
US 2011 OO67038A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2011/0067038A1

Troccoli et al. (43) Pub. Date: Mar. 17, 2011

(54) CO-PROCESSING TECHNIQUES ON Publication Classification
HETEROGENEOUS GPUS HAVING (51) Int. Cl
DIFFERENT DEVICE DRIVER INTERFACES G06F 9/44 (2006.01)

(75) Inventors: Alejandro Troccoli, Santa Clara,
CA (US), Franck Diard, Mountain (52) U.S.C. ... T19/327
View, CA (US)

(73) Assignee: NVIDIA CORPORATION, Santa
Clara, CA (US) (57) ABSTRACT

(21) Appl. No.: 12/649,864 The graphics co-processing technique includes loading a
shim layer library. The shim layer library loads and initializes

(22) Filed: Dec. 30, 2009 a device driver interface of a first class on the primary adapter
and a device driver interface of a second class on an unat
tached adapter. The shim layer also translates calls between

(60) Provisional application No. 61/243,155, filed on Sep. the first device driver interface of the first class on the primary
16, 2009, provisional application No. 61/243,164, adapter and the second device driver interface of the second
filed on Sep. 17, 2009. class on the unattached adapter.

Related U.S. Application Data

20

CPU(S)

240 FIRST GPU 220
(iGPU) SYSTEM DISPLAY KX MEMORY

24
AO SOUTI- o

BRIDGE
ADAPTER) DISKDRIVE

SECOND GPU 215
(dGPUPCI DEVICE) AO LO (USB O

250 255 60

If O
(PCI DEVICE) (USB DEVICE) KEYBOARD)

216 —

Patent Application Publication

11

APPLICATION

12

RUNTIME API
(d3d 9.dll)

14

THUNK LAYER
(GDI32.dll)

150
OS KERNEL MODE
DRIVER (dxgkrnl.sys)

160
DEVICE SPECIFIC
KERNEL MODE
DRIVER (kmd.sys)

18

PRIMARY
DISPLAY

Mar. 17, 2011 Sheet 1 of 9

130
DEVICE DRIVER

INTERFACE (umd.dll)

165
DEVICE SPECIFIC
KERNEL MODE

DRIVER (dkmd.sys)

US 2011/0067038A1

UNATTACHED
ADAPTER

Patent Application Publication Mar. 17, 2011 Sheet 2 of 9 US 2011/0067038A1

BRIDGE

240 FIRST GPU 220

(iGPU) SYSTEM
MEMORY

DISPLAY

24

/O SOUTII
BRIDGE

ADAPTER) DISK DRIVE

SECOND GPU 215 50 55
I/O
(USB O

KEYBOARD)

60

(dGPUPCI DEVICE) I/O I/O
(PCI DEVICE) (USB DEVICE)

Figure 2

Patent Application Publication Mar. 17, 2011 Sheet 3 of 9 US 2011/0067038A1

1 10
115

NJECTED APPLICATION

DLL (appin.dll)

120
RUNTIME API
(D3D9.DLL)

130
DD ON PRIMARY

12

140 SHIM LAYER ADAPTER

THUNKLAYER (GDI32.dll) (iUMD.dll)

135
150 DDI ON

OS KERNEL MODE DRIVER (dxgkrnl.sys) UNESED
(dUMD.dll)

160 165
DEVICE SPECIFIC DEVICE SPECIFIC
KERNEL MODE KERNEL MODE
DRIVER (ikmd.sys) DRIVER (dkmd.sys)

UNATTACHED
ADAPTER

210 215.

GPU dGPU

PRIMARY
ADAPTER 240

PRIMARY
DISPLAY

Figure 3

Patent Application Publication Mar. 17, 2011 Sheet 4 of 9 US 2011/0067038A1

110
115

APPLICATION INJECTED
DLL (appin.dll)

120
RUNTIME API

(D3D9.DLL)

425 130
DDI ON PRIMARY

140
THUNK LAYER

(GDI32.dll)

SHIM LAYER ADAPTER
(iUMD.dll)

135
DDI ON

UNATTACHED
ADAPTER

(dUMD.dll)

150
OS KERNEL MODE

DRIVER

160
DEVICE SPECIFIC
KERNEL MODE
DRIVER (ikmd.sys)

465
NON-GRAPHICS
TAGGED DEVICE

DRIVER

1() 475
NON-GRAPHICS

GPU TAGGED
dGPU

PRIMARY
240 ADAPTER

PRIMARY
DISPLAY

Figure 4

Patent Application Publication Mar. 17, 2011 Sheet 5 of 9 US 2011/0067038A1

RECEIVE A PLURALITY OF RENDERING AND
CORRESPONDING DISPLAY OPERATIONS FOR
EXECUTION BY THE GPU ON THE UNATTACHED

ADAPTER

520

SPLIT EACH DISPLAY OPERATION INTO A SET

OF COMMANDS INCLUDING 1) A COPY FROMA FRAME
BUFFER OF THE GPU ON THE UNATTACHED ADAPTER TO
SYSTEMMEMORY, 2) A COPY FROM THE SYSTEM MEMORY

