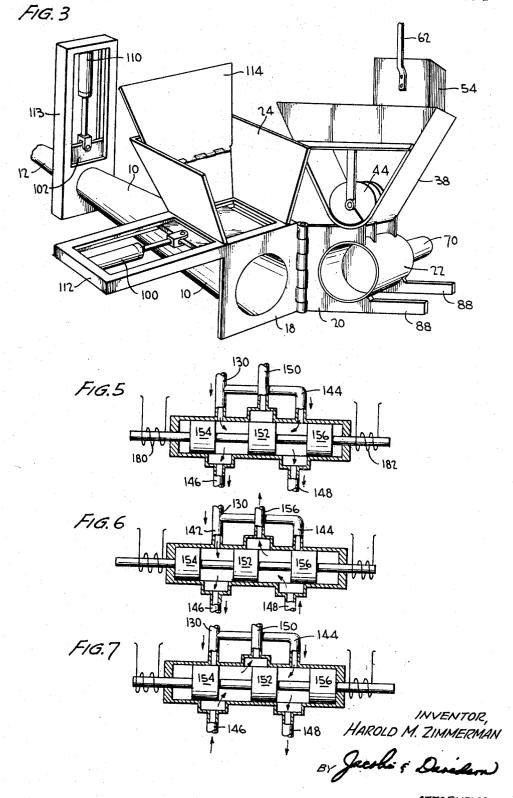

CONCRETE CONVEYOR

Filed Feb. 27, 1968


3 Sheets-Sheet 1

CONCRETE CONVEYOR

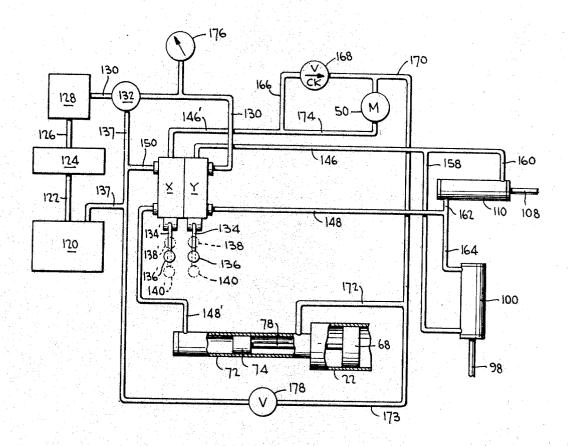
Filed Feb. 27, 1968

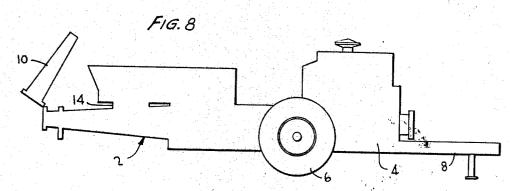
3 Sheets-Sheet 2

ATTORNEYS

Dec. 23, 1969

H. M. ZIMMERMAN


3,485,481


CONCRETE CONVEYOR

Filed Feb. 27, 1968

3 Sheets-Sheet 3

FIG.4

HAROLD M. ZIMMERMAN
BY Jecoli ; Devilen)

ATTORNEYS

3,485,481 CONCRETE CONVEYOR Harold M. Zimmerman, R.D.1, Ephrata, Pa. 17522 Filed Feb. 27, 1968, Ser. No. 708,680 Int. Cl. B28c 7/16; B65g 25/08 U.S Cl. 259—170 19 Claims

