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(7) ABSTRACT

A method of generating models with which to characterise
selected aspects of the metabolic phenotype of subjects
without dosing a test substance to those subjects or with
which to predict, without dosing, the post-dose responses of
subjects where those responses are dependent on metabolic
phenotype, the method comprising: obtaining pre-dose data
relating to a plurality of subjects before dosing with a dosing
substance; obtaining post-dose data relating to the plurality
of subjects after dosing with the dosing substance; and
correlating inter-subject variation in the pre-dose data with
inter-subject variation in the post-dose data, and generating
a pre-to-post-dose predictive model on the basis of the
observed correlation. The models may be used to determine
selected aspects of the metabolic phenotype of a subject or
to predict, without dosing, the post-dose responses of sub-
jects. This is achieved by analysing data relating to the
un-dosed subject in relation to a model describing the
correlation of pre-dose and post-dose data relating to a
plurality of subjects when dosed with a particular substance
which challenges the biochemical transformation or path-
way of interest; and generating, according to the predeter-
mined criteria of the model, a numerical measure or classi-
fication describing the metabolic phenotype of the un-dosed
subject.
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METABOLIC PHENOTYPING

CROSS REFERENCE TO RELATED
APPLICATION

[0001] This patent application is a continuation applica-
tion under 35 USC § 120 of PCT patent application serial
number PCT/IB03/02309, filed Jun. 16, 2003, designating
the United States, which claims priority to United Kingdom
serial number 0213786.7, filed Jun. 14, 2002, and United
Kingdom serial number 0213895.6 filed Jun. 17, 2002.

BACKGROUND

Biochemical Reactions

[0002] An organism’s overall ‘metabolic phenotype’ is the
sum total of its metabolic attributes and is determined by the
interaction of its genetic composition and the ‘environment’,
where the environment is considered in the widest possible
sense. The term ‘metabolic phenotype’ may also be applied
to individual aspects of an organism’s metabolic character-
istics.

[0003] A wvast array of biochemical reactions (metabolic
transformations) take place within living organisms and the
overwhelming majority of these reactions are catalysed by
enzymes.

[0004] Enzymes are specialised proteins that function as
biochemical catalysts to accelerate biochemical reactions.
Without enzymes many of the reactions required for normal
cell activity would not proceed fast enough at normal bodily
pH and temperature. As a catalyst, an enzyme increases the
rate of a reaction but is recovered unchanged at the end of
the reaction.

[0005] A molecule acted on by an enzyme is termed a
‘substrate’ and enzymes exhibit much specificity for par-
ticular substrates e.g. glucose oxidase will oxidise glucose
but not galactose. This specificity is determined by the
substrate-binding site on the enzyme surface. This site is a
particular arrangement of amino acids that confers preferred
binding ability for one or more substrates. Some enzymes
have broad substrate specificity whereas others are specific
to individual substances. Thus, for example, glucose, man-
nose and fructose are all phosphorylated by hexokinase
whereas glucokinase is specific for glucose.

[0006] The International Union of Biochemistry and
Molecular Biology (IUBMB) has established an enzyme
classification system which has six major enzyme classes:

[0007] 1. Oxidoreductases
[0008] 2. Transferases
[0009] 3. Hydrolases
[0010] 4. Lyases

[0011] 5. Isomerases
[0012] 6. Ligases.

[0013] Each of these individual classes is further divided
into sub-classes to which the individual enzymes belong.
Full details are currently available on the world-wide web
(http://www.chem.qmw.ac.uk/iubmb/enzyme).
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[0014] As an example, guanidinoacetate N-methyl trans-
ferase (EC 2.1.1.2) catalyses the conversion of S-adenosyl-
L-methionine and guanidinoacetate to S-adenosyl-L-ho-
mocysteine and creatine. This is an example of a methyl
transferase.

[0015] Factors which may affect the rate of enzyme-
catalysed reactions include the amount of substrate present,
the amount of product present, the amount of the enzyme
present and the activity of each enzyme molecule. The
activity of an enzyme molecule can be affected by a variety
of factors including its inherent activity, the presence of
cofactors and prosthetic groups and by binding at an allos-
teric site. Both the amount of the enzyme and the activity per
enzyme molecule may be affected by genetic variation
between subjects. The amount of an enzyme and the activity
per molecule combine to give the overall enzyme activity
and this may vary considerably between different subjects.
Such variation may independently affect a whole range of
different enzymes and metabolic transformations and this
variation will contribute to the generation of a different
overall metabolic phenotype for each subject. Variation in
the levels of any other substances that are required for
biochemical transformations to take place will also contrib-
ute to the metabolic phenotype. For example, variation in the
ability of subjects to effect drug glucuronidation may be
caused by inter-subject variation in the level of UDP-
glucuronic acid (UDPGA).

[0016] Whilst metabolic phenotype would typically be
considered in terms of enzyme-catalysed reactions, meta-
bolic phenotype in its broadest sense would also include
measures relating to each of the non-enzymic reactions that
might occur within a certain type of subject. Additionally, a
subject’s overall metabolic phenotype would be influenced
by the nature and quantity of the other organisms, such as the
gut bacteria, that are living within or on that subject.
Importantly, whilst a subject’s genotype would be constant
throughout the life of that subject, a subject’s overall meta-
bolic phenotype could change significantly with age and
with other ‘environmental’ influences such as disease, infec-
tion and nutritional status.

[0017] Variation in metabolic phenotype causes inter-sub-
ject differences in the metabolism of xenobiotics such as
drugs. Such differences in metabolism are a major factor
contributing to differential responses (e.g. degree of efficacy,
degree of toxicity etc.) to dosed substances because they
may result in different degrees of exposure to the active
substance(s). Thus, for instance, fast metabolism of a toxic
substance to non-toxic metabolites would result in rapid
detoxification whilst slow metabolisers of the toxin would
be more likely to show toxic effects. Conversely, fast
metabolism of the efficacious component or derivative of a
drug could lead to reduced efficacy of the treatment. Other
factors contributing to differential responses to dosed sub-
stances include inter-subject differences in absorption from
the gut and differential sensitivity of receptors. Genetic
variability in susceptibility and response to toxicants was
reviewed in Toxicology Letters (2001) Vol 120 in articles
entitled “Genetic variability in susceptibility and response to
toxicants” by Ingelman-Sundberg (pages 259-268) and by
Miller et al (pages 269-280). Inter-individual variability in
human drug metabolism is the subject of a book “Interin-
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dividual Variability in Human Drug Metabolism” edited by
Pacifici and Pelkonen and published by Taylor & Francis
(2001).

[0018] Body Fluids and the Effects of Variation in Meta-
bolic Phenotype

[0019] Aspects of the biochemical composition of intrac-
ellular fluids are reflected in the extracellular tissue fluid and
consequently in the circulating blood which contacts that
tissue. Thus, alterations in the biochemical composition of
cell fluids are liable to affect the biochemical composition of
the extracellular tissue fluid and the biochemical composi-
tion of the blood. Alterations in blood composition may, in
turn, be reflected in altered urinary composition. Thus,
abnormal cellular metabolic processes are likely to be
reflected in altered compositions of biofluids such as blood
and urine and, consequently, these fluids provide diagnostic
windows onto the state of the body. Major alterations in such
fluids are frequently caused when toxins, such as liver or
kidney toxins, are administered and inherent factors such as
major enzyme deficiencies can also be identified from those
fluids. Thus, for example, in classical phenylketonuria, a
deficiency in phenylalanine hydroxylase causes a failure to
convert phenylalanine to tyrosine and produces an altered
urinary composition with increased levels of phenylpyruvic
acid, phenyllactic acid and phenylacetic acid (see Textbook
of Biochemistry With Clinical Correlations, 4™ Edition,
1997, edited by T. M. Devlin, published by Wiley-Liss). This
is an example of a genetically determined error of metabo-
lism and such diseases are known as ‘inborn errors of
metabolism’ (see, for example, Newsholme and Leech,
1983, Biochemistry for the Medical Sciences, published by
John Wiley and Sons) Identification of the described urinary
changes serves to identify the enzymic deficiency.

[0020] As well as the serious metabolic deficiencies, other
lesser inter-individual differences in metabolic phenotype
exist that are not sufficient to cause disruption of normal
metabolic processes and consequent disease. However, such
differences may be revealed when the organism is subjected
to an unusual challenge such as a large dose of a particular
chemical compound e.g. a drug substance. Additionally,
such differences may cause altered risk factors for diseases
such as cancer which are associated with long term exposure
to harmful substances such as environmental pollutants and
tobacco smoke.

NMR Spectroscopic Analysis of Biological
Samples

[0021] The use of Nuclear Magnetic Resonance (NMR)
spectroscopy to study the low molecular weight composition
of biological fluids is now well established (e.g. Nicholson
and Wilson (1989), High resolution proton magnetic reso-
nance spectroscopy of biological fluids, Progress in NMR
Spectroscopy, 21, 449-501; Lindon et al. (1999), NMR
spectroscopy of biofluids, Annual reports on NMR spectros-
copy, 38). The advent of high field magnets for NMR has
been one factor in this development. Such magnets have
greatly improved the sensitivity of the technique and the use
of cryoprobes brings further improvement. An additional
benefit, for the examination of complex mixtures, is that
increased magnetic field strength leads to improved disper-
sion of the NMR signals i.e. the signals are more spread out
and less prone to overlap one another. Other factors which
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have greatly improved the capabilities of modern NMR
spectroscopy include improvements in probe design leading
to much higher sensitivity, the ready availability of comput-
ing power and the development of improved pulse
sequences e.g. for the selective suppression of the water
signal in an aqueous sample. The advent of flow probes has
enabled greatly increased sample throughput in comparison
to the conventional use of high precision, fragile glass
sample tubes.

[0022] In addition to its usefulness for biofluids, NMR
spectroscopy can be successfully used for the examination
of small (ca. 10-20 mg) samples of solid tissue (e.g. Moka
et al. (1997), Magic angle spinning proton nuclear magnetic
resonance spectroscopic analysis of intact kidney tissue
samples, Analytical Communications, 34, 107-109). How-
ever, this requires a special technique known as Magic Angle
Spinning (MAS) and, in comparison to solution state NMR
spectroscopy, MAS-NMR spectroscopy is a time-consum-
ing procedure. With automated solution state NMR spec-
troscopy it is possible to examine more than 150 samples per
day whilst 10 samples per day is typical for MAS-NMR
spectroscopy where the samples are manually changed by an
operator.

[0023] The vast majority of organic compounds contain
protons that would be detectable by *H NMR spectroscopy
so long as enough of the compound is present in the sample
being analysed. This means that, in principle, *H NMR
spectroscopy is an almost universal detector for organic
compounds. The detectability of ‘H NMR spectroscopic
signals from a particular sample component depends on the
amount of the component present, on the type and molecular
environment of the proton(s) and on the nature of the NMR
experiment. The main limitation is that exchangeable pro-
tons, such as those in hydroxyl groups, may not be observed.
Essentially, the ‘H NMR spectrum of any particular organic
compound is unique to that compound. Additionally, NMR
spectra are readily interpretable and predictable so that
structural features and often the complete structure of a
compound may be deduced from its *H NMR spectrum.

[0024] In the conventional one-dimensional (1D) 'H
NMR spectrum of a biofluid the individual spectra of all the
detectable components are superimposed according to their
relative concentrations and this facilitates quantitation. In
practice, the high field 'H NMR spectra of biofluids such as
urine and plasma are extraordinarily rich in information,
with a very large number of low-to-medium molecular
weight components being detectable in a single experiment.
Lipoproteins and high molecular weight components such as
proteins are also present in plasma but their 'H NMR spectra
are subject to signal broadening influences arising from
restricted mobility of the resonating nuclei. Such broadening
reduces the amount of information derivable from and about
such components.

Applications of Biofluid NMR Spectroscopy

[0025] In comparison to NMR spectroscopy, traditional
clinical chemistry assays generally provide more exact
quantitation and may also provide better detection limits. On
the other hand, "H NMR spectroscopy has a major advan-
tage over traditional clinical chemistry in that, by the former,
the levels of all the detectable components are measured in
a single experiment without the need to specify which
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components require analysis. Thus, by 'H NMR spectros-
copy, unexpected changes may be observed and previously
unrecognised substances may be identified. Thus, ‘H NMR
spectroscopy has great strength as a simultaneous multi-
analyte detector for non-routine investigations and is ideally
suited to the detection of new biomarkers.

[0026] The analysis of post-dose body fluids using NMR
spectroscopy to identify and track responses to toxins is
known (e.g. Holmes et al. (1992) NMR spectroscopy and
pattern recognition analysis of the biochemical processes
associated with the progression and recovery from nephro-
toxic lesions in the rat induced by mercury (II) chloride and
2-bromoethanamine, Mol. Pharmacol., 42, 922-930). In the
context of toxicology studies, biofluid NMR spectroscopy
may detect metabolites of dosed substances and/or changes
in endogenous biofluid components that are induced by
dosed substances and may be used to assess toxic effects and
to identify relevant defensive processes, such as glucu-
ronidation and mercapturic acid formation. Biofluid NMR
spectroscopy also has significant potential to elucidate
mechanisms of toxicity.

[0027] Tt is known that, using NMR spectroscopy, certain
inborn errors of metabolism can be readily identified from
biofluid samples (e.g. Moolenaar et al. (2003) Proton
nuclear magnetic resonance spectroscopy of body fluids in
the field of inborn errors of metabolism, Ann. Clin. Bio-
chem., 40, 1, 16-24). It is also known that NMR spectros-
copy of biofluids can be used to diagnose other disease
conditions and to track responses to therapy.

[0028] Following the success of the NMR-based approach
to monitoring the metabolic state of living systems the term
‘metabonomics’ has been coined (Nicholson et al. (1999),
‘Metabonomics’: understanding the metabolic responses of
living systems to pathophysiological stimuli via multivariate
statistical analysis of biological NMR spectroscopic data,
Xenobiotica, 29, 1181-1189). Metabonomics is defined as
‘the quantitative measurement of the multiparametric meta-
bolic response of living systems to pathophysiological
stimuli or genetic modification’. Metabonomics is comple-
mentary to the genomics and proteomics technologies which
are based on detecting changes in gene expression and
protein levels respectively. An advantage of metabonomics
in relation to the other technologies is that metabonomics
looks at the overall metabolic result rather than at underlying
influences which may or may not be metabolically signifi-
cant.

Pattern Recognition

[0029] A complicating factor in extracting useful bio-
chemical information from sets of biological (biofluid or
tissue-derived) NMR spectra is their great complexity. An
efficient way to investigate these complex multiparametric
data sets is to employ computer-based pattern recognition
methods.

[0030] Pattern recognition (PR) is a general term for
methods of multivariate data analysis which may be used to
look for patterns in data sets, a priori, or to look for elements
of data sets which correlate with other known factors (see,
for example, Beebe et al., 1998, Chemometrics, A Practical
Guide, John Wiley and Sons, New York etc.). Inherent in this
is the assumption that the data set consists of a number of
different objects for which a variety of parameters (or
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‘variables’) have been measured. Whatever those param-
eters may be, the same parameters have generally been
measured on all the objects in the data set although occa-
sional missing values may be acceptable. In the context of
a set of NMR spectra, the different objects would be the
different spectra whilst the various parameters would gen-
erally be the integrations for different spectral windows
within the overall spectrum. PR methods may be conve-
niently classified as ‘supervised’ or ‘unsupervised’ and some
of these multivariate statistical analysis methods are
described in the following sections.

Unsupervised PR Methods

[0031] Unsupervised PR methods are used to determine
inherent clustering patterns in multivariate data sets without
reference to any other independent knowledge. Examples of
unsupervised pattern recognition methods include principal
component analysis (PCA), hierarchical cluster analysis
(HCA), and non-linear mapping (NLM).

Principal Components Analysis (PCA)

[0032] Principal components analysis (PCA) (e.g. Sharaf
et al., 1986, Chemometrics, J. Wiley and Sons, New York)
is one of the most useful and easily applied unsupervised PR
techniques. Principal components (PCs) are latent variables
created from linear combinations of the starting variables
with appropriate weighting coefficients. The properties of
these PCs are such that: (i) each PC is orthogonal to (i.e.
uncorrelated with) all other PCs, and (ii) the first PC
contains the largest part of the variation of the data set
(information content) with subsequent PCs containing cor-
respondingly smaller amounts of variation.

[0033] In mathematical terms, a data matrix, X, can be
regarded as being composed of a ‘scores’ matrix, T, and a
‘loadings matrix’, P, such that X=TP', where the superscript
‘t’ denotes the transpose. The covariance matrix, C, is
calculated from the data matrix, X. The eigenvalues and
eigenvectors of the covariance matrix are then determined
by diagonalisation. The coordinates of the different objects
in eigenvector plots (the principal components or PCs) are
denoted ‘scores’ and comprise the scores matrix T. The
eigenvector coefficients are denoted ‘loadings’ and comprise
the loadings matrix P, and give the contributions of the
descriptors to the PCs.

[0034] A plot of the any two principal component scores
is often called a ‘scores plot’. The scores plot for PC1 vs.
PC2 provides the maximum information content of the data
in two dimensions although lower order PC plots may well
be useful. Such scores plots can be used to visualise inherent
clustering in data sets.

Supervised Methods

[0035] Where appropriate, supervised pattern recognition
methods may also be used to analyse multivariate data. In
such analyses the data set (X) is related, where possible, to
one or more known factors (Y) such as class membership or
the value of one or more parameters outside the X data set.
In such methods a ‘training set’ of X and Y data is used to
construct a statistical ‘model’ that estimates the required Y
factor(s) from the X data. This model is then tested with
independent data (referred to as a validation data set) to
determine its robustness and predictive ability. Once vali-
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dated the model may legitimately be used to predict the
relevant Y factors for samples where only the X data is
available.

[0036] Examples of supervised pattern recognition meth-
ods include the following: soft independent modelling of
class analysis (SIMCA); partial least squares analysis (PLS);
linear descriminant analysis (LDA); K-nearest neighbour
analysis (KNN); artificial neural networks (ANN); probabi-
listic neural networks (PNNs); rule induction (RI); and
Bayesian methods. See, for example: (re. SIMCA) Wold
(1976) Pattern recognition by means of disjoint principal
components models, Pattern Recog,., 8, 127; (re. PLS) Frank
et al. (1984) Prediction of product quality from spectral data
using the partial least squares method, J. Chem. Info. Comp.,
24, 20; (re. LDA) Nillson, 1965, Learning Machines,
McGraw-Hill, New York); (re. KNN) Beebe et al., 1998,
Chemometrics, A Practical Guide, John Wiley and Sons,
New York etc; (re. ANN) Anker and Jurs (1992) Prediction
of C-13 nuclear magnetic resonance chemical shifts by
artificial neural networks, Anal. Chem., 64, 1157; (re. PNN)
Speckt (1990) Probabilistic neural networks, Neur. Net-
works, 3, 109; (re. RI) Quinlan (1986) Induction of decision
trees, Machine Learning, 1, 81; (re. Bayesian Methods)
Bretthorst, 1990, An introduction to parameter estimation
using Bayesian probability theory, In: Maximum Entropy
and Bayesian Methods, Ed. Fougere, Kluwer Academic
Publishers, The Netherlands, 53-79.

Partial Least Squares (PLS)

[0037] PLS is the regression extension of the PCA method
described earlier. In PLS the variation between the objects in
a data matrix X is described by the X-scores, T, and the
variation in the Y-block regressed against is described in the
Y-scores, U. Essentially, what PLS does is to maximize the
covariance between T and U. For the PLS model a set of PLS
weights, W, are calculated, containing the influence of each
X-variable on the explanation of the variation in Y. The
corresponding set of weights for the Y-block is designated C.
A matrix of X-loadings, P, is also calculated. These loadings
are used both for interpretation and to perform the proper
decomposition of X.

[0038] The PLS decomposition of X and Y can hence be
described as follows:

X=TP4E

Y=TC'+F

[0039] where E and F are the X and Y residuals

respectively and the superscript ‘t” denotes the trans-
pose of the relevant matrix.