TO A FRAME BUFFER OF THE GPU ON THE PRIMARY

ADAPTER, AND 3) A PRESENT FROM THE FRAME BUFFER OF
THE GPU ON THE PRIMARY ADAPTER TO THE PRIMARY

DISPLAY BY THE GPU ON THE PRIMARY ADAPTER

530
SYNCHRONIZE THE COPY AND PRESENT

OPERATIONS BETWEEN THE GPU ON THE UNATTACHED
ADAPTER AND THE GPU ON THE PRIMARY ADAPTER

Figure 5

L 9 Inã?I

US 2011/0067038A1 Patent Application Publication

Patent Application Publication Mar. 17, 2011 Sheet 7 of 9 US 2011/0067038A1

RENDER FRAMES IN RGB DATA ON SECOND GPU

CONVERT FRAMES OF RGB DATA TO YUV DATA
USING PIXEL SHADER, WHEREIN THE FRAMES OF
RGB DATA ARE INPUT ASTEXTURESTO THE PIXEL

SHADER OF SECOND GPU

COPY YUV DATA FROM SECOND GPU TO
SYSTEMMEMORY

COPY YUV DATA FROM SYSTEMMEMORY
TO FIRST GPU

RECOVER FRAMES OF RGB DATA FROM YUV DATA
USING PIXEL SHADER OF FIRST GPU

PRESENT RECOVERED RGB DATA BY FIRST GPU
ON PRIMARY DISPLAY

Figure 8

Patent Application Publication Mar. 17, 2011 Sheet 8 of 9 US 2011/0067038A1

RUN

RNorik
940 Y- M

PROPERTIES

y

Figure 9

Patent Application Publication Mar. 17, 2011 Sheet 9 of 9 US 2011/0067038A1

110
APPLICATION

(Dx10)
115

INJECTED
DLL (appin.dll)

120
RUNTIME API
(D3D10.DLL)

125
140 SHIM LAYER TT 130

DD ON PRIMARY
12 ADAPTER THUNK LAYER (GDI32.dll)

l (Dx9- iUMD.dll)

135
DDI ON

UNATTACHED
ADAPTER

(Dx10 - dUMD.dll)

OS KERNEL MODE DRIVER (dxgkrnl.sys)

160 165
DEVICE SPECIFIC DEVICE SPECIFIC
KERNEL MODE KERNEL MODE
DRIVER (ikmd.sys) DRIVER (dkmdl.sys)

UNATTACHED
ADAPTER

PRIMARY
240 ADAPTER

PRIMARY
DISPLAY

Figure 10

US 2011/0067038A1

CO-PROCESSING TECHNIOUES ON
HETEROGENEOUS GPUS HAVING

DIFFERENT DEVICE DRIVER INTERFACES

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This claims the benefit of U.S. Provisional Patent
Application No. 61/243,155 filed Sep. 16, 2009 and U.S.
Provisional Patent Application No. 61/243,164 filed Sep. 17,
2009.

BACKGROUND OF THE INVENTION

0002 Conventional computing systems may include a dis
crete graphics processing unit (dGPU) or an integral graphics
processing unit (iGPU). The discrete GPU and integral GPU
are heterogeneous because of their different designs. The
integrated GPU generally has relatively poor processing per
formance compared to the discrete GPU. However, the inte
grated GPU generally consumes less power compared to the
discrete GPU.
0003. The conventional operating system does not readily
Support co-processing using such heterogeneous GPUs.
Referring to FIG. 1, a graphics processing technique accord
ing to the conventional art is shown. When an application 110
starts, it calls the user mode level runtime application pro
gramming interface (e.g., DirectX API d3d 9.dll) 120 to deter
mine what display adapters are available. In response, the
runtime API 120 enumerates the adapters that are attached to
the desktop (e.g., the primary display 180). A display adapter
165, 175, even recognized and initialized by the operating
system, will not be enumerated in the adapter list by the
runtime API 120 if it is not attached to the desktop. The
runtime API 120 loads the device driver interface (DDI) (e.g.,
user mode driver (umd.dll)) 130 for the GPU 170 attached to
the primary display 180. The runtime API 120 of the operat
ing system will not load the DDI of the discrete GPU 175
because the discrete GPU 175 is not attached to the display
adapter. The DDI 130 configures command buffers of the
graphics processor 170 attached to the primary display 180.
The DDI 130 will then callback to the runtime API 120 when
the command buffers have been configured.
0004. Thereafter, the application 110 makes graphics
request to the user mode level runtime API (e.g., DirectX API
d3d 9.dll) 120 of the operating system. The runtime 120 sends
graphics requests to the DDI 130 which configures command
buffers. The DDI calls to the operating system kernel mode
driver (e.g., DirectX driver dxgkrnl.sys) 150, through the
runtime API 120, to schedule the graphics request. The oper
ating system kernel mode driver then calls to the device
specific kernel mode driver (e.g. kmd.sys) 150 to set the
command register of the GPU 170 attached to the primary
display 180 to execute the graphics requests from the com
mand buffers. The device specific kernel mode driver 160
controls the GPU 170 (e.g., integral GPU) attached to the
primary display 180.
0005. Therefore, there is a need to enable co-processing on
heterogeneous GPUs. For example, it may be desired to use a
first GPU to perform graphics processing for a first class of
applications and a second GPU for a second class of applica
tions depending upon processing performance and power
consumption parameters.

SUMMARY OF THE INVENTION

0006 Embodiments of the present technology are directed
toward graphics co-processing. The present technology may

Mar. 17, 2011

best be understood by referring to the following description
and accompanying drawings that are used to illustrate
embodiment of the present technology.
0007. In one embodiment, a graphics co-processing
method includes injecting an application initialization rou
tine when an application starts. The injected application ini
tialization routine includes an entry point that changes a
search path for a device driver interface to a search path of a
shim layer library. As a result, the loaded shim layer library
initializes a device driver interface of a first class for a first
graphics processing unit class on a primary adapter and a
device driver interface of a second class for a second graphics
processing unit on an unattached adapter. The shim translates
calls between the first device driver interface of the first class
and the second device driver interface of the second class.

