
(12) STANDARD PATENT (11) Application No. AU 2016270616 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Advanced arithmetic coder

(51) International Patent Classification(s)
HO4N 19/70 (2014.01) HO4N 191184 (2014.01)
HO3M 7/40 (2006.01) HO4N 19/46 (2014.01)
HO4N 19/13 (2014.01) HO4N 19/91 (2014.01)
HO4N 19/146 (2014.01)

(21) Application No: 2016270616 (22) Date of Filing: 2016.05.27

(87) WIPO No: W016/196287

(30) Priority Data

(31) Number (32) Date (33) Country
15/166,044 2016.05.26 US
62/168,503 2015.05.29 US

(43) Publication Date: 2016.12.08
(44) Accepted Journal Date: 2020.06.25

(71) Applicant(s)
QualcommIncorporated

(72) Inventor(s)
Zhang, Li;Chen, Jiane;Zhao, Xin;Li, Xiang;Liu, Hongbin;Chen, Ying;Karczewicz, Marta

(74) Agent / Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

(56) Related Art
BELYAEV E ET AL, "Binary Arithmetic Coding System with Adaptive Probability
Estimation by Virtual Sliding Window", 2006 IEEE TENTH INTERNATIONAL
SYMPOSIUM, IEEE, (2006-06-28), ISBN 978-1-4244-0216-8, pages 1 - 5

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2016/196287 Al
8 December 2016 (08.12.2016) WIPOIPCT

(51) International Patent Classification: CHEN, Ying; 5775 Morehouse Drive, San Diego, Califor
H04N19/70 (2014.01) H04N19/91 (2014.01) nia 92121-1714 (US). KARCZEWICZ, Marta; 5775
H03M 7/40 (2006.01) H04N19/184 (2014.01) Morehouse Drive, San Diego, California 92121-1714 (US).
H04N19/46 (2014.01) H04N19/146 (2014.01) (74) Agent: ROSENBERG, Brian M.; Shumaker & Sieffert, H04N19/13 (2014.01) P.A., 1625 Radio Drive, Suite 300, Woodbury, Minnesota

(21) International Application Number: 55125 (US).
PCT/US2016/034647 (81) Designated States (unless otherwise indicated, for every

(22) International Filing Date: kind of national protection available): AE, AG, AL, AM,
27 May 2016 (27.05.2016) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) FilingLanguage: English DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,
(26) Publication Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

62/168,503 29 May 2015 (29.05.2015) US PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
15/166,044 26 May 2016 (26.05.2016) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

(71) Applicant: QUALCOMM INCORPORATED [US/US]; TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

ATTN: International IP Administration, 5775 Morehouse (84) Designated States (unless otherwise indicated, for every
Drive, San Diego, California 92121-1714 (US). kind of regional protection available): ARIPO (BW, GH,

(72) Inventors: ZHANG, Li; 5775 Morehouse Drive, San GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

Diego, California 92121-1714 (US). CHEN, Jianle; 5775 TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

Morehouse Drive, San Diego, California 92121-1714 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

ZHAO, Xin; 5775 Morehouse Drive, San Diego, Califor- DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

nia92121-1714(US). LI,Xiang;5775MorehouseDrive, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

San Diego, California 92121-1714 (US). LIU, Hongbin; SM,TR),OAPI(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,
Room 9-202, 37th Building, Longhuayuan 2nd Section, GW, KM, ML, MR, NE, SN, TD, TG).

Huilongguan, Changping District, Beijing 102208 (CN).

[Continued on nextpage]

(54) Title: ADVANCED ARITHMETIC CODER

OBTAIN, FROM VIDEO BISTREAM, BIN STRING TO BE 1202
DECODED USING CONTEXT-BASED ENTROPY CODING

PROCESS

DETERMINE WINDOW SIZE OF PLURALITY OF WINDOWS SIZES 1204
FOR CONTEXT OF PLURALITY OF CONTEXTS

DECODE, BASED ON PROBABILITY STATE OF CONTEXT, BIN 1206

UPDATE PROBABILITY STATE OF CONTEXT BASED ON 1208
DETERMINED WINDOW SIZE AND THE ENCODED BIN

FIG. 12

(57) Abstract: An example method of entropy coding video data includes determining a window size of a plurality of window sizes
for a context of a plurality of contexts used in a context-adaptive coding process to entropy code a value for a syntax element of the
video data; entropy coding, based on a probability state of the context, a bin of the value for the syntax element; updating a probabil
ity state of the context based on the window size and the coded bin. The example method also includes entropy coding a next bin
with the same context based on the updated probability state of the context.

W O 20 16/9||lllA|ll1 |l1l1l1lIl1|||||||||||V|||||||||||||||I ||||||V ||||||

Published: - before the expiration of the time limit for amending the
with international search report (Art. 21(3)) claims and to be republished in the event of receipt of

amendments (Rule 48.2(h))

WO 2016/196287 PCT/US2016/034647
1

ADVANCED ARITHMETIC CODER

[0001] This application claims the benefit of U.S. Provisional Application No.

62/168,503 filed May 29, 2015, the entire content of which is incorporated herein by

reference.

TECHNICAL FIELD

[0002] This disclosure relates to video coding and, more particularly, to techniques for

binary arithmetic coding of video data.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,

including digital televisions, digital direct broadcast systems, wireless broadcast

systems, personal digital assistants (PDAs), laptop or desktop computers, digital

cameras, digital recording devices, digital media players, video gaming devices, video

game consoles, cellular or satellite radio telephones, video teleconferencing devices, and

the like. Digital video devices implement video compression techniques, such as those

described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video

Coding (HEVC) standard, and extensions of such standards, to transmit, receive and

store digital video information more efficiently.

[0004] Video compression techniques include spatial prediction and/or temporal

prediction to reduce or remove redundancy inherent in video sequences. For block

based video coding, a video frame or slice may be partitioned into blocks. Each block

can be further partitioned. Blocks in an intra-coded (I) frame or slice are encoded using

spatial prediction with respect to reference samples in neighboring blocks in the same

frame or slice. Blocks in an inter-coded (P or B) frame or slice may use spatial

prediction with respect to reference samples in neighboring blocks in the same frame or

slice or temporal prediction with respect to reference samples in other reference frames.

Spatial or temporal prediction results in a predictive block for a block to be coded.

Residual data represents pixel differences between the original block to be coded and

the predictive block.

[0005] An inter-coded block is encoded according to a motion vector that points to a

block of reference samples forming the predictive block, and the residual data indicating

WO 2016/196287 PCT/US2016/034647
2

the difference between the coded block and the predictive block. An intra-coded block

is encoded according to an intra-coding mode and the residual data. For further

compression, the residual data may be transformed from the pixel domain to a transform

domain, resulting in residual transform coefficients, which then may be quantized. The

quantized transform coefficients, initially arranged in a two-dimensional array, may be

scanned in a particular order to produce a one-dimensional vector of transform

coefficients for entropy coding.

[0006] Various entropy coding processes may utilized to code residual transform

coefficients, motion vector information, syntax elements, and other associated

information. Examples of various entropy coding and other data compression processes

include context-adaptive variable length coding (CAVLC), context-adaptive binary

arithmetic coding (CABAC), probability interval partitioning entropy coding (PIPE),

Golomb coding, Golomb-Rice coding, and exponential Golomb coding.

SUMMARY

[0007] In general, this disclosure describes techniques for performing video coding.

More particularly, this disclosure describes example techniques for performing context

based entropy coding with different window sizes. In some examples, the techniques

described in this disclosure may enable performance of CABAC with different window

sizes. In other examples, the techniques described in this disclosure may be applied to

other entropy coders which use contexts for coding symbols, such as context-based

variable length coding.

[0008] In one example, a method for entropy coding of video data includes determining

a window size of a plurality of window sizes for a context of a plurality of contexts used

in a context-adaptive entropy coding process (e.g., a CABAC or CAVLC process) to

entropy code a value for a syntax element. In this example, the method also includes

entropy coding a bin of the value for the syntax element, and updating a probability

state of the context based on the window size and the coded bin. In this example, the

method also includes entropy coding the next bin with the same context based on the

updated probability state of the context.

[0009] In another example, an apparatus for entropy coding of video data includes one

or more processors and a memory configured to store a plurality of contexts used in a

context-adaptive entropy coding process to entropy code a value for a syntax element of

WO 2016/196287 PCT/US2016/034647
3

the video data. In this example, the one or more processors are configured to determine

a window size for a context of the plurality of contexts. In this example, the one or

more processors are further configured to entropy code a bin of the value for the syntax

element based on a probability state of the context, update the probability state of the

context based on the window size and the coded bin; and code, based on the updated

probability state of the context, the next bin with the same context based on the updated

probability state of the context.

[0010] In another example, an apparatus for entropy coding of video data includes

means for determining a window size of a plurality of window sizes for a context of a

plurality of contexts used in a context-adaptive coding process to entropy code a value

for a syntax element of the video data; means for entropy coding, based on a probability

state of the context, a bin of the value for the syntax element; means for updating the

probability state of the context model based on the window size and the coded bin. In

this example, the apparatus also includes means for entropy coding a next bin with the

same context based on the updated probability state of the context model.

[0011] In another example, a computer-readable storage medium stores instructions

that, when executed, cause one or more processors of a video coding device to

determine a window size of a plurality of window sizes for a context of a plurality of

contexts used in a context-adaptive coding process to entropy code a value for a syntax

element of the video data; entropy code, based on a probability state of the context, a

bin of the value for the syntax element; update the probability state of the context based

on the window size and the coded bin; and entropy code a next bin with the same

context based on the updated probability state of the context model.

[0012] In another example, a computer-readable storage medium stores video data that,

when processed by a video decoding device, cause one or more processors of the video

decoding device to determine a window size of a plurality of window sizes for a context

of a plurality of contexts used in a context-adaptive coding process to entropy code a

value for a syntax element; entropy code, based on a probability state of the context, a

bin of the value for the syntax element; update the probability state of the context based

on the window size and the coded bin; and entropy code a next bin with the same

context based on the updated probability state of the context model.

[0013] The details of one or more aspects of the disclosure are set forth in the

accompanying drawings and the description below. Other features, objects, and

WO 2016/196287 PCT/US2016/034647
4

advantages of the techniques described in this disclosure will be apparent from the

description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0014] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system.

[0015] FIGS. 2A and 2B are conceptual diagrams illustrating a range update process in

binary arithmetic coding.

[0016] FIG. 3 is a conceptual diagram illustrating an output process in binary arithmetic

coding.

[0017] FIG. 4 is a block diagram illustrating an example video encoder.

[0018] FIG. 5 is a block diagram illustrating a context adaptive binary arithmetic coder

in a video encoder.

[0019] FIG. 6 is a block diagram illustrating an example video decoder.

[0020] FIG. 7 is a block diagram illustrating a context adaptive binary arithmetic coder

in a video decoder.

[0021] FIG. 8 illustrates a binary arithmetic encoding process for a given bin value

using a regular coding mode.

[0022] FIG. 9 is a conceptual diagram illustrating an example transform scheme based

on residual quadtree.

[0023] FIG. 10 is a conceptual diagram illustrating an example coefficient scan based

on coefficient groups.

[0024] FIG. 11 is a flowchart illustrating an example process for performing context

based entropy encoding with different window sizes, in accordance with one or more

techniques of this disclosure.

[0025] FIG. 12 is a flowchart illustrating an example process for performing context

based entropy decoding with different window sizes, in accordance with one or more

techniques of this disclosure.

DETAILED DESCRIPTION

[0026] The techniques of this disclosure are generally related to an entropy coding

module in block-based hybrid video coding. These techniques may be applied to any

existing video codecs, such as HEVC (High Efficiency Video Coding) or these

WO 2016/196287 PCT/US2016/034647
5

techniques may be an efficient coding tool in any future video coding standards or other

proprietary or non-proprietary coding techniques. For purposes of example and

explanation, the techniques of this disclosure are generally described with respect to

HEVC (or ITU-T H.265) and/or ITU-T H.264. Additionally, for purposes of example

and explanation, the techniques of this disclosure are generally described with respect to

CABAC coders, although it is understood that the techniques of this disclosure may be

applicable to other context-based entropy coders, such as context-adaptive variable

length coders.

[0027] FIG. 1 is a block diagram illustrating an example video encoding and decoding

system 10 that may utilize techniques for coding data according to a CABAC design

with variable window sizes. As shown in FIG. 1, system 10 includes a source device 12

that provides encoded video data to be decoded at a later time by a destination device

14. In particular, source device 12 provides the video data to destination device 14 via a

computer-readable medium 16. Source device 12 and destination device 14 may

comprise any of a wide range of devices, including desktop computers, notebook (i.e.,

laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called

"smart" phones, so-called "smart" pads, televisions, cameras, display devices, digital

media players, video gaming consoles, video streaming device, or the like. In some

cases, source device 12 and destination device 14 may be equipped for wireless

communication.

[0028] Destination device 14 may receive the encoded video data to be decoded via

computer-readable medium 16. Computer-readable medium 16 may comprise any type

of medium or device capable of moving the encoded video data from source device 12

to destination device 14. In one example, computer-readable medium 16 may comprise

a communication medium to enable source device 12 to transmit encoded video data

directly to destination device 14 in real-time. The encoded video data may be

modulated according to a communication standard, such as a wireless communication

protocol, and transmitted to destination device 14. The communication medium may

comprise any wireless or wired communication medium, such as a radio frequency (RF)

spectrum or one or more physical transmission lines. The communication medium may

form part of a packet-based network, such as a local area network, a wide-area network,

or a global network such as the Internet. The communication medium may include

routers, switches, base stations, or any other equipment that may be useful to facilitate

communication from source device 12 to destination device 14.

WO 2016/196287 PCT/US2016/034647
6

[0029] In some examples, encoded data may be output from output interface 22 to a

storage device. Similarly, encoded data may be accessed from the storage device by

input interface. The storage device may include any of a variety of distributed or locally

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,

flash memory, volatile or non-volatile memory, or any other suitable digital storage

media for storing encoded video data. In a further example, the storage device may

correspond to a file server or another intermediate storage device that may store the

encoded video generated by source device 12. Destination device 14 may access stored

video data from the storage device via streaming or download. The file server may be

any type of server capable of storing encoded video data and transmitting that encoded

video data to the destination device 14. Example file servers include a web server (e.g.,

for a website), an FTP server, network attached storage (NAS) devices, or a local disk

drive. Destination device 14 may access the encoded video data through any standard

data connection, including an Internet connection. This may include a wireless channel

(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a

combination of both that is suitable for accessing encoded video data stored on a file

server. The transmission of encoded video data from the storage device may be a

streaming transmission, a download transmission, or a combination thereof.

[0030] The techniques of this disclosure are not necessarily limited to wireless

applications or settings. The techniques may be applied to video coding in support of

any of a variety of multimedia applications, such as over-the-air television broadcasts,

cable television transmissions, satellite television transmissions, Internet streaming

video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital

video that is encoded onto a data storage medium, decoding of digital video stored on a

data storage medium, or other applications. In some examples, system 10 may be

configured to support one-way or two-way video transmission to support applications

such as video streaming, video playback, video broadcasting, and/or video telephony.

[0031] In the example of FIG. 1, source device 12 includes video source 18, video

encoder 20, and output interface 22. Destination device 14 includes input interface 28,

video decoder 30, and display device 31. In accordance with this disclosure, video

encoder 20 of source device 12 may be configured to apply the techniques for coding

data according to an enhanced CABAC design. In other examples, a source device and

a destination device may include other components or arrangements. For example,

source device 12 may receive video data from an external video source 18, such as an

WO 2016/196287 PCT/US2016/034647
7

external camera. Likewise, destination device 14 may interface with an external display

device, rather than including an integrated display device.

[0032] The illustrated system 10 of FIG. 1 is merely one example. Techniques for

coding data according to an enhanced CABAC design may be performed by any digital

video encoding and/or decoding device. Although generally the techniques of this

disclosure are performed by a video encoding device, the techniques may also be

performed by a video encoder/decoder, typically referred to as a "CODEC." Moreover,

the techniques of this disclosure may also be performed by a video preprocessor.

Source device 12 and destination device 14 are merely examples of such coding devices

in which source device 12 generates coded video data for transmission to destination

device 14. In some examples, devices 12, 14 may operate in a substantially symmetrical

manner such that each of devices 12, 14 include video encoding and decoding

components. Hence, system 10 may support one-way or two-way video transmission

between video devices 12, 14, e.g., for video streaming, video playback, video

broadcasting, or video telephony.

[0033] Video source 18 of source device 12 may include a video capture device, such as

a video camera, a video archive containing previously captured video, and/or a video

feed interface to receive video from a video content provider. As a further alternative,

video source 18 may generate computer graphics-based data as the source video, or a

combination of live video, archived video, and computer-generated video. In some

cases, if video source 18 is a video camera, source device 12 and destination device 14

may form so-called camera phones or video phones. As mentioned above, however, the

techniques described in this disclosure may be applicable to video coding in general,

and may be applied to wireless and/or wired applications. In each case, the captured,

pre-captured, or computer-generated video may be encoded by video encoder 20. The

encoded video information may then be output by output interface 22 onto a computer

readable medium 16.

[0034] Computer-readable medium 16 may include transient media, such as a wireless

broadcast or wired network transmission, or non-transient storage media (that is, non

transitory storage media), such as a hard disk, flash drive, compact disc, digital video

disc, Blu-ray disc, or other computer-readable media. In some examples, a network

server (not shown) may receive encoded video data from source device 12 and provide

the encoded video data to destination device 14, e.g., via network transmission.

Similarly, a computing device of a medium production facility, such as a disc stamping

WO 2016/196287 PCT/US2016/034647
8

facility, may receive encoded video data from source device 12 and produce a disc

containing the encoded video data. When processed by a video decoding device, the

encoded video data on the disc may cause the video decoding device to decode the

video data according to various examples disclosed herein. Therefore, computer

readable medium 16 may be understood to include one or more computer-readable

media of various forms, in various examples.