ABSTRACT OF THE DISCLOSURE

There is disclosed a conveyor arrangement for receiving pre-mixed concrete and causing the same to be moved through an outlet so that the concrete can be delivered to a location remote from the conveyor arrangement. The 15 arrangement is such that it can conveniently take the form of a trailer unit, although it can be mounted on other bases. The arrangement incorporates a fluid motor operated displacement pump and means for receiving the concrete and positively moving the same toward the displacement pump chamber. Further, the arrangement incorporates valve means cooperatively associated with the displacement pump so as to permit proper filling of the displacement pump chamber with concrete, and proper movement of the concrete therefrom. Desirably, such 25 valve means include a valve which seals the dislacement chamber from the atmosphere while the chamber is filling. Auxiliary components such as an agitating hopper, self-contained power unit and the like can be utilized to advantage as part of the arrangement. In accordance with 30 the disclosed embodiment, the displacement pump is actuated by a fluid motor supplied with operating fluid under pressure delivered thereto by a valve controlled fluid supply conduit; a by-pass conduit communicates with the fluid supply conduit in such a manner that fluid 35 under pressure may be delivered to a rotary fluid motor associated with the agitating hopper so that operation of the agitator may be continued even though the flow of fluid through the fluid conduit leading to the fluid motor for actuating the displacement pump is discontinued.

BACKGROUND OF THE INVENTION

The invention relates generally to a pre-mix concrete conveyor and particularly to a conveyor that is capable of pumping pre-mixed concrete from a self-contained pre-mix producing unit or a pre-mix delivery truck directly to a remote point of use, such as a building construction form.

It is well known that among the problems that building contractors face today are labor shortages, the high cost of labor and the high cost of equipment necessary to transport pre-mixed concrete from a self-contained concrete producer unit or a concrete delivery truck to a remote point of use. Thus, the need for a practical and profitable device to convey concrete from the mixer to the form is apparent. For example, extensive investigation shows that pumping concrete from a mixer to a form can reduce the cost of this operation by about 35 percent and that concrete pumping is practical at more than one-third of all pours. Concrete pumping is both practical and profitable where it can replace manpower, where

2

it can replace ramps, bridges, hoists, etc., where job evaluation shows concrete can be placed faster and at less costs than by other methods, and with many special pours such as sewers, tunnel linings, etc.

The low cost of the present development, which is about half that of the larger pumps now on the market, makes it a practical investment when used as a single unit or in multiples of single units. With multiple units, it is practical to operate them (1) teamed together to equal or exceed the capacity of larger units; (2) teamed in relay to extend horizontal and/or vertical delivery distance; (3) to operate them in teams to assure continuing delivery without stoppage (cold joint prevention); and (4) maximum dependability.

Taking into consideration the foregoing problems, it is the primary object of the present invention to entirely eliminate these problems, or at least, to reduce them to a minimum.

Another object of the invention is to provide a premix concrete conveyor having a capacity just sufficient to keep an average handling finishing crew continuously busy.

Yet another object of the invention is to provide a concrete mix conveyor of such a size and weight that it can be readily transported from one building site to another. To this end, it may take the form of a trailer unit. It may, however, be formed as an integral part of a construction truck or mounted as an independent unit on a base and then mounted on a construction truck.

Still another object of the invention is to provide a concrete conveyor in which concrete may be delivered from a concrete pre-mix producing unit or concrete pre-mix supply truck, over substantial distances, to remote points of use without entraining air into the concrete, or at least, reducing the amount of entrained air to a minimum.

A further object of the invention is to provide a concrete conveyor that includes a concrete mix displacement pump, the valves and motor of which are operated by fluid pressure.

A still further object of the invention is to provide a concrete conveyor having a fluid actuated displacement pump and a fluid actuated concrete agitator having a common valve controlled fluid supply conduit.

Another object of the invention is to provide a concrete conveyor wherein the motor of the displacement pump and the motor of the agitator are supplied with fluid from a valve controlled fluid supply conduit that includes a by-pass conduit leading to the motor of the agitator so that operation of the agitator may be continued, notwithstanding the fact that flow of fluid to the fluid motor for operating the concrete displacement pump has been discontinued.

A further additional object of the invention is to provide a concrete displacement pump in which certain parts of the pump may be displaced relative to each other to facilitate cleaning thereof.

A still further additional object of the invention is to provide a concrete conveyor, according to the teachings of the present invention, that is simple in construction, durable and made of materials of relatively low cost.

The invention will be better understood and objects other than those set forth will become apparent, after reading the following detailed description thereof.

Such description refers to the annexed drawings presenting preferred and illustrative embodiments of the invention.