0008. In another embodiment, a graphics co-processing
method includes loading a shim layer library, by a runtime
application programming interface. The shim layer library
loads and initializing a device driver interface on the primary
adapter. The shim layer also loads and initializing a device
driver interface on an unattached adapter. The shim layer also
translates calls between the runtime application program
ming interface and commands of a first device driver interface
class for the first device driver interface class. The shim layer
may further converta display format of a second device driver
interface class for the device driverinterface on an unattached
adapter to a display format of the first device driver interface
class.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 Embodiments of the present technology are illus
trated by way of example and not by way of limitation, in the
figures of the accompanying drawings and in which like ref
erence numerals refer to similar elements and in which:

0010 FIG. 1 shows a graphics processing technique
according to the convention art.
0011 FIG. 2 shows a graphics co-processing computing
platform, in accordance with one embodiment of the present
technology.
0012 FIG.3 shows a graphics co-processing technique, in
accordance with one embodiment of the present technology.
0013 FIG. 4 shows a graphics co-processing technique, in
accordance with another embodiment of the present technol
Ogy.

0014 FIG. 5 shows a method of synchronizing copy and
present operations on a first and second GPU, in accordance
with one embodiment of the present technology.
0015 FIG. 6 shows an exemplary set of render and display
operations, in accordance with one embodiment of the
present technology.
0016 FIG.7 shows an exemplary set of render and display
operations, in accordance with another embodiment of the
present technology.
0017 FIG. 8 shows a method of compressing rendered
data, in accordance with one embodiment of the present tech
nology.
0018 FIG. 9 shows an exemplary desktop 910 including
an exemplary graphical user interface for selection of the
GPU to run a given application, in accordance with one
embodiment of the present technology.

US 2011/0067038A1

0019 FIG. 10 shows a graphics co-processing technique,
in accordance with another embodiment of the present tech
nology.

DETAILED DESCRIPTION OF THE INVENTION

0020 Reference will now be made in detail to the embodi
ments of the present technology, examples of which are illus
trated in the accompanying drawings. While the present tech
nology will be described in conjunction with these
embodiments, it will be understood that they are not intended
to limit the invention to these embodiments. On the contrary,
the invention is intended to cover alternatives, modifications
and equivalents, which may be included within the scope of
the invention as defined by the appended claims. Further
more, in the following detailed description of the present
technology, numerous specific details are set forth in order to
provide a thorough understanding of the present technology.
However, it is understood that the present technology may be
practiced without these specific details. In other instances,
well-known methods, procedures, components, and circuits
have not been described in detail as not to unnecessarily
obscure aspects of the present technology.
0021 Embodiments of the present technology introduce a
shim layer between the runtime API (e.g., DirectX) and the
device driver interface (DDI) (e.g., user mode driver (UMD))
to separate the display commands from the rendering com
mands, allowing retargeting of rendering commands to an
adapterother than the adapter the application is displaying on.
In one implementation, the shim layer allows the DDI layer to
redirect a runtime (e.g., Direct3D (D3D)) default adapter
creation to an off-screen graphics processing unit (GPU),
such as a discrete GPU, not attached to the desktop. The shim
layer effectively layers the device driver interface, and there
fore does not hook a system component.
0022 Referring to FIG. 2, a graphics co-processing com
puting platform, in accordance with one embodiment of the
present technology is shown. The exemplary computing plat
form may include one or more central processing units
(CPUs) 205, a plurality of graphics processing units (GPUs)
210, 215, volatile and/or non-volatile memory (e.g., com
puter readable media) 220, 225, one or more chip sets 230,
235, and one or more peripheral devices 215, 240-260 com
municatively coupled by one or more busses. The GPUs
include heterogeneous designs. In one implementation, a first
GPU may be an integral graphics processing unit (iGPU) and
a second GPU may be a discrete graphics processing unit
(dGPU). The chipset 230, 235 acts as a simple input/output
hub for communicating data and instructions between the
CPU 205, the GPUs 210,215, the computing device-readable
media 220, 225, and peripheral devices 215, 240-265. In one
implementation, the chipset includes a northbridge 230 and
southbridge 235. The northbridge 230 provides for commu
nication between the CPU 205, system memory 220 and the
southbridge 235. In one implementation, the northbridge 230
includes an integral GPU. The southbridge 235 provides for
input/output functions. The peripheral devices 215, 240-265
may include a display device 240, a network adapter (e.g.,
Ethernet card) 245, CD drive, DVD drive, a keyboard, a
pointing device, a speaker, a printer, and/or the like. In one
implementation, the second graphics processing unit is
coupled as a discrete GPU peripheral device 215 by a bus such
as a Peripheral Component Interconnect Express (PCIe) bus.
0023 The computing device-readable media 220, 225
may be characterized as primary memory and secondary