[0035] Input interface 28 of destination device 14 receives information from computer

readable medium 16. The information of computer-readable medium 16 may include

syntax information defined by video encoder 20, which is also used by video decoder

30, that includes syntax elements that describe characteristics and/or processing of

blocks and other coded units, e.g., GOPs. Display device 32 displays the decoded video

data to a user, and may comprise any of a variety of display devices such as a cathode

ray tube (CRT), a liquid crystal display (LCD), a plasma display, an organic light

emitting diode (OLED) display, or another type of display device.

[0036] Video encoder 20 and video decoder 30 may operate according to a video coding

standard, such as the High Efficiency Video Coding (HEVC) standard, also referred to

as ITU-T H.265. Alternatively, video encoder 20 and video decoder 30 may operate

according to other proprietary or industry standards, such as the ITU-T H.264 standard,

alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or

extensions of such standards. The techniques of this disclosure, however, are not

limited to any particular coding standard. Other examples of video coding standards

include MPEG-2 and ITU-T H.263. Although not shown in FIG. 1, in some aspects,

video encoder 20 and video decoder 30 may each be integrated with an audio encoder

and decoder, and may include appropriate MUX-DEMUX units, or other hardware and

software, to handle encoding of both audio and video in a common data stream or

separate data streams. If applicable, MUX-DEMUX units may conform to the ITU

H.223 multiplexer protocol, or other protocols such as the user datagram protocol

(UDP).

[0037] Video encoder 20 and video decoder 30 each may be implemented as any of a

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal

processors (DSPs), application specific integrated circuits (ASICs), field programmable

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations

thereof. When the techniques are implemented partially in software, a device may store

instructions for the software in a suitable, non-transitory computer-readable medium and

WO 2016/196287 PCT/US2016/034647
9

execute the instructions in hardware using one or more processors to perform the

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be

included in one or more encoders or decoders, either of which may be integrated as part

of a combined encoder/decoder (CODEC) in a respective device.

[0038] In general, according to HEVC, a video frame or picture may be divided into a

sequence of treeblocks or largest coding units (LCU) that include both luma and chroma

samples. Syntax data within a bitstream may define a size for the LCU, which is a

largest coding unit in terms of the number of pixels. A slice includes a number of

consecutive treeblocks in coding order. A video frame or picture may be partitioned into

one or more slices. Each treeblock may be split into coding units (CUs) according to a

quadtree. In general, a quadtree data structure includes one node per CU, with a root

node corresponding to the treeblock. If a CU is split into four sub-CUs, the node

corresponding to the CU includes four leaf nodes, each of which corresponds to one of

the sub-CUs.

[0039] Each node of the quadtree data structure may provide syntax data for the

corresponding CU. For example, a node in the quadtree may include a split flag,

indicating whether the CU corresponding to the node is split into sub-CUs. Syntax

elements for a CU may be defined recursively, and may depend on whether the CU is

split into sub-CUs. If a CU is not split further, it is referred as a leaf-CU. In this

disclosure, four sub-CUs of a leaf-CU will also be referred to as leaf-CUs even if there

is no explicit splitting of the original leaf-CU. For example, if a CU at 16x16 size is not

split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs although the

16x16 CU was never split.

[0040] A CU has a similar purpose as a macroblock of the H.264 standard, except that a

CU does not have a size distinction. For example, a treeblock may be split into four

child nodes (also referred to as sub-CUs), and each child node may in turn be a parent

node and be split into another four child nodes. A final, unsplit child node, referred to

as a leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU.

Syntax data associated with a coded bitstream may define a maximum number of times

a treeblock may be split, referred to as a maximum CU depth, and may also define a

minimum size of the coding nodes. Accordingly, a bitstream may also define a smallest

coding unit (SCU). This disclosure uses the term "block" to refer to any of a CU,

prediction unit (PU), or transform unit (TU), in the context of HEVC, or similar data

WO 2016/196287 PCT/US2016/034647
10

structures in the context of other standards (e.g., macroblocks and sub-blocks thereof in

H.264/AVC).

[0041] A CU includes a coding node and prediction units (PUs) and transform units

(TUs) associated with the coding node. A size of the CU corresponds to a size of the

coding node and is generally square in shape. The size of the CU may range from 8x8

pixels up to the size of the treeblock with a maximum size, e.g., 64x64 pixels or greater.

Each CU may contain one or more PUs and one or more TUs. Syntax data associated

with a CU may describe, for example, partitioning of the CU into one or more PUs.

Partitioning modes may differ between whether the CU is skip or direct mode encoded,

intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be

partitioned to be non-square in shape. Syntax data associated with a CU may also

describe, for example, partitioning of the CU into one or more TUs according to a

quadtree. A TU can be square or non-square (e.g., rectangular) in shape.

[0042] The HEVC standard allows for transformations according to TUs, which may be

different for different CUs. The TUs are typically sized based on the size of PUs within

a given CU defined for a partitioned LCU, although this may not always be the case.

The TUs are typically the same size or smaller than the PUs. In some examples,

residual samples corresponding to a CU may be subdivided into smaller units using a

quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT

may be referred to as transform units (TUs). Pixel difference values associated with the

TUs may be transformed to produce transform coefficients, which may be quantized.

[0043] A leaf-CU may include one or more prediction units (PUs). In general, a PU

represents a spatial area corresponding to all or a portion of the corresponding CU, and

may include data for retrieving and/or generating a reference sample for the PU.

Moreover, a PU includes data related to prediction. For example, when the PU is intra

mode encoded, data for the PU may be included in a residual quadtree (RQT), which

may include data describing an intra-prediction mode for a TU corresponding to the PU.

The RQT may also be referred to as a transform tree. In some examples, the intra

prediction mode may be signaled in the leaf-CU syntax, instead of the RQT. As another

example, when the PU is inter-mode encoded, the PU may include data defining motion

information, such as one or more motion vectors, for the PU. The data defining the

motion vector for a PU may describe, for example, a horizontal component of the

motion vector, a vertical component of the motion vector, a resolution for the motion

vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference

WO 2016/196287 PCT/US2016/034647
11

picture to which the motion vector points, and/or a reference picture list (e.g., List 0,

List 1, or List C) for the motion vector.

[0044] A leaf-CU having one or more PUs may also include one or more transform

units (TUs). The transform units may be specified using an RQT (also referred to as a

TU quadtree structure), as discussed above. For example, a split flag may indicate

whether a leaf-CU is split into four transform units. Then, each transform unit may be

split further into further sub-TUs. When a TU is not split further, it may be referred to

as a leaf-TU. Generally, for intra coding, all the leaf-TUs belonging to a leaf-CU share

the same intra prediction mode. That is, the same intra-prediction mode is generally

applied to calculate predicted values for all TUs of a leaf-CU. For intra coding, a video

encoder may calculate a residual value for each leaf-TU using the intra prediction mode,

as a difference between the portion of the CU corresponding to the TU and the original

block. A TU is not necessarily limited to the size of a PU. Thus, TUs may be larger or

smaller than a PU. For intra coding, a PU may be collocated with a corresponding leaf

TU for the same CU. In some examples, the maximum size of a leaf-TU may

correspond to the size of the corresponding leaf-CU.

[0045] Moreover, TUs of leaf-CUs may also be associated with respective quadtree data

structures, referred to as residual quadtrees (RQTs). That is, a leaf-CU may include a

quadtree indicating how the leaf-CU is partitioned into TUs. The root node of a TU

quadtree generally corresponds to a leaf-CU, while the root node of a CU quadtree

generally corresponds to a treeblock (or LCU). TUs of the RQT that are not split are

referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to

leaf-CU and leaf-TU, respectively, unless noted otherwise.

[0046] A video sequence typically includes a series of video frames or pictures. A

group of pictures (GOP) generally comprises a series of one or more of the video

pictures. A GOP may include syntax data in a header of the GOP, a header of one or

more of the pictures, or elsewhere, that describes a number of pictures included in the

GOP. Each slice of a picture may include slice syntax data that describes an encoding

mode for the respective slice. Video encoder 20 typically operates on video blocks

within individual video slices in order to encode the video data. A video block may

correspond to a coding node within a CU. The video blocks may have fixed or varying

sizes, and may differ in size according to a specified coding standard.

[0047] As an example, prediction may be performed for PUs of various sizes.

Assuming that the size of a particular CU is 2Nx2N, intra-prediction may be performed

WO 2016/196287 PCT/US2016/034647
12

on PU sizes of 2Nx2N or NxN, and inter-prediction may be performed on symmetric

PU sizes of 2Nx2N, 2NxN, Nx2N, or NxN. Asymmetric partitioning for inter

prediction may also be performed for PU sizes of 2NxnU, 2NxnD, nLx2N, and nRx2N.

In asymmetric partitioning, one direction of a CU is not partitioned, while the other

direction is partitioned into 25% and 75%. The portion of the CU corresponding to the

25% partition is indicated by an "n" followed by an indication of "Up", "Down," "Left,"

or "Right." Thus, for example, "2NxnU" refers to a 2Nx2N CU that is partitioned

horizontally with a 2Nx.5N PU on top and a 2Nx1.5N PU on bottom.

[0048] In this disclosure, "NxN" and "N by N" may be used interchangeably to refer to

the pixel dimensions of a video block in terms of vertical and horizontal dimensions,

e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a

vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an

NxN block generally has N pixels in a vertical direction and N pixels in a horizontal

direction, where N represents a nonnegative integer value. The pixels in a block may be

arranged in rows and columns. Moreover, blocks need not necessarily have the same

number of pixels in the horizontal direction as in the vertical direction. For example,

blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0049] Following intra-predictive or inter-predictive coding using the PUs of a CU,

video encoder 20 may calculate residual data for the TUs of the CU. The PUs may

comprise syntax data describing a method or mode of generating predictive pixel data in

the spatial domain (also referred to as the pixel domain) and the TUs may comprise

coefficients in the transform domain following application of a transform, e.g., a

discrete cosine transform (DCT), an integer transform, a wavelet transform, or a

conceptually similar transform to residual video data. The residual data may correspond

to pixel differences between pixels of the unencoded picture and prediction values

corresponding to the PUs. Video encoder 20 may form the TUs to include quantized

transform coefficients representative of the residual data for the CU. That is, video

encoder 20 may calculate the residual data (in the form of a residual block), transform

the residual block to produce a block of transform coefficients, and then quantize the

transform coefficients to form quantized transform coefficients. Video encoder 20 may

form a TU including the quantized transform coefficients, as well as other syntax

information (e.g., splitting information for the TU).

[0050] As noted above, following any transforms to produce transform coefficients,

video encoder 20 may perform quantization of the transform coefficients. Quantization

WO 2016/196287 PCT/US2016/034647
13

generally refers to a process in which transform coefficients are quantized to possibly

reduce the amount of data used to represent the coefficients, providing further

compression. The quantization process may reduce the bit depth associated with some

or all of the coefficients. For example, an n-bit value may be rounded down to an m-bit

value during quantization, where n is greater than m.

[0051] Following quantization, the video encoder may scan the transform coefficients,

producing a one-dimensional vector from the two-dimensional matrix including the

quantized transform coefficients. The scan may be designed to place higher energy (and

therefore lower frequency) coefficients at the front of the array and to place lower

energy (and therefore higher frequency) coefficients at the back of the array. In some

examples, video encoder 20 may utilize a predefined scan order to scan the quantized

transform coefficients to produce a serialized vector that can be entropy encoded. In

other examples, video encoder 20 may perform an adaptive scan. After scanning the

quantized transform coefficients to form a one-dimensional vector, video encoder 20

may entropy encode the one-dimensional vector, e.g., according to the context-adaptive

binary arithmetic coding (CABAC) design described in this disclosure. Video encoder

20 may also entropy encode syntax elements associated with the encoded video data for

use by video decoder 30 in decoding the video data.

[0052] In general, video decoder 30 performs a substantially similar, albeit reciprocal,

process to that performed by video encoder 20 to decode encoded data. For example,

video decoder 30 inverse quantizes and inverse transforms coefficients of a received TU

to reproduce a residual block. Video decoder 30 uses a signaled prediction mode (intra

or inter-prediction) to form a predicted block. Then video decoder 30 combines the

predicted block and the residual block (on a pixel-by-pixel basis) to reproduce the

original block. Additional processing may be performed, such as performing a

deblocking process to reduce visual artifacts along block boundaries. Furthermore,

video decoder 30 may decode syntax elements using CABAC in a manner substantially

similar to, albeit reciprocal to, the CABAC encoding process of video encoder 20.

[0053] This disclosure may generally refer to video encoder 20 "signaling" certain

information to another device, such as video decoder 30. It should be understood,

however, that video encoder 20 may signal information by associating certain syntax

elements with various encoded portions of video data. That is, video encoder 20 may

"signal" data by storing certain syntax elements to headers of various encoded portions

of video data. In some cases, such syntax elements may be encoded and stored (e.g.,

WO 2016/196287 PCT/US2016/034647
14

stored to storage device 32) prior to being received and decoded by video decoder 30.

Thus, the term "signaling" may generally refer to the communication of syntax or other

data for decoding compressed video data, whether such communication occurs in real

or near-real-time or over a span of time, such as might occur when storing syntax

elements to a medium at the time of encoding, which then may be retrieved by a

decoding device at any time after being stored to this medium.

[0054] The following section will describe BAC and CABAC techniques in more detail.

BAC, in general, is a recursive interval-subdividing procedure. BAC is used to encode

bins in the CABAC process in the H.264/AVC and H.265/HEVC video coding

standards. The output of the BAC coder is a binary stream that represents a value or

pointer to a probability within a final coded probability interval. The probability

interval is specified by a range and a lower end value. Range is the extension of the

probability interval. Low is the lower bound of the coding interval.

[0055] Application of arithmetic coding to video coding is described in D. Marpe, H.

Schwarz, and T. Wiegand "Context-Based Adaptive Binary Arithmetic Coding in the

H.264/AVC Video Compression Standard," IEEE Trans. Circuits and Systems for

Video Technology, vol. 13, no. 7, July 2003. CABAC involves three main functions,

namely, binarization, context modeling, and arithmetic coding. Binarization refers to

the function of mapping syntax elements to binary symbols (or "bins"). Binary symbols

may also be referred to as "bin strings." Context modeling refers to the function of

estimating the probability of the various bins. Arithmetic coding refers to the

subsequent function of compressing the bins to bits, based on the estimated probability.

Various devices and/or modules thereof, such as a binary arithmetic coder, may perform

the function of arithmetic coding.

[0056] Several different binarization processes are used in HEVC, including unary (U),

truncated unary (TU), kth-order Exp-Golomb (EGk), and fixed length (FL). Details of

various binarization processes are described in V. Sze and M. Budagavi, "High

throughput CABAC entropy coding in HEVC," IEEE Transactions on Circuits and

Systems for Video Technology (TCSVT), vol. 22, no. 12, pp. 1778-1791, December

2012.

[0057] Each context (i.e., probability model) in CABAC is represented by a state. Each

state (a) implicitly represents a probability (p) of a particular symbol (e.g., a bin) being

the Least Probable Symbol (LPS). A symbol can be an LPS or a Most Probable Symbol

(MPS). Symbols are binary, and as such, the MIPS and the LPS can be 0 or 1. The

WO 2016/196287 PCT/US2016/034647
15

probability is estimated for the corresponding context and used (implicitly) to entropy

code the symbol using the arithmetic coder.

[0058] The process of BAC is handled by a state machine that changes its internal

values 'range' and 'low' depending on the context to code and the value of the bin being

coded. Depending on the state of a context (that is, its probability), the range is divided

into rangeMPS,(range of the most probable symbol in state,) and rangeLPS,(range of

the least probable symbol in state,). In theory, the rangeLPS, value of a probability

state, is derived by a multiplication:

rangeLPS,= range x p,,

where p, is the probability to select the LPS. Of course, the probability of MPS is 1-p.

Equivalently, the rangeMPSis equal to range minus rangeLPS,. BAC iteratively

updates the range depending on the state of the context bin to code, the current range,

and the value of the bin being coded (i.e., is the bin equal to the LPS or the MPS).

[0059] FIGS. 2A and 2B show examples of this process at bin n. In example 100 of

FIG. 2A, at bin n the range at bin 2 includes the RangeMPS and RangeLPS given by the

probability of the LPS (p,) given a certain context state (a). Example 100 shows the

update of the range at bin n+1 when the value of bin n is equal to the MPS. In this

example, the low stays the same, but the value of the range at bin n+1 is reduced to the

value of RangeMPS at bin n. Example 102 of FIG. 2B shows the update of the range at

bin n+1 when the value of bin n is not equal to the MPS (i.e., equal to the LPS). In this

example, the low is moved to the lower range value of RangeLPS at bin n. In addition,

the value of the range at bin n+1 is reduced to the value of RangeLPS at bin n.

[0060] In HEVC, the range is expressed with 9 bits and the low with 10 bits. There is a

renormalization process to maintain the range and low values at sufficient precision.

The renormalization occurs whenever the range is less than 256. Therefore, the range is

always equal or larger than 256 after renormalization. Depending on the values of range

and low, the BAC outputs to the bitstream, a '0,' or a '1,' or updates an internal variable

(called BO: bits-outstanding) to keep for future outputs. FIG. 3 shows examples of

BAC output depending on the range. For example, a '1' is output to the bitstream when

the range and low are above a certain threshold (e.g., 512). A '' is output to the

bitstream when the range and low are below a certain threshold (e.g., 512). Nothing is

output to the bitstream when the range and lower are between certain thresholds.

Instead, the BO value is incremented and the next bin is encoded.

WO 2016/196287 PCT/US2016/034647
16

[0061] In the CABAC context model of HEVC, there are 128 states. There are 64

possible LPS probabilities (denoted by state o)that can be from 0 to 63. Each MIPS can

be zero or one. As such, the 128 states are 64 state probabilities times the 2 possible

values for MPS (0 or 1). Therefore, the probability models may be stored as 7-bit

entries. In each 7-bit entry, 6 bits may be allocated for representing the probability

state, and 1 bit may be allocated for the most probable symbol (MIPS) in the applicable

context memory.

[0062] To reduce the computation of deriving LPS ranges (rangeLPS,), results for all

cases are pre-calculated and stored as approximations in a look-up table in HEVC.

Therefore, the LPS range can be obtained without any multiplication by using a simple

table lookup. Avoiding multiplication can be important for some devices or

applications, since this operation may cause significant latency in many hardware

architectures.

