WO 02/32073 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

18 April 2002 (18.04.2002)

T
2\ <o\
o0

5
“An
B/ W

PCT

(10) International Publication Number

WO 02/32073 A2

(51) International Patent Classification’: HO04L 29/00

(21) International Application Number: PCT/US01/31559
(22) International Filing Date: 11 October 2001 (11.10.2001)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/239,524 11 October 2000 (11.10.2000) US
60/239,525 11 October 2000 (11.10.2000) US
60/239,526 11 October 2000 (11.10.2000) US
60/239,527 11 October 2000 (11.10.2000) US
60/239,530 11 October 2000 (11.10.2000) US
60/240,550 13 October 2000 (13.10.2000) US

(71) Applicant: BROADCOM CORPORATION [US/US];
16215 Alton Parkway, Irvine, Ca 92618 (US).

(72) Inventors: BUNN, Fred, A.; 750 Birch Ridge Drive,
Roswell, GA 30076 (US). JOHNSON, Thomas, L.;
3071 Summerlake Drive, Gainesville, GA 30506 (US).
DANZIG, Joel; 215 Ashbourne Trail, Alpharetta, GA
30005 (US).

(74) Agents: SOKOHL, Robert, E. et al.; Sterne, Kessler,

Goldstein & Fox PL.L.C., Suite 600, 1100 New York Av-

enue, N.W., Washington, D.C. 20005-3934 (US).

(84) Designated States (regional): BEuropean patent (AT, BE,

CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,

NL, PT, SE, TR).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: EFFICIENTLY TRANSMITTING RTP PROTOCOL IN A NETWORK THAT GUARANTEES IN ORDER DELIV-

ERY OF PACKETS

P |

(1302 50 -5 FROV NPT SREAW A
PLACE IN LOW-ORDER BYTE OF DELTA

' 12 13

START RTP DELTA
RECONSTRUCTOR

1304

READ 54 BYTES
FROM INPUT STREAM

1306
!

I /—1 300

READ 1-BYTE
CONTROL VALUE FROM
INPUT STREAM

READ 2-BYTES
(AS WORD) FROM
INPUT STREAM
AND PLACE IN
WORD FIELD AT
OFFSET 18 (IP ID)

SET INCR=0x0100 I

R=0x0001

READ AND DISCARD
1-BYTE FROM INPUT
STREAM

1334

BTS[4-0] OF BYTE
AT OFFSET 45=

1312

DISCARD CURRENT 54
BYTES

1314

READ 54 BYJES
FROM INPUT STREAM 13;12

CALCULATE NEW P HEADER CHECKSUM AND PLACE IN
WORD AT OFFSET 24 (IP HDR CHECKSUM) (SEE TCP
RECONSTRUCTOR FOR DETAILS)

-_—"‘ 1316
{

ADD 1 10 WORD AT
OFFSET 44
[RTP SEQf]

1338

ADD INCR TO WORD AT OFFSET
18 [iP 10} 1340

‘ ADD DELTA[TO LWORD AT OFFSET 46 J

RIP THESTAUP]
CONTROL VALUE
A0 EMT 7 6 5 4 0
Lol v]
D RIP DELTA), 1o
RECONSTRUCTOR N THE_FLOWCFART:
BYTE INOICATES AN 8-BIT UNSIGNED VALUE
WORD INDICATES A 16-BT UNSIGNED VALUE
LWORD INDICATES A 32-BIT UNSIGNED VALUE

(§7) Abstract: A method and computer program product for
providing RTP suppression across a DOCSIS network. An index
number and a set of rules are sent to a receiver. The index number
indicates the type of header suppression technique (i.e., RTP
header suppression) to be performed, and the set of rules define
how to recreate the RTP packets on the receiving end: At least
one complete RTP packet is transmitted upstream for enabling
a receiver to learn the RTP header. Subsequent RTP packets
are transmitted upstream for reconstruction at the receiving
end. The subsequent RTP packets are comprised of delta values
representing fields that dynamically change from packet to packet
in an RTP header.

10

15

20

25

30

WO 02/32073

1

EFFICIENTLY TRANSMITTING RTP PROTOCOL IN A NETWORK
THAT GUARANTEES IN ORDER DELIVERY OF PACKETS

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention is generally related to communication systems.
More particularly, the present invention is related to a cable modem system and
a method and computer program product for providing Real Time Protocol

header suppression across a DOCSIS network.
Background Art

Conventional cable modem systems utilize DOCSIS (Data Over Cable
Systefn Interface Specification) - compliant equipment and protocols to transfer
data between one or more cable modems (CM) and a cable modem termination
system (CMTS). DOCSIS generally refers to a group of specifications that define
industry standards for cable headend and cable modem equipment. In part,
DOCSIS sets forth requirements and objectives for various aspects of cable
modem systems including operations support systems, management, data
interfaces, as well as network layer, data link layer, and physical layer transport
for cable modem systems.

Real-time Transport Protocol (RTP) is a protocol for delivering
packetized audio and video traffic over an Internet Protocol network. RTP
provides end-to-end network transport functions for applications with real-time
requirements. Such applications may include audio, video, or simulation data
over multicast or unicast network services. RTP is also used to send VOIP (voice
over IP) phone calls.

An increasing number of applications are utilizing RTP to deliver voice
and multimedia data streams. The data portion of an RTP packet is often small
in comparison to the protocol overhead required to send the information. Current

techniques for delivering RTP packets waste network bandwidth by sending

PCT/US01/31559

10

15

20

25

30

WO 02/32073

2-

redundant information. Also, current techniques do not allow for the suppression
of changing RTP fields in a data stream.

DOCSIS 1.1 provides a technique for the suppression of redundar;t
information called "payload header suppression” (PHS). PHS enables the
suppression of unchanging bytes in an individual Service Identifier (SID) (i.e.,
data stream). Thus, DOCSIS PHS provides byte oriented suppression. Byte
oriented suppression is not as efficient as a field oriented protocol header
suppression scheme. Another downside to PHS is its inability to suppress
dynamically changing fields in a data stream.

What is needed is a system and method for in order delivery of transmitted
RTP packets that eliminates the transmission of redundant patterns. What is also
needed is a system and method for in order delivery of transmitted RTP packets
that provides a field oriented protocol header suppression scheme. What is
further needed is a system and method for in order delivery of transmitted RTP

packets that suppresses dynamically changing fields in a data stream.
BRIEF SUMMARY OF THE INVENTION

The present invention satisfies the above-mentioned needs by providing
a method and computer program product for RTP header suppression that
suppresses dynamically changing fields in an RTP data stream. The present
invention performs RTP header suppression over a DOCSIS cable modem
network, and thus, guarantees in-order delivery of the transmitted packets. The
suppression technique of the present invention also eliminates the transmission
of redundant patterns that occur from packet to packet.

According to a method of the present invention, an index number and a
set of rules are sent to a receiver. The index number indicates the type of header
suppression technique (i.e., RTP header suppression) to be performed, and the set
of rules define how to recreate the RTP packets on the receiving end. At least one

complete RTP packet is transmitted upstream for enabling a receiver to learn the

PCT/US01/31559

10

15

20

25

30

WO 02/32073

RTP header. Subsequent RTP packets are transmitted upstream for
reconstruction at the receiving end. The subsequent RTP packets are comprised
of delta values representing fields that dynamically change from packet to packet.

The present invention eliminates the need to transmit redundant patterns
across a network while suppressing changing RTP fields in a data stream. The
invention increases the bandwidth capacity of high-speed DOCSIS cable modem
networks by employing field level encoding rather than simple byte substitution.
Further embodiments, features, and advantages of the present invention, as well
as the structure and operation of the various embodiments of the present
invention, are described in detail below with reference to the accompanying

drawings.
BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES

'The accompanying drawings, which are incorporated herein and form part
of the specification, illustrate the present invention and, together with the
description, further serve to explain the principles of the invention and to enable
a person skilled in the pertinent art to make and use the invention.

FIG. 1 is a high level block diagram of a cable modem system in
accordance with embodiments of the present invention.

FIG. 2 is a schematic block diagram of a cable modem termination system
(CMTS) in accordance with embodiments of the present invention.

FIG. 3 is a schematic block diagram of a cable modem in accordance with
embodiments of the present invention.

FIG. 4 is a flowchart of a method for supporting extended protocols in a
cable modem system in accordance with embodiments of the present invention.

FIG. 5 is a flowchart of a method for supporting extended protocols in a
cable modem system in accordance with embodiments of the present invention.

FIG. 6A is a block diagram of an uncompressed packet typically received

by a cable modem in accordance with embodiments of the present invention.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

FIG. 6B 1s a block diagram of a packet compressed by a cable modem in
accordance with embodiments of the present invention.

FIG. 6C 1is a block diagram of a single SID containing multiple packets
compressed by a cable modem using different packet header suppression
techniques in accordance with embodiments of the present invention.

FIG. 7 is a flowchart of a method for compressing packets using different
packet header suppression techniques in accordance with embodiments of the
present invention.

FIG. 8 is a flowchart of a method for expanding packets compressed using
different packet header suppression techniques in accordance with embodiments
of the present invention.

FIG. 9A is a diagram of an exemplary 802.3/IP/UDP/RTP header.

FIG. 9B is a diagram of an RTP protocol packet.

FIG. 10 is a diagram illustrating a control value byte used during the
operation of a RTP header suppression technique.

FIG. 11 is a high level flow diagram illustrating a method for RTP header
suppression.

FIG. 12A is a flow diagram illustrating a method for suppressing an RTP
header using an RTP header suppression technique according to an embodiment
of the present invention.

FIG. 12B is a flow diagram illustrating a method for setting the increment
of an IP packet ID field in an RTP header according to an embodiment of the
present invention.

FIG. 13 is a flow diagram illustrating a method for reconstructing an RTP
header using an RTP header suppression technique according to an embodiment
of the present invention.

FIG. 14A is a diagram illustrating an exemplary 802.3/IP/TCP header.

FIG. 14B is a diagram illustrating a TCP Protocol packet.

FIG. 15 is a diagramillustrating a TCP Protocol packet highlighting fields

that may change from packet to packet.

PCT/US01/31559

10

15

20

25

WO 02/32073

5.

FIG. 16A is ahigh level diagram illustrating a méthod for a delta encoded
header suppression technique according to an embodiment of the present
invention.

FIG. 16B is a high level diagram illustrating a method for a delta encoded
header reconstruction technique according to an embodiment of the present
invention.

FIG. 17 is a diagram illustrating a change byte according to an
embodiment of the present invention.

FIG. 18 is a diagram illustrating a final encoded data stream according to
an embodiment of the present invention.

FIG. 19is adiagram illustrating the transmit order of data for TCP header
suppression for a non-learning state according to an embodiment of the present
invention.

FIG. 20 is a diagram illustrating the transmit order of data for TCP header
suppression for alearn state according to an embodiment of the present invention.

FIG. 21 is a flow diagram illustrating a method for TCP header
suppression according to an embodiment of the present invention.

FIG. 22 is a flow diagram illustr;ating a method for TCP header
reconstruction according to an embodiment of the present invention.

FIG. 23 is a diagram illustrating an exemplary computer system.

The features, objects, and advantages of the present invention will become
more apparent from the detailed description set forth below when taken in
conjunction with the drawings in which like reference characters identify
corresponding elements throughout. In the drawings, like reference numbers
generally. indicate identical, functionally similar, and/or structurally similar
elements. The drawings in which an element first appears is indicated by the

leftmost digit(s) in the corresponding reference number.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

DETAILED DESCRIPTION OF THE INVENTION

While the present invention is described herein with reference to
illustrative embodiments for particular applications, it should be understood that
the invention is not limited thereto. Those skilled in the art with access to the
teachings provided herein will recognize additional modifications, applications,
and embodiments within the scope thereof and additional fields in which the

present invention would be of significant utility.

A. Cable Modem System in accordance with Embodiments of the Present

Invention

FIG. 1 is a high level block diagram of an example cable modem system
100 in accordance with embodiments of the present invention. The cable modem
system 100 enables voice communications, video and data services based on a bi-
directional transfer of packet-based traffic, such as Internet protocol (IP) traffic,
between a cable system headend 102 and a plurality of cable modems over a
hybrid fiber-coaxial (HFC) cable network 110. In the example cable modem
system 100, only two cable modems 106 and 108 are shown for clarity. In
general, any number of cable modems may be included in the cable modem
system of the present invention.

The cable headend 102 is comprised of at least one cable modem
termination system (CMTS) 104. The CMTS 104 is the portion of the cable
headend 102 that manages the upstream and downstream transfer of data between‘
the cable headend 102 and the cable mo_dems 106 and 108, which are located at
the customer premises. The CMTS 104 broadcasts information downstream to
the cable modems 106 and 108 as a continuous transmitted signal in accordance
with a time division multiplexing (TDM) technique. Additionally, the CMTS
104 controls the upstream transmission of data from the cable modems 106 and
108 to itself by assigning to each cable modem 106 and 108 short grants of time

within which to transfer data. In accordance with this time domain multiple

PCT/US01/31559

10

15

20

25

30

WO 02/32073

access (TDMA) technique, each cable modem 106 and 108 may only send
information upstream as short burst signals during a transmission opportunity
allocated to it by the CMTS 104.

As shown in FIG. 1, the CMTS 102 further serves as an interface between
the HFC network 110 and a packet-switched network 112, transferring IP packets
received from the cable modems 106 and 108 to the packet-switched network
112 and transferring IP packets received from the packet-switched network 112
to the cable modems 106 and 108 when appropriate. In embodiments, the packet-
switched network 112 comprises the Internet.

In addition to the CMTS 104, the cable headend 102 may also include one
or more Internet routers to facilitate the connection between the CMTS 104 and
the packet-switched network 112, as well as one or more servers for performing
necessary network management tasks.

The HFC network 110 provides a point-to-multipoint topology for the
high-speed, reliable, and secure transport of data between the cable headend 102
and the cable modems 106 and 108 at the customer premises. As will be
appreciated by persons skilled in the relevant art(s), the HFC network 110 may
comprise coaxial cable, fiberoptic cable, or a combination of coaxial cable and
fiberoptic cable linked via one or more fiber nodes.

Each of the cable modems 106 ;md 108 operates as an interface between
the HFC network 110 and at least one attached user device. In particular, the
cable modems 106 and 108 perform the functions necessary to convert
downstream signals received over the HFC network 110 into IP data packets for
receipt by an attached user device. Additionally, the cable modems 106 and 108
perform the functions necessary to convert IP data packets received from the
attached user device into upstream burst signals suitable for transfer over the HFC
network 110. In the example cable modem system 100, each cable modem 106
and 108 is shown supporting only a single user device for clarity. In general, each
cable modem 106 and 108 is capable of supporting a plurality of user devices for

communication over the cable modem system 100. User devices may include

PCT/US01/31559

10

15

20

25

30

WO 02/32073

personal computers, data terminal equipment, telephony devices, broadband
media players, network-controlled appliances, or any other device capable of
transmitting or receiving data over a packet-switched network.

In the example cable modem system 100, cable modem 106 represents a
conventional DOCSIS-compliant cable modem. In other words, cable modem
106 transmits data packets to the CMTS 104 in formats that adhere to the
protocols set forth in the DOCSIS specification. Cable modem 108 is likewise
capable of transmitting data packets to the CMTS 104 in standard DOCSIS
formats. However, in accordance with embodiments of the present invention, the
cable modem 108 is also configured to transmit data packets to the CMTS 104
using proprietary protocols that extend beyond the DOCSIS specification.
Nevertheless, cable modem 108 is fully interoperable with the DOCSIS-
compliant cable modems, such as cable modem 106, and with DOCSIS-
compliant CMTS equipment. The manner in which cable modem 108 operates
to transfer data will be described in further detail herein.