Mar. 17, 2011

memory. Generally, the secondary memory, such as a mag
netic and/or optical storage, provides for non-volatile storage
of computer-readable instructions and data for use by the
computing device. For instance, the disk drive 225 may store
the operating system (OS), applications and data. The pri
mary memory, such as the system memory 220 and/or graph
ics memory, provides for Volatile storage of computer-read
able instructions and data for use by the computing device.
For instance, the system memory 220 may temporarily store
a portion of the operating system, a portion of one or more
applications and associated data that are currently used by the
CPU 205, GPU 210 and the like. In addition, the GPUs 210,
215 may include integral or discrete frame buffers 211, 216.
0024. Referring to FIG. 3, a graphics co-processing tech
nique, in accordance with one embodiment of the present
technology, is shown. When an application 110 starts, it calls
the user mode level runtime application programming inter
face (e.g., DirectX API d3d 9.dll) 120 to determine what dis
play adapters are available. In addition, an application initial
ization routine is injected when the application starts. In one
implementation, the application initialization routine is a
short dynamic link library (e.g., applin.dll). The application
initialization routine injected in the application includes some
entry points, one of which includes a call (e.g., set dll
searchpath()) to change the search path for the display device
driver interface. During initialization, the search path for the
device driver interface (e.g., c\windows\System32\ . . . \umd.
dll) is changed to the search path of a shim layer library (e.g.,
c:\ . . . \coproc\ . . . \umd.dll). Therefore the runtime API 120
will search for the same DDI name but in a different path,
which will result in the runtime API 120 loading the shim
layer 125.
0025. The shim layer library 125 has the same entry points
as a conventional display driver interface (DDI). The runtime
API 120 passes one or more function pointers to the shim
layer 125 when calling into the applicable entry point (e.g.,
OpenAdapter() in the shim layer 125. The function pointers
passed to the shim layer 125 are call backs into the runtime
API 120. The shim layer 125 stores the function pointers. The
shim layer 125 loads and initializes the DDI on the primary
adapter 130. The DDI on the primary adapter 130 returns a
data structure pointer to the shim layer 125 representing the
attached adapter. The shim layer 125 also loads and initializes
the device driver interface on the unattached adapter 135 by
passing two function pointers which are call backs into local
functions of the shim layer 125. The DDI on the unattached
adapter 135 also returns a data structure pointer to the shim
layer 125 representing the unattached adapter. The data struc
ture pointers returned by the DDI on the primary adapter 130
and unattached adapter 135 are stored by the shim layer 125.
The shim layer 125 returns to the runtime API 120 a pointer to
a composite data structure that contains the two handles.
Accordingly, the DDI on the unattached adapter 135 is able to
initialize without talking back to the runtime API 120.
0026. In one implementation, the shim layer 125 is an
independent library. The independent shim layer may be uti
lized when the primary GPU/display and the secondary GPU
are provided by different vendors. In another implementation,
the shim layer 125 may be integral to the display device
interface on the unattached adapter. The shim layer integral to
the display device driver may be utilized when the primary
GPU/display and secondary GPU are from the same vendor.
0027. The application initialization routine (e.g., applin.
dll) injected in the application also includes other entry

US 2011/0067038A1

points, one of which includes an application identifier. In one
implementation, the application identifier may be the name of
the application. The shim layer 125 application makes a call
to the injected application initialization routine (e.g., applin.
dll) to determine the application identifier when a graphics
command is received. The application identifier is compared
with the applications in a white list (e.g., a text file). The white
list indicates an affinity between one or more applications and
the second graphics processing unit. In one implementation,
the white list includes one or more applications that would
perform better if executed on the second graphics processing
unit.

0028. If the application identifier is not on the white list,
the shim layer 125 calls the device driver interface on the
primary adapter 130. The device driver interface on the pri
mary adapter 130 sets the command buffers. The device
driver interface on the primary adapter then calls, through the
runtime 120 and a thunk layer 140, to the operating system
kernel mode driver (e.g., DirectX driver dxgkrnl.sys) 150.
The operating system kernel mode driver 160 in turn sched
ules the graphics command with the device specific kernel
mode driver (e.g. kmd.sys) 160 for the GPU 210 attached to
the primary display 240. The GPU 210 attached to the pri
mary display 240 is also referred to hereinafter as the first
GPU. The device specific kernel mode driver 160 sets com
mand register of the GPU 210 to execute the graphics com
mand on the GPU 210 (e.g., integral GPU) attached to the
primary display 240.
0029. If the application identifier is a match to one or more
identifiers on the white list, the handle from the runtime API
120 is swapped by the shim layer 125 with functions local to
the shim layer 125. For a rendering command, the local func
tion stored in the shim layer 125 will call into the DDI on the
unattached adapter 135 to set command buffer. In response,
the DDI on the unattached adapter 135 will call local func
tions in the shim layer 125 that route the call through the
thunk layer 140 to the operating system kernel mode driver
150 to schedule the rendering command. The operating sys
tem kernel mode driver 150 calls the device specific kernel
mode driver (e.g., dkmd.sys) 165 for the GPU on the unat
tached adapter 215 to set the command registers. The GPU on
the unattached adapter 215 (e.g., discrete GPU) is also
referred to hereinafter as the second GPU. Alternatively, the
DDI on the unattached adapter 135 can call local functions in
the thunk layer 140. The thunk layer 140 routes the graphics
request to the operating system kernel mode driver (e.g.,
DirectX driver dxgkrnl.sys) 150. The operating system kernel
mode driver 150 schedules the graphics command with the
device specific kernel mode driver (e.g., dkmd.sys) 165 on the
unattached adapter. The device specific kernel mode driver
165 controls the GPU on the unattached adapter 215.
0030. For a display related command (e.g., Present(), the
shim layer 125 splits the display related command received
from the application 110 into a set of commands for execution
by the GPU on the unattached adapter 215 and another set of
commands for execution by the GPU on the primary adapter
210. In one implementation, when the shim layer 125 receives
a present call from the runtime 120, the shim layer 125 calls
to the DDI on the unattached adapter 135 to cause a copy the
frame buffer 216 of the GPU on the unattached adapter 215 to
a corresponding buffer in system memory 220. The shim
layer 125 will also call the DDI on the primary adapter 130 to
cause a copy from the corresponding buffer in System
memory 220 to the frame buffer 211 of the GPU on the