[0063] A 4-column pre-calculated LPS range table may be used instead of the

multiplication. The range is divided into four segments. The segment index can be

derived by the question (range>>6)&3. In effect, the segment index is derived by

shifting and dropping bits from the actual range. The following Table 1 shows the

possible ranges and their corresponding indexes.

TABLE 1 - Range Index

Range 256-319 320-383 384-447 448-511

(range»6) & 3 0 1 2 3

[0064] The LPS range table has then 64 entries (one for each probability state) times 4

(one for each range index). Each entry is the Range LPS, that is, the value of

multiplying the range times the LPS probability. An example of part of this table is

shown in the following Table 2. Table 2 depicts probability states 9-12. In one

proposal for HEVC, the probability states may range from 0-63

WO 2016/196287 PCT/US2016/034647
17

TABLE 2 - RangeLPS

Prob State (a) RangeLPS

Index 0 Index Index 2 Index 3

9 90 110 130 150

10 85 104 123 142

11 81 99 117 135

12 77 94 111 128

[0065] In each segment (i.e., range value), the LPS range of each probability state a is

pre-defined. In other words, the LPS range of a probability state is quantized into four

values (i.e., one value for each range index). The specific LPS range used at a given

point depends on which segment the range belongs to. The number of possible LPS

ranges used in the table is a trade-off between the number of table columns (i.e., the

number of possible LPS range values) and the LPS range precision. Generally

speaking, more columns results in smaller quantization errors of LPS range values, but

also increases the need for more memory to store the table. Fewer columns increases

quantization errors, but also reduces the memory needed to store the table.

[0066] As described above, each LPS probability state has a corresponding probability.

In HEVC, 64 representative probability values p, E[0.01875, 0.5] are derived for the

LPS (least probable symbol) in accordance with Equation (1), below, which is a

recursive equation.

p, = a * p, 1 for all a = 1, ... , 63

with a = 0. 0187) 1/63

[0067] In the example above, both the chosen scaling factor a ~ 0.9492 and the

cardinality N = 64 of the set of probabilities represent a good compromise between the

accuracy of probability representation and the desire for fast adaptation. In some

examples, a value of a closer to 1 may result in slow adaptation with higher accuracy

("steady-state behavior"), while faster adaptation can be achieved for the non-stationary

case with decreasing values of a at the cost of reduced accuracy. The scaling factor a

may correspond to a window size that indicates a number of previously encoded bins

which have significant influence to the current up-date. The probability of the MPS

(most probable symbol) is equal to 1 minus the probability of the LPS (least probable

WO 2016/196287 PCT/US2016/034647
18

symbol). In other words, the probability of the MPS can be represented by the formula

(1 - LPS), where 'LPS' represents the probability of the LPS. Therefore, the probability

range that can be represented by CABAC in HEVC is [0.01875, 0.98125 (=1-0.01875)].

[0068] CABAC is adaptive because the probability states of a context used to code bits

(or "bins") of a value for a syntax element are updated in order to follow the signal

statistics (i.e., the values of previously coded bins, e.g., for the syntax element). The

update process is as follows. For a given probability state, the update depends on the

state index and the value of the encoded symbol identified either as an LPS or an MPS.

As a result of the updating process, a new probability state is derived, which includes a

potentially modified LPS probability estimate and, if necessary, a modified MPS value.

[0069] Context switching may occur after the coding of each bin. In the event of a bin

value equaling the MPS, a given state index is simply incremented by 1. This for all

states except when an MPS occurs at state index 62, where the LPS probability is

already at its minimum (or equivalently, the maximum MPS probability is reached). In

this case, the state index remains fixed until an LPS is seen, or the last bin value is

encoded (a special end state is used for the special case of the last bin value). When an

LPS occurs, the state index is changed by decrementing the state index by a certain

amount, as shown in the equation below. This rule applies in general to each occurrence

of a LPS with the following exception. Assuming a LPS has been encoded at the state

with index a=0, which corresponds to the equi-probable case, the state index remains

fixed, but the MIPS value will be toggled such that the value of the LPS and MPS will be

interchanged. In all other cases, no matter which symbol has been encoded, the MPS

value will not be altered. In general, a video coder may derive the new probability state

in accordance with Equation (2), below, which shows a relation between a given LPS

probability Pold and its updated counterpart Pnew.

Pnew- fmax(a * Pola, P62), if a MPS occurs (2) p a * Poia + (1 - a), if a LPS occurs

[0070] To reduce the complexity, a video coder may implement CABAC such that all

transition rules can be realized by at most two tables each having a number of entries.

As one example, all transition rules may be realized by at most two tables that each have

128 entries of 7-bit unsigned integer values (e.g., Tables 3 and 4, below). As another

example, all transition rules may be realized by at most two tables that each have 63

entries of 6-bit unsigned integer values (e.g., Table 9-41 of HEVC). Given a state index

WO 2016/196287 PCT/US2016/034647
19

i, after updating, a video coder may define as the new state index TransIdxMPS[i]

when a MPS values is coded, or TransldxLPS[i] when a LPS values is coded.

Table 3

TransIdxMPS[128]=
{
2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,
34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59,60,61,62,63,64,65,
66,67,68,69,70,71,72,73,74,75,76,77,78,79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89,90,91,92,93,94,95,96,97,
98,99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
114,115,116,117,118,119,120,121,122,123,124,125,124,125,126,127

};
Table 4

TransldxLPS[128]=

{
1,0,0, 1,2,3,4,5,4,5,8,9,8,9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 18, 19,22,23,22,23,24,25,
26,27,26,27,30,31,30,31,32,33,32,33,36,37,36,37,
38,39,38,39,42,43,42,43,44,45,44,45,46,47,48,49,
48,49,50,51,52,53,52,53,54,55,54,55,56,57,58,59,
58, 59,60,61,60,61,60,61,62,63,64,65,64,65,66,67,
66,67,66,67,68,69,68,69,70,71,70,71,70,71,72,73,
72,73,72,73,74,75,74,75,74,75,76,77,76,77,126,127

};
[0071] In some examples, a video coder may determine state transitions with a single

table TransIdxLPS, which determines, for a given state index a, the new updated state

index TransIdxLPS [a] in case an LPS has been observed. The MPS-driven transitions

can be obtained by a simple (saturated) increment of the state index by the fixed value

of 1, resulting in an updated state index min(a+1, 62).

[0072] As discussed above, context modeling provides accurate probability estimation,

which is a contributing factor for achieving higher coding efficiency. Accordingly,

context modeling is an adaptive process. Different contexts can be used for different

bins, and the probability of the contexts may be updated based on the values of

previously-coded bins. Bins with similar distributions often share the same context.

The context for each bin can be selected based on the type of syntax element, bin

position in syntax element (bindx), luma/chroma information, neighboring information,

etc.

[0073] Before coding a given slice, the probability models are initialized based on one

or more pre-defined values. For example, given an input quantization parameter

WO 2016/196287 PCT/US2016/034647
20

denoted by qp and the pre-defined value denoted by initVal, the 7-bit entry of the

probability model (denoted by state and MPS) could be derived in accordance with

Equations (3), below.

qp =Clip3(0, 51, qp);

slope =(initVal >>4)*5 - 45;

offset =((initVal &15)«<3)-16;

initState= min(max(1, (((slope * qp) >> 4)+ offset)),126);

MIPS = (initState >= 64);

state index = ((mpState? (initState - 64) . (63 - initState)) «l) + MPS;

[0074] The derived state index implicitly includes the MPS information. More

specifically, when the state index is an even value, the MPS value is equal to 0.

Conversely, when the state index is an odd value, the MIPS value is equal to 1. The

value of "initVal" is in a range of [0, 255] with 8-bit precision. The pre-defined value

"initVal" is slice-dependent. In other words, three sets of context initialization

parameters for the probability models are used, one each in I, P, and B slices,

respectively. In this way, a video encoding device configured to perform CABAC is

enabled to choose for these slice types between three initialization tables such that a

better fit to different coding scenarios and/or different types of video content can be

achieved.

[0075] According to HEVC, another tool could be applied to allow one P (or B) slice to

be initialized with B (or P) slices. Conversely, the tool could be applied to allow one B

slice to be initialized with P slices. The related syntax elements are described in Table 5

below (which corresponds to Section 7.3.6.1 of HEVC), and the related semantics and

decoding process are described below, after Table 5.

Table 5

slice-segmentheader() { Descriptor

first slicesegmentinpicflag u(1)
if(nal unittype >= BLA_W_LP && nal unittype <=

RSV IRAP VCL23)
nooutput-of prior-picsflag u(1)

slice-pic-parameter_setid ue(v)

if(!firstslice segment inpic flag){

if(dependentslicesegments-enabled-flag)

dependent_slice-segmentflag u(1)

slicesegmentaddress u(v)

WO 2016/196287 PCT/US2016/034647
21

}
if(dependentslicesegment flag){

for(i = 0; i < numextraslice-headerbits; i++)

slicereservedflag[i] u(1)

slicetype ue(v)

if(output flag_presentflag)

pic output-flag u(1)

if(separate_colourplane-flag = 1)

colour-planeid u(2)

if(nal unittype != IDR_W_RADL && nal unittype IDRNLP)

slicepicorder_cnt_Isb u(v)

shortterm_ref pic-set-spsflag u(1)

if(!shorttermref picset sps flag)

shorttermref picset(numshortterm_ref picsets)

else if(num-shortterm ref picsets > 1)

shorttermref pic-set-idx u(v)

if(long termref pics_presentflag){

}
}
if(sps temporal mvpenabled flag)

slice-temporalmvp_enabledflag u(1)

}
if(sampleadaptive_offsetenabledflag){

slice-saoluma-flag u(1)

slice-saochromaflag u(1)

i
if(slicetype = P | slicetype = B){

num-refidxactiveoverrideflag u(1)

if(numrefidxactiveoverride-flag){

numrefidx_10_activeminusi ue(v)

if(slice type = = B)

numref_idx_11_activeminusi ue(v)

if(listsmodificationpresent flag && NumPocTotalCurr > 1)

ref pic listsmodification()

if(slicetype == B)

mvd_11_zeroflag u(1)

if(cabac initpresent flag)

WO 2016/196287 PCT/US2016/034647
22

cabacinitflag u(1)

if(slice temporal mvpenabledflag){

if(slice type = = B)

collocatedfrom_10_flag u(1)

if((collocatedfrom_10_flag && numrefidx_10_activeminus1 >

0) ||
(!collocated-from_10_flag && numref idxllactiveminusi >

0))
collocatedrefidx ue(v)

}
if((weightedpred flag && slicetype = P)

(weighted bipred flag && slicetype = B))
pred weighttable()

five-minus-max-num-merge-cand ue(v)

}

bytealignment()

}
[0076] Semantics for the syntax elements of Table 5 may be defined as follows:

[0077] cabac initpresentflag equal to 1 specifies that cabacinitflag is present in

slice headers referring to the PPS. cabacinitpresent flag equal to 0 specifies that

cabacinit flag is not present in slice headers referring to the PPS.

[0078] cabac init flag specifies the method for determining the initialization table used

in the initialization process for context variables, as defined in the decoding process

described below. When cabacinit flag is not present, it is inferred to be equal to 0.

[0079] Descriptors:

[0080] ae(v): context-adaptive arithmetic entropy-coded syntax element.

[0081] b(8): byte having any pattern of bit string (8 bits).

[0082] f(n): fixed-pattern bit string using n bits written (from left to right) with the left

bit first.

[0083] se(v): signed integer 0-th order Exp-Golomb-coded syntax element with the left

bit first.

[0084] u(n): unsigned integer using n bits. When n is "v" in the syntax table, the

number of bits varies in a manner dependent on the value of other syntax elements.

[0085] ue(v): unsigned integer 0-th order Exp-Golomb-coded syntax element with the

left bit first.

[0086] Table 9-4 of HEVC provides the context index (ctxldx) for which initialization

is needed for each of the three initialization types. Table 9-4 further includes the table

WO 2016/196287 PCT/US2016/034647
23

number (ctxTable) that includes the values of initValue needed for the initialization.

For P and B slice types, the derivation of initType depends on the value of the

cabacinit flag syntax element. A video coder may derive Tthe variable initType is

derived asusing operations described by the followsfollowing pseudocode:

if(slicetype = = I)
initType = 0

else if(slicetype = P)
initType = cabacinit flag ? 2 :1

else
initType = cabacinit flag ? 1 :2

[0087] A new arithmetic coder is described in Alshin et al., "Multi-parameter

probability up-date for CABAC," Document: JCTVC-F254, JCT-VC of ITU-T SG 16

WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 6t Meeting: Torino, IT, 14-22 July, 2011

(hereinafter "JCTVC- F254") and Alshin et al., "CEl (subset B): Multi-parameter

probability up-date for CABAC," Document: JCTVC-G764, JCT-VC of ITU-T SG 16

WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 7t Meeting: Geneva, CH, 21-30 November,

2011 (hereinafter "JCTVC- G764"). In JCTVC-F254 and JCTV-G764, every

probability represented as integer number from 1 to 32767. So all calculations are

carried out with 16 bits precision. Instead of look-up tables (e.g., TransIdxMPS and

TransIdxLPS as discussed above) and exponential mesh for probability which are

utilized in AVC CABAC, the coder proposed in JCTVC-F254 and JCTV-G764 utilizes

uniform mesh and explicit calculation with a multiplication free formula for probability

update.

[0088] Suppose that probability pi is represented by the probability index, which is an

integer number Pi from 0 to 2k (with k equal to 15 for example) (e.g., as shown by

Equation (4), below).

pi=Pi/2' k(4)

[0089] Following the most frequently used following formula for the probability update

in modern arithmetic codecs (e.g., as shown by Equation (5), below).

Pnew = ay+(1- a) Pold (5)

[0090] In Equation (5), y is equal to "zero" if current symbol matches with most

probable symbol (MPS) otherwisey is equal to "one". This formula (i.e., Equation (5))

provides estimating value for probability of least probable symbol (LPS). Similar to the

above discussion, the parameter a may correspond to a window size that indicates a

WO 2016/196287 PCT/US2016/034647
24

number of previously encoded bins which have significant influence to the current up

date.

[0091] If we assume that the window size (W) is power of two (W =1/2M, M is a

positive integer), and given the Pi in equation (4) as the input pold, the updated

probability index could be rewritten in shown below in Equation (6).

Pi = ((2k) >> M) + Pi - (Pi >> M) (6)

[0092] In the one-probability update model proposed by JCTVC-F254 and JCTV-G764,

M is fixed for all the contexts and only one register is used to record the updated

probabilities. In one example, M is set equal to 6. That is, the window size is equal to

64. The probability update process could be represented by Equation (7), below.

Pne, = ((2 k) >> 6) + Pi- (Pi >> 6) (7)

[0093] The main idea of technique proposed by JCTVC-F254 and JCTV-G764 is to use

several probability estimations (instead of only one) with different window sizes and

combine them as weighted average for next bin probability prediction. Equations (8)

and (9), below, illustrate an example of the technique proposed by JCTVC-F254 and

JCTV-G764. The calculations in Equation (8) for each probabilities pi are independent.

Pi new = W iy+(1- Wi) Pid (8)

p new =-Pi Pi new (9)

[0094] The calculations in Equation (8) for each probabilities pi are independent.

[0095] In the method proposed by JCTVC-F254 and JCTV-G764, the linear

combination for probability estimation consists of two summands corresponding Wo=16

and W1=256 (Wi =1/ci) as shown in Equations (10) and (11). In Equations (10) and

(11),Y=2 15 if last coding bin is "1" and Y=0 if last coding bin is "0", ">>M" is right

arithmetic shift for M bits.

Po = (Y>>4) + Po - (Po>>4) (10)

Pi = (Y>>8) + Pi - (Po>>8) (11)

P = (Po + P1 +1)>>1 (12)

[0096] For short transition period, only short distance prediction (i.e., smaller window

size) with fast updating speed is preferable. But after stabilization near optimal value

two-probability update model is more accurate for majority of contexts. JCTVC-F254

and JCTV-G764 propose to introduce a counter of updates since last initialization.

After every up-date the counter increases by one. Until the counter exceeds some

threshold only short "window size" model as defined by Equation (10) will be used.

When the counter reaches threshold we should switch to more accurate two-probability

WO 2016/196287 PCT/US2016/034647
25

update model as defined by Equation (12), above. The range calculation process

proposed by JCTVC-F254 and JCTV-G764 is performed with a 512x64 lookup table.

[0097] According to the method proposed by JCTVC-F254 and JCTV-G764, a different

context initialization method is applied. Specifically, two-parameters (denoted by

asCtxInit[0] and asCtxInit[1], respectively) are pre-defined for each context as shown

in Equations (13).

Int iQPreper = I slice ? 37 . 40;

Int c=asCtxlnit[0]+asCtxlnit[1]*(iQp - iQPreper); (13)
iPO= min(max(1, c), 32767);

[0098] For one-probability update model, the context is represented by iPO with 15-bit

precision. For two-probabilities update model, another variable iPI is firstly set equal

to iPO and the counter of how many bins have been coded are further required. In the

method proposed by JCTVC-F254 and JCTV-G764, both asCtxlnit[0] and

asCtxInit[1] are stored in 16-bit.

[0099] However, in some examples, the above-described techniques (i.e., the CABAC

techniques of HEVC and the modification proposed by JCTVC-F254 and JCTV-G764)

may have one or more problems which may reduce coding efficiency and/or sub

optimally utilize coder system resources.

[0100] As one example, in the above-described look-up table based arithmetic coder

technique (e.g., as used in HEVC or H.264/AVC) the probability update is based on

fixed tables (i.e., TransIdxLPS and TransIdxMPS) with a fixed window size. This use

of fixed window size results in the updating speed being fixed. However, the

frequencies that syntax elements occur and are needed to be coded may be quite

different for a given CTU or slice. The limitation of a fixed updating speed combined

with syntax elements occurring at different frequencies for a given CTU or slice may

result in the estimated probabilities of less frequently occurring syntax elements being

suboptimal. For example, for one CU, up to 2 values of inter-pred idc may be

signalled, while the transform coefficients within one CU may be coded several times.