Furthermore, in the example cable modem system 100, the CMTS 104
operates to receive and process data packets transmitted to it in accordance with
the protocols set forth in thé DOCSIS specification. However, in accordance with
embodiments of the present invention, the CMTS 104 can also operate to receive
and process data packets that are formatted using proprietary protocols that
extend beyond those provided by the DOCSIS specification, such as data packets
transmitted by the cable modem 108. The manner in which the CMTS 104

operates to receive and process data will also be described in further detail herein.

B. Example Cable Modem System Components in Accordance with
Embodiments of the Present Invention

FIG. 2 depicts a schematic block diagram of an implementation of the
CMTS 104 of cable modem system 100, which is presented by way of example,
and is not intended to limit the present invention. The CMTS 104 is configured

to receive and transmit signals to and from the HFC network 110, a portion of

PCT/US01/31559

10

15

20

25

30

WO 02/32073

which is represented by the optical fiber 202 of FIG. 2. Accordingly, the CMTS
104 will be described in terms of a receiver portion and a transmitter portion.

The receiver portion includes an optical-to-coax stage 204, an RF input
206, a splitter 214, and a plurality of burst receivers 216. Reception begins with
the receipt of upstream burst signals originating from one or more cable modems
by the optical-to-coax stage 204 via the optical fiber 202. The optical-to-coax
stage 204 routes the received burst signals to the radio frequency (RF) input 206
via coaxial cable 208. In embodiments, these upstream burst signals having
spectral characteristics within the frequency range of roughly 5-42 MHz.

The received signals are provided by the RF input 206 to the splitter 214
of the CMTS 104, which separates the RF input signals into N separate channels. .
Each of the N separate channels is then provided to a separate burst receiver 216
which operates to demodulate the received signals on each channel in accordance
with either a Quadrature Phase Shift Key (QPSK) or 16 Quadrature Amplitude
Modulation (QAM) technique to recover the underlying information signals. Each
burst receiver 216 also converts the underlying information signals from an
analog form to digital form. This digital data is sﬁbsequently provided to the
headend media access control (MAC) 218.

The headend MAC 218 operates to process the digital data in accordance
with the DOCSIS specification and, when appropriate, in accordance with
proprietary protocols that extend beyond the DOCSIS specification, as will be
described in further detail herein. The functions of the headend MAC 218 may
be implemented in hardware or in software. In the example implementation of
FIG. 2, the functions of the headend MAC 218 are implemented both in hardware
and software. Software functions of the headend MAC 218 may be stored in
either the random access memory (RAM) 220 or the read-only memory (ROM)
218 and executed by the CPU 222. The headend MAC is in electrical
communication with these elements via a backplane interface 220 and a shared
communications medium 232. In embodiments, the shared communications

medium 232 may comprise a computer bus or a multiple access data network.

PCT/US01/31559

10

15

20

25

WO 02/32073

-10-

The headend MAC 218 is also in electrical communication with the
Ethernet interface 224 via both the backplane interface 220 and the shared
communications medium 232. When appropriate, Ethernet packets recovered by
the headend MAC 218 are transferred to the Ethernet interface 224 for delivery
to the packet-switched network 112 via a router.

The transmitter portion of the CMTS 104 includes a downstream
modulator 226, a surface acoustic wave (SAW) filter 228, an amplifier 230, an
intermediate frequency (IF) output 212, a radio frequency (RF) upconverter 210
and the optical-to-coax stage 204. Transmission begins with the generation of a
digital broadcast signal by the headend MAC 218. The digital broadcast signal
may include data originally received from the packet-switched network 112 via
the Ethernet interface 224. The headend MAC 218 outputs the digital broadcast
signal to the downstream modulator 226 which converts it into an analog form
and modulates it onto a carrier signél in accordance with either a 64-QAM or
256-QAM technique.

The modulated carrier signal output by the downstream modulator 256
is input to the SAW filter 228 which passes only spectral components of the
signal that are within a desired bandwidth. The filtered signal is then output to
an amplifier 230 which amplifies it and outputs it to the IF output 212. The IF
output 212 routes the signal to the RF upconverter 210, which upconverts the
signal. In embodiments, the upconverted signal has spectral characteristics in the
frequency range of approximately 54-860 MHz. The upconverted signal is then
output to the optical-to-coax stage 204 over the coaxial cable 208. The optical-
to-coax stage 204 broadcasts the signal via the optical fiber 202 of the HFC
network 110.

FIG. 3 depicts a schematic block diagram of an implementation of the
cable modem 108 of cable modem system 100, which is presented by way of
example, and is not intended to limit the present invention. The cable modem

108 is configured to receive and transmit signals to and from the HFC network

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-11-

110 via the coaxial connector 332 of FIG. 3. Accordingly, the cable modem 108
will be described in terms of a receiver portion and a transmitter portjon.

The receiver portion includes a diplex filter 302, an RF tuner 304,a SAW
filter 306, and amplifier 308, and a downstream receiver 310. Reception Begins
with the receipt of a downstream signal originating from the CMTS 104 by the
diplex filter 302. The diplex filter 302 operates to isolate the downstream signal
and route it to the RF tuner 304. In embodiments, the downstream signal has
spectral characteristics in the frequency range of roughly 54-860 MHz. The RF
tuner 304 downconverts the signal and outputs it to the SAW filter 306, which
passes only spectral components of the downconverted signal that are within a
desired bandwidth. The filtered signal is output to the amplifier 308 which
amplifies it and passes it to the downstream receiver 310. Automatic gain
controls are provided from the downstream receiver 310 to the RF tuner 304.

The downstream receiver 310 demodulates the amplified signal in
accordance with either a 64-QAM or 256-QAM technique to recover the
underlying information signal. The downstream receiver 310 also converts the
underlying information signal from an analog form to digital form. This digital
data is subsequently provided to the media access control (MAC) 314.

The MAC 314 processes the digital data, which may include, for example,
Ethernet packets for transfer to an attached user device. The functions of the
MAC 314 may be implemented in hardware or in software. In the example
implementation of FIG. 3, the functions of the MAC 314 are implemented in both
hardware and software. Software functions of the MAC 314 may be stored in
either the RAM 322 or the ROM 324 and executed by the CPU 320. The MAC
314 is in electrical communication with these elements via a shared
communications medium 316. In embodiments, the shared communications
medium may comprise a computer bus or a multiple access data network.

The MAC 314 is also in electrical communication with the Ethernet
interface 318 via the shared communications medium 316. When appropriate,
Ethernet packets recovered by the MAC 314 are transferred to the Ethernet

interface 318 for transfer to an attached user device.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

12-

The transmitter portion of the cable modem 108 includes an upstream
burst modulator 326, a low pass filter 328, a power amplifier 330, and the diplex
filter 302. Transmission begins with the construction of a data packet by the
MAC314. The data packet may include data originally received from an attached
user device via the Ethernet interface 318. In accordance with embodiments of
the present invention, the MAC 314 may format the data packet in compliance
with the protocols set forth in the DOCSIS specification or, when appropriate,
may format the data packet in compliance with a proprietary protocol that extends

beyond those set forth in the DOCSIS specification, as will be described in

. further detail herein. The MAC 314 outputs the data packet to the upstream burst

modulator 326 which converts it into analog form and modulates it onto a carrier
signal in accordance with either a QPSK or 16-QAM technique.
The upstream burst modulator 326 outputs the modulated carrier signal

to the low pass filter 328 which passes signals with spectral characteristics in a

desired bandwidth. In embodiments, the desired bandwidth is within the

'A frequency range of approximately 5-42 MHz. The filtered signals are then

introduced to the power amplifier 330 which amplifies the signal and provides it
to the diplex filter 302. The gain in the power amplifier 330 is regulated by the
burst modulator 326. The diplex filter 302 isolates the amplified signal and
transmits it upstream over the HFC network 110 during a scheduled burst

opportunity.

C. ' Supporting Extended Data Transfer Protocols in Accordance with
Embodiments of the Present Invention

As noted above, in accordance with embodiments of the present
invention, the cable modem 108 and the CMTS 104 send and receive data,
respectively, in proprietary formats that extend beyond standard DOCSIS
protocols. For example, in embodiments, the cable modem 108 modifies data
packets in accordance with a proprietary header suppression scheme for

transmission to the CMTS 104, and, upon receipt of the modified data packets,

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-13-

the CMTS 104 reconstructs them in accordance with the same proprietary header
compression scheme.

In further accordance with embodiments of the present invention, the
cable modem 108 is nevertheless interoperable with conventional DOCSIS-
compliant CMTS equipment that, unlike the CMTS 104, do not provide support
for extended protocols. The cable mpdem 108 achieves this end by determining
whether it is communicating with a CMTS that supports extended protocdls, such
as the CMTS 104, or with a CMTS that does not. If the CMTS does not support
extended protocols, the cable modem 108 transfers data formatted in accordance
with standard DOCSIS protocols rather than extended protocols.

FIG. 4 depicts a flowchart 400 of a method for supporting extended
protocols in a cable modem system in accordance with embodiments of the
present invention that explains this process in more detail. The invention,
however, is not limited to the description provided by the flowchart 400. Rather,
it will be apparent to persons skilled in the relevant art(s) from the teachings
provided herein that other functional flows are within the scope and spirit of the
present invention. The flowchart 400 will be described with continued reference
to the example CMTS 104 and cable modem 108 of the cable modem system 100,
as well as in reference to the example hardware implementation of the cable
modem 108 of FIG. 3.

In step 402, the cable modem 108 sends a registration message to the
CMTS 104 designating support for an extended protocol. With regard to the
example implementation of cable modem 108 described in reference to FIG. 3,
the MAC 314 constructs this registration message, as well as all other MAC
maintenance messages issued by the cable modem 108.

In embodiments, the cable modem 108 sends this registration message as
part of an exchange of registration messages that must occur between a cable
modem and a CMTS when the cable modem first appears on the HFC network.
In accordance with the DOCSIS specification, this exchange of registration

messages generally includes the sending of a Registration Request (REG-REQ)

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-14-

message from the cable modem to the CMTS and the sending of a Registration
Response (REG-RSP) message from the CMTS to the cable modem in response
to the received REG-REQ message. This registration protocol is well-known in
the art.

In embodiments, the cable modem 108 notifies the CMTS 104 that it
supports an extended protocol by placing an extended protocol support descriptor
in a vendor-specific information field of the REG-REQ message that it sends to
the CMTS104. Conversely, in such embodiments, the absence of an extended
protocol support descriptor in a vendor-specific information field of the REG-
REQ message designatées that a cable modem supports only standard DOCSIS
protocols.

At step 404, the cable modem 108 receives a response to the registration
message from the CMTS 104 that indicates whether or not the CMTS 104
supports the extended protocol. Since the CMTS 104 of the exemplary cable
modem system 100 supports the same extended protocol as cable modem 108, as
discussed above, the response to the registration message will indicate that the
extended protocol is supported. However, if the CMTS 104 did not support the
extended protocol (for example, if it was a conventional DOCSIS-compliant
CMTS), then the response to the registration message would include an indication
that the CMTS 104 failed to recognize the extendéd protocol. For example, in
embodiments where the registration message comprises a REG-REQ message
that includes an extended protocol support descriptor in a vendor-specific
information field, the response may be a REG-RSP message that indicates that
the CMTS 104 failed to recognize extended protocol support descriptor.

If the response to the registration message indicates that the extended
protocol is supported by the CMTS, then the cable modem 108 will format data
packets for transmission to the CMTS in accordance with the extended protocol,
as shown by steps 406 and 408. If, on the other hand, the response to the
registration message indicates that the CMTS does not support the extended
protocol, then the cable modem 108 will format data packets for transmission to

the CMTS in accordance with standard DOCSIS protocols, as shown by steps 406

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-15-

and 410. As discussed above in regard to the example implementation of cable
modem 108 depicted in FIG. 3, the MAC 314 is responsible for formatting data
packets for transmission to the CMTS.

In alternate embodiments of the present invention, a private
communications channel may be utilized to implement steps 402 and 404 of
flowchart 400 instead of the standard DOCSIS REG-REQ, REG-RSP protocol
described above. For example, in such an embodiment, the CMTS 104 sends a
unicast UDP message to the cable modem 108 following successful cable modem
registration that indicates that the CMTS 104 is capable of supporting extended
protocols (step not shown in FIG. 4). If the cable modem 108 supports an
extended protocol, it responds to the UDP message by sending a UDP: response
indicating which extended protocol it supports. In accordance with this
technique, the registration message of step 402 comprises the UDP response from |
the cable modem 108. In embodiments, the UDP response also indicates the
specific degree to which the cable modem 108 is capable of supporting the
extended protocol.

If the cable modem does not support an extended protocol, it sends no
response to the UDP message. In embodiments, the CMTS 104 re-transmits the
UDP message a predetermined number of times and, if no response is received
from thé cable modem after the predetermined number of re-transmissions, the
CMTS 104 determines that the cable modem does not. support any extended
protocols. However, if the CMTS 104 receives an appropriate UDP response
from the cable modem 108, it captures the extended protocol capabilities of the
cable modem 108 and responds with a second UDP message indicating whether

or not it supports the specific extended protocol supported by the cable modem

. 108. In-accordance with this technique, the response to the registration message

of step 404 comprises the second UDP message from the CMTS 104.
The method described in flowchart 400 ensures interoperability between
a cable modem that supports an extended protocol in accordance with

embodiments of the present invention and CMTS equipment that does not

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-16-

support the same protocol. ~ Similarly, a CMTS that supports an extended
protocol in accordance with embodiments of the present invention, such as
CMTS 104, is interoperable with a cable modem that does not support the same
extended protocol. For example, the CMTS 104 is interoperable with
conventional DOCSIS-compliant cable modems that do not support extended
protocols, such as cable modem 106. The CMTS 104 achieves this end by
determining whether a received packet has been sent from a conventional

DOCSIS-compliant cable modem, such as the cable modem 106, or from a cable

modem capable of transmitting data using extended protocols, such as the cable

modem 108, and processing the packet accordingly.

FIG. 5 depicts a flowchart 500 of ‘a method for supporting extended
protocols in a cable modem system in accordance with embodiments of the
present invention that explains this process in more detail. The invention,
however, is not limited to the description provided by the flowchart 500. Rather,
it will be apparent to persons skilled in the relevant art(s) from the teachings
provided herein that other functional flows are within the scope and spirit of the
present invention. The flowchart 500 will be described with continued reference
to the example CMTS 104 and cable modems 106 an 108 of the cable modem
system 100, as well as in reference to the example hardware implementation of
the CMTS 104 of FIG. 2.

At step 502, the CMTS 104 receives a registration message from a cable
modem designating a data transfer protocol supported by the cable modem. With
regard to the example cable modem system 100 of FIG. 1, the registration
message may be from cable modem 106, in which case the message designates
data transfer in accordance with standard DOCSIS protocols, or the registration
message may be from cable modem 108, in which case the message designates
data transfer in accordance with an extended protocol. In embodiments, the
registration message is a DOCSIS REG-REQ message, and the presence of an
extended protocol descriptor in a vendor-specific field of the REG-REQ message

designates data transfer in accordance with an extended protocol, while the

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-17-

absence of the extended protocol descriptor designates data transfer in accordance
with standard DOCSIS protocols.

At step 504, the CMTS 104 assigns a unique cable modem ID to the cable
modem and transmits the cable modem ID to the cable modem. In embodiments,
the cable modem ID comprises the DOCSIS primary Service ID (SID) that is
assigned by the CMTS and transmitted to the cable modem as part of the
DOCSIS REG-RSP message. With regard to the example implementation of
CMTS 104 described in reference to FIG. 2,the headend MAC 218 is responsible

. for assigning a unique cable modem ID to the cable modem.

