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(57) ABSTRACT 

A method of generating models with which to characterise 
Selected aspects of the metabolic phenotype of Subjects 
without dosing a test Substance to those Subjects or with 
which to predict, without dosing, the post-dose responses of 
Subjects where those responses are dependent on metabolic 
phenotype, the method comprising: obtaining pre-dose data 
relating to a plurality of Subjects before dosing with a dosing 
Substance, obtaining post-dose data relating to the plurality 
of Subjects after dosing with the dosing Substance, and 
correlating inter-Subject variation in the pre-dose data with 
inter-Subject variation in the post-dose data, and generating 
a pre-to-post-dose predictive model on the basis of the 
observed correlation. The models may be used to determine 
Selected aspects of the metabolic phenotype of a Subject or 
to predict, without dosing, the post-dose responses of Sub 
jects. This is achieved by analysing data relating to the 
un-dosed Subject in relation to a model describing the 
correlation of pre-dose and post-dose data relating to a 
plurality of Subjects when dosed with a particular Substance 
which challenges the biochemical transformation or path 
way of interest; and generating, according to the predeter 
mined criteria of the model, a numerical measure or classi 
fication describing the metabolic phenotype of the un-dosed 
Subject. 
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METABOLIC PHENOTYPNG 

CROSS REFERENCE TO RELATED 
APPLICATION 

0001. This patent application is a continuation applica 
tion under 35 USC S 120 of PCT patent application serial 
number PCT/IB03/02309, filed Jun. 16, 2003, designating 
the United States, which claims priority to United Kingdom 
serial number 0213786.7, filed Jun. 14, 2002, and United 
Kingdom serial number 0213895.6 filed Jun. 17, 2002. 

BACKGROUND 

Biochemical Reactions 

0002 An organism's overall metabolic phenotype is the 
sum total of its metabolic attributes and is determined by the 
interaction of its genetic composition and the environment, 
where the environment is considered in the widest possible 
Sense. The term 'metabolic phenotype may also be applied 
to individual aspects of an organism's metabolic character 
istics. 

0003) A vast array of biochemical reactions (metabolic 
transformations) take place within living organisms and the 
overwhelming majority of these reactions are catalysed by 
enzymes. 

0004 Enzymes are specialised proteins that function as 
biochemical catalysts to accelerate biochemical reactions. 
Without enzymes many of the reactions required for normal 
cell activity would not proceed fast enough at normal bodily 
pH and temperature. As a catalyst, an enzyme increases the 
rate of a reaction but is recovered unchanged at the end of 
the reaction. 

0005. A molecule acted on by an enzyme is termed a 
Substrate and enzymes exhibit much specificity for par 
ticular Substrates e.g. glucose oxidase will oxidise glucose 
but not galactose. This specificity is determined by the 
Substrate-binding site on the enzyme Surface. This site is a 
particular arrangement of amino acids that conferS preferred 
binding ability for one or more Substrates. Some enzymes 
have broad Substrate specificity whereas others are specific 
to individual Substances. Thus, for example, glucose, man 
nose and fructose are all phosphorylated by hexokinase 
whereas glucokinase is specific for glucose. 
0006. The International Union of Biochemistry and 
Molecular Biology (IUBMB) has established an enzyme 
classification System which has six major enzyme classes: 

0007 1. Oxidoreductases 

0008 2. Transferases 
0009. 3. Hydrolases 

0010 4. Lyases 

0011 5. Isomerases 
0012 6. Ligases. 

0013 Each of these individual classes is further divided 
into Sub-classes to which the individual enzymes belong. 
Full details are currently available on the world-wide web 
(http://www.chem.qmw.ac.uk/iubmb/enzyme). 

Apr. 7, 2005 

0014. As an example, guanidinoacetate N-methyl trans 
ferase (EC 2.1.1.2) catalyses the conversion of S-adenosyl 
L-methionine and guanidinoacetate to S-adenosyl-L-ho 
mocysteine and creatine. This is an example of a methyl 
transferase. 

0015 Factors which may affect the rate of enzyme 
catalysed reactions include the amount of Substrate present, 
the amount of product present, the amount of the enzyme 
present and the activity of each enzyme molecule. The 
activity of an enzyme molecule can be affected by a variety 
of factors including its inherent activity, the presence of 
cofactors and prosthetic groupS and by binding at an allos 
teric Site. Both the amount of the enzyme and the activity per 
enzyme molecule may be affected by genetic variation 
between Subjects. The amount of an enzyme and the activity 
per molecule combine to give the Overall enzyme activity 
and this may vary considerably between different subjects. 
Such variation may independently affect a whole range of 
different enzymes and metabolic transformations and this 
variation will contribute to the generation of a different 
overall metabolic phenotype for each Subject. Variation in 
the levels of any other Substances that are required for 
biochemical transformations to take place will also contrib 
ute to the metabolic phenotype. For example, variation in the 
ability of Subjects to effect drug glucuronidation may be 
caused by inter-subject variation in the level of UDP 
glucuronic acid (UDPGA). 
0016 Whilst metabolic phenotype would typically be 
considered in terms of enzyme-catalysed reactions, meta 
bolic phenotype in its broadest Sense would also include 
measures relating to each of the non-enzymic reactions that 
might occur within a certain type of Subject. Additionally, a 
subject's overall metabolic phenotype would be influenced 
by the nature and quantity of the other organisms, Such as the 
gut bacteria, that are living within or on that Subject. 
Importantly, whilst a Subject's genotype would be constant 
throughout the life of that Subject, a Subject's overall meta 
bolic phenotype could change Significantly with age and 
with other environmental influences Such as disease, infec 
tion and nutritional Status. 