In this case, when using the same updating speed for these syntax elements, the

estimated probability of interpred idc equal to 1 may be still suboptimal after coding

one whole slice even though the probability of transform coefficients may have become

relatively optimal.

[0101] As another example, in the above-described arithmetic coder based on counter

technique (e.g., as proposed by JCTVC-F254 and JCTV-G764), the probability updating

WO 2016/196287 PCT/US2016/034647
26

speed is fixed while the high precision (e.g., possible probability index could be [1, 2 15

1] results in low efficiency for syntax elements which are less frequently selected,

which may not be desirable.

[0102] As another example, in the two-probabilities update model component of the

arithmetic coder based on counter technique, two status parameters (probability indices)

have to be stored and updated, which may undesirably restrict the throughput of the

CABAC process.

[0103] As yet another example, in image/video coding systems, hundreds of contexts

may be used. In the technique proposed by JCTVC-F254 and JCTV-G764, 32 bits are

required per context while only 8 bits are enough for the arithmetic coder in HEVC.

Therefore, the storage of pre-defined values for context initialization in the technique

proposed by JCTVC-F254 and JCTV-G764 is increased by 300%, which may be

undesirable for hardware implementation in terms of storage.

[0104] In accordance with one or more techniques of this disclosure, a video coder (e.g.,

video encoder 20 and/or video decoder 30) may use different window sizes for different

contexts. For instance, as opposed to HEVC which uses a fixed window size for all

contexts, a video coder may use a first window size when updating a first context and

use a second, different, window size when updating a second context. In some

examples, a video coder may use relatively smaller window sizes for contexts that are

infrequently used and may use relatively larger window sizes for contexts that are

frequently used. By using window sizes that are more closely tailored to the frequencies

at which the contexts are used, a video coder may update the contexts with a more

favorable compromise between accuracy and adaption speed that using a fixed window

size for all contexts. In this way, the techniques of this disclosure may improve the

efficiency of CABAC, which may enable a video coder to reduce the number of bits

needed to encode video data.

[0105] The techniques described in this disclosure may be performed, for example,

within a video encoder, video decoder, or combined video encoder-decoder (CODEC).

In particular, such techniques may be performed in an entropy encoding unit of a video

encoder and/or an entropy decoding unit of a video decoder. The techniques may be

performed, for example, within a CABAC process, which may be configured to support

video coding, such as video coding according to aspects of the HEVC standard Entropy

encoding and decoding units may be apply coding processes in a reciprocal or inverse

manner, e.g., to encode or decode any of a variety of video data, such as quantized

WO 2016/196287 PCT/US2016/034647
27

transform coefficients associated with residual video data, motion vector information,

syntax elements, and other types of information that may be useful in a video encoding

and/or video decoding process.

[0106] FIG. 4 is a block diagram illustrating an example of a video encoder 20 that may

be configured to utilize techniques for BAC coding, as described in this disclosure. The

video encoder 20 will be described in the context of HEVC coding for purposes of

illustration, but without limitation of this disclosure as to other coding standards or

methods. Moreover, video encoder 20 may be configured to implement techniques in

accordance with the range extensions of HEVC.

[0107] Video encoder 20 may perform intra- and inter-coding of video blocks within

video slices. Intra-coding relies on spatial prediction to reduce or remove spatial

redundancy in video within a given video picture. Inter-coding relies on temporal

prediction or inter-view prediction to reduce or remove temporal redundancy in video

within adjacent pictures of a video sequence or reduce or remove redundancy with video

in other views.

[0108] In the example of FIG. 4, video encoder 20 includes video data memory 40,

prediction processing unit 42, reference picture memory 64, summer 50, transform

processing unit 52, quantization processing unit 54, and entropy encoding unit 56.

Prediction processing unit 42, in turn, includes motion estimation unit 44, motion

compensation unit 46, and intra-prediction unit 48. For video block reconstruction,

video encoder 20 also includes inverse quantization processing unit 58, inverse

transform processing unit 60, and summer 62. A deblocking filter (not shown in FIG. 4)

may also be included to filter block boundaries to remove blockiness artifacts from

reconstructed video. If desired, the deblocking filter would typically filter the output of

summer 62. Additional loop filters (in loop or post loop) may also be used in addition

to the deblocking filter.

[0109] Video data memory 40 may store video data to be encoded by the components of

video encoder 20. The video data stored in video data memory 40 may be obtained, for

example, from video source 18. Reference picture memory 64 is one example of a

decoding picture buffer (DPB) that stores reference video data for use in encoding video

data by video encoder 20 (e.g., in intra- or inter-coding modes, also referred to as intra

or inter-prediction coding modes). Video data memory 40 and reference picture

memory 64 may be formed by any of a variety of memory devices, such as dynamic

random access memory (DRAM), including synchronous DRAM (SDRAM),

WO 2016/196287 PCT/US2016/034647
28

magnetoresistive RAM (MRAM), resistive RAM (RRAM), or other types of memory

devices. Video data memory 40 and reference picture memory 64 may be provided by

the same memory device or separate memory devices. In various examples, video data

memory 40 may be on-chip with other components of video encoder 20, or off-chip

relative to those components.

[0110] During the encoding process, video encoder 20 receives a video picture or slice

to be coded. The picture or slice may be divided into multiple video blocks. Motion

estimation unit 44 and motion compensation unit 46 perform inter-predictive coding of

the received video block relative to one or more blocks in one or more reference

pictures to provide temporal compression or provide inter-view compression. Intra

prediction unit 48 may alternatively perform intra-predictive coding of the received

video block relative to one or more neighboring blocks in the same picture or slice as

the block to be coded to provide spatial compression. Video encoder 20 may perform

multiple coding passes (e.g., to select an appropriate coding mode for each block of

video data).

[0111] Moreover, a partition unit (not shown) may partition blocks of video data into

sub-blocks, based on evaluation of previous partitioning schemes in previous coding

passes. For example, the partition unit may initially partition a picture or slice into

LCUs, and partition each of the LCUs into sub-CUs based on rate-distortion analysis

(e.g., rate-distortion optimization). Prediction processing unit 42 may further produce a

quadtree data structure indicative of partitioning of an LCU into sub-CUs. Leaf-node

CUs of the quadtree may include one or more PUs and one or more TUs.

[0112] Prediction processing unit 42 may select one of the coding modes, intra or inter,

e.g., based on error results, and provides the resulting intra- or inter-coded block to

summer 50 to generate residual block data and to summer 62 to reconstruct the encoded

block for use as a reference picture. Prediction processing unit 42 also provides syntax

elements, such as motion vectors, intra-mode indicators, partition information, and other

such syntax information, to entropy encoding unit 56.

[0113] Motion estimation unit 44 and motion compensation unit 46 may be highly

integrated, but are illustrated separately for conceptual purposes. Motion estimation,

performed by motion estimation unit 44, is the process of generating motion vectors,

which estimate motion for video blocks. A motion vector, for example, may indicate

the displacement of a PU of a video block within a current video picture relative to a

predictive block within a reference picture (or other coded unit) relative to the current

WO 2016/196287 PCT/US2016/034647
29

block being coded within the current picture (or other coded unit). A predictive block is

a block that is found to closely match the block to be coded, in terms of pixel difference,

which may be determined by sum of absolute difference (SAD), sum of square

difference (SSD), or other difference metrics. In some examples, video encoder 20 may

calculate values for sub-integer pixel positions of reference pictures stored in reference

picture memory 64. For example, video encoder 20 may interpolate values of one

quarter pixel positions, one-eighth pixel positions, or other fractional pixel positions of

the reference picture. Therefore, motion estimation unit 44 may perform a motion

search relative to the full pixel positions and fractional pixel positions and output a

motion vector with fractional pixel precision.

[0114] Motion estimation unit 44 calculates a motion vector for a PU of a video block

in an inter-coded slice by comparing the position of the PU to the position of a

predictive block of a reference picture. The reference picture may be selected from one

or more reference picture lists (RPLs) which identify one or more reference pictures

stored in reference picture memory 64. Motion estimation unit 44 sends the calculated

motion vector to entropy encoding unit 56 and motion compensation unit 46. In some

examples, motion estimation unit 44 may send an indication of the selected reference

picture to entropy encoding unit 56.

[0115] Motion compensation, performed by motion compensation unit 46, may involve

fetching or generating the predictive block based on the motion vector determined by

motion estimation unit 44. Again, motion estimation unit 44 and motion compensation

unit 46 may be functionally integrated, in some examples. Upon receiving the motion

vector for the PU of the current block, motion compensation unit 46 may locate the

predictive block to which the motion vector points in one of the reference picture lists

(RPLs). Summer 50 forms a residual video block by subtracting pixel values of the

predictive block from the pixel values of the current block being coded, forming pixel

difference values, as discussed below. In general, motion estimation unit 44 performs

motion estimation relative to luma components, and motion compensation unit 46 uses

motion vectors calculated based on the luma components for both chroma components

and luma components. Prediction processing unit 42 may also generate syntax elements

associated with the video blocks and the video slice for use by video decoder 30 in

decoding the video blocks of the video slice.

[0116] Intra-prediction unit 48 may intra-predict a current block, as an alternative to the

inter-prediction performed by motion estimation unit 44 and motion compensation unit

WO 2016/196287 PCT/US2016/034647
30

46, as described above. In particular, intra-prediction unit 48 may determine an intra

prediction mode to use to encode a current block. In some examples, intra-prediction

unit 48 may encode blocks using various intra-prediction modes, e.g., during separate

encoding passes, and intra-prediction unit 48 may select an appropriate intra-prediction

mode to use from a plurality of intra-prediction modes.

[0117] For example, intra-prediction unit 48 may calculate rate-distortion values using a

rate-distortion analysis for the various tested intra-prediction modes, and select the

intra-prediction mode having the best rate-distortion characteristics among the tested

modes. Rate-distortion analysis generally determines an amount of distortion (or error)

between an encoded block and an original, unencoded block that was encoded to

produce the encoded block, as well as a bitrate (that is, a number of bits) used to

produce the encoded block. Intra-prediction unit 48 may calculate ratios from the

distortions and rates for the various encoded blocks to determine which intra-prediction

mode exhibits the best rate-distortion value for the block. In some examples, each of

the plurality of intra-prediction modes may have a corresponding mode index, which

may be signaled (i.e., to a video decoder) by intra-prediction unit 48.

[0118] Video encoder 20 forms a residual video block by subtracting the prediction

data from prediction processing unit 42 from the original video block being coded.

Summer 50 represents the component or components that perform this subtraction

operation.

[0119] Transform processing unit 52 applies a transform, such as a discrete cosine

transform (DCT) or a conceptually similar transform, to the residual block, producing a

video block comprising residual transform coefficient values. Transform processing

unit 52 may perform other transforms which are conceptually similar to DCT. Wavelet

transforms, integer transforms, sub-band transforms or other types of transforms could

also be used. In any case, transform processing unit 52 applies the transform to the

residual block, producing a block of residual transform coefficients. The transform may

convert the residual information from a pixel value domain to a transform domain, such

as a frequency domain.

[0120] Transform processing unit 52 may send the resulting transform coefficients to

quantization processing unit 54. Quantization processing unit 54 quantizes the

transform coefficients to further reduce bit rate. The quantization process may reduce

the bit depth associated with some or all of the coefficients. The degree of quantization

may be modified by adjusting a quantization parameter. In some examples,

WO 2016/196287 PCT/US2016/034647
31

quantization processing unit 54 may then perform a scan of the matrix including the

quantized transform coefficients. Alternatively, entropy encoding unit 56 may perform

the scan.

[0121] Once the transform coefficients are scanned into the one-dimensional array, the

entropy encoding unit 56 may apply entropy coding such as context-adaptive variable

length coding (CAVLC), context-adaptive binary arithmetic coding (CABAC),

probability interval partitioning entropy coding (PIPE), Golomb coding, Golomb-Rice

coding, exponential Golomb coding, syntax-based context-adaptive binary arithmetic

coding (SBAC), or another entropy coding methodology to the coefficients. Although

reference is made to a variety of different entropy coding processes, in accordance with

examples of this disclosure, entropy encoding unit 56 may be configured to perform

BAC coding as described above.

[0122] To perform CAVLC, the entropy encoding unit 56 may select a variable length

code for a symbol to be transmitted. Codewords in VLC may be constructed such that

relatively shorter codes correspond to more likely symbols, while longer codes

correspond to less likely symbols. In this way, the use of VLC may achieve a bit

savings over, for example, using equal-length codewords for each symbol to be

transmitted.

[0123] To perform CABAC, the entropy encoding unit 56 may select a context to apply

to a certain context to encode symbols to be transmitted. The context may relate to, for

example, whether neighboring values are non-zero or not. The entropy encoding unit 56

may also entropy encode syntax elements, such as the signal representative of the

selected transform. Following the entropy coding by the entropy encoding unit 56, the

resulting encoded video may be transmitted to another device, such as the video decoder

30, or archived for later transmission or retrieval.

[0124] In accordance with one or more techniques of this disclosure, entropy encoding

unit 56 may select different window sizes when entropy encoding data (e.g., syntax

element values represented as a one-dimensional binary vector) for use by a video

decoder, such as video decoder 30, in decoding the video data. Further details of one

example of entropy encoding unit 56 are discussed below with reference to FIG. 5.

[0125] Inverse quantization processing unit 58 and inverse transform processing unit 60

apply inverse quantization and inverse transformation, respectively, to reconstruct the

residual block in the pixel domain, e.g., for later use as a reference block.

WO 2016/196287 PCT/US2016/034647
32

[0126] Motion compensation unit 46 may also apply one or more interpolation filters to

the reference block to calculate sub-integer pixel values for use in motion estimation.

Summer 62 adds the reconstructed residual block to the motion compensated prediction

block produced by motion compensation unit 46 to produce a reconstructed video block

for storage in reference picture memory 64. The reconstructed video block may be used

by motion estimation unit 44 and motion compensation unit 46 as a reference block to

inter-code a block in a subsequent video picture. In some examples, such as where the

current picture is used as a reference picture to predict the current picture, motion

compensation unit 46 and/or summer 62 may update the version of the current picture

stored by reference picture memory 64 at regular intervals while coding the current

picture. As one example, motion compensation unit 46 and/or summer 62 may update

the version of the current picture stored by reference picture memory 64 after coding

each block of the current picture. For instance, where the samples of the current block

are stored in reference picture memory 64 as initialized values, motion compensation

unit 46 and/or summer 62 may update the samples of the current of the current picture

stored by reference picture memory 64 with the reconstructed samples for the current

block.

[0127] A filtering unit (not shown) may perform a variety of filtering processes. For

example, the filtering unit may perform deblocking. That is, the filtering unit may

receive a plurality of reconstructed video blocks forming a slice or a frame of

reconstructed video and filter block boundaries to remove blockiness artifacts from a

slice or frame. In one example, the filtering unit evaluates the so-called "boundary

strength" of a video block. Based on the boundary strength of a video block, edge

pixels of a video block may be filtered with respect to edge pixels of an adjacent video

block such that the transition from one video block are more difficult for a viewer to

perceive.

[0128] In some examples, motion compensation unit 46 and/or summer 62 may update

the version of the current picture stored by reference picture memory 64 before the

filtering performs the filtering (e.g., deblocking and/or SAO) to the samples. For

instance, the filtering unit may wait until the whole picture is coded before applying the

filtering. In this way, motion estimation unit 44 may use the current picture as a

reference before applying the filtering. In some examples, the filtering unit may

perform the filtering as the version of the current picture stored by reference picture

memory 64 is updated. For instance, the filtering unit may apply the filtering as each

WO 2016/196287 PCT/US2016/034647
33

block is updated. In this way, motion estimation unit 44 may use the current picture as

a reference after applying the filtering.

[0129] While a number of different aspects and examples of the techniques are

described in this disclosure, the various aspects and examples of the techniques may be

performed together or separately from one another. In other words, the techniques

should not be limited strictly to the various aspects and examples described above, but

may be used in combination or performed together and/or separately. In addition, while

certain techniques may be ascribed to certain units of video encoder 20 (such as intra

prediction unit 48, motion compensation unit 46, or entropy encoding unit 56) it should

be understood that one or more other units of video encoder 20 may also be responsible

for carrying out such techniques.

[0130] FIG. 5 is a block diagram of an example entropy encoding unit 56 that may be

configured to perform CABAC in accordance with the techniques of this disclosure. A

syntax element 118 is input into the entropy encoding unit 56. If the syntax element is

already a binary-value syntax element (e.g., a flag or other syntax element that only has

a value of 0 and 1), the step of binarization may be skipped. If the syntax element is a

non-binary valued syntax element (e.g., a syntax element that may have values other

than 1 or 0), the non-binary valued syntax element is binarized by binarizer 120.

Binarizer 120 performs a mapping of the non-binary valued syntax element into a

sequence of binary decisions. These binary decisions are often called "bins." For

example, for transform coefficient levels, the value of the level may be broken down

into successive bins, each bin indicating whether or not the absolute value of coefficient

level is greater than some value. For example, bin 0 (sometimes called a significance

flag) indicates if the absolute value of the transform coefficient level is greater than 0 or

not. Bin 1 indicates if the absolute value of the transform coefficient level is greater

than 1 or not, and so on. A unique mapping may be developed for each non-binary

valued syntax element.

[0131] Each bin produced by binarizer 120 is fed to the binary arithmetic coding side of

entropy encoding unit 56. That is, for a predetermined set of non-binary valued syntax

elements, each bin type (e.g., bin 0) is coded before the next bin type (e.g., bin 1).

Coding may be performed in either regular mode or bypass mode. In bypass mode,

bypass coding engine 126 performs arithmetic coding using a fixed probability model,

for example, using Golomb-Rice or exponential Golomb coding. Bypass mode is

generally used for more predictable syntax elements.

WO 2016/196287 PCT/US2016/034647
34

[0132] Coding in regular mode involves performing CABAC. Regular mode CABAC

is for coding bin values where the probability of a value of a bin is predictable given

then values of previously coded bins. The probability of a bin being an LPS is

determined by context modeler 122. Context modeler 122 outputs the bin value and the

probability state for the context (e.g., the probability state a, including the value of the

LPS and the probability of the LPS occurring). The context may be an initial context

for a series of bins, or may be determined based on the coded values of previously

coded bins. As described above, context modeler 122 may update the state based on

whether or not the received bin was the MIPS or the LPS. After the context and

probability state a is determined by context modeler 122, regular coding engine 124

performs BAC on the bin value.