At step 506, the CMTS 104 creates an association in memory between the
cable modem ID and a protocol indicator that indicates the data transfer protocol
supported by the cable modem. With regard to the example implementation of
CMTS 104 described in reference to FIG. 2, this task is carried out by the
headend MAC 218 which stores the cable modem ID and protocol indicator as
associated values in either ROM 218 or RAM 220. In embodiments, the CMTS
104 stores the cable modem ID and protocol indicator as associated values in a
look-up table.

At step 508, the CMTS 104 receives a request for transmission
opportunity from a cable modem which includes the cable modem ID associated
with the cable modem. In embodiments, the request is received in a request
contention area defined by a DOCSIS allocation MAP. The allocation MAP is
a varying-length MAC Management message transmitted by the C.MTS on the
downstream channel that describes, for some time interval, the uses to which the
upstream bandwidth must be put. The allocation MAP allocates bandwidth in
terms of basic time units called mini-slots. A given allocation MAP may describe
some mini-slots as a grant for a particular cable modem to transmit data in and
other mini-slots as available for contention transmission by multiple cable
modems. The DOCSIS allocation MAP is described in the DOCSIS specification
and is well-known in the art.

At step 510, the CMTS 104 allocates a transmission opportunity to the

cable modem in response to the request for transmission opportunity. In

PCT/US01/31559

10

15

20

25

30

WO 02/32073

18-

embodiments, the CMTS 104 allocates a transmission opportunity to the cable
modem by assigning a number of mini-slots in a DOCSIS allocation MAP to the
cable modem for transferring data upstream, in accordance with the DOCSIS
specification. With regard to the example implementation of CMTS 104
described in reference to FIG. 2, the construction of a MAP allocation message
is executed by the headend MAC 218.

Atstep 512, the CMTS 104 uses the cable modem ID from the request for
transmission opportunity to access the protocol indicator associated with the cable
moaem ID, which was stored in memory at prior step 506. In embodiments, the
CMTS 104 consults a look-up table that maps the cable modem ID to the protocol
indicator. In regard to the example implementation of CMTS 104 described in
reference to FIG. 2, this step is performed by the headend MAC 218.

At step 514, the CMTS 104 processes data transmitted by the cable
modem during the allocated transmission opportunity in accordance with the data
transfer protocol indicated by the indicator. For example, if the indicator
indicates that an extended protocol is supported, as in the case of cable modem
108, then the CMTS 104 will process the data packet it expects to receive from
the cable modem in accordance with an extended protocol. If no support for an
extended protocol is indicated, as in the case of cable modem 106, then the
CMTS 104 will process the data packet it expects to receive from the cable
modem in accordance with standard DOCSIS procotols. Inregard to the example
implementation of CMTS 104 described in reference to FIG. 2, the processing of
data packets is performed by the headend MAC 218.

Thus, in accordance with embodiments of the present invention, the
CMTS 104 acquires and stores information during cable modem registration
about the capabilities of the cable modems to which it will communicate. When
the CMTS 104 subsequently allocates upstream bandwidth to a cable modem, it
accesses the stored information to determine how to process the data it expects
to receive from the cable modem. This technique is facilitated by the TDMA
aspects of a cable modem system, which requires the CMTS to be aware of which

cable modem it is receiving data from at any given time. This technique is

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-19-

advantageous because it permits the use of protocols that extend beyénd
DOCSIS, while ensuring interoperability by adhering to standard DOCSIS

registration, request and grant protocols.
1. Packet Header Suppression

FIGS. 6A-8 are useful for explaining a manner in which packets are
compressed by cable modem 108 and expanded by the CMTS 104 in accordance
with embodiments of the present invention.

FIG. 6A represents a data packet 605 generated by a user device for
transmission over the HFC network 110. The data packet 605 includes a MAC
header 607, an IP header 609, a UDP header 611, an RTP header 613, and a
Payload 615. In this example, the MAC header 607 comprises 14 bytes, the IP
header 609 comprises 20 bytes, the UDP header 611 comprises 12 bytes, the RTP
header 613 comprises § bytes, and the Payload 615 comprises anywhere from 1
to N bytes, depending on the type of data being sent.

In accordance with the present invention, the data packet 605 can be
generated by an application program running on the user device 116 described
above in reference to FIG. 1. For example, an application program running on the
user device 116 may generate voice or data information for transmission over the
HFC network 110. This voice or data information comprises the payload 615 of
the data packet 605. The application program running on the user device 116 will
append the IP header 609, the UDP header 611, and the RTP header 613 to the -
payload 615 to allow for transmission in accordance with standard IP protocols.
An Ethernet card within the user device 116 will further append the MAC header
607 to the data packet 605 to allow for transmission in accordance with standard
Ethernet protocols.

Upon receiving data packet 605, the cable modem suppresses the data
packet 605 in accordance with any desired header suppression technique.

Examples of header suppression techniques include standard DOCSIS PHS, as

PCT/US01/31559

10

15

20

25

WO 02/32073

220-

well as techniques that extend beyond standard DOCSIS protocols, such as
Dynamic Delta Encoding and RTP Encoding, descriptions of which are provided
in further detail herein. After reading this specification, one skilled in the
relevant art(s) would recognize that any number of suppression techniques may
be utilized without departing from the scope of the present invention.

FIG. 6B represents the appearance of data packet 605 after being
compressed to produce a compressed data packet 610 in accordance with
embodiments of the present invention. In this exemplary embodiment, the IP
header 609, the UPD header 611, and the RTP header 613 are eliminated and
replaced with a single byte index 617. Accordingly, the compressed data packet
610 is comprised of Index 617, MAC header 607, and Payload 615. The index
617 is comprised of one byte and is used to indicate that data packet 610 has been
compressed. The index 617 is also used to indicate the particular suppression
technique used to compress the data packet. Further details of index 617 will be
described below with respect to FIG. 7. As a result of eliminating the above
specified headers, the compressed data packet 610 is 40 bytes smaller than the
original data packet 605.

FIG. 6C is an example of a mixed protocol DOCSIS transmit burst (i.e.,
SID) 606 that contains multiple packets suppressed in accordance with
embodiments of the present invention. The mixed protocol SID 606 is comprised
of the compressed data packet 610 and additional compressed data packets 612
and 614. In one embodiment, compressed data packet 610 is compressed using
DOCSIS PHS as indicated by the index 617. Compressed data packet 612 is
compressed using Dynamic Delta encoding as indicated by the index 619, and
compressed data packet 614 is compressed using RTP encoding as indicated by
the index 621. The indices 617, 619, and 621 separate the packets within the
mixed protocol SID 606. This separation is, in effect, a framing protocol. In this
way, the mixed protocol SID 606 is able to transmit multiple packets suppressed

by different packet header suppression techniques.

PCT/US01/31559

10

15

20

25

WO 02/32073

21-

FIG. 7 depicts a flowchart 700 of a method for compressing packets using
different packet header suppression techniques in accordance with embodiments
of the present invention. The invention, however, is not limited to the description
provided herein with respect to flowchart 700. Rather, it will be apparent to
persons skilled in the relevant art(s) after reading the teachings provided herein
that other functional flows are within the scope and spirit of the present invention.
The flowchart 700 will be described with continued reference to the example
cable modem system 100 of FIG. 1.

Atstep 702, the cable modem 108 is turned on and initiates a handshaking
routine with the CMTS 104 via the HFC network 110. During this initialization
process, the cable modem 108 designates one or more index numbers to represent
a particular type of packet header suppression technique. For example, index 1
might be designated for DOCSIS PHS suppression, while index numbers 2 thru
10 might be designated for use with dynamic delta encoding. Still further, index
numbers 11 thru 20 might be designated for use with RTP encoding. Once these
designations are made, this information is communicated to the CMTS 104 via
the HFC network 110. During the initialization process, the rules associated with
suppressing and expanding a packet in accordance with the available suppression
techniques are also exchanged. The rules are provided to the CMTS 104 by the
cable modem 108. The CMTS 104 stores the index numbers and their
corresponding rules in a lookup table for subsequent retrieval during the packet
expansion process.

In embodiments, the above-described initialization process is part of
standard DOCSIS cable modem registration protocols. In alternate
embodiments, a private communication channel previously described in reference
to FIG. 4, above, may be used to facilitate the transfer of index numbers and
rules. This may be particularly advantageous in DOCSIS 1.0 cable modem
systems in which the DOCSIS protocol does not define any classification/header

suppression capability.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

22~

At step 704, the cable modem 108 receives a data packet from the user
device 116. The data packet may be, for example, data packet 605 of FIG. 6A.

At step 706, the cable modem 108 determines if the data packet should be
suppressed in accordance with the present invention. In an embodiment, the
cable modem 108 will not suppress the data packet if it is an uncompressible
packet (i.e., not an IP packet). In this case, the cable modem 108 would transmit
the data packet with its full header.

At step 708, the cable modem 108 will select an appropriate packet header
suppression technique for those data packets identified in step 706. In an
embodiment, where data packets are of the unknown IP datagram type, DOCSIS
PHS is selected. For IP/RTP data packets (i.e., voice packets), RTP suppression
is selected. For IP/TCP variable length data packets, Dynamic Delta suppression
is selected.

At step 710, the cable modem 108 will append a packet header element
to the data packet being suppressed. The packet header element contains the
index number designated in step 702 for the particular suppression technique
selected in step 708.

At step 712, the data packet is suppressed in accordance with the rules
associated with the suppression technique selected in step 708. The resulting
compressed data packet may be for exainple, the compressed data packet 610 of
FIG. 6B. In accordance with the present invention, the steps (704-712) allow for
the suppression of data packets in accordance. with any desired header
suppression technique. The index number associated with each data packet
identifies the beginning of the data packet. Accordingly, the index number is a
useful mechanism for separating one data packet from another and identifying the
particular header suppression technique used to process each data packet.

As previously discussed, the DOCSIS protocol enables concatenation of
data packets but, it does not allow the mixing of different header suppression
techniques within a single DOCSIS transmit burst or SID. However, because the

index number contained in the packet header element appended in step 710

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-23.

provides a means for separating the packets, the mixing of different header
suppression techniques within a SID is now possible. Accordingly, in an
alternative embodiment, a mixed protocol SID is produced in step 714.

In step 714, the data packets are concatenated with one another. Asa
result of concatenating packets suppressed with different header suppression
techniques, the SID can now be viewed as a mixed protocol SID. In effect, the
index serves as a framing protocol that separates the packets within the mixed
protocol SID as well as communicates the type of header suppression used on
each data packet within the mixed protocol SID. In an embodiment, the mixed
protocol SID can be for example, the mixed protocol SID 606 of FIG. 6C.
Finally, in step 7i6, the mixed protocol SID is transmitted to a CMTS 104.

2. Packet Header Expansion

FIG. 8 is aflowchart of a method for expanding packets compressed using
different packet header suppression techniques in accordance with embodiments
of the present invention.

At step 802, the CMTS 104 receives a mixed protocol SID comprised of
one or more data packets.

At step 805, the CMTS 104 examines each of the data packets to
determine if it has been suppressed. If a packet header element has been
appended to a data packet, then the CMTS 104 knows that the data packet has
been suppressed. If no packet header element is found, then the data packet has
not been suppressed and controls passes immediately to step 820.

Atstep 810, the CMTS 104 searches its lookup table for the index number
contained in the packet header element. If the index number is found then the
expansion rules associated with the suppression technique have been previously
provided to the CMTS 104. In an embodiment, the expansion rules would have
been previously provided during the initialization process described in step 702.

If the index number is not found, then control passes to step 815.

PCT/US01/31559

10

15

20

25

WO 02/32073

24

At step 815, the CMTS 104 and the cable modem 108 exchange data
describing the rules for expanding the data packet in real time (i.e., as the data
packet arrives).

At step 820, the CMTS 104 processes each of the data packets. In the
case where the data packet is not suppressed (i.e., a packet header element was
not present) the data packet is processed according to standard DOCSIS
protocols. In the case where the data packet is suppressed (i.e., a packet header
element was present) the CMTS 104 retrieves the rules for expanding the data
packet based upon the suppression technique indicated by the index number
found in the packet header element. In expanding the data packet, CMTS 104
produces an uncompressed data packet. In an embodiment, at the end of step 820,
CMTS 104 would produce a data packet such as uncompressed data packet 605
of FIG. 6A. Because the mixed protocol SID contains one or more data packets,
steps 805 thru 820 are repeated until all the data packets within the mixed

protocol SID have been processed. Processing ends at step 825.

3. RTP Header Suppression

As previously stated, the invention provides for Real-time Transport
Protocol (RTP) header suppression. The RTP header suppression technique of
the present invention provides great efficiency gains in network bandwidth
utilization by eliminating the transmission of redundant patterns and by
suppressing changing fields in a data stream. The invention accomplishes this by
recognizing regular patterns in network traffic. In embodiments, the regular
patterns may be eliminated by having a sender of network traffic, such as CM
108, and a receiver of network traffic, such as CMTS 104, agree on the rules for
proper header reconstruction in order to reproduce the header at the receiving end.
By reducing the amount of network bandwidth needed to transmit RTP

information across the network, the present invention enables increased

PCT/US01/31559

10

15

20

25

30

WO 02/32073

5.

performance for the same number of users on the network, as well as the ability
to efficiently add more users to the network.

Prior to describing the RTP header suppression technique of the invention,
a conventional 802.3/IP/UDP/RTP protocol header 900 for an RTP transmission
will be described in FIG. 9A. Exemplary protocol header 900 includes a 14-byte
802.3 header 902, a 20-byte IP (Internet Protocol) header 904, an 8-byte UDP
(User Datagram Protocol) header 906, and a 12-byte RTP header 908. In this
example, 802.3/IP/UDP/RTP header 900 creates a 54-byte header. The data
portion of an RTP packet may be small in comparison to the overhead required
to send the data using 802.3/IP/UDP/RTP header 900. For example, the data
portion of an RTP packet may be as small as 20 bytes, resulting in less than half
the size of header 900. Also, most of the fields within protocol header 900 do not
change from packet to packet. The transmission of such redundant patterns (non-
changing header information from packet to packet) may waste large amounts of
network bandwidth, especially when the data portion of the RTP packetis smaller
than header 900. It would therefore be very inefficient to transmit header 900
without compressing it.

DOCSIS 1.1 enables the suppression of redundant information in packets
with a feature called "payload header suppression” (PHS). PHS enables the
suppression of unchanging bytes in an individual SID (i.e., data stream).
Unfortunately, as previously stated, PHS cannot suppress dynamically changing
fields.

The RTP header suppression technique of the present invention increases
the efficiency of data delivery by recognizing patterns of behavior in the changing
fields of 802.3/IP/UDP/RTP header 900. FIG. 9B is a diagram of an RTP
protocol packet 910. RTP protocol packet 910 comprises, inter alia, a destination
MAC address field 912, a source MAC address field 914, a type/length field 916,
a protocol version field 918, a header length field 920, a type of service field 922,
a total length field 924, a packet ID field 926, a fragment offset field 928, a time
to live field 930, a protocol field 932, a header checksum field 934, a source IP

PCT/US01/31559

10

15

20

25

WO 02/32073

26-

address field 936, a destination IP address field 938, a source port field 940, a
destination port field 942, a length field 944, a checksum field 946, a flag field
948, a sequence number field 950, a timestamp field 952, a synchronization
source identifier field 954, a PDU 956, and a CRC-32 958. RTP protocol packets
are well known in the relevant art(s), thus, each individual field will not be
discussed in detail.