Mar. 17, 2011

attached adapter 210 and then a present by the GPU on the
attached adapter 210. The memory accesses between the
frame buffers 211,216 and system memory 220 may be direct
memory accesses (DMA). To synchronize the copy and pre
sents on the GPUs 210,215, a display thread is created, that is
notified when the copy to system memory by the second GPU
215 is done. The display thread will then queue the copy from
system memory 220 and the present call into the GPU on the
attached adapter 210.
0031. In another implementation, the operating system
(e.g., Window7Starter) will not load a second graphics driver
165. Referring now to FIG. 4, a graphics co-processing tech
nique, in accordance with another embodiment of the present
technology, is shown. When the operation system will not
load a second graphics driver, the second GPU 475 is tagged
as a non-graphics device adapter that has its own driver 465.
Therefore the second GPU 475 and its device specific kernel
mode driver 465 are not seen by the operating system as a
graphics adapter. In one implementation, the second GPU
475 and its driver 465 are tagged as a memory controller. The
shim layer 125 loads and configures the DDI 130 for the first
GPU 210 on the primary adapter and the DDI 135 for the
second GPU 475 If there is a specified affinity for executing
rendering commands from the application 110 on the second
GPU 475, the shim layer 125 intercepts the rendering com
mands sent by the runtime API 120 to the DDI on the primary
adapter 130, calls the DDI on the unattached adapter to sets
the commands buffers for the second GPU 475, and routes
them to the driver 465 for the second GPU 475. The Shim
layer 125 also intercepts the callbacks from the driver 465 for
the second GPU 475 to the runtime 120. In another imple
mentation, the shim layer 125 implements the DDI 135 for the
second GPU 475. Accordingly, the shim layer 125 splits
graphics command and redirects them to the two DDIs 130,
135.

0032. Accordingly, the embodiments described with ref
erence to FIG. 3, enables the application to run on a second
GPU instead of a first GPU when the particular version of the
operating system will allow the driver for the second GPU to
be loaded but the runtime API will not allow a second device
driver interface to be initialized. The embodiments described
with reference to FIG. 4 enables an application to run on a
second GPU, such as a discrete GPU, instead of a first GPU,
such as an integrated GPU, when the particular version of the
operation system (e.g., Win7Starter) will not allow the driver
for the second GPU to be loaded. The DDI 135 for the second
GPU 475 cannot talkback through the runtime 120 or the
thunk layer 140 to a graphics adapter handled by an OS
specific kernel mode driver.
0033 Referring now to FIG. 5, a method of synchronizing
the copy and present operations on the first and second GPUs
is shown. The method is illustrated in FIG. 6 with reference to
an exemplary set of render and display operations, in accor
dance with one embodiment of the present technology. At
510, the shim layer 125 receives a plurality of rendering
605-615 and display operations for execution by the GPU on
the unattached adapter 215. At 520, the shim layer 125 splits
each display operation into a set of commands including 1) a
copy 620-630 from a frame buffer 216 of the GPU on the
unattached adapter 215 to a corresponding buffer in system
memory 220 having shared access with the GPU on the
attached adapter 210, 2) a copy 635, 640 from the buffer in
shared system memory 220 to a frame buffer of the GPU on
the primary adapter 210, and 3) a present 645, 650 on the

US 2011/0067038A1

primary display 240 by the GPU on the primary adapter 210.
At 530, the copy and present operations on the first and
second GPUs 210, 215 are synchronized.
0034. The frame buffers 211, 216 and shared system
memory 220 may be double or ring buffered. In a double
buffered implementation, the current rendering operations is
stored in a given one of the double buffers 605 and the other
one of the double buffers is blitted to a corresponding given
one of the double buffers of the system memory. When the
rendering operation is complete, the next rendering operation
is stored in the other one of the double buffers and the content
of the given one of the double buffers is blitted 620 to the
corresponding other one of the double buffers of the system
memory. The rendering and blitting alternate back and forth
between the buffers of the frame buffer of the second GPU
215. The blit to system memory is executed asynchronously.
In another implementation, the frame buffer of the second
GPU 215 is double buffered and the corresponding buffer in
system memory 220 is a three buffer ring buffer.
0035. After the corresponding one of the double buffers of
the frame buffer 216 in the Second GPU 215 is blitted 620 to
the system memory 220, the second GPU 210 generates an
interrupt to the OS. In one implementation, the OS is pro
grammed to signal an event to the shim layer 125 in response
to the interrupt and the shim layer 125 is programmed to wait
on the event before sending a copy command 635 and a
present command 645 to the first GPU 210. In a thread sepa
rate from the application thread, referred to hereinafter as the
display thread, the shim layer waits for receipt of the event
indicating that the copy from the frame buffer to system
memory is done, referred to herein after as the copy event
interrupt. A separate thread is used so that the rendering
commands on the first and second GPUs 210, 215 are not
stalled in the application thread while waiting for the copy
event interrupt. The display thread may also have a higher
priority than the application thread.
0036. A race condition may occur where the next render
ing to a given one of the double buffers for the second GPU
215 begins before the previous copy from the given buffer is
complete. In Such case, a plurality of copy event interrupts
may be utilized. In one implementation, a ring buffer and four
events are utilized.
0037 Upon receipt of the copy event interrupt, the display
thread queues the blit from system memory 220 and the
present call into the first GPU 210. The first GPU210 blits the
given one of the system memory 220 buffers to a correspond
ing given one of the frame buffers of the first GPU 210. When
the blit operation is complete, the content of the given one of
the frame buffers of the first GPU 210 is presented on the
primary display 240. When the next copy and present com
mands are received by the first GPU 210, the corresponding
other of the system memory 220 buffers is blitted into the
other one of the frame buffer of the first GPU 210 and then the
content is presented on the primary display 240. The blit and
present alternate back and forth between the double buffered
frame buffer of the first GPU 210. The copy event interrupt is
used to delay programming, thereby effectively delaying the
scheduling of the copy from system memory 220 to the frame
buffer of the first GPU 210 and presenting on the primary
display 240.
0038. In one implementation, a notification on the display
side indicates that the frame has been present on the display
240 by the first GPU 210. The OS is programmed to signal an
event when the command buffer causing the first GPU 210 to