[0040] The PLS regression coefficients, B, are then given
by:

B=W(P'W)"'C"
[0041] The estimate of Y, Y., can then be calculated
according to the following formula:

Yo = XW(P'W) 1 C'=XB

Partial Least Squares Descriminant Analysis
(PLS-DA)

[0042] PLS-DA is a supervised multivariate method yield-
ing ‘latent’ variables in a data matrix (X) that describe the
maximum separation between known classes of objects (Y).
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PLS-DA is based on PLS which is the regression extension
of the PCA method described earlier. Whereas PCA simply
works to find the maximum variation existing within the
variables describing the studied objects, PLS-DA works to
find the maximum separation between known classes of
objects. This is done by a PLS regression against a ‘dummy’
vector or matrix (Y) carrying the class information. The
calculated PLS components are thereby focussed on describ-
ing the variation in X that separates the classes (Y), if this
information is present in the data. The class membership has
to be known prior to the actual modelling. Once a model is
calculated and validated it can legitimately be used for
prediction of class membership for objects of unknown
class.

Neural Networks vs. PLS and PLS-DA

[0043] Methods such as PLS and PLS-DA rely on the
extraction of linear associations between the input variables
and this can significantly limit the power of the analysis.
Neural network-based pattern recognition techniques can
provide improved predictive ability, particularly where the
factor being predicted is influenced by a number of unrelated
causes. Nevertheless, methods such as PLS and PLS-DA are
often sufficiently powerful and provide a significant benefit
over relatively ‘black box’ neural network methods in that
they readily allow some information to be gained as to what
aspects of the input dataset were particularly important in
the model building i.e. in comparison to neural network
models, PLS and PLS-DA models are more transparent with
respect to interpretation.

The Application of PR Methods to Metabonomic
Data

[0044] Pattern recognition methods have been applied to
the analysis of metabonomic data, including, for example,
complex NMR spectroscopic data, with some success. See
for example: Anthony et al. (1994) Pattern recognition
classification of the site of nephrotoxicity based on meta-
bolic data derived from proton nuclear magnetic resonance
spectra of urine, Mol. Pharmacol., 46, 199-211; Beckwith-
Hall et al. (1998) Nuclear magnetic resonance spectroscopic
and principal components analysis investigations into bio-
chemical effects of three model hepatotoxins, Chem. Res.
Tox., 11, 260-272; Gartland et al. (1990) Pattern recognition
analysis of high resolution 'H NMR spectra of urine. A
non-linear mapping approach to the classification of toxi-
cological data, NMR in Biomedicine, 3, 166-172; Holmes et
al. (1992) NMR spectroscopy and pattern recognition analy-
sis of the biochemical processes associated with the pro-
gression and recovery from nephrotoxic lesions in the rat
induced by mercury (II) chloride and 2-bromoethanamine,
Mol. Pharmacol., 42, 922-930; Holmes et al. (1994) Auto-
matic data reduction and pattern recognition methods for
analysis of *H NMR spectra of human urine from normal
and pathological states, Anal. Biochem., 220, 284-296.

Data Filtering

[0045] Although pattern recognition methods may be
applied to ‘unfiltered’ data, it is often preferable to filter data
to removed irrelevant variation. Such filtering requires some
degree of supervision to distinguish between relevant and
irrelevant variation.

[0046] One method of data filtering simply involves delet-
ing selected spectral regions and then working with the
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remainder. Thus, for example in the 'H NMR spectra of
aqueous samples acquired with water suppression, the mag-
nitude of the residual water signals will vary according to the
effectiveness of the water suppression and these irrelevant
signals may be deleted.

[0047] Alternatively, variation in the data which is not
correlated to (i.e. is orthogonal to) the variation of interest
may be removed by ‘orthogonal filtering’. One preferred
orthogonal filtering method is conventionally referred to as
Orthogonal Signal Correction (OSC), wherein latent vari-
ables orthogonal to the variation of interest are removed
(Wold et al. (1998) Orthogonal Signal Correction of Near
Infrared Spectra, Chemometrics and Intelligent Laboratory
Systems, 44, 175-185).

Orthogonal Signal Correction

[0048] The OSC method locates the longest vector
describing the X variation between the objects that is not
correlated with the Y-vector, and removes it from the data
matrix. The resultant data set has thus been filtered to allow
pattern recognition focused on the variation within the
object population that is correlated to features of interest,
rather than non-correlated, orthogonal variation. This pro-
cess may be repeated as often as necessary with the proviso
that ‘over-fitting’ should be avoided.

[0049] 1InPLS, the weights, W, are calculated to maximise
the covariance between X and Y. In OSC, in contrast, the
weights, W, are calculated to minimize the covariance
between X and Y, which is the same as calculating compo-
nents as close to orthogonal to Y as possible. Such compo-
nents, orthogonal to Y and therefore containing unwanted
variation, may then be subtracted from the spectral data, X,
to produce a filtered predictor matrix which is focussed on
the variation of interest.

[0050] If PCA suggests separation of different classes,
orthogonal signal correction (OSC) can be used to optimise
the separation, thus improving the performance of subse-
quent multivariate pattern recognition analysis and enhanc-
ing the predictive power of the model.

Modelling and Prediction

[0051] Inherent in the PLS, PLS-DA and neural networks
analyses is the idea of building a predictive mathematical
‘model’ using ‘model-building’ or ‘modelling’ data from
samples of known behaviour or type.

[0052] Once a model has been calculated, it may be
validated using data for samples of known behaviour or type
which were not used to calculate the model. In this way, the
predictive ability of the model may be tested. Once vali-
dated, such models can legitimately be used to predict the
behaviour or type of samples of unknown behaviour or type
(the test data). Before analysis, the test data must be pro-
cessed in the same manner as the modelling data, including
the application of any filtering.

[0053] Any particular model is only as good as the data
used to formulate it. Therefore, it is preferable that all
modelling and test data are obtained from comparable
individuals, under the same (or similar) conditions and using
the same (or similar) experimental parameters.

Prior Art for Phenotyping

[0054] The variation within sets of biofluid NMR spectra
from metabolically unchallenged subjects (i.e. not dosed)
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may be examined by unsupervised PR methods such as PCA
and different groupings may sometimes be observed under
constant experimental conditions (e.g. Bollard et al. (2001)
Investigations into biochemical changes due to diurnal
variation and estrus cycle in female rats using high resolu-
tion (1)HNMR spectroscopy of urine and pattern recogni-
tion, Anal. Biochem., 295, 2, 194-202). However, this
method does not necessarily provide clear information about
the significance of the different groupings in relation to
metabolic transformations (e.g. Baud-Camus et al. (2001)
Determination of N-acetylation phenotype using caffeine as
a metabolic probe and high-performance liquidchromatog-
raphy with either ultraviolet detection or electrospray
massspectrometry, Chromatogr. B. Biomed. Sci. Appl., 760,
1, 55-63). By examination of the spectral features that
provide discrimination between different groups it may be
possible to make an interpretation of the significance of the
separation. However, this is an unreliable and untargeted
approach that does not provide proof of significance and it
is a very inefficient way of examining the potentially subtle
and complex variation associated with different metabolic
phenotypes.

[0055] Conversely, in a targeted approach, it is known to
use patterns of components detected in biofluids using NMR
spectroscopy, or other techniques, after dosing with test
substances (such as caffeine in the case of acetylator phe-
notype) to establish the ability of a subject to effect particu-
lar metabolic transformations. In other words, NMR spec-
troscopy and other techniques can be used to determine the
metabolic phenotype of a subject using post-dose biofluids.
In these analyses, the components of interest would nor-
mally be the unchanged dosed substance and/or its metabo-
lites. For simplicity the term ‘metabolites of the dosed
compound’ will henceforth be considered to include the
dosed compound itself. Often a ratio of such components
would be determined as a measure of the relevant metabolic
ability. From such analyses it would be possible to determine
the ability of a subject with respect to a whole variety of
metabolic transformations depending on the availability of
suitable test substances. However, in general, the ability of
a subject to effect one type of transformation would be
expected to be independent of its abilities with respect to all
other transformations. Thus, one would expect multiple test
substances to be required when investigating a subject’s
ability with respect to a variety of biochemical transforma-
tions. Although such analyses are occasionally carried out,
unnecessary dosing of any substance to human or animal
subjects is undesirable on safety and ethical grounds and
widespread use of such methods is unlikely. A further
complication is that dosing a test substance might cause
enzyme induction, resulting, for some time afterwards, in an
altered metabolic state. Thus, for instance, such phenotyping
could be problematic in relation to toxicity studies.

[0056] The term biomarker as used herein is normally
taken to mean a chemical or biochemical entity in a subject
or subject sample or statistically associated combinations of
entities, or a physiological response in a subject which has
a significance associated with its presence, absence or level,
that is indicative of a particular physiological state, disease
or toxic process or of a predisposition towards a particular
type of metabolic or disease process and may also be
associated with a clinical outcome.
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[0057] Examples of such biomarkers include chemical and
biological molecules, for example metabolic substrates,
intermediates or products, structural proteins, nuclei acids,
transport and receptor proteins, immunological proteins,
proteins associated with metabolic or genetic control, cata-
Iytic proteins, enzymes and their associated cofactors. Fur-
ther examples of biomarkers also include levels of activity
of biological processes for example gene and protein expres-
sion and levels of activity of cellular signalling pathways.

[0058] 1t is appreciated that the term biomarker also refers
to any measurable signal associated with or characteristic of
the presence, absence or level of the aforementioned mol-
ecules or processes; for example signals or patterns of
signals resulting from the output of measurements taken by
techniques such as nuclear magnetic resonance (NMR)
spectroscopy and/or any other chemical analysis techniques
such as mass spectroscopy (MS), infrared (IR) spectoscopy,
gas chromatography (GC) and high performance liquid
chromatography (HPLC) or by using any integrated com-
bination of such techniques e.g. GC-MS.

[0059] The term chemical composition as used herein in
reference to samples includes the combination of chemical
and/or biochemical species which comprise the sample.

[0060] The term physical parameters as used herein in
reference to samples includes characteristic physical mea-
surements obtained by methods such as chromatography,
derivitisation, fractionation and separation, crystallisation,
sedimentation, spectral analysis, molecular weight analysis,
diffraction, analysis of solubility, analysis of turbidity,
refractive index or resistivity, melting point or boiling point.

The Present Invention

[0061] The present invention relates to methods for iden-
tifying the metabolic phenotype of a subject and to methods
for predicting responses and determining risk factors which
are influenced by metabolic phenotype. In particular, the
present invention includes methods for identifying the meta-
bolic phenotype of a subject and for predicting a subject’s
responses to one or more treatments by analysing a biofluid
of that subject.

[0062] As stated above, the recognised approach to meta-
bolic phenotyping relies upon dosing a subject and then
analysing a post-dose biofluid. In a radical departure from
this, the present invention is based on the unexpected finding
that variation in the levels of the metabolites of a dosed
substance in a biofluid correlates with variation in the
metabolite profile of a biofluid before the substance is
administered. Thus, the present invention makes it possible
to predict the response of a subject to a substance prior to
dosing that substance. Furthermore, the present invention
makes it possible to determine a subject’s metabolic phe-
notype without the need to dose that subject with a test
substance. Clearly, where a substance has the potential to
cause an adverse reaction, it is highly useful to be able to
predict a subject’s reaction e.g. in pharmaceutical treat-
ments. Additionally, for the reasons described above (safety,
ethics and enzyme induction), it is highly advantageous to be
able to determine the metabolic phenotype of a subject
without the need for any dosing. This new and radically
different methodology provides a highly targeted approach
to finding pre-dose correlates for post-dose behaviour.
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[0063] Thus, in one aspect, the present invention provides
a generic method for building a model with which to predict
a subject’s response(s) to a substance potentially to be
administered to that individual. In this method, the substance
to be dosed would be administered to a representative
population of subjects, henceforth referred to as the model
building population. The response(s) of interest would be
measured in all members of the model building population,
by whatever means were appropriate. Biofluid or other
samples collected from the model building population
before dosing would be examined by "H NMR spectroscopy
or by another suitable technique (e.g. near infrared spec-
troscopy, high performance liquid chromatography, mass
spectroscopy or gas chromatography) or by a combination of
such techniques. Together, the pre-dose and post-dose
response data would constitute the model building data. A
chemometric pattern recognition (PR) technique such as
PLS or PLS-DA would be applied to the model building data
to correlate the variation in the post-dose response(s) with
variation in the pre-dose data. Sometimes a data filtering
method such as OSC would be used prior to PR to remove
uncorrelated variation in the pre-dose data. Once built and
validated, the model would be useable in conjunction with
appropriate pre-dose data from one or more test subjects, of
similar type to the model building population, where it was
desired to predict the response to the same substance.
Normally, a new model would be required for each sub-
stance of interest although a model derived for one sub-
stance might be useable in conjunction with a closely related
substance.

[0064] In another aspect, the present invention provides a
generic method for building a model with which to charac-
terise one or more elements of a subject’s metabolic phe-
notype. In this method, the substance to be dosed, and the
amount of that substance, would be carefully chosen to
challenge the particular metabolic transformation(s) of inter-
est. The chosen substance would be administered to a
representative population of subjects, henceforth referred to
as the model-building population. The metabolites of inter-
est would be measured, in a post-dose biofluid or other
sample, by ‘H NMR spectroscopy or by other suitable
means, as convenient. From this analysis, a measure of the
ability of each subject with respect to the relevant metabolic
transformation(s) would be determined. Biofluid or other
samples collected from the model building population
before dosing would be examined by *H NMR spectroscopy
or by another suitable technique (e.g. near infrared spec-
troscopy, high performance liquid chromatography, mass
spectroscopy or gas chromatography) or by a combination of
such techniques. Together, the pre-dose data and the post-
dose ‘metabolic ability’ measurements would constitute the
model building data. A chemometric pattern recognition
(PR) technique such as PLS or PLS-DA would be applied to
the model building data to correlate the variation in the
post-dose ability measurements with variation in the pre-
dose data. Sometimes a data filtering method such as OSC
would be used prior to PR to remove uncorrelated variation
in the pre-dose data. Once built and validated, the model
would be useable in conjunction with appropriate pre-dose
data from one or more test subjects, of similar type to the
model-building population, where it was desired to deter-
mine the relevant metabolic ability or abilities.

[0065] In a first aspect of the invention there is provided
a method of generating models with which to characterise
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selected aspects of the metabolic phenotype of subjects
without dosing a test substance to those subjects or with
which to predict, without dosing, the post-dose responses of
subjects where those responses are dependent on metabolic
phenotype, the method comprising:

[0066] obtaining pre-dose data relating to a plurality
of subjects before dosing with a dosing substance;

[0067] obtaining post-dose data relating to the plu-
rality of subjects after dosing with the dosing sub-
stance;

[0068] correlating inter-subject variation in the pre-
dose data with inter-subject variation in the post-
dose data, and generating a pre-to-post-dose predic-
tive model on the basis of the observed correlation.

[0069] The pre- and/or post-dose data may be obtained
from samples which are biofluids such as urine, blood, blood
plasma, blood serum, saliva, sweat, tears, breath or breath
condensate or from samples which are plant tissues, plant
fluids or homogenates, plant extracts or plant exudates,
including, for example, essential oils or from samples which
are human or animal tissues, fish tissues or oils, tissue
extracts, tissue culture extracts, cell culture supernatants or
extracts or of microbial origin. The pre- and/or post-dose
data may comprise data relating to chemical composition
and/or physical parameters.

[0070] The pre- and/or post-dose samples or subjects may
be treated prior to analysis (e.g. treated with one or more
chemical reagents so as to produce derivative(s) of one or
more existing substances), for instance to enhance data
recovery or to improve sample stability.

[0071] The pre- and/or post-dose data may be derived
from or are compositional data acquired using nuclear
magnetic resonance (NMR) spectroscopy and/or any other
chemical analysis techniques such as mass spectroscopy
(MS), infrared (IR) spectoscopy, gas chromatography (GC)
and high performance liquid chromatography (HPLC) or by
using any integrated combination of such techniques e.g.
GC-MS.

[0072] The pre- and/or post-dose data may be physical
data or data derived therefrom.

[0073] Preferably a phenotyping model is generated for
each of a plurality of biochemical transformations, by dos-
ing appropriate substances. Similarly, by dosing appropriate
substances, a response prediction model may be built for
each of a plurality of dosing substances.

[0074] The original pre-dose data set may extended, prior
to pattern recognition, by taking ratios and/or other combi-
nations of existing variables. This may be achieved for
instance by forming further data comprising a ratio or ratios
of the obtained data.

[0075] For a group of subjects dosed with any particular
substance, a pattern recognition method may be used to
identify patterns in the variable metabolism of, or the
variable reactions to, the dosing substance. A supervised or
unsupervised pattern recognition method may be used to
identify variation in the pre-dose data that correlates with the
variation of interest in the post-dose data.

[0076] A data filtering method such as Orthogonal Signal
Correction (OSC) may be used to remove variation in the
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pre-dose data that is not correlated with the variation of
interest in the post-dose data.

[0077] The method may be used to identify biomarkers or
combinations of biomarkers which provide information on
metabolic phenotype or which may be used to predict
responses to dosing.

[0078] In a second aspect of the invention there is pro-
vided a method of determining selected aspects of the
metabolic phenotype of a subject, the method comprising:

[0079] analysing data relating to the un-dosed subject
in relation to a model describing the correlation of
pre-dose and post-dose data relating to a plurality of
subjects dosed with a particular substance which
challenges the biochemical transformation or path-
way of interest;

[0080] generating, according to the predetermined
criteria of the model, a numerical measure or clas-
sification describing the metabolic phenotype of the
un-dosed subject.

[0081] The pre-determined criteria of the model include
one or more mathematical equations which define the rela-
tionship between the pre-dose data and the post-dose data
and allow characterisation of subjects on the basis of pre-
dose data and allow identification of test data which are
outliers.

[0082] The data relating to the un-dosed subject may be
obtained from a biofluid such as urine, blood, blood plasma,
blood serum, saliva, sweat, tears, breath or breath conden-
sate or from a plant tissue, plant fluid, plant homogenate,
plant extract or plant exudate, including, for example, an
essential oil, or from human or animal tissue, fish tissue or
oil, or from a tissue extract, tissue culture extract, cell
culture supernatant or cell culture extract or from a sample
of microbial origin or from any one of the above sample
types after treatment to enhance data recovery or sample
stability.

[0083] Characteristic compositional and/or physical data
relating to a subject may be generated using nuclear mag-
netic resonance (NMR) spectroscopy and/or any other tech-
niques or by using any combination of techniques.

[0084] The phenotyping method may be used for the
purpose of making a metabolic phenotype-influenced risk
assessment and/or for the purpose of targeting the use of
special health monitoring regimes and/or for the purpose of
targeting the use of precautionary/preventative treatments
and/or for the purpose of characterising risk for insurance
purposes and/or for the purpose of selecting subjects for any
other purpose e.g. for breeding.

[0085] In a further aspect of the invention there is pro-
vided a method of predicting the reaction of a subject to a
dosing substance, the method comprising:

[0086] analysing data relating to an un-dosed subject
in relation to a model characterising the correlation
of pre-dose and post-dose data relating to a plurality
of subjects dosed with the particular dosing sub-
stance; and

[0087] generating, according to the predetermined
criteria of the model, a numerical or class prediction
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for the expected response of the un-dosed subject if
it were to be dosed with the dosing substance.

[0088] According to pre-determined criteria, the maxi-
mum or minimum dose of a substance that a subject should
receive can be predicted as well as the amount of a dosing
substance that a subject should receive. The frequency with
which a subject should be dosed with a substance can also
be predicted as well as the number of doses of a substance
that a subject should receive. The appropriate controlled
release formulation for a subject can be selected.

[0089] Characteristic compositional and/or physical data
relating to a subject may be generated using nuclear mag-
netic resonance (NMR) spectroscopy and/or any other tech-
niques or by using any combination of techniques.

[0090] The method of determining selected aspects of the
metabolic phenotype of a subject or of predicting the reac-
tion of a subject to a dosing substance, may further comprise
analysing data relating to the un-dosed subject with respect
to one or more biomarkers which have been previously
identified. The biomarker(s) may react with one or more
added reagents to produce a visible change such as a colour
change. Preferably the biomarkers are selected by correlat-
ing pre-dose data relating to a plurality of subjects before
dosing with a dosing substance and post-dose data relating
to the plurality of subjects after dosing with the dosing
substance.