0017 Variation in metabolic phenotype causes inter-sub 
ject differences in the metabolism of Xenobiotics Such as 
drugs. Such differences in metabolism are a major factor 
contributing to differential responses (e.g. degree of efficacy, 
degree of toxicity etc.) to dosed Substances because they 
may result in different degrees of exposure to the active 
Substance(s). Thus, for instance, fast metabolism of a toxic 
Substance to non-toxic metabolites would result in rapid 
detoxification whilst slow metabolisers of the toxin would 
be more likely to show toxic effects. Conversely, fast 
metabolism of the efficacious component or derivative of a 
drug could lead to reduced efficacy of the treatment. Other 
factors contributing to differential responses to dosed Sub 
stances include inter-Subject differences in absorption from 
the gut and differential Sensitivity of receptorS. Genetic 
variability in Susceptibility and response to toxicants was 
reviewed in Toxicology Letters (2001) Vol 120 in articles 
entitled “Genetic variability in susceptibility and response to 
toxicants” by Ingelman-Sundberg (pages 259-268) and by 
Miller et al (pages 269-280). Inter-individual variability in 
human drug metabolism is the subject of a book “Interin 
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dividual Variability in Human Drug Metabolism” edited by 
Pacifici and Pelkonen and published by Taylor & Francis 
(2001). 
0018 Body Fluids and the Effects of Variation in Meta 
bolic Phenotype 

0.019 Aspects of the biochemical composition of intrac 
ellular fluids are reflected in the extracellular tissue fluid and 
consequently in the circulating blood which contacts that 
tissue. Thus, alterations in the biochemical composition of 
cell fluids are liable to affect the biochemical composition of 
the extracellular tissue fluid and the biochemical composi 
tion of the blood. Alterations in blood composition may, in 
turn, be reflected in altered urinary composition. Thus, 
abnormal cellular metabolic processes are likely to be 
reflected in altered compositions of biofluids such as blood 
and urine and, consequently, these fluids provide diagnostic 
windows onto the state of the body. Major alterations in such 
fluids are frequently caused when toxins, Such as liver or 
kidney toxins, are administered and inherent factorS Such as 
major enzyme deficiencies can also be identified from those 
fluids. Thus, for example, in classical phenylketonuria, a 
deficiency in phenylalanine hydroxylase causes a failure to 
convert phenylalanine to tyrosine and produces an altered 
urinary composition with increased levels of phenylpyruvic 
acid, phenylactic acid and phenylacetic acid (see Textbook 
of Biochemistry With Clinical Correlations, 4" Edition, 
1997, edited by T. M. Devlin, published by Wiley-Liss). This 
is an example of a genetically determined error of metabo 
lism and Such diseases are known as inborn errors of 
metabolism (See, for example, Newsholme and Leech, 
1983, Biochemistry for the Medical Sciences, published by 
John Wiley and Sons) Identification of the described urinary 
changes Serves to identify the enzymic deficiency. 

0020. As well as the serious metabolic deficiencies, other 
lesser inter-individual differences in metabolic phenotype 
exist that are not Sufficient to cause disruption of normal 
metabolic processes and consequent disease. However, Such 
differences may be revealed when the organism is Subjected 
to an unusual challenge Such as a large dose of a particular 
chemical compound e.g. a drug Substance. Additionally, 
Such differences may cause altered risk factors for diseases 
Such as cancer which are associated with long term exposure 
to harmful Substances Such as environmental pollutants and 
tobacco Smoke. 

NMR Spectroscopic Analysis of Biological 
Samples 

0021. The use of Nuclear Magnetic Resonance (NMR) 
Spectroscopy to Study the low molecular weight composition 
of biological fluids is now well established (e.g. Nicholson 
and Wilson (1989), High resolution proton magnetic reso 
nance spectroscopy of biological fluids, Progress in NMR 
Spectroscopy, 21, 449-501; Lindon et al. (1999), NMR 
spectroscopy of biofluids, Annual reports on NMR spectros 
copy, 38). The advent of high field magnets for NMR has 
been one factor in this development. Such magnets have 
greatly improved the Sensitivity of the technique and the use 
of cryoprobes brings further improvement. An additional 
benefit, for the examination of complex mixtures, is that 
increased magnetic field strength leads to improved disper 
Sion of the NMR signals i.e. the Signals are more spread out 
and leSS prone to overlap one another. Other factors which 
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have greatly improved the capabilities of modern NMR 
Spectroscopy include improvements in probe design leading 
to much higher Sensitivity, the ready availability of comput 
ing power and the development of improved pulse 
Sequences e.g. for the Selective Suppression of the water 
Signal in an aqueous Sample. The advent of flow probes has 
enabled greatly increased Sample throughput in comparison 
to the conventional use of high precision, fragile glass 
Sample tubes. 

0022. In addition to its usefulness for biofluids, NMR 
Spectroscopy can be Successfully used for the examination 
of Small (ca. 10-20 mg) samples of Solid tissue (e.g. Moka 
et al. (1997), Magic angle spinning proton nuclear magnetic 
resonance Spectroscopic analysis of intact kidney tissue 
samples, Analytical Communications, 34, 107-109). How 
ever, this requires a Special technique known as Magic Angle 
Spinning (MAS) and, in comparison to solution state NMR 
Spectroscopy, MAS-NMR spectroscopy is a time-consum 
ing procedure. With automated Solution state NMR spec 
troScopy it is possible to examine more than 150 Samples per 
day whilst 10 samples per day is typical for MAS-NMR 
Spectroscopy where the Samples are manually changed by an 
operator. 

0023 The vast majority of organic compounds contain 
protons that would be detectable by H NMR spectroscopy 
So long as enough of the compound is present in the Sample 
being analysed. This means that, in principle, "H NMR 
spectroscopy is an almost universal detector for organic 
compounds. The detectability of H NMR spectroscopic 
Signals from a particular Sample component depends on the 
amount of the component present, on the type and molecular 
environment of the proton(s) and on the nature of the NMR 
experiment. The main limitation is that eXchangeable pro 
tons, Such as those in hydroxyl groups, may not be observed. 
Essentially, the "H NMR spectrum of any particular organic 
compound is unique to that compound. Additionally, NMR 
Spectra are readily interpretable and predictable So that 
Structural features and often the complete Structure of a 
compound may be deduced from its "H NMR spectrum. 
0024. In the conventional one-dimensional (1D) "H 
NMR spectrum of a biofluid the individual spectra of all the 
detectable components are Superimposed according to their 
relative concentrations and this facilitates quantitation. In 
practice, the high field H NMR spectra of biofluids such as 
urine and plasma are extraordinarily rich in information, 
with a very large number of low-to-medium molecular 
weight components being detectable in a single experiment. 
Lipoproteins and high molecular weight components Such as 
proteins are also present in plasma but their "H NMR spectra 
are Subject to Signal broadening influences arising from 
restricted mobility of the resonating nuclei. Such broadening 
reduces the amount of information derivable from and about 
Such components. 

