoding unit 56 may be configured to determine
coded block pattern (CBP) values for CU’s and PU’s. Also, in some cases, entropy
encoding unit 56 may perform run length coding of coefficients. In addition, entropy
encoding unit 56, or other processing units, also may code other data, such as the values
of a quantization matrix.

[0148] As discussed above, inverse quantization unit 58 and inverse transform
processing unit 60 apply inverse quantization and inverse transformation, respectively,
to reconstruct the residual block in the pixel domain, e.g., for later use as a reference
block. Motion compensation unit 46 may calculate a reference block by adding the
residual block to a predictive block of one of the frames of the reference frame memory
64. Motion compensation unit 46 may also apply one or more interpolation filters to the
reconstructed residual block to calculate sub-integer pixel values for use in motion
estimation. Summer 62 adds the reconstructed residual block to the motion
compensated prediction block produced by motion compensation unit 46 to produce a

reconstructed video block for storage in reference frame memory 64. The reconstructed

WO 2016/196287 PCT/US2016/034647
38

video block may be used by motion estimation unit 44 and the motion compensation
unit 46 as a reference block to inter-code a block in a subsequent video frame.

[0149] FIG. 6 is a block diagram illustrating an example of video decoder 30 that may
implement techniques described in this disclosure. Again, the video decoder 30 will be
described in the context of HEVC coding for purposes of illustration, but without
limitation of this disclosure as to other coding standards. Moreover, video decoder 30
may be configured to implement techniques in accordance with the range extensions.
[0150] In the example of FIG. 6, video decoder 30 may include video data memory 69,
entropy decoding unit 70, prediction processing unit 71, inverse quantization processing
unit 76, inverse transform processing unit 78, summer 80, and reference picture memory
82. Prediction processing unit 71 includes motion compensation unit 72 and intra
prediction unit 74. Video decoder 30 may, in some examples, perform a decoding pass
generally reciprocal to the encoding pass described with respect to video encoder 20
from FIG. 4.

[0151] Video data memory 69 may store video data, such as an encoded video
bitstream, to be decoded by the components of video decoder 30. The video data stored
in video data memory 69 may be obtained, for example, from storage device 34, from a
local video source, such as a camera, via wired or wireless network communication of
video data, or by accessing physical data storage media. Video data memory 69 may
form a coded picture buffer (CPB) that stores encoded video data from an encoded
video bitstream.

[0152] Reference picture memory 82 is one example of a decoded picture buffer (DPB)
that stores reference video data for use in decoding video data by video decoder 30 (e.g.,
in intra- or inter-coding modes). Video data memory 69 and reference picture memory
82 may be formed by any of a variety of memory devices, such as dynamic random
access memory (DRAM), including synchronous DRAM (SDRAM), magnetoresistive
RAM (MRAM), resistive RAM (RRAM), or other types of memory devices. Video
data memory 69 and reference picture memory 82 may be provided by the same
memory device or separate memory devices. In various examples, video data memory
69 may be on-chip with other components of video decoder 30, or off-chip relative to
those components.

[0153] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax

elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy

WO 2016/196287 PCT/US2016/034647
39

decodes the bitstream to generate quantized coefficients, motion vectors or intra-
prediction mode indicators, and other syntax elements. In some examples, entropy
decoding unit 70 may apply a process that is generally inverse to the process used by the
encoder. Entropy decoding unit 70 performs an entropy decoding process on the
encoded bitstream to retrieve a one-dimensional array of transform coefficients. The
entropy decoding process used depends on the entropy coding used by the video
encoder 20 (e.g., CABAC, CAVLC, PIPE, or other processes described above). In
accordance with the techniques described in this disclosure, entropy decoding unit 70
may apply a BAC process, e.g., within a CABAC process, as described in this
disclosure. The window sizes in the entropy coding process used by the encoder may be
signaled in the encoded bitstream or may be a predetermined process.

[0154] Entropy decoding unit 70 forwards the motion vectors to and other syntax
elements to motion compensation unit 72. Video decoder 30 may receive the syntax
elements at the video slice level and/or the video block level.

[0155] FIG. 7 is a block diagram of an example entropy decoding unit 70 that may be
configured to perform CABAC in accordance with the techniques of this disclosure.
The entropy decoding unit 70 of FIG. 7 performs CABAC in an inverse manner as that
of entropy encoding unit 56 described in FIG. 5. Coded bits from bitstream 218 are
input into entropy decoding unit 70. The coded bits are fed to either context modeler
220 or bypass coding engine 222 based on whether or not they were entropy coded
using bypass mode or regular mode. If the coded bits were coded in bypass mode,
bypass decoding engine will use Golomb-Rice or exponential Golomb decoding, for
example, to retrieve the binary-valued syntax elements or bins of non-binary syntax
elements.

[0156] If the coded bits were coded in regular mode, context modeler 220 may
determine a probability model for the coded bits and regular decoding engine 224 may
decode the coded bits to produce bins of non-binary valued syntax elements (or the
syntax elements themselves if binary-valued). After the context and probability state ¢
is determined by context modeler 220, regular decoding engine 224 performs BAC to
decode the bin value. In other words, regular decoding engine 224 may determine a
probability state of a context, and decode a bin value based on previously coded bins
and a current range. After decoding the bin, context modeler 220 may update the
probability state of the context based on the window size and the value of the decoded

bin.

WO 2016/196287 PCT/US2016/034647
40

[0157] In accordance with one or more techniques of this disclosure, as opposed to
using the same value of a variable used to update a probability state in a binary
arithmetic coding process (e.g., one or more of a window size, a scaling factor (o), and
a fixed probability updating speed), entropy encoding unit 56 may use different values
of the variable for different contexts and/or different syntax elements. For instance,
context modeler 220 may determine, for a context of a plurality of contexts, a value of a
variable used to update a probability state in a binary arithmetic coding process, and
update the probability state based on the determined value.

[0158] In some examples, the window size used by context modeler 220 to determine
the next probability state may be made dependent on context. For instance, context
modeler 220 may use different window sizes for different contexts. As one example,
context modeler 220 may determine a first window size for a first context of a plurality
of contexts and determine a second window size for a second context of the plurality of
contexts that is different than the first window size.

[0159] In some examples, when incorporating the above context-model dependent
updating method to the counter-based arithmetic coders, such as in JCTVC-F254 and
JCTV-G764, the value of window size may be dependent on context. In addition, each
context may be further associated with a window size in addition to the probability Pi
from Equation (4).

[0160] In some examples, context modeler 220 may use window sizes W that may be
equal to 2™, where M may be a positive integer. Therefore, each context may have its
own M value which may be different from other contexts, though some contexts may
have the same M value.

[0161] In some examples, context modeler 220 may determine the windows sizes from
a pre-defined set of window sizes. For instance, a set of possible M values may be pre-
defined, e.g., M could range from 4 to 7, inclusive. In some examples, entropy
decoding unit 70 may decode an indication of the set of possible window sizes (e.g., an
indication of a set of possible M values) from a slice header or a parameter set,
including a picture parameter set, an active parameter set, a sequence parameter set, or a
video parameter set.

[0162] In some examples, the window sizes (e.g., values of M) associated with each
context may be pre-defined. In some examples, the window sizes may be further
dependent on the slice types and/or temporal identifiers (e.g., referred to as temporalld

in HEVC). In some examples, the window sizes may be further dependent on the

WO 2016/196287 PCT/US2016/034647
41

picture types (or NAL unit types), e.g., whether a picture is a random access picture or
not.

[0163] In some examples, entropy decoding unit 70 may decode the window sizes (e.g.,
values of M) associated with each context from the bitstream, such as in slice
header/picture parameter set/active parameter set/sequence parameter set. For instance,
a default window size for each context may be firstly pre-defined. For each respective
context, entropy decoding unit 70 may decode a respective syntax element (e.g., a flag)
that indicates whether the default window size is used for the respective context. If the
default window size is not used for a respective context, entropy decoding unit 70 may
differentially decode the actual used window size based on the default window size. In
some examples, the syntax elements (i.e., that indicate whether the default window size
is used) of all contexts may be organized together, and entropy decoding unit 70 may
utilize run-length coding to decode these syntax elements. In some examples, context
modeler 220 may utilize a mapping table when coding the difference between the
actually used window size and the default window size. For example, where the default
M value is equal to 6, the possible M values are 4, 5, 6, and 7. The mapping table may
be defined as:

Actual M value 4 5 6 7
Value to be coded 0 1 - 2
[0164] In some examples, entropy decoding unit 70 may directly decode the difference

between the actual window size and the default window size for each context. For
instance, where the default M value is 4, entropy decoding unit 70 may decode the value
of M-4 for each context.