In the drawings:

FIGURE 1 is a longitudinal sectional view of a concrete conveyor in accordance with the present invention; FIGURE 2 is an end view thereof;

FIGURE 3 is a perspective view of a concrete conveyor showing a portion thereof swung to a position to permit cleaning thereof;

FIGURE 4 is a diagrammatic view showing the fluid conduit system for operating the fluid motors thereof;

FIGURE 5 is a view, partly in section, showing a motor control valve in a neutral position;

FIGURE 6 is a view, partly in section, showing a motor 15 control valve in one operative position;

FIGURE 7 is a view, partly in section, showing a motor control valve in another operative position;

FIGURE 8 is a perspective view of a concrete conveyor in accordance with the present invention mounted 20 on a trailer unit.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to the drawings, it is to be noted that FIG- 25 URE 8 discloses a self-contained concrete conveyor 2 mounted on a trailer 4 and having wheels 6 and a trailer hitch 8. The concrete conveyor 2 includes a trap chamber unit 10 that is tapered toward an outlet end 12. The trap chamber 10 is provided with a laterally extending inlet 30 14 adjacent its opposite end 16. The end 16 of the trap chamber 10 is provided with a flange 18 to which a flange 20 of a pump or displacement cylinder 22 is attached in any conventional manner. A trap inlet chamber 24 has one of its ends 26 secured to and in communication with the lateral inlet 14. The opposite end 28 of the trap inlet chamber 24 is open at 30 to the atmosphere. The trap inlet chamber is also provided with a lateral opening 32 in communication with an opening 34 formed in the end wall 36 of a concrete mix receiver 38. Concrete mix receiver 38 is open at its top 40 and provided with a closed bottom at 42. A feed screw or auger 44 is mounted adjacent the bottom 42 of the concrete mix receiver 38 by means of bearings 46, 48. A rotary fluid motor 50, mounted adjacent end wall 52, is operatively attached to the feed screw or auger 44 in such a manner that, on rotation of the feed screw or auger 44, concrete is fed thereby through openings 34 and $\bar{32}$ into trap inlet chamber 24. A dump hopper 54, having an open top 56, is mounted by means of bearings 58, 60 for pivotal movement above concrete mix receiver 38. Dump hopper 54 is provided with a handle 62 by means of which it may be inverted and its contents dumped into the concrete mix receiver 38. An agitator shaft 64 is mounted for rotation within dump hopper 54 and it is provided with a plurality of agitating paddles 66. A gear 63 is secured to the shaft of the feed screw or auger 44 and a similar gear 65 is secured to agitator shaft 64. An endless chain 67 extends around gears 63 and 65 so that on rotation of the feed screw or auger 44 the agitator paddles 66 are also ro- 60

A pumping or displacement plunger 68 is mounted for reciprocating or sliding movement within pump or displacement cylinder 22. A fluid motor 70 comprising a cylinder 72 and piston 74, slidable in cylinder 72, is mounted on the end wall 76 of pump or displacement cylinder 22. A piston rod 78 is arranged to connect pumping or displacement plunger 68 with the piston 74 of fluid motor 70.

Pumping or displacement plunger 68 is provided in its periphery with a circumferential groove 80 into which a plurality of O-rings 82, formed of any well known sealing or packing material, are inserted. The forward face of pump or displacement plunger 68 is provided with a layer of Tefion or rubber 86 to prevent build-up of solid 75

4

concrete mix on the forward face 84 of displacement plunger 68.

In FIGURE 3 of the drawings, the trap chamber 10 is shown with its flange 18 spaced from flange 20 which is associated with the displacement plunger cylinder 22 that is provided with supporting legs 88.