[0091] The method may be used to select a group of
phenotypically homogenous or similar subjects for a labo-
ratory experiment or clinical trial or for any other purpose.

[0092] The method may be used for rationalising biologi-
cal variation in experimental data based on pre-dose analysis
of biofluids or tissues, where such variation is caused by
phenotypic heterogeneity.

[0093] The data may be based on physical and/or chemical
measurements taken from the subject as a whole. Examples
of such measurements are blood pressure, heart rate, peak
flow, height, weight etc.

[0094] The post-dose data may describe a change relative
to the pre-dose state e.g. a decrease in blood pressure of a
human subject treated with a drug that lowers blood pres-
sure.

[0095] Preferably test data that does not conform to the
limits of a particular model and/or method is identified.

[0096] The subject may be an animal, in particular a
mammal such as a human, a mouse, a rat, a pig, a cow, a bull,
a sheep, a horse, a dog or a rabbit or any farmed animal or
any animal, such as a race horse, used for the purpose of
sport or for breeding. Alternatively the subject may be a
plant, a fish or any other aquatic organism or a biological
tissue, a tissue culture, a cell culture or a microbial culture.

[0097] Data may be obtained from a sample which is
representative, or is taken to be representative, of a group of
subjects which are considered as a single subject. For
instance, samples from a plurality of like subjects (e.g. a
plant) may be ground together and the resulting material
used to obtain data considered to relate to a single plant
subject.

[0098] The dosed substance may be any substance or
mixture or formulation of substances including especially
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pharmaceutical or medicinal substances or substances in
research or development which might potentially become
pharmaceutical or medicinal substances, but also including,
for example, toxins, pesticides, herbicides, food or feed
substances, food or feed additives and fluids of any sort
including liquids, gases, vapours and smoke e.g. tobacco
smoke.

[0099] The dosed substance may be actively or passively
dosed in any matrix or medium, by any means or route,
including for example, by injection, by eating, by drinking,
by inhaling or by smoking, over any time period including
a subject’s lifetime or any specified part or fraction thereof,
such dosing to include that resulting from environmental
exposure or pollution or from medical, dental, veterinary or
surgical procedures.

[0100] The method may be used for identifying the acety-
lator phenotype of a subject without dosing a test substance
to that subject. Additionally or alternatively the method may
be used for predicting the response of a subject to dosing
with a substance where that response is dependent on
acetylator phenotype.

[0101] The method may be used to predict the suscepti-
bility of a subject to isoniazid-induced toxicity or galac-
tosamine-induced toxicity.

[0102] The invention also relates to apparatus for gener-
ating models.

[0103] In a further aspect of the invention there is pro-
vided apparatus for response prediction and/or for metabolic
phenotyping, the apparatus comprising:

[0104] one or more models, each model modelling
the correlation of pre-dose and post-dose data relat-
ing to a plurality of subjects dosed with a particular
dosing substance;

[0105] a processor for analysing data relating to an
un-dosed subject in relation to at least one of the
models and thereby determining one or more aspects
of the metabolic phenotype of the un-dosed subject
or predicting its responses to dosing according to the
model(s) employed.

[0106] Additionally or alternatively the apparatus is fur-
ther arranged to generate one or more models with which to
characterise selected aspects of the metabolic phenotype of
subjects without dosing a test substance to those subjects or
with which to predict, without dosing, the post-dose
responses of subjects where those responses are dependent
on metabolic phenotype, the apparatus being arranged to:

[0107] obtain pre-dose data relating to a plurality of
subjects before dosing with a dosing substance;

[0108] obtain post-dose data relating to the plurality
of subjects after dosing with the dosing substance;
and

[0109] correlate inter-subject variation in the pre-
dose data with inter-subject variation in the post-
dose data, and generating a pre-to-post-dose predic-
tive model on the basis of the observed correlation.

[0110] Preferably the apparatus may further comprise one
or more analytical instruments or devices to carry out
physical and/or chemical analysis, such as NMR spectros-
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copy, mass spectroscopy, infrared spectroscopy or high
performance liquid chromatography.

[0111] The apparatus may also be arranged to identify one
or more biomarkers, in particular for response prediction or
metabolic phenotyping based on the use of one or more
biomarkers which have been previously identified as
described.

[0112] In a further aspect of the invention there is provided
apparatus for metabolic phenotyping or for predicting a
subject’s response(s) to dosing, the apparatus comprising:

[0113] atest area to receive a sample from the subject
under test,

[0114] said test area incorporating one or more reagents
which may react chemically with one or more biomarkers in
the sample to produce a change in the visual appearance of
the test area, the biomarkers having been previously iden-
tified as described, and the resulting visual appearance of the
test area being characteristic of metabolic phenotype or
predictive of response(s) to dosing.

[0115] Preferably the apparatus identifies an appropriate
dosing regime for a subject.

[0116] The apparatus may be based on the use of antibod-
ies raised against specific biomarkers. Selected biomarkers
may be detected and/or quantified by means of enzyme-
catalysed reactions using, for instance, enzymes immobil-
ised on a solid support.

[0117] The invention also relates to apparatus comprising
one or more models generated by a method according to the
invention.

[0118] The apparatus may be further arranged to identify
test data that does not conform to the limits of a particular
model.

[0119] The invention has many applications:

[0120] (1) “Well’ subjects not requiring corrective
treatment

[0121] Metabolic characterisation (phenotyping) of
subject enabling:

[0122] risk assessment e.g. bladder cancer particu-
larly associated with certain phenotype.

[0123] targeted adoption of special health moni-
toring regimes where appropriate i.e. in high risk
subjects.

[0124] targeted use of precautionary/preventative
treatments where appropriate i.e. in high risk
subjects.

[0125] identification, for insurance purposes, of
the degree of risk associated with a subject.

[0126] selection of subjects with desirable charac-
teristics e.g. in breeding farm animals.

[0127] selection of phenotypically homogenous
subsets of subjects for laboratory or clinical
experiments.
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[0128] (2) Subjects requiring pharmaceutical, medi-
cal, dental, veterinary or other treatments

[0129] Metabolic characterisation (phenotyping)
of the subject and/or prediction of the subject’s
responses to dosing or treatment, enabling:

[0130] avoidance of adverse drug reactions (e.g.
coma, fatality) either by not administering the
drug to vulnerable subjects or by reducing the
drug dose and/or the frequency and/or duration of
such dosing.

[0131] prediction of occurrence and degree of
severity of minor side effects of drug treatments
(e.g. nausea, drowsiness).

[0132] selection of optimal pharmaceutical treat-
ment (compound, dose, dose-frequency and dura-
tion of course of treatment) based on maintaining
an appropriate level of the active drug substance in
the body whilst minimising side-effects.

[0133] avoidance of adverse reactions to medical,
dental, veterinary procedures and substances e.g.
anaesthetics such as halothane.

[0134] selection of appropriate medical, dental or
veterinary procedures or treatments.

[0135] (3) Drug development and licensing

[0136] Drugs having different effects (e.g. efficacy,
toxicity) in different subjects could be licensed
under the proviso that pre-dose metabolic pheno-
typing would be carried out and treatments tai-
lored accordingly. This would enable:

[0137] a reduction in ‘attrition’ (abandonment of
compounds during the drug development process)
because of variable responses either in efficacy or
in toxicity.

[0138] recovery/relicensing of certain non-ap-
proved drugs where the problems in effectiveness
or toxicity were limited to certain subsets of
subjects rather than the population as a whole.

[0139] In relation to drug development studies
(e.g. for toxicity or efficacy) pre-dose metabolic
phenotyping would enable:

[0140] interpretation of variable results where that
variation resulted from phenotypic differences
between different subjects or between different
subsets of subjects.

[0141] selection of desired test groups having cer-
tain required metabolic characteristics.

[0142] (4) Biomarker identification

[0143] Instead of being used directly for analysis
of test data, appropriate models could be used to
identify biomarkers or combinations of biomark-
ers with which to determine metabolic phenotype
or with which to predict responses determined by
metabolic phenotype. Having established the rel-
evant biomarker(s), simplified methods of analy-
sis, e.g. urine dipsticks or HPLC methods, could
then be developed based on those biomarkers.
This would reduce reliance on sophisticated tech-
nologies such as NMR spectroscopy and would
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enable more remote testing e.g. in local laborato-
ries, pharmacies, hospitals or doctors’ surgeries.

[0144] The invention will now be described further, by
way of example only, with reference to the accompanying
drawings, in which:

[0145] FIG. 1.1 shows the variable urinary excretion of
galactosamine after dosing with Galactosamine HCI (abbre-
viated GaIN HCI) (800 mg/kg);

[0146] FIG. 1.2 shows the variable urinary excretion of an
N-acetylated species after dosing with GaIN HCI1 (800
mg/kg);

[0147] FIG. 1.3 shows some urinary changes induced by
GalIN HCI (800 mg/kg) in a responder;

[0148] FIG. 1.4 shows the altered urinary excretion of
hippurate and histidine after dosing with galactosamine HCl
(800 mg/kg);

[0149] FIG. 1.5 shows the scores plot on PC 1 vs. PC 5
from a PCA of the day -1 (pre-dose) urine NMR spectra
from the galactosamine study;

[0150] FIG. 1.6 shows the loadings plot on PC 1 vs. PC
5 from the PCA of the day -1 (pre-dose) urine NMR spectra
from the galactosamine study;

[0151] FIG. 2.1 shows examples of the different patterns
of N-acetylated metabolites seen in the NMR spectra of
urine samples collected from 0-7 hours after dosing iso-
niazid (400 mg/kg) to male Sprague-Dawley rats;

[0152] FIG. 2.2 shows the scores plot on PC 1 vs. PC 2
from a PCA of the N-acetyls region (82.23 to § 2.13) of the
NMR spectra of the day 1 (0-7 hours from dosing) urine
samples from the animals dosed with isoniazid (200 mg/kg);

[0153] FIG. 2.3 shows two optional initial pathways for
isoniazid metabolism;

[0154] FIG. 3.1 shows pre-dose prediction of the ratio
(peak height ‘a’/peak height allantoin) in the NMR spectra
of urine samples collected from 0-7 hours after dosing
isoniazid (200 mg/kg);

[0155] FIG. 3.2 shows the regression coefficients pertain-
ing to the PLS analysis which gave rise to the results
described in FIG. 3.1;

[0156] FIG. 3.3 shows pre-dose prediction of the amount
of metabolite C excreted in the urine collected from 0-7
hours after dosing rats with isoniazid (200 mg/kg).

[0157] FIG. 3.4 shows pre-dose prediction of the ratio
[(Fraction C)/(Fraction A+B)] in the urine collected from
0-7 hours after dosing rats with isoniazid (200 mg/kg).

[0158] FIG. 3.5 shows the internal validation of the model
relating to FIG. 3.4.

[0159] FIG. 3.6 shows pre-dose predictions of [(Fraction
C)/(Fraction A+B)] for an external test set.

[0160] FIG. 4.1 shows pre-dose prediction of the total
urinary excretion of N-acetylated compounds (d ca. 2.22-ca.
2.11) in the 24-hour period after dosing rats with paraceta-
mol. (1* model for this parameter).
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[0161] FIG. 4.2 shows pre-dose prediction of the amount
of ‘MA’ excreted in the 24-hour period after dosing rats with
paracetamol. (1** model for this parameter).

[0162] FIG. 4.3 shows pre-dose prediction of the total
urinary excretion of N-acetylated compounds (d ca. 2.22-ca.
2.11) in the 24-hour period after dosing rats with paraceta-
mol. (2™ model for this parameter).

[0163] FIG. 4.4 shows the internal validation of the model
relating to FIG. 4.3.

[0164] FIG. 4.5 shows pre-dose prediction of the urinary
excretion of paracetamol glucuronide (‘G’) in the 24-hour
period after dosing rats with paracetamol.

[0165] FIG. 4.6 shows the internal validation of the model
relating to FIG. 4.5

[0166] FIG. 4.7 shows pre-dose prediction of the urinary
excretion of ‘MA’ in the 24-hour period after dosing rats
with paracetamol. (2™ model for this parameter).

[0167] FIG. 4.8 shows the internal validation of the model
relating to FIG. 4.7FIG. 4.9 shows the external validation of
the model relating to FIG. 4.7FIG. 4.10 shows pre-dose
prediction of the urinary excretion of ‘P’ in the 24-hour
period after dosing rats with paracetamol.

[0168] FIG. 4.11 shows the internal validation of the
model relating to FIG. 4.10

[0169] FIG. 4.12 shows the observed versus pre-dose
predicted values for the amount of ‘S’ excreted in the
24-hour period after dosing rats with paracetamol.

[0170] FIG. 4.13 shows the observed versus pre-dose
predicted values for the G/S ratio in the 24-hour urine
samples obtained after dosing rats with paracetamol.

[0171] FIG. 5.1 shows pre-dose prediction of the total
urinary excretion of N-acetylated compounds (& 2.210-
2.135) per kg of body mass in the first three hours after
dosing human males with paracetamol.

[0172] FIG. 5.2 shows the external validation of the
model relating to FIG. 5.1.

[0173] FIG. 5.3 shows pre-dose prediction of the amount
of paracetamol glucuronide (‘G’) excreted in the urine per
kg of body mass in the first three hours after dosing human
males with paracetamol.

[0174] FIG. 5.4 shows the external validation of the
model relating to FIG. 5.3.

[0175] FIG. 5.5 shows pre-dose prediction of the amount
of ‘P’ excreted in the urine per kg of body mass in the first
three hours after dosing human males with paracetamol.

[0176] FIG. 5.6 shows the external validation of the
model relating to FIG. 5.5.

[0177] FIG. 5.7 shows pre-dose prediction of the total
urinary excretion of N-acetylated compounds (& 2.210-
2.135) per kg of body mass in the first six hours after dosing
human males with paracetamol.

[0178] FIG. 5.8 shows the external validation of the
model relating to FIG. 5.7.



US 2005/0074745 Al

A. PREFERRED FEATURES OF THE MODEL
BUILDING PROCEDURE

[0179] 1. The Model Building Population.

[0180] The subjects who form the model-building popu-
lation should, as far as possible, be representative of the
subjects who will form the test population. Diet can affect
biofluid composition and inter-subject dietary variation
could therefore be important in relation to biofluid-derived
models. Ideally, the methods would be sufficiently robust so
as to be unaffected by dietary variation but this would
require testing for each model. As a precaution against the
possible effect of a variable diet, it would be advisable for
all the model building, validation and test data relating to a
particular model to be acquired from subjects receiving the
same diet. This is easier to achieve for laboratory animals
than it is for humans. In fact, it could be advantageous if
standard animal diets and a standard human diet were to
specified for all relevant exercises as this would enable rapid
checking of a test subject’s urine sample against a range of
different models. In general, the larger the size of the
model-building population, the more robust will be the
model created. Once a model has been built it would need
to be validated using a group of subjects who were not
members of the model-building population.

[0181] 2. Dosing

[0182] The substance dosed, the dose level, the frequency
of dosing and the means of dosing will depend on the
application. Where the aim is to produce a method for
metabolic phenotyping, the dosed substance would need to
provide one or more metabolites with which to characterise
the extent of the transformation(s) of interest. Ideally, the
selected metabolites would only be affected by the transfor-
mation(s) of interest and would not be subject to other
complications. It is, therefore, likely that the dosed com-
pounds would be small uncomplicated chemical compounds
with perhaps mono- or bi-chemical functionality. For build-
ing such phenotyping models it is likely that a single dose of
the selected substance would be sufficient but this dose
would need to be large enough to provide discrimination
between metabolically-different individuals. Where the aim
is to build a model for response prediction, the dosing
regime should be identical to that for which the response is
to be predicted in the test subjects.

[0183] 3. Samples
[0184]

[0185] The pre-dose sample(s) will need to be selected so
as to contain relevant metabolic information. If necessary,
samples of more than one type could be taken and their
information content combined. Preferably the sample(s)
would be easy to obtain and the sampling procedure(s)
would cause minimal pain and inconvenience. To minimise
the potential for changes in metabolic phenotype to occur
between time of pre-dose sampling and the time of dosing,
the pre-dose samples should be obtained as near as possible
to the time of dosing.

a. Pre-Dose Samples

[0186] Urine is an ideal pre-dose sample because it con-
tains a wealth of metabolic information and can be sampled
with little or no inconvenience especially to human subjects.
Additionally, with humans, urine can be sampled essentially
on demand. Urine collection from animals such as rats is
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slightly more difficult; it cannot be obtained on demand and
smaller animals such as rats would generally have to be
housed within individual cages for several hours with spe-
cial arrangements for urine collection.

[0187] Blood also contains metabolic information and, in
small quantities, is relatively easy to sample from larger
animals or humans by a ‘pin-prick’ method. However,
special arrangements have to be made to inhibit clotting e.g.
the use of blood serum or of vials containing lithium
heparin. Larger quantities of blood are more difficult to
obtain especially from smaller animals and specialised tech-
niques and phlebotomists may be required. Anaesthesia
and/or sedation may be required depending on the site of
blood sampling and the ease of immobilising the subject.
Blood plasma or blood serum are the two blood-derived
fluids that would normally be analysed.

[0188] Saliva, sweat, exhaled breath or exhaled breath
condensate, tears and maternal milk are other body fluids
which would be easy to obtain and might contain relevant
metabolic information depending on the nature of the inves-
tigation.

[0189] b. Post-Dose Samples

[0190] The post-dose sample type will depend on the
application. The post-dose sample could be the whole sub-
ject e.g. a human or a rat, or a sample derived from that
organism, as in section a. above. Where necessary, samples
of more than one type could be taken.

[0191]

[0192] Special arrangements need to be taken to ensure the
stability of biological samples which would otherwise be
subject to degradation by bacteria or other means. As stated
above, special arrangements need to be made to prevent the
clotting of blood or blood plasma. Urine samples, especially
those which might have been subjected to faecal or other
contamination, are best collected into vials containing an
anti-bacterial agent such as sodium azide. Sodium azide has
the benefit of being invisible to *H NMR spectroscopy.
Where the urine sample is collected over a significant period
of time, i.e. for hours rather than minutes, it is best if the
collection vessel or bag is cooled by ice or other means.
Once collected and stabilised, all biological fluids should
either be analysed immediately or stored deep-frozen (-20C
or below) pending analysis. Preferably, any ‘solid’ tissue
samples would be ‘snap’ frozen in liquid nitrogen immedi-
ately after collection and subsequently stored at —=80C pend-
ing analysis. Collection and storage vessels should be
selected which will not contaminate the samples by leakage
of plasticisers or other plastic components.

[0193] 4. Sample Preparation

c. Sample Stability

[0194] Some sample preparation or treatment may be
required prior to analysis. Samples for 'H NMR spectro-
scopic analysis are typically prepared as follows although
there may be much variation in the exact procedure used by
different workers:

[0195] a. Urine Samples

[0196] Urine samples are typically prepared for NMR
analysis by mixing 400 ul of urine with 200 ul of phosphate
buffer (an 81:19 (v/v) mixture of 0.2 M Na,HPO, and 0.2 M
NaH,PO,; pH 7.4); if insufficient urine is available the
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shortfall is made up with purified water with a minimum of
200 yl of urine being used. The urine-buffer mixture is left
to stand for 10 minutes at room temperature to enable
buffering to take place and then centrifuged at 13,000 rpm
for a further 10 minutes to remove suspended particulates.
500 ul of “clear’ buffered urine is transferred to an NMR tube
and 50 ul of a TSP/D,O solution added. TSP (sodium
3-trimethylsilyl-[2, 2, 3, 3-°H,]-1-propionate) is a chemical
shift reference compound (3 0) used in the NMR experiment
and the D,O provides a field/frequency lock for the NMR
spectrometer. The concentration of the TSP/D,O solution is
such as to give a final TSP concentration of 0.1 mM in the
NMR tube.

[0197] b. Plasma Samples

[0198] Plasma samples are typically prepared for 'H NMR
analysis by mixing 150 uL. of plasma with 350 uL of saline
(0.9% (w/v) NaCl in a mixture of 10% (v/v) D,O and 90%
(v/v) H,0). Chemical shift reference compounds such as
TSP are not added because of the likelihood of binding to
protein in the sample.

