(54) 发明名称
旋转电机用定子

(57) 摘要
本发明提供一种即使将连接线卡止用钩位于第一延长空间内，也能够提高绕组部的占空系数的旋转电机用定子。在第一延长空间（37）内，在管口收容用槽部（33）的两侧且在之间夹有第三延长空间（31）的位置处配置一对连接线卡止用钩（35）。由此，一对连接线卡止用钩（35）不位于第三延长空间（31）内。
1. 一种旋转电机用定子，具有：

定子铁心，其具有多个磁极部，所述多个磁极部的一端一体地设置在环状磁轭的内周部，并在所述磁轭的圆周方向上间隔设置，并且朝向环状磁轭的中心线突出；

多个绕组部，其通过在所述定子铁心的所述多个磁极部上缠绕绕组导体而构成的；

绝缘树脂制的狭缝绝缘体，其安装在所述定子铁心上，用于使所述定子铁心与所述绕组部之间电绝缘，

所述磁极部具有极柱和磁极片，所述极柱一端与所述磁轭一体设置，所述磁极片具有磁极面且与所述极柱的另一端一体设置，

所述旋转电机用定子的特征在于，

对所述连接线卡止用钩在所述狭缝空间延长部内的位置进行规定，使得所述连接线卡止用钩不位于延长虚拟空间延长部内，所述延长虚拟空间延长部是在所述一个方向上延长了延长虚拟空间而成的延长空间，所述延长虚拟空间是使形成在被所述狭缝绝缘体覆盖的相邻的两个磁极片之间的狭缝开口空间朝向所述磁轭延长而成的延长空间，

在所述狭缝空间延长部内配置一对所述连接线卡止用钩，且一对所述连接线卡止用钩之间夹着所述延长虚拟空间延长部，

所述绕组部是通过在被所述狭缝绝缘体覆盖的所述极柱上卷绕从围绕所述极柱周围的管口前端导出的绕组导体而形成的，

所述狭缝绝缘体的覆盖所述磁轭的内周面的壁部分，且在与所述延长虚拟空间交叉的区域形成所述管口的前端所通过的管口收容用槽部，所述管口收容用槽部朝向所述狭缝空间开口，且朝向所述一个方向和与该一个方向相反的方向开口，

所述一对连接线卡止用钩配置在所述管口收容用槽部的两侧，使得所述管口的前端能够通过所述一对连接线卡止用钩之间，

所述管口收容用槽部以其底端位于比所述一对连接线卡止用钩更靠所述磁轭的径向外侧的方式，比配置有所述一对连接线卡止用钩的位置更向所述磁轭的径向外侧延伸。
旋转电机用定子

技术领域
[0001] 本发明涉及旋转电机用定子，特别是涉及在狭缝绝缘体上形成连接线卡止用钩的旋转电机用定子。

背景技术

[0003] 在这种旋转电机用定子中，从绕组机M的管口M1的前端M2导出绕组导体后将绕组导体缠绕在多个磁极部102上。具体地说，最初使管口M1的前端M2位于连接线卡止用钩106的附近，然后，使管口M1进行箱体运动，所谓箱体运动组合在了环状磁轭101的中心线C延伸的方向上的上下运动和在环状磁轭101的周方向上的摆动运动，使管口M1的前端M2绕磁极部102周圈回转。由此，从管口M1的前端M2导出绕组导体后，将绕组导体分别缠绕在多个磁极部102上。

[0004] 【专利文献1】日本特开2008-206393号公报。

[0005] 但是在具有在狭缝绝缘体105的狭缝空间延长部109中配置连接线卡止用钩106的结构的旋转电机用定子中，在从绕组机M的管口M1的前端M2导出绕组导体后使绕组导体缠绕在多个磁极部102的情况下，由于连接线卡止用钩106的存在限制了管口M1的工作范围，因此，要提高绕组部104的占空系数则有限度。

发明内容
[0006] 本发明的目的在于提供一种即使使连接线卡止用钩位于狭缝空间延长部内，也能够提高绕组部的占空系数的旋转电机用定子。

[0007] 作为本发明的改进对象的旋转电机用定子，具有定子铁心和多个绕组部及绝缘树脂制的狭缝绝缘体。定子铁心具有多个磁极部，所述多个磁极部的一端一体地设置在环状
磁极的内周部，且在该磁极的圆周方向上开有间隔设置，并且朝向环状磁极的中心线方向。磁极部具有极柱和极片，所述极柱一端与磁极一体设置，所述磁极片具有磁极而且与所述极柱的另一端一体设置。多个绕组部是通过在定子铁心的多个磁极部上缠绕绕组导体而构成的。绝缘树脂制的狭缝绝缘体安装在定子铁心上，用于使定子铁心与绕组部之间电绝缘。通常的狭缝绝缘体具有从定子铁心的两端部隔着定子铁心而配置的二分割结构。