A pair of cooperating gate valve seat members 90, 92 are provided adjacent the outlet end of trap inlet chamber 24. Slidably mounted between the cooperating gate valve seat members 90, 92 is a horizontally disposed gate valve member 94. Gate valve member 94 is connected by means of a fork 96 and connecting rod 98 to a double acting fluid actuated motor 100. A vertically disposed gate valve 102 is mounted between the outlet end 12 of trap chamber unit 10 and concrete mix delivery conduit 104. Gate valve 102 is arranged to be moved between its open and closing positions by means of a fork 106 and connecting rod 108 attached to a double acting fluid actuated motor 110. A horizontally disposed frame 112 which is integral with, or otherwise secured to, the trap chamber 10 is arranged to support double acting fluid motor 100. A similarly arranged vertically disposed frame 113 is formed integral with, or otherwise secured to, trap chamber 10 and supports the double acting fluid motor 110 that is associated with gate valve 102.

A valve 114 is arranged to be pivotally mounted at 116 within the interior of trap inlet chamber 24. Valve 114 is arranged to seat by gravity on a seating surface 118 formed adjacent the upper edge of lateral opening 32. Pivotally mounted valve 114 when seated on seating surface 118 precludes, or at least materially reduces, the entrance of air into trap chamber 10 when pumping or displacement plunger 68 is retracted in cylinder 22 by the fluid actuated piston 74

fluid actuated piston 74. In FIGURE 4, there is diagrammatically illustrated a fluid system for supplying fluid to an exhausting fluid from the several double acting fluid motors 70, 100 and 110. A pump 128, of any conventional design, is arranged to draw fluid from storage reservoir 120 by means of conduits 112, 126 and filter 124 and deliver same to a fluid conduit 130 which leads to a reciprocating fluid motor supply and exhaust valve indicated generally by the reference character Y. A relief valve 132 is provided in fluid conduit 130. Relief valve 132 may be of any conventional type and may be set to relieve pressures in excess of any predetermined value. The fluid under pressure which is released by the excess pressure relief valve 132 is returned by conduit 137 to the storage reservoir 120. Motor supply and exhaust valve Y is provided with an operating handle 134 and when the valve is in its neutral position, the handle is positioned as illustrated by the full line circle 136. This position of the valve Y corresponds to the position of the valve illustrated in FIG-URE 5 of the drawings. From the position of the valve as indicated by the position of handle 134, the valve may be pushed to the position indicated at 138 in FIGURE 4 which corresponds to the position shown in FIGURE 6 of the drawings. Likewise, from the position 136 of the valve as indicated by the handle 134 in FIGURE 4, the valve handle may be pulled to the position 140 which corresponds to the position of the motor supply and exhaust valve as illustrated in FIGURE 7 of the drawings.

In the position of the motor supply and exhaust valve Y ilustrated in FIGURE 5, the valve lands 154 and 156 uncover the fluid inlet passages 142, 144 which connect with the supply conduit 130 so that fluid under pressure may pass through the supply and exhaust valve to the motor control conduits 146 and 148 and land 152 closes the port leading to the return passage 150. When fluid under pressure is supplied simultaneously to both conduits 146 and 148 by the valve Y, it wil also be supplied to conduits 158, 160, 162 and 164, and, accordingly, to both sides of each piston in the double acting fluid motors 100, 110. The fluid pressure acting on each side of the piston in cylinder 110 will then be balanced as will be the pressure on each side of the piston in cylinder 100 With such

a balance of the pressures acting on the pistons in cylinder 100 and 110, the position of the inlet gate valve 94 and outlet gate valve 102 will remain unchanged.

When the handle 134 of the supply and exhaust valve Y is moved to the position 138 as shown in FIGURE 4, which corresponds to the position of the supply and exhaust valve as illustrated in FIGURE 6, the valve lands 152, 154 and 156 will be moved toward the left, as illustrated in FIGURE 6. In this position of the valve Y, the valve land 154 will uncover the passage 142 and motor conduit 146 will then be in communication with fluid pressure supply conduit 130. Also, communication between motor conduit 146 and exhaust conduit 150 will be cut off by valve land 152. At the same time, valve land 156 will cut off communication between supply passage 144 and motor conduit 148 but motor conduit 148, because of the position of valve land 152, wil be in communication with exhaust passage 150. When fluid under pressure is supplied to the motor conduit 146 and exhausted from motor conduit 148, pressure fluid will be 20 supplied to one side of the fluid motors 100 and 110 in such a manner that the inlet gate valve 94 to the trap chamber 10 will be opened and the outlet gate valve 102 from the trap chamber will be closed.