[0199] Depending on the analytical technique to be
employed, chemical derivatisation of the sample could be
used to enhance data recovery. Thus, for example suitable
chromophores could be attached to compounds which would
otherwise be undetectable to spectrophotometric detectors
monitoring the absorption of ultraviolet or visible light.
Another option would be to attach fluorescent markers to
enhance the detectability of compounds by fluorimetric
analysis. By such chemical derivatisation, previously unde-
tectable compounds could be made detectable and detection
limits could be improved for others. Chemical derivatisation
could also be employed to facilitate the chromatographic
separation of different sample components. Physical and/or
chemical treatments could also be employed to remove
undesirable sample components such as plasma proteins
which might otherwise cause problems during the analysis.

[0200] 5. Physical-Chemical Analytical Techniques

[0201] a. Analysis of Post-Dose Samples

[0202] The analytical technique(s) need to be chosen with
regard to the parameter(s) being measured and the number
and nature of the samples e.g. whole organism or biofluid
type. The huge range of parameters that might be of interest
in different models means that a wide range of analytical
instrumentation and methods could be required.

[0203] If the application is to measure specific
response(s), e.g. the change in blood pressure, after dosing
with a particular substance then the most appropriate tech-
nique(s) should be chosen, e.g. sphygmomanometer. If the
toxicity of a substance is the focus of interest then it may be
best to measure a range of blood plasma parameters, such as
enzyme activities, using, for instance, an automated clinical
analyser equipped with appropriate kits. Alternatively, his-
topathological findings could be classified according to type
of effect or could be numerically scored according to degree
of severity. Where the aim is to build a phenotyping model
the post-dose analytical technique would normally need to
provide quantitation, or at least relative quantitation, of one
or more metabolites of the dosed substance.
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[0204] b. Analysis of Pre-Dose Samples

[0205] As with the post-dose samples, the choice of ana-
lytical technique for the pre-dose samples will be influenced
by the nature of the samples but, additionally, the chosen
pre-dose analytical technique would need to be able to
reveal metabolic information. Preferably, analysis of a body
fluid or body tissue would be by means of NMR spectros-
copy or by another technique which is capable of undirected
metabolite detection and quantitation i.e. the chosen tech-
nique would ideally detect and quantify individual metabo-
lites without the need to specify analysis of those particular
metabolites. This allows for the use, within the model, of the
most useful metabolites even if they are not presently
known. It also allows for the identification of new metabolite
markers where that is of interest. For model-building, it is
not necessary that each observed metabolite is identified but,
rather, the analytical technique should provide a reliable
quantitative fingerprint of each sample. Ideally, the chosen
technique would be readily accessible but this might not
always be possible because of the expense and the level of
sophistication required. One possible technique, that is stan-
dard analytical equipment in most analytical chemistry
laboratories, is High Performance Liquid Chromatography
(HPLC) with, for instance, UV-Visible spectrophotometric
detection. Although it can be rather time-consuming, the
HPLC technique would be capable of providing the type of
data that is required from a pre-dose sample. The choice of
the detector for HPLC would be a critical factor and data
recovery could be facilitated by chemical derivatisation of
the sample prior to analysis. The use of NMR spectroscopy
would not be limited to any particular type of NMR experi-
ment.

[0206] c. Variable Performance of Different Analytical
Instruments

[0207] Different analytical instruments may perform dif-
ferently and the performance of a single piece of equipment
may vary over time. Such instrumental variation could be
particularly important where subtle pre-dose variation
between samples needs to be characterised to build a suc-
cessful model although data filtering such as OSC could help
to minimise its effects in ‘supervised’ PR analyses. There-
fore, in building a particular model, all measurements of a
particular type would, ideally, be taken on a single occasion
using one specific instrument. If it were not possible to carry
out all the analyses on one occasion it would be necessary
to ensure that instrument performance had not varied sig-
nificantly between the different periods of use. Where mul-
tiple pieces or types of equipment were used in taking
measurements from the model-building population, it would
be necessary to carry out cross-checks to ensure similar
performance from each instrument. Deselection or recali-
bration of instruments would need to be carried out where
there was a significant difference in performance between
different instruments.

[0208] 6. Data Manipulation Prior to Multivariate PR
Analysis

[0209] It may be helpful or necessary to carry out some
data manipulation prior to PR analysis.

[0210] Ideally, all the available physical and/or chemical
data would be used in creating the input data for the
chemometric analysis. However, depending on the type of
data acquired, some data reduction may be required prior to
multivariate analysis. With *"H NMR spectroscopic data of
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biofluids such as urine this has been used, despite buffering,
to cope with small pH-induced shifts in the position of peaks
on the chemical shift scale. Thus, after deleting certain
regions such as the residual water signals, the remainder of
each 1D 'H NMR spectrum is divided along its abscissa into
sequential segments (typically of 0.04 ppm width for a 600
MHz spectrometer) and an integral obtained for each seg-
ment. Where such data reduction is required it would be
advisable to try a different data reduction method, e.g. to use
different spectral segment widths, if the previous attempt
had not yielded an adequate model. The use of a data
filtering technique such as OSC could facilitate data reduc-
tion by assisting with variable selection.

[0211] With biofluid NMR data it is common practice to
‘normalise’ each data-reduced spectrum and there are a
number of ways of doing that. Frequently, each NMR
spectrum is normalised, or scaled, to give the same total
integration as every other NMR spectrum in the data set.
Additionally, other data manipulations may prove to be
helpful e.g. scaling the *H NMR data from urine samples to
a constant integration for the allantoin peak at § 5.4, if
present, or to a constant integration for a creatinine peak. In
man, urinary creatinine excretion is related to muscle mass
which in turn is loosely related to body mass. Scaling urine
data to constant creatinine should therefore help to eliminate
differences in excretion that are related to body mass.
Additionally, by determining a measure of metabolite con-
centrations in urine and by taking account of the amount of
urine excreted by each subject it should be possible to obtain
a data set which truly represents metabolite excretion by
each subject. Where metabolite excretion has been deter-
mined, and body mass is also known but variable, it may be
useful to normalise urine data to excretion per unit body
mass. It may also be useful to ‘block’ the data so that
variables with values falling within a particular range are
treated as a discrete group.

[0212] A particular limitation of analyses such as PCA,
PLS or PLS-DA is that they rely on finding useful linear
combinations of existing variables despite the fact that a
non-linear combination of variables might be more instruc-
tive. Thus, before carrying out such analyses it would be
sensible to extend the X data matrix by adding non-linear
combinations of the existing variables. In particular, the ratio
of two variables is often more significant than the absolute
value of either and taking ratios could be especially helpful
in relation to metabolic phenotyping where the relative
amounts of different metabolites are often important. Thus,
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the extended X matrix should include the original X vari-
ables together with the one-to-one ratios of all those original
variables except for the ratio of one variable to itself. This
approach is shown in the following simple example:

Original X matrix:

Sample or Variable Variable
object X1 X2
A 25 25
B 16 8
C 8 2
[0213]
Extended X matrix:
Sample or Variable Variable Variable
object X1 X2 X1/X2
A 25 25 1
B 16 8 2
C 8 2 4
[0214] Ina slightly more complicated example three origi-
nal X variables are extended to produce a new six variable
martrix:
Original 3 variable matrix:
Sample or
Object Variable X1 Variable X2 Variable X3
A 25 25 50
B 16 8 32
C 8 2 4
[0215]

Sample or

object Variable X1 Variable X2 Variable X3

Extended matrix:

Variable X1/X2 Variable X1/X3 Variable X2/X3

A 25 25

B 16
C 8

50 1 0.5 0.5
32 2 0.5 0.25
4 4 2 0.5
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[0216] The potential benefit of this approach is demon-
strated in the following simple PLS-type example where one
wishes to predict a single Y variable from two X variables:

Original data matrix:

Sample or Variable Variable Variable
object X1 X2 Y1
A 25 25 2
B 16 8 4
C 8 2 8
[0217]
Extended matrix:
Sample or Variable Variable Variable Variable
object X1 X2 X1/X2 Y1
A 25 25 1 2
B 16 8 2 4
C 8 2 4 8
[0218] In the original matrix there was no constant linear

combination of X1 and X2 that would produce Y1. How-
ever, by extending the X matrix as described a very simple
linear relationship becomes apparent i.e. Y1=2(X1/X2).

[0219] For each variable in the data set some form of
scaling will normally be required prior to performing a
chemometric analysis. Typical scaling approaches include
mean-centring, unit variance scaling and pareto scaling.

[0220] 7. Chemometrics Methodology

[0221] Tt is important to realise that the scope of this
invention is not limited to the use of particular specified
chemometrics methodologies. Any such methodologies
which could identify and establish pre-to-post-dose data
correlations could be employed.

[0222] Supervised pattern recognition (PR) methods such
as PLS or PLS-DA would normally be employed to achieve
targeted model building i.e. pre-to-post dose data correla-
tions. It is possible that these supervised methods would be
preceded by the use of unsupervised PR methods such as
PCA e.g. to examine the variation in the responses to a dosed
compound or to examine the variation in the metabolism of
a dosed compound. Such unsupervised analysis could be
helpful in identifying outliers and in deciding whether to
build a classification method or whether to build a numerical
result model (see below).

[0223] Occasionally, in a less sophisticated approach to
achieving a model for pre-dose discrimination of some
aspect of metabolic phenotype or response prediction, it
might be adequate to apply an unsupervised method such as
PCA to the pre-dose data. This approach has a simplicity
advantage although it would be much less able to determine
subtle discriminators than the supervised methods. Such a
method would rely on being able to code (e.g. colour code)
the individual model building pre-dose data points according
to post-dose behaviour. The success or otherwise of this
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approach would depend on the ease with which the coded
populations could be distinguished pre-dose. In general, this
unsupervised approach would only be suitable where there
were relatively obvious pre-dose discriminators for the
different response groups. It would not be suitable where the
discriminators were complex and ‘hidden’ and, importantly,
data filtering methods such as OSC could not be employed
with this ‘unsupervised’ approach.

[0224] The chemometrics method(s) to be employed in the
model building will depend on the final application that is
envisaged or required. Thus, a classification method such as
PLS-DA would be appropriate when the objective was to
achieve a method for classification of some aspect of meta-
bolic phenotype (e.g. “fast’ or ‘slow’ acetylation) or for
prediction of the type of response to a dosed substance (e.g.
‘adverse drug reaction’ or ‘no adverse drug reaction’).
Alternatively, where the objective was to achieve a quanti-
tative measure of some aspect of metabolic ability or to
predict a numerical measure of some response to a dosed
substance, methods such as PLS would be appropriate.
Neural networks analysis (NNA) can be useful, depending
on the application, and NNA has been proven to be advan-
tageous in a classification role where pre-dose discrimina-
tion may come from one of a number of independent sources
e.g. if the X data is of type A or B or C then the response will
be Y1, if the X data is not of those types then the response
will be Y2. Importantly, neural networks methods do not
readily enable identification of those pre-dose features
which provide the discrimination of interest. Methods such
as PCA, PLS and PLS-DA do readily enable the identifica-
tion of discriminatory features and this would be an impor-
tant advantage in understanding the scientific basis of any
discrimination and where it was desired to derive other
analytical methods to perform the same discrimination.

[0225] Data filtering methods such as OSC would some-
times be employed to remove variation in the pre-dose data
that is not correlated to the variation of interest in the
post-dose data. For instance, OSC can help to minimise the
effects of any variation in the performance of the analytical
instrument(s) used in the physical and/or chemical analysis.

[0226] Frequently, a relatively small number of outliers
will need to be excluded from the model-building data
because their data is in some way inconsistent or a hindrance
to the model building, PCA scores plots and DmodX values
may be used to identify outliers. In the case of PLS models,
outliers could be legitimately excluded by any of the fol-
lowing means:

[0227] a) An examination of the X scores (t1/t2)

[0228] b) An examination of the X residuals
(DmodX)

[0229] c¢) An examination of the correlation between

the scores in the X and Y spaces (e.g. t1/ul).
[0230] d) An examination of the Y scores (e.g. ul/u2)

[0231] e) An examination of the Y residuals
(DmodY).

[0232] 8. Response Prediction Applications

[0233] Substances dosed to living organisms will fre-
quently be subject to a variety of different metabolic trans-
formations. Each of the ensuing metabolites might then in
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turn undergo a variety of further transformations and so on
and so forth. Thus, the complete metabolism of one original
compound could involve an extremely complex morass of
different pathways and many different enzymes. Conse-
quently a multiplicity of different phenotypic influences
could contribute to the nature of the response to a dosed
substance and it could be very difficult to deconvolve all
those different influences. Therefore, in regard to response
prediction applications, it is preferred that the invention is
used to directly predict the response without deconvolving
the different influences. Thus, for instance, the vastly vari-
able degree of liver damage (as shown by histopathology
and clinical chemistry parameters) caused when male Spra-
gue-Dawley rats are dosed galactosamine HCI (800 mg/kg)
(see Example 1) might, in principle, be directly correlated
with variation in pre-dose urine so as to provide a predictive
model for susceptibility to galactosamine HCI, without
needing to understand the metabolic factors that are deter-
minants of the response.

[0234] B. Preferred Features of the Model Validation
Procedure

[0235] Verification of model validity is of great impor-
tance in all types of mathematical modelling. Validation of
a model’s robustness and predictive ability requires a vali-
dation data set that is independent of the data used for model
building. The predictive ability of a model is assessed
according to the magnitude of the errors associated with the
model-based predictions for the validation data set. The
robustness of a model can be judged by comparing the
magnitude of the estimated error for the model with the
magnitude of the error associated with the model-based
predictions for the validation data set. For a model to be
considered as reliable for future predictions of ‘unknown’
samples both requirements, predictability and robustness,
should be fulfilled.

[0236] In the case of PLS models, both ‘internal’ and
‘external’ validation may be performed as follows:

[0237] ‘Internal’ wvalidation of PLS models may be
effected firstly by determining the R*Y and QY values and
secondly by observing the effect, on those values, of ran-
domising the positions of the Y data in relation to their
corresponding rows in the X matrix (typically 20 separate
row permutations would be performed). R*Y provides a
measure of the ability of the PLS model to explain the Y data
from the X data, with all the data included in the model.
However, spuriously high R*Y values can be obtained by
over-fitting and the real test of a PLS model is its predictive
ability. QY provides a measure of the predictive ability of
a PLS model and is obtained by a cross-validation procedure
wherein different portions of the XY data are sequentially
held out for X to Y prediction using models derived from the
remainder of the data. Both R%Y and Q%Y have a theoretical
maximum value of 1, although Q®Y should normally be less
than R*Y. Subject to the actual values of R*Y and Q2Y, a
value of QY close to R®Y implies good predictive ability.
In the second stage of the internal validation of a PLS model,
the positions of the Y data are randomised and both the R*Y
and QY values should decrease substantially if the original
model was valid. Randomisation of the positions of the Y
data relative to their corresponding rows in the X matrix
should result in a large decrease in Q?Y, ideally to zero. R*Y
values should also decrease substantially on randomisation
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of the Y data but would not necessarily decrease to zero
because the modelling procedure will always try to find
something in the X data, even noise, that can predict the
randomised Y data.

[0238] ‘External’ validation of PLS models may be per-
formed by taking a test set of animals that do not form part
of the model-building population and whose Y values
approximately span the range of the Y data in the model. For
the model to be taken as valid the prediction errors for the
test samples (In the SIMCA software from Umetrics this is
designated RMSEP—root mean square error of prediction)
must be in the same range as the estimation errors for the
model samples (In the SIMCA software from Umetrics this
is designated RMSEE—roo0t mean square error of estima-
tion).

[0239] C. Preferred Features of the Testing Procedure

[0240] One very important feature of this invention con-
cerns the identification of subjects with unusual or extreme
metabolic phenotypes. Subjects such as these may be par-
ticularly prone to suffering adverse or idiosyncratic drug
reactions. Given the practical limitations that apply to the
numbers of subjects that can be included in any model
building exercise, it is impossible to build a model based on
the full range of metabolic phenotypes and rare phenotypes
are unlikely to be included. Additionally ethnic differences
are likely to be important sources of phenotypic variation.
However, it is an important feature of the current invention
that, at the testing stage, any phenotype that does not
conform to the range of phenotypes in the model will be
identifiable as an outlier. In the case of PCA and PLS
models, for example, these outliers will be detected either in
the direction of the model plane or hyper-plane described by
the PC- or PLS-scores or in the model residual direction, the
distance to model (DModX, Y). Additionally, in the case of
PLS modelling, outliers in the scores direction can be
present in X-space (T), in Y-space (U) and in the inner
relation between X and Y (T/U). With test subjects identified
as outliers, their metabolic phenotype would not be identi-
fiable, or their response to the dosing substance in question
would not be predictable, with adequate confidence. There-
fore, in response prediction applications, it would be sen-
sible either not to dose the substance at all to such outliers
or to proceed with great caution e.g. with an initial low dose.
Thus, despite the practical limitations of the model building
procedure, the model should be able to provide useful
information with respect to all of the test subjects.

[0241] A single NMR spectrum of, say, a subject’s urine
could be compared against a variety of models to predict that
subject’s responses to a variety of treatments or to assess
several aspects of the subject’s metabolic phenotype. The
NMR spectrum could be stored electronically for use as and
when required. This type of approach would reduce the
amount of physical and/or chemical testing required
although testing at different stages of a subject’s life could
be required to allow for age-related alterations in metabolic
phenotype.

[0242] Normally, a new model would be required for each
substance of interest although a model derived for one
substance might be useable in conjunction with a closely
related substance.

[0243] Preferred features of each aspect of the invention
are as for each of the other aspects mutatis mutandis. The
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prior art documents mentioned herein are incorporated to the
fullest extent permitted by law.

EXAMPLES

Example 1

[0244] The variable response of Sprague-Dawley rats to
dosing with galactosamine hydrochloride. An example of a
possible response prediction method based on the use of a
simple response-coded PCA of the NMR spectra of pre-dose
biofluid samples.

[0245] Thirty young adult age-matched male Sprague-
Dawley rats were obtained from Charles River, France. After
observation to ensure that they each appeared healthy they
were placed in individual metabolism cages with free access
to water and a standard commercial laboratory diet (diet
AO4C from Usine d’Alimentation Rationnelle, Villemois-
son-sur-Orge, France). The laboratory temperature was
maintained at 20+2 degrees C. and the relative humidity at
60+20%. The laboratory air was filtered and changed 14
times per hour. A fixed ‘12 hours light-12 hours dark’ cycle
was imposed. The study commenced after a short period of
cage ‘acclimatisation’. The sampling regime is as shown in
Table 1.1.

TABLE 1.1
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[0249] Blood was sampled from the orbital sinus, under
isoflurane anaesthesia. Blood was sampled from all animals
on day -3 and just prior to euthanasia on either day 2 or day
8. Following euthanasia each rat was sampled for histo-
pathological examination with the sampling including tak-
ing ten liver samples from each rat (two from each liver
lobe). The blood samples were collected into vials contain-
ing lithium heparin as anticoagulant and immediately cen-
trifuged at approx. minus four degrees C. to separate plasma.
A portion of each plasma sample was analysed at thirty
degrees C. on an AU600 multiparametric clinical analyser
(Olympus) for a range of clinical chemistry parameters
including alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) amongst many others.

[0250] Urine samples were prepared for NMR analysis by
mixing 400 Eli of urine with 200 ul of phosphate buffer (an
81:19 (v/v) mixture of 0.2 M Na,HPO, and 0.2 M NaH, PO,
pH 7.4); if insufficient urine was available the shortfall was
made up with purified water with a minimum of 200 ul of
urine being used. The urine-buffer mixture was left to stand
for 10 minutes at room temperature to enable buffering to
take place and then centrifuged at 13,000 rpm for a further
10 minutes to remove suspended particulates. 500 ul of
‘clear’ buffered urine was transferred to an NMR tube and 50

The sampling regime for the Galactosamine HCI study. B, U and P denote sampling for blood,
urine and pathology respectively. Dosing was carried out at the start of day 1.