【0009】在位于磁极的中心线所延伸的一个方向上的狭缝绝缘体的一个方向上的端部一体地设有连接线卡止用钩，所述连接线卡止用钩卡止从所述绕组部延伸出的所述绕组导体的一部分所构成的连接线。具体而言，所述所述连接线卡止用钩至少一部分位于第一延长空间（狭缝空间延长部）内，所述第一延长空间（狭缝空间延长部）是绕组部所进入的狭缝空间在一个方向上延长而成的。

【0010】如本发明所述，在所述第一延长空间（狭缝空间延长部）内的位置进行规定，使得所述连接线卡止用钩不位于第三延长空间内，所述第三延长空间（延长虚拟空间延长部）是在所述一个方向上延长了第二延长空间（延长虚拟空间）而成的延长空间，所述第二延长空间是使形成在狭缝绝缘体覆盖的相邻的两个磁极片之间的狭缝开口空间朝向所述狭缝绝缘体在各个延长而成的延长空间。

【0011】优选在第一延长空间（狭缝空间延长部）内配置一对连接线卡止用钩，且所述一对连接线卡止用钩之间夹着第三延长空间（延长虚拟空间延长部）。由此，能够在绕组机的管口变更移动方向的区域附近配置连接线卡止用钩，所以能够容易且可靠地向连接线卡止用钩卡止绕组导体。

【0012】也可以在狭缝绝缘体的覆盖狭缝的内表面的壁部分，且在与第二延长空间（延长虚拟空间）交叉的区域形成管口的前端所通过的管口收容用槽部，所述管口收容用槽部朝向狭缝空间开口，且朝向一个方向和与该一个方向相反的方向开口。由此，能够在绕组导体的缠绕开始时，使绕组机的管口前端延伸到管口收容用槽部内，能够进一步增大管口进入狭缝内的位置（靠近磁极的位置）时的进入量。

附图说明
【0013】图1是本发明实施方式的旋转电机用定子的俯视图。
【0014】图2是图1的II-I线剖面图。
【0015】图3是在图1所示的旋转电机用定子中，在磁极部缠绕绕组导体之前的状态的俯视图。
【0016】图4是图3的IV-IV线剖面图。
【0017】图5是现有的旋转电机用定子的俯视图。
具体实施方式

以下，参照附图详细说明本发明的实施方式的一例。图 1 是本发明的一实施方式的旋转电机用定子（旋转电动机用定子）的俯视图。图 2 是图 1 的 II-II 线剖面图。图 3 是在图 1 所示的旋转电机用定子中，在磁极部缠绕绕组导体之前的轴向的俯视图。图 4 是图 3 的 IV-IV 线剖面图。此外，图 3 中也并记载有绕组部 M。如各图所示，本例的旋转电机用定子具有定子铁心 1 和一相以上（本例中是 2 相）的 8 个绕组部 3 以及狭缝绝缘体 5。定子铁心 1 具有在圆周方向上空开间隔地在环状磁极 7 的内周部设置有 8 个磁极部 9 的结构。该定子铁心 1 由在环状磁极 7 的中心线 C 延伸的方向上层叠相同形状的多个铜板而构成。在位于图 3 左下方的磁极部 9 上标记符号进行说明，8 个磁极部 9 具有极柱 9a 和磁极片 9c，所述极柱 9a 一端与磁极 7 一体地设置，且朝向环状磁极 7 的中心线 C 突出，所述磁极片 9c 具有磁极面 9b，且与极柱 9a 的另一端一体地设置。在 8 个磁极部 9 上分别缠绕有缠绕绕组导体而构成的绕组部 3（图 1）。绝缘树脂制的狭缝绝缘体 5 安装在定子铁心 1 上，用于使定子铁心 1 与绕组部 3 电绝缘。

如图 4 所示，狭缝绝缘体 5 由从磁极 7 的中心线 C 延伸的方向的两侧进行嵌合的一对绝缘体分割体 15、17 构成。一对绝缘体分割体 15、17 内的、位于图 4 上方的一个绝缘体分割体 15 一体地具有由合成树脂构成，覆盖磁极 7 内表面的基座部 19。覆盖磁极部 9 的除了磁极面 9b 部分的表面的 8 个绕组管部 21；保持架安装部 23（图 3）。一对绝缘体分割体 15、17 内的、位于图 4 下方的另一个绝缘体分割体 17，除了不具备保持架安装部 23 和后述的连接线卡止用钩 35 以外，与所述一方的绝缘体分割体 15 基本上具有相同构造。

如图 3 和图 4 所示，在被狭缝绝缘体 5 覆盖的相邻的 2 个磁极部 9 与磁极 7 之间形成有绕组部 3 所进入的狭缝空间 25。此外，在图 3 的标记了 IV-IV 线的狭缝空间 25 中标记符号进行说明，在被狭缝绝缘体 5 覆盖的相邻的 2 个磁极片 9c 之间形成有狭缝开口空间 27。另外，在使朝向磁极 7 延长了狭缝开口空间 27 的延长虚拟空间（第二延长空间；图
3 中用虚线夹持的区域）29 在中心线 C 延伸的一个方向（形成有图 4 所示的狭缝绝缘体 5 的连接线卡止用钩 35 的方向）上延长的部分中，形成有延长虚拟空间延长部 31 （第三延长空间；图 4 中用点划线包围的区域）。此外，在一对狭缝绝缘体分割 15、17 的基座部 19 上，在与延长虚拟空间 29 交叉的区域中形成有管口收容用槽部 33，所述管口收容用槽部 33 朝向狭缝空间 25 开口，且在中心线 C 延伸的一个方向与该一个方向相反的方向上开口。