[0165] In some examples, entropy decoding unit 70 may decode a first syntax element
that indicates whether all window sizes for contexts in a current slice are inherited (i.e.,
set equal to) window sizes for corresponding contexts in a previously coded slice. In
one example, the “previously decoded slice” may be defined as the previously coded
slices which have the same slice type, or both the same slice type and quantization
parameter, or both the same slice type and temporal layer, as the current slice and/or the
same initialized quantization parameters. In some examples, the previous slice may be
required to belong to a picture that is present in the DPB and may be used for the
current picture as a reference picture, in particular, as in HEVC based platform, the

previous slice may be required to belong to a picture in reference picture set (RPS), or

WO 2016/196287 PCT/US2016/034647
42

even a picture in one of the following subsets of the RPS: RefPicSetStCurrBefore,
RefPicSetStCurrAfter, and RefPicSetLtCurr.

[0166] In some examples, entropy decoding unit 70 may decode a first syntax element
that indicates whether a default window size is used for a plurality of contexts (e.g., in a
current slice). Where the default window size is not used for the plurality of contexts,
entropy decoding unit 70 may decode a second syntax element that indicates the
window size for the context. For instance, entropy decoding unit 70 may decode a
second syntax element that indicates a difference between the window size for the
context and the default window size.

[0167] In another example, entropy decoding unit 70 may derive the window sizes, e.g.,
based on coded information from previous slices or pictures. For instance, entropy
decoding unit 70 may track the decoded bins in a previous slice associated with one
context is tracked. For each candidate of possible window sizes, entropy decoding unit
70 may obtain the bits consumed for coding these bins. Entropy decoding unit 70 may
select the window size which results in the minimum bits for coding these bins as the
window size for this context. Entropy decoding unit 70 may use the selected window
size for decoding the following slices/pictures.

[0168] In some examples, the ‘window size’ used to determine the next probability state
or probability update speed in arithmetic coders may be syntax element specific. For
instance, when using a context to encode a bin of a syntax element, context modeler 220
may determine the window size for the context based on a type the syntax element. As
one example, the window size used to update a context when coding bins of the coding
unit split syntax element and coding unit skip flag syntax element may be the same, e.g.,
16 (i.e., M=4).

[0169] In some examples, the above technique(s) may be applicable to specific
contexts. That is, a subset of the contexts may use the updated ‘window sizes’ rather
than the default one. In some examples, the above technique(s) may be applicable to
specific slice types.

[0170] After the bins are decoded by regular decoding engine 224, a reverse binarizer
230 may perform a reverse mapping to convert the bins back into the values of the non-
binary valued syntax elements.

[0171] Returning to FIG. 6, in some examples, the entropy decoding unit 70 (or the
inverse quantization unit 76) may scan the received values using a scan mirroring the

scanning mode used by the entropy encoding unit 56 (or the quantization unit 54) of the

WO 2016/196287 PCT/US2016/034647
43

video encoder 20. Although the scanning of coefticients may be performed in the
inverse quantization unit 76, scanning will be described for purposes of illustration as
being performed by the entropy decoding unit 70. In addition, although shown as
separate functional units for ease of illustration, the structure and functionality of the
entropy decoding unit 70, the inverse quantization unit 76, and other units of the video
decoder 30 may be highly integrated with one another.

[0172] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by the entropy decoding
unit 70. The inverse quantization process may include a conventional process, e.g.,
similar to some examples of HEVC or defined by the H.264 decoding standard. The
inverse quantization process may include use of a quantization parameter QP calculated
by video encoder 20 for the CU to determine a degree of quantization and, likewise, a
degree of inverse quantization that should be applied. Inverse quantization unit 76 may
inverse quantize the transform coefficients either before or after the coefficients are
converted from a one-dimensional array to a two-dimensional array.

[0173] Inverse transform processing unit 78 applies an inverse transform to the inverse
quantized transform coefficients. In some examples, the inverse transform processing
unit 78 may determine an inverse transform based on signaling from the video encoder
20, or by inferring the transform from one or more coding characteristics such as block
size, coding mode, or the like. In some examples, the inverse transform processing unit
78 may determine a transform to apply to the current block based on a signaled
transform at the root node of a quadtree for an LCU including the current block.
Alternatively, the transform may be signaled at the root of a TU quadtree for a leaf-node
CU in the LCU quadtree. In some examples, the inverse transform processing unit 78
may apply a cascaded inverse transform, in which inverse transform processing unit 78
applies two or more inverse transforms to the transform coefficients of the current block
being decoded.

[0174] In addition, the inverse transform processing unit may apply the inverse
transform to produce a transform unit partition in accordance with the above-described
techniques of this disclosure.

[0175] The intra-prediction processing unit 74 may generate prediction data for a
current block of a current frame based on a signaled intra-prediction mode and data
from previously decoded blocks of the current frame. Based on the retrieved motion

prediction direction, reference frame index, and calculated current motion vector (e.g., a

WO 2016/196287 PCT/US2016/034647
44

motion vector copied from a neighboring block according to a merge mode), the motion
compensation unit produces a motion compensated block for the current portion. These
motion compensated blocks essentially recreate the predictive block used to produce the
residual data.

[0176] The motion compensation unit 72 may produce the motion compensated blocks,
possibly performing interpolation based on interpolation filters. Identifiers for
interpolation filters to be used for motion estimation with sub-pixel precision may be
included in the syntax elements. The motion compensation unit 72 may use
interpolation filters as used by the video encoder 20 during encoding of the video block
to calculate interpolated values for sub-integer pixels of a reference block. The motion
compensation unit 72 may determine the interpolation filters used by the video encoder
20 according to received syntax information and use the interpolation filters to produce
predictive blocks.

[0177] Additionally, the motion compensation unit 72 and the intra-prediction
processing unit 74, in an HEVC example, may use some of the syntax information (e.g.,
provided by a quadtree) to determine sizes of LCUs used to encode frame(s) of the
encoded video sequence. The motion compensation unit 72 and the intra-prediction
processing unit 74 may also use syntax information to determine split information that
describes how each CU of a frame of the encoded video sequence is split (and likewise,
how sub-CUs are split). The syntax information may also include modes indicating
how each split is encoded (e.g., intra- or inter-prediction, and for intra-prediction an
intra-prediction encoding mode), one or more reference frames (and/or reference lists
containing identifiers for the reference frames) for each inter-encoded PU, and other
information to decode the encoded video sequence.

[0178] The summer 80 combines the residual blocks with the corresponding prediction
blocks generated by the motion compensation unit 72 or the intra-prediction processing
unit 74 to form decoded blocks. If desired, a deblocking filter may also be applied to
filter the decoded blocks in order to remove blockiness artifacts. The decoded video
blocks are then stored in the reference picture memory 82, which provides reference
blocks for subsequent motion compensation and also produces decoded video for
presentation on a display device (such as the display device 31 of FIG. 1).

[0179] FIG. 8 illustrates the binary arithmetic encoding process for a given bin value
binVal using the regular coding mode. The internal state of the arithmetic encoding

engine is as usual characterized by two quantities: the current interval range R and the

WO 2016/196287 PCT/US2016/034647
45

base (lower endpoint) L of the current code interval. Note, however, that the precision
needed to store these registers in the CABAC engine (both in regular and bypass mode)
can be reduced up to 9 and 10 bits, respectively. Encoding of the given binary value
binVal observed in a context with probability state index O and value of MPS (6%2) is
performed in a sequence of four elementary steps as follows.
[0180] In the first and major step, the current interval is subdivided according to the
given probability estimates. This interval subdivision process involves three elementary
operations as shown in the topmost box of the flow diagram in FIG. 8. First, the current
interval range R is approximated by a quantized value O(R) using an equi-partition of
the whole range 28 < R < 2 into four cells. But instead of using the corresponding
representative quantized range values Qy, Qy, Q;, and Qs explicitly in the CABAC
engine, is only addressed by its quantizer index p, which can be efficiently computed by
a combination of a shift and bit-masking operation, i.e., in accordance with Equation
(14), below.

p=(R»6)&3 (14)
[0181] Then, this index p and the probability state index O are used as entries in a 2-D
table TabRangeLLPS to determine the (approximate) LPS related subinterval range Ry ps,
as shown in FIG. 8. Here, the table TabRangeLLPS contains all 64x4 pre-computed
product values for p, - @, for 0 < (8 » 1) < 63 and 0 < p < 3 in 8-bit precision.
[0182] Given the dual subinterval range for the MPS, the subinterval corresponding to
the given bin value binVal is chosen in the second step of the encoding process. If
binVal is equal to the MPS value, the lower subinterval is chosen so that L is unchanged
(right path of the branch in FIG. 8); otherwise, the upper subinterval with range equal to
Rupg is selected (left branch in FIG. 8). In the third step of the regular arithmetic
encoding process, the update of the probability states is performed as described above
(e.g., using Equation (2)) (gray shaded boxes in FIG. 8), and finally, the fourth step
consists of the renormalization of the registers /. and R (“RenormE” box in FIG. 8) as
described by Marpe.
[0183] The 2-D table TabRangelPS may be defined as follows:

TabRangeLLPS[64][4] =
{
{ 128, 176, 208, 240},
{128, 167, 197, 227},
{128, 158, 187, 216},
{ 123, 150, 178, 205},

WO 2016/196287 PCT/US2016/034647
46

{116, 142, 169, 195},
{111, 135, 160, 185},
{105, 128, 152, 175},
{100, 122, 144, 166},
95,116, 137, 158},
90, 110, 130, 150},
85, 104, 123, 142},
81, 99, 117, 135},
77, 94, 111, 128},
73, 89, 105, 122},
69, 85, 100, 116},
66, 80, 95, 110},
62, 76, 90, 104},
59, 72, 86, 991,
56, 69, 81, 941,
53, 65, 77, 89},
51, 62, 73, 85},
59, 69, 80},
56, 66, 76},
53, 63, 72},
50, 59, 69},
48, 56, 651,
45, 54, 621,
43, 51, 591,
41, 48, 56},
39, 46, 531,
37, 43, 501,
35, 41, 48},
33, 39, 45},
31, 37, 43},
30, 35, 41},
{ 23, 28, 33, 39},
27, 32, 37},
26, 30, 351,
24, 29, 33},
23, 27, 31},
22, 26, 301,
21, 25, 28},
20, 23, 27},
19, 22, 25},
18, 21, 24},
17, 20, 23},
16, 19, 22},
15, 18, 21},
14, 17, 20},
14, 16, 19},
13, 15, 18},
12, 15, 17},
10, 12, 14, 16},
{ 9,11, 13, 15},

e R e W e o e e e R e e e N e el oW s W adat

e e, e, o, e, o, o, e, o,
DD DN W W W W WWhpD,SM
-';\JouQuououNuwumuQuou’_‘uqu\u

“

lautn Wandun
(NS RN\ S
O = N
vow e e e e e e e e T T T T e

e S S T Yy e gy S S
O — — NN WSROI - 0 \O

“

N e i e N N e e e N e e e W o e

WO 2016/196287 PCT/US2016/034647
47

{9, 11, 12, 14},
{8, 10, 12, 14},
{8, 9, 11, 13},
{ 7,9, 11, 12,
{7, 9,10, 12,
{ 7,8, 10, 11},
{6, 8 9 11},
{6, 7, 9, 10},
{6, 7, 8, 9}

{2, 2 2 2}

I8
[0184] An example CABAC decoding process may be found in section 9.3.4.3.2.2 of

the HEVC standard.

[0185] FIG. 9 is a conceptual diagram that illustrates a transform scheme based on
residual quadtree. To adapt the various characteristics of the residual blocks, a
transform coding structure using the residual quadtree (RQT) is applied in HEVC,
which is briefly described at http://www hhi fraunhofer.de/departments/video-coding-
analytics/research-groups/image-video-coding/hevc-high-efficiency-video-
coding/transform-coding-using-the-residual-quadtree-rqt.html.

[0186] Each picture is divided into coding tree units (CTU), which are coded in raster
scan order for a specific tile or slice. A CTU is a square block and represents the root of
a quadtree, i.e., the coding tree. The CTU size may range from 8x8 to 64x64 luma
samples, but typically 64x64 isused. Each CTU can be further split into smaller square
blocks called coding units (CUs). After the CTU is split recursively into CUs, each CU
is further divided into PUs and TUs. The partitioning of a CU into TUs is carried out
recursively based on a quadtree approach, therefore the residual signal of each CU is
coded by a tree structure namely, the residual quadtree (RQT). The RQT allows TU
sizes from 4x4 up to 32x32 luma samples. FIG. 9 shows an example where a CU
includes 10 TUs, labeled with the letters a to j, and the corresponding block partitioning.
Each node of the RQT is actually a transform unit (TU). The individual TUs are
processed in depth-first tree traversal order, which is illustrated in the figure as
alphabetical order, which follows a recursive Z-scan with depth-first traversal. The
quadtree approach enables the adaptation of the transform to the varying space-
frequency characteristics of the residual signal. Typically, larger transform block sizes,
which have larger spatial support, provide better frequency resolution. However,

smaller transform block sizes, which have smaller spatial support, provide better spatial

WO 2016/196287 PCT/US2016/034647
48

resolution. The trade-off between the two, spatial and frequency resolutions, is chosen
by the encoder mode decision, for example based on rate-distortion optimization
technique. The rate-distortion optimization technique calculates a weighted sum of
coding bits and reconstruction distortion, i.e., the rate-distortion cost, for each coding
mode (e.g., a specific RQT splitting structure), and selects the coding mode with least
rate-distortion cost as the best mode.

[0187] Three parameters are defined in the RQT: the maximum depth of the tree, the
minimum allowed transform size and the maximum allowed transform size. In some
examples of HEVC, the minimum and maximum transform sizes can vary within the
range from 4x4 to 32x32 samples, which correspond to the supported block transforms
mentioned in the previous paragraph. The maximum allowed depth of the RQT restricts
the number of TUs. A maximum depth equal to zero means that a CTU cannot be split
any further if each included TU reaches the maximum allowed transform size, e.g.,
32x32.

[0188] All these parameters interact and influence the RQT structure. Consider a case,
in which the root CTU size is 64x64, the maximum depth is equal to zero and the
maximum transform size is equal to 32x32. In this case, the CTU has to be partitioned
at least once, since otherwise it would lead to a 64x64 TU, which is not allowed. The
RQT parameters, i.e. maximum RQT depth, minimum and maximum transform size, are
transmitted in the bitstream at the sequence parameter set level. Regarding the RQT
depth, different values can be specified and signaled for intra and inter coded CUs.
[0189] The quadtree transform is applied for both Intra and Inter residual blocks.
Typically the DCT-II transform of the same size of the current residual quadtree
partition is applied for a residual block. However, if the current residual quadtree block
is 4x4 and is generated by Intra prediction, the above 4x4 DST-VII transform is applied.
[0190] In HEVC, larger size transforms, e.g., 64x64 transforms, are not adopted mainly
due to their limited benefit considering and relatively high complexity for relatively
smaller resolution videos.

[0191] FIG. 10 is a conceptual diagram illustrating an example coefficient scan based
on coefficient groups. Regardless the TU size, the residual of the transform unit is
coded with non-overlapped coefficient groups (CG), each contains the coefficients of a
4x4 block of a TU. For example, a 32x32 TU has totally 64 CGs, and a 16x16 TU has
totally 16 CGs. The CGs inside a TU may be coded according to a certain pre-defined

scan order. When coding each CG, the coefficients inside the current CG are scanned

WO 2016/196287 PCT/US2016/034647

49

and coded according to a certain pre-defined scan order for 4x4 block. FIG. 10
illustrates the coefficient scan for an 8x8 TU containing 4 CGs.

[0192] The syntax element table is defined as follows:

7.3.8.11 Residual coding syntax
residual coding(x0, y0, log2TrafoSize, cldx) { Descriptor
if(transform_skip enabled flag && !cu transquant bypass flag &&
(log2TrafoSize == 2))
transform_skip flag[x0][yO][cldx] ae(v)
last_sig_coeff x_prefix ae(v)
last_sig_coeff y prefix ae(v)
if(last_sig_coeff x prefix > 3)
last_sig_coeff x_suffix ae(v)
if(last_sig_coeff y prefix > 3)
last_sig_coeff y suffix ae(v)
lastScanPos = 16
lastSubBlock = (1 << (log2TrafoSize —2))* (1 << (log2TrafoSize — 2
))—1
do {
if(lastScanPos == 0) {
lastScanPos = 16
lastSubBlock— —
}
lastScanPos— —
xS = ScanOrder[log2TrafoSize — 2][scanldx][lastSubBlock][O]
yS = ScanOrder[log2TrafoSize — 2][scanldx][lastSubBlock][1]
xC = (xS << 2)+ ScanOrder[2][scanldx][lastScanPos][O]
yC =(yS << 2)+ ScanOrder[2][scanldx][lastScanPos][1]
} while((xC != LastSignificantCoeffX) | | (yC !'= LastSignificantCoeffY
for(i1= lastSublgl)ock; 1>=01i——){
xS = ScanOrder[log2TrafoSize — 2][scanldx][1][O]
yS = ScanOrder[log2TrafoSize —2][scanldx J[1][1]
inferSbDcSigCoeffFlag = 0
if((1 <lastSubBlock) && (1>0)){
coded_sub block flag[xS][yS] ae(v)
inferSbDcSigCoeffFlag = 1
}
for(n= (1 == lastSubBlock) ? lastScanPos — 1 : 15;n >= 0;n——) {
xC = (xS << 2)+ ScanOrder[2][scanldx J[n][0]
yC=(yS << 2)+ ScanOrder[2][scanldx J[n][1]