Group\Day -3 -2 -1 1 1 2 3 4
Urine 0-7 07 07
collection

period/hrs

Late BU U U U U U U U
euthanased

group

Early BU U U U U
euthanased

group

0-7 724 07 07 07 07

6 7 8
0-7 07 —

[0246] At the time of dosing (at the start of day 1) the
growing rats were each approximately 260 g in mass.
Galactosamine (abbreviated GaIN) HCl (from Sigma,
France) was dissolved in physiological saline and dosed by
intraperitoneal injection at either 200 mg/kg or at 800
mg/kg; ten animals (nos. 101-110) received the low dose and
ten animals (nos. 201-210) received the high dose. Ten
control animals (nos. 1-10) received an oral dose of corn oil.

[0247] Five of each group of ten rats were euthanased by
means of CO, on day 2 with the remainder being euthanased
by the same technique on day 8. The early-euthanased rats
were numbers 6-10, 106-110 and 206-210. The late-eutha-
nased rats were numbers 1-5,101-105 and 201-205.

[0248] Pre- and post-dose urine samples were collected for
7 hours daily into ice-cooled vessels containing sodium
azide (0.100 ml of a 10% (w/v) solution of sodium azide in
water) as an antibacterial preservative. There was an addi-
tional overnight urine collection on the day of dosing (from
7-24 hours post-dose). The urine collection apparatus was
cleaned prior to each collection to minimise bacterial, food
and faecal contamination. The urine samples were deep-
frozen pending NMR analysis.

ul of a TSP/D,0 solution added. TSP (sodium 3-trimethyl-
silyl{2, 2, 3, 3-2H,]-1-propionate) is a chemical shift ref-
erence compound (9 0) used in the NMR experiment and the
D, 0 provided a field/frequency lock for the NMR spectrom-
eter. The concentration of the TSP/D,0 solution was such as
to give a final TSP concentration of 0.1 mM in the NMR
tube. The NMR analyses were carried out at thirty degrees
C. on a Bruker AMX 600 MHz NMR spectrometer with the
NOESYPRESAT pulse sequence (Claridge, 1999) used to
reduce the size of the water signal. The principal acquisition
parameters were:

[0251] Spectrometer Frequency: 600 MHz

[0252] Spectral Width: ca. 7200 Hz (12 ppm)

[0253] Bruker Pulse Program: noesyprld

[0254] Number of Data Points in Time Domain: 65536

[0255]
[0256]
[0257]
[0258]
[0259]

Number of Scans: 64

Number of Dummy Scans: 4
Acquisition Time: ca. 4.55 seconds
Presaturation Time: 3 seconds

Mixing Time: 0.1 second.
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[0260] After acquisition, the NMR spectra were Fourier-
transformed into 32768 data points following application of
0.3 Hz line-broadening by means of an exponential multi-
plication applied to the free induction decay signal. The
spectra were phased to give an even baseline around the
NMR signals and the chemical shift scale was set by
assigning the value of 8 0 to the TSP peak. Prior to
data-reduction, the baseline of each day -1 spectrum was
moved to zero intensity using a straight-line baseline cor-
rection algorithm. All these spectral processing operations
were carried out on a Silicon Graphics computer using the
‘xwinnmr’ software (Bruker GmBH).

[0261] Visual examination of the post-dose urine NMR
spectra revealed great inter-animal variation in respect of the
effects of galactosamine HCI (800 mg/kg) on endogenous
metabolites (see Table 1.5 and FIGS. 1.3 and 1.4). On the
basis of this visual examination, animals could be readily
categorised as either (i) ‘responders’ or (ii) as ‘weak or
non-responders’. Additionally, the responders were found to
excrete much greater amounts of galactosamine in their
urine over the period from 0-24 hours post-dosing than did
the weak/non-responders (see FIG. 1.1 and Table 1.6) and
this indicates a connection between galactosamine metabo-
lism and its toxicity.

[0262] FIG. 1.1 shows three NMR spectra. Spectrum ‘a’ is
of the day 1 urine collected from animal 201 from 0-7 hours
after dosing. Spectrum ‘b’ was obtained from authentic
GalN HCL. Spectrum ‘c’ is of the day 1 urine collected from
animal 203 from 0-7 hours after dosing. Spectra ‘a’ and ‘¢’
are scaled to constant allantoin (3 5.4) peak height. GalN is
clearly present in the urine from animal 201 but not in the
urine from animal 203.

[0263] Furthermore, in the NMR spectra of the urine
samples collected from 24-31 hours post-dosing, the
responders showed the presence of a certain N-acetyl peak
that was, at least largely, absent from the spectra of the
weak/non-responders (see FIG. 1.2). This peak was provi-
sionally assigned to N-acetylgalactosamine. The great inter-
animal variability in response to the 800 mg/kg dose was
also reflected in the histopathology and clinical chemistry
data (see Tables 1.2 to 1.4).

[0264] FIG. 1.2 shows NMR spectra of the day 2 urine
samples collected from animals 202 (spectrum ‘a’) and 203
(spectrum b’) from 24-31 hours after dosing. The spectra
are scaled to constant creatinine. An N-acetylated species,
believed to be N-acetylgalactosamine, is clearly present in
spectrum ‘a’ but not in spectrum ‘b’.

[0265] PCA was then carried out on the NMR spectra of
the day -1 (pre-dose) urine samples for the animals that
were subsequently dosed with galactosamine hydrochloride
(800 mg/kg). This data set consisted of nine spectra because
there was insufficient day -1 urine to obtain an NMR
spectrum for animal 206. Prior to the PCA each day -1
spectrum was ‘data-reduced’ in a fixed manner using the
‘AMIX’ software (Bruker GmBH). Certain spectral regions
were excluded with the retained regions being 8 9.0-0 6.25
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and 8 4.5-8 2.76 and 8 2.48-8 0.5. The retained regions were
divided as far as possible into sequential 0.04 ppm-wide
segments and an integral obtained for each segment of each
spectrum. The data-reduced values were then normalised
uniformly to give a total integration value of 1000 for each
‘spectrum’. The resultant data set was loaded into a multi-
variate statistical analysis software package (‘Pirouette’
from Infometrix). The PCA was then carried out using
mean-centred scaling for each variable. The resultant scores
plots were colour-coded according to post-dose behaviour
and, by inspection, it was found that the scores plot for PC1
versus PC5 gave separation of responders and non-respond-
ers. This plot and the corresponding loadings plot are
presented as FIGS. 1.5 and 1.6 respectively. Examination of
FIG. 1.5 suggests that an individual rat’s response to dosing
with galactosamine HCl (800 mg/kg) could be predicted
from the appropriate pre-dose PCA scores plot depending on
how it mapped in relation to known responders and non-
responders. FIG. 1.6 demonstrates how such an analysis
could reveal the pre-dose features that enable discrimination
of responders and non-responders.

[0266] The various figures and tables that follow provide
some details of the variable responses of the different rats to
galactosamine HCI (800 mg/kg) and show how PCA can be
used to distinguish responders and non-responders pre-dose.
It is likely that a supervised PR method using PLS, PLS-DA
or neural networks analysis would be able to achieve much
better pre-dose discrimination of responders and non-re-
sponders than the unsupervised PR approach described here.

TABLE 1.2

Summary of histopathological changes
in galactosamine HCl-dosed rats.

Dose of galactosamine hydrochloride

Day 200 mg/kg 800 mg/kg

2 No differences Multifocal randomly scattered foci of
from controls  hepatocellular necrosis were present in 4/5

animals. Severity of changes:

208 - none

207 - mild

206, 210 - marked

209 - severe

Most necrotic hepatocytes were rounded with a

deeply eosinophilic cytoplasm and pyknotic

nucleus. Some degenerated hepatocytes

showed fine cytoplasmic vacuolation. Necrotic

foci and portal spaces were infiltrated by mixed

inflammatory cells while foci of haemorrhage

were occasionally seen.

8  No differences Minimal bile duct hyperplasia was found in 2/5

animals (201 and 202) this change being

accompanied by slight hepatocellular

from controls

anisocaryosis and a few scattered hemosiderin
laden macrophages.
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[0267]

TABLE 1.3

Clinical chemistry analysis of plasma sampled at 24 hours post-dosing.
See Table 1.4 for key to abbreviations and for units of measurement.

STUDY ANIMAL S-NT A/G ALAT ALB AP ASAT TBA

99023 6 23 1.4 51 34 635 82 69.0
99023 7 27 1.4 52 33 688 77 24.0
99023 8 21 1.3 62 33 732 103 29.0
99023 9 18 1.5 46 32 497 75 20.0
99023 10 26 1.5 50 34 492 86 16.0
99023 106 23 1.3 43 33 606 107 48.0
99023 107 21 1.4 46 33 495 84 22.0
99023 108 21 1.5 49 37 566 73 29.0
99023 109 19 1.4 38 34 697 67 23.0
99023 110 27 1.4 47 33 637 75 29.0
99023 206 156 1.7 2350 32 787 4320 493

99023 207 23 21 178 33 983 264 43.0
99023 208 17 1.5 45 34 666 79 20.0
99023 209 203 2.4 4300 33 999 10600 1300

99023 210 35 1.8 479 31 852 832 65.0

STUDY ANIMAL BILI CHOL CREA GGT GLUC PROT TRIG UREA

99023 6 0.11 72 0.5 0 144 58 108 27
99023 7 0.09 77 0.4 0 186 56 93 23
99023 8 0.1 78 0.5 0 173 58 142 22
99023 9 0.1 70 0.5 0 185 53 130 31
99023 10 62 0.5 176 57 96 24
99023 106 0.09 73 0.5 0 173 59 94 29
99023 107 0.05 60 0.5 0 184 56 158 40
99023 108 0.11 91 0.5 0 167 61 140 33
99023 109 0.1 72 0.4 0 138 58 109 28
99023 110 0.12 81 0.5 0 182 57 127 28
99023 206 1.26 60 0.4 2 100 51 38 45
99023 207 0.06 15 0.4 0 162 49 89 24
99023 208 0.11 61 0.5 0 168 56 148 29
99023 209 1.37 42 0.4 5 80 47 95 40
99023 210 0.12 46 0.4 1 130 48 38 25
[0268] [0269]
TABLE 1.4 TABLE 1.5
Plasma chemistry abbreviations and units Summary of urinary changes observed by NMR in galactosamine
HCl-dosed rats. These results refer to the late-euthanased
group of rats (animals 1-5, 101-105 and 201-205).
Abbreviation Parameter Units
Dose of galactosamine hydrochloride
5-NT 5'-nucleotidase 1U/L
A/G albumin/globulin ratio none 200 mg/kg 800 mg/kg
ALAT alanine aminotransferase IU/L Very variable Very variable amount of
ALB albumin g/L amounts of galactosamine were present in the
AP alkaline phosphatase IU/L galactosamine were day 1 urine samples. The
ASAT aspartate aminotransferase UL present in the day 1 samples from animals 201 and 202
P ) ) urine samples. contained much galactosamine
TBA total bile acids umol/L whilst the samples from
BILI bilirubin mg/dL animals 203-205 contained very
CHOL total cholesterol mg/dL little. See Table 1.6 and
L FIG. 1.1.
CREA creatinine mg/dL N-acetyl at ca. 2.07 ppm: this
GGT y-glutamyl transferase IU/L new peak was only apparent in
GLUC glucose mg/dL the day 2 samples from animals
PROT total protein oL 201 and 202. This peak was
. . provisionally identified by
TRIG triglycerides mg/dL

addition of authentic standard as
UREA urea mg/dL originating from N-

acetylgalactosamine.
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TABLE 1.5-continued
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TABLE 1.5-continued

Summary of urinary changes observed by NMR in galactosamine
HCl-dosed rats. These results refer to the late-euthanased
group of rats (animals 1-5, 101105 and 201-205).

Dose of galactosamine hydrochloride

Summary of urinary changes observed by NMR in galactosamine
HCl-dosed rats. These results refer to the late-euthanased
group of rats (animals 1-5, 101-105 and 201-205).

Dose of galactosamine hydrochloride

200 mg/kg 800 mg/kg 200 mg/kg 800 mg/kg
Taurine: some Taurine: Animals 203-205 elevated in the day 2 and day 3
instances of raised showed no clear change whilst urine samples from animals
taurine but no clear animals 201 & 202 showed 201 and 202. Occasionally
and consistent highly elevated levels. elevated glucose was shown
pattern. by other high dose animals
Creatine: no increase Creatine: Only animals 201 (animal 204 on day 3; animal
and 202 showed a clear increase 205 on day 7).
in creatine - which occurred A doublet at ca. 6 5.21,
on day 3. arising from an unidentified compound,
Guanidinoacetic acid: Only was clearly present in the
animals 201 and 202 showed a day 2 urine spectra from animals
clear change in the level of 201 & 202. This doublet was not
GAA; both those animals showed clearly visible in the spectra
very much increased levels on of any urine samples from
day 3 and perhaps somewhat animals 201-205.
low levels on day 7. Hippurate: was depleted in
2-Oxoglutarate: Animals 203— the day 3 samples from animals
205 showed no obvious change 201 and 202.
in the level of 2-oxoglutarate. Glutamate and glutamine were
Animals 201 & 202 showed elevated in the day 3 urine
reduced levels on days 2 and spectrum from animal 201 and
3 but very high levels on day 7. possibly also elevated in the
Trimethylamine-N-oxide: Animals day 3 urine spectrum from
203-205 showed no animal 202.
obvious change in TMAO levels. Other unlisted changes occurred.
Despite normal pre-dose
levels, TMAO had essentially
disappeared from the day 3 [0270] FIG. 1.3 shows a portion of the noesypresat NMR

urine samples obtained

from animals 201 & 202.

Bile acids: clearly increased
(seen as C18 methyl) in the day
3 samples from animals 201 and 202.
Betaine: appeared very clearly
in the day 2 and day 3 samples
from animals 201 & 202 and some
betaine was still present in

the day 7 samples from those
two animals. No betaine was
detected in any of the urine
samples from animals 204-205. A
tiny amount of betaine was
possibly present in the day 3
sample from animal 203.
Urocanic acid: appeared

clearly in the day 2 and day 3
samples from animals 201 and
202 but was not present in any
other samples.

Histidine: appeared very

clearly in the day 3 sample from
animal 201 and less clearly

in the day 3 sample from animal
202. Histidine was not present
in any of the other urine
samples examined from the
high dose group.

Threonine: was very clearly
elevated in the day 3 samples
from animals 201 and 202.
Threonine levels appeared to be
normal in all the other high
dose samples.

Alanine: was clearly elevated

in the day 3 samples from
animals 201 and 202 but was
otherwise normal.

Glucose: appeared to be

spectra of the day —1 and day +3 urine samples from animal
202. The pre-dose sample (spectrum ‘a’) was collected from
24-17 hours before dosing. The post-dose sample (spectrum
‘b’) was collected from 48-55 hours post-dosing. The spec-
tra are scaled to constant creatinine. In comparison to
spectrum ‘a’, spectrum ‘b’ shows increases in creatine,
betaine, guanidinoacetic acid (GAA) and taurine and
decreases in trimethylamine-N-oxide (TMAO) and 2-oxo-
glutarate.

[0271] FIG. 1.4 shows a portion of the noesypresat NMR
spectra of the day —1 and day +3 urine samples from animal
201. The pre-dose sample (spectrum ‘a’) was collected from
24-17 hours before dosing. The post-dose sample (spectrum
‘b’) was collected from 48-55 hours post-dosing. The spec-
tra are scaled to constant allantoin. In comparison to spec-
trum ‘a’, spectrum ‘b’ shows increased excretion of histidine
and decreased excretion of hippurate.

TABLE 1.6

The variability of response to galactosamine HCI (800 mg/kg) in
relation to the amount of galactosamine excreted in the urine.
This table shows, for each animal, the amount of galactosamine
excreted in the urine collected from 024 hours post-dosing
and lists whether or not a toxic response was observed.

Total amount of
galactosamine Responder
excreted in the (R) or

urine from 0-24 non- Source of evidence

Animal hours post-  responder regarding R/NR

Number dosing (mg)  (NR) classification
201 40.0 R Urine NMR, Histopathology
202 26.2 R Urine NMR, Histopathology
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TABLE 1.6-continued

The variability of response to galactosamine HCI (800 mg/kg) in
relation to the amount of galactosamine excreted in the urine.
This table shows, for each animal, the amount of galactosamine
excreted in the urine collected from 024 hours post-dosing
and lists whether or not a toxic response was observed.

Total amount of
galactosamine Responder
excreted in the (R) or

urine from 0-24 non- Source of evidence

Animal hours post-  responder regarding R/NR
Number dosing (mg) (NR) classification
203 0.4 NR Urine NMR, Histopathology
204 0.1 NR Urine NMR, Histopathology
205 0.3 NR Urine NMR, Histopathology
206 14.9 R Histopathology
207 8.4 NR Histopathology
(or weak R)
208 2.3 NR Histopathology
209 28.2 R Histopathology
(severe)
210 30.5 R Histopathology

[0272] The measured amount of galactosamine excreted
by animal 206 was somewhat lower than expected, given
that it was a strong responder, and this may be because of
urine retained in the bladder. Only 3.7 ml of urine was
excreted by animal 206 over the period from 0-24 hours
post-dosing and this was the lowest amount of urine pro-
duced by any animal during that period. Metabolite excre-
tion is most likely to be underestimated when the measured
urine volume is very low; this is because there may be a
significant amount of highly concentrated urine in the blad-
der which is insufficient to cause urination.

[0273] FIG. 1.5 shows a PC scores plot obtained by PCA
of the *H NMR spectra of the nine available day —1 urine
samples for the high dose (800 mg/kg) animals; insufficient
day -1 urine was available to obtain an NMR spectrum for
animal 206. The data points are coded using diamonds for
non-responders (animal nos. 203, 204, 205, 207 and 208)
and crosses for responders (animal nos. 201, 202, 209, 210),
but it should be noted that animal 207 was on the borderline
between responder and non-responder. This plot shows that
there are features in the pre-dose urine spectra which can
distinguish between those animals which will and will not be
badly affected by galactosamine 800 mg/kg. The responders
had higher pre-dose levels of urinary creatine than non-
responders and all but one of the responders (animal 201)
had a lower pre-dose ratio of urinary 2-oxoglutarate/creati-
nine than non-responders (see also FIG. 1.6).

[0274] Each of the plotted points of FIG. 1.6 is labelled
according to the centre of the 0.04 ppm-wide spectral
segment that it represents. Thus, for instance, the point
labelled 3.02 represents the spectral segment (or variable)
from 9 3.04 to 8 3.00 ppm. The points of interest are those
that make substantial, non-zero, contributions to PCs 1 and
5. Comparison of FIGS. 1.5 and 1.6 indicates that, in
comparison to the responders, the non-responders have a
relatively high value for the integral of the spectral segment
centred at § 3.02. This difference appears to be attributable
to a higher level of 2-oxoglutarate in the non-responders and
2-oxoglutarate also contributes to the segment centred at &
2.46. Trimethylamine-N-oxide makes a major contribution

20
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to the segment centred at  3.26 and non-responders could
therefore have high urinary levels of TMAO. One possible
explanation for this is that the non-responders were slow
acetylators.

Example 2

[0275] Variable urinary isoniazid metabolite patterns and
their relationship to the toxicity of isoniazid in rats. An
example of the major significance of inter-individual differ-
ences in metabolic capacities.

[0276] Thirty young adult age-matched male Sprague-
Dawley rats were obtained from Charles River, France. After
observation to ensure that they each appeared healthy they
were placed in individual metabolism cages with free access
to water and a standardised diet (diet AO4C from Usine
d’Alimentation Rationnelle, Villemoisson-sur-Orge,
France). The laboratory temperature was maintained at 202
degrees C. and the relative humidity at 60+20%. The labo-
ratory air was filtered and changed 14 times per hour. A fixed
12 hours light-12 hours dark’ cycle was imposed. The study
commenced after a short period of cage ‘acclimatisation’
when the rats were about 6 weeks old and about 200 g in
mass.

[0277] Dosing was on the day designated as ‘day 1’ when
the growing rats were each approximately 250 g in mass.
Isoniazid (from Sigma, France) was dissolved in physiologi-
cal saline and dosed by intraperitoneal injection at either 200
mg/kg or at 400 mg/kg; ten animals (nos. 101-110) received
the low dose and ten animals (nos. 201-210) received the
high dose. Ten control animals (nos. 1-10) received an
intraperitoneal injection of saline.