Most of header 900 may be suppressed. The fields of data packet 910 that
may change from packet to packet include IP Packet ID field 926, IP Header
Checksum field 934, RTP sequence number field 950, and RTP timestamp field
952. UDP checksum field 946 is always set to zero because it is not used. The
remaining fields remain constant for the life of a voice connection.

RTP sequence number field 950 starts at some arbitrary value and
increments by a value of one for each successive packet. RTP timestamp field
952 increments by a value based on the quantization interval of the codec. The
second order delta of this number will always be zero for any given codec at a
given quantization interval.

The invention enables the in-order deliver of packets on the upstream
DOCSIS RF link. The invention suppresses 802.3/IP/UDP/RTP header 900 on
CM 108, and ensures that header 900 is recreated by CMTS 104. The
reconstruction of header 900 must be an exact reconstruction. This is
accomplished by calculating the difference between an RTP input packet’s RTP
sequence number field 950 and the previous RTP packet’s RTP sequence number
field 950. When the difference between successive RTP packet sequence number
fields 950 is 1, the difference between a new RTP packet’s timestamp field 952
and a previous RTP packet’s timestamp field 952 will be the first order
difference, which will appear on every successive packet while the codec and
quantization interval remain constant.

By obsefvation, it was determined that the first order difference in RTP

packet timestamp field 952 is 80 decimal for a 10 millisecond quantization, for

PCT/US01/31559

10

15

20

25

30

WO 02/32073

27-

G711, G726, G738, and G729. For 5 millisecond quantization, the first order
difference in RTP packet timestamp field 952 is 40 decimal.

Initially, CM 108 sends one or more unsuppressed full headers with a
control bit indicating that CMTS 104 is to "learn" header 900. Once the
quantization value is determined, the quantization value is used to verify that the
reconstruction of header 900 will be correct. At that time, CM 108 sends either
a "learn header" control bit with a full header in the event that reconstruction of
header 900 may be incorrect, or a 5-bit RTP sequence delta, an 8-bit quantization
value, and an optional 1-byte IP packet ID delta in place of 54-byte
802.3/IP/UDP/RTP header 900. In embodiments, during the learning process,
more than one sequential header may be sent with the learn bit set. This ensures
that in the event a packet is dropped on the RF link, CMTS 104 will end up with
a valid template header from which to recreate packets once the learn bit is no
longer set.

FIG. 10 is a diagram illustrating a control value byte 1000 that is used
during the operation of the RTP header suppression technique. Control value
byte 1000 comprises an L bit 1002, an I(1) bit 1004, an I(0) bit 1006, and a 5-bit
V value 1008. L bit 1002 is a learn bit. L bit 1002 is set when CMTS 104 is to
learn header 900. |

Modern IP protocol stacks often increment IP packet ID field 926 by
either 0x0001 or 0x0100 between datagrams. The present invention uses a two-
bit flag value, I(1) bit 1004 and I(0) bit 1006 to determine whether to increment
IP packet ID field 926 by 0x0001 or by 0x0100 or whether to replace IP packet
ID field 926 with a 2-byte delta field transmitted upstream by CM 108. If both
I(1) and I(0) are not set, then IP packet ID field 926 is incremented by 0x0001.
If both I(1) and I(0) are set, then IP packet ID field 926 is not incremented. IfI(1)
is not set and I(0) is set, then IP packet ID field 926 is incremented by 0x0100.
If I(1) is set and I(0) is not set, then the change in IP packet ID field 926 is
transmitted upstream in a two-byte delta field. Table 1 represents the four

possibilities for determining the value of IP packet ID field 926.

PCT/US01/31559

10

15

20

25

WO 02/32073 PCT/US01/31559
-28-
Table 1
I(1) 1(0) IP packet ID

0 0 increment by 0x0001

0 1 increment by 0x0100

1 0 change is transmitted upstream in a two

byte delta field
1 1 , no increment value

Control value (V) 1008 is a five bit value representing the delta value of
sequence number field 950.

FIG. 11 is a high level flow diagram 1100 illustrating a method for RTP
header suppression. The invention is not limited to the description provided
herein with respect to flow diagram 1100. Rather, it will be apparent to persons
skilled in the relevant art(s) after reading the teachings provided herein that other
functional flow diagrams are within the scope of the present invention. The
process begins with step 1102, where the process immediately proceeds to step
1104.

In step 1104, information concerning RTP header suppression is
communicated from CM 108 to CMTS 104 to enable reconstruction of RTP
packets at CMTS 104. As previously discussed, this may include an index
number indicating the particular type of packet header suppression technique, the
rules associated with suppressing and reconstructing a packet in accordance with
the particular type of packet header suppression technique, etc. The process then
proceeds to step 1106.

In step 1106, a complete RTP packet, such as RTP packet 910, is sent by
CM 108 to CMTS 104 to enable CMTS 104 for learning. CMTS 104 stores the
full header of RTP packet 910 for future reference as a template. The process
then proceeds to decision step 1108.

In decision step 1108, it is determined whether CMTS 104 has learned
RTP packet 910. If CMTS 104 has not learned RTP packet 910, then the process

10

15

20

25

WO 02/32073

-29-

returns to step 1106, where a complete packet is sent from CM 108 to CMTS 104
for continued learning. ‘

Returning to decision step 1108, if it is determined that CMTS 104 has
learned RTP packet 910, then the process proceeds to step 1110. In step 1110,
subsequent packets in the RTP stream are sent from CM 108 to CMTS 104. The
subsequent packets are comprised of delta values representing changes in RTP
header 900. Thus, the entire RTP packet 910 is no longer sent. Instead, only
delta values representing the changes in RTP header 900 are sent. PDU field 956
is also sent. If error recovery is desired, the subsequent packets will also include
an additional byte indicating the lower byte of RTP sequence number field 940.
If a packet is dropped for any reason, CMTS 104 may effectively re-synchronize
the header restoration algorithm by applying the changes to sequence number
field 940 and timestamp field 952 of RTP header 900 for any missing packets.
Thus, sending the lower order byte of packet sequence number field 940 will
enable reconstruction of dropped or lost packets. The process then proceeds to
decision step 1112.

In decision step 1112, it is determined whether all RTP packets have been
sent. If all RTP packets have not been sent, the process returns to decision step
1110 for enabling subsequent packets in the RTP stream to be sent to CMTS 104.

Returning to decision step 1112, if it is determined that all RTP packets
have been sent, then the process proceeds to step 1114, where the process ends.

FIG. 12A is a flow diagram illustrating a method for suppressing an RTP
header using an RTP header suppression technique according to an embodiment
of the present invention. The invention is not limited to the description provided
herein with respect to flow diagram 1200. Rather, it will be apparent to persons
skilled in the relevant art(s) after reading the teachings provided herein that other
functional flow diagrams are within the scope of the present invention. The
process begins with step 1202, where an RTP suppressor is started at the
transmitting end (i.e., CM 108). The process immediately proceeds to step 1204.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-30-

In step 1204, the delta of RTP timestamp field 952 between two
consecutive RTP packets 900 is determined. The resultant value is the timestamp
delta value. The resultant timestamp delta value is set equal to temp(0). Note
that during initialization, temp (0) is set to zero. The process then proceeds to
step 1206. ’

In step 1206, the delta value for sequence number field 940 is determined.
The resultant delta value is set equal to control value (V). This is accomplished
by determining the low order byte of a new sequence number field 950 ANDed
with the hex value 7f and determining the low order byte of the old sequence
number field 950 ANDed with the hex value 7f. The resultant new sequence
number field 950 value is then subtracted from the resultant old sequence number
field 950 to obtain the delta or value of control value (V). The process then
proceeds to decision step 1208.

In decision step 1208, it is determined whether proper reconstruction will
occur. This is accomplished by multiplying the delta value of sequence number
field 950, calculated in step 1206, by the constant value for the codec and adding
it to the previous timestamp value. If this value is not equal to the new
timestamp, then the process proceeds to step 1210.

In step 1210, learn bit 1002 of control value 1000 is set. The process then
proceeds to step 1212.

In step 1212, temp(1) is set equal to control value 1000. Temp (1) now
contains the delta value for sequence number field 950. The process then
proceeds to step 1214.

In step 1214, a new buffer is allocated and the two bytes from temp (the
delta value for timestamp field 952 and control value 1000, which includes the
delta value for sequence number field 950) are stored in the new buffer. The
process proceeds to step 1216.

In step 1216, the new buffer and the original buffer, which contains a
complete RTP header 910, are transmitted té CMTS 104. Thus, the complete
RTP header 910 along with the delta value for timestamp field 952 and control

PCT/US01/31559

10

15

20

25

WO 02/32073

-31-

value 1000 are sent to CMTS 104. The process then proceeds to step 1218,
where the process ends.

Returning to decision step 1208, if it is determined that the calculated
value is equal to the new timestamp field 952, then CM 108 has determined the
quantization value. The process proceeds to step 1220.

In step 1220, the increment value for incrementing IP packet ID field 926
is determined. Bits I(1) 1004 and I(0) 1006 of control value 1000 are set
according to the value of the increment for the IP protocol stack being used. The
control value is then stored in temp(1). The process then proceeds to step 1222.

In step 1222, the two bytes from temp are copied to the original buffer.
Temp (0) is the delta value for timestamp field 952 or the quantization value.
Temp (1) is control value 1000, which includes the delta value for sequence
number field 950. The process then proceeds to step 1224.

In step 1224, the original length minus 52 bytes starting at offset 52 is
transmitted. Thus, the quantization value or the delta of timestamp field 952,
control value 1000, and PDU field 956 are transmitted to CMTS 104. The
process then proceeds to step 1218, where the process ends.

As previously stated, modern IP protocol stacks commonly increment IP
packet ID field 926 by either 0x0001 or 0x01000 between datagrams. A special
rule in the present invention handles the setting of control bits 1004 and 1006 to
determine the increment value. FIG. 12B is a flow diagram illustrating a method
for setting increment bits I(1) 1004 and I(0) 1006 of control value 1000 for
incrementing IP packet ID field 926 in RTP packet 910. The process begins in
step 1232, where the process immediately proceeds to decision step 1234,

The present invention incorporates a test mode in which testing of various
aspects of the system may be done. When certain tests are performed, control bits
I(1) 1004 and I(0) 1006 are set accordingly to provide an increment of zero. In
decision step 1234, it is determined whether the system is in a test mode. If the

system is in a test mode, then the process proceeds to step 1236.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

232-

In step 1236, control value bit I(1) 1004 is set to 1 and control value bit
I(0) 1006 is set to 1. The process then proceeds to step 1248.

Returning to decision step 1234, if it is determined that the system is not
in a test mode, then the process proceeds to decision step 1238.

In decision step 1238, it is determined whether the value for IP packet ID
field 926 is to be sent upstream. If the value for IP packet ID field 926 is to be
sent upstream, the process will proceed to step 1240.

In step 1240, control value bit I(1) 1004 is set to 1 and control value bit
I(0) 1006 is set to 0. The process then proceeds to step 1248.

Returning to decision step 1238, if the value for IP packet ID field 926 is
not being sent upstream, the process proceeds to decision step 1242.

In decision step 1242, it is determined whether the IP protocol stack
requires an increment of 0x0001 for IP packet ID field 926. If the IP protocol
stack does require an increment of 0x0001 for IP packet ID field 926, then the
process proceeds to step 1244.

In step 1244, control value bit I(1) 1004 is set to 0 and control value bit
I(0) 1006 is set to 0. The process then proceeds to step 1248.

Returning to decision step 1242, if the IP protocol stack does not require
an increment of 0x0001 for IP packet ID field 926, then the process proceeds to
1246.

In step 1246, an increment of 0x0100 is needed for IP packet ID field 926.
Control value bit I(1) 1004 is set to 0 and control value bit 1(0) 1006 is set to 1.
The process then proceeds to step 1248.

In step 1248, the process ends.

FIG. 13 is a flow diagram 1300 illustrating a method for reconstruction
of a suppressed RTP packet according to an embodiment of the present invention.
The invention is not limited to the description provided herein with respect to
flow diagram 1300. Rather, it will be apparent to persons skilled in the relevant
art(s) after reading the teachings provided herein that other functional flow

diagrams are within the scope of the present invention. The process begins with-

PCT/US01/31559

10

15

20

25

WO 02/32073

-33-

step 1302, where the reconstructor is started. The process then proceeds to step
1304.

Iﬁ step 1304, a 54-byte header is read. The process then proceeds to step
1306.

In step 1306, 1-byte control value 1000 is read from the input stream. The
process then proceeds to decision step 1308.

In decision step 1308, it is determined whether learn bit 1002 of control
value 1000 is set. If it is determined that learn bit 1002 is set, then header 900
needs to be learned by CMTS 104. The process then proceeds to step 1310.

In step 1310, a second 1-byte value is read from the input stream. This
second 1-byte value is discarded. The process then proceeds to step 1312.

In step 1312, the current 54-byte header that was read in step 1304 is
discarded. CMTS 104 discards this data because this 54-byte header was
generated by the hardware’s payload header suppression mechanism at the end
of the reconstructor process, which will be discussed below with reference to step
1318. When the hardware’s payload header suppression mechanism injects this
54-byte header, the 54-byte header is placed prior to control value 1000. Thus,
when learn bit 1002 is set, this 54-byte header is considered garbage and must be
discarded. From the point of view of CM 108, what was sent was a suppression
index. Receipt of the suppression index by CMTS 104 caused CMTS 104 to
inject 54-bytes of incorrect data into the data stream. The process then proceeds
to step 1314.

In step 1314, the correct 54-byte header, transmitted from CM 108, is read
from the input stream. The process then proceeds to step 1316. ‘

In step 1316, the 54-byte header is copied to a template header and the 54-
byte header followed by the data from PDU 956 is emitted. The process then
proceeds to step 1318, where the process ends.

Returning to decision step 1308, if it is determined that learn bit 1002 of

control value 1000 is not set, then the process proceeds to step 1320.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-34-

In step 1320, the second 1-byte value from the input stream is read and
placed into alow-order byte of a local variable named DELTA. DELTA is a 32-
bit long word. DELTA is pre-initialized to zero at the start of RTP delta
reconstructor process 1300. The process then proceeds to step 1322.

Step 1322 begins the process for determining whether to increment IP
packet ID field 926 as set forth in Table 1. In step 1322, it is determined whether
1(1) 1004 of control value 1000 is set. If 1(1) 1004 of control value 1000 is not
set, then the process proceeds to step 1324.

In step 1324, it is determined whether 1(0) 1006 of control value 1000 is
set. IfI(0) is not set, then the process proceeds to step 1326.

In step 1326, a local variable named INCR is set to 0x0001 for
incrementing IP packet ID field 926. Note that local variable INCR is a 16-bit
unsigned value. INCR is pre-initialized to zero at step 1302. The process then
proceeds to step 1334.

Returning to step 1324, if I(0) is set, the process proceeds to step 1328.
In step 1328, local variable INCR is set to 0x0100 for incrementing IP packet ID
field 926. The process then proceeds to step 1334.

Returning to step 1322, if I(1) is set, the process proceeds to step 1330.
In step 1330, it is determined whether 1(0) 1006 of control value 1000 is set. If
I(0) is set, then the process proceeds to step 1334.