[0036] 在一个绝缘体分割 15 的位于中心线延伸的一个方向上的端部一体地形成有从基座部 19 向一个方向延伸的 12 条连接线卡止用钩 35。连接线卡止用钩 35 卡止从绕组部 3 延伸的绕组导体的一部分所构成的连接线，在除了保持架安装部 23 附近的 2 个狭缝空间 25 以外的 6 个狭缝空间 25 内各配置一对。即，在本实施方式中，对于与保持架安装部 23 相邻的 2 处的狭缝空间未设置连接线卡止用钩 35。在本发明中，不需要对全部的狭缝空间设置连接线卡止用钩，只在必要时才连接线部分设置连接线卡止用钩即可。

[0037] 一对连接线卡止用钩 35 位于使狭缝空间 25 在中心线 C 延伸的一个方向上延长后的狭缝空间延长部 37（第一延长空间）内。本实施方式的一对连接线卡止用钩 35 被配置在管口收容用槽部 33 的两侧且之间夹有延长虚拟空间延长部 31 的位置上。其结果，一对连接线卡止用钩 35 的狭缝空间延长部 37 内的位置被规定为不位于延长虚拟空间延长部 31 内。即，一对连接线卡止用钩 35 被配置成不位于狭缝空间延长部 37 内的磁轴 7 的圆周方向对中央的区域（延长虚拟空间延长部 31 的区域）中。

[0038] 以下，对于在本例的旋转电机用定子的 8 个磁极部 9 上缠绕绕组导体的绕法进行说明。首先，如图 3 所示，在开始缠绕时，将绕组机 M 的管口 M1 的前端 M2 配置在管口收容用槽部 33 内。接着，使管口 M1 进行箱体运动，所谓箱体运动组合了中心线 C 延伸方向上的上下运动和环状磁轴 7 的圆周方向上的摆动运动，使管口 M1 的前端 M2 绕磁极部 9 的周围反复绕。然后，从管口 M1 的前端 M2 导出绕组导体，被利用狭缝绝缘体 5 覆盖的极柱 9a 上缠绕绕组导体。

[0039] 根据本例的旋转电机用定子，由于连接线卡止用钩 35 不位于延长虚拟空间延长部 31 内，因此，在绕组导体的缠绕开始时，能够使绕组机 M 的管口 M1 的前端 M2 延伸到与狭缝绝缘体 5 的狭缝开口空间 27 对置的部分（以往是存在连接线卡止用钩的区域）中。因此，图 3 所示的管口 M1 的前端 M2 在狭缝空间 25 内往复运动的距离 L1 比图 5 所示的管口 M1 的前端 M2 在狭缝空间 108 内往复运动的距离 L2 大。其结果，在以往的旋转电机用定子中，如图 5 所示，绕组部 104 的磁轴 101 侧的端部上未被缠绕上绕组导体，对此，在本例的旋转电机用定子中，由于能够在磁极部 9 的靠近磁轴 7 侧的端部 9d（图 1 左下）的位置上缠绕绕组导体而形成绕组部 3，因此，即使连接线卡止用钩 35 位于狭缝空间延长部 37 内，也能够比现有技术提高绕组部的占空系数。

[0040] 在上述实施方式中，对于 1 个狭缝空间 25 设置有 2 个连接线卡止用钩 35，但即使是对于 1 个狭缝空间 25 设置 1 个连接线卡止用钩 35 的情况，也包含在本发明中。此外，连接线卡止用钩 35 的配置位置优选是管口收容用槽部 33 的附近。但是，不只限定于能够比以前提高占空系数的范围，也可以靠近磁极部 9 的极柱 9a 的基部侧来配置连接线卡止用钩 35。

[0041] 工业上的可利用性

[0042] 根据本发明，由于连接线卡止用钩不位于延长虚拟空间延长部内，所述延长虚拟空间延长部是在一个方向上延长了延长虚拟空间的延长部，所述延长虚拟空间是使形成
在被狭缝绝缘体覆盖的相邻的 2 个磁极片之间的狭缝开日空间朝向磁轭延长后的空间，因此，能够使绕组机的管口的前端进入到与狭缝绝缘体的狭缝开口空间对置的部分（以往存在连接线卡止用钩的区域）中。因此，由于能够从磁极部的极柱的基部附近开始缠绕绕组导体，因此，即使连接线卡止用钩位于狭缝空间延长部内，也能够提高绕组部的占空系数。
图 5