[0278] Pre- and post-dose seven hour urine samples were
collected daily into ice-cooled vessels containing sodium
azide (0.1 ml of a 10% (w/v) solution of sodium azide in
water) as an antibacterial preservative. There was an addi-
tional overnight urine collection from 7-24 hours post-
dosing. The urine collection apparatus was cleaned prior to
each collection to minimise bacterial, food and faecal con-
tamination. The final volume of each urine sample was
determined without making any correction for the azide
solution. The urine samples were stored frozen pending
analysis.

[0279] It was intended that post-dose blood samples would
be taken immediately before euthanasia with euthanasia
being immediately followed by sampling for histopathology.
As in Example 1, the intention was that five of each group
of ten rats would be euthanased by means of CO, at one day
after dosing thereby providing early blood and histopathol-
ogy samples; the remainder were to be euthanased by the
same technique at seven days after dosing thereby providing
late blood and histopathology samples. It was planned that
the early-euthanased rats would be numbers 6-10, 106-110
and 206-210 whilst the late-euthanased rats would be num-
bers 1-5, 101-105 and 201-205. However, some animals
(nos. 204, 205, 207 and 209) from the group which received
the high dose of isoniazid, suffered unexpected convulsions
and either died or had to be euthanased early to prevent
suffering. Remarkably, by comparison, the other animals
(nos. 201-203, 206, 208 and 210) from the high dose group
showed no obvious clinical signs of ill effects. The urine
samples were deep-frozen pending NMR analysis.
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[0280] Urine samples were prepared for NMR analysis by
mixing 4001 #l of urine with 200 ul of phosphate buffer (an
81:19 (v/v) mixture of 0.2 M Na,HPO, and 02 M
NaH,PO,); if insufficient urine was available the shortfall
was made up with purified water with a minimum of 200 ul
of urine being used. The urine-buffer mixture was left to
stand for 10 minutes at room temperature to enable buffering
to take place and then centrifuged at 13,000 rpm for a further
10 minutes to remove suspended particulates. 500 ul of
‘clear’ buffered urine was transferred to an NMR tube and 50
ul of a TSP/D,0 solution added. TSP (sodium 3-trimethyl-
silyl{2, 2, 3, 3-2H,]-1-propionate) is a chemical shift ref-
erence compound ( 0) used in the NMR experiment and the
D, 0 provided a field/frequency lock for the NMR spectrom-
eter. The concentration of the TSP/D,0O solution was such as
to give a final TSP concentration of 0.1 mM in the NMR
tube. The NMR analyses were carried out at 303K on a
Bruker AMX 600 MHz NMR spectrometer with the NOE-
SYPRESAT pulse sequence (Claridge, 1999) used to reduce
the size of the water signal. The principal acquisition param-
eters were:

[0281] Spectrometer Frequency: 600 MHz

[0282] Spectral Width: ca. 7200 Hz (12 ppm)

[0283] Bruker Pulse Program: noesyprld

[0284] Number of Data Points in Time Domain: 65536
[0285] Number of Scans: 64

[0286] Number of Dummy Scans: 4

[0287] Acquisition Time: ca. 4.55 seconds

[0288] Presaturation Time: 3 seconds

[0289] Mixing Time: 0.1 second.

[0290] After acquisition the NMR spectra were Fourier-
transformed into 32768 data points following application of
0.3 Hz line-broadening by means of an exponential multi-
plication applied to the free induction decay signal. The
spectra were phased to give an even baseline around the
NMR signals and the chemical shift scale was set by
assigning the value of § O to the TSP peak. Spectra and
selected expansions were plotted on paper. Where a set of
spectra was to be examined by multivariate pattern recog-
nition methods, the baseline of each spectrum was moved to
zero intensity using a straight-line baseline correction algo-
rithm. These spectral processing operations were carried out
on a Silicon Graphics computer using the ‘xwinnmr’ soft-
ware (Bruker GmBH).

[0291] Visual examination of the NMR spectra collected
from 0-7 hours post-dosing revealed substantial variation in
the patterns of certain metabolites which are believed to be
derived from isoniazid. This variation was particularly obvi-
ous in three peaks in the region of 2 ppm which are thought
to originate from three different N-acetylated species. These
peaks at ca. 2.22, 2.20 and 2.15 ppm are henceforth desig-
nated as peaks ‘a’, ‘b’ and ‘c’ respectively and the com-
pounds from which they arise are henceforth designated as
compounds ‘A’, ‘B’ and ‘C’. At each dose there appeared to
be essentially two different types of pattern of these metabo-
lites and examples of these different patterns, referred to as
Type 1 and Type 2, are shown in FIG. 2.1.
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[0292] PCA of the data-reduced NMR spectra of the urine
samples collected from 0-7 hours after dosing isoniazid (200
mg/kg) also revealed the metabolic variation (see FIG. 2.2).
To achieve this analysis the NMR spectra of the nine
available samples were first ‘data-reduced’ in a fixed manner
using the AMIX program (Bruker GmBH). All spectral
regions except for the N-acetyls region from 6 2.23 to § 2.13
were discarded. The remaining portion of each spectrum was
divided into two consecutive 0.05 ppm-wide segments and
an integral obtained for each segment. The data-reduced
values were then normalised to give a total integration value
of 1000 for each ‘spectrum’. The resultant data set was
loaded into a multivariate statistical analysis software pack-
age (‘Pirouette’ from Infometrix) and Principal Components
Analysis (PCA) carried out using mean-centred scaling of
each variable (spectral segment). With only two input vari-
ables this was a trivial example of PCA but it supported the
presence of two different types of N-acetyls patterns as
previously determined, the Type 1 animals being animals
101, 103 and 109 and the Type 2 animals being animals 102,
105, 106, 107, 108 and 110. In FIG. 2.2 the data points for
the Type 1 animals are marked with crosses whilst the data
points for the Type 2 animals are marked with diamonds.

[0293] TIsoniazid is a classic example of a substance whose
metabolism, in humans, is affected by N-acetylator pheno-
type and the different metabolite patterns that were observed
in this example suggested the existence of slow and fast
N-acetylators within the test group. The isoniazid metabolite
patterns were somewhat dose-dependent but it was possible,
regardless of dose level, to assign all the day 1 (0-7 hours)
urine spectra as having either Type 1 or Type 2 patterns on
the basis of fixed peak height ratio criteria (see Table 2.1).
Remarkably it was observed, at the high dose level, that only
those animals showing the Type 2 pattern of N-acetyls
developed certain toxic responses which included loss of
kidney function (revealed by increased urinary glucose
and/or lactate), convulsions and death (see Table 2.1).

[0294] Table 2.1. Summary of the metabolic and other
behaviour observed after dosing isoniazid to male Spague-
Dawley rats at 200 and 400 mg/kg.

TABLE 2.1
part 1.

Animal Dose a=222 b =220 c=215
No. (mg/kg) ppm pk. ht. ppm pk. ht. ppm pk. ht.
101 200 5 30 66.5
102 200 14 62.5 75
103 200 3 22 49
104 200 no spectrum no spectrum no spectrum
105 200 14.5 101 82.5
106 200 18.5 79 110
107 200 12 42 44.5
108 200 41 140 101
109 200 6 29 89
110 200 17 70 47.5
201 400 9 44 65.5
202 400 10 48 76.5
203 400 9.5 49 72
204 400 21.5 99.5 28.5
205 400 12.5 68 14
206 400 45 157 69.5
207 400 34 113 25
208 400 14 81 114.5
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TABLE 2.1-continued TABLE 2.1
part 1. part 3
Animal Dose a=222 b =220 c=215 Animal Dose Increased Increased
No. (mg/kg) ppm pk. ht. ppm pk. ht. ppm pk. ht. No. (mg/kg)  Acetyls type lactate? glucose?
209 400 34 128 31.5 101 200 1 No No
210 400 6.5 41 77 102 200 2 No No
103 200 1 No No
104 200 no spectrum  no spectrum no spectrum
. . 105 200 2 No No
[0295] The peak heights (abbreviated pk.ht.) were mea- 106 200 2 No No
sured in millimetres from the plotted spectra after subtrac- 18; 588 % §° §°
. . o o
tion of a local baseline. 109 200 1 No No
110 200 2 No No
TABLE 2.1 201 400 1 No No
202 400 1 No No
art 2. 203 400 1 No No
Pt 204 400 2 Yes Yes
Animal Dose c/b pk. c/a pk. 205 400 2 Yes Yes
No. (mg/kg) ht. ratio ht. ratio Acetyls type %83 188 % §§s z::
101 200 2.2 13.3 1 208 400 1 No No
102 200 1.2 54 2 209 400 2 Yes Yes
103 200 2.2 163 1 210 400 1 No No
104 200 no spectrum no spectrum no spectrum
105 200 0.8 5.7 2
106 200 1.4 5.9 2 [0298]
107 200 1.1 3.7 2
108 200 0.7 2.5 2
109 200 3.1 14.8 1 TABLE 2.1
110 200 0.7 2.8 2
201 400 1.5 7.3 1 part 4.
202 400 1.6 77 1 There is a further association, at the 400 mg/kg dose, between
203 400 1.5 7.6 1 the type of acetyls pattern observed and whether or not convulsions
204 400 0.3 1.3 2 and premature death occurred. Only Type 2 animals suffered convulsions
205 400 0.2 1.1 2 and premature death. Again animal 206 was anomalous in that it
206 400 0.4 1.5 2 was Type 2 but did not die prematurely.
207 400 0.2 0.7 2
208 400 1.4 8.2 1 Animal Dose Impaired kidney  Premature
209 400 0.2 0.9 2 No. (mg/kg) Acetyls type function? Death?
210 400 1.9 11.8 1
101 200 1 No No
102 200 2 No No
103 200 1 No No
[0296] 104 200 no spectrum  no spectrum No
105 200 2 No No
106 200 2 No No
107 200 2 No No
108 200 2 No No
Criteria for determination of N-acetyls pattern type: 109 200 1 No No
110 200 2 No No
Low Type 1: ¢/b = 2.2; cfa = 13.3 Type 2: ¢/b = 1.4; c/a = 5.9 201 400 1 No No
dose: 202 400 1 No No
High Type 1:c/b = 1.4;c/a = 7.3 Type 2: c/b = 0.4;c/a = 1.5 203 400 1 No No
dose: 204 400 2 Yes Yes
Either Type 1:c/a = 7.3 Type 2: c/a = 5.9 205 400 2 Yes Yes
dose: 206 400 2 Yes (mild) No
Type 1: C/b =14 Type 2: C/b =14 207 400 2 Yes Yes
208 400 1 No No
209 400 2 Yes Yes
. . 210 400 1 No No
[0297] Table 2.1, part 3. No loss of kidney function was
detected at the 200 mg/kg dose but some animals showed
impaired kidney function at the 400 mg/kg dose. Further- [0299] Table 2.1 suggests that some metabolic difference,

more, there is a correlation, at the 400 mg/kg dose, between
the type of acetyls pattern observed and whether or not there
was any loss of kidney function. Only the Type 2 animals
showed a loss of kidney function as evidenced by increased
urinary levels of glucose and lactate. As an animal producing
the Type 2 acetyls pattern, animal 206 showed somewhat
anomalous behaviour in regard to urinary lactate. However,
it is noteworthy that this animal was at the extreme edge of
Type 2 region as defined by the acetyls peak height ratios.

reflected in the N-acetyls patterns, has a critical effect on
isoniazid toxicity. The critical metabolic step is suspected to
be the initial transformation of isoniazid which may proceed
either 1) to N-acetylisoniazid, by N-acetylation, or 2) to
hydrazine and isonicotinic acid, by hydrolysis of the amide
group of isoniazid (see FIG. 2.3).

[0300] We suspect that hydrazine was responsible for the
observed convulsions and we postulate that the animals
showing the toxic responses in this study had a particular
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N-acetylator phenotype i.e. that they were relatively slow
N-acetylators and that they therefore produced more toxic
hydrazine from the 400 mg/kg dose of isoniazid than did the
other high dose animals which were presumably relatively
fast N-acetylators. To confirm the nature of the factor(s)
underlying the variable effects of isoniazid (400 mg/kg) that
were observed in this study, compounds ‘A’ and ‘B’ giving
rise to peaks ‘a’, ‘b’ must be identified. Compound ‘C’ has
already been identified as N-acetylisoniazid.

[0301] This example demonstrates, as is well known, that
the metabolite patterns of a dosed substance can be used to
distinguish different metabolic phenotypes. This example
also shows that these metabolite patterns may be interro-
gated by the use of PR methodology. This example also
demonstrates the crucial importance of metabolic phenotype
in determining an individual’s response to being dosed with
a particular substance. In the next example it is demonstrated
that the present invention allows variation in post-dose
metabolic behaviour to be correlated with pre-dose variation
in biological samples so as to provide a predictive model.

Example 3

[0302] Pre-dose prediction of urinary isoniazid metabolite
quantities in male Sprague-Dawley rats subsequently dosed
with isoniazid (200 mg/kg). An example showing that
numerical pre-dose to post-dose predictions can be
achieved.

[0303] 75 young adult age-matched male Sprague-Dawley
rats were obtained from Charles River, France. After screen-
ing to ensure that they appeared healthy they were assigned
numbers 101-175 and placed in individual metabolism cages
with free access to water and a standardised diet (diet AO4C
from Usine d’Alimentation Rationnelle, Villemoisson-sur-
Orge, France). The laboratory temperature was maintained
at 20=2 degrees C. and the relative humidity at 60£20%. The
laboratory air was filtered and changed 14 times per hour. A
fixed ‘12 hours light-12 hours dark’ cycle was imposed. The
study commenced after a short period of cage ‘acclimatisa-
tion’ when the rats were about 6 weeks old and about 200 g
in mass. Dosing was carried out when the growing rats were
each approximately 250 g in mass. Isoniazid (from Sigma,
France) was dissolved in physiological saline and dosed to
each rat by intraperitoneal injection at 200 mg/kg.

[0304] Individual pre-dose (48-41 hours before dosing)
and post-dose (0-7 hours after dosing) urine samples were
collected into ice-cooled vessels containing sodium azide
(0.1 ml of a 10% (w/v) solution of sodium azide in water)
as an antibacterial preservative. The urine collection appa-
ratus was cleaned prior to each collection to minimise
bacterial, food and faecal contamination. The final volume
of each urine sample was determined without making any
correction for the azide solution.

[0305] The urine samples were prepared for NMR analysis
by mixing 400 ul of urine with 200 ul of phosphate buffer (an
81:19 (v/v) mixture of 0.2 M Na,HPO, and 0.2 M NaH,PO,;
pH 7.4); if insufficient urine was available the shortfall was
made up with purified water with a minimum of 200 ul of
urine being used. The urine-buffer mixture was left to stand
for 10 minutes at room temperature to enable buffering to
take place and then centrifuged at 13,000 rpm for a further
10 minutes to remove suspended particulates. 500 ul of
‘clear’ buffered urine was transferred to an NMR tube and 50
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ul of a TSP/D,0 solution added. TSP (sodium 3-trimethyl-
silyl{2, 2, 3, 3-2H,]-1-propionate) is a chemical shift ref-
erence compound (9 0) used in the NMR experiment and the
D, 0 provided a field/frequency lock for the NMR spectrom-
eter. The concentration of the TSP/D,0 solution was such as
to give a final TSP concentration of 0.1 mM in the NMR
tube.

[0306] The NMR analyses of the prepared urine samples
were carried out at thirty degrees C. on Bruker 600 MHz
NMR spectrometers with the NOESYPRESAT pulse
sequence (Claridge, 1999) used to reduce the size of the
water signal. A Bruker DRX spectrometer was used to
acquire the post-dose NMR data whilst a Bruker AMX
spectrometer was used to acquire the pre-dose NMR data.
The principal acquisition parameters were:

[0307]
[0308]
[0309]
[0310]

[0311] Number of Scans: 32 (post-dose spectra); 64
(pre-dose spectra)

[0312]
[0313]
[0314]
[0315]

Spectrometer Frequency: 600 MHz

Spectral Width: ca. 7200 Hz (12 ppm)

Bruker Pulse Program: noesyprld

Number of Data Points in Time Domain: 65536

Number of Dummy Scans: 4
Acquisition Time: ca. 4.55 seconds
Presaturation Time: 3 seconds
Mixing Time: 0.1 second.

[0316] After acquisition the NMR spectra were Fourier-
transformed into 32768 data points following application of
0.3 Hz line-broadening by means of an exponential multi-
plication applied to the free induction decay signal. The
spectra were phased to give an even baseline around the
NMR signals and the chemical shift scale was set by
assigning the value of 8 O to the TSP peak. Each of the
post-dose NMR spectra was plotted on paper and peak
height measurements were made manually on selected peaks
after localised baseline correction. The peaks whose heights
were measured were the allantoin peak at 8 5.4, the three
peaks at ca. 8 2.22, 8 2.20 and § 2.15, known as peaks ‘a’,
‘b’ and ‘¢’ respectively as in Example 2, and the TSP peak
at 8 0. Prior to data reduction leading to multivariate
statistical analysis, the baseline of each digital spectrum was
moved to zero intensity using a straight-line baseline cor-
rection algorithm. The spectral processing and plotting
operations described above were carried out on a Silicon
Graphics computer using the ‘xwinnmr’ software (Bruker
GmBH).

[0317] After data reduction, PCA of the ‘N-acetyls’ region
(9 2.3t0 8 2.1) of the post-dose NMR spectra was carried out
using the ‘Pirouette’ software from Infometrix. However, in
contrast to the results for Example 2, distinct groupings for
Type 1 and Type 2 spectra were not observed despite the
wide range of patterns present in the data set. As it was not
possible to identify suitable natural boundaries within the
distribution, the individual post-dose spectra were better
described by numerical measures rather than by membership
of a particular class. This in turn meant that the following
pre-dose to post-dose correlation analysis would be better
based on numerical prediction rather than on class predic-
tion.
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[0318] There are certain problems associated with achiev-
ing useful measurements of urinary metabolite excretion
and, consequently, two different approaches were taken to
quantifying the excretion of the different N-acetylated spe-
cies in the post-dose samples. The first approach was to
quantify the excretion of metabolites A, B and C (designated
as in Example 2) with respect to an endogenous urinary
component, allantoin. Thus, the intensities of peaks a, b and
¢ in each NMR spectrum were described as peak height
ratios with respect to the allantoin peak at 8 5.4. The
allantoin peak was a convenient internal reference point
although the creatinine methylene signal at 8 4.05 could also
have been used for that purpose. The second approach was
to make some measure of the absolute excretion of compo-
nents A, B and C by reference to the size of the TSP signal,
which was added in known constant quantity to each NMR
sample, and taking into account the volume of urine pro-
duced by each rat. Thus, for example, a relative measure of
the absolute excretion of compound C by different animals
was obtained using the formula (height of peak ‘c’/height of
TSP peak)*(volume of urine collected). It is important to
note here that this measurement is valid because all of the
post-dose NMR samples were prepared in a constant fashion
using 400 ul of urine except for animal 138 where no urine
was available and no NMR sample was prepared. Peak
heights were measured in millimetres and urinary volumes
were measured in millilitres. The limitation of this second
approach is that the urine collected from an animal over a set
period may not be representative of what was passed to the
bladder during that period and experience has shown that
such excretion ‘errors’ are particularly likely when very little
urine is collected. The limitation of the first approach to
quantitation is that the excretion of the endogenous refer-
ence compound, allantoin in this case, may not be invariant
although prior experience has indicated it to be a useful
reference point.

[0319] Each pre-dose NMR spectrum was ‘data-reduced’
in a constant fashion using the AMIX program (Bruker
GmBH). Certain spectral regions were discarded (e.g. the
regions containing the TSP and residual water signals)
before dividing the remainder of each spectrum into sequen-
tial 0.04 ppm-wide segments and obtaining an integral for
each segment. The data-reduced spectra were then norma-
lised to give the same total intensity for each ‘spectrum’.
PLS analyses were then carried out in an attempt to find
pre-dose features that would enable prediction of the post-
dose excretion of the various N-acetylated metabolites, ‘A’,
‘B’ and ‘C’. These PLS analyses were carried out using the
SIMCA software from Umetrics.