Mar. 17, 2011

present its frame buffer on the display is done executing. The
notification maintains synchronization where an application
runs with vertical blank (vblank) synchronization.
0039 Referring now to FIG. 7, an exemplary set of render
and display operations, in accordance with another embodi
ment of the present technology, is shown. The rendering and
copy operations executed on the second GPU 215 may be
performed by different engines. Therefore, the rendering and
copy operations may be performed Substantially simulta
neously in the second GPU 215.
0040 Generally, the second GPU 215 is coupled to the
system memory 220 by a bus having a relatively high band
width. However, in some systems the bus coupling the second
GPU 215 may not provide sufficient bandwidth for blitting
the frame buffer 216 of the second GPU 215 to system
memory 220. For example, an application may be rendered at
a resolution of 1280x1024 pixels. Therefore, approximately 5
MB/frame of RGB data is rendered. If the application renders
at 100 frame/s, than the second GPU needs approximately
500 MB/s for blitting upstream to the system memory 220.
However, a Peripheral Component Interconnect Express
(PCIe) 1x bus typically used to couple the second GPU 215
system memory 220 has a bandwidth of approximately 250
MB/s in each direction. Referring now to FIG. 8, a method of
compressing rendered data, in accordance with one embodi
ment of the present technology is shown. The second GPU
215 renders frames of RGB data, at 810. At 820, the frames of
RGB data are converted using a pixel shader in the second
GPU 215 to YUV sub-sample data. The RGB data is pro
cessed as texture data by the pixel shader in three passes to
generate YUV sub-sample data. In one implementation, the U
and V components are Sub-sampled spatially, however, the Y
is not sub-sampled. The RGB data may be converted to YUV
data using the 4.2.0 color space conversion algorithm. At 830,
the YUV sub-sample data is blitted to the corresponding
buffers in the system memory with an asynchronous copy
engine of the second GPU. The YUV sub-sample data is
blitted from the system memory to buffers of the first GPU, at
840. The YUV data is blitted to corresponding texture buffers
in the second GPU. The Y. U, and V sub-sample data are
buffered in three corresponding buffers, and therefore the
copy from frame buffer of the second GPU 215 to the system
memory 220 and the copy from system memory 220 to the
texture buffers of first GPU 210 are each implemented by sets
of three copies. The YUV sub-sample data is converted using
a pixel shader in the first GPU210 to recreate the RGB frame
data, at 850. The device driver interface on the attached
adapter is programmed to render a full screened aligned quad
from the corresponding texture buffers holding the YUV data.
At 860, the recreated RGB frame data is then presented on the
primary display 240 by the first GPU 210. Accordingly, the
shaders are utilized to provide YUV compression and decom
pression.
0041. In one implementation, each buffer of Y. U and V
samples is double buffered in the frame buffer of the second
GPU 215 and the system memory 220. In addition, the Y. U
and V samples copied into the first GPU 210 are double
buffered as textures. In another implementation, the Y. U and
V sample buffers in the second GPU 215 and corresponding
texture buffers in the first GPU 210 are each double buffered.
The Y. U and V sample buffered in the system memory 220
may each be triple buffered.
0042. In one implementation, the shim layer 125 tracks the
bandwidth needed for blitting and the efficiency of transfers

US 2011/0067038A1

on the bus to enable the compression or not. In another imple
mentation, the shim layer 125 enables the YUV compression
or not based on the type of application. For example, the shim
layer 125 may enable compression for game application but
not for technical applications such as a Computer Aided
Drawing (CAD) application.
0043. In one embodiment the white list accessed by the
shim layer 125 to determine if graphics requests should be
executed on the first GPU 210 or the Second GPU 215 is
loaded and updated by the a vendor and/or system adminis
trator. In another embodiment, a graphical user interface can
be provided to allow the user to specific the use of the second
GPU (e.g., discrete GPU) 215 for rendering a given applica
tion. The user may right click on the icon for the given
application. In response to the user selection, a graphical user
interface may be generated that allows the user to specify the
second GPU for use when rendering image for the given
application. In one implementation, the operating system is
programmed to populate the graphical interface with a choice
to run the given application on the GPU on the unattached
adapter. A routine (e.g., dynamic linked library) registered to
handle this context menu item will scan the shortcut link to
the application, gather up the options and argument, and then
call an application launcher that will spawn a process to
launch the application as well as setting an environment vari
able that will be read by the shim layer 125. In response, the
shim layer 125 will run the graphics context for the given
application on the second GPU 215. Therefore, the user can
override, update, or the like, the white list loaded on the
computing device.
0044) Referring now to FIG.9, an exemplary desktop 910
including an exemplary graphical user interface for selection
of the GPU to run a given application on is shown. The
desktop includes icons 920–950 for one or more applications.
When the user right clicks on a given application, 930 a
pull-down menu 970 is generated. The pull-down menu 970 is
populated with an additional item of run on dGPU or the
like. The menu item for the second GPU 215 may provide for
product branding by identifying the manufacturer and/or
model of the second GPU. If the user selects the run item or
double left clicks on the icon, the graphics requests from the
given application will run on the GPU on the primary adapter
(e.g., the default iGPU) 210. If the user selects the run on
dGPU item, the graphics requests from the given application
will run on the GPU on the unattached adapter (e.g., dGPU)
215.