Applications of Biofluid NMR Spectroscopy 

0025. In comparison to NMR spectroscopy, traditional 
clinical chemistry assays generally provide more exact 
quantitation and may also provide better detection limits. On 
the other hand, "H NMR spectroscopy has a major advan 
tage over traditional clinical chemistry in that, by the former, 
the levels of all the detectable components are measured in 
a single experiment without the need to Specify which 
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components require analysis. Thus, by H NMR spectros 
copy, unexpected changes may be observed and previously 
unrecognised substances may be identified. Thus, "H NMR 
Spectroscopy has great Strength as a simultaneous multi 
analyte detector for non-routine investigations and is ideally 
Suited to the detection of new biomarkers. 

0026. The analysis of post-dose body fluids using NMR 
Spectroscopy to identify and track responses to toxins is 
known (e.g. Holmes et al. (1992) NMR spectroscopy and 
pattern recognition analysis of the biochemical processes 
asSociated with the progression and recovery from nephro 
toxic lesions in the rat induced by mercury(II) chloride and 
2-bromoethanamine, Mol. Pharmacol., 42, 922-930). In the 
context of toxicology studies, biofluid NMR spectroscopy 
may detect metabolites of dosed Substances and/or changes 
in endogenous biofluid components that are induced by 
dosed Substances and may be used to assess toxic effects and 
to identify relevant defensive processes, Such as glucu 
ronidation and mercapturic acid formation. Biofluid NMR 
Spectroscopy also has significant potential to elucidate 
mechanisms of toxicity. 
0027. It is known that, using NMR spectroscopy, certain 
inborn errors of metabolism can be readily identified from 
biofluid samples (e.g. Moolenaar et al. (2003) Proton 
nuclear magnetic resonance spectroscopy of body fluids in 
the field of inborn errors of metabolism, Ann. Clin. Bio 
chem., 40, 1, 16-24). It is also known that NMR spectros 
copy of biofluids can be used to diagnose other disease 
conditions and to track responses to therapy. 
0028. Following the success of the NMR-based approach 
to monitoring the metabolic State of living Systems the term 
metabonomics has been coined (Nicholson et al. (1999), 
Metabonomics: understanding the metabolic responses of 
living Systems to pathophysiological Stimuli via multivariate 
Statistical analysis of biological NMR spectroscopic data, 
Xenobiotica, 29, 1181-1189). Metabonomics is defined as 
the quantitative measurement of the multiparametric meta 
bolic response of living Systems to pathophysiological 
Stimuli or genetic modification. Metabonomics is comple 
mentary to the genomics and proteomics technologies which 
are based on detecting changes in gene expression and 
protein levels respectively. An advantage of metabonomics 
in relation to the other technologies is that metabonomics 
looks at the overall metabolic result rather than at underlying 
influences which may or may not be metabolically signifi 
Cant. 

Pattern Recognition 
0029. A complicating factor in extracting useful bio 
chemical information from sets of biological (biofluid or 
tissue-derived) NMR spectra is their great complexity. An 
efficient way to investigate these complex multiparametric 
data Sets is to employ computer-based pattern recognition 
methods. 

0030 Pattern recognition (PR) is a general term for 
methods of multivariate data analysis which may be used to 
look for patterns in data Sets, a priori, or to look for elements 
of data sets which correlate with other known factors (see, 
for example, Beebe et al., 1998, Chemometrics, A Practical 
Guide, John Wiley and Sons, New York etc.). Inherent in this 
is the assumption that the data Set consists of a number of 
different objects for which a variety of parameters (or 
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“variables) have been measured. Whatever those param 
eters may be, the same parameters have generally been 
measured on all the objects in the data Set although occa 
Sional missing values may be acceptable. In the context of 
a set of NMR spectra, the different objects would be the 
different spectra whilst the various parameters would gen 
erally be the integrations for different spectral windows 
within the overall spectrum. PR methods may be conve 
niently classified as Supervised or unsupervised and Some 
of these multivariate Statistical analysis methods are 
described in the following Sections. 

Unsupervised PR Methods 
0031. Unsupervised PR methods are used to determine 
inherent clustering patterns in multivariate data Sets without 
reference to any other independent knowledge. Examples of 
unsupervised pattern recognition methods include principal 
component analysis (PCA), hierarchical cluster analysis 
(HCA), and non-linear mapping (NLM). 

Principal Components Analysis (PCA) 
0032 Principal components analysis (PCA) (e.g. Sharaf 
et al., 1986, Chemometrics, J. Wiley and Sons, New York) 
is one of the most useful and easily applied unsupervised PR 
techniques. Principal components (PCs) are latent variables 
created from linear combinations of the Starting variables 
with appropriate weighting coefficients. The properties of 
these PCs are such that: (i) each PC is orthogonal to (i.e. 
uncorrelated with) all other PCs, and (ii) the first PC 
contains the largest part of the variation of the data Set 
(information content) with Subsequent PCs containing cor 
respondingly Smaller amounts of variation. 
0033. In mathematical terms, a data matrix, X, can be 
regarded as being composed of a 'Scores matrix, T, and a 
loadings matrix', P, such that X=TP", where the Superscript 
“t denotes the transpose. The covariance matrix, C, is 
calculated from the data matrix, X. The eigenvalues and 
eigenvectors of the covariance matrix are then determined 
by diagonalisation. The coordinates of the different objects 
in eigenvector plots (the principal components or PCs) are 
denoted Scores and comprise the Scores matrix T. The 
eigenvector coefficients are denoted loadings and comprise 
the loadings matrix P, and give the contributions of the 
descriptors to the PCs. 
0034. A plot of the any two principal component scores 
is often called a scores plot. The scores plot for PC1 vs. 
PC2 provides the maximum information content of the data 
in two dimensions although lower order PC plots may well 
be useful. Such Scores plots can be used to Visualise inherent 
clustering in data Sets. 

Supervised Methods 
0035. Where appropriate, Supervised pattern recognition 
methods may also be used to analyse multivariate data. In 
Such analyses the data Set (X) is related, where possible, to 
one or more known factors (Y) Such as class membership or 
the value of one or more parameters outside the X data Set. 
In such methods a training set of X and Y data is used to 
construct a Statistical model that estimates the required Y 
factor(s) from the X data. This model is then tested with 
independent data (referred to as a validation data set) to 
determine its robustness and predictive ability. Once vali 
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dated the model may legitimately be used to predict the 
relevant Y factors for samples where only the X data is 
available. 