[0320] It was found that, for certain animals, the heights of
peaks ‘a’ and ‘b’, relative to the height of the allantoin peak
at 8 5.4, in the NMR spectra of the urine samples collected
from 0-7 hours after dosing isoniazid (200 mg/kg), could be
predicted surprisingly well from the pre-dose data (see
FIGS. 3.1 and 3.2 which relate to peak ‘a’). Considering the
case of peak ‘a’, its peak height ratio with respect to
allantoin provides a relative measure of the ratio of (amount
of compound A/amount of allantoin) in the NMR sample. If
allantoin excretion over the 7 hour urine collection period on
day 1 is assumed to be constant for all the rats in this study,
the ratio (height of peak ‘a’/height of allantoin peak) pro-
vides a relative measure of the amounts of compound A
excreted by the different rats during that period. Thus, these
findings indicate that, with a suitable model, the amounts of
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compounds A and B excreted after dosing isoniazid (200
mg/kg) are predictable, for some rats, from the pre-dose
data.

[0321] It was also found that, for the vast majority of
animals that produced more than 3 ml of urine during the 0-7
hour collection period on day 1, the quantity (height of peak
‘c’/height of TSP peak)*(volume of urine collected) could
be predicted from the pre-dose data (see FIG. 3.3). Given
that the NMR samples and associated spectra were all
prepared and obtained in the exact same way, this quantity
is a relative measure of the amount of compound C excreted
by each rat. Thus, with a suitable model, it is possible to
predict, from pre-dose data, the amount of compound C
excreted after dosing isoniazid (200 mg/kg).

[0322] FIG. 3.1 shows the model building and validation
data for a PLS model predicting, from pre-dose urinary
NMR spectroscopic data, the values of (height of peak
‘a’/height of allantoin peak) in the NMR spectra of urine
samples collected from 0-7 hours after dosing isoniazid (200
mg/kg) to male Sprague-Dawley rats. The data points are
marked and coded using unfilled triangles for model build-
ing data and filled triangles for validation data. The unfilled
triangles show the observed and predicted results for the rats
whose data was used to build the predictive PLS model. The
filled triangles show the observed and predicted results for
eleven rats (numbers 110, 111,122, 125, 128, 135, 140, 144,
147, 167 and 172) whose data were excluded from the
model-building process. Visual assessment of this figure
indicates that a valid model has been obtained and that it is
possible to predict the level of excretion of peak ‘a’ relative
to the level of allantoin from an analysis of the pre-dose data.

[0323] The regression coefficients pertaining to the PLS
analysis of FIG. 3.1 are shown in FIG. 3.2 for each of the
variables used in the analysis. As previously described, these
variables were derived from integrals of consecutive seg-
ments of the pre-dose spectra. The different variables used in
the PLS analysis are identified, in FIG. 3.2, according to the
chemical shift at the centre of the relevant 0.04 ppm-wide
spectral segments. The greater the magnitude, either positive
or negative, of the regression coefficient for a spectral
segment, the greater the predictive contribution of that
segment and, for example, the pre-dose spectral segment
centred at & 3.42 is negatively correlated with the concen-
tration of A post-dose.

[0324] FIG. 3.3 shows the model building and validation
data for a PLS model predicting, from pre-dose urinary
NMR spectroscopic data, the post-isoniazid (200 mg/kg)
excretion of compound C by Sprague-Dawley rats. The data
points in FIG. 3.3 are marked and coded using unfilled
triangles for model building data and filled triangles for
validation data. The unfilled triangles show the observed and
predicted values for the various rats whose data was used in
building the model. The filled triangles show the observed
and predicted results for eight rats (numbers 105, 108, 115,
116, 121, 142, 157 and 163) whose data were excluded from
the model-building process. The relative amount of metabo-
lite C excreted by each animal was measured as (height of
peak ‘c’/height of TSP peak)*(volume of urine produced).
Visual assessment of this figure indicates that a valid model
has been obtained.

[0325] In a further analysis of the data, a different
approach was taken to the quantitation of the compounds A,
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B and C that were excreted after dosing isoniazid. In this
approach the region from § 2.24-2.12, containing the three
peaks ‘a’, ‘b’ and ‘c’, was first integrated as a whole. Then
separate integrations for the regions § 2.24-2.17 (containing
peaks ‘a’and ‘b’) and  2.17-2.12 (containing peak ‘c’) were
obtained as fractions of the total § 2.24-2.12 integration,
giving ‘Fraction A+B’ and ‘Fraction C’. The ratio [Fraction
C/(Fraction A+B)] was then calculated from the latter two
quantities. The rationale for this approach was that integra-
tions should provide better estimates of relative amounts
than are obtainable from peak height measurements, whilst
recognising that the individual ratios (Amount C/Amount A)
and (Amount C/Amount B), that provided phenotypic dis-
crimination, might be usefully replaced by the single ratio
[Fraction C/(Fraction A+B)]. Knowledge of either Fraction
A+B or Fraction C means that the ratio [Amount C/(Amount
A+Amount B)] can be calculated. Thus, using the SIMCA
software from Umetrics, we attempted to build PLS models
for predicting Fraction A+B, Fraction C and [Fraction
C/(Fraction A+B)] from the pre-dose data. This gave three
possible ways of arriving at a successful prediction of
[Fraction C/(Fraction A+B)].

[0326] Using pre-dose NMR data normalised to constant
total spectral area (after excluding certain spectral regions),
we found that PLS models were obtained that were success-
ful in individually predicting each of the three quantities,
Fraction A+B, Fraction C and the ratio [Fraction C/(Fraction
A+B)], from that pre-dose data.

[0327] FIG. 3.4 shows a plot of the observed versus
pre-dose predicted values for [Fraction C/(Fraction A+B)]in
the urine collected from 0-7 hours after dosing male Spra-
gue-Dawley rats with isoniazid (200 mg/kg). The results
shown are for modelling data only. This plot indicates that
correlation between the pre- and post-dose data can be
detected.

[0328] FIG. 3.5 shows the results of the internal model
validation analysis proving that the observed correlation
between the pre-dose data and the post-dose values of
[Fraction C/(Fraction A+B)] was not random.

[0329] FIG. 3.6 shows the prediction of [Fraction C/(Frac-
tion A+B)] for an externally generated test set. In this case
a pre-to-post dose prediction model built using the present
isoniazid study data was used in an attempted pre-to-post
dose prediction of the results for 9 low dose animals from
the isoniazid study described in Example 2. The prediction
set (filled circles) was comprised of six Type 2 animals and
three Type 1 animals and the results showed that [Fraction
C/(Fraction A+B)] could be successfully predicted for the
Type 2 test animals but was not well predicted for the Type
1 test animals (RMSEE=0.1524; RMSEP (Types 1 and
2)=0.4416; RMSEP (Type 2)=0.2325). However, examina-
tion of the modelling data (unfilled circles) indicated that it
was almost entirely composed of Type 2 animals and this
provides a likely explanation why Type 2 test data could be
better predicted than Type 1. However, it is important to note
that the model was sufficiently robust to provide some useful
predictions for test data obtained in a separate study.

[0330] With further work it may prove possible to make
pre-dose predictions of susceptibility or non-susceptibility
to isoniazid (400 mg/kg)-induced toxicity as seen in
Example 2. However, the crucial result obtained here is that
certain metabolic phenotype-determined post-dose results
can be predicted from pre-dose biofluid NMR spectra.
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Example 4

[0331] Pre-dose Prediction of urinary Paracetamol
metabolite quantities in male Sprague-Dawley rats subse-
quently dosed with paracetamol (600 mg/kg). An example
showing that numerical pre-dose to post-dose predictions
can be achieved.

[0332] 75 male Sprague-Dawley rats were obtained which
were matched for age and body mass. At 3 days before
dosing the mean body mass of the rats was 260.2 g (standard
deviation: 12.6 g) and at the time of dosing the rats were
approximately 7 weeks old. They were kept in individual
cages in a temperature-, humidity- and light/dark-controlled
laboratory with free access to water and a standard rodent
diet. The study commenced after a period of cage acclima-
tisation. 65 of the rats were dosed orally with paracetamol
(600 mg/kg) in an aqueous solution containing methylcel-
lulose (0.5% w/v) and Tween 80 (0.1% w/v). 10 of the rats
were used as a control set and were orally dosed with the
dosing vehicle only. Individual pre- and post-dose 24-hour
urine samples were collected from each rat into ice-cooled
vessels, which also contained a fixed volume of sodium
azide solution as a preservative. The pre-dose urine samples
were collected from 48-24 hours before dosing. The post-
dose urine samples were collected from 0-24 hours after
dosing. The final volume of each urine sample was deter-
mined without making any correction for the azide solution.
The urine samples were all prepared for NMR analysis
according to a standard procedure that involved the use of
fixed volumes of urine, of a pH buffer solution and of a
TSP/D,0 solution. The *H NMR spectra were acquired at
600 MHz on a Bruker NMR spectrometer equipped with a
flow probe, using Bruker’s ‘xwinnmr’ and ‘iconnmr’ soft-
ware. Water suppression was achieved using the ‘noesyprld’
program. The post-dose spectra of the paracetamol-dosed
rats showed extra N-acetyl signals which were found to be
located at ca. 2.18, 2.165, 2.155 and 2.15 ppm after reso-
lution enhancement. These signals were initially assigned to
paracetamol sulphate (now designated ‘S’), paracetamol
glucuronide (now designated ‘G’), the mercapturic acid
derived from paracetamol (now designated ‘MA’), and
paracetamol itself (now designated ‘P’), respectively. The
mercapturic acid of paracetamol (MA) is also sometimes
referred to as the N-acetylcysteine conjugate of paracetamol.
Spiking with paracetamol glucuronide and paracetamol con-
firmed their peak assignments and the assignment of the MA
acetyl was confirmed from the similarly sized peak at 1.86
ppm. Reference to the literature (Bales et al. (1984) Urinary
excretion of acetaminophen and its metabolites as studied by
proton NMR spectroscopy, Clin. Chem., 30, 10, 1631-1636)
suggested that the N-acetyl peak of the cysteine conjugate of
paracetamol would potentially overlap the N-acetyl peak of
paracetamol but, in fact, it seems more likely that the
N-acetyl peak of the cysteine conjugate would overlap the
equivalent N-acetyl peak from the mercapturic acid. This
leaves some uncertainty over the quantitation of both MA
and P and, henceforth, when we refer to models and data for
MA and P, it should be remembered that the measured
quantities might contain some contribution from the cysteine
conjugate. No significant interferences were present in the
spectra of the post-dose control samples. Quantitation of the
various paracetamol-related urinary metabolites, including
paracetamol itself, was achieved by reference to the relevant
acetyl signals in the chemical range 2.22-2.11 ppm although
other signals could also potentially have been used. The
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complete cluster of N-acetyls signals from ca. 2.22 to ca.
2.11 ppm was first integrated relative to the TSP signal, in
the post-dose spectra, giving a measure of the total amount
of N-acetylated species in each NMR sample. A relative
measure of the total excretion of N-acetylated species by
each rat in the 0-24 hr post-dose period was then calculated
as (total N-acetyls integration/TSP integration)*volume of
urine collected (in millilitres). Subsequently, each post-dose
spectrum was resolution-enhanced using a gaussian multi-
plication (Ib-1, gb 0.5) and the signals from the four
components S, G, MA and P were integrated relative to one
another. These values were summed and then the amount of
each component was calculated as a fraction of the total. As
other components of the N-acetyls cluster were relatively
insignificant, combining these fractional values for S, G,
MA and P with the value for the total acetyls excretion for
each animal gave an estimate of the amount of each com-
ponent excreted by that animal. The S/G ratio was calcu-
lated. The pre-dose spectra were normalised in two different
ways. In the first approach, the total spectral integration
between 9.5 and 0.5 ppm was adjusted to constant total area
after excluding the region from 6.3-4.0 ppm, which con-
tained the residual water signals and the signal from urea,
which is affected by the water suppression procedure. In the
second approach, the pre-dose spectra were normalised
relative to TSP, which had been added in constant amount to
each NMR sample. Subsequently, each of the TSP-norma-
lised pre-dose spectra was multiplied by the relevant volume
(in millilitres) of urine collected during the pre-dose collec-
tion. Thus, in this second approach, a relative measure was
obtained of the 24-hour excretion of each of the pre-dose
urinary metabolites. The TSP signal was excluded prior to
carrying out the chemometrics analyses.

[0333] PLS models for pre-dose to post-dose prediction
were constructed using the SIMCA software from Umetrics.

[0334] FIG. 4.1 shows a plot of the observed versus
PLS-predicted values for the total 0-24 hour excretion of
N-acetylated compounds by rats dosed with paracetamol
(600 mg/kg). The results shown are for modelling data only
and relate to the first model for this parameter. This plot
indicates clear correlation between the pre-dose and post-
dose data. The value of RMSEE for the model is 7.98.

[0335] FIG. 4.2 shows a plot of the observed versus
PLS-predicted values for the 0-24 hour excretion of MA by
rats dosed with paracetamol (600 mg/kg). The results shown
are for modelling data only and relate to the first model for
this parameter. This plot indicates clear correlation between
the pre-dose and post-dose data. The value of RMSEE for
the model is 1.28.

[0336] FIG. 4.3 shows a plot of the observed versus
PLS-predicted values for the total 0-24 hour excretion of
N-acetylated compounds by rats dosed with paracetamol
(600 mg/kg). The results shown are for modelling data only
and relate to the second model for this parameter. This plot
indicates clear correlation between the pre-dose and post-
dose data. The value of RMSEE for the model is 12.99.

[0337] FIG. 4.4 shows the successful internal validation
of the model that generated the pre-dose predictions shown
in FIG. 4.3. This plot proves that the correlation between the
pre- and post-dose data, indicated by FIG. 4.3, is not
random. External validation of the model was also success-
ful and produced an RMSEP value of 12.89, which was
comparable with the RMSEE value of 12.99 for the model.
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[0338] FIG. 4.5 shows a plot of the observed versus
PLS-predicted values for the 0-24 hour excretion of parac-
etamol glucuronide (‘G’) by rats dosed with paracetamol
(600 mg/kg). The results shown are for modelling data only.
This plot indicates clear correlation between the pre-dose
and post-dose data. The value of RMSEE for the model is
6.99.

[0339] FIG. 4.6 shows the successful internal validation
of the model that generated the pre-dose predictions shown
in FIG. 4.5. This plot proves that the correlation between the
pre- and post-dose data, indicated by FIG. 4.5, is not
random. External validation of the model was also success-
ful and produced an RMSEP value of 7.27, which is com-
parable with the RMSEE value of 6.99 for the model.

[0340] FIG. 4.7 shows a plot of the observed versus
PLS-predicted values for the 0-24 hour excretion of ‘MA’ by
rats dosed with paracetamol (600 mg/kg). The results shown
are for modelling data only and relate to the second model
for this parameter. This plot indicates clear correlation
between the pre-dose and post-dose data. The value of
RMSEE for the model is 1.90.

[0341] FIG. 4.8 shows the successful internal validation
of the model that generated the pre-dose predictions shown
in FIG. 4.7. This plot proves that the correlation between the
pre- and post-dose data, indicated by FIG. 4.7, is not
random. External validation of the model was also success-
ful and produced an RMSEP value of 1.32, which is com-
parable with the RMSEE value of 1.90 for the model. The
external validation is shown in FIG. 4.9 where the unfilled
circles are the model-building data and the filled circles are
test data that were not used in the model-building exercise.

[0342] FIG. 4.10 shows a plot of the observed versus
PLS-predicted values for the excretion of ‘P’ by rats dosed
with paracetamol (600 mg/kg). The results shown are for
modelling data only. This plot indicates that there is corre-
lation between the pre-dose and post-dose data. The value of
RMSEE for the model is 3.51.

[0343] FIG. 4.11 shows the internal validation of the
model that generated the pre-dose predictions shown in
FIG. 4.10. This plot proves that the correlation between the
pre- and post-dose data, indicated by FIG. 4.10, is not
random. External validation of the model was also success-
ful and produced an RMSEP value of 3.30, which is com-
parable with the RMSEE value of 3.51 for the model.

[0344] Direct pre-dose prediction of the amount of ‘S’
excreted post-dose was not achieved. However, by subtract-
ing the predictions for the amounts of ‘G’, ‘P’ and ‘MA’
excreted from the prediction for the total excretion of
N-acetylated species it was possible to generate a pre-dose
prediction for the amount of ‘S’ excreted by each rat in the
24-hour post-dose period. By combining that prediction for
‘S’ with the appropriate prediction for ‘G’ it was possible to
obtain a pre-dose prediction for the post-dose G/S ratio for
each rat. FIG. 4.12 shows the observed versus predicted
values for the amount of ‘S’ excreted. FIG. 4.13 shows the
observed versus predicted values for the G/S ratio.

[0345] The results of this study demonstrate that the new
methodology is not limited simply to predictions of
responses determined by acetylator phenotype. The results
presented here indicate that pre-dose predictions can be
made regarding the amounts, and the relative extent, of
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glucuronidation and mercapturic acid formation and that
occur on dosing paracetamol. Prediction of the amount of
paracetamol sulphate excreted in the urine was not so readily
achieved but the results obtained suggested that it might be
predictable ‘by difference’. MA, the mercapturic acid
derived from paracetamol, has special toxicological signifi-
cance as it thought to originate from the conjugation of a
toxic, reactive intermediate with glutathione. Glucuronida-
tion, sulphation and glutathione conjugation are three of the
most important transformations of Phase 2 metabolism and
each has a major defensive role in regard to a variety of
exogenous substances. Thus, the present data indicate that
subject-specific pre-dose predictions might be made with
respect to the metabolism and toxicity of a large number of
exogenous compounds. Given the examples shown, there is
every reason to believe that pre-dose urinary discriminators
exist for a wide variety of other aspects of metabolic
phenotype i.e. that pre-dose prediction models could be built
for a wide variety of aspects of metabolic phenotype and for
dosing responses governed by one or more of those aspects.

Example 5

[0346] Pre-dose Prediction of wurinary paracetamol
metabolite quantities in human males subsequently dosed
with paracetamol (1000 mg). An example showing that
numerical pre-dose to post-dose predictions can be achieved
in humans.

[0347] 99 adult human male subjects were recruited for an
ethically-approved clinical trial. Certain dietary restrictions
were stipulated such as not eating fish and not drinking
alcohol for a certain period. To be eligible for the study, it
was necessary that the subjects were not taking paracetamol
or other drugs for a certain period prior to the study. The
weight and height of each subject was recorded. On the day
of the study, a ‘snapshot’ mid-stream pre-dose urine sample
was first provided by each subject. Subsequently, each
subject took 2x500 mg tablets of paracetamol BP with a
fixed volume of water. After dosing, each subject was
required to provide all of the urine that he produced over two
consecutive time periods, namely 0-3 hours and 3-6 hours
from dosing. At the end of each of those time periods, each
subject was requested to empty his bladder as completely as
possible and the mass of urine produced by each subject over
each post-dose time period was recorded. The urine samples
were all prepared for NMR analysis according to a standard
procedure, which involved the use of 440 microlitres of
urine. The 'H NMR spectra were acquired at 600 MHz on
a Bruker NMR spectrometer using Bruker’s ‘xwinnmr’ and
‘iconnmr’ software. Water suppression was achieved using
the ‘noesyprld’ program. In the post-dose spectra, the
N-acetyls signals from 2.210 to 2.135 ppm were first inte-
grated relative to TSP and a measure of the total excretion
of N-acetylated species by each subject for each period was
determined as (acetyls integration/TSP integration)*mass of
urine collected (in g). This formula is based on the assump-
tion that the density of the urine samples is nearly constant.
As a check, the sample densities of a number of represen-
tative samples were measured and were found to lie in the
range 1.00-1.04 g/ml i.e. the assumption of nearly constant
density was reasonable. Subsequently, the post-dose spectra
were resolution-enhanced using a gaussian multiplication of
the FID (Ib -1, gb 0.5). Where possible, the amounts of
paracetamol sulphate (S), paracetamol glucuronide (G) and
unchanged paracetamol (P) were then measured directly as
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fractions of the total integration from 2.210-2.135 ppm. It
was not possible to obtain an accurate measure of the
amounts of unchanged paracetamol (P) excreted during the
3-6 hour collection and this data was not used. The level of
paracetamol mercapturic acid (MA) was not generally high
enough to be measurable with accuracy. The amounts of the
individual paracetamol metabolites (S, G and P) excreted by
each subject during a particular collection period were
calculated by multiplying the total excretion of N-acetylated
species for that subject and period (previously calculated) by
the relevant fractions of the 2.210-2.135 ppm integration.
Where appropriate the data for the two collections was
summed to give data for the whole 0-6 hour post-dose
period. Because the effective dose of paracetamol received
by any particular subject was dependent on his body mass,
the excretion results for total N-acetyls, S, G and P were
combined with the body mass data to give excretion per kg
of body mass. It should be noted that, as with the paraceta-
mol study in the rat, it is possible that the cysteine conjugate
of paracetamol could have influenced the quantitation of
unchanged paracetamol. The pre-dose spectra were norma-
lised in two different ways (to total spectral area, after
excluding certain regions, and to constant creatinine) and
PLS models for pre-dose to post-dose prediction were
constructed using the SIMCA software from Umetrics.