Returning to step 1330, if I(0) is not set, then the process proceeds to step
1332. In step 1332, the change in IP packet ID field 926 is transmitted upstream
from CM 108. A two-byte unsigned value is read in from the input stream and
placed at offset 18 of the reconstructed data packet. Offset 18 of the
reconstructed data packet is IP packet ID field 926. The process then proceeds
to step 1334. '

Steps 1334 through 1340 provide all of the updates to IP packet ID field
926, RTP sequence number field 950, and RTP timestamp field 952 for the
reconstruction of RTP packet 910. In step 1334, it is determined whether the bits
4-0 of the byte at offset 45 (low-order bits of sequence number field 950) of RTP

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-35-

packet 910 are equal to V 1008 in control value 1000. If it is \determined that the
bits 4-0 of the byte at offset 45 (low-order bits of sequence number field 950) of
RTP packet 910 are equal to V 1008 in control value 1000, then the process
proceeds to step 1342.

In étep 1342, anew IP header checksum is determined and placed at offset
24 (IP header checksum 934). IP header checksum field 934 is the 16-bit one’s
complement of the one’s complement sum of all 16-bit words in header 900. For
purposes of computing the checksum, the value of the checksum field is zero.

Returning to step 1334, if it is determined that the bits 4-0 of the byte at
offset 45 (low-order bits of sequence number field 950) of RTP packet 910 are
not equal to V 1008 in control value 1000, then the process proceeds to step 1336.

In step 1336, the value of one is added to the word at offset 44 of RTP
packet 910, which is RTP sequence number field 950. The process then proceeds
to step 1338.

In step 1338, the word at offset 18 of RTP packet 910, which is IP packet
ID field 926, is incremented by local variable INCR. The process then proceeds
to step 1340.

In step 1340, the word at offset 46 of RTP packet 910, which is RTP
timestamp field 952, is incremented by local variable DELTA. The process then
returns to step 1334, to determine if contrél value (V) 1008 matches the five low-
order bits in the sequence number field 950 of RTP packet 910. Steps 1334
through 1340 will be repeated until these numbers are equal. When these

numbers are equal, the process will proceed to step 1342 as described above.
4. Dynamic Delta Encoding Scheme

As previously stated, the invention provides for optimizing the
transmission of TCP/IP (Internet Protocol) traffic across aDOCSIS network. The
suppression technique of the present invention is field oriented rather than byte

oriented. Many fields in a TCP protocol header do not change between packets

PCT/US01/31559

10

15

20

25

30

WO 02/32073

36-

in the same TCP connection stream. This redundant information is transmitted
once, and suppressed in subseqﬁent packets. Other fields in the TCP protocol
header change in a predictable manner. These fields are not transmitted in their
entirety. Instead, a smaller delta encoded value is transmitted that represents each
field’s change in value from one packet to the next. The delta-encoded values for
32-bit fields are always represented as a 16-bit number. This technique reduces
the bandwidth required to send the changing fields by approximately 50%, and
thus, provides a high efficiency gain in TCP Acknowledgement (ACK)
transmission.

DOCSIS cable modems can ensure in-order delivery of packets on each
IP stream. This guaranteed order of delivery enables the use of delta encoded
fields to update any changing fields in a 802.3/IP/TCP protocol header.

Prior to describing the dynamic delta encoding scheme for TCP header
suppression, a conventional 802.3/IP/TCP protocol header 1400 for TCP/IP
transmission will be described in FIG. 14A. Protocol header 1400 includes a 14-
byte 802.3 header 1402, a 20-byte IP header 1404, and a 20-byte TCP header
1406. In this example, 802.3/IP/TCP header 1400 creates a 54-byte header for
TCP/IP transmission.

FIG. 14B is a diagram of a TCP protocol packet 1410. TCP protocol
packet 1410 comprises, inter alia, a destination MAC address field 1412, asource
MAC address field 1414, a type/length field 1416, a protocol version field 1418,
aheader length field 1420, a type of service field 1422, a total length field 1424,
a packet ID field 1426, a fragment offset field 1428, a time to live field 1430, a
protocol field 1432, aheader checksum field 1434, a source IP address field 1436,
a destination IP address field 1438, a source port field 1440, a destination port
field 1442, a sequence number field 1446, an acknowledgement number field
1448, a data offset field 1450, a flags field 1452, a window field 1454, a
checksum field 1456, an urgent pointer field 1458, aPDU field 1460, and a CRC-
32 field 1462. TCP protocol packets are well known in the relevant art(s), thus,

each individual field will not be discussed in detail.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-37-

Most of the fields in TCP protocol packet 1410 do not change between
packets in the same TCP connection stream. In TCP protocol packet 1410, all of
header 1402 and most of header 1404 may be suppressed once the receiver has
learned the redundant or non-changing fields. Many of the fields in TCP header
1406 change between packets in the same TCP connection stream. With the
present invention, these fields are not transmitted in their entirety. Instead, a
smaller delta encoded value is transmitted. The delta encoded value represents
each field’s change in value from one packet to the next.

FIG. 15 is a diagram illustrating the fields that change from packet to
packet in TCP protocol packet 1410. The fields that change from packet to
packet are highlighted. The changing fields include packet ID field 1426 from IP
header 1404, and sequence number field 1446, acknowledgement number field
1448, data offset field 1450, window field 1454, checksum field 1456, and urgent
pointer field 1458 from TCP header 1406.

The invention enables the in-order delivery of packets on the upstream
DOCSIS RF link. The invention suppresses 802.3/IP/TCP header 1400 on CM
108 and ensures that header 1400 is reconstructed to its original format by CMTS
104. FIGs. 16A and 16B provide a high level description of the delta-encoded
suppression and reconstruction process, respectively, for the present invention.

FIG. 16A is a high level flow diagram 1600 illustrating a method for a
delta encoding suppression technique. The invention is not limited to the
description provided herein with respect to flow diagram 1600. Rather, it will be
apparent to persons skilled in the relevant art(s) after reading the teachings
provided herein that other functional flow diagrams are within the scope of the
present invention. The process begins with step 1601, and immediately proceeds
to step 1602.

In step 1602, information concerning TCP delta-encoded header
suppression is communicated from CM 108 to CMTS 104 to enable
reconstruction of TCP packets at CMTS 104. As previously discussed, this may

include an index number indicating the particular type of packet header

PCT/US01/31559

10

15

20

25

WO 02/32073

-38-

suppression technique, the rules associated with suppressing and reconstructing
a packet in accordance with the particular type of packet header suppression
technique, etc. CM 108 chooses the suppression index, and thus, the suppression
technique. This prevents the need for atwo-way command transaction during fast
data transfers. The process then proceeds to step 1603.

In step 1603, an individual TCP’ connection stream is identified. A
framing protocol is used to separate and identify each TCP connection stream on
a single DOCSIS SID. After identifying the TCP connection stream, the process
proceeds to step 1604.

In step 1604, a first TCP protocol packet 1410 in a TCP connection
stream is transmitted to a receiver in its entirety. The first TCP protocol packet
1410 includes a learn indicator. The indicator instructs the receiver to learn the
complete header. The complete protocol header 1400 may be learned without
requiring confirmation from a receiver, such as CMTS 104. This allows headers
to be learned in real-time. Once the header has been learned, subsequent packets
may be sent in a compressed format. Maximum efficiency is achieved by
permitting an unsuppressed (learned) header to be immediately followed by a

suppressed header. This eliminates the delay introduced in the DOCSIS approach

which requires waiting for a learned acknowledgment from the receiver. The

process then proceeds to step 1606.

In step 1606, the next packet in the TCP connection stream is retrieved.
The process then proceeds to step 1608.

In step 1608, the fields that have changed from the previous transmitted
packet are identified and a delta encoded value representing that change is
determined. The process then proceeds to step 1610.

In step 1610, a bit-mapbed flag is generated. The bit-mapped flag
indicates which of the possible delta encoded IP/TCP field values are present
between a change byte and the compressed TCP protocol packet’s data area. The
change byte is a one-byte bitmapped flag field for indicating which fields within

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-39

protocol header 1400 have changed. The change byte will be discussed in more
detail below with reference to FIG. 17. The process then proceeds to step 1612.

In step 1612, the compressed TCP protocol packet is generated and the
bit-mapped flag is appended to the front of the compressed TCP packet. The
process then proceeds to step 1614.

In step 1614, the compressed TCP protocol packet is transmitted to the
receiver. The process then proceeds to decision step 1616.

In decision step 1616, it is determined whether there are more TCP
protocol packets 1410 in the TCP connection stream to be transmitted. If there
are more packets to be transmitted, then the process returns to step 1606 to
retrieve the next packet.

Returning to decision step 1616, if there are no more packets to be
transmitted in the TCP connection stream, the process will proceed back to step
1603, where another TCP connection stream is identified.

FIG. 16B is a high level flow diagram 1620 illustrating a method for a
delta encoded header reconstruction technique. The invention is not limited to
the description provided herein with respect to flow diagram 1620. Rather, it will

be apparent to persons skilled in the relevant art(s) after reading the teachings

provided herein that other functional flow diagrams are within the scope of the

present invention. The process begins with step 1622, where the process
immediately proceeds to step 1624.

In step 1624, a TCP protocol packet 1410 from a TCP connection stream
is retrieved. The process then proceeds to decision step 1626.

In decision step 1626, it is determined whether the retrieved TCP protocol
packet 1410 is to be learned. This is accomplished by determining whether the
indicator learn bit is set. If the indicator learn bit is set, the process proceeds to
step 1628.

In step 1628, the receiver learns the current TCP protocol header of packet
1410, and stores packet 1410 for future reference as a header template. The

process then returns to step 1624 to retrieve another packet.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

40-

Returning to decision step 1626, if the indicator learn bit is not set, the
process proceeds to step 1630.

In step 1630, the change byte is read and the corresponding delta-encoded
values are read. The process then proceeds to step 1632.

In step 1632, the header is reconstructed. The TCP/IP header flags are
updated and the delta-encoded values are used to update the changed fields in a
stored header template. The process then proceeds to step 1634.

In step 1634, the completely restored header is placed in front of any
received data from the TCP protocol packet retrieved in step 1624. At this point,
the packet is completely restored to its original format, and can be transmitted
over an IP network. The process then proceeds back to step 1624, where another
TCP protocol packet is retrieved.

FIG. 17 is a diagram illustrating the change byte 1700 that is used in
executing the delta-encoded header suppression technique. Change byte 1700 is
a 1-byte bitmapped flag field for indicating which fields of protocol header 1400
have changed. Change byte 1700 also indicates whether or not header 1400 is to
be learned at the receiving end. Change byte 1700 further indicates whether to
increment IP packet ID 1426 and the amount by which IP packet ID 1426 should
be incremented. Change byte 1700 comprises an L bit 1702, an I(1) bit 1704, an
1(0) bit 1706, an S bit 1708, an A bit 1710, a P bit 1712, a W bit 1714, and a U
bit 1716.

L bit 1702, when set, indicates that the remainder of the change byte can
be ignored and that an entire 54-byte 802.3/IP/TCP header 1400 is included in the
burst and should be used to replace the current template header.

I(1) bit 1704 and I(0) bit 1706 are used to determine the change for IP
packet ID field 1426 in a similar manner as indicated in Table 1 above. I(1) bit
1704, when set, indicates that the next value in the data stream is a 2-byte value
to be copied to IP packet ID field 1426 of the template header. The result should
be written back to the template header and emitted. When I(1) bit 1704 is clear,
I(0) bit 1706, must be checked to determine how to increment IP packet ID 1426.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

41-

I(0) bit 1706, when set, indicates that 0x0100 should be added to the template
header IP packet ID field 1426, written back to the template header, and emitted.
When clear, I(0) bit 1706 indicates that the template header IP packet ID field
1426 should be incremented by 0x0001, written back to the template header, and
emitted. I(1) bit 1704 and I(0) bit 1706 are determiged based upon the operation
of modern IP protocol stacks and the manner in which they are incremented as
described above.

S bit 1708, when set, indicates that the next value in the data streamis a
2-byte value to be added to the 4-byte TCP sequence number field 1446 of the
témplate header. The result should be written back to the template header and
emitted. When S bit 1708 is clear, TCP sequence number field 1446 of the
template header should be used as is.

When A bit 1710 is set, the next value in the data stream is a 2-byte value
to be added to the 4-byte TCP acknowledgement number field 1448 of the
template header. The result should be written back to the template header and
emitted. When A bit 1710 is clear, TCP acknowledgement number field 1448 of
the template header should be used as is.

P bit 1712, when set, indicates‘ that the PUSH bit (not shown) of a nibble
of TCP flags field 1452 should be set and emitted. When P bit 1712 is clear, the
PUSH bit of a nibble of TCP flags field 1452 should be cleared and emitted.

When W bit 1714 is set, the next value in the data stream is a 2-byte value
to be copied to TCP window field 1454 of the template header. The result should
be written back to the template header and emitted. When W bit 1714 is clear,
TCP window field 1454 of the template header should be used as is.

When U bit 1716 is set, the next value in the data stream is a 2-byte value |
to be copied to TCP urgent pointer field 1458 of the template header. The result
should be written back to the template header and emitted. When U bit 1716 is
clear, TCP urgent pointer field 1458 of the template header should be used as is.

Based on the fields that actually change from the previous transmitted

values, one of two actions will occur. TCP protocol packet 1410 may be sent

PCT/US01/31559

10

15

20

25

WO 02/32073

42

without any suppression whatsoever or TCP protocol packet 1410 may be
appended to change byte 1700 and include either an entire TCP protocol packet
1410 or two or more fields in place of 54-byte 802.3/IP/TCP header 1400. The
two or more fields that replace 8§02.3/IP/TCP header 1400 include: (1) an actual
IP packet ID 1426 value (which is sent only if IP packet ID did not increment by
0x0001 or 0x0100); (2) a delta-encoded value for TCP sequence number 1446
(which is sent only if the delta-encoded TCP sequence number # 0); (3) a delta-
encoded value for TCP acknowledgement number field 1448 (which is sent only
if the delta-encoded TCP acknowledgement number # 0); (4) a byte of data for
TCP data offset field 1450; (5) an actual value for TCP window field 1454
(which is sent only if a delta value for TCP window field 1454 = 0); (6) an actual
value for TCP header checksum field 1456; and (7) an actual value for TCP
urgent pointer field 1458 (which is sent only if IP urgent flag is set). The
invention, therefore, uses a framing mechanism that combines compressed,
uncompressed, and non-IP style traffic on a single DOCSIS SID. |

Traditional Internet TCP/IP header suppression protocols use a variable
length delta encoding scheme to represent changing fields. The present technique
is optimized for characteristics of high-speed TCP/IP networks. - For such
networks, the changing TCP fields (i.e., ACK, SEQ, WIN) typically increment
by more than 255 units. Encoding these changes with a fixed, two-byte delta field
optimizes the typical case for high-speed networks, and reduces the processing
required for each transmitted TCP protocol packet 1410.

FIG. 18 is a diagram illustrating a final encoded data stream 1800 that is
sent to a recéiver (i.e., CMTS) when L bit 1702 is not set. FIG. 18 shows a first
row 1802 for each field in final encoded data stream 1800 and a second row 1804
indicating a number of bytes that correspond to each field in final encoded data
stream 1800.

A first field 1806 is change byte 1700. As previously indicated, change
byte 1700 is comprised of 1-byte 1806.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

43-

A second field 1808 is a delta-encoded value for IP packet ID field 1426.
Delta-encoded value 1808 for IP packet ID field 1426 may consist of either O or
2-bytes of data (1809), depending upon whether a value is to be copied into the
template header for IP packet ID field 1426 or if the value of IP packet ID field
1426 is to be incremented by either 0x0001 or 0x0100. If a value is to be copied
into the template header for IP packet ID field 1426, then final encoded data
stream 1800 will contain 2-bytes for IP packet ID field 1426. If a value is not to
be copied into the template header for IP packet ID field 1426, then final encoded
data stream 1800 will not contain any bytes for IP packet ID 1426. Instead, an
increment value for IP packet ID field 1426 will be determined using bits I(1)
1704 and 1(0) 1706 of change byte 1700.