[0133] In accordance with one or more techniques of this disclosure, as opposed to

using the same value of a variable used to update a probability state in a binary

arithmetic coding process (e.g., one or more of a window size, or a scaling factor (a), or

a fixed probability updating speed), entropy encoding unit 56 may use different values

of the variable for different contexts and/or different syntax elements. For instance,

context modeler 122 may determine, for a context of a plurality of context, a value of a

variable used to update a probability state in a binary arithmetic coding process, and

update the probability state based on the determined value.

[0134] In some examples, the window size used by context modeler 122 to determine

the next probability state may be made dependent on context. For instance, context

modeler 122 may use different window sizes for different contexts. As one example,

context modeler 122 may determine a first window size for a first context of a plurality

of contexts and determine a second window size for a second context of the plurality of

contexts that is different than the first window size.

[0135] In some examples, when incorporating the above context dependent updating

method to the counter-based arithmetic coders, such as in JCTVC-F254 and JCTV

G764, the value of window size may be dependent on context. In addition, each context

may be further associated with a window size in addition to the probability Pi from

Equation (4).

[0136] In some examples, context modeler 122 may use window sizes W that may be

equal to 2M, where M may be a positive integer. Therefore, each context may have its

own M value, which may be different from other contexts, though some context models

may have the same M value.

WO 2016/196287 PCT/US2016/034647
35

[0137] In some examples, context modeler 122 may determine the windows sizes from

a pre-defined set of window sizes. Some example predefined window sizes are 16, 32,

64, and 128, though other window sizes are contemplated. For instance, a set of

possible M values may be pre-defined, e.g., M could range from 4 to 7, inclusive. In

some examples, context modeler 122 may cause an indication of the set of possible

window sizes (e.g., an indication of a set of possible M values) to be signaled in a slice

header or a parameter set, including a picture parameter set, an active parameter set, a

sequence parameter set, or a video parameter set.

[0138] In some examples, the window sizes (e.g., values of M) associated with each

context may be pre-defined. In some examples, the window sizes may be further

dependent on the slice types and/or temporal identifiers (e.g., referred to as temporalld

in HEVC). In some examples, the window sizes may be further dependent on the

picture types (or NAL unit types), e.g., whether a picture is a random access picture or

not.

[0139] In some examples, context modeler 122 may cause the window sizes (e.g.,

values of M) associated with each context to be signaled in the bitstream, such as in

slice header/picture parameter set/active parameter set/sequence parameter set. For

instance, a default window size for each context may be firstly pre-defined. For each

respective context model, context modeler 122 may encode a respective syntax element

(e.g., a flag) that indicates whether the default window size is used for the respective

context. If the default window size is not used for a respective context, context modeler

122 may differentially encode the actual used window size based on the default window

size. In some examples, context modeler 122 may organize the syntax elements (i.e.,

that indicate whether the default window size is used) of all contexts together, and

utilize run-length coding to code these syntax elements. In some examples, context

modeler 122 may utilize a mapping table when coding the difference between the

actually used window size and the default window size. For example, where the default

M value is equal to 6, the possible M values are 4, 5, 6, and 7. The mapping table may

be defined as:

Actual M value 4 5 6 7
Value to be coded 0 1 - 2

[0140] In some examples, context modeler 122 may directly code the difference

between the actual window size and the default window size for each context. For

WO 2016/196287 PCT/US2016/034647
36

instance, where the default M value is 4, context modeler 122 may code M-4 for each

context.

[0141] In some examples, context modeler 122 may code a first syntax element that

indicates whether all window sizes for contexts in a current slice are inherited (i.e., set

equal to) window sizes for corresponding contexts in a previously coded slice. In one

example, the "previously decoded slice" may be defined as the previously coded slices

which have the same slice type, or both the same slice type and quantization parameter,

or both the same slice type and temporal layer, as the current slice and/or the same

initialized quantization parameters. In some examples, the previous slice may be

required to belong to a picture that is present in the DPB and may be used for the

current picture as a reference picture, in particular, as in HEVC based platform, the

previous slice may be required to belong to a picture in reference picture set (RPS), or

even a picture in one of the following subsets of the RPS RefPicSetStCurrBefore,

RefPicSetStCurrAfter, and RefPicSetLtCurr.

[0142] In some examples, context modeler 122 may code a first syntax element that

indicates whether a default window size is used for a plurality of contexts (e.g., in a

current slice). Where the default window size is not used for the plurality of contexts,

context modeler 122 may code a second syntax element that indicates the window size

for the context. For instance, context modeler 122 may code a second syntax element

that indicates a difference between the window size for the context and the default

window size.

[0143] In another example, context modeler 122 may derive the window sizes, e.g.,

based on coded information from previous slices or pictures. For instance, context

modeler 122 may track the coded bins in a previous slice associated with one context.

For each candidate of possible window sizes, context modeler 122 may obtain the bits

consumed for coding these bins, and selectthe window size which results in the

minimum bits for coding these bins as the window size for this context. Context

modeler 122 may use the selected window size for coding the following slices/pictures.

[0144] In some examples, the 'window size' used to determine the next probability state

or probability update speed in arithmetic coders may be syntax element specific, e.g.,

where the context is shared among different syntax elements. For instance, when using

a context to encode a bin of a syntax element, context modeler 122 may determine the

window size for the context based on the syntax element. As one example, the window

WO 2016/196287 PCT/US2016/034647
37

size used to update a state of a context when coding bins of the coding unit split syntax

element and coding unit skip flag syntax element may be the same, e.g., 16 (i.e., M=4).

[0145] In accordance with one or more techniques of this disclosure, context modeler

122 may adaptively determine different window sizes when entropy encoding data (e.g.,

syntax elements representing the one-dimensional vector and/or other syntax elements)

for use by video decoder 30 in decoding the video data. For instance, for each context,

context modeler 122 may calculate the bits of coding a recorded bin string with different

window sizes and select the one with minimum bit. Where the window sizes are

selected from a pre-defined set of window sizes, context modeler 122 may determine,

for respective window sizes of a pre-defined set of window sizes, respective quantities

of bits used to encode a bin string with a context, and select the window size of the pre

defined set of window sizes that corresponds to the smallest quantity of bits as the

window size for the context.

[0146] In some examples, the above technique(s) may be applicable to specific

contexts. That is, a subset of the contexts may use the updated 'window sizes' rather

than the default one. In some examples, the above technique(s) may be applicable to

specific slice types.

[0147] Returning to FIG. 4, in some cases, the entropy encoding unit 56 or another unit

of video encoder 20 may be configured to perform other coding functions, in addition to

entropy coding. For example, entropy encoding unit 56 may be configured to determine

coded block pattern (CBP) values for CU's and PU's. Also, in some cases, entropy

encoding unit 56 may perform run length coding of coefficients. In addition, entropy

encoding unit 56, or other processing units, also may code other data, such as the values

of a quantization matrix.

[0148] As discussed above, inverse quantization unit 58 and inverse transform

processing unit 60 apply inverse quantization and inverse transformation, respectively,

to reconstruct the residual block in the pixel domain, e.g., for later use as a reference

block. Motion compensation unit 46 may calculate a reference block by adding the

residual block to a predictive block of one of the frames of the reference frame memory

64. Motion compensation unit 46 may also apply one or more interpolation filters to the

reconstructed residual block to calculate sub-integer pixel values for use in motion

estimation. Summer 62 adds the reconstructed residual block to the motion

compensated prediction block produced by motion compensation unit 46 to produce a

reconstructed video block for storage in reference frame memory 64. The reconstructed

WO 2016/196287 PCT/US2016/034647
38

video block may be used by motion estimation unit 44 and the motion compensation

unit 46 as a reference block to inter-code a block in a subsequent video frame.

[0149] FIG. 6 is a block diagram illustrating an example of video decoder 30 that may

implement techniques described in this disclosure. Again, the video decoder 30 will be

described in the context of HEVC coding for purposes of illustration, but without

limitation of this disclosure as to other coding standards. Moreover, video decoder 30

may be configured to implement techniques in accordance with the range extensions.

[0150] In the example of FIG. 6, video decoder 30 may include video data memory 69,

entropy decoding unit 70, prediction processing unit 71, inverse quantization processing

unit 76, inverse transform processing unit 78, summer 80, and reference picture memory

82. Prediction processing unit 71 includes motion compensation unit 72 and intra

prediction unit 74. Video decoder 30 may, in some examples, perform a decoding pass

generally reciprocal to the encoding pass described with respect to video encoder 20

from FIG. 4.

[0151] Video data memory 69 may store video data, such as an encoded video

bitstream, to be decoded by the components of video decoder 30. The video data stored

in video data memory 69 may be obtained, for example, from storage device 34, from a

local video source, such as a camera, via wired or wireless network communication of

video data, or by accessing physical data storage media. Video data memory 69 may

form a coded picture buffer (CPB) that stores encoded video data from an encoded

video bitstream.

[0152] Reference picture memory 82 is one example of a decoded picture buffer (DPB)

that stores reference video data for use in decoding video data by video decoder 30 (e.g.,

in intra- or inter-coding modes). Video data memory 69 and reference picture memory

82 may be formed by any of a variety of memory devices, such as dynamic random

access memory (DRAM), including synchronous DRAM (SDRAM), magnetoresistive

RAM (MRAM), resistive RAM (RRAM), or other types of memory devices. Video

data memory 69 and reference picture memory 82 may be provided by the same

memory device or separate memory devices. In various examples, video data memory

69 may be on-chip with other components of video decoder 30, or off-chip relative to

those components.

[0153] During the decoding process, video decoder 30 receives an encoded video

bitstream that represents video blocks of an encoded video slice and associated syntax

elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy

WO 2016/196287 PCT/US2016/034647
39

decodes the bitstream to generate quantized coefficients, motion vectors or intra

prediction mode indicators, and other syntax elements. In some examples, entropy

decoding unit 70 may apply a process that is generally inverse to the process used by the

encoder. Entropy decoding unit 70 performs an entropy decoding process on the

encoded bitstream to retrieve a one-dimensional array of transform coefficients. The

entropy decoding process used depends on the entropy coding used by the video

encoder 20 (e.g., CABAC, CAVLC, PIPE, or other processes described above). In

accordance with the techniques described in this disclosure, entropy decoding unit 70

may apply a BAC process, e.g., within a CABAC process, as described in this

disclosure. The window sizes in the entropy coding process used by the encoder may be

signaled in the encoded bitstream or may be a predetermined process.

[0154] Entropy decoding unit 70 forwards the motion vectors to and other syntax

elements to motion compensation unit 72. Video decoder 30 may receive the syntax

elements at the video slice level and/or the video block level.

[0155] FIG. 7 is a block diagram of an example entropy decoding unit 70 that may be

configured to perform CABAC in accordance with the techniques of this disclosure.

The entropy decoding unit 70 of FIG. 7 performs CABAC in an inverse manner as that

of entropy encoding unit 56 described in FIG. 5. Coded bits from bitstream 218 are

input into entropy decoding unit 70. The coded bits are fed to either context modeler

220 or bypass coding engine 222 based on whether or not they were entropy coded

using bypass mode or regular mode. If the coded bits were coded in bypass mode,

bypass decoding engine will use Golomb-Rice or exponential Golomb decoding, for

example, to retrieve the binary-valued syntax elements or bins of non-binary syntax

elements.

[0156] If the coded bits were coded in regular mode, context modeler 220 may

determine a probability model for the coded bits and regular decoding engine 224 may

decode the coded bits to produce bins of non-binary valued syntax elements (or the

syntax elements themselves if binary-valued). After the context and probability state a

is determined by context modeler 220, regular decoding engine 224 performs BAC to

decode the bin value. In other words, regular decoding engine 224 may determine a

probability state of a context, and decode a bin value based on previously coded bins

and a current range. After decoding the bin, context modeler 220 may update the

probability state of the context based on the window size and the value of the decoded

bin.

WO 2016/196287 PCT/US2016/034647
40

[0157] In accordance with one or more techniques of this disclosure, as opposed to

using the same value of a variable used to update a probability state in a binary

arithmetic coding process (e.g., one or more of a window size, a scaling factor (a), and

a fixed probability updating speed), entropy encoding unit 56 may use different values

of the variable for different contexts and/or different syntax elements. For instance,

context modeler 220 may determine, for a context of a plurality of contexts, a value of a

variable used to update a probability state in a binary arithmetic coding process, and

update the probability state based on the determined value.

[0158] In some examples, the window size used by context modeler 220 to determine

the next probability state may be made dependent on context. For instance, context

modeler 220 may use different window sizes for different contexts. As one example,

context modeler 220 may determine a first window size for a first context of a plurality

of contexts and determine a second window size for a second context of the plurality of

contexts that is different than the first window size.

[0159] In some examples, when incorporating the above context-model dependent

updating method to the counter-based arithmetic coders, such as in JCTVC-F254 and

JCTV-G764, the value of window size may be dependent on context. In addition, each

context may be further associated with a window size in addition to the probability Pi

from Equation (4).

[0160] In some examples, context modeler 220 may use window sizes W that may be

equal to 2M, where M may be a positive integer. Therefore, each context may have its

own M value which may be different from other contexts, though some contexts may

have the same M value.

[0161] In some examples, context modeler 220 may determine the windows sizes from

a pre-defined set of window sizes. For instance, a set of possible M values may be pre

defined, e.g., M could range from 4 to 7, inclusive. In some examples, entropy

decoding unit 70 may decode an indication of the set of possible window sizes (e.g., an

indication of a set of possible M values) from a slice header or a parameter set,

including a picture parameter set, an active parameter set, a sequence parameter set, or a

video parameter set.

[0162] In some examples, the window sizes (e.g., values of M) associated with each

context may be pre-defined. In some examples, the window sizes may be further

dependent on the slice types and/or temporal identifiers (e.g., referred to as temporalld

in HEVC). In some examples, the window sizes may be further dependent on the

WO 2016/196287 PCT/US2016/034647
41

picture types (or NAL unit types), e.g., whether a picture is a random access picture or

not.

[0163] In some examples, entropy decoding unit 70 may decode the window sizes (e.g.,

values of M) associated with each context from the bitstream, such as in slice

header/picture parameter set/active parameter set/sequence parameter set. For instance,

a default window size for each context may be firstly pre-defined. For each respective

context, entropy decoding unit 70 may decode a respective syntax element (e.g., a flag)

that indicates whether the default window size is used for the respective context. If the

default window size is not used for a respective context, entropy decoding unit 70 may

differentially decode the actual used window size based on the default window size. In

some examples, the syntax elements (i.e., that indicate whether the default window size

is used) of all contexts may be organized together, and entropy decoding unit 70 may

utilize run-length coding to decode these syntax elements. In some examples, context

modeler 220 may utilize a mapping table when coding the difference between the

actually used window size and the default window size. For example, where the default

M value is equal to 6, the possible M values are 4, 5, 6, and 7. The mapping table may

be defined as:

Actual M value 4 5 6 7
Value to be coded 0 1 - 2

[0164] In some examples, entropy decoding unit 70 may directly decode the difference

between the actual window size and the default window size for each context. For

instance, where the default M value is 4, entropy decoding unit 70 may decode the value

of M-4 for each context.

[0165] In some examples, entropy decoding unit 70 may decode a first syntax element

that indicates whether all window sizes for contexts in a current slice are inherited (i.e.,

set equal to) window sizes for corresponding contexts in a previously coded slice. In

one example, the "previously decoded slice" may be defined as the previously coded

slices which have the same slice type, or both the same slice type and quantization

parameter, or both the same slice type and temporal layer, as the current slice and/or the

same initialized quantization parameters. In some examples, the previous slice may be

required to belong to a picture that is present in the DPB and may be used for the

current picture as a reference picture, in particular, as in HEVC based platform, the

previous slice may be required to belong to a picture in reference picture set (RPS), or

WO 2016/196287 PCT/US2016/034647
42

even a picture in one of the following subsets of the RPS RefPicSetStCurrBefore,

RefPicSetStCurrAfter, and RefPicSetLtCurr.

[0166] In some examples, entropy decoding unit 70 may decode a first syntax element

that indicates whether a default window size is used for a plurality of contexts (e.g., in a

current slice). Where the default window size is not used for the plurality of contexts,

entropy decoding unit 70 may decode a second syntax element that indicates the

window size for the context. For instance, entropy decoding unit 70 may decode a

second syntax element that indicates a difference between the window size for the

context and the default window size.

[0167] In another example, entropy decoding unit 70 may derive the window sizes, e.g.,

based on coded information from previous slices or pictures. For instance, entropy

decoding unit 70 may track the decoded bins in a previous slice associated with one

context is tracked. For each candidate of possible window sizes, entropy decoding unit

70 may obtain the bits consumed for coding these bins. Entropy decoding unit 70 may

select the window size which results in the minimum bits for coding these bins as the

window size for this context. Entropy decoding unit 70 may use the selected window

size for decoding the following slices/pictures.

[0168] In some examples, the 'window size' used to determine the next probability state

or probability update speed in arithmetic coders may be syntax element specific. For

instance, when using a context to encode a bin of a syntax element, context modeler 220

may determine the window size for the context based on a type the syntax element. As

one example, the window size used to update a context when coding bins of the coding

unit split syntax element and coding unit skip flag syntax element may be the same, e.g.,

16 (i.e., M=4).

[0169] In some examples, the above technique(s) may be applicable to specific

contexts. That is, a subset of the contexts may use the updated 'window sizes' rather

than the default one. In some examples, the above technique(s) may be applicable to

specific slice types.

[0170] After the bins are decoded by regular decoding engine 224, a reverse binarizer

230 may perform a reverse mapping to convert the bins back into the values of the non

binary valued syntax elements.