0036) Examples of Supervised pattern recognition meth 
ods include the following: Soft independent modelling of 
class analysis (SIMCA); partial least Squares analysis (PLS); 
linear descriminant analysis (LDA); K-nearest neighbour 
analysis (KNN); artificial neural networks (ANN); probabi 
listic neural networks (PNNs); rule induction (RI); and 
Bayesian methods. See, for example: (re. SIMCA) Wold 
(1976) Pattern recognition by means of disjoint principal 
components models, Pattern Recog., 8, 127; (re. PLS) Frank 
et al. (1984) Prediction of product quality from spectral data 
using the partial least Squares method, J. Chem. Info. Comp., 
24, 20; (re. LDA) Nillson, 1965, Learning Machines, 
McGraw-Hill, New York); (re. KNN) Beebe et al., 1998, 
Chemometrics, A Practical Guide, John Wiley and Sons, 
New York etc; (re. ANN) Anker and Jurs (1992) Prediction 
of C-13 nuclear magnetic resonance chemical shifts by 
artificial neural networks, Anal. Chem., 64, 1157; (re. PNN) 
Speckt (1990) Probabilistic neural networks, Neur. Net 
works, 3, 109; (re. RI) Quinlan (1986) Induction of decision 
trees, Machine Learning, 1, 81, (re. Bayesian Methods) 
Bretthorst, 1990, An introduction to parameter estimation 
using Bayesian probability theory, In: Maximum Entropy 
and Bayesian Methods, Ed. Fougere, Kluwer Academic 
Publishers, The Netherlands, 53-79. 

Partial Least Squares (PLS) 
0037. PLS is the regression extension of the PCA method 
described earlier. In PLS the variation between the objects in 
a data matrix X is described by the X-scores, T, and the 
variation in the Y-block regressed against is described in the 
Y-scores, U. Essentially, what PLS does is to maximize the 
covariance between Tand U. For the PLS model a set of PLS 
weights, W, are calculated, containing the influence of each 
X-variable on the explanation of the variation in Y. The 
corresponding Set of weights for the Y-block is designated C. 
A matrix of X-loadings, P, is also calculated. These loadings 
are used both for interpretation and to perform the proper 
decomposition of X. 
0038. The PLS decomposition of X and Y can hence be 
described as follows: 

X-TP+E 

Y-TC+F 

0039 where E and F are the X and Y residuals 
respectively and the SuperScript “t denotes the trans 
pose of the relevant matrix. 

0040. The PLS regression coefficients, B, are then given 
by: 

B=W(PW)-1C 
0041. The estimate of Y, Y, can then be calculated 
according to the following formula: 

Partial Least Squares Descriminant Analysis 
(PLS-DA) 

0.042 PLS-DA is a Supervised multivariate method yield 
ing latent variables in a data matrix (X) that describe the 
maximum separation between known classes of objects (Y). 
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PLS-DA is based on PLS which is the regression extension 
of the PCA method described earlier. Whereas PCA simply 
Works to find the maximum variation existing within the 
variables describing the studied objects, PLS-DA works to 
find the maximum Separation between known classes of 
objects. This is done by a PLS regression against a 'dummy 
vector or matrix (Y) carrying the class information. The 
calculated PLS components are thereby focussed on describ 
ing the variation in X that separates the classes (Y), if this 
information is present in the data. The class membership has 
to be known prior to the actual modelling. Once a model is 
calculated and validated it can legitimately be used for 
prediction of class membership for objects of unknown 
class. 

Neural Networks vs. PLS and PLS-DA 

0043 Methods such as PLS and PLS-DA rely on the 
extraction of linear associations between the input variables 
and this can significantly limit the power of the analysis. 
Neural network-based pattern recognition techniques can 
provide improved predictive ability, particularly where the 
factor being predicted is influenced by a number of unrelated 
causes. Nevertheless, methods such as PLS and PLS-DA are 
often Sufficiently powerful and provide a significant benefit 
over relatively black box neural network methods in that 
they readily allow Some information to be gained as to what 
aspects of the input dataset were particularly important in 
the model building i.e. in comparison to neural network 
models, PLS and PLS-DA models are more transparent with 
respect to interpretation. 

The Application of PR Methods to Metabonomic 
Data 

0044 Pattern recognition methods have been applied to 
the analysis of metabonomic data, including, for example, 
complex NMR spectroscopic data, with Some Success. See 
for example: Anthony et al. (1994) Pattern recognition 
classification of the Site of nephrotoxicity based on meta 
bolic data derived from proton nuclear magnetic resonance 
spectra of urine, Mol. Pharmacol., 46, 199-211; Beckwith 
Hall et al. (1998) Nuclear magnetic resonance spectroscopic 
and principal components analysis investigations into bio 
chemical effects of three model hepatotoxins, Chem. Res. 
Tox., 11, 260-272; Gartland et al. (1990) Pattern recognition 
analysis of high resolution H NMR spectra of urine. A 
non-linear mapping approach to the classification of toxi 
cological data, NMR in Biomedicine, 3, 166-172; Holmes et 
al. (1992) NMR spectroscopy and pattern recognition analy 
sis of the biochemical processes associated with the pro 
gression and recovery from nephrotoxic lesions in the rat 
induced by mercury (II) chloride and 2-bromoethanamine, 
Mol. Pharmacol., 42,922-930; Holmes et al. (1994) Auto 
matic data reduction and pattern recognition methods for 
analysis of H NMR spectra of human urine from normal 
and pathological states, Anal. Biochem., 220, 284-296. 

Data Filtering 
0045 Although pattern recognition methods may be 
applied to unfiltered data, it is often preferable to filter data 
to removed irrelevant variation. Such filtering requires Some 
degree of Supervision to distinguish between relevant and 
irrelevant variation. 

0046) One method of data filtering simply involves delet 
ing Selected Spectral regions and then working with the 
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remainder. Thus, for example in the "H NMR spectra of 
aqueous Samples acquired with water Suppression, the mag 
nitude of the residual water Signals will vary according to the 
effectiveness of the water Suppression and these irrelevant 
Signals may be deleted. 
0047 Alternatively, variation in the data which is not 
correlated to (i.e. is orthogonal to) the variation of interest 
may be removed by orthogonal filtering. One preferred 
orthogonal filtering method is conventionally referred to as 
Orthogonal Signal Correction (OSC), wherein latent vari 
ables orthogonal to the variation of interest are removed 
(Wold et al. (1998) Orthogonal Signal Correction of Near 
Infrared Spectra, ChemometricS and Intelligent Laboratory 
Systems, 44, 175-185). 