A third field 1810 is a delta-encoded value for TCP sequence number
1446. Delta-encoded value 1810 for TCP sequence number field 1446 may
consist of either 0 or 2-bytes of data (1811), depending upon whether a change
occurred in TCP sequence number field 1446 from the previous transmitted
value. If a change occurred in TCP sequence number 1446 from the previous
transmitted value, S bit 1708 of change byte 1700 will be set and final encoded
data stream 1800 will contain 2-bytes of data for updating TCP sequence number
field 1446 in the template header. If a change did not occur in TCP sequence
number field 1446 from the previous transmitted value, S bit 1708 of change byte
1700 will not be set and final encoded data stream 1800 will not contain any bytes
for TCP sequence number field 1446.

A fourth field 1812 is a delta-encoded value for TCP acknowledgement
number field 1448. Delta-encoded value 1812 for TCP aéknowledgement
number field 1448 may consist of either 0 or 2-bytes of data (1813), depending
upon whether a change occurred in TCP acknowledgement number field 1448
from the previous transmitted value. If a change occurred in TCP
acknowledgement number field 1448 from the previous transmitted value, A bit
1710 of change byte 1700 will be set and final encoded data stream 1800 will
contain 2-bytes of data for updating TCP acknowledgement number field 1448

PCT/US01/31559

10

15

20

25

30

WO 02/32073

44

in the template header. If a change did not occur in sequence number field 1446
from the previous transmitted value, A bit 1710 of change byte 1700 will not be
set and final encoded data stream 1800 will not contain any bytes for TCP
acknowledgement number field 1448.

A fifth field 1814 is for TCP data offset field 1450. A value for TCP data
offset field 1450 consists of 1-byte of data (1815) to be inserted in final encoded
data stream 1800.

A sixth field 1816 is for TCP window field 1454. A value for TCP
window field 1454 may consist of 0 or 2-bytes of data (1817), depending upon
whether a change occurred in TCP window field 1454 from the previous
transmitted value. If a change occurred in TCP window field 1454 from the
previous transmitted value, W bit 1714 of change byte 1700 will be set and final
encoded data stream 1800 will contain 2-bytes of data for updating TCP window
field 1454 in the template header. If a change did not occur in TCP window field
1454 from the previous transmitted value, W bit 1714 of change byte 1700 will
not be set and final encoded data stream 1800 will not contain any bytes for TCP
window field 1454.

A seventh field 1818 is for TCP checksum field 1456. A value for TCP
checksum field 1456 consists of 2-bytes of data (1819) to be inserted in final
encoded data stream 1800.

An eighth field 1820 is for TCP urgent pointer field 1458. A value for
TCP urgent pointer field 1458 may consist of 0 or 2-bytes of data (1821),
depending upon whether an IP urgent flag in TCP flags field 1452 is set. If the
IP urgent flag in TCP flags field 1452 is set, U bit 1716 of change byte 1700 will
be set and final encoded data stream 1800 will contain 2-bytes of data to be
copied into the template header. If the IP urgent flag in TCP flags field 1452 is
not set, U bit 1716 of change byte 1700 will not be set and final encoded data
stream 1800 will not contain any bytes for TCP urgent pointer field 1458.

" Aninth field 1822 is for TCP PDU 1460. TCP PDU may consist of 0-n
bytes (1823).

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-45-

FIG. 19 is a diagram illustrating a transmit order 1900 for final encoded
data stream 1800 when L bit 1702 is not set. Transmit order 1900 begins with
change byte 1700. Fields 1808, 1810, 1812, 1814, 1816, 1818, 1820, and 1822
follow.

FIG. 20 is a diagram illustrating a transmit order 2000 when L bit 1702
is set. This indicates that the header information being transmitted is to be
learned by the receiver. Transmit order 2000 consists of change byte 1700, a pad
2002, 54-byte TCP protocol header 1410, and PDU 1460.

FIG. 21 is a flow diagram 2100 illustrating a method for TCP header
suppression. The invention is not limited to the description provided herein with
respect to flow diagram 2100. Rather, it will be apparent to persons skilled in the
relevant art(s) after reading the teachings provided herein that other functional
flow diagrams are within the scope of the present invention. The process begins

with step 2102, where a TCP suppressor is started. The process then proceeds to

step 2104.

In step 21’04, L bit 1702, I(1) bit 1704, I(0) bit 1706, S bit 1708, A bit
1710, P bit 1712, W bit 1714, and U bit 1716 of change byte 1700 are
determined. The change byte is then copied to temp(0). The process then
proceeds to decision step 2106.

In decision step 2106, it is determined whether L bit 1702 is set. If L bit
1702 is set, this indicates that 802.3/IP/TCP should be sent in its entirety to be
learned by a receiver, such as CMTS 104. The process then proceeds to step
2108. ‘

In step 2108, anew buffer is allocated. The process then proceeds to step
2110.

In step 2110, change byte 1700 and a single pad byte are stored in the
buffer lallocated in step 2108. The system hardware does not like to see buffers
with an allocation of a single byte. Thus a hardware constraint is to provide
buffers with more than 1-byte. Thus, a pad byte is also inserted into the buffer.
The process then proceeds to step 2112.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

. 46-

In step 2112, an original buffer which holds TCP protocol packet 1410 is
appended to the new buffer on a BD ring. The process then proceeds to step
2114.

In step 2114, the original buffer length and the new buffer length are
transmitted. Thus, the change byte and a pad are transmitted with the 54-byte
header and PDU 1460 for learning the complete 802.3/IP/TCP header 1400.
When L bit 1702 is set, transmit order 2000 applies. The process then proceeds
to step 2116, where the process ends.

Returning to decision step 2106, if L bit 1702 is not set, the process then
proceeds to step 2118. In step 2118, the length of temp is calculated, and a
pointer is set to buffer [54] minus the length of temp. The length of temp
includes the length of all of the data being sent in final encoded data stream 1800.
The process then proceeds to step 2120.

In step 2120, temp is copied to the pointer. The process then proceeds to
step 2122.

In step 2122, the pointer is put on the BD ring. The process then proceeds
to step 2124.

In step 2124, the original length - [54] + length of temp is transmitted.
Thus, final encoded data stream 1800 is transmitted. When L bit 1702 is not set,
transmit order 1900 applies. The process then proceeds to step 2116, where the
process ends.

FIG. 22 is a flow diagram 2200 illustrating a method for TCP header
reconstruction. The invention is not limited to the description provided herein
with respect to flow diagram 2200. Rather, it will be apparent to persons skilled
in the relevant art(s) after reading the teachings provided herein that other
functional flow diagrams are within the scope of the present invention. A 54-byte
template header is generated by the DOCSIS payload header reconstruction
engine (not shown) prior to the start of flow diagram 2200. The process begins
with step 2202, where a TCP header reconstructor is started. The process then
proceeds to'step 2204.

PCT/US01/31559

10

15

20

25

WO 02/32073

A47-

In step 2204, a 54-byte header is read from the input stream. The process
then proceeds to step 2206.

In step 2206, change byte 1700 is read from the input stream. The process
then proceeds to decision step 2208.

In decision step 2208, it is determined whether L bit 1702 from change
byte 1700 is set. If L bit 1702 is set, then the process proceeds to step 2210.

In step 2210, the 54-byte header that was captured in step 2204 is
discarded. This data is discarded because this data was not generated from the
input stream, but was generated from the hardware’s bayload header suppression
mechanism at the end of the reconstructor process, which will be discussed below
with reference to step 2216. When the hardware’s payload header suppression
mechanism injects this 54-byte header, the 54-byte header is placed prior to
change byte 1700. Thus, when L bit 1702 is set, this 54-byte header is considered
garbage and must be discarded. From the point of view of CM 108, what was
sent was a suppression index. Receipt of the suppression index by CMTS 104
caused CMTS 104 to inject 54-bytes of incorrect data into the data stream. The
process then proceeds to step 2212.

In step 2212, a 1-byte pad is read from the input stream and discarded.
The process then proceeds to step 2214.

In step 2214, the correct 54-byte header, transmitted from CM 108, is read
from the input stream. The process then proceeds to step 2216.

In step 2216, the correct 54-byte header is copied to a template header and
the 54-byte header and the data from PDU 1460 that follows is emitted. The
process then proceeds to step 2218, where the process ends.

Returning to decision step 2208, if L bit 1702 of change byte 1700 is not
set, then the process proceeds to decision step 2220.

Decision step 2220 begins the process for determining whether to
increment IP packet ID field 1426 by 0x0001 or 0x0100 or to copy a 2—byte value
from the input stream into the template header of IP packet ID field 1426. In

PCT/US01/31559

10

15

20

25

30

WO 02/32073

48-

decision step 2220, it is determined whether I(1) bit 1704 of change byte 1700 is
set. IfI(1) is set, the process proceeds to step 2222.

In step 2222, a 2-byte value is read from the input stream and copied into
IP packet ID field 1426 (offset 18). The process then proceeds to step 2230.

Returning to aecision step 2220, if I(1) bit 1704 of change byte 1700 is
not set, the process proceeds to decision step 2224. Iﬁ decision step 2224, it is
determined whether I(0) bit 1706 of change byte 1700 is set. If I(0) bit 1706 is
not set, the process proceeds to step 2226.

In step 2226, 0x0001 is added to IP packet ID 1426 at offset 18. The
process then proceeds to step 2230.

‘Returning to decision step 2224, if I(0) bit 1706 of change byte 1700 is
set, the process proceeds to step 2228. In step 2228, 0x0100 is added to IP packet
ID 1426 at offset 18. The process then proceeds to decision step 2230.

In decision step 2230, it is determined whether S bit 1708 of change byte
1700 is set. If S bit 1708 is set, indicating that a change has occurred in TCP
sequence number field 1446 from the previous value, the process proceeds to step
2232.

In step 2232, the next 2-bytes of data from the input data stream are added
to TCP sequence number field 1446 at offset 38. The process then proceeds to
decision step 2234, |

Returning to decision step 2230, if S bit 1708 of change byte 1700 is not
set, the process proceeds to decision step 2234.

In decision step 2234, it is determined whether A bit 1710 of change byte
1700 is set. If A bit 1710 is set, indicating that a chénge has occurred in TCP
acknowledgement number field 1448, then the process proceeds to step 2236.

In step 2236, the next 2-bytes of data from the input stream are added to
TCP acknowledgement number field 1448 at offset 42. The procéss then
proceeds to step 2238.

Returning to decision step 2234, if A bit 1710 of change byte 1700 is not
set, then the process proceeds to step 2238.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

49-

In step 2238, the next byte of data from the input stream is copied into
TCP data offset field 1450 at offset 46. The process proceeds to decision step
2240.

In decision step 2240, it is determined whether P bit 1712 of change byte
1700 is set. If P bit 1712 is set, the process proceeds to step 2242.

In step 2242, 0x08 is ORed with the data in TCP flag field 1452 at offset
47. The process proceeds to decision step 2246.

Returning to decision step 2240, if P bit 1712 of change byte 1700 is not
set, the process proceeds to step 2244.

In step 2244, 0xF7 is ANDed with the data in TCP flag field 1452 at
offset 47. The process proceeds to decision step 2246.

In decision step 2246, it is determined whether W bit 1714 of change byte
1700 is set. If W bit 1714 is set, indicating that a change has occurred in TCP
window field 1454, the process proceeds to step 2248,

In step 2248, the next 2-bytes of data from the input stream are copied into
TCP window field 1454 at offset 48. The process then proceeds to step 2250.

Returning to decision step 2246, if it is determined that W bit 1714 of
change byte 1700 is not set, the process proceeds to step 2250.

In step 2250, the next 2-bytes of data from the input stream are copied into
TCP checksum field 1456 at offset 50. The process then proceeds to decision
step 2252.

In decision step 2252, it is determined whether U bit 1716 of change byte
1700 is set. If U bit 1716 is set, the process proceeds to step 2254.

In step 2254, the next 2-bytes of data from the input stream are copied into
TCP urgent pointer field 1458 at offset 52. The process then proceeds to step

. 2256.

In step 2256, the U bit in TCP flags field 1452 is set by Oring 0x20 to
TCP flags field 1452 at offset 47. The process then proceeds to step 2260. |
Returning to decision step 2252, if U bit 1716 of change byte 1700 is not
set, then the process proceeds to step 2258. In step 2258, the U bit in TCP flags

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-50-

field 1452 is cleared by ANDing OxDF to TCP flags field 1452 at offset 47. The
process then proceeds to step 2260.

In step 2260, IP total length field 1424 is set equal to the remaining PDU
1460 length plus 40 bytes. A new IP header checksum field 1434 is determined
and placed in the template header at offset 24. IP header checksum is the 16-bit
one’s complement of the one’s complement sum of the values at offsets 14, 16,
18, 22, 26, 28, 30, and 32. The process‘then proceeds to step 2216, where 54-
bytes are copied to the template header and emitted. The process then proceeds

to step 2218, where the process ends.
D. Environment

As discussed elsewhere herein, the above-described techniques or

methods may be executed as software routines, in part, by the MAC portion of a

cable modem and the headend MAC portion of a CMTS. For example, with

reference to the example implementation of cable modem 108 described in
reference to FIG. 3, MAC 314 performs necessary method steps by executing
software functions with the assistance of CPU 320. These software functions
may be stored in either RAM 322 or ROM 324. Furthermore, with reference to
the example implementation of CMTS 104, headend MAC 218 performs
necessary method steps by executing software functions with the assistance of
CPU 222. These software functions may be stored in either RAM 220 or ROM
218.

However, methods of the present invention need not be limited to these
embodiments. For example, the methods of the present invention may be
embodied in software routines which are executed on computer systems, such as
a computer system 2300 as shown in FIG. 23. Various embodiments are
described in terms of this exemplary computer system 2300. After reading this
description, it will be apparent to a person skilled in the relevant art how to

implement the invention using other computer systems and/or computer

PCT/US01/31559

10

15

20

25

30

WO 02/32073

51-

architectures. The computer system 2300 includes one or more processors, such
as processor 2303. The processor 2303 is connected to a communication bus
2302.

Computer system 2300 also includes a main memory 2305, preferably
random access memory (RAM), and may also include a secondary memory 2310.
The secondary memory 2310 may include, for example, a hard disk drive 2312
and/or a removable storage drive 2314, representing a floppy disk drive, a
magnetic tape drive, an optical disk drive, etc. The removable storage drive 2314
reads from and/or writes to a removable storage unit 2318 in a well-known
manner. Removable storage unit 2318, represents a floppy disk, magnetic tape,
optical disk, etc., which is read by and written to by removable storage drive
2314. As will be appreciated, the removable storage unit 2318 includes a
computer usable storage medium having stored therein computer software and/or
data.

In alternative embodiments, secondary memory 2310 may includé other
similar means for allowing computer programs or other instructions to be loaded
into computer system 2300. Such means may include, for example, a removable
storage unit 2322 and an interface 2320. Examples of such may include a
program cartridge and cartridge interface (such as that found in video game
devices), a removable memory chip (such as an EPROM, or PROM) and
associated socket, and other removable storage units 2322 and interfaces 2320
which allow software and data to be transferred from the removable storage unit
2322 to computer system 2300.

Computer system 2300 may also include a communications interface
2324, Communications interface 2324 allows software and data to be transferred
between computer system 2300 and external devices. Examples of
communications interface 2324 may include a modem, a network interface (such
as an Ethernet card), a communications port, a PCMCIA slot and card, a wireless
LAN (local area network) interface, etc. Software and data transferred via

communications interface 2324 are in the form of signals 2328 which may be

PCT/US01/31559

10

15

20

25

WO 02/32073

52-

electronic, electromagnetic, optical, or other signals capable of being received by
communications interface 2324. These signals 2328 are provided to
communications interface 2324 via a communications path (i.e., channel) 2326.
This channel 2326 carries signals 2328 and may be implemented using wire or
cable, fiber optics, a phone line, a cellular phone link, a wireless link, and other
communications channels.