When the handle 134 of the supply and exhaust valve 25 for the motors 100 and 110 is pulled to the position shown at 140 in FIGURE 4, motor supply and exhaust valve Y will take the position illustrated in FIGURE 7 of the drawings, wherein all of the valve lands 152, 154 and 156 have been moved to the right. Land 154 will cut 30 off flow of pressure fluid from supply passage 142 to motor conduit 146 while valve land 152 opens communication between motor conduit 146 and exhaust conduit 150. At the same time, fluid under pressure in supply conduit 130 will flow through conduit 144 to motor conduit 148 while flow of pressure fluid from motor conduit 148 to exhaust conduit 150 is cut off by valve land 152. With the motor conduit 148 in communication with the source of pressure fluid and the motor conduit 146 in communication with the exhaust conduit 150, the valve 40 motors 100 and 110 will be actuated so as to close the in et gate valve 94 of the trap chamber and to open the outlet gate valve 102 of the trap chamber.

The fluid system illustrated in FIGURE 4 is provided with an additional double acting motor supply and exhaust valve designated by the reference character X. Since 45 the construction of the valve X is identical with the construction of the valve Y, a detailed description of the valve X is believed to be unnecessary. Moreover, reference numerals which apply to the valve Y likewise apply to the valve X. However, in the case of the valve X, the 50 reference numerals which relate to similar structural details have been distinguished by providing such numerals with a prime designation. Thus, when the handle 134' of the motor supply and exhaust valve X is moved to the position designated 138', pressure fluid will flow from 55 the reservoir 120 through the filter 124 by means of the supply conduits 122 and 126 to the pump 128. From pump 128 the pressure fluid will flow through conduit 130 and a conventional passage in valve Y (not illustrated) to a fluid motor conduit 146' conected to one side of cyl- 60 inder 72 containing fluid piston 74.

At the same time, with the handle 134' of the motor supply and exhaust valve X in the position designated by 136', fluid will flow from the supply conduit 130, valve X and conduit 148' into the cylinder 72 on the other side 65 of the piston 74. The fluid pressure acting on opposite sides of the piston will then be balanced and the piston 74 and associated pumping or displacement plunger 68 will remain in the same position. If the motor supply and exhaust valve handle is now moved to the position derosignated by 138', fluid under pressure will flow from supply conduit 130 through conduit 146', conduit 166, check valve 168 and conduits 170 and 172 to the connecting rod end of motor cylinder 72. Meanwhile, the opposite end of the motor cylinder 72, through conduit 148', 75

6

valve X and conduit 150 will be in communication with exhaust conduit 137 leading to supply reservoir 120. The differential pressure acting on piston 74 in cylinder 72, through piston rod 78, will cause the pumping or displacement plunger 68 to be retracted in pump or displacement cylinder 22. Similarly, when the handle 134' of the motor supply and exhaust valve X is moved to the position designated by 134', fluid under pressure will be supplied by the valve X through the conduit 148' to the cylinder 22 on the side of the piston 74 opposite the connecting rod 78, while the opposite end of said cylinder through conduits 172 and 173 wil be connected to the supply reservoir 120 by way of exhaust conduit 137. A by-pass conduit 174 is arranged to extend between the supply conduit 146' and the fluid conduit 170. A rotary fluid motor 50, which drives the feed screw or auger 44, is, preferably, located in by-pass conduit 174. The fluid supply conduit 130 which leads to the motor supply and exhaust valves X and Y may, if desired, be provided with a pressure gauge 176 and the fluid conduit 173, downstream of its junction with the conduit 172, may be provided with a shut-off valve 178.

FIGURES 5 to 7 illustrate an arrangement whereby the supply and exhaust valves could be actuated by electromagnets 180, 182 instead of handles 134, 134', if desired.