WO 2016/196287 PCT/US2016/034647

50

if(coded sub block flag[xS][yS] && (n>0 ||
linferSbDcSigCoeffFlag)) {

sig_coeff flag] xC][yC]

ae(v)

if(sig_coeft flag[xC J[yC])

inferSbDcSigCoeffFlag =0

}

}

firstSigScanPos = 16

lastSigScanPos = —1

numGreater1Flag = 0

lastGreaterl ScanPos = —1

for(n=15n >= 0;n——){

xC = (xS << 2)+ ScanOrder[2][scanldx J[n][0]

yC=(yS << 2)+ ScanOrder[2][scanldx J[n][1]

if(sig_coeff flag[xC][yC 1) {

if(numGreater1Flag <8) {

coeff _abs level greaterl flag[n |

ae(v)

numGreater1Flag++

if(coeff abs level greater]l flag[n] && lastGreaterlScanPos
==-1)

lastGreater]l ScanPos = n

}

if(lastSigScanPos == —1)

lastSigScanPos = n

firstSigScanPos = n

}

}

signHidden = (lastSigScanPos — firstSigScanPos > 3 &&
lcu transquant bypass flag)

if(lastGreater1ScanPos = —1)

coeff abs level greater2 flag[lastGreaterl ScanPos]

ae(v)

for(n=15n >= 0;n——){

xC = (xS << 2)+ ScanOrder[2][scanldx J[n][0]

yC=(yS << 2)+ ScanOrder[2][scanldx J[n][1]

if(sig_coeft flag[xC J[yC] &&
(!sign_data hiding enabled flag || !signHidden || (n !'=
firstSigScanPos)))

coeff sign flag[n |

ae(v)

}

numSigCoeff =0

sumAbsLevel = 0

for(n=15n >= 0;n——){

WO 2016/196287 PCT/US2016/034647
51

xC = (xS << 2)+ ScanOrder[2][scanldx J[n][0]

yC=(yS << 2)+ ScanOrder[2][scanldx J[n][1]

if(sig_coeff flag[xC][yC 1) {

baseLevel = 1 + coeff abs level greaterl flag[n]+
coeff abs level greater2 flag[n]

if(baseLevel == ((numSigCoeff <8)?
((n == lastGreater1ScanPos)?3:2):1))

coeff abs level remaining[n | ae(v)

TransCoeffLevel[x0][yO][cldx][xC][yC] =
(coeff abs level remaining[n]+ baseLevel) * (1 —2*
coeff sign flag[n])

if(sign data hiding enabled flag && signHidden) {

sumAbsLevel += (coeff abs level remaining[n]+ baseLevel)

if((n == firstSigScanPos) && ((sumAbsLevel %2) == 1))

TransCoeffLevel[x0][yO][cldx][xC][yC] =
—TransCoeffLevel[x0][yO][cldx][xC][yC]

}

numSigCoeff++

}

}

}

}

[0193] For each color component, one flag may be firstly signaled to indicate whether
current TU has at least one non-zero coefficient. If there is at least one non-zero
coefficient, the position of the last significant coefficient in the coefficient scan order in
a TU is then explicitly coded with a coordinate relative to the top-left corner of the
transform unit. The vertical or horizontal component of the coordinate is represented by
its prefix and suffix, wherein prefix is binarized with truncated rice (TR) and suffix is
binarized with fixed length.

[0194] Semantics:

[0195] last_sig_coeff x prefix specifies the prefix of the column position of the last
significant coefficient in scanning order within a transform block. The values of
last_sig coeff x_prefix shall be in the range of 0 to (log2TrafoSize << 1)—1,
inclusive.

[0196] last_sig_coeff y prefix specifies the prefix of the row position of the last
significant coefficient in scanning order within a transform block. The values of
last_sig coeff y prefix shall be in the range of 0 to (log2TrafoSize << 1)—1,

inclusive.

WO 2016/196287 PCT/US2016/034647
52

[0197] last_sig_coeff x_suffix specifies the suffix of the column position of the last
significant coefficient in scanning order within a transform block. The values of
last_sig coeff x suffix shall be in the range of O to

(1 << ((last_sig coeff x prefix >> 1)—1))— 1, inclusive.

[0198] The column position of the last significant coefficient in scanning order within a

transform block LastSignificantCoeffX is derived as follows:

— Iflast_sig coeff x_suffix is not present, the following applies:

LastSignificantCoeffX = last_sig_coeff x prefix

— Otherwise (last_sig coeff x_suffix is present), the following applies:

LastSignificantCoeffX = (1 << ((last_sig_coeff x prefix >> 1)—1))*
(2 + (last_sig_coeff x prefix & 1)) +last sig coeff x suffix

[0199] last_sig_coeff y suffix specifies the suffix of the row position of the last
significant coefficient in scanning order within a transform block. The values of
last sig_coeff y suffix shall be in the range of 0 to

(1 << ((last_sig coeff y prefix >> 1)—1))— 1, inclusive.

[0200] The row position of the last significant coefficient in scanning order within a

transform block LastSignificantCoeffY is derived as follows:

— Iflast_sig coeff y suffix is not present, the following applies:

LastSignificantCoeffY = last_sig_coeff vy prefix

— Otherwise (last_sig coeff y suffix is present), the following applies:

LastSignificantCoeffY = (1 << ((last_sig coeff y prefix >> 1)—-1))*
(2 + (last_sig_coeff y prefix & 1)) +last sig coeff y_suffix

[0201] When scanldx is equal to 2, the coordinates are swapped as follows:
(LastSignificantCoeftX, LastSignificantCoeftY)=Swap(LastSignificantCoeftX,
LastSignificantCoeftY)

[0202] With such a position coded and also the coefficient scanning order of the CGs,
one flag is further signaled for CGs except the last CG (in scanning order) which
indicates whether it contains non-zero coefficients.

[0203] Context modeling of CG flag. When coding whether one CG has non-zero
coefficients, i.e., the CG flag (coded_sub_block flag in the HEVC specification), the
information of neighboring CGs are utilized to build the context. To be more specific,

the context selection for coding the CG flag is defined as:

WO 2016/196287 PCT/US2016/034647
53

(Right CG available && Flag of right CG is equal to 1) || (below CG available && Flag
of below CG is equal to 1)

[0204] Here, the right and below CG are the two neighboring CGs close to current CG.
For example, in FIG. 10, when coding the top-left 4x4 block, the right CG is defined as
the top-right 4x4 block and the below CG is defined as the left-below 4x4 block.

[0205] Note that Chroma and luma use different sets of contexts but with the same rule
to select one of them.

[0206] Details of the derivation of context index increment could be found in 9.3.4.2.4
of HEVC.

[0207] Transform coefficient coding within one CG. For those CGs that may contain
non-zero coefficients, significant flags (significant flag), absolute values of coefficients
(including coeff abs level greaterl flag, coeff abs level greater2 flag and

coeff abs level remaining) and sign information (coeft sign flag) may be further
coded for each coefficient according to the pre-defined 4x4 coefficient scan order. The
coding of transform coefficient levels is separated into multiple scan passes.

[0208] 1) First pass of the first bin coding. In this pass, all the first bins (or the bin
index 0, bin0) of transform coefficients at each position within one CG are coded except
that it could be derived that the specific transform coefficient is equal to O.

[0209] The variable sigCtx depends on the current location relative to the top-left
postion of current TU, the colour component index cldx, the transform block size, and
previously decoded bins of the syntax element coded sub block flag. Different rules
are applied depending on the TU size. Example details of the selection of the context
index increment are defined in 9.3.4.2.5 of HEVC.

[0210] 2) Second pass of the second bin coding. The coding of

coeff abs level greaterl flags is applied in this pass. The context modeling is
dependent on color component index, the current sub-block scan index, and the current
coefficient scan index within the current sub-block. Example details of the selection of
the context index increment are defined in 9.3.4.2.6 of HEVC.

[0211] 3) Third pass of the third bin coding. The coding of

coeft abs level greater2 flags is applied in this pass. The context modeling is similar
to that used by coeff abs level greaterl flags. Example details of the selection of the
context index increment are defined in 9.3.4.2.7 of HEVC.

[0212] Note that in order to improve throughput, the second and third passes may not

process all the coefticients in a CG. The first eight coeff abs level greater]l flagsina

WO 2016/196287 PCT/US2016/034647
54

CG are coded in regular mode. After that, the values are left to be coded in bypass
mode in the fifth pass by the syntax coeff abs level remaining. Similarly, only the
coeft abs level greater2 flags for the first coefficient in a CG with magnitude larger
than 1is coded. The rest of coefficients with magnitude larger than 1 of the CG use
coeff abs level remaining to code the value. This method limits the number of regular
bins for coefficient levels to a maximum of 9 per CG: 8 for the

coeff abs level greaterl flags and 1 for coeff abs level greater2 flags.