In this document, the term “computer program product” refers to
removable storage units 2318, 2322, and signals 2328. These computer program
products are means for providing software to computer system 2300. The
invention is directed to such computer program products.

Computer programs (also called computer control logic) are stored in
main memory 2305, and/or secondary memory 2310 and/or in computer program
products. Computer programs may also be received via communications
interface 2324. Such computer programs, when executed, enable the computer
system 2300 to perform the features of the present invention as discussed herein.
In particular, the computer programs, when executed, enable the processor 2303
to perform the features of the present invention. Accordingly, such computer
programs represent controllers of the computer system 2300.

In an embodiment where the invention is implemented using software, the
software may be stored in a computer program product and loaded into computer
system 2300 using removable storage drive 2314, hard drive 2312 or
communications interface 2324. The control logic (software), when executed by
the processor 2303, causes the processor 2303 to perform the functions of the
invention as described herein.

In another embodiment, the invention is implemented primarily in
hardware using, for example, hardware components such as application specific
integrated circuits (ASICs). Implementation of hardware state machine(s) so as
to perform the functions described herein will be apparent to personé skilled in

the relevant art(s).

PCT/US01/31559

10

WO 02/32073 PCT/US01/31559

-53-

In yet another embodiment, the invention is implemented using a

combination of both hardware and software.
E. Conclusion

The present invention is not limited to the embodiment of a cable modem
system. The present invention can be used with any system that transmits RTP
packets over a network. The previous description of the preferred embodiments
is provided to enable any person skilled in the art to make or use the present
invention. While the invention has been particularly shown and described with
reference to preferred embodiments thereof, it will be understood by those skilled
in the art that various changes in form and detail may be made therein without

departing from the spirit and scope of the invention.

10

15

20

25

30

WO 02/32073

54

WHAT IS CLAIMED IS:

1. A method for RTP header suppression in a cable modem system,
comprising the steps of:

(a) sending an index number to a receiver, wherein said index number
represents an RTP header suppression technique; |

(b) sending rules associated with said RTP header suppression
technique;

() transmitting at least one complete RTP packet;

(d) transmitting subsequent RTP packets in an RTP stream, wherein
said subsequent RTP packets are comprised of delta values representing fields

that dynamically change from packet to packet in an RTP data packet.

2. The method of claim 1, wherein said at least one complete RTP

packet is learned for reconstructing said subsequent RTP packets at the receiver.

3. The method of claim 1, wherein step (c) is repeated until the

receiver has learned said at least one complete RTP packet.

4, The method of claim 1, wherein said delta values include a delta

RTP sequence value and a delta RTP timestamp value.

5. The method of claim 1, wherein said subsequent RTP packets

further comprise an RTP payload.

6. The method of claim 1, wherein said subsequent RTP packets
further comprise an additional byte indicating a low-order byte of an RTP
sequence number, wherein said low-order byte of said RTP sequence number is

used to recover lost RTP packets.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-55-

7. The method of claim 1, wherein changing RTP fields in a data

stream are suppressed.

8. A method for suppressing an RTP header, comprising the steps of:

(a) determining a delta value for an RTP timestamp value between
two consecutive RTP packets;

(b) determining a delta value for an RTP sequence number between
two consecutive RTP packets;

() determining whether proper reconstruction of said RTP header will
occur;

(d) if proper reconstruction of said RTP header will not occur, then
setting a learn bit to enable a receiver to learn said RTP header and sending a
complete RTP packet, a control value, and said delta value for said RTP
timestamp value upstream to be learned by the receiver; and

(e) if proper reconstruction of said RTP header will occur, then
sending upstream said control value and said RTP timestamp value for

reconstruction of said RTP data packets at the receiver.

9. The method of claim 8, wherein said control value comprises said
learn bit, two bits for determining whether to increment IP packet ID field of RTP
header by one of 0x0001 and 0x0100, and five-bits for said delta value for said

RTP sequence number.

10. The method of claim 8, wherein step (c) further comprises the
steps of determining whether a previous RTP timestamp, said delta value for said

RTP sequence number and a codec value will generate a current timestamp value.

11. A method for reconstructing a suppressed RTP data packet at a
receiving end, comprising the steps of:

(a) reading a first 54-byte RTP header from an input stream;

PCT/US01/31559

10

15

20

25

30

WO 02/32073

-56-

(b) reading a contol byte from said input stream;

(©) examining a first bit from said control byte to determine whether
a learn bit has been set;

(d) if said learn bit has been set; then reading and discarding a byte of
data from said input stream, discarding said first 54-byte RTP header from step
(a), and reading a second 54-byte RTP header from said input stream, wherein
said first 54-byte RTP header is generated by a payload header suppression
mechanism and said second 54-byte RTP header is transmitted upstream; and

(e) if said learn bit has not be set, then reconstructing said 54-byte

RTP header using said delta values.

12. A computer program product comprising a computer useable
medium including control logic stored therein, said control logic for enabling
RTP header suppression in a cable modem system, said control logic comprising:

first sending means for enabling a processor to send an index number to
a receiver, wherein said index number represents an RTP header suppression
technique;

second sending means for enabling a processor to send rules associated
with said RTP header suppression technique;

first transmitting means for enabling a processor to transmit at least one
complete RTP packet; and

second transmitting means for enabling a processor to transmit subsequent
RTP packet.s in an RTP stream, wherein said subsequent RTP packets are
comprised of delta values representing fields that dynamically change from

packet to packet in an RTP data packet.

13. The computer program product of claim 12, wherein said at least
one complete RTP packet is learned for reconstructing said subsequent RTP

packets at the receiver.

PCT/US01/31559

10

15

20

25

30

WO 02/32073

57

14. The computer program product of claim 12, wherein said first
transmitting means continues to transmit until the receiver has learned said at

least one complete RTP packet.

15. The computer program product of claim 12, wherein said delta

values include a delta RTP sequence value and a delta RTP timestamp value.

16. The computer program product of claim 12, wherein said

subsequent RTP packets further comprise an RTP payload.

17. The computer program product of claim 12, wherein said
subsequent RTP packets further comprise an additional byte indicating a low-
order byte of an RTP sequence number, wherein said low-order byte of said RTP

sequence number is used to recover lost RTP packets.

18. The computer program product of claim 12, wherein changing

RTP fields in a data stream are suppressed.

19. A computer program product comprising a computer useable
medium including control logic stored therein, said control logic for enabling the
suppression of an RTP header, said control logic comprising:

first determining means for enabling a processor to determine a delta
value for an RTP timestamp value between two consecutive RTP packets;

second determining means for enabling a processor to determine a delta
value for an RTP sequence number between two consecutive RTP packets;

third determining means for enabling a processor to determine whether
proper reconstruction of said RTP header will occur;

setting means for enabling a processor to set a learn bit to enable a
receiver to learn said RTP header and sending means for enabling a processor to

send a complete RTP packet, a control value, and said delta value for said RTP

PCT/US01/31559

10

15

20

25

30

WO 02/32073

58

timestamp value upstream to be learned by the receiver, if proper reconstruction
of said RTP header will not occur; and

sending means for enabling a processor to send upstream said control
value and said RTP timestamp value for reconstruction of said RTP data packets

at the receiver, if proper reconstruction of said RTP header will occur.

20. The computer program product of claim 19, wherein said control
value comprises said learn bit, two bits for determining whether to increment IP
packet ID field of RTP header by one of 0x0001 and 0x0100, and five-bits for

said delta value for said RTP sequence number.

21. The computer program product of claim 19, wherein said third
determining means further comprises means for enabling a processor to
determine whether a previous RTP timestamp, said delta value for said RTP

sequence number and a codec value will generate a current timestamp value.

22. A computer program product comprising a computer useable
medium including control logic stored therein, said control logic for enabling the
reconstruction of a suppressed RTP data packet at a receiving end, said control
logic comprising:

first reading means for enabling a processor to read a first 54-byte RTP
header from an input stream;

second reading means for enabling a processor to read a control byte from
said input stream;

examining means for enabling a processor to examine a first bit from said
control byte to determine whether a learn bit has been set;

réading and discarding means for enabling a processor to read and discard
a byte of data from said input stream, discarding means for enabling a processor
to discard said first 54-byte RTP header, and third reading means for enabling a

processor to read a second 54-byte RTP header from said input stream, if said

PCT/US01/31559

WO 02/32073 PCT/US01/31559

-59.

learn bit has been set, wherein said first 54-byte RTP header is generated by a

payload header suppression mechanism and said second 54-byte RTP header is

transmitted upstream; and |
reconstructing means for enabling a processor to reconstruct said 54-byte

RTP header using said delta values, if said learn bit has not be set.

PCT/US01/31559

WO 02/32073

1/30

1°9I4

701
\

AJOMISN
94H

(

SIND

EN el
43sn
NO
))
9il 80l
30IA90
d3sn
A
SISo0d
))
123} 901

”

00l

oLl

(N3avIH

AHOMLEN
¢ IHOLIMS
1340vd

)
¢0l

¢l

SUBSTITUTE SHEET (RULE 26)

PCT/US01/31559

WO 02/32073

ARk

2/30

1 907
| N —=— ~
L TINNVHO (N:L) NNl
I a4 4 d3N303Y 1Sdna— YaLnds - _
T —— AVD~9L/3Sd0 | x“_% >$ §
I v0¢C
} ~ viva 0010 M 802~ [70z
81z 912 ¥z
X¥09 OL | !,
Wy e WOLLO [TVOLLdO
A
% 0 Lo
EQVANEILY] VNN
ST - - 817 (ZHN 098-¥9)
VIA AP ANVIdNOVE N3QV3H ILEIANODI
SHHOMLIN , 4
oL 3 0z VIV
« 444 ! = 200% olz |
v || BowEm | HOLVINGON | _ NG| Tinaino 10
o I VT R s WYINISNAOC WS —{dW >
1ndLNo Z ZHN ¥
1-3své 00l | WYD—952/+%9 v v
y 05T
vz e 8¢C 21T

¥0!

SUBSTITUTE SHEET (RULE 26)

PCT/US01/31559

WO 02/32073

3/30

JOIA3@ ¥3SN

¢l

]2

WOy

|

)
144N

AV

A
\

WVD—-952/+9

934/M
NEITEAEN
WYINLSNMOQ

)
[44%

Ndo

A
|

v1va

)
ol1¢

A00T10
! ‘

A

)
0¢e

0l —

!

dIAFOSNVAL
1-35va 01

Y

(OVH)
JOYINOD
SS300V
NNIG3N

VLva y

{ %0070

)
8l¢g

AVD-91/3SdD

IV

4 ZHN v

diV =
80¢

~—71¢

TTOYINOD
NIV

MVS

¥0¢
) Y

dINNL

wwm

dO1VINGON

1S4ng -

WVIULSdN

)
9ce

A

Lt

09896 }

LEINIE
X3dIa-

[A%Y
d0133NNOD
- XV0J

) |
¢0¢

ZHN ¢¥-G

s

801

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

4/30
400
4?2 Vel
CM SENDS REGISTRATION MESSAGE TO
CMTS DESIGNATING SUPPORT FOR
EXTENDED PROTOCOL
V 404
CM RECEVES RESPONSE TO REGISTRATION
MESSAGE FROM CMTS INDICATING
WHETHER CMTS SUPPORTS EXTENDED
PROTOCOL
DOES CMTS
YES_/SUPPORT EXTENDED \NO
PROTOCOL?
408 | 410
1 (1 (
CM FORMATS DATA PACKETS FOR CM FORMATS DATA PACKETS FOR
TRANSMISSION TO CMTS IN TRANSMISSION TO CMTS IN
ACCORDANCE WITH EXTENDED | . | ACCORDANCE WITH STANDARD
PROTOCOL DOCSIS PROTOCOLS

FIG.4

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

5/30 500

CMTS RECEIVES REGISTRATION MESSAGE FROM CM
DESIGNATING A DATA TRANSFERCNI:’ROTOCOL SUPPORTED BY THE

~902

Y

CMTS ASSIGNS CM ID TO THE CM AND TRANSMITS IT TO
THE CM

~504

Y

CMTS ASSOCIATES CM ID WITH PROTOCOL INDICATOR
THAT INDICATES THE DATSYT%ESEEAR PROTOCOL SUPPORTED

~9506

Y

CMTS RECEIVES REQUEST FOR TRANSMISSION OPPORTUNITY
FROM CM, WHICH INCLUDES THE CM ID

~508

Y

CMTS ALLOCATES A TRANSMISSION OPPORTUNITY TO CM
IN RESPONSE TO CM REQUEST |

~310

Y

CMTS USES CM ID FROM THE REQUEST FOR
TRANSMISSION OPPORTUNITY TO ACCESS PROTOCOL
INDICATOR ASSOCIATED WITH CM ID

~912

Y

CMTS PROCESSES DATA TRANSMITTED BY CM DURING
ALLOCATED TRANSMISSION OPPORTUNITY IN ACCORDANCE
WITH THE DATA TRANSFE\IRDIEAR%IQCOL INDICATED BY THE

~514

FIG.S

SUBSTITUTE SHEET (RULE 26)

PCT/US01/31559

WO 02/32073

6/30

V370l

G09

A

-

(N 0L 1) QvOIAvd

(8) d1

(z1) dan

(02) di

(¥1) OWN

Gi9

¢i9

L9

609

)

£09

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

PCT/US01/31559

7/30

627 607 615
INDEX (1) MAC (14) | PAYLOAD (1 TO N)
_ J
Y
610
FIG.6B

SUBSTITUTE SHEET (RULE 26)

PCT/US01/31559

WO 02/32073

8/30

909

29°9l4
19 z19 019
A A A
(Y Y)
(N oL 1) avolavd|(¥1) ovn|{(1) X3anif(N oL 1) avolavd|(¥L) oww|(1) X3aNij(N oL 1) avoTAvd|(¥L) ovw|[(1) X3ani
)))))))))
629 L29 129 ¢29 129 619 Gl9 £09 L19
)

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

9/30

PCT/US01/31559

[*700

(INITIALIZATION 702

!

RECEIVE DATA PACKETS 704
Y
IDENTIFY PACKETS FOR SUPPRESSION 706
Y
SELECT PACKET HEADER SUPPRESSION TECHNIQUE ~708
Y
APPEND PACKET HEADER ELEMENT |~710
Y
SUPPRESS DATA PACKET HEADERS |~712
Y
CREATE MIXED PROTOCOL SID ~714
Y
TRANSMIT MIXED PROTOCOL SID TO CMTS ~716

FIG.7

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

10/30

/‘800

8?2

RECEIVE DOCSIS MIXED PROTOCOL SID

5
PACKET HEADER
SUPPRESSED?

NO

82)
TECHNIQUE
PREVIOUSLY LEARN RULES
STORED?