When it is desired to make use of the concrete mix conveyor system herein described, whether it be built as an independent unit that must be lifted onto and off a construction truck, a self-powered vehicle or trailer-mounted, it is transported to a location which is as near as possible to the point of use or the building construction form into which the concrete is to be poured but which is still accessible to concrete supply trucks or another concrete supply source. The concrete delivery conduit 104, which may be formed as a plurality of sections, is then attached to the end of trap chamber unit 10 and extends to, or near, the concrete construction form into which the concrete is to be delivered.

The handle 134 of valve Y is then pushed from the position indicated at 136 to the position indicated at 138. In this position of the motor supply and exhaust valve Y, the lands of the valve will be positioned as illustrated in FIGURE 6 of the drawings, with the land 154 positioned to permit flow from the pump 128, conduit 130, supply passage 142 and conduit 146 to motors 100 and 110 to apply pressure to the pistons thereof in a direction to open gate valve member 94 and close gate valve member 102. The opposite side of the pistons in motors 100 and 110 will be connected by conduits 162, 164, 148, 150 and 137 to the fluid storage reservoir 120. Handle 134' of supply and exhaust valve X will then be moved from the position indicated at 136' to the position indicated at 140'. This will result in a flow of pressure fluid from the pump 128, conduit 130, valve Y, valve X and conduits 146', 166, 174, 170 and 172 into motor cylinder 72 and to apply pressure to the side of piston 74 attached to connecting rod 78 while the cylinder adjacent the opposite side of the piston 74 is exhausted through conduit 148', valve X and conduits 150 and 137 to the fluid supply reservoir 120. The differential pressure acting on piston 74, through connecting rod 78. will cause the pumping or displacement plunger 68 to be pulled or retracted toward the end of cylinder 22 remote from trap chamber unit 10. Since at this time, gate valve 94 will be open and gate valve member 102 will be closed, concrete will be drawn, with the aid of gravity, from the concrete mix receiver 24 into pump or displacement cylinder 22 and trap chamber unit 10. The handle 134 of the motor supply and exhaust valve Y is then moved to the position indicated as 140. This position of the motor supply and exhaust valve Y corresponds to that illustrated in FIGURE 7. In this position of the supply and exhaust valve Y, the lands 152, 154 and 156 are positioned so that the flow of pressure fluid from pump 128 and conduit 130 to the conduit 146 is prevented by

the valve land 154, but flow of pressure fluid from conduit 130 through conduit 144 and valve Y to conduit 148 to the opposite side of the pistons in motor cylinders 100 and 110 is made possible. Meanwhile, fluid pressure acting, respectively, on the other faces of the pistons located therein will be exhausted by way of conduits 158, 160, 146, valve Y and conduits 150 and 137 to supply reservoir 120. Upon actuation of the pistons associated with motors 100 and 110 in this manner, connecting rods 98 and 108 will reposition gate valves 94 and 102 so that gate valve 94 will be closed and gate valve 102 opened. The handle 134' of supply and exhaust valve X will then be moved to the position indicated at 138'. In this position of the supply and exhaust valve X, fluid pressure will be exhausted from the side of piston 74 connected to the connecting rod 78 through conduits 172, 173 and 137 to the supply reservoir 120. Simultaneously, fluid under pressure will be supplied from supply reservoir 120 through conduit 122, filter 124, conduit 126, pump 128, conduit 130, 20 valve Y, valve X, and conduit 140' to the cylinder 72 so as to apply fluid under pressure to the side of fluid piston 74 opposite to that to which the connecting rod 78 is attached. The differential in pressure acting on opposite surfaces of piston 74, through connecting rod 78, will cause movement of pumping or displacement plunger 68 in a direction to cause discharge of concrete through the open gate valve 102 into concrete delivery conduit 104. From the delivery conduit 104 the concrete may, if desired, be discharged directly into building 30 construction forms.