[0213] 4) Fourth pass of sign information. In some examples of HEVC, the sign of
each nonzero coefficient is coded in the fourth scan pass in bypass mode. For each CG,
and depending on a criterion, encoding the sign of the last nonzero coefficient (in
reverse scan order) is simply omitted when using sign data hidding (SDH). Instead, the
sign value is embedded in the parity of the sum of the levels of the CG using a
predefined convention: even corresponds to “+” and odd to “-.” The criterion to use
SDH is the distance in scan order between the first and the last nonzero coefficients of
the CG. If this distance is equal or larger than 4, SDH is used. This value of 4 was
chosen because it provides the largest gain on HEVC test sequences.

[0214] 5) Last pass of remaining bins. The remaining bins are coded in a further scan

pass. Let the baselLevel of a coefficient be defined as:

basel evel = significant flag + coeff abs level greaterl flag+
coeff abs level greater2 flag
[0215] Where a flag has a value of O or 1 and is inferred to be O if not present. Then, the

absolute value of the coefficient is simply:

absCoeffLevel = baselLevel + coeff abs level remaining.

[0216] The Rice parameter is set to O at the beginning of each CG and it is conditionally
updated depending on the previous value of the parameter and the current absolute level

as follows:

if absCoeftfLevel > 3 x 2m, m= min(4,m + 1).

[0217] The syntax element coeff abs level remaining may be coded in bypass mode.
In addition, some examples of HEVC employ Golomb—Rice codes for small values and
switches to an Exp-Golomb code for larger values. The transition point between the

codes is typically when the unary code length equals 4. The parameter update process

WO 2016/196287 PCT/US2016/034647
55

allows the binarization to adapt to the coefficient statistics when large values are
observed in the distribution.

[0218] Context modeling of inter pred idc. inter pred idc specifies whether listO,
list1, or bi-prediction is used for the current prediction unit. The syntax element has up
to two bins, both of which are CABAC context coded. The binairzed bin string is

defined as follows:

Yalue of ' Bin string Bin string
inter_pred_idc (nPbW +nPbH) 1= 12 | (nPbW +nPbH) I= 12
0 00 00

1 01 01

2 1 1

[0219] wherein nPbW and nPbH represent the current luma prediction block width and

height, respectively.

[0220] For each inter-coded slice, e.g., P slice or B slice, the context selection is based

on the following rule:

— If (nPbW + nPbH) is unequal to 12, the first bin is coded using four contexts

and the second bin is coded with one context. The context selection of the first
bin is according the current CU depth. In HEVC, CU depth is in the range of 0
to 3, inclusively.

[0221] FIG. 11 is a flowchart illustrating an example process for performing context-

based entropy encoding with different window sizes, in accordance with one or more

techniques of this disclosure. The techniques of FIG. 11 may be performed by a video

encoder, such as video encoder 20 illustrated in FIG. 1 and FIG. 4. For purposes of

illustration, the techniques of FIG. 11 are described within the context of video encoder

20 of FIG. 1 and FIG. 4, although video encoders having configurations different than

that of video encoder 20 may perform the techniques of FIG. 11.

[0222] Video encoder 20 may obtain a bin string (e.g., a one-dimensional binary vector)

to be encoded using context-based entropy coding (1102). For instance, entropy

encoding unit 56 of video encoder 20 may obtain the bin string by binarizing a syntax

element received from prediction processing unit 42 of video encoder 20. In some

examples, context-based entropy coding may comprise context-adaptive binary

arithmetic coding (CABAC).

WO 2016/196287 PCT/US2016/034647
56

[0223] In accordance with one or more techniques of this disclosure, video encoder 20
may determine a window size of a plurality of window sizes for a context of a plurality
of contexts (1104). In some examples, video encoder 20 may determine the window
size based on a pre-determined window size for the context. In some examples, video
encoder 20 may determine the window size by analyzing the coding efficiency of
several candidate window sizes and select the candidate window size with the best
coding efficiency as the window size for the context.

[0224] For instance, for each context, entropy encoding unit 56 may calculate the bits of
coding a recorded bin string with different window sizes and select the one with
minimum bit. In some examples, the different window sizes used by entropy encoding
unit 56 may be predefined. Some example predefined window sizes are 16, 32, 64, and
128, though other window sizes are contemplated.

[0225] In some examples, entropy encoding unit 56 may encode one or more syntax
elements that indicate the window size used to encode bit string. For instance, entropy
encoding unit 56 may encode, in a slice header of a current slice, a first flag that
indicates whether a default window size or an updated window size is used for each
context. As one example, where entropy encoding unit 56 coded one or more bit strings
of the current slice using a context associated with a window size other than the default
window size, entropy encoding unit 56 may encode a first flag in the slice header of the
current slice to indicate that one or more bit strings are of the current slice coded using a
window size other than the default window size. Similarly, where entropy encoding
unit 56 coded all of the bit strings of a slice using contexts associated with the default
window size, entropy encoding unit 56 may encode a first flag in the slice header of the
current slice to indicate that all of the bit strings of the current slice are coded using the
default window size. In some examples, the first flag may be referred to as

default updating speed flag as described in greater detail below.

[0226] In some examples, where entropy encoding unit 56 encodes a first flag in the
slice header of the current slice that indicates that one or more bit strings are of the slice
coded using a window size other than the default window size, entropy encoding unit 56
may encode, in the slice header of the current slice, a second flag that indicates whether
the window sizes associated with contexts used to code the current slice are inherited
from a previously coded slice. In some examples, the previously coded slice may be the
most recently coded slice that has one or more parameters in common with the current

slice, such as the same slice type and the same initilized QP. In some examples, the first

WO 2016/196287
57

PCT/US2016/034647

flag may be referred to as inheritance from previous flag as described in greater detail

below.
Syntax

7.3.6 Slice segment header syntax

7.3.6.1 General slice segment header syntax

slice_segment header() { Descriptor
first_slice_segment _in_pic_flag u(l)
if(nal unit type >= BLA W _LP && nal unit type <=
RSV IRAP VCL23)
no_output_of prior_pics_flag u(l)
slice_pic_parameter_set_id ue(v)
if(slice_segment header extension present flag) {
slice_segment_header extension_length ue(v)
for(1=0; 1 <slice segment header extension length; i++)
slice_segment_header extension_data_byte[1] u(8)
}
default updating speed flag u(l)
if(/default updating speed) {
inheritance_from_previous flag u(l)
if(linheritance from previous flag) {
bit map run length coding ()
speed index level coding ()
/
/
byte alignment()
}

[0227] Some example semantics for the above described syntax elements are provided

below:

[0228] default updating speed flag equal to 1 may specify that the default window size

is used for all contexts and inheritance from previous flag is not present in the slice

header. default updating speed flag equal to O may specify that

inheritance from previous flag is present in the slice header.

[0229] inheritance from previous flag equal to 1 may specify that the window sizes

associated with contexts are inherited from a previsouly coded slice with the same slice

type and same initilized QP. inheritance from previous_flag equal to 0 may specity

WO 2016/196287 PCT/US2016/034647

58

that the window sizes associated with contexts are signalled in the bitstream,

bit map run length coding() and speed index level coding are present.

[0230] In some examples, the picture to be used may be explicitly spcified. If a picture

contains multiple slices, either the first slice may be used or the id of the slice of that

picture may be explicility specified. In some examples, inheritance from previous flag

equal to 1 may specify that the window sizes associated with contexts are inherited from

a previsouly coded slice with the same slice type.

[0231] In some examples, where entropy encoding unit 56 encodes the second flag to

indicate that the window sizes associated with contexts used to code the current slice are

not inherited from a previously coded slice, entropy encoding unit 56 may code one or

more syntax elements to indicate the window sizes associated with contexts used to

code the current slice. For instance, entropy encoding unit 56 may code a one bit map

that indicate the usage of different window size, and code the new window size index

when the bit indicates a new window size. In some examples, entropy encoding unit 56

may encode the one or more syntax elements to indicate the window sizes associated

with contexts used to code the current slice as described below.

7.xxxx Bit map run lenth coding syntax

bit map run length coding () { Descriptor
run =0
ctxldx =0
while (ctxIdx < total CtxNr) {
runfi | ue(v)

ctxldx +=run[1]

if(ctxIdx >= total CtxNr) {

break;

}

ctxUpdatedSpeedFlag[ctxIdx | =1

ctxIdx ++

}

[0232] Alternatively, the following table may be defined:

WO 2016/196287
59

PCT/US2016/034647

bit map run_length coding () {

Descriptor

run =0

ctxIdx =0

while (ctxIdx < total CtxNr) {

runfi |

ue(v)

ctxldx +=run[1]

ctxUpdatedSpeedFlag[ctxIdx | =1

ctxIdx ++

}

}

7.xxxx speed index level coding syntax

speed_index level coding () {

Descriptor

for (1=0; 1 <total CtxNr; 1 ++) {

if (ctxUpdatedSpeedFlag[i]) {

ctx_idx_difference[i]

ue(v)

}

}

}

[0233] Some example semantics for the above described syntax elements are provided

below:

[0234] run[1] may indicate the number of consecutive contexts that use the default

updating speed.