[0171] Returning to FIG. 6, in some examples, the entropy decoding unit 70 (or the

inverse quantization unit 76) may scan the received values using a scan mirroring the

scanning mode used by the entropy encoding unit 56 (or the quantization unit 54) of the

WO 2016/196287 PCT/US2016/034647
43

video encoder 20. Although the scanning of coefficients may be performed in the

inverse quantization unit 76, scanning will be described for purposes of illustration as

being performed by the entropy decoding unit 70. In addition, although shown as

separate functional units for ease of illustration, the structure and functionality of the

entropy decoding unit 70, the inverse quantization unit 76, and other units of the video

decoder 30 may be highly integrated with one another.

[0172] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized

transform coefficients provided in the bitstream and decoded by the entropy decoding

unit 70. The inverse quantization process may include a conventional process, e.g.,

similar to some examples of HEVC or defined by the H.264 decoding standard. The

inverse quantization process may include use of a quantization parameter QP calculated

by video encoder 20 for the CU to determine a degree of quantization and, likewise, a

degree of inverse quantization that should be applied. Inverse quantization unit 76 may

inverse quantize the transform coefficients either before or after the coefficients are

converted from a one-dimensional array to a two-dimensional array.

[0173] Inverse transform processing unit 78 applies an inverse transform to the inverse

quantized transform coefficients. In some examples, the inverse transform processing

unit 78 may determine an inverse transform based on signaling from the video encoder

20, or by inferring the transform from one or more coding characteristics such as block

size, coding mode, or the like. In some examples, the inverse transform processing unit

78 may determine a transform to apply to the current block based on a signaled

transform at the root node of a quadtree for an LCU including the current block.

Alternatively, the transform may be signaled at the root of a TU quadtree for a leaf-node

CU in the LCU quadtree. In some examples, the inverse transform processing unit 78

may apply a cascaded inverse transform, in which inverse transform processing unit 78

applies two or more inverse transforms to the transform coefficients of the current block

being decoded.

[0174] In addition, the inverse transform processing unit may apply the inverse

transform to produce a transform unit partition in accordance with the above-described

techniques of this disclosure.

[0175] The intra-prediction processing unit 74 may generate prediction data for a

current block of a current frame based on a signaled intra-prediction mode and data

from previously decoded blocks of the current frame. Based on the retrieved motion

prediction direction, reference frame index, and calculated current motion vector (e.g., a

WO 2016/196287 PCT/US2016/034647
44

motion vector copied from a neighboring block according to a merge mode), the motion

compensation unit produces a motion compensated block for the current portion. These

motion compensated blocks essentially recreate the predictive block used to produce the

residual data.

[0176] The motion compensation unit 72 may produce the motion compensated blocks,

possibly performing interpolation based on interpolation filters. Identifiers for

interpolation filters to be used for motion estimation with sub-pixel precision may be

included in the syntax elements. The motion compensation unit 72 may use

interpolation filters as used by the video encoder 20 during encoding of the video block

to calculate interpolated values for sub-integer pixels of a reference block. The motion

compensation unit 72 may determine the interpolation filters used by the video encoder

20 according to received syntax information and use the interpolation filters to produce

predictive blocks.

[0177] Additionally, the motion compensation unit 72 and the intra-prediction

processing unit 74, in an HEVC example, may use some of the syntax information (e.g.,

provided by a quadtree) to determine sizes of LCUs used to encode frame(s) of the

encoded video sequence. The motion compensation unit 72 and the intra-prediction

processing unit 74 may also use syntax information to determine split information that

describes how each CU of a frame of the encoded video sequence is split (and likewise,

how sub-CUs are split). The syntax information may also include modes indicating

how each split is encoded (e.g., intra- or inter-prediction, and for intra-prediction an

intra-prediction encoding mode), one or more reference frames (and/or reference lists

containing identifiers for the reference frames) for each inter-encoded PU, and other

information to decode the encoded video sequence.

[0178] The summer 80 combines the residual blocks with the corresponding prediction

blocks generated by the motion compensation unit 72 or the intra-prediction processing

unit 74 to form decoded blocks. If desired, a deblocking filter may also be applied to

filter the decoded blocks in order to remove blockiness artifacts. The decoded video

blocks are then stored in the reference picture memory 82, which provides reference

blocks for subsequent motion compensation and also produces decoded video for

presentation on a display device (such as the display device 31 of FIG. 1).

[0179] FIG. 8 illustrates the binary arithmetic encoding process for a given bin value

binValusing the regular coding mode. The internal state of the arithmetic encoding

engine is as usual characterized by two quantities: the current interval range R and the

WO 2016/196287 PCT/US2016/034647
45

base (lower endpoint) L of the current code interval. Note, however, that the precision

needed to store these registers in the CABAC engine (both in regular and bypass mode)

can be reduced up to 9 and 10 bits, respectively. Encoding of the given binary value

binVal observed in a context with probability state index 6 and value of MPS (6%2) is

performed in a sequence of four elementary steps as follows.

[0180] In the first and major step, the current interval is subdivided according to the

given probability estimates. This interval subdivision process involves three elementary

operations as shown in the topmost box of the flow diagram in FIG. 8. First, the current

interval range R is approximated by a quantized value Q(R) using an equi-partition of

the whole range 28 < R 29 into four cells. But instead of using the corresponding

representative quantized range values Qo, Qi, Q2, and Q3 explicitly in the CABAC

engine, is only addressed by its quantizer index p, which can be efficiently computed by

a combination of a shift and bit-masking operation, i.e., in accordance with Equation

(14), below.

p (R» 6) & 3 (14)

[0181] Then, this index p and the probability state index 6 are used as entries in a 2-D

table TabRangeLPS to determine the (approximate) LPS related subinterval range RLPS,

as shown in FIG. 8. Here, the table TabRangeLPS contains all 64x4 pre-computed

product values for p, -Qp for 0 (6 » 1) 63 and 0 p 3 in 8-bit precision.

[0182] Given the dual subinterval range for the MPS, the subinterval corresponding to

the given bin value binVal is chosen in the second step of the encoding process. If

binVal is equal to the MPS value, the lower subinterval is chosen so that L is unchanged

(right path of the branch in FIG. 8); otherwise, the upper subinterval with range equal to

RLPS is selected (left branch in FIG. 8). In the third step of the regular arithmetic

encoding process, the update of the probability states is performed as described above

(e.g., using Equation (2)) (gray shaded boxes in FIG. 8), and finally, the fourth step

consists of the renormalization of the registers L and R ("RenormE" box in FIG. 8) as

described by Marpe.

[0183] The 2-D table TabRangeLPS may be defined as follows:

TabRangeLPS[64][4] =

{
{128, 176, 208, 240},
{128, 167, 197, 227},
{128, 158, 187, 216},
{123, 150, 178, 205},

WO 2016/196287 PCT/US2016/034647
46

{ 116,142,169,195},
{ 111, 135, 160, 185},
{ 105,128,152,175},
{ 100,122,144,166},
{ 95, 116, 137, 158},
{ 90, 110, 130, 150},
{ 85,104,123,142},
{ 81, 99, 117, 135},
{ 77, 94, 111, 128},
{ 73, 89, 105, 122},
{ 69, 85, 100, 116},
{ 66, 80, 95, 110},
{ 62, 76, 90, 104},
{ 59, 72, 86, 99},
{ 56, 69, 81, 94},
{ 53, 65, 77, 89},
{ 51, 62, 73, 85},
{ 48, 59, 69, 80},
{ 46, 56, 66, 76},
{ 43, 53, 63, 72},
{ 41, 50, 59, 69},
{ 39, 48, 56, 65},
{ 37, 45, 54, 62},
{ 35, 43, 51, 59},
{ 33, 41, 48, 56},
{ 32, 39, 46, 53},
{ 30, 37, 43, 50},
{ 29, 35, 41, 48},
{ 27, 33, 39, 45},
{ 26, 31, 37, 43},
{ 24, 30, 35, 41},
{ 23, 28, 33, 39},
{ 22, 27, 32, 37},
{ 21, 26, 30, 35},
{ 20, 24, 29, 33},
{ 19, 23, 27, 31},
{ 18, 22, 26, 30},
{ 17, 21, 25, 28},
{ 16, 20, 23, 27},
{ 15, 19, 22, 25},
{ 14, 18, 21, 24},
{ 14, 17, 20, 23},
{ 13, 16, 19, 22},
{ 12, 15, 18, 21},
{ 12, 14, 17, 20},
{ 11, 14, 16, 19},
{ 11, 13, 15, 18},
{ 10, 12, 15, 17},
{ 10, 12, 14, 16},
{ 9, 11, 13, 15},

WO2016/196287 PCT/US2016/034647
47

{ 9, 11, 12, 14},
{ 8, 10, 12, 14},
{ 8, 9, 11, 13},
{ 7, 9, 11, 12},
{ 7, 9, 10, 12},
{ 7, 8, 10, 11},
{6, 8, 9, 11},
{6, 7, 9, 10},
{ 6, 7, 8, 9},
{ 2, 2, 2, 2}

} ;
[0184] An example CABAC decoding process may be found in section 9.3.4.3.2.2 of

the HEVC standard.

[0185] FIG. 9 is a conceptual diagram that illustrates a transform scheme based on

residual quadtree. To adapt the various characteristics of the residual blocks, a

transform coding structure using the residual quadtree (RQT) is applied in HEVC,

which is briefly described at http://www.hhi.fraunhofer.de/departments/video-coding

analytics/research-groups/image-video-coding/hevc-high-efficiency-video

coding/transform-coding-using-the-residual-quadtree-rqt.html.

[0186] Each picture is divided into coding tree units (CTU), which are coded in raster

scan order for a specific tile or slice. A CTU is a square block and represents the root of

a quadtree, i.e., the coding tree. The CTU size may range from 8x8 to 64x64 luma

samples, but typically 64x64 is used. Each CTU can be further split into smaller square

blocks called coding units (CUs). After the CTU is split recursively into CUs, each CU

is further divided into PUs and TUs. The partitioning of a CU into TUs is carried out

recursively based on a quadtree approach, therefore the residual signal of each CU is

coded by a tree structure namely, the residual quadtree (RQT). The RQT allows TU

sizes from 4x4 up to 32x32 luma samples. FIG. 9 shows an example where a CU

includes 10 TUs, labeled with the letters a to j, and the corresponding block partitioning.

Each node of the RQT is actually a transform unit (TU). The individual TUs are

processed in depth-first tree traversal order, which is illustrated in the figure as

alphabetical order, which follows a recursive Z-scan with depth-first traversal. The

quadtree approach enables the adaptation of the transform to the varying space

frequency characteristics of the residual signal. Typically, larger transform block sizes,

which have larger spatial support, provide better frequency resolution. However,

smaller transform block sizes, which have smaller spatial support, provide better spatial

WO 2016/196287 PCT/US2016/034647
48

resolution. The trade-off between the two, spatial and frequency resolutions, is chosen

by the encoder mode decision, for example based on rate-distortion optimization

technique. The rate-distortion optimization technique calculates a weighted sum of

coding bits and reconstruction distortion, i.e., the rate-distortion cost, for each coding

mode (e.g., a specific RQT splitting structure), and selects the coding mode with least

rate-distortion cost as the best mode.

[0187] Three parameters are defined in the RQT: the maximum depth of the tree, the

minimum allowed transform size and the maximum allowed transform size. In some

examples of HEVC, the minimum and maximum transform sizes can vary within the

range from 4x4 to 32x32 samples, which correspond to the supported block transforms

mentioned in the previous paragraph. The maximum allowed depth of the RQT restricts

the number of TUs. A maximum depth equal to zero means that a CTU cannot be split

any further if each included TU reaches the maximum allowed transform size, e.g.,

32x32.

[0188] All these parameters interact and influence the RQT structure. Consider a case,

in which the root CTU size is 64x64, the maximum depth is equal to zero and the

maximum transform size is equal to 32x32. In this case, the CTU has to be partitioned

at least once, since otherwise it would lead to a 64x64 TU, which is not allowed. The

RQT parameters, i.e. maximum RQT depth, minimum and maximum transform size, are

transmitted in the bitstream at the sequence parameter set level. Regarding the RQT

depth, different values can be specified and signaled for intra and inter coded CUs.

[0189] The quadtree transform is applied for both Intra and Inter residual blocks.

Typically the DCT-II transform of the same size of the current residual quadtree

partition is applied for a residual block. However, if the current residual quadtree block

is 4x4 and is generated by Intra prediction, the above 4x4 DST-VII transform is applied.

[0190] In HEVC, larger size transforms, e.g., 64x64 transforms, are not adopted mainly

due to their limited benefit considering and relatively high complexity for relatively

smaller resolution videos.

[0191] FIG. 10 is a conceptual diagram illustrating an example coefficient scan based

on coefficient groups. Regardless the TU size, the residual of the transform unit is

coded with non-overlapped coefficient groups (CG), each contains the coefficients of a

4x4 block of a TU. For example, a 32x32 TU has totally 64 CGs, and a 16x16 TU has

totally 16 CGs. The CGs inside a TU may be coded according to a certain pre-defined

scan order. When coding each CG, the coefficients inside the current CG are scanned

WO 2016/196287 PCT/US2016/034647
49

and coded according to a certain pre-defined scan order for 4x4 block. FIG. 10

illustrates the coefficient scan for an 8x8 TU containing 4 CGs.

[0192] The syntax element table is defined as follows:

7.3.8.11 Residual coding syntax

residual_coding(x0, y, log2TrafoSize, cIdx) { Descriptor
if(transform-skipenabledflag && !cutransquant bypass flag &&

(log2TrafoSize == 2))
transform-skipflag[x0][yO][cIdx] ae(v)

last-sigcoeff x-prefix ae(v)

last-sigcoeff_y_prefix ae(v)

if(last sigcoeff x_prefix > 3)
last-sigcoeff x_suffix ae(v)

if(last sigcoeff y_prefix > 3)
last-sigcoeffy_suffix ae(v)

lastScanPos = 16

lastSubBlock =(1 (log2TrafoSize - 2))*(1 << (log2TrafoSize - 2

do{

if(lastScanPos== 0){
lastScanPos= 16

lastSubBlock-

}
lastScanPos-

xS = ScanOrder[log2TrafoSize - 2][scanldx][lastSubBlock][0]
yS = ScanOrder[log2TrafoSize - 2][scanldx][lastSubBlock][1]
xC = (xS « 2) + ScanOrder[2][scanldx][lastScanPos][0]
yC=(yS « 2)+ ScanOrder[2][scanldx][lastScanPos][1]

}while((xC LastSignificantCoeffX) (yC LastSignificantCoeffY

for(i = lastSubBlock; i >= 0; i-

xS = ScanOrder[log2TrafoSize - 2][scanldx][i][0]
yS = ScanOrder[log2TrafoSize - 2][scanldx][i][1]
inferSbDcSigCoeffFlag = 0
if((i<lastSubBlock) && (i >0)){

codedsubblock-flag[xS][yS] ae(v)

inferSbDcSigCoeffFlag = 1

}
for(n =(i== lastSubBlock) ? lastScanPos - 1 : 15; n >= 0; n- -){

xC= (xS « 2) + ScanOrder[2][scanldx][n][0]
yC= (yS « 2) + ScanOrder[2][scanldx][n][1]

WO 2016/196287 PCT/US2016/034647
50

if(coded_sub blockflag[xS][yS]&&(n > 0
linferSbDcSigCoeffFlag)) {

sigcoeff flag[xC][yC] ae(v)

if(sigcoeff flag[xC][yC])

inferSbDcSigCoeffFlag = 0

}
}
firstSigScanPos= 16

lastSigScanPos =-1

numGreaterlFlag = 0

lastGreaterlScanPos = -1

for(n =15; n >= 0; n-

xC= (xS « 2) + ScanOrder[2][scanldx][n][0

yC= (yS « 2) + ScanOrder[2][scanldx][n][1]

if(sigcoeff flag[xC][yC]){

if(numGreaterlFlag < 8){

coeffabslevelgreater1_flag[n] ae(v)

numGreaterlFlag++

if(coeff abs-level_greaterl_flag[n] && lastGreaterlScanPos

lastGreaterl ScanPos = n

}
if(lastSigScanPos== -1)

lastSigScanPos = n

firstSigScanPos = n

}
}
signHidden =(lastSigScanPos - firstSigScanPos > 3 &&

!cu transguant bypass flag)
if(lastGreaterlScanPos != -1)

coeffabs_levelgreater2_flag[lastGreaterl ScanPos] ae(v)

for(n =15; n >= 0; n- -) {

xC= (xS « 2) + ScanOrder[2][scanldx][n][0

yC= (yS « 2) + ScanOrder[2][scanldx][n][1]

if(sigcoeff flag[xC][yC] &&
(!signdata hidingenabledflag !signHidden (n

firstSigScanPos)))
coeff signflag[n] ae(v)

}
numSigCoeff= 0

sumAbsLevel= 0

for(n = 15; n >= 0; n- -

WO 2016/196287 PCT/US2016/034647
51

xC = (xS « 2) + ScanOrder[2][scanldx][n][0

yC = (yS « 2) + ScanOrder[2][scanldx][n][1]

if(sigcoeff flag[xC][yC]) {
baseLevel = 1 + coeffabslevelgreaterl flag[n]+

coeff abs level greater2 flag[n]
if(baseLevel= = ((numSigCoeff < 8) ?

((n = = lastGreaterl ScanPos) ? 3 :2):1))
coeffabslevelremaining[n] ae(v)

TransCoeffLevelx[x][y][cIdx][xC][yC]=
(coeff abs levelremaining[n]+ baseLevel)*(1 - 2*

coeff sign flag[n])
if(signdata hidingenabledflag && signHidden){

sumAbsLevel += (coeffabslevelremaining[n]+ baseLevel)

if((n == firstSigScanPos) && ((sumAbsLevel % 2)== 1))

TransCoeffLevel[x][yO][cIdx][xC][yC] =
-TransCoeffLevel x][yO][cIdx][xC][yC]

}
numSigCoeff++

}
}

}
}

[0193] For each color component, one flag may be firstly signaled to indicate whether

current TU has at least one non-zero coefficient. If there is at least one non-zero

coefficient, the position of the last significant coefficient in the coefficient scan order in

a TU is then explicitly coded with a coordinate relative to the top-left corner of the

transform unit. The vertical or horizontal component of the coordinate is represented by

its prefix and suffix, wherein prefix is binarized with truncated rice (TR) and suffix is

binarized with fixed length.