0045. In another implementation, the second graphics pro
cessing unit may support a set of rendering application pro
gramming interfaces and the first graphics processing unit
may support a limited Subset of the same application pro
gramming interfaces. An application programming interface
is implemented by a different runtime API 120 and a match
ing driver interface 130. Referring now to FIG. 10, a graphics
co-processing technique, inaccordance with another embodi
ment of the present technology, is shown. The runtime API
120 loads a shim layer 125 that will support all device driver
interfaces. The shim layer 125 loads and configures the DDI
130 for the first GPU 210 using a device driver interface that
this one supports on the primary adapter and the DDI 135 for
the second GPU 215 of a second device driver interface that
can talk with the runtime API 120. For example, in one
implementation, the second GPU 215 may be a DirectX10
class device and the first GPU 210 may be a DirectX 9 class
device that does not support DirectX 10. The shim layer 125

Mar. 17, 2011

appears to the DDI 130 for the first GPU 210 as a first
application programming class runtime API (e.g., D3D9.dll),
translates command between the two device driver interface
classes and may also convert between display formats.
0046. The shim layer 125 includes a translation layer 126
that translates calls between the runtime API 120 device
driver interface and the device driver interface class. In one
implementation, the shim layer 125 translates display com
mands between the DirectX10 runtime API 120 and the
DirectX9 DDI on the primary adapter 130. The shim layer,
therefore, creates a DX9 compatible context on the first GPU
210, which is the recipient of frames rendered by the DX10
class second GPU 215. The shim layer 125 advantageously
splits graphics commands into rendering and display com
mands, redirects the rendering commands to the DDI on the
unattached adapter 135 and the display commands to the DDI
on the primary adapter 130. The shim layer also translates
between the commands for the DX9 DDI on the primary
adapter 130, the DX10DDI on the unattached adapter 135, the
DX10 runtime API 120 and DX10 thunk layer 140, and pro
vides for format conversion of necessary. The shim layer 125,
in one implementation, intercepts commands from the DX10
runtime 120 and translates these into the DX9 DDI on the
primary adapter (e.g., iUMD.dll). The commands may
include: CreateResource, OpenResource. Destroy Resource,
DXgiPresent which triggers the Surface transfer mechanism
that ends up with the surface displayed on the iGPU, Dxgi
RotateResourceIdentities, DxgiBlt present blits are trans
lated, and DxgiSetDisplayMode.
0047. The Dx9 DDI 130 for the first GPU 210 cannot
talkback directly through the runtime 120 to talk to a graphics
adapter handled by an OS specific kernel mode driver because
the runtime 120 expects the call to come from a DX10 device.
The shim layer 125 intercepts callbacks from the Dx9 DDI
and exchanges device handles, before forwarding the call
back to the DX10 runtime API 120, which expects the calls to
come from a DX10 device. DX10 and DX11 runtime APIs 120
use a layer for presentation called DXGI, which has its own
present callback, not existing in the DX9 callback interface.
Therefore, when the display side DDI on the primary adapter
calls the present callback, the shim layer translates it to a
DXGI callback. For example:
0.048 PFND3DDDI PRESENTCB->PFNDDXGIDDI
PRESENTCB

0049. The shim layer 125 may also include a data structure
127 for converting display formats between the first graphics
processing unit DDI and the second graphics processing unit
DDI. For example, the shim layer 125 may include a lookup
table to convert a 10 bit rendering format in DX10 to an 8 bit
format supported by the DX9 class integrated GPU 210. The
rendered frame may be copied to a staging Surface, a two
dimensional (2D) engine of the discrete GPU 215 utilizes the
lookup table to convert the rendered frame to a DX9 format.
The Dx9 format frame is then copied to the frame buffer of the
integrated GPU 210 and then presented on the primary dis
play 240. For example, the following format conversions may
be performed:
DXGI FORMAT R16G16B16A16 FLOAT(render)-
>D3DDDIFMT A8R8G8B8(display), DXGI FORMAT
R10G10B10A2 UNORM(render)->D3DDDIFMT
A8R8G8B8(display).
In one implementation, the copying and conversion can hap
pen as an atomic operation.

US 2011/0067038A1

0050. The foregoing descriptions of specific embodiments
of the present technology have been presented for purposes of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise forms dis
closed, and obviously many modifications and variations are
possible in light of the above teaching. The embodiments
were chosen and described in order to best explain the prin
ciples of the present technology and its practical application,
to thereby enable others skilled in the art to best utilize the
present technology and various embodiments with various
modifications as are Suited to the particular use contemplated.
It is intended that the scope of the invention be defined by the
claims appended hereto and their equivalents.