It will be noted, upon reference to FIGURE 4 of the drawings, by reason of the provision of a by-pass conduit 173 between conduits 170, 172 and fluid return conduit 137, the operation of rotary motor 50 and associated feed screw or auger 44 and the mixing paddles 66 on agitator shaft 64 may be continued even though flow of fluid to the piston for actuating the pump or displacement plunger has been discontinued. If at any time it is desired to discontinue operation of the rotary fluid motor 50, all that is necessary is to close the shut-off valve 178 located in the fluid return conduit 173.

After reading the foregoing detailed description, it will be apparent that the objects set forth initially have been successfully achieved. Accordingly, what is claimed is:

1. A concrete conveyor system for advancing concrete from a source of supply to a selected location comprising a concrete displacement means including a trap chamber unit having an outlet at one end, an inlet-outlet at its other end and an inlet intermediate said outlet and said inletoutlet a cylinder secured to said trap chamber unit in communication with said inlet-outlet; plunger means slidably mounted in said cylinder for reciprocation within said cylinder; means for effecting reciprocation of said plunger means; a concrete receiver chamber for supplying concrete to said inlet of said displacement means, said receiver chamber including a first opening in communication with said displacement means, a lateral second concrete admission opening for communication with a source of concrete and a third atmospheric opening located outwardly of said first and second openings; and 60 an outwardly opening check valve means disposed outwardly of said first and second openings and inwardly of said third opening arranged to substantially preclude the admission of air through said receiver chamber into said displacement means during a suction operation of 65 said displacement means; inlet valve means associated with said inlet; outlet valve means associated with said outlet; first operating means for causing said inlet valve means to open and close said inlet; second operating means for causing said outlet valve means to open and close said 70 outlet and means associated with said first and second valve operating means for causing said inlet valve means to open the inlet while the outlet remains closed and for causing said outlet valve means to open the outlet while the inlet remains closed.

8

2. A concrete conveyor system as defined in claim 1 wherein said first operating means comprises a first fluid motor means and said second operating means comprises a second fluid motor means.

3. A concrete conveyor system as defined in claim 2 wherein each of said fluid motor means are double

acting motors.

4. A concrete conveyor system as defined in claim 3 wherein both of said double acting fluid motors are controlled by a single supply and exhaust valve means.

5. A concrete conveyor system as defined in claim 1 wherein said means for effecting reciprocation of said

plunger means is a fluid motor means.

6. A concrete conveyor system as defined in claim 5 wherein said fluid motor means for effecting reciprocation of said plunger means is a double acting fluid motor means.

7. A concrete conveyor system as defined in claim 6 wherein said double acting fluid motor means for effecting reciprocation of said plunger means is controlled by

a supply and exhaust valve means.

8. A concrete conveyor system as defined in claim 1 wherein said first operating means said second operating means and said means for effecting reciprocation of said plunger means are each independent double acting fluid motor means; a first supply and exhaust valve means for simultaneously actuating the double acting fluid motor means associated with said inlet and said outlet and a second supply and exhaust valve for actuating said double acting fluid motor means associated with said plunger means

- 9. A concrete conveyor system as defined in claim 1 wherein said means for effecting reciprocation of said plunger means, said first operating means and said second operating means are fluid actuated means; at least the fluid actuated means for effecting reciprocation of the plunger means includes a supply and exhaust conduit means for supplying and exhausting actuating fluid thereto and therefrom; said concrete conveyor system further including a concrete receiver hopper having a rotatable feed screw means therein arranged for feeding concrete to said inlet means; a rotary fluid motor means arranged for the actuation of said feed screw means by fluid under pressure passing through said supply and exhaust conduit means; and a by-pass conduit means connecting said supply and exhaust conduit means downstream of said rotary fluid motor means with a region of low pressure whereby operation of said feed screw means may continue after flow of actuating fluid to said fluid actuated means for effecting reciprocation of said plunger means has been discontinued.
- 10. A concrete conveyor system as defined in claim 1 and further including hingedly connected plate means hingedly mounting said trap chamber with respect to said cylinder whereby said trap chamber and cylinder can be opened at the junction therebetween for cleaning thereof.
- 11. A concrete conveyor system comprising a concrete displacement means including a concrete inlet means and a concrete outlet means; a first fluid operated motor means associated with said concrete displacement means to effect operation thereof; a concrete receiver including a feed screw for feeding concrete through said inlet means into said displacement means; a main fluid conduit means for supplying operating fluid to said first fluid operated motor means; a second fluid motor means arranged to actuate said feed screw in response to the flow of fluid through said main conduit means and a by-pass conduit means leading from said main conduit means downstream of said second motor means whereby operation of said second motor means may be continued even though flow of fluid through said main conduit means to said first fluid motor means has been terminated.
- 12. A concrete conveyor system as definend in claim 1175 wherein a dump hopper, provided with an opening in a