Orthogonal Signal Correction 
0048. The OSC method locates the longest vector 
describing the X variation between the objects that is not 
correlated with the Y-vector, and removes it from the data 
matrix. The resultant data set has thus been filtered to allow 
pattern recognition focused on the variation within the 
object population that is correlated to features of interest, 
rather than non-correlated, orthogonal variation. This pro 
ceSS may be repeated as often as necessary with the proviso 
that over-fitting should be avoided. 
0049. In PLS, the weights, W, are calculated to maximise 
the covariance between X and Y. In OSC, in contrast, the 
weights, W, are calculated to minimize the covariance 
between X and Y, which is the same as calculating compo 
nents as close to Orthogonal to Y as possible. Such compo 
nents, orthogonal to Y and therefore containing unwanted 
variation, may then be Subtracted from the Spectral data, X, 
to produce a filtered predictor matrix which is focussed on 
the variation of interest. 

0050. If PCA suggests separation of different classes, 
orthogonal signal correction (OSC) can be used to optimise 
the Separation, thus improving the performance of Subse 
quent multivariate pattern recognition analysis and enhanc 
ing the predictive power of the model. 

Modelling and Prediction 
0051). Inherent in the PLS, PLS-DA and neural networks 
analyses is the idea of building a predictive mathematical 
model using model-building or modelling data from 
Samples of known behaviour or type. 
0.052 Once a model has been calculated, it may be 
validated using data for Samples of known behaviour or type 
which were not used to calculate the model. In this way, the 
predictive ability of the model may be tested. Once vali 
dated, Such models can legitimately be used to predict the 
behaviour or type of Samples of unknown behaviour or type 
(the test data). Before analysis, the test data must be pro 
cessed in the same manner as the modelling data, including 
the application of any filtering. 
0.053 Any particular model is only as good as the data 
used to formulate it. Therefore, it is preferable that all 
modelling and test data are obtained from comparable 
individuals, under the same (or similar) conditions and using 
the same (or similar) experimental parameters. 

Prior Art for Phenotyping 
0054) The variation within sets of biofluid NMR spectra 
from metabolically unchallenged Subjects (i.e. not dosed) 
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may be examined by unsupervised PR methods such as PCA 
and different groupings may Sometimes be observed under 
constant experimental conditions (e.g. Bollard et al. (2001) 
Investigations into biochemical changes due to diurnal 
variation and estrus cycle in female rats using high resolu 
tion (1)HNMR spectroscopy of urine and pattern recogni 
tion, Anal. Biochem., 295, 2, 194-202). However, this 
method does not necessarily provide clear information about 
the Significance of the different groupings in relation to 
metabolic transformations (e.g. Baud-Camus et al. (2001) 
Determination of N-acetylation phenotype using caffeine as 
a metabolic probe and high-performance liquidchromatog 
raphy with either ultraViolet detection or electrospray 
massSpectrometry, Chromatogr. B. Biomed. Sci. Appl., 760, 
1, 55-63). By examination of the spectral features that 
provide discrimination between different groups it may be 
possible to make an interpretation of the significance of the 
Separation. However, this is an unreliable and untargeted 
approach that does not provide proof of Significance and it 
is a very inefficient way of examining the potentially Subtle 
and complex variation associated with different metabolic 
phenotypes. 

0055 Conversely, in a targeted approach, it is known to 
use patterns of components detected in biofluids using NMR 
Spectroscopy, or other techniques, after dosing with test 
Substances (such as caffeine in the case of acetylator phe 
notype) to establish the ability of a Subject to effect particu 
lar metabolic transformations. In other words, NMR spec 
troScopy and other techniques can be used to determine the 
metabolic phenotype of a Subject using post-dose biofluids. 
In these analyses, the components of interest would nor 
mally be the unchanged dosed Substance and/or its metabo 
lites. For simplicity the term 'metabolites of the dosed 
compound will henceforth be considered to include the 
dosed compound itself. Often a ratio of Such components 
would be determined as a measure of the relevant metabolic 
ability. From such analyses it would be possible to determine 
the ability of a subject with respect to a whole variety of 
metabolic transformations depending on the availability of 
Suitable test Substances. However, in general, the ability of 
a Subject to effect one type of transformation would be 
expected to be independent of its abilities with respect to all 
other transformations. Thus, one would expect multiple test 
Substances to be required when investigating a Subject's 
ability with respect to a variety of biochemical transforma 
tions. Although Such analyses are occasionally carried out, 
unnecessary dosing of any Substance to human or animal 
Subjects is undesirable on Safety and ethical grounds and 
widespread use of Such methods is unlikely. A further 
complication is that dosing a test Substance might cause 
enzyme induction, resulting, for Some time afterwards, in an 
altered metabolic State. Thus, for instance, Such phenotyping 
could be problematic in relation to toxicity Studies. 

0056. The term biomarker as used herein is normally 
taken to mean a chemical or biochemical entity in a Subject 
or Subject Sample or Statistically associated combinations of 
entities, or a physiological response in a Subject which has 
a significance associated with its presence, absence or level, 
that is indicative of a particular physiological State, disease 
or toxic process or of a predisposition towards a particular 
type of metabolic or disease process and may also be 
asSociated with a clinical outcome. 
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0057 Examples of such biomarkers include chemical and 
biological molecules, for example metabolic Substrates, 
intermediates or products, Structural proteins, nuclei acids, 
transport and receptor proteins, immunological proteins, 
proteins associated with metabolic or genetic control, cata 
lytic proteins, enzymes and their associated cofactors. Fur 
ther examples of biomarkers also include levels of activity 
of biological processes for example gene and protein expres 
Sion and levels of activity of cellular Signalling pathways. 

0.058 It is appreciated that the term biomarker also refers 
to any measurable signal associated with or characteristic of 
the presence, absence or level of the aforementioned mol 
ecules or processes; for example Signals or patterns of 
Signals resulting from the output of measurements taken by 
techniques Such as nuclear magnetic resonance (NMR) 
Spectroscopy and/or any other chemical analysis techniques 
Such as mass spectroscopy (MS), infrared (IR) spectoscopy, 
gas chromatography (GC) and high performance liquid 
chromatography (HPLC) or by using any integrated com 
bination of such techniques e.g. GC-MS. 

0059. The term chemical composition as used herein in 
reference to Samples includes the combination of chemical 
and/or biochemical Species which comprise the Sample. 

0060. The term physical parameters as used herein in 
reference to Samples includes characteristic physical mea 
Surements obtained by methods Such as chromatography, 
derivitisation, fractionation and separation, crystallisation, 
Sedimentation, spectral analysis, molecular weight analysis, 
diffraction, analysis of Solubility, analysis of turbidity, 
refractive indeX or resistivity, melting point or boiling point. 