What is claimed is:
1. One or more computing device readable media having

computing device executable instructions which when
executed perform a method comprising:

injecting an application initialization routine, when an
application starts, that includes an entry point that
changes a search path for a device driver interface to a
search path of a shim layer library; and

loading the shim layer library, at the changed search path,
that initializes a device driver interface of a first class for
a first graphics processing unit class on a primary
adapter and a device driverinterface of a second class for
a second graphics processing unit on an unattached
adapter, wherein the shim layer library translates calls
between the first device driver interface of the first class
and the second device driver interface of the second
class.

2. The one or more computing device readable media hav
ing computing device executable instructions which when
executed perform the method of claim 1, wherein the device
driver interface on the primary adapter comprises a DirectX9
user mode driver dynamic linked library (UMD.dll) for the
first graphics processing unit.

3. The one or more computing device readable media hav
ing computing device executable instructions which when
executed perform the method of claim 1, wherein the device
driver interface on the unattached adapter comprises a
DirectX10 or DirectX11 user mode driver dynamic linked
library (UMD.dll) for the second graphics processing unit.

4. The one or more computing device readable media hav
ing computing device executable instructions which when
executed perform the method of claim 1, wherein the appli
cation initialization routine comprises a dynamic linked
library.

5. The one or more computing device readable media hav
ing computing device executable instructions which when
executed perform the method of claim 1, wherein the runtime
application programming interface comprises a DirectX 10 or
DirectX11 application programming interface (D3D10.dll or
D3D11.dll).

6. The one or more computing device readable media hav
ing computing device executable instructions which when
executed perform the method of claim 1, wherein the first
graphics processing unit comprises an integrated graphics
processing unit.

7. The one or more computing device readable media hav
ing computing device executable instructions which when
executed perform the method of claim 1, wherein the second
graphics processing unit comprises a discrete graphics pro
cessing unit.

Mar. 17, 2011

8. The one or more computing device readable media hav
ing computing device executable instructions which when
executed perform the method of claim 1, wherein the first
graphics processing unit and the second graphics processing
unit are heterogeneous graphics processing units.

9. The one or more computing device readable media hav
ing computing device executable instructions which when
executed perform the method of claim 1, wherein the shim
layer library converts a display format between the first
device driver interface of the first class and the second device
driver interface of the class.

10. The one or more computing device readable media
having computing device executable instructions which when
executed perform the method of claim 9, wherein the shim
layer uses a lookup table to convert the display format
between the first device driver interface of the first class and
the second device driver interface of the class.

11. One or more computing device readable media having
computing device executable instructions which when
executed perform a method comprising:

loading a shim layer library, by a runtime application pro
gramming interface;

loading and initializing a device driver interface on the
primary adapter, by the shim layer library;

loading and initializing a device driver interface on an
unattached adapter, by the shim layer library;

translating calls between the runtime application program
ming interface and commands of a first device driver
interface class for the first device driver interface class,
by the shim layer library; and

converting a display format of a second device driverinter
face class for the device driver interface on an unat
tached adapter to a display format of the first device
driver interface class.

12. The one or more computing device readable media
having computing device executable instructions which when
executed perform the method of claim 11, further comprising
routing render commands from the runtime application to the
second graphics processing unit running the same device
driver interface class.

13. The one or more computing device readable media
having computing device executable instructions which when
executed perform the method of claim 11, wherein converting
the display format further comprises:

copying a frame by a second graphics processing unit of the
second device driver interface class to a staging Surface;

converting the rendered frame in the staging Surface by a
two-dimensional engine of the second graphics unit to a
format of the first display driver model class; and

copying the frame in the format of the first device driver
interface class to a frame buffer of a first graphics pro
cessing unit.

14. The one or more computing device readable media
having computing device executable instructions which when
executed perform the method of claim 13, wherein converting
the rendered frame in the format of the second device driver
interface class to the format of the first device driver interface
class comprises mapping the format of the second device
driver interface class to the format of the first device driver
interface class from a conversion lookup table.

15. The one or more computing device readable media
having computing device executable instructions which when
executed perform the method of claim 11, wherein the first
graphics processing unit is an integrated graphics processing

US 2011/0067038A1

unit and the second graphics processing unit is a discrete
graphics processing unit having a different design than the
integrated graphics processing unit.

16. A method comprising:
loading a shim layer library;
loading and initializing a device driver interface of a first

class on the primary adapter, by the shim layer library;
loading and initializing a device driver interface of a sec
ond class on an unattached adapter, by the shim layer
library; and

translating calls between the first device driver interface of
the first class on the primary adapter and the second
device driver interface of the second class on the unat
tached adapter, by the shim layer library.

17. The method according to claim 16, wherein the trans
lated calls comprise resource management and presentation
functions.

Mar. 17, 2011

18. The method according to claim 16, wherein translating
calls between the first device driver interface of the first class
on the primary adapter and the second device driver interface
of the second class on the unattached adapter comprises:

intercepting callbacks from the first device driver interface
of the first class on the primary adapter to a runtime; and

exchanging the handles of the first class with correspond
ing handles of callbacks of the second class.

19. The method according to claim 16, wherein the device
driver interface on the primary adapter comprises a DirectX9
user mode driver dynamic linked library (UMD.dll) for a first
graphics processing unit.

20. The method according to claim 19, wherein the device
driver interface on the unattached adapter comprises a
DirectX10 or DirectX11 user mode driver dynamic linked
library (UMD.dll) for a second graphics processing unit.

c c c c c