wall thereof, is mounted to rotate about an axis extending longituidnally of and above the inlet opening of the concrete receiver whereby the hopper may be rotated about its axis so as to locate the opening in the hopper in a position in which concrete may be introduced into said hopper through said opening or to a position in which concrete may be discharged therethrough into said concrete mix receiver.

- 13. A concrete conveyor system as defined in claim 12 wherein said dump hopper is provided with an agitator means
- 14. A concrete conveyor system as defined in claim 13 wherein said adgitator means comprises a rotatably supported agitator shaft provided with a plurality of paddles.
- 15. A concrete conveyor system as defined in claim 14 wherein said rotary auger includes a rotatable shaft and means is provided to rotate said agitator shaft by said auger shaft.
- 16. A concrete conveyor system comprising a support means; a concrete displacement means mounted on said support means having an outlet terminating in a first member having a first plate-like surface lying in a plane; a concrete receiver mounted above said concrete displacement means having a delivery outlet lying in the plane containing said first plate-like surface; and a trap chamber unit, including a trap chamber means having a second plate-like surface, mounted for pivotal movement into and out of engagement with said first plate-like surface and an open ended inlet chamber movable simultaneously with said trap chamber means into and out of registration with said delivery outlet of said concrete receiver.
- 17. A concrete conveyor system for advancing concrete from a source of supply to a location remote therefrom, and comprising:
 - (A) a concrete displacement means comprising:

(1) a trap chamber having an inlet;

- (2) cylinder means disposed at one end of said trap chamber and in communication therewith;
- (3) plunger means slidably mounted in said cylinder means for reciprocation therewithin; and
- (4) means for effecting reciprocation of said plunger means;
- (B) concrete mixing and supply means for supplying concrete to said trap chamber through said inlet;
- (C) a hydraulically operable valve system for opening and closing said inlet of said trap chamber and

for opening and closing the path of travel of material through said trap chamber;

whereby when said inlet is open, said path of travel can be closed, and when said path of travel is open said inlet can be closed so that movement of said plunger means in a direction away from said trap chamber causes concrete to flow through said inlet in said trap chamber into said cylinder means while said path of travel is closed, and movement of said plunger means in a direction toward said trap chamber causes concrete to flow therethrough while said inlet is closed.

18. A concrete conveyor system as defined in claim 17 and further including hingedly connected plate means hingedly mounting said trap chamber with respect to said cylinder whereby said trap chamber and cylinder can be opened at the junction therebetween for cleaning thereof.

19. A concrete conveyor system for advancing concrete from a source of supply to a selected locating comprising a concrete displacement means having an inlet means and an outlet means; a concrete receiver chamber for supplying concrete to the inlet of said displacement means, said receiver chamber including a first opening in communication with said displacement means, a lateral second concrete admission opening for communication with a source of concrete and a third atmospheric opening located outwardly of said first and second openings; and an outwardly opening check valve means disposed outwardly of said first and second openings and inwardly of said third opening arranged to substantially preclude the admission of air through said receiver chamber into said displacement means during a suction operation of said displacement means.

References Cited

UNITED STATES PATENTS

778,878	1/1905	Moir 259—169
2,131,681	9/1938	Ball 259—169
2,649,289		Giberson 259—270 X

ROBERT W. JENKINS, Primary Examiner

U.S. Cl. X.R.

198-226