The Present Invention 

0061 The present invention relates to methods for iden 
tifying the metabolic phenotype of a Subject and to methods 
for predicting responses and determining risk factors which 
are influenced by metabolic phenotype. In particular, the 
present invention includes methods for identifying the meta 
bolic phenotype of a Subject and for predicting a Subject's 
responses to one or more treatments by analysing a biofluid 
of that subject. 

0.062. As stated above, the recognised approach to meta 
bolic phenotyping relies upon dosing a Subject and then 
analysing a post-dose biofluid. In a radical departure from 
this, the present invention is based on the unexpected finding 
that variation in the levels of the metabolites of a dosed 
Substance in a biofluid correlates with variation in the 
metabolite profile of a biofluid before the substance is 
administered. Thus, the present invention makes it possible 
to predict the response of a Subject to a Substance prior to 
dosing that Substance. Furthermore, the present invention 
makes it possible to determine a Subject's metabolic phe 
notype without the need to dose that Subject with a test 
Substance. Clearly, where a Substance has the potential to 
cause an adverse reaction, it is highly useful to be able to 
predict a Subject's reaction e.g. in pharmaceutical treat 
ments. Additionally, for the reasons described above (safety, 
ethics and enzyme induction), it is highly advantageous to be 
able to determine the metabolic phenotype of a Subject 
without the need for any dosing. This new and radically 
different methodology provides a highly targeted approach 
to finding pre-dose correlates for post-dose behaviour. 
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0063 Thus, in one aspect, the present invention provides 
a generic method for building a model with which to predict 
a Subject's response(s) to a Substance potentially to be 
administered to that individual. In this method, the Substance 
to be dosed would be administered to a representative 
population of Subjects, henceforth referred to as the model 
building population. The response(s) of interest would be 
measured in all members of the model building population, 
by whatever means were appropriate. Biofluid or other 
Samples collected from the model building population 
before dosing would be examined by H NMR spectroscopy 
or by another Suitable technique (e.g. near infrared spec 
troScopy, high performance liquid chromatography, mass 
spectroscopy or gas chromatography) or by a combination of 
Such techniques. Together, the pre-dose and post-dose 
response data would constitute the model building data. A 
chemometric pattern recognition (PR) technique Such as 
PLS or PLS-DA would be applied to the model building data 
to correlate the variation in the post-dose response(s) with 
variation in the pre-dose data. Sometimes a data filtering 
method such as OSC would be used prior to PR to remove 
uncorrelated variation in the pre-dose data. Once built and 
validated, the model would be useable in conjunction with 
appropriate pre-dose data from one or more test Subjects, of 
Similar type to the model building population, where it was 
desired to predict the response to the same Substance. 
Normally, a new model would be required for each Sub 
stance of interest although a model derived for one Sub 
stance might be uSeable in conjunction with a closely related 
Substance. 

0064. In another aspect, the present invention provides a 
generic method for building a model with which to charac 
terise one or more elements of a Subject's metabolic phe 
notype. In this method, the Substance to be dosed, and the 
amount of that Substance, would be carefully chosen to 
challenge the particular metabolic transformation(s) of inter 
est. The chosen Substance would be administered to a 
representative population of Subjects, henceforth referred to 
as the model-building population. The metabolites of inter 
est would be measured, in a post-dose biofluid or other 
sample, by H NMR spectroscopy or by other suitable 
means, as convenient. From this analysis, a measure of the 
ability of each subject with respect to the relevant metabolic 
transformation(s) would be determined. Biofluid or other 
Samples collected from the model building population 
before dosing would be examined by "H NMR spectroscopy 
or by another Suitable technique (e.g. near infrared spec 
troScopy, high performance liquid chromatography, mass 
spectroscopy or gas chromatography) or by a combination of 
Such techniques. Together, the pre-dose data and the post 
dose metabolic ability measurements would constitute the 
model building data. A chemometric pattern recognition 
(PR) technique such as PLS or PLS-DA would be applied to 
the model building data to correlate the variation in the 
post-dose ability measurements with variation in the pre 
dose data. Sometimes a data filtering method such as OSC 
would be used prior to PR to remove uncorrelated variation 
in the pre-dose data. Once built and validated, the model 
would be uSeable in conjunction with appropriate pre-dose 
data from one or more test Subjects, of Similar type to the 
model-building population, where it was desired to deter 
mine the relevant metabolic ability or abilities. 
0065. In a first aspect of the invention there is provided 
a method of generating models with which to characterise 
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Selected aspects of the metabolic phenotype of Subjects 
without dosing a test Substance to those Subjects or with 
which to predict, without dosing, the post-dose responses of 
Subjects where those responses are dependent on metabolic 
phenotype, the method comprising: 

0066 obtaining pre-dose data relating to a plurality 
of Subjects before dosing with a dosing Substance; 

0067 obtaining post-dose data relating to the plu 
rality of Subjects after dosing with the dosing Sub 
Stance, 

0068 correlating inter-subject variation in the pre 
dose data with inter-Subject variation in the post 
dose data, and generating a pre-to-post-dose predic 
tive model on the basis of the observed correlation. 

0069. The pre- and/or post-dose data may be obtained 
from samples which are biofluids such as urine, blood, blood 
plasma, blood Serum, Saliva, Sweat, tears, breath or breath 
condensate or from Samples which are plant tissues, plant 
fluids or homogenates, plant extracts or plant exudates, 
including, for example, essential oils or from Samples which 
are human or animal tissues, fish tissueS or oils, tissue 
extracts, tissue culture extracts, cell culture Supernatants or 
extracts or of microbial origin. The pre- and/or post-dose 
data may comprise data relating to chemical composition 
and/or physical parameters. 
0070 The pre- and/or post-dose samples or subjects may 
be treated prior to analysis (e.g. treated with one or more 
chemical reagents So as to produce derivative(s) of one or 
more existing Substances), for instance to enhance data 
recovery or to improve Sample Stability. 
0071. The pre- and/or post-dose data may be derived 
from or are compositional data acquired using nuclear 
magnetic resonance (NMR) spectroscopy and/or any other 
chemical analysis techniqueS Such as mass spectroscopy 
(MS), infrared (IR) spectoScopy, gas chromatography (GC) 
and high performance liquid chromatography (HPLC) or by 
using any integrated combination of Such techniques e.g. 
GC-MS. 