[0235] ctxUpdatedSpeedFlag may be an array with total CtxNr entries. For each entry, it

may be set to be 0 before decoding one slice which indicates that each context uses the

default probabitliy updating speed, i.e., the default window size. In one exmaple, the

default window size is equal to 64.

[0236] In one example, total CtxNr may represent the total number of contexts that may

be used in current slice. In another example, total CtxNr may represent the total number

of contexts that may be used in all slices. In another example, total CtxNr may represent

the total number of selected contexts that are pre-defined.

[0237] ctx_idx_difference may indicate the difference of indices of window size

compared to the default window size.

[0238] In one example, the default window size may be equal to 64. In some examples,

such as when ctx_idx_difference is equal to 2, window size may be set to 128. In some

examples, such as when ctx_idx_difference is equal to O or 1, window size may be set

equal to (1<<(ctx_idx_difference+4)). That is, four window sizes may be supported,

WO 2016/196287 PCT/US2016/034647
60

ie., 16,32, 64, and 128, though examples with additional or fewer windows sizes are
contimplated. In some examples, entropy encoding unit 56 may signal some or all of
the above information in an active parameter set.

[0239] At the decoder side, for each slice header, a first flag may be firstly decoded
which may indicate the usage of default window size or updated window sizes for each
context. In some examples, if the first flag is equal to 1 (i.e., using updated window
sizes), a second flag may be further decoded which may indicate the inheritance from a
previously coded picture or the additional signaling of updated window sizes. If the
signaling of window sizes is needed, a bit map may be firstly signaled to indicate the
usage of different window size, and signal the new window size index when the bit
indicates a new window size.

[0240] In any case, video encoder 20 may encode, in a video bitstream and based on a
probability state of the context, a bin of the bin string (1106). For instance, entropy
encoding unit 56 may output a binary stream that represents a value or pointer to a
probability within a final coded probability interval of the context.

[0241] Video encoder 20 may update a probability state of the context model based on
the determined window size (1108). For instance, given a determined window size W;
associated with an i-th context model, entropy encoding unit 56 may update the
probability state of the i-th context model in accordance with Equation (15), below,
where k£ may represent the precision of probabilities. In one example, & is equal to 15.

k
P = {(2 IW)+ Py =By I W) MPS (e.g., 1) (15)

By =By W) LPS (e.g..(1-MPS))

[0242] When W; is equal to (1 << M;), the probability updating process performed by
entropy encoding unit 56 could be rewritten as shown in Equation (16), below

k
po= {Pm (@2 —P,)>>M,) MPS (eg.1))

P, — (P, >>M)) LPS (e.g.,(1— MPS))
[0243] Video encoder 20 may encode, in the video bitstream and based on the updated
probability state of the context, another bin (1106). In some examples, the other bin
encoded may be a second bin of the bin string.
[0244] FIG. 12 is a flowchart illustrating an example process for performing context-
based entropy decoding with different window sizes, in accordance with one or more
techniques of this disclosure. The techniques of FIG. 12 may be performed by a video
decoder, such as video decoder 30 illustrated in FIG. 1 and FIG. 6. For purposes of

WO 2016/196287 PCT/US2016/034647
61

illustration, the techniques of FIG. 12 are described within the context of video decoder
30 of FIG. 1 and FIG. 6, although video decoders having configurations different than
that of video decoder 30 may perform the techniques of FIG. 12.

[0245] Video decoder 30 may obtain, from a video bitstream, a bin string (e.g., a one-
dimensional binary vector) to be decoded using context-based entropy coding (1202).
For instance, entropy decoding unit 70 of video decoder 30 may obtain, from video data
memory 69, the bin string. In some examples, context-based entropy coding may
comprise context-adaptive binary arithmetic coding (CABAC).

[0246] In accordance with one or more techniques of this disclosure, video decoder 30
may determine a window size of a plurality of window sizes for a context of a plurality
of contexts (1204). In some examples, video decoder 30 may determine the window
size based on a pre-determined window size for the context. In some examples, video
decoder 30 may determine the window size by analyzing the coding efficiency of
several candidate window sizes and select the candidate window size with the best
coding efficiency as the window size for the context.

[0247] In some examples, entropy decoding unit 70 may encode one or more syntax
elements that indicate the window size used to encode bit string. For instance, entropy
decoding unit 70 may decode, from a slice header of a current slice, a first flag that
indicates whether a default window size or an updated window size is used for each
context. As one example, where entropy decoding unit 70 decoded one or more bit
strings of the current slice using a context associated with a window size other than the
default window size, entropy decoding unit 70 may decode a first flag from the slice
header of the current slice that indicates that one or more bit strings are of the current
slice coded using a window size other than the default window size. Similarly, where
entropy decoding unit 70 decoded all of the bit strings of a slice using contexts
associated with the default window size, entropy decoding unit 70 may decode a first
flag from the slice header of the current slice that indicates that all of the bit strings of
the current slice are coded using the default window size. In some examples, the first
flag may be referred to as default updating speed flag as described in greater detail
above.

[0248] In some examples, where entropy encoding unit 56 encodes a first flag in the
slice header of the current slice that indicates that one or more bit strings are of the slice
coded using a window size other than the default window size, entropy encoding unit 56

may encode, in the slice header of the current slice, a second flag that indicates whether

WO 2016/196287 PCT/US2016/034647
62

the window sizes associated with contexts used to code the current slice are inherited
from a previously coded slice. In some examples, the previously coded slice may be the
most recently coded slice that has one or more parameters in common with the current
slice, such as the same slice type and the same initilized QP. In some examples, the first
flag may be referred to as inheritance from previous flag as described in greater detail
above with reference to FIG. 11.

[0249] In some examples, the picture to be used may be explicitly spcified. If a picture
contains multiple slices, either the first slice may be used or the id of the slice of that
picture may be explicility specified. In some examples, inheritance from previous flag
equal to 1 may specify that the window sizes associated with contexts are inherited from
a previsouly coded slice with the same slice type.

[0250] In some examples, where the second flag indicates that the window sizes
associated with contexts used to code the current slice are not inherited from a
previously coded slice, entropy decoding unit 70 may decode one or more syntax
elements that indicate the window sizes associated with contexts used to code the
current slice. For instance, entropy decoding unit 70 may decode a one bit map that
indicate the usage of different window size, and decode the new window size index
when the bit indicates a new window size. In some examples, entropy decoding unit 70
may decode the one or more syntax elements to indicate the window sizes associated
with contexts used to code the current slice as described above with reference to

FIG. 11.

[0251] In any case, video decoder 30 may decode, based on a probability state of the
context, a bin of the bin string (1206). Video decoder 30 may update a probability state
of the context model based on the determined window size and the decoded bin (1208).
For instance, given a determined window size W; associated with an i-th context model,
entropy decoding unit 70 may update the probability state of the i-th context model in
accordance with Equation (15), above.

[0252] Video decoder 30 may decode, based on the updated probability state of the
context, another bin (1206). In some examples, the other bin encoded may be a second
bin of the bin string.

[0253] The following numbered examples may illustrate one or more aspects of the
disclosure:

[0254] Example 1. A method for entropy coding of video data, the method

comprising: determining a window size of a plurality of window sizes for a context of a

WO 2016/196287 PCT/US2016/034647
63

plurality of contexts used in a context-adaptive entropy coding process to entropy code a
value for a syntax element of the video data; entropy coding, based on a probability
state of the context, a bin of the value for the syntax element; and updating the
probability state of the context based on the window size and the coded bin.

[0255] Example 2. The method of claim 1, wherein a context-adaptive entropy
coding process comprises a context-adaptive binary arithmetic coding (CABAC)
process, or a context-adaptive variable length coding (CAVLC) process.

[0256] Example 3. The method of claim 1, further comprising: entropy coding
another bin associated with the same context based on the updated probability state.
[0257] Example 4. The method of claim 1, wherein the context is a first context, the
method further comprising: determining a window size of the plurality of window sizes
for a second context of the plurality of contexts, wherein the window size of the second
context is different than the window size of the first context.

[0258] Example 5. The method of claim 4, wherein the window size for the first
context and the window size for the second context are not signaled in a bitstream that
includes the coded bin.

[0259] Example 6. The method of claim 1, wherein the plurality of window sizes
comprises a pre-defined set of window sizes.

[0260] Example 7. The method of claim 6, wherein entropy coding comprises
entropy encoding, and wherein determining the window size comprises: determining,
for respective window sizes of the pre-defined set of window sizes, respective quantities
of bits used to entropy encode a particular bin string that includes the bin values for the
syntax element; and selecting the window size of the pre-defined set of window sizes
that corresponds to the smallest quantity of bits as the window size for the context to
entropy encode the particular bin string.

[0261] Example 8. The method of claim 1, further comprising: coding a first syntax
element that indicates whether a default window size is used for the plurality of
contexts.