PROCESS PACKET
ACCORDING TO RULES

A

Y

Y
END 825

FI1G.8

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

11/30

| | |
t—14-BYTES— 20-BYTES———{—=-8-BYTES #t—=—12-BYTES—
so). 8023 P UDP RTP
)))
\ \ \
N 904 906 908
Y
HEADERS

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

12/30
1 2
0 8 6 4
0 DESTINATION MAC ADDRESS A 919 f
4 802.3
~-914 | HEADER
8 SOURCE MAC ADDRESS 902
12 TPE/LENGTH 916
918 50 IR |
14 PROTOCOL] HEADER| TYPE OF TOTAL 1
VERSION | LENGTH | SERVICE 922 LENGTH 924
18 PACKET DM FRAGMENT
T I 5 I 3 T8 §
99 | TME TO LVE HEADER 1
Y PROTOCOL 932 CHECKSUM 934 | HEADER
26 SOURCE IP 1
930 ADDRESS 936
0 DESTINATION IP, 1
ADDRESS 938
34 SOURCE DESTINATION
» PORT 940 PORT 1942 upp
LENGTH 944 CHECKSUM ~946 | 68
22| VIPIX] cc [M PT SEQUENCE NUMBER —~950
46 A RTP
TIMESTAMP 952 “5"85“
50 SYNCHRONIZATION SOURCE n
IDENTIFIER 954 i
5
4 DU 956
CRC-32

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

PCT/US01/31559

13/30

/*1 000

CONTROL VALUE
/ 6 S 4 0

L | I(1) | 1(0) V

1002 1004 1006 1008

FIG.10

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

(SWRT Je1102 ,/
1104

| (
COMMUNICATE TO RECEIVER INFORMATION
CONCERNING RTP HEADER SUPPRESSION TO

ENABLE RECONSTRUCTION OF PACKETS AT
THE RECEIVER

! 11‘06

SEND A COMPLETE PACKET TO THE
RECEIVER FOR LEARNING THE HEADER |—

HAS
RECEIVER
LEARNED
HEADER

NO

YES 1}10

SEND SUBSEQUENT
PACKETS IN RTP -
STREAM USING

SUPPRESSION TECHNIQUES

HAVE
ALL RTP

PACKETS
BEENQ SENT

NO

FIG.11

1114

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

1220

15/30

PCT/US01/31559

1200

g

(START RTP)
SUPPRESSOR 1202

! 1 2‘04

DETERMINE DELTA VALUE
FOR RTP TIMESTAMP

1206
| (

DETERMINE DELTA VALUE
FOR SEQUENCE NUMBER

SET CONTROL BITS
(1) AND 1(0)
FOR PROPER INCREMENT
VALUE AND SET
TEMP (1)=CONTROL VALUE

1222

Y

COPY 2 BYTES
FROM TEMP TO
ORIGINAL BUFFER [52]

1224
Y

TRANSMIT ORIGINAL
LENGTH-52 BYTES

YES ~ HAS PROPER\ NO
RECONSTRUCTION
OCCt;RRED

1210

CONTROL (L)=1

! 12112

TEMP (1)=
CONTROL VALUE

1214
1 9

ALLOCATE NEW BUFFER

AND STORE TEMP
VALUES IN BUFFER

FROM OFFSET 52

| 126
TRANSMIT NEW
BUFFER AND
ORIGINAL BUFFER
v T0 RECENER
END 1218
FIG.12A

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

16/30
4 Pso
ysa
I(1)=I
1(0)=
1S 1238 1240
THE VALUE !
FOR THE IP I(1)=l
PACKET ID BEING 1(0)=0
SENT ug)smw
1242
DOES 1244
THE IP PROTOCOL !
STACK REQUIRE AN 1(1)=0
. INCREMENT OF 0x0001 - 1(0)=0
FOR THE IP PACKET
(1)=0 ‘/246
1(0)=l
N
(END 1248
FIG.12B

SUBSTITUTE SHEET (RULE 26)

WO 02/32073
-

START RTP DELTA)|
(RECONSTRUCTOR)’\‘ 1302

i ’7/,30

PCT/US01/31559

\

READ 1-BYTE FROM INPUT STREAM AND

1300
/,_

FROM INPUT STREAM

Y

13?2

CALCULATE NEW IP HEADER CHECKSUM AND PLACE IN
WORD AT OFFSET 24 (P HDR CHECKSUM) (SEE TCP
RECONSTRUCTOR. FOR DETAILS)

! 1394 PLACE IN LOW-ORDER BYTE OF DELTA
(
READ 54 BYTES
FROM INPUT STREAM 1320
1306
Y l
RFAD 1-BYTE
CONTROL VALUE FROM
INPUT STREAM No 1332
1308 i e
RFAD 2-BYTES
(AS WORD) FROM
CONTROL(L)=1 | INPUT STREAM
WORD FIEL(D AT)
OFFSET 18 (IP D
YES 13}0 ! A | {
READ AND DISCARD 1334 |
1~BYTE FROM INPUT
STREAY YES _~BTs{4-0] OF BYTE
I 13}2 AT OFFSET 45=
DISCARD CURRENT 54
BYTES
! 13}4 ADD 1 TO WORD AT
OFFSET 44
RFAD 54 BYTES [RTP SEQ#]

?

13?8

ADD INCR TO WORD AT OFFSET

18 [IP ID]

B

|

1316
!

AND EMIT

COPY 54 BYTES TO
TEMPLATE HEADER

Y

END RTP DELTA
(RECONSTRUCTOR}1313

FIG.1

3

|

1340
{

ADD DELTA TO LWORD AT OFFSET 46

[RTP TIMESTAMP]

CONTROL VALUE
76 5 4 0
Lt | g v

IN THE FLOWCHART:
BYTE INDICATES AN 8-BIT UNSIGNED VALUE
WORD INDICATES A 16-BIT UNSIGNED VALUE
LWORD INDICATES A 32-BIT UNSIGNED VALUE

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

18/30

/‘1 400

i~+—14-BYTES— 20-BYTES—

20 BYTES

1409, 8023 P TP

\
_ 1404 1406)

Y
HEADERS

FIG.14A

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

19/30

PCT/US01/31559

/‘1410

1 7
0 8 6 4
0 DESTINATION MAC ADDRESS
4 1412 802.3
HEADER
8 SOURCE MAC ADDRESS 1414 1402
12 1418 TYPE/LENGTH
{ Mgy 1416
14 [PROTOCOL] FEADER] TYPE OF TOTAL
VERSION | LENGTH | SeRvice 1222 Rt
18 PACKET DTN FRAGMENT
D 1426| |ci oS 1428 A
99 [TNE TO LNE_ | PROTOCOL HEADER
1430 1432 checksuy 1434 | HEADER
% SORCE P 1236
ADRESS 2R
30 DESTINATION 1P
MDRESs | 1498
34 SOURCE DESTINATION
PORT 1440 poRT 1442
38 SEQUENCE
NUMBER 1446 o
ACKNOWLEDGEMENT
2] 1450 NUWBER 148 e
46 [ORA TAGS
OFFSET 1452 WINDOW 1454
50 CHECKSUM URGENT
1496 powEr 1498
o POU 1460
CRC-32 1462

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559
20/30
POO
1 2
0 8 6 4
0 DESTINATION MAC ADDRESS
4
8 SOURCE MAC ADDRESS
12 TYPE/LENGTH
14 PROTOCOL| HEADER TYPE OF TOTAL
VERSION | LENGTH SERWCE LENGTH
18 ";.::,__-.‘__....- '."-*» PACKET st] DM FRAGMENT
14267 B s "fsﬁ< FIF OFFSET
99 HME.TO UVE PROTOCOL HEADER
CHECKSUM
26 SOURCE IP
ADDRESS
30 DESTINATION [P
ADDRESS
34 SOURCE DESTINATION
___PORT _ L PORT
T e vt SEQUENCE S T T 4
2w NUMBER P
it ACKNOWLEDGEMENT e
3 : NUMBER
DMA “FiAGS o =3 1454
SRR RIS PONTR - 1458
ot PDU
CRC-32

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

21/30 1600

(STRT)1601 /
]

INFORMATION CONCERNING TCP DELTA-ENCODED |~1602

HEADER SUPPRESSION IS COMMUNICATED
TO A RECEVER

Y

AN INDIVIDUAL TCP CONNECTION STREAM |_1603

IS IDENTIFIED

Y

A FIRST TCP PROTOCOL PACKET IN A

TCP CONNECTION STREAM IS TRANSMITTED | 104

IN TS ENTIRETY W/AN INDICATOR SET
TO LEARN

|
RETRIEVE NEXT PACKET IN TCP 1606

CONNECTION STREAM
]

IDENTIFY CHANGED FIELDS DETERMINE |_1g08
DELTA-ENCODED VALUES FOR CHANGED FIELDS
[
GENERATE A BIT MAPPED FLAG 1610
|
GENERATE A COMPRESSED TCP

PROTOCOL PACKET AND APPEND TO ~1612
BIT MAPPED FLAG

\

TRANSMIT COMPRESSED TCP ~1614
PROTOCOL PACKET

TCP PACKETS

IN CONNECTION
STR';EAM

FI1G.16A

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

PCT/US01/31559

22/30 1620

(START >~1 622
!

A PROTOCOL PACKET FROM A [~1624
=1 TCP CONNECTION STREAM IS |

1628

LEARN
CURRENT
TCP PROTOCOL
HEADER

RETRIEVED

1626
YES

NO

READ CHANGE BYTE

AND CORRESPONDING | 1630

DELTA-ENCODED
VALUES

Y
RECONSTRUCT TCP
HEADER ~1632

Y

PLACE HEADER IN FRONT

OF ANY RECENED DATA | 1634

FROM THE RETRIEVED TCP
PACKET

FIG.16B

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

23/30

r1700

CHANGE BYTE
7 6 5 4
L [1(1)[1(0)| S

1]

/) !
1710

1702 4704 1706508 71944

3
A

. L,

f——,
—

217141716

—

FIG.17

SUBSTITUTE SHEET (RULE 26)

PCT/US01/31559

WO 02/32073

5?‘1/30

817914

RA@_ ;.Am_ m_Aw_ tAS m_Aw_ 2%_ :AE mﬁNm_ QNE sNa

T 1 1 1 T 1 1 1 1) SAIAG

/0 | 40

N Z/0 4 / /0 zZ/0 Z/0 | N

BM_ "dld P,zm@% zav_,azo ,;82_; mmtm VIVa|'ON .w_o,z "ON .mmﬁ m__ 13¥OVd | JONVHD ana
1 LY

) \ |] duy,)) D ~ |

\ \ Vv (\ VU 0L 208l
zz8l 0z8l gl8l 918l 90¥l ¥i8l Z18l 018l 808l 0¥l

0081

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

25/30

TRANSMIT ORDER (NORMAL)

PCT/US01/31559

1900

/

FLAGS ~—1700
P ID ~—1808
TCP SEQUENCE NUMBER 11810
TCP ACKNOWLEDGEMENT NO. 11812
TCP DATA OFFSET 41814
TCP WINDOW 1816
TCP HEADER‘CHECKSUM _1818
TCP URGENT POINTER ~4-1820
PDU 1822

FIG.19

SUBSTITUTE SHEET (RULE 26)

WO 02/32073 PCT/US01/31559

26/30

2000

/

TRANSMIT ORDER (LEARN)

1 XXXXX A 1700
2002~ PAD
54-BYTE TCP
HEADER 1400
F1G.20

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

27/30

START

PCT/US01/31559

2100

GCP SUPPRESSOD”ZWZ

2118
!

POINT TO
BUFFER [54]
—LENGTH (TEMP)

2120
!]

COPY TEMP
TO POINTER

2122
1 7

PUT POINTER
ON BD RING

2124
1 7

\ 21‘04

BUILD FLAGS
AND COPY TO
TEMP (0)

TRANSMIT
ORIGINAL LENGTH
-54 + LENGTH

(TEMP) BYTES

2106

NO YES

2116

END TCP

21 ?8

ALLOCATE
A NEW BUFFER

! 21;0

STORE FLAGS AND
A PAD BYTE IN
NEW BUFFER

| 21112

CHAIN NEW
BUFFER AND
ORIGINAL
BUFFER ON
BD RING

2114
1
TRANSMIT
ORIGINAL
BUFFER LENGTH
+ 2 BYTES

"\ SUPPRESSOR)~

F1G.21

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

PCT/US01/31559

28/30
FZZOO
2202
! 2222
START TCP DELTA {
RECONSTRUCTOR %%ng%; L I e
2204 2226 OFFSET 18 [IP 1]
CAPTURE 54 BYTES | [0D 0x0001 T0
FROM INPUT STREAM 1 |1 WORD AT OFFSET @83002%)182%% L2978
2206 » 18 [IP ID] 18 [IP]
. 1 2224 1
READ CHANGE BYTE
FROM INPUT STREAM 00 NEXT 2 NPUT BYTES (S
LWORD) TO LWORD AT OFFSET
38 [TCP SEQUENCE #]
|
yEg 2236~400 NEXT 2 IPUT BYTES (kS
2210 LWORD) TO LWORD AT OFFSET
L 42 [TCP ACK]
DISCARD CURRENT 54 l
BYTES
212 CHANGE BTTE O X WPTBERNO]
7 0 BYTE AT OFFSET 46 |~
READ AND DISCARD
1 v Frou weur | | LI sTaTpTw v ~ [1cP DOFF]
STREAM (PAD BYTE) 22144
22i14 y OR 0x08 TO BYTE AT OFFSET AND OxF7 TO BYTE AT
47 [TcP
AT [ToP FLAGS] OFFSET 47 [TCP FLAGS]
FROM INPUT STREAM
COPY NEXT 2 INPUT BYTES (AS 2246
2248 WORD) INTO WORD AT OFFSET | " SET]
43 [TCP WINDOW] YES
NO
| - 2250
COPY NEXT 2 INPUT BYTES (1S
WORD) INTO WORD AT OFFSET
50 [TCP CHECKSUM]

SUBSTITUTE SHEET (RULE 26)

WO 02/32073

29/30

PCT/US01/31559

TR T B el

2254 (2952
COPY NEXT 2 INPUT BYTES (8S
WORD) INTO WORD AT OFFSET, |/ NO
57 [1CP URGENT PONTER]
P_CHECKSUM CALCULATION:
16-B ONE'S COMPLEENT OF THE ! 2236 y 2278

ONE'S COMPLENENT SUM OF WORD
VAUES A7 OFFSETS 14, 16, 1, 22, | %0 T A O 7
2%, 98, 30, & 32

AND 0:DF TO BYTE AT OFFSE
47 [T0P FLAGS]

FROM RFC 791: -

—

"THE CHECKSUM FIELD IS THE 16 2260
BIT ONE'S COMPLEMENT OF THE .

Y

T M08 W ke Ton | (AN Fo G) LU 10 b e
16 BT WORDS N THE HEADER. FOR +
PURPOSES OF COMPUTING THE CHECKSUM AND PLACE IN WORD AT OFFSET 24 [IP HDR CHECKSUM]

CHECKSUM, THE VALUE OF THE
CHECKSUM FIELD IS ZERO." >
| ! 22?16
COPY 54 BYTES TO TEMPLATE
HEADER AND EMIT
IN THE FLOWCHART: !

BYTE INDICATES AN 8-BIT UNSIGNED VALUE
WORD INDICATES A 16-BIT UNSIGNED VALUE END TCP DELTA 2918
LWORD INDICATES A 32-BIT UNSIGNED VALUE RECONSTRUCTOR

FI1G.22B

SUBSTITUTE SHEET (RULE 26)

PCT/US01/31559

WO 02/32073

30/30

9¢£¢ Hivd NOILVOINNWAOO

) -

YA

*&wuw

JOVAYIINI SNOLYIINNWAOD

€CEC LNN
JOVHOIS F18VAONIY

81€¢ 1INN
JOVHOIS JF18VAONI

| 028 JOVAYEINI

YIEC INYC

00g¢

JOVHOLS F18VAONIY

¢1€¢ JNNA MSIa QuvH

1€¢ AJONIN AUVANODAS

02¢ AHOW3N NIVA

£0E¢ ¥0SS3004d

11

¢0g¢ Snd
NOLLVOINNKIOD

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