0.072 The pre- and/or post-dose data may be physical 
data or data derived therefrom. 

0.073 Preferably a phenotyping model is generated for 
each of a plurality of biochemical transformations, by doS 
ing appropriate Substances. Similarly, by dosing appropriate 
Substances, a response prediction model may be built for 
each of a plurality of dosing Substances. 
0.074 The original pre-dose data set may extended, prior 
to pattern recognition, by taking ratioS and/or other combi 
nations of existing variables. This may be achieved for 
instance by forming further data comprising a ratio or ratioS 
of the obtained data. 

0075 For a group of subjects dosed with any particular 
Substance, a pattern recognition method may be used to 
identify patterns in the variable metabolism of, or the 
variable reactions to, the dosing Substance. A Supervised or 
unsupervised pattern recognition method may be used to 
identify variation in the pre-dose data that correlates with the 
variation of interest in the post-dose data. 
0.076 A data filtering method such as Orthogonal Signal 
Correction (OSC) may be used to remove variation in the 
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pre-dose data that is not correlated with the variation of 
interest in the post-dose data. 
0077. The method may be used to identify biomarkers or 
combinations of biomarkers which provide information on 
metabolic phenotype or which may be used to predict 
responses to dosing. 

0078. In a second aspect of the invention there is pro 
Vided a method of determining Selected aspects of the 
metabolic phenotype of a Subject, the method comprising: 

0079 analysing data relating to the un-dosed subject 
in relation to a model describing the correlation of 
pre-dose and post-dose data relating to a plurality of 
Subjects dosed with a particular Substance which 
challenges the biochemical transformation or path 
way of interest; 

0080 generating, according to the predetermined 
criteria of the model, a numerical measure or clas 
sification describing the metabolic phenotype of the 
un-dosed Subject. 

0081. The pre-determined criteria of the model include 
one or more mathematical equations which define the rela 
tionship between the pre-dose data and the post-dose data 
and allow characterisation of Subjects on the basis of pre 
dose data and allow identification of test data which are 
outliers. 

0082) The data relating to the un-dosed subject may be 
obtained from a biofluid Such as urine, blood, blood plasma, 
blood Serum, Saliva, Sweat, tears, breath or breath conden 
Sate or from a plant tissue, plant fluid, plant homogenate, 
plant extract or plant exudate, including, for example, an 
essential oil, or from human or animal tissue, fish tissue or 
oil, or from a tissue extract, tissue culture extract, cell 
culture Supernatant or cell culture extract or from a Sample 
of microbial origin or from any one of the above Sample 
types after treatment to enhance data recovery or Sample 
stability. 
0083 Characteristic compositional and/or physical data 
relating to a Subject may be generated using nuclear mag 
netic resonance (NMR) spectroscopy and/or any other tech 
niqueS or by using any combination of techniques. 
0084. The phenotyping method may be used for the 
purpose of making a metabolic phenotype-influenced risk 
assessment and/or for the purpose of targeting the use of 
Special health monitoring regimes and/or for the purpose of 
targeting the use of precautionary/preventative treatments 
and/or for the purpose of characterising risk for insurance 
purposes and/or for the purpose of Selecting Subjects for any 
other purpose e.g. for breeding. 

0085. In a further aspect of the invention there is pro 
Vided a method of predicting the reaction of a Subject to a 
dosing Substance, the method comprising: 

0086 analysing data relating to an un-dosed subject 
in relation to a model characterising the correlation 
of pre-dose and post-dose data relating to a plurality 
of Subjects dosed with the particular dosing Sub 
Stance, and 

0087 generating, according to the predetermined 
criteria of the model, a numerical or class prediction 
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for the expected response of the un-dosed Subject if 
it were to be dosed with the dosing Substance. 

0088 According to pre-determined criteria, the maxi 
mum or minimum dose of a Substance that a Subject should 
receive can be predicted as well as the amount of a dosing 
Substance that a Subject should receive. The frequency with 
which a Subject should be dosed with a Substance can also 
be predicted as well as the number of doses of a Substance 
that a Subject should receive. The appropriate controlled 
release formulation for a Subject can be selected. 
0089 Characteristic compositional and/or physical data 
relating to a Subject may be generated using nuclear mag 
netic resonance (NMR) spectroscopy and/or any other tech 
niqueS or by using any combination of techniques. 
0090 The method of determining selected aspects of the 
metabolic phenotype of a Subject or of predicting the reac 
tion of a Subject to a dosing Substance, may further comprise 
analysing data relating to the un-dosed Subject with respect 
to one or more biomarkers which have been previously 
identified. The biomarker(s) may react with one or more 
added reagents to produce a visible change Such as a colour 
change. Preferably the biomarkers are selected by correlat 
ing pre-dose data relating to a plurality of Subjects before 
dosing with a dosing Substance and post-dose data relating 
to the plurality of Subjects after dosing with the dosing 
Substance. 

0091. The method may be used to select a group of 
phenotypically homogenous or Similar Subjects for a labo 
ratory experiment or clinical trial or for any other purpose. 
0092. The method may be used for rationalising biologi 
cal variation in experimental databased on pre-dose analysis 
of biofluids or tissues, where Such variation is caused by 
phenotypic heterogeneity. 

0093. The data may be based on physical and/or chemical 
measurements taken from the Subject as a whole. Examples 
of Such measurements are blood preSSure, heart rate, peak 
flow, height, weight etc. 
0094. The post-dose data may describe a change relative 
to the pre-dose State e.g. a decrease in blood preSSure of a 
human Subject treated with a drug that lowers blood pres 
SUC. 

0.095 Preferably test data that does not conform to the 
limits of a particular model and/or method is identified. 
0096. The subject may be an animal, in particular a 
mammal Such as a human, a mouse, a rat, a pig, a cow, a bull, 
a sheep, a horse, a dog or a rabbit or any farmed animal or 
any animal, Such as a race horse, used for the purpose of 
Sport or for breeding. Alternatively the Subject may be a 
plant, a fish or any other aquatic organism or a biological 
tissue, a tissue culture, a cell culture or a microbial culture. 
0097 Data may be obtained from a sample which is 
representative, or is taken to be representative, of a group of 
Subjects which are considered as a single Subject. For 
instance, Samples from a plurality of like Subjects (e.g. a 
plant) may be ground together and the resulting material 
used to obtain data considered to relate to a single plant 
Subject. 