[0262] Example 9. The method of claim 8, further comprising: based on the first
syntax element indicating that the default window size is not used for the plurality of
contexts, coding a second syntax element that indicates the window size for the context.
[0263] Example 10. The method of claim 9, wherein to indicate the window size for
the context, the second syntax element indicates a difference between the window size

for the context and the default window size.

WO 2016/196287 PCT/US2016/034647
64

[0264] Example 11. The method of claim 8, wherein coding the first syntax element
comprises coding a slice header of a current slice including the first syntax element,
wherein the first syntax element indicates whether the default window size is used for
the plurality of contexts when entropy coding bins of the current slice.

[0265] Example 12. The method of claim 1, further comprising: coding, in a slice
header of a current slice, a syntax element that indicates whether window sizes for the
plurality of contexts are inherited from a previously coded slice.

[0266] Example 13. The method of claim 1, wherein determining the window size for
the context comprises: determining the window size for the context based on a type of
the syntax element.

[0267] Example 14. The method of claim 1, wherein entropy coding comprises
entropy decoding, the method further comprising: decoding, from a coded video
bitstream, one or more syntax elements that indicate the window size for the context.
[0268] Example 15. An apparatus for entropy coding of video data, the apparatus
comprising: a memory configured to store a plurality of contexts used in a context-
adaptive entropy coding process to entropy code a value for a syntax element of the
video data; and one or more processors configured to: perform the method of any
combination of examples 1-14.

[0269] Example 16. The apparatus of example 15, wherein the apparatus comprises at
least one of: an integrated circuit; a microprocessor; or a wireless communication
device.

[0270] Example 17. The apparatus of any combination of examples 15-16, further
comprising a display configured to display decoded video data.

[0271] Example 18. The apparatus of any combination of examples 15-17, further
comprising a camera configured to capture the video data.

[0272] Example 19. An apparatus for entropy coding of video data, the apparatus
comprising: means for performing the method of any combination of examples 1-14.
[0273] Example 20. A computer-readable storage medium storing instructions that,
when executed, cause one or more processors of a video coding device to perform the
method of any combination of examples 1-14.

[0274] Example 21. A computer-readable storage medium storing video data that,
when processed by a video decoding device, cause one or more processors of the video
decoding device to determine a window size of a plurality of window sizes for a context

of a plurality of contexts used in a context-adaptive coding process to entropy code a

WO 2016/196287 PCT/US2016/034647
65

value for a syntax element; entropy code, based on a probability state of the context, a
bin of the value for the syntax element; update the probability state of the context based
on the window size and the coded bin; and entropy code a next bin with the same
context based on the updated probability state of the context model.

[0275] Example 22. The computer-readable storage medium of example 21, further
storing instructions that cause the one or more processors to perform the method of any
combination of examples 1-14.

[0276] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, e.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0277] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient

media, but are instead directed to non-transient, tangible storage media. Disk and disc,

06 May 2020

2016270616

66

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0278] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0279] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0280] Various examples have been described. These and other examples are within the
scope of the following claims.

[0281] It will be understood that the term “comprise” and any of its derivatives (eg
comprises, comprising) as used in this specification is to be taken to be inclusive of
features to which it refers, and is not meant to exclude the presence of any additional
features unless otherwise stated or implied.

[0282] The reference to any prior art in this specification is not, and should not be taken
as, an acknowledgement or any form of suggestion that such prior art forms part of the

common general knowledge.

06 May 2020

2016270616

67

Claims

1. A method for entropy coding of video data, the method comprising:

determining a window size of a plurality of window sizes for a first context of a
plurality of contexts used in a context-adaptive binary arithmetic coding (CABAC) process;

CABAC coding, based on a probability state of the first context, a bin of a value for a
first syntax element of the video data;

updating the probability state of the first context based on the window size for the first
context and the coded bin of the value for the first syntax element;

determining a window size of the plurality of window sizes for a second context of the
plurality of contexts, wherein the window size for the second context is different than the
window size for the first context, and wherein the window size for the second context is not
used to update the probability state of the first context;

CABAC coding, based on a probability state of the second context, a bin of a value for
a second syntax element of the video data; and

updating the probability state of the second context based on the window size for the

second context and the coded bin for the second syntax element.

2. The method of claim 1, further comprising:
CABAC coding another bin associated with the first context based on the updated

probability state of the first context.

3, The method of claim 1, wherein the window size for the first context and the window

size for the second context are not signaled in a bitstream that includes the coded bin.

4. The method of claim 1, wherein the plurality of window sizes comprises a pre-defined

set of window sizes.

5. The method of claim 4, wherein CABAC coding comprises CABAC encoding, and
wherein determining the window size comprises:

determining, for respective window sizes of the pre-defined set of window sizes,
respective quantities of bits used to CABAC encode a particular bin string that includes the

bin values for the syntax element; and

06 May 2020

2016270616

68

selecting the window size of the pre-defined set of window sizes that corresponds to
the smallest quantity of bits as the window size for the first context to CABAC encode the

particular bin string.

6. The method of claim 1, further comprising:
coding a first syntax element that indicates whether a default window size is used for

the plurality of contexts.

7. The method of claim 6, further comprising:
based on the first syntax element indicating that the default window size is not used
for the plurality of contexts, coding a second syntax element that indicates the window size

for the first context.

8. The method of claim 7, wherein to indicate the window size for the first context, the
second syntax element indicates a difference between the window size for the first context

and the default window size.

9. The method of claim 6, wherein coding the first syntax element comprises coding a
slice header of a current slice including the first syntax element, wherein the first syntax
element indicates whether the default window size is used for the plurality of contexts when

CABAC coding bins of the current slice.

10. The method of claim 1, further comprising:
coding, in a slice header of a current slice, a syntax element that indicates whether

window sizes for the plurality of contexts are inherited from a previously coded slice.

11. The method of claim 1, wherein determining the window size for the first context
comprises:
determining the window size for the first context based on a type of the first syntax

element.

12. The method of claim 1, wherein CABAC coding comprises CABAC decoding, the

method further comprising;:

06 May 2020

2016270616

69

decoding, from a coded video bitstream, one or more syntax elements that indicate the

window size for the first context.

13.

An apparatus for entropy coding of video data, the apparatus comprising:

a memory configured to store a plurality of contexts used in a context-adaptive

entropy binary arithmetic (CABAC) process; and

14.

to:

one or more processors configured to:

determine a window size of a plurality of window sizes for a first context of
the plurality of contexts;

CABAC code, based on a probability state of the first context, a bin of a value
for a first syntax element of the video data;

update the probability state of the first context based on the window size for
the first context and the coded bin of the value for the first syntax element;

determine a window size of the plurality of window sizes for a second context
of the plurality of contexts, wherein the window size for the second context is different
than the window size for the first context, and wherein the window size for the second
context is not used to update the probability state of the first context;

CABAC code, based on a probability state of the second context, a bin of a
value for a second syntax element of the video data; and

update the probability state of the second context based on the window size for

the second context and the coded bin for the second syntax element.

The apparatus of claim 13, wherein the one or more processors are further configured

CABAC code another bin associated with the first context based on the updated

probability state of the first context.

15.

The apparatus of claim 13, wherein the window size for the first context and the

window size for the second context are not signaled in a bitstream that includes the coded bin.

16.

The apparatus of claim 14, wherein the plurality of window sizes comprises a pre-

defined set of window sizes.

06 May 2020

2016270616

70

17. The apparatus of claim 16, wherein, to CABAC code, the one or more processors are
configured to CABAC encode, and wherein, to determine the window size, the one or more
processors are configured to:

determine, for respective window sizes of the pre-defined set of window sizes,
respective quantities of bits used to CABAC encode a particular bin string that includes the
bin value for the syntax element; and

select the window size of the pre-defined set of window sizes that corresponds to the
smallest quantity of bits as the window size for the first context to CABAC encode the

particular bin string.

18. The apparatus of claim 13, wherein the one or more processors are further configured
to:
code a first syntax element that indicates whether a default window size is used for the

plurality of contexts.

19. The apparatus of claim 18, wherein, based on the first syntax element indicating that
the default window size is not used for the plurality of contexts, the one or more processors
are further configured to:

code a second syntax element that indicates the window size for the first context.

20. The apparatus of claim 19, wherein to indicate the window size for the first context,
the second syntax element indicates a difference between the window size for the first context

and the default window size.

21. The apparatus of claim 18, wherein, to code the first syntax element, the one or more
processors are configured to code a slice header of a current slice including the first syntax
element, wherein the first syntax element indicates whether the default window size is used

for the plurality of context models when CABAC coding bins of the current slice.

22. The apparatus of claim 13, wherein the one or more processors are further configured
to:
code, in a slice header of a current slice, a syntax element that indicates whether

window sizes for the plurality of contexts are inherited from a previously coded slice.

06 May 2020

2016270616

71

23, The apparatus of claim 13, wherein, to determine the window size for the first context,
the one or more processors are configured to:
determine the window size for the first context based on a type of the first syntax

element.