[0194] Semantics:

[0195] last-sigcoeff x-prefix specifies the prefix of the column position of the last

significant coefficient in scanning order within a transform block. The values of

last-sigcoeff x_prefix shall be in the range of 0 to (log2TrafoSize « 1)- 1,

inclusive.

[0196] lastsigcoeff_y_prefix specifies the prefix of the row position of the last

significant coefficient in scanning order within a transform block. The values of

last-sigcoeffgy_prefix shall be in the range of 0 to (log2TrafoSize « 1)- 1,

inclusive.

WO 2016/196287 PCT/US2016/034647
52

[0197] last-sigcoeff_x_suffix specifies the suffix of the column position of the last

significant coefficient in scanning order within a transform block. The values of

last-sigcoeff_x_suffix shall be in the range of 0 to

(1 ((last sigcoeff x_prefix >> 1) - 1)) - 1, inclusive.

[0198] The column position of the last significant coefficient in scanning order within a

transform block LastSignificantCoeffX is derived as follows:

- If last sigcoeff_x_suffix is not present, the following applies:

LastSignificantCoeffX = last sig coeffxprefix

- Otherwise (last sigcoeff_x_suffix is present), the following applies:

LastSignificantCoeffX = (1 < ((last sig coeffxprefix >> 1) - 1))*
(2 + (last sig coeff~xprefix & 1)) + last sig coeff_x_suffix

[0199] lastsigcoeff_y_suffix specifies the suffix of the row position of the last

significant coefficient in scanning order within a transform block. The values of

last-sigcoeffgy-suffix shall be in the range of 0 to

(1 ((last sigcoeff y_prefix >> 1) - 1)) - 1, inclusive.

[0200] The row position of the last significant coefficient in scanning order within a

transform block LastSignificantCoeffY is derived as follows:

- If last sigcoeffgy_suffix is not present, the following applies:

LastSignificantCoeffY = last sig coeff y_prefix

- Otherwise (last sigcoeff y_suffix is present), the following applies:

LastSignificantCoeffY = (1 < ((last sig coeff y_prefix >> 1) - 1))*
(2 + (last sig coeff y_prefix & 1))+ last sig coeff y_suffix

[0201] When scandx is equal to 2, the coordinates are swapped as follows:

(LastSignificantCoeffX, LastSignificantCoeffY)=Swap(LastSignificantCoeffX,

LastSignificantCoeffY)

[0202] With such a position coded and also the coefficient scanning order of the CGs,

one flag is further signaled for CGs except the last CG (in scanning order) which

indicates whether it contains non-zero coefficients.

[0203] Context modeling of CG flag. When coding whether one CG has non-zero

coefficients, i.e., the CG flag (codedsub_block_flag in the HEVC specification), the

information of neighboring CGs are utilized to build the context. To be more specific,

the context selection for coding the CG flag is defined as:

WO 2016/196287 PCT/US2016/034647
53

(Right CG available && Flag of right CG is equal to 1) |(below CG available && Flag
of below CG is equal to 1)

[0204] Here, the right and below CG are the two neighboring CGs close to current CG.

For example, in FIG. 10, when coding the top-left 4x4 block, the right CG is defined as

the top-right 4x4 block and the below CG is defined as the left-below 4x4 block.

[0205] Note that Chroma and luma use different sets of contexts but with the same rule

to select one of them.

[0206] Details of the derivation of context index increment could be found in 9.3.4.2.4

of HEVC.

[0207] Transform coefficient coding within one CG. For those CGs that may contain

non-zero coefficients, significant flags (significant flag), absolute values of coefficients

(including coeff abs-level-greaterlflag, coeff abslevel_greater2_flag and

coeffabslevelremaining) and sign information (coeff sign flag) may be further

coded for each coefficient according to the pre-defined 4x4 coefficient scan order. The

coding of transform coefficient levels is separated into multiple scan passes.

[0208] 1) First pass of the first bin coding. In this pass, all the first bins (or the bin

index 0, binO) of transform coefficients at each position within one CG are coded except

that it could be derived that the specific transform coefficient is equal to 0.

[0209] The variable sigCtx depends on the current location relative to the top-left

postion of current TU, the colour component index cldx, the transform block size, and

previously decoded bins of the syntax element codedsubblock-flag. Different rules

are applied depending on the TU size. Example details of the selection of the context

index increment are defined in 9.3.4.2.5 of HEVC.

[0210] 2) Second pass of the second bin coding. The coding of

coeffabs-level-greaterlflags is applied in this pass. The context modeling is

dependent on color component index, the current sub-block scan index, and the current

coefficient scan index within the current sub-block. Example details of the selection of

the context index increment are defined in 9.3.4.2.6 of HEVC.

[0211] 3) Third pass of the third bin coding. The coding of

coeffabs-levelgreater2_flags is applied in this pass. The context modeling is similar

to that used by coeffabslevelgreaterl flags. Example details of the selection of the

context index increment are defined in 9.3.4.2.7 of HEVC.

[0212] Note that in order to improve throughput, the second and third passes may not

process all the coefficients in a CG. The first eight coeffabslevel_greaterl flags in a

WO 2016/196287 PCT/US2016/034647
54

CG are coded in regular mode. After that, the values are left to be coded in bypass

mode in the fifth pass by the syntax coeffabslevelremaining. Similarly, only the

coeffabs-levelgreater2_flags for the first coefficient in a CG with magnitude larger

than 1 is coded. The rest of coefficients with magnitude larger than 1 of the CG use

coeffabslevelremaining to code the value. This method limits the number of regular

bins for coefficient levels to a maximum of 9 per CG: 8 for the

coeffabs-level-greaterlflags and 1 for coeffabslevel_greater2_flags.

[0213] 4) Fourth pass of sign information. In some examples of HEVC, the sign of

each nonzero coefficient is coded in the fourth scan pass in bypass mode. For each CG,

and depending on a criterion, encoding the sign of the last nonzero coefficient (in

reverse scan order) is simply omitted when using sign data hidding (SDH). Instead, the

sign value is embedded in the parity of the sum of the levels of the CG using a

predefined convention: even corresponds to "+" and odd to "-." The criterion to use

SDH is the distance in scan order between the first and the last nonzero coefficients of

the CG. If this distance is equal or larger than 4, SDH is used. This value of 4 was

chosen because it provides the largest gain on HEVC test sequences.

[0214] 5) Last pass of remaining bins. The remaining bins are coded in a further scan

pass. Let the baseLevel of a coefficient be defined as:

baseLevel= significant flag + coeffabslevelgreaterl flag+
coeffabslevelgreater2_flag

[0215] Where a flag has a value of 0 or 1 and is inferred to be 0 if not present. Then, the

absolute value of the coefficient is simply:

absCoeffLevel = baseLevel+ coeffabslevelremaining.

[0216] The Rice parameter is set to 0 at the beginning of each CG and it is conditionally

updated depending on the previous value of the parameter and the current absolute level

as follows:

if absCoeffLevel > 3 x 2m, m= min(4,m + 1).

[0217] The syntax element coeffabslevelremaining may be coded in bypass mode.

In addition, some examples of HEVC employ Golomb-Rice codes for small values and

switches to an Exp-Golomb code for larger values. The transition point between the

codes is typically when the unary code length equals 4. The parameter update process

WO 2016/196287 PCT/US2016/034647
55

allows the binarization to adapt to the coefficient statistics when large values are

observed in the distribution.

[0218] Context modeling of interpredidc. interpred idc specifies whether listO,

list, or bi-prediction is used for the current prediction unit. The syntax element has up

to two bins, both of which are CABAC context coded. The binairzed bin string is

defined as follows:

Value of Bin string Bin string
interpred-idc (nPbW + nPbH) 12 (nPbW + nPbH) 12
0 00 00
1 01 01
2 1 1

[0219] wherein nPbW and nPbH represent the current luma prediction block width and

height, respectively.

[0220] For each inter-coded slice, e.g., P slice or B slice, the context selection is based

on the following rule:

- If (nPbW + nPbH) is unequal to 12, the first bin is coded using four contexts

and the second bin is coded with one context. The context selection of the first

bin is according the current CU depth. In HEVC, CU depth is in the range of 0

to 3, inclusively.

[0221] FIG. 11 is a flowchart illustrating an example process for performing context

based entropy encoding with different window sizes, in accordance with one or more

techniques of this disclosure. The techniques of FIG. 11 may be performed by a video

encoder, such as video encoder 20 illustrated in FIG. 1 and FIG. 4. For purposes of

illustration, the techniques of FIG. 11 are described within the context of video encoder

20 of FIG. 1 and FIG. 4, although video encoders having configurations different than

that of video encoder 20 may perform the techniques of FIG. 11.

[0222] Video encoder 20 may obtain a bin string (e.g., a one-dimensional binary vector)

to be encoded using context-based entropy coding (1102). For instance, entropy

encoding unit 56 of video encoder 20 may obtain the bin string by binarizing a syntax

element received from prediction processing unit 42 of video encoder 20. In some

examples, context-based entropy coding may comprise context-adaptive binary

arithmetic coding (CABAC).

WO 2016/196287 PCT/US2016/034647
56

[0223] In accordance with one or more techniques of this disclosure, video encoder 20

may determine a window size of a plurality of window sizes for a context of a plurality

of contexts (1104). In some examples, video encoder 20 may determine the window

size based on a pre-determined window size for the context. In some examples, video

encoder 20 may determine the window size by analyzing the coding efficiency of

several candidate window sizes and select the candidate window size with the best

coding efficiency as the window size for the context.

[0224] For instance, for each context, entropy encoding unit 56 may calculate the bits of

coding a recorded bin string with different window sizes and select the one with

minimum bit. In some examples, the different window sizes used by entropy encoding

unit 56 may be predefined. Some example predefined window sizes are 16, 32, 64, and

128, though other window sizes are contemplated.

[0225] In some examples, entropy encoding unit 56 may encode one or more syntax

elements that indicate the window size used to encode bit string. For instance, entropy

encoding unit 56 may encode, in a slice header of a current slice, a first flag that

indicates whether a default window size or an updated window size is used for each

context. As one example, where entropy encoding unit 56 coded one or more bit strings

of the current slice using a context associated with a window size other than the default

window size, entropy encoding unit 56 may encode a first flag in the slice header of the

current slice to indicate that one or more bit strings are of the current slice coded using a

window size other than the default window size. Similarly, where entropy encoding

unit 56 coded all of the bit strings of a slice using contexts associated with the default

window size, entropy encoding unit 56 may encode a first flag in the slice header of the

current slice to indicate that all of the bit strings of the current slice are coded using the

default window size. In some examples, the first flag may be referred to as

defaultupdatingspeed flag as described in greater detail below.

[0226] In some examples, where entropy encoding unit 56 encodes a first flag in the

slice header of the current slice that indicates that one or more bit strings are of the slice

coded using a window size other than the default window size, entropy encoding unit 56

may encode, in the slice header of the current slice, a second flag that indicates whether

the window sizes associated with contexts used to code the current slice are inherited

from a previously coded slice. In some examples, the previously coded slice may be the

most recently coded slice that has one or more parameters in common with the current

slice, such as the same slice type and the same initilized QP. In some examples, the first

WO 2016/196287 PCT/US2016/034647
57

flag may be referred to as inheritancefromprevious flag as described in greater detail

below.

Syntax

7.3.6 Slice segment header syntax

7.3.6.1 General slice segment header syntax

slice-segmentheader(){ Descriptor

first slicesegmentinpic-flag u(1)
if(nal unittype >= BLAW_LP && nal unittype <=

RSV IRAP VCL23)
nooutput-of prior-picsflag u(1)

slice-pic-parameter_setid ue(v)

if(slicesegment headerextensionpresentflag){

slicesegment-headerextensionlength ue(v)

for(i = 0; i < slicesegment headerextension length; i++)

slicesegmentheaderextension-data-byte[i] u(8)

}
default updating speedjflag u(])

if(!default updating speed){

inheritancefrom previousjflag u(])

if(!inheritance ftom previousflag) {
bit map run length coding()

speed index level coding()

}
}
byte-alignment()

}
[0227] Some example semantics for the above described syntax elements are provided

below:

[0228] default updatingspeed flag equal to 1 may specify that the default window size

is used for all contexts and inheritancefromprevious flag is not present in the slice

header. default updatingspeed flag equal to 0 may specify that

inheritance-frompreviousflag is present in the slice header.

[0229] inheritancefromprevious flag equal to 1 may specify that the window sizes

associated with contexts are inherited from a previsouly coded slice with the same slice

type and same initilized QP. inheritance-frompreviousflag equal to 0 may specify

WO 2016/196287 PCT/US2016/034647
58

that the window sizes associated with contexts are signalled in the bitstream,

bit map run lengthcoding and speed index-level_coding are present.

[0230] In some examples, the picture to be used may be explicitly spcified. If a picture

contains multiple slices, either the first slice may be used or the id of the slice of that

picture may be explicility specified. In some examples, inheritancefrom-previous flag

equal to 1 may specify that the window sizes associated with contexts are inherited from

a previsouly coded slice with the same slice type.

[0231] In some examples, where entropy encoding unit 56 encodes the second flag to

indicate that the window sizes associated with contexts used to code the current slice are

not inherited from a previously coded slice, entropy encoding unit 56 may code one or

more syntax elements to indicate the window sizes associated with contexts used to

code the current slice. For instance, entropy encoding unit 56 may code a one bit map

that indicate the usage of different window size, and code the new window size index

when the bit indicates a new window size. In some examples, entropy encoding unit 56

may encode the one or more syntax elements to indicate the window sizes associated

with contexts used to code the current slice as described below.

7.xxxx Bit map run lenth coding syntax

bit-map run lengthcoding(){ Descriptor
run = 0

ctxIdx = 0

while (ctxIdx < totalCtxNr){

run[i] ue(v)

ctxIdx += run[i]

if(ctxIdx >= totalCtxNr){

break;

}
ctxUpdatedSpeedFlag[ctxIdx]=1

ctxIdx ++

}
}

102321Alternatively, the following table may be defined

WO 2016/196287 PCT/US2016/034647
59

bit-map run lengthcoding(){ Descriptor

run = 0

ctxIdx = 0

while (ctxIdx < totalCtxNr){

run[i] ue(v)

ctxIdx += run[i]

ctxUpdatedSpeedFlag[ctxIdx]=1

ctxIdx ++

}
}

7.xxxx speed index level coding syntax

speed-indexlevelcoding(){ Descriptor

for (i = 0; i < totalCtxNr; i ++){

if (ctxUpdatedSpeedFlag[i]){

ctx-idxdifference[i] ue(v)

}
}

}
[0233] Some example semantics for the above described syntax elements are provided

below:

[0234] run[i] may indicate the number of consecutive contexts that use the default

updating speed.

[0235] ctxUpdatedSpeedFlag may be an array with totalCtxNr entries. For each entry, it

may be set to be 0 before decoding one slice which indicates that each context uses the

default probabitliy updating speed, i.e., the default window size. In one exmaple, the

default window size is equal to 64.

[0236] In one example, totalCtxNr may represent the total number of contexts that may

be used in current slice. In another example, totalCtxNr may represent the total number

of contexts that may be used in all slices. In another example, totalCtxNr may represent

the total number of selected contexts that are pre-defined.

[0237] ctx idxdifference may indicate the difference of indices of window size

compared to the default window size.

[0238] In one example, the default window size may be equal to 64. In some examples,

such as when ctxidxdifference is equal to 2, window size may be set to 128. In some

examples, such as when ctxidx-difference is equal to 0 or 1, window size may be set

equal to (1<(ctx-idx-difference+4)). That is, four window sizes may be supported,

WO 2016/196287 PCT/US2016/034647
60

i.e., 16, 32, 64, and 128, though examples with additional or fewer windows sizes are

contimplated. In some examples, entropy encoding unit 56 may signal some or all of

the above information in an active parameter set.

[0239] At the decoder side, for each slice header, a first flag may be firstly decoded

which may indicate the usage of default window size or updated window sizes for each

context. In some examples, if the first flag is equal to 1 (i.e., using updated window

sizes), a second flag may be further decoded which may indicate the inheritance from a

previously coded picture or the additional signaling of updated window sizes. If the

signaling of window sizes is needed, a bit map may be firstly signaled to indicate the

usage of different window size, and signal the new window size index when the bit

indicates a new window size.

[0240] In any case, video encoder 20 may encode, in a video bitstream and based on a

probability state of the context, a bin of the bin string (1106). For instance, entropy

encoding unit 56 may output a binary stream that represents a value or pointer to a

probability within a final coded probability interval of the context.

[0241] Video encoder 20 may update a probability state of the context model based on

the determined window size (1108). For instance, given a determined window size Wi

associated with an i-th context model, entropy encoding unit 56 may update the

probability state of the i-th context model in accordance with Equation (15), below,

where k may represent the precision of probabilities. In one example, k is equal to 15.

. (2/ W)+ Pold- (old / W) MPS (e.g., 1) (15)
" *Pold -(old / WT) LPS (e.g., Q1 - MPS))

[0242] When Wi is equal to (1 M), the probability updating process performed by

entropy encoding unit 56 could be rewritten as shown in Equation (16), below

p ={old +((2k-Ald)»M1) MPS(e.g.,1) (16)
"* Pold -(old > i) LPS (e.g., (1 - MPS))

[0243] Video encoder 20 may encode, in the video bitstream and based on the updated

probability state of the context, another bin (1106). In some examples, the other bin

encoded may be a second bin of the bin string.

[0244] FIG. 12 is a flowchart illustrating an example process for performing context

based entropy decoding with different window sizes, in accordance with one or more

techniques of this disclosure. The techniques of FIG. 12 may be performed by a video

decoder, such as video decoder 30 illustrated in FIG. 1 and FIG. 6. For purposes of

WO 2016/196287 PCT/US2016/034647
61

illustration, the techniques of FIG. 12 are described within the context of video decoder

30 of FIG. 1 and FIG. 6, although video decoders having configurations different than

that of video decoder 30 may perform the techniques of FIG. 12.

[0245] Video decoder 30 may obtain, from a video bitstream, a bin string (e.g., a one

dimensional binary vector) to be decoded using context-based entropy coding (1202).