[0348] FIG. 5.1 shows the observed versus PLS-predicted
values for the total excretion of N-acetylated compounds
(0-3 hour collection) per kg of body mass for male volun-
teers who took paracetamol (1000 mg). The results shown
are for modelling data only. This plot indicates that clear
correlation was found between the pre-dose and post-dose
data. The value of RMSEE for the model was 1.12.

[0349] FIG. 5.2 shows the observed versus PLS-predicted
values for the total excretion of N-acetylated compounds
(0-3 hour collection) per kg of body mass for an external test
set that was analysed in relation to the model underlying
FIG. 5.1. The RMSEP value was 0.80, which compares
favourably with the model’s RMSEE value of 1.12.

[0350] FIG. 5.3 shows the observed versus PLS-predicted
values for the excretion of paracetamol glucuronide (‘G”)
(0-3 hour collection) per kg of body mass for male volun-
teers who took paracetamol (1000 mg). The results shown
are for modelling data only. This plot indicates that corre-
lation was found between the pre-dose and post-dose data.
The value of RMSEE for the model was 0.84.

[0351] FIG. 5.4 shows the observed versus PLS-predicted
values for the excretion of ‘G’ (0-3 hour collection) per kg
of body mass for an external test set that was analysed in
relation to the model underlying FIG. 5.3. The RMSEP
value was 0.70, which compares favourably with the mod-
el’s RMSEE value of 0.84.

[0352] FIG. 5.5 shows the observed versus PLS-predicted
values for the excretion of ‘P’ (0-3 hour collection) per kg
of body mass for male volunteers who took paracetamol
(1000 mg). The results shown are for modelling data only.
This plot indicates that correlation was found between the
pre-dose and post-dose data. The value of RMSEE for the
model was 0.185.

[0353] FIG. 5.6 shows the observed versus PLS-predicted
values for the excretion of ‘P’ (0-3 hour collection) per kg
of body mass for an external test set that was analysed in
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relation to the model underlying FIG. 5.5. The RMSEP
value was 0.170, which compares favourably with the
model’s RMSEE value of 0.185.

[0354] FIG. 5.7 shows the observed versus PLS-predicted
values for the total excretion of N-acetylated compounds
(0-6 hour period) per kg of body mass for male volunteers
who took paracetamol (1000 mg). The results shown are for
modelling data only. This plot indicates that clear correlation
was found between the pre-dose and post-dose data. The
value of RMSEE for the model was 1.47.

[0355] FIG. 5.8 shows the observed versus PLS-predicted
values for the total excretion of N-acetylated compounds
(0-6 hour period) per kg of body mass for an external test set
that was analysed in relation to the model underlying FIG.
5.7. The RMSEP value was 1.13, which compares favour-
ably with the model’s RMSEE value of 1.47.

[0356] The results from this study confirm the principle
that the methodology can be extended from rats to humans
and it is assumed that the methodology could be applied
successfully to all mammals. In particular, it is notable that
the method worked in humans who were not subject to full
dietary control and, with such control in place, improved
results would be expected. The findings presented here
represent a preliminary analysis of the samples and data and
improved models may well be possible. It is possible that
use of a standard analytical method, such as HPLC with
UV-Visible detection, in relation to the post-dose samples
would provide improved quantitation of the paracetamol
metabolites and would therefore facilitate the model build-
ing. In particular, the use of such a technique should permit
improved quantitation of P and MA compared to the NMR
method used here. Furthermore, it is believed that improved
models might be obtained by taking ratios and other com-
binations of the pre-dose variables (which, in this case, are
the 0.04 ppm wide segments of the pre-dose NMR spectra)
before carrying out the PLS analysis.

Hypothetical Examples

[0357] A principal feature of the present invention is to be
able to predict responses to dosing and thereby to select
appropriate dosing substances and treatment regimes e.g.
pharmaceutical treatments, anaesthetics etc. Such methods
would enable, on the basis of pre-determined criteria, such
as toxicity, efficacy and side-effects, the identification of
appropriate dosing substances, the identification of maxi-
mum or minimum doses, the identification of appropriate
doses, appropriate dosing frequencies, appropriate numbers
of doses and the selection of appropriate controlled-release
formulations. Typical construction of these methods is
shown in the following hypothetical example, which
involves identifying the minimum dose of an antibacterial
substance for clearing an infection of a particular type within
a set period of time. Thus, different model building popu-
lations suffering from the specified infection would be
treated with different levels of the antibacterial. Data per-
taining to dose levels which did not clear up the infection in
any of the subjects within the set period would be deleted
from the analysis. For each of the other data sets, a classi-
fication model would be built to identify the pre-dose
characteristics of those subjects that met the clear-up crite-
rion and the pre-dose characteristics of those subjects that
did not. Test data of a subject would be analysed in relation
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to each of the models to find the minimum dose commen-
surate with clear-up of the infection in a subject of that
phenotype. This dose would not necessarily be adminis-
tered; such administration might depend, for instance, on
whether unacceptable side effects would be expected in the
subject at that dose level.

[0358] Another feature of the present invention is the
ability to select a phenotypically homogenous set of subjects
for whatever purpose. Typically, the requirement would be
to select a group of subjects which were homogenous with
respect to one element of metabolic phenotype e.g. N-acety-
lator phenotype. For this example a model would be built
using a dosing substance that challenged N-acetylation. A
classification model would then be built according to
imposed homogeneity criteria. Test data relating to subjects
of unknown N-acetylator phenotype would be examined in
relation to the model and the subject classified accordingly.
The subjects falling into one class would be considered as
phenotypically homogenous with respect to N-acetylation of
the dose substance.

[0359] Likewise the invention permits the rationalisation
of variable data obtained in studies such as studies of
toxicity or efficacy. For instance, a dosing regime which
caused toxicity in one group but not in another group might
be rationalised if it was found, by use of pre-dose pheno-
typing, that one group were fast O-methylators whilst the
other group were slow O-methylators. Such an indication
would lead to a consideration of the metabolism of the dosed
substance and possibly to the identification of a critical
O-methylation step which either produced or eliminated a
toxic metabolite.

[0360] Another feature of the present invention is to
facilitate the identification of pre-dose biomarkers or biom-
arker combinations, which by their presence or concentra-
tions in a pre-dose sample would indicate a particular
metabolic phenotype or a particular response to a potential
dosing substance. For example, in a PCA, a scores plot
which provides separation of the different classes of interest
would be compared to the corresponding loadings plot. The
pre-dose variables that provide the discrimination, and the
positive or negative nature of their correlation to the class
separation, can then be identified. Sometimes these variables
may be directly attributable to particular compounds. In the
case of NMR spectroscopic data, a particular variable or
combination of variables would indicate the spectral regions
containing the discriminating features. By examination of
those regions of the model building spectra the discriminat-
ing compound(s) (or “biomarkers”) could then, in principle,
be identified.

[0361] Sometimes it would be necessary to take samples
from a number of subjects to be representative of a wider
group of subjects. For instance, one would normally only be
able to sample a few plants from a field of such plants. From
analysis of the characteristics of the selected plants one
might then wish to select a particular dose of herbicide for
the whole field.

1. A method of generating models with which to charac-
terise selected aspects of a metabolic phenotype of subjects
without dosing a test substance to those subjects or with
which to predict, without dosing, the post-dose responses of
subjects where those responses are dependent on metabolic
phenotype, the method comprising:



US 2005/0074745 Al

obtaining pre-dose data relating to a plurality of subjects
before dosing with a dosing substance;

obtaining post-dose data relating to the plurality of sub-
jects after dosing with the dosing substance; and

correlating inter-subject variation in the pre-dose data
with inter-subject variation in the post-dose data, and
generating a pre-to-post-dose predictive model on the
basis of the observed correlation.

2. A method according to claim 1, wherein the pre- and/or
post-dose data are obtained from samples which are bioflu-
ids such as urine, blood, blood plasma, blood serum, saliva,
sweat, tears, breath or breath condensate.

3. A method according to claim 1, wherein the pre- and/or
post-dose data are obtained from samples which are plant
tissues, plant fluids or homogenates, plant extracts or plant
exudates, including, for example, essential oils.

4. A method according to claim 1, wherein the pre- and/or
post-dose data are obtained from samples which are human
or animal tissues, fish tissues or oils, tissue extracts, tissue
culture extracts, cell culture supernatants or extracts or are
of microbial origin.

5. Amethod according to claim 1 wherein the pre- and/or
post-dose data comprise data relating to chemical composi-
tion or physical parameters.

6. A method according to claim 1, wherein the pre- and/or
post-dose samples or subjects are treated prior to analysis
(e.g. treated with one or more chemical reagents so as to
produce derivative(s) of one or more existing substances) so
as to enhance data recovery or to improve sample stability.

7. A method according to claim 6 wherein the pre- and/or
post-dose data are derived from or are compositional data
acquired using nuclear magnetic resonance (NMR) spec-
troscopy and/or any other chemical analysis techniques such
as mass spectroscopy (MS), infrared (IR) spectoscopy, gas
chromatography (GC) and high performance liquid chroma-
tography (HPLC) or by using any integrated combination of
such techniques e.g. GC-MS.

8. A method according to claim 7 wherein the pre- and/or
post-dose data are physical data or data derived therefrom.

9. A method according to claim 8 wherein, by dosing
appropriate substances, a phenotyping model is generated
for each of a plurality of biochemical transformations.

10. A method according to claim 8 wherein, by dosing
appropriate substances, a response prediction model is built
for each of a plurality of dosing substances.

11. A method according to claim 10 wherein the original
pre-dose data set is extended, prior to pattern recognition, by
taking ratios and/or other combinations of existing variables.

12. A method according to claim 11 wherein, for a group
of subjects dosed with any particular substance, a pattern
recognition method is used to identify patterns in the vari-
able metabolism of, or the variable reactions to, the dosing
substance.

13. A method according to claim 8 wherein, for a group
of subjects dosed with any particular substance, an unsu-
pervised pattern recognition method is used to identify
variation in the pre-dose data that correlates with the varia-
tion of interest in the post-dose data.

14. A method according to claim 2 wherein, for a group
of subjects dosed with any particular substance, a supervised
pattern recognition method is used to identify variation in
the pre-dose data that correlates with the variation of interest
in the post-dose data.
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15. A method according to claim 3 wherein, for a group
of subjects dosed with any particular substance, a data
filtering method such as Orthogonal Signal Correction
(OSCQ) is used to remove variation in the pre-dose data that
is not correlated with the variation of interest in the post-
dose data.

16. A method according to claim 1 when used to identify
biomarkers or combinations of biomarkers which provide
information on metabolic phenotype or which may be used
to predict responses to dosing.

17. A method of determining selected aspects of the
metabolic phenotype of a subject, the method comprising:

analysing data relating to an un-dosed subject in relation
to a model describing the correlation of pre-dose and
post-dose data relating to a plurality of subjects dosed
with a particular substance which challenges the bio-
chemical transformation or pathway of interest;

generating, according to a predetermined criteria of the
model, a numerical measure or classification describing
the metabolic phenotype of the un-dosed subject.

18. A method according to claim 17, wherein data relating
to the un-dosed subject is obtained from a biofluid such as
urine, blood, blood plasma, blood serum, saliva, sweat,
tears, breath or breath condensate or from a plant tissue,
plant fluid, plant homogenate, plant extract or plant exudate,
including, for example, an essential oil, or from human or
animal tissue, fish tissue or oil, or from a tissue extract,
tissue culture extract, cell culture supernatant or cell culture
extract or from a sample of microbial origin or from any one
of the above sample types after treatment to enhance data
recovery or sample stability.

19. A method according to claims 17, further comprising
generating characteristic compositional and/or physical data
relating to a subject using nuclear magnetic resonance
(NMR) spectroscopy and/or any other techniques or by
using any combination of techniques.

20. A phenotyping method according to claim 19 when
used for the purpose of making a metabolic phenotype-
influenced risk assessment and/or for the purpose of target-
ing the use of special health monitoring regimes and/or for
the purpose of targeting the use of precautionary/preventa-
tive treatments and/or for the purpose of characterising risk
for insurance purposes and/or for the purpose of selecting
subjects for any other purpose e.g. for breeding.

21. A method of predicting a reaction of a subject to a
dosing substance, the method comprising:

analysing data relating to an un-dosed subject in relation
to a model characterising the correlation of pre-dose
and post-dose data relating to a plurality of subjects
dosed with the particular dosing substance; and

generating, according to the predetermined criteria of the
model, a numerical or class prediction for the expected
response of the un-dosed subject if it were to be dosed
with the dosing substance.

22. A method according to claim 21 wherein, according to
pre-determined criteria, a maximum or minimum dose of a
substance that a subject should receive can be predicted.

23. A method according to claims 21 wherein, according
to pre-determined criteria, an amount of a dosing substance
that a subject should receive can be predicted.

24. A method according to claim 23 wherein, according to
pre-determined criteria, a frequency with which a subject
should be dosed with a substance can be predicted.
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25. Amethod according to claim 24 wherein, according to
pre-determined criteria, a number of doses of a substance
that a subject should receive can be predicted.

26. A method according to claim 25 wherein, according to
pre-determined criteria, an appropriate controlled release
formulation for a subject can be selected.

27. Amethod according to claim 26, wherein data relating
to the un-dosed subject is obtained from a biofluid such as
urine, blood, blood plasma, blood serum, saliva, sweat,
tears, breath or breath condensate or from a plant tissue,
plant fluid, plant homogenate, plant extract or plant exudate,
including, for example, an essential oil, or from human or
animal tissue, fish tissue or oil, or from a tissue extract,
tissue culture extract, cell culture supernatant or cell culture
extract or from a sample of microbial origin or from any one
of the above sample types after treatment to enhance data
recovery or sample stability.

28. A method according to claim 27, further comprising
generating characteristic compositional and/or physical data
relating to a subject using nuclear magnetic resonance
(NMR) spectroscopy and/or any other techniques or by
using any combination of techniques.

29. A method of determining selected aspects of a meta-
bolic phenotype of a subject or of predicting a reaction of a
subject to a dosing substance, the method comprising anal-
ysing data relating to the un-dosed subject with respect to
one or more biomarkers which have been previously iden-
tified as described in claim 16.

30. A method according to claim 29 wherein the biom-
arker(s) react(s) with one or more added reagents to produce
a visible change such as a colour change.

31. A method according to claim 30 when used to select
a group of phenotypically homogenous or similar subjects
for a laboratory experiment or clinical trial or for any other
purpose.

32. A method, according to claim 31, for rationalising
biological variation in experimental data based on pre-dose
analysis of biofluids or tissues, where such variation is
caused by phenotypic heterogeneity.

33. A method according to claim 32 wherein the data is
based on physical and/or chemical measurements taken from
the subject as a whole.

34. Amethod according to claim 28 wherein the post-dose
data describes a change relative to the pre-dose state e.g. a
decrease in blood pressure of a human subject treated with
a drug that lowers blood pressure.

35. A method according to claim 30 wherein test data that
does not conform to the limits of a particular model and/or
method can be identified.

36. A method according to claim 33 wherein the subject
is a animal, in particular a mammal such as a human, a
mouse, a rat, a pig, a cow, a bull, a sheep, a horse, a dog or
a rabbit or any farmed animal or any animal, such as a race
horse, used for the purpose of sport or for breeding.

37. A method according to claim 33 wherein the subject
is a plant, a fish or any other aquatic organism

38. A method according to claim 33 wherein the subject
is a biological tissue, a tissue culture, a cell culture or a
microbial culture.

39. A method according to claim 28 wherein data are
obtained from a sample which is representative, or is taken
to be representative, of a group of subjects which are
considered as a single subject.
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40. A method according to claim 29 wherein the dosed
substance is any substance or mixture or formulation of
substances including especially pharmaceutical or medicinal
substances or substances in research or development which
might potentially become pharmaceutical or medicinal sub-
stances, but also including, for example, toxins, pesticides,
herbicides, food or feed substances, food or feed additives
and fluids of any sort including liquids, gases, vapours and
smoke e.g. tobacco smoke.

41. A method according to claim 40 whereby the dosed
substance is actively or passively dosed in any matrix or
medium, by any means or route, including for example, by
injection, by eating, by drinking, by inhaling or by smoking,
over any time period including a subject’s lifetime or any
specified part or fraction thereof, such dosing to include that
resulting from environmental exposure or pollution or from
medical, dental, veterinary or surgical procedures.

42. A method, according to claim 41, for identifying the
acetylator phenotype of a subject without dosing a test
substance to that subject.

43. A method, according to claim 41, for predicting the
response of a subject to dosing with a substance where that
response is dependent on acetylator phenotype.

44. A method according to claim 2 for predicting the
susceptibility of a subject to isoniazid-induced toxicity.

45. A method according to claim 2 for predicting the
susceptibility of a subject to galactosamine-induced toxicity.

46. A method according to of claim 43 for predicting the
susceptibility of a subject to paracetamol-induced toxicity.

47. Apparatus for generating models according to claim 1.

48. Apparatus for response prediction and/or for meta-
bolic phenotyping, the apparatus comprising:

one or more models, each model modelling the correla-
tion of pre-dose and post-dose data relating to a plu-
rality of subjects dosed with a particular dosing sub-
stance;

a processor for analysing data relating to an un-dosed
subject in relation to at least one of the models and
thereby determining one or more aspects of the meta-
bolic phenotype of the un-dosed subject or predicting
its responses to dosing according to the model(s)
employed.

49. Apparatus, according to claim 48, the apparatus being
further arranged to generate one or more models according
to claims 1.

50. Apparatus according to claim 49, further comprising
one or more analytical instruments or devices to carry out
physical and/or chemical analysis, such as NMR spectros-
copy, mass spectroscopy, infrared spectroscopy or high
performance liquid chromatography.

51. Apparatus for identifying one or more biomarkers
according to claim 16.

52. Apparatus according to claim 1 for response predic-
tion or metabolic phenotyping which is based on the use of
one or more biomarkers which have been previously iden-
tified as described in claims 16.

53. Apparatus for metabolic phenotyping or for predicting
a subject’s response(s) to dosing, the apparatus comprising:

a test area to receive a sample from the subject under test,
said test area incorporating one or more reagents which
may react chemically with one or more biomarkers in
the sample to produce a change in the visual appear-
ance of the test area, the biomarkers having been



US 2005/0074745 Al

previously identified according to claim 51, and the
resulting visual appearance of the test area being char-
acteristic of metabolic phenotype or predictive of
response(s) to dosing.

54. Apparatus for carrying out the methods claimed in

claim 21 wherein an appropriate dosing regime for a subject
can be identified.

55. Apparatus according to claim 47, which is based on
the use of antibodies raised against specific biomarkers.
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56. Apparatus according to claim 55 wherein selected
biomarkers are detected and/or quantified by means of
enzyme-catalysed reactions using, for instance, enzymes
immobilised on a solid support.

57. Apparatus comprising one or more models generated
by a method according to claim 2.

58 Apparatus, according to claim 57, which is further
arranged to identify test data that does not conform to the
limits of a particular model.
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