24. The apparatus of claim 13, wherein the apparatus comprises at least one of:
an integrated circuit;
a MICroprocessor; or

a wireless communication device.

25. The apparatus of claim 24, further comprising a display configured to display decoded

video data.

26. The apparatus of claim 24, further comprising a camera configured to capture the

video data.

27. The apparatus of claim 13, wherein, to CABAC code, the one or more processors are

configured to CABAC decode the value of the syntax element.

28. An apparatus for entropy coding of video data, the apparatus comprising:

means for determining a window size of a plurality of window sizes for a first context
of a plurality of contexts used in a context-adaptive binary arithmetic coding (CABAC)
process;

means for CABAC coding, based on a probability state of the first context, a bin of a
value for a first syntax element of the video data;

means for updating the probability state of the first context based on the window size
for the first context and the coded bin of the value for the first syntax element;

means for determining a window size of the plurality of window sizes for a second
context of the plurality of contexts, wherein the window size for the second context is
different than the window size for the first context, and wherein the window size for the
second context is not used to update the probability state of the first context;

means for CABAC coding, based on a probability state of the second context, a bin of

a value for a second syntax element of the video data; and

06 May 2020

2016270616

72

means for updating the probability state of the second context based on the window

size for the second context and the coded bin for the second syntax element.

29. A non-transitory computer-readable storage medium storing instructions that, when
executed, cause one or more processors of a video coding device to:

determine a window size of a plurality of window sizes for a first context of a plurality
of contexts used in a context-adaptive binary arithmetic coding (CABAC) process;

CABAC code, based on a probability state of the first context, a bin of a value for a
first syntax element of the video data;

update the probability state of the first context based on the window size for the first
context and the coded bin of the value for the first syntax element;

determine a window size of the plurality of window sizes for a second context of the
plurality of contexts, wherein the window size for the second context of the plurality of
contexts is different than the window size for the first context, and wherein the window size
for the second context is not used to update the probability state of the first context;

CABAC code, based on a probability state of the second context, a bin of a value for a
second syntax element of the video data; and

update the probability state of the second context based on the window size of the

second context and the coded bin for the second syntax element.

WO 2016/196287

SOURCE DEVICE
12

VIDEO SOURCE
18

l

VIDEO
ENCODER
20

l

OUTPUT
INTERFACE
22

Page 1/12

— e — — —

l

| STORAGE |
- DEVICE L

| 2 |

— ——— |

PCT/US2016/034647

vy

FIG. 1

DESTINATION DEVICE
14

DISPLAY DEVICE
31

T

VIDEO
DECODER
30

T

INPUT INTERFACE
28

WO 2016/196287

Range at bin n

FIG. 2A

Range at bin n

FIG. 2B

Page 2/12

-

RangeLP$S

RangeMPS

RangeMPS

Bin n

PCT/US2016/034647

100

Bin n+1

Range at bin
n +1

Range at bin

Bin n+1

n +1

WO 2016/196287

1024

Range

¢ Low

512 p——

256 p—

Put 1

FIG. 3

Page 3/12

1024

512 p——

Range
256 p——

Put 0

PCT/US2016/034647

1024

512 p———me
Range

—tle. | OW
256 p—

BO=BO +1

PCT/US2016/034647

WO 2016/196287

Page 4/12

A ¥ 'Old
- - " ---"""--""-""""-"F"-""-"""-""-"F"""-"""-"""-"""-7"""-"F""--"-"F""-"F""="--":=—-——Yy"————V— e |
114 |
¥3AOONI 03AIN |
% % 29 |
35 SM2014 03dIA 55 _
1INN 1INN 1INN a3LoNY¥LSNOOIY Asonaw |!
oNIdooNa [$E™| ONISSIO0ud [ONISSIO0Nd + > |
NOILVZILNYND INYOASNVYL =5 FdNLOId
AJO¥INI ISHIANI ISHAANI |0 18 8y a3y | !
7y ‘aIsay 1INN _
"NOO3Y NOILOIa3yd _
VHLNI _
— I
97 _
1IN _
NOILYSNIdINOD _
NOLLOW _
) «— _
(7 _
§ ¢ 1INN |
SLININITI XVLNAS NOLLVINILST |
— NOLLOW _
4 _
LINN ONISSTD0¥d |
NOLLOIa3¥d |
— — 0§
SLN3I0144309 75 4 - q - _
INHO4SNVYL 1IN 1IN
-— -
YNaIS3y ONISSAO0Ud ONISSIO0Ud SY0018 vvGoaan | viva
a3zILNVYND NOILVZILNVND WHOJSNVYL [SHO018 03aiA | 03aIA

PCT/US2016/034647

WO 2016/196287

ocL
S} pspod ANIONS
ONIQOONT [« h
wamo_\ng SSvdAd ssedAq /V
o WeaJjsiq Jeinbai
-
o Jejnbal
o
g —
S vl =T
onGooNa [C | N
s}iq pspo2d [opow 1X3INOD uIq
dV1NO3d IX8IUOD P q
‘anjeA uiq :
+ X8o0o

a1epdn |apouw }Xajuod 1o} anjeA uig

G Old

Juswa|d Xejuhs
panjeA Aleulq

Y} < <
h Juswisle
/V xME\Aw
2142
A
ocl
A|
d3ZIdVNIg JUBWB|e XBWAS
sulq BuLLS panjea Aleuig-uou
Jano dooj uiq

PCT/US2016/034647

WO 2016/196287

Page 6 /12

9 'Old
|————— e T e - —
| — 8l 7
_ Z8 1INN 1INN
- _ AHONIN | g ONISSTD0Nd [« 9NISSTD0Nd
O3dain _ AANLIId INYO4SNVHL NOILVZILNYNO
a3aaodaa 43y 08 SX0014 ISYIANI 3ISYIANI
" IvNnais3y 7y
_
_ vZ
_ LINN
_ NOILOIa3¥d ‘44300
| VYLNI "ZILNVNO
_ 77 -
_ 1INN 1INN
_ —% | NOILVSNIdINOD | [@-=-o=osmemoossmsoesesee ONIdO23d
_ NOLLOW SINIWITA XVINAS| =7 0 oo
_ 1z
LINN ONISSID0¥d
_ NOILOIa3dd
_ |
_ 69
| AMONIN |
_ v.Liva o3alA
_ 0%

¥3a0903a oddin

NVv3¥d1slig
O3dlIA
a3doON3

PCT/US2016/034647

WO 2016/196287

Page 7 /12

L 'Old

a1epdn [apow 1Xa3Uo0d Joj 8njeA uig

f444
JUSLWB|S XBWAS ANION3 S}q pSpod
panjeA Aleuliq + ONIA0O3d
< ssediq SSVdAE | ssedAq
Jusws|e + b\ <
XejuAs b\
Jejnbau weaJlsiq
Jejnbal N
Y - vee
g m_zv_mumzm oce o
yIZINVNIE [e— onlaooag [€—— ¥313cow
Juswia[e XejuAs ISHINTY uiq YVINOIY [spow 1IX3LNOD S1g pPepoo
panjeA AJeulg-uou BuLls sUIq X8JU02 'y
uiq Jano dooj ‘anjeA uiq : ﬂ
: X8ju02

PCT/US2016/034647

Page 8/12

RangelPS{&>>], P]
R-Rips

3
)«So«! ”“
I %
w, o]
n e z
@ 5o
oo 7

WO 2016/196287

Renormb
Done

FIG. 8

=L +R

WO 2016/196287 PCT/US2016/034647

Page 9/12

¢ W

FIG. 9

WO 2016/196287 PCT/US2016/034647

Page 10/12

FIG. 10

WO 2016/196287 PCT/US2016/034647

Page 11 /12

OBTAIN BIN STRING TO BE ENCODED USING CONTEXT- 1102
BASED ENTROPY CODING PROCESS

l

DETERMINE WINDOW SIZE OF PLURALITY OF WINDOWS SIZES 1104
FOR CONTEXT OF PLURALITY OF CONTEXTS

l

ENCODE, IN VIDEO BITSTREAM AND BASED ON PROBABILITY 1106

STATE OF CONTEXT, BIN

l

UPDATE PROBABILITY STATE OF CONTEXT BASED ON 1108
DETERMINED WINDOW SIZE AND THE ENCODED BIN

FIG. 11

WO 2016/196287 PCT/US2016/034647

Page 12/12

OBTAIN, FROM VIDEO BISTREAM, BIN STRING TO BE 1202
DECODED USING CONTEXT-BASED ENTROPY CODING a
PROCESS

l

DETERMINE WINDOW SIZE OF PLURALITY OF WINDOWS SIZES 1204
FOR CONTEXT OF PLURALITY OF CONTEXTS

l

DECODE, BASED ON PROBABILITY STATE OF CONTEXT, BIN |—1206

l

UPDATE PROBABILITY STATE OF CONTEXT BASED ON 1208
DETERMINED WINDOW SIZE AND THE ENCODED BIN

FIG. 12

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