0098. The dosed substance may be any substance or 
mixture or formulation of Substances including especially 
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pharmaceutical or medicinal Substances or Substances in 
research or development which might potentially become 
pharmaceutical or medicinal Substances, but also including, 
for example, toxins, pesticides, herbicides, food or feed 
Substances, food or feed additives and fluids of any Sort 
including liquids, gases, Vapours and Smoke e.g. tobacco 
Smoke. 

0099. The dosed substance may be actively or passively 
dosed in any matrix or medium, by any means or route, 
including for example, by injection, by eating, by drinking, 
by inhaling or by Smoking, over any time period including 
a Subject's lifetime or any Specified part or fraction thereof, 
Such dosing to include that resulting from environmental 
exposure or pollution or from medical, dental, Veterinary or 
Surgical procedures. 
0100. The method may be used for identifying the acety 
lator phenotype of a Subject without dosing a test Substance 
to that subject. Additionally or alternatively the method may 
be used for predicting the response of a Subject to dosing 
with a Substance where that response is dependent on 
acetylator phenotype. 
0101 The method may be used to predict the suscepti 

bility of a Subject to isoniazid-induced toxicity or galac 
tosamine-induced toxicity. 
0102) The invention also relates to apparatus for gener 
ating models. 
0103) In a further aspect of the invention there is pro 
Vided apparatus for response prediction and/or for metabolic 
phenotyping, the apparatus comprising: 

0104 one or more models, each model modelling 
the correlation of pre-dose and post-dose data relat 
ing to a plurality of Subjects dosed with a particular 
dosing Substance; 

0105 a processor for analysing data relating to an 
un-dosed Subject in relation to at least one of the 
models and thereby determining one or more aspects 
of the metabolic phenotype of the un-dosed Subject 
or predicting its responses to dosing according to the 
model(s) employed. 

0106 Additionally or alternatively the apparatus is fur 
ther arranged to generate one or more models with which to 
characterise Selected aspects of the metabolic phenotype of 
Subjects without dosing a test Substance to those Subjects or 
with which to predict, without dosing, the post-dose 
responses of Subjects where those responses are dependent 
on metabolic phenotype, the apparatus being arranged to: 

0107 obtain pre-dose data relating to a plurality of 
Subjects before dosing with a dosing Substance; 

0.108 obtain post-dose data relating to the plurality 
of Subjects after dosing with the dosing Substance; 
and 

0109 correlate inter-subject variation in the pre 
dose data with inter-Subject variation in the post 
dose data, and generating a pre-to-post-dose predic 
tive model on the basis of the observed correlation. 

0110 Preferably the apparatus may further comprise one 
or more analytical instruments or devices to carry out 
physical and/or chemical analysis, Such as NMR spectros 
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copy, mass Spectroscopy, infrared Spectroscopy or high 
performance liquid chromatography. 

0111. The apparatus may also be arranged to identify one 
or more biomarkers, in particular for response prediction or 
metabolic phenotyping based on the use of one or more 
biomarkers which have been previously identified as 
described. 

0112) In a further aspect of the invention there is provided 
apparatus for metabolic phenotyping or for predicting a 
Subjects response(s) to dosing, the apparatus comprising: 

0113 a test area to receive a sample from the subject 
under test, 

0114 said test area incorporating one or more reagents 
which may react chemically with one or more biomarkers in 
the Sample to produce a change in the Visual appearance of 
the test area, the biomarkers having been previously iden 
tified as described, and the resulting visual appearance of the 
test area being characteristic of metabolic phenotype or 
predictive of response(s) to dosing. 

0115 Preferably the apparatus identifies an appropriate 
dosing regime for a Subject. 

0116. The apparatus may be based on the use of antibod 
ies raised against Specific biomarkers. Selected biomarkers 
may be detected and/or quantified by means of enzyme 
catalysed reactions using, for instance, enzymes immobil 
ised on a Solid Support. 

0117 The invention also relates to apparatus comprising 
one or more models generated by a method according to the 
invention. 

0118. The apparatus may be further arranged to identify 
test data that does not conform to the limits of a particular 
model. 

0119) The invention has many applications: 

0120 (1) “Well subjects not requiring corrective 
treatment 

0121 Metabolic characterisation (phenotyping) of 
Subject enabling: 

0.122 risk assessment e.g. bladder cancer particu 
larly associated with certain phenotype. 

0123 targeted adoption of special health moni 
toring regimes where appropriate i.e. in high risk 
Subjects. 

0.124 targeted use of precautionary/preventative 
treatments where appropriate i.e. in high risk 
Subjects. 

0.125 identification, for insurance purposes, of 
the degree of risk associated with a Subject. 

0.126 selection of Subjects with desirable charac 
teristics e.g. in breeding farm animals. 

0127 selection of phenotypically homogenous 
Subsets of subjects for laboratory or clinical 
experiments. 
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0128 (2) Subjects requiring pharmaceutical, medi 
cal, dental, Veterinary or other treatments 
0129 Metabolic characterisation (phenotyping) 
of the subject and/or prediction of the subjects 
responses to dosing or treatment, enabling: 

0130 avoidance of adverse drug reactions (e.g. 
coma, fatality) either by not administering the 
drug to Vulnerable Subjects or by reducing the 
drug dose and/or the frequency and/or duration of 
Such dosing. 

0131 prediction of occurrence and degree of 
Severity of minor Side effects of drug treatments 
(e.g. nausea, drowsiness). 

0132) selection of optimal pharmaceutical treat 
ment (compound, dose, dose-frequency and dura 
tion of course of treatment) based on maintaining 
an appropriate level of the active drug Substance in 
the body whilst minimising side-effects. 

0.133 avoidance of adverse reactions to medical, 
dental, Veterinary procedures and Substances e.g. 
anaesthetics Such as halothane. 

0134) selection of appropriate medical, dental or 
Veterinary procedures or treatments. 

0135 (3) Drug development and licensing 
0136 Drugs having different effects (e.g. efficacy, 
toxicity) in different subjects could be licensed 
under the proviso that pre-dose metabolic pheno 
typing would be carried out and treatments tai 
lored accordingly. This would enable: 

0137 a reduction in attrition (abandonment of 
compounds during the drug development process) 
because of variable responses either in efficacy or 
in toxicity. 

0138 recovery/relicensing of certain non-ap 
proved drugs where the problems in effectiveness 
or toxicity were limited to certain Subsets of 
Subjects rather than the population as a whole. 

0.139. In relation to drug development studies 