For instance, entropy decoding unit 70 of video decoder 30 may obtain, from video data

memory 69, the bin string. In some examples, context-based entropy coding may

comprise context-adaptive binary arithmetic coding (CABAC).

[0246] In accordance with one or more techniques of this disclosure, video decoder 30

may determine a window size of a plurality of window sizes for a context of a plurality

of contexts (1204). In some examples, video decoder 30 may determine the window

size based on a pre-determined window size for the context. In some examples, video

decoder 30 may determine the window size by analyzing the coding efficiency of

several candidate window sizes and select the candidate window size with the best

coding efficiency as the window size for the context.

[0247] In some examples, entropy decoding unit 70 may encode one or more syntax

elements that indicate the window size used to encode bit string. For instance, entropy

decoding unit 70 may decode, from a slice header of a current slice, a first flag that

indicates whether a default window size or an updated window size is used for each

context. As one example, where entropy decoding unit 70 decoded one or more bit

strings of the current slice using a context associated with a window size other than the

default window size, entropy decoding unit 70 may decode a first flag from the slice

header of the current slice that indicates that one or more bit strings are of the current

slice coded using a window size other than the default window size. Similarly, where

entropy decoding unit 70 decoded all of the bit strings of a slice using contexts

associated with the default window size, entropy decoding unit 70 may decode a first

flag from the slice header of the current slice that indicates that all of the bit strings of

the current slice are coded using the default window size. In some examples, the first

flag may be referred to as default updatingspeed flag as described in greater detail

above.

[0248] In some examples, where entropy encoding unit 56 encodes a first flag in the

slice header of the current slice that indicates that one or more bit strings are of the slice

coded using a window size other than the default window size, entropy encoding unit 56

may encode, in the slice header of the current slice, a second flag that indicates whether

WO 2016/196287 PCT/US2016/034647
62

the window sizes associated with contexts used to code the current slice are inherited

from a previously coded slice. In some examples, the previously coded slice may be the

most recently coded slice that has one or more parameters in common with the current

slice, such as the same slice type and the same initilized QP. In some examples, the first

flag may be referred to as inheritancefromprevious flag as described in greater detail

above with reference to FIG. 11.

[0249] In some examples, the picture to be used may be explicitly spcified. If a picture

contains multiple slices, either the first slice may be used or the id of the slice of that

picture may be explicility specified. In some examples, inheritancefrom-previous flag

equal to 1 may specify that the window sizes associated with contexts are inherited from

a previsouly coded slice with the same slice type.

[0250] In some examples, where the second flag indicates that the window sizes

associated with contexts used to code the current slice are not inherited from a

previously coded slice, entropy decoding unit 70 may decode one or more syntax

elements that indicate the window sizes associated with contexts used to code the

current slice. For instance, entropy decoding unit 70 may decode a one bit map that

indicate the usage of different window size, and decode the new window size index

when the bit indicates a new window size. In some examples, entropy decoding unit 70

may decode the one or more syntax elements to indicate the window sizes associated

with contexts used to code the current slice as described above with reference to

FIG. 11.

[0251] In any case, video decoder 30 may decode, based on a probability state of the

context, a bin of the bin string (1206). Video decoder 30 may update a probability state

of the context model based on the determined window size and the decoded bin (1208).

For instance, given a determined window size Wi associated with an i-th context model,

entropy decoding unit 70 may update the probability state of the i-th context model in

accordance with Equation (15), above.

[0252] Video decoder 30 may decode, based on the updated probability state of the

context, another bin (1206). In some examples, the other bin encoded may be a second

bin of the bin string.

[0253] The following numbered examples may illustrate one or more aspects of the

disclosure:

[0254] Example 1. A method for entropy coding of video data, the method

comprising: determining a window size of a plurality of window sizes for a context of a

WO 2016/196287 PCT/US2016/034647
63

plurality of contexts used in a context-adaptive entropy coding process to entropy code a

value for a syntax element of the video data; entropy coding, based on a probability

state of the context, a bin of the value for the syntax element; and updating the

probability state of the context based on the window size and the coded bin.

[0255] Example 2. The method of claim 1, wherein a context-adaptive entropy

coding process comprises a context-adaptive binary arithmetic coding (CABAC)

process, or a context-adaptive variable length coding (CAVLC) process.

[0256] Example 3. The method of claim 1, further comprising: entropy coding

another bin associated with the same context based on the updated probability state.

[0257] Example 4. The method of claim 1, wherein the context is a first context, the

method further comprising: determining a window size of the plurality of window sizes

for a second context of the plurality of contexts, wherein the window size of the second

context is different than the window size of the first context.

[0258] Example 5. The method of claim 4, wherein the window size for the first

context and the window size for the second context are not signaled in a bitstream that

includes the coded bin.

[0259] Example 6. The method of claim 1, wherein the plurality of window sizes

comprises a pre-defined set of window sizes.

[0260] Example 7. The method of claim 6, wherein entropy coding comprises

entropy encoding, and wherein determining the window size comprises: determining,

for respective window sizes of the pre-defined set of window sizes, respective quantities

of bits used to entropy encode a particular bin string that includes the bin values for the

syntax element; and selecting the window size of the pre-defined set of window sizes

that corresponds to the smallest quantity of bits as the window size for the context to

entropy encode the particular bin string.

[0261] Example 8. The method of claim 1, further comprising: coding a first syntax

element that indicates whether a default window size is used for the plurality of

contexts.

[0262] Example 9. The method of claim 8, further comprising: based on the first

syntax element indicating that the default window size is not used for the plurality of

contexts, coding a second syntax element that indicates the window size for the context.

[0263] Example 10. The method of claim 9, wherein to indicate the window size for

the context, the second syntax element indicates a difference between the window size

for the context and the default window size.

WO 2016/196287 PCT/US2016/034647
64

[0264] Example 11. The method of claim 8, wherein coding the first syntax element

comprises coding a slice header of a current slice including the first syntax element,

wherein the first syntax element indicates whether the default window size is used for

the plurality of contexts when entropy coding bins of the current slice.

[0265] Example 12. The method of claim 1, further comprising: coding, in a slice

header of a current slice, a syntax element that indicates whether window sizes for the

plurality of contexts are inherited from a previously coded slice.

[0266] Example 13. The method of claim 1, wherein determining the window size for

the context comprises: determining the window size for the context based on a type of

the syntax element.

[0267] Example 14. The method of claim 1, wherein entropy coding comprises

entropy decoding, the method further comprising: decoding, from a coded video

bitstream, one or more syntax elements that indicate the window size for the context.

[0268] Example 15. An apparatus for entropy coding of video data, the apparatus

comprising: a memory configured to store a plurality of contexts used in a context

adaptive entropy coding process to entropy code a value for a syntax element of the

video data; and one or more processors configured to: perform the method of any

combination of examples 1-14.

[0269] Example 16. The apparatus of example 15, wherein the apparatus comprises at

least one of: an integrated circuit; a microprocessor; or a wireless communication

device.

[0270] Example 17. The apparatus of any combination of examples 15-16, further

comprising a display configured to display decoded video data.

[0271] Example 18. The apparatus of any combination of examples 15-17, further

comprising a camera configured to capture the video data.

[0272] Example 19. An apparatus for entropy coding of video data, the apparatus

comprising: means for performing the method of any combination of examples 1-14.

[0273] Example 20. A computer-readable storage medium storing instructions that,

when executed, cause one or more processors of a video coding device to perform the

method of any combination of examples 1-14.

[0274] Example 21. A computer-readable storage medium storing video data that,

when processed by a video decoding device, cause one or more processors of the video

decoding device to determine a window size of a plurality of window sizes for a context

of a plurality of contexts used in a context-adaptive coding process to entropy code a

WO 2016/196287 PCT/US2016/034647
65

value for a syntax element; entropy code, based on a probability state of the context, a

bin of the value for the syntax element; update the probability state of the context based

on the window size and the coded bin; and entropy code a next bin with the same

context based on the updated probability state of the context model.

[0275] Example 22. The computer-readable storage medium of example 21, further

storing instructions that cause the one or more processors to perform the method of any

combination of examples 1-14.

[0276] In one or more examples, the functions described may be implemented in

hardware, software, firmware, or any combination thereof If implemented in software,

the functions may be stored on or transmitted over, as one or more instructions or code,

a computer-readable medium and executed by a hardware-based processing unit.

Computer-readable media may include computer-readable storage media, which

corresponds to a tangible medium such as data storage media, or communication media

including any medium that facilitates transfer of a computer program from one place to

another, e.g., according to a communication protocol. In this manner, computer

readable media generally may correspond to (1) tangible computer-readable storage

media which is non-transitory or (2) a communication medium such as a signal or

carrier wave. Data storage media may be any available media that can be accessed by

one or more computers or one or more processors to retrieve instructions, code and/or

data structures for implementation of the techniques described in this disclosure. A

computer program product may include a computer-readable medium.

[0277] By way of example, and not limitation, such computer-readable storage media

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic

disk storage, or other magnetic storage devices, flash memory, or any other medium that

can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

computer-readable medium. For example, if instructions are transmitted from a

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless

technologies such as infrared, radio, and microwave are included in the definition of

medium. It should be understood, however, that computer-readable storage media and

data storage media do not include connections, carrier waves, signals, or other transient

media, but are instead directed to non-transient, tangible storage media. Disk and disc,

66

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,

while discs reproduce data optically with lasers. Combinations of the above should also

be included within the scope of computer-readable media.

[0278] Instructions may be executed by one or more processors, such as one or more

digital signal processors (DSPs), general purpose microprocessors, application specific

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other

equivalent integrated or discrete logic circuitry. Accordingly, the term "processor," as

used herein may refer to any of the foregoing structure or any other structure suitable for

implementation of the techniques described herein. In addition, in some aspects, the

functionality described herein may be provided within dedicated hardware and/or

software modules configured for encoding and decoding, or incorporated in a combined

codec. Also, the techniques could be fully implemented in one or more circuits or logic

elements.

[0279] The techniques of this disclosure may be implemented in a wide variety of

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (e.g., a chip set). Various components, modules, or units are described in this

disclosure to emphasize functional aspects of devices configured to perform the

disclosed techniques, but do not necessarily require realization by different hardware

units. Rather, as described above, various units may be combined in a codec hardware

unit or provided by a collection of interoperative hardware units, including one or more

processors as described above, in conjunction with suitable software and/or firmware.

[0280] Various examples have been described. These and other examples are within the

scope of the following claims.

[0281] It will be understood that the term "comprise" and any of its derivatives (eg

comprises, comprising) as used in this specification is to be taken to be inclusive of

features to which it refers, and is not meant to exclude the presence of any additional

features unless otherwise stated or implied.

[0282] The reference to any prior art in this specification is not, and should not be taken

as, an acknowledgement or any form of suggestion that such prior art forms part of the

common general knowledge.

67

Claims

1. A method for entropy coding of video data, the method comprising:

determining a window size of a plurality of window sizes for a first context of a

plurality of contexts used in a context-adaptive binary arithmetic coding (CABAC) process;

CABAC coding, based on a probability state of the first context, a bin of a value for a

first syntax element of the video data;

updating the probability state of the first context based on the window size for the first

context and the coded bin of the value for the first syntax element;

determining a window size of the plurality of window sizes for a second context of the

plurality of contexts, wherein the window size for the second context is different than the

window size for the first context, and wherein the window size for the second context is not

used to update the probability state of the first context;

CABAC coding, based on a probability state of the second context, a bin of a value for

a second syntax element of the video data; and

updating the probability state of the second context based on the window size for the

second context and the coded bin for the second syntax element.

2. The method of claim 1, further comprising:

CABAC coding another bin associated with the first context based on the updated

probability state of the first context.

3. The method of claim 1, wherein the window size for the first context and the window

size for the second context are not signaled in a bitstream that includes the coded bin.

4. The method of claim 1, wherein the plurality of window sizes comprises a pre-defined

set of window sizes.

5. The method of claim 4, wherein CABAC coding comprises CABAC encoding, and

wherein determining the window size comprises:

determining, for respective window sizes of the pre-defined set of window sizes,

respective quantities of bits used to CABAC encode a particular bin string that includes the

bin values for the syntax element; and

68

selecting the window size of the pre-defined set of window sizes that corresponds to

the smallest quantity of bits as the window size for the first context to CABAC encode the

particular bin string.

6. The method of claim 1, further comprising:

coding a first syntax element that indicates whether a default window size is used for

the plurality of contexts.

7. The method of claim 6, further comprising:

based on the first syntax element indicating that the default window size is not used

for the plurality of contexts, coding a second syntax element that indicates the window size

for the first context.

8. The method of claim 7, wherein to indicate the window size for the first context, the

second syntax element indicates a difference between the window size for the first context

and the default window size.

9. The method of claim 6, wherein coding the first syntax element comprises coding a

slice header of a current slice including the first syntax element, wherein the first syntax

element indicates whether the default window size is used for the plurality of contexts when

CABAC coding bins of the current slice.

10. The method of claim 1, further comprising:

coding, in a slice header of a current slice, a syntax element that indicates whether

window sizes for the plurality of contexts are inherited from a previously coded slice.

11. The method of claim 1, wherein determining the window size for the first context

comprises:

determining the window size for the first context based on a type of the first syntax

element.

12. The method of claim 1, wherein CABAC coding comprises CABAC decoding, the

method further comprising:

69

decoding, from a coded video bitstream, one or more syntax elements that indicate the

window size for the first context.

13. An apparatus for entropy coding of video data, the apparatus comprising:

a memory configured to store a plurality of contexts used in a context-adaptive

entropy binary arithmetic (CABAC) process; and

one or more processors configured to:

determine a window size of a plurality of window sizes for a first context of

the plurality of contexts;

CABAC code, based on a probability state of the first context, a bin of a value

for a first syntax element of the video data;

update the probability state of the first context based on the window size for

the first context and the coded bin of the value for the first syntax element;

determine a window size of the plurality of window sizes for a second context

of the plurality of contexts, wherein the window size for the second context is different

than the window size for the first context, and wherein the window size for the second

context is not used to update the probability state of the first context;

CABAC code, based on a probability state of the second context, a bin of a

value for a second syntax element of the video data; and

update the probability state of the second context based on the window size for

the second context and the coded bin for the second syntax element.

14. The apparatus of claim 13, wherein the one or more processors are further configured

to:

CABAC code another bin associated with the first context based on the updated

probability state of the first context.

15. The apparatus of claim 13, wherein the window size for the first context and the

window size for the second context are not signaled in a bitstream that includes the coded bin.

16. The apparatus of claim 14, wherein the plurality of window sizes comprises a pre

defined set of window sizes.

70

17. The apparatus of claim 16, wherein, to CABAC code, the one or more processors are

configured to CABAC encode, and wherein, to determine the window size, the one or more

processors are configured to:

determine, for respective window sizes of the pre-defined set of window sizes,

respective quantities of bits used to CABAC encode a particular bin string that includes the

bin value for the syntax element; and

select the window size of the pre-defined set of window sizes that corresponds to the

smallest quantity of bits as the window size for the first context to CABAC encode the

particular bin string.

18. The apparatus of claim 13, wherein the one or more processors are further configured

to:

code a first syntax element that indicates whether a default window size is used for the

plurality of contexts.

19. The apparatus of claim 18, wherein, based on the first syntax element indicating that

the default window size is not used for the plurality of contexts, the one or more processors

are further configured to:

code a second syntax element that indicates the window size for the first context.

20. The apparatus of claim 19, wherein to indicate the window size for the first context,

the second syntax element indicates a difference between the window size for the first context

and the default window size.

21. The apparatus of claim 18, wherein, to code the first syntax element, the one or more

processors are configured to code a slice header of a current slice including the first syntax

element, wherein the first syntax element indicates whether the default window size is used

for the plurality of context models when CABAC coding bins of the current slice.

22. The apparatus of claim 13, wherein the one or more processors are further configured

to:

code, in a slice header of a current slice, a syntax element that indicates whether

window sizes for the plurality of contexts are inherited from a previously coded slice.

71

23. The apparatus of claim 13, wherein, to determine the window size for the first context,

the one or more processors are configured to:

determine the window size for the first context based on a type of the first syntax

element.

24. The apparatus of claim 13, wherein the apparatus comprises at least one of:

an integrated circuit;

a microprocessor; or

a wireless communication device.

25. The apparatus of claim 24, further comprising a display configured to display decoded

video data.

26. The apparatus of claim 24, further comprising a camera configured to capture the

video data.

27. The apparatus of claim 13, wherein, to CABAC code, the one or more processors are

configured to CABAC decode the value of the syntax element.

28. An apparatus for entropy coding of video data, the apparatus comprising:

means for determining a window size of a plurality of window sizes for a first context

of a plurality of contexts used in a context-adaptive binary arithmetic coding (CABAC)

process;

means for CABAC coding, based on a probability state of the first context, a bin of a

value for a first syntax element of the video data;

means for updating the probability state of the first context based on the window size

for the first context and the coded bin of the value for the first syntax element;

means for determining a window size of the plurality of window sizes for a second

context of the plurality of contexts, wherein the window size for the second context is

different than the window size for the first context, and wherein the window size for the

second context is not used to update the probability state of the first context;

means for CABAC coding, based on a probability state of the second context, a bin of

a value for a second syntax element of the video data; and

72

means for updating the probability state of the second context based on the window

size for the second context and the coded bin for the second syntax element.

29. A non-transitory computer-readable storage medium storing instructions that, when

executed, cause one or more processors of a video coding device to:

determine a window size of a plurality of window sizes for a first context of a plurality

of contexts used in a context-adaptive binary arithmetic coding (CABAC) process;

CABAC code, based on a probability state of the first context, a bin of a value for a

first syntax element of the video data;

update the probability state of the first context based on the window size for the first

context and the coded bin of the value for the first syntax element;

determine a window size of the plurality of window sizes for a second context of the

plurality of contexts, wherein the window size for the second context of the plurality of

contexts is different than the window size for the first context, and wherein the window size

for the second context is not used to update the probability state of the first context;

CABAC code, based on a probability state of the second context, a bin of a value for a

second syntax element of the video data; and

update the probability state of the second context based on the window size of the

second context and the coded bin for the second syntax element.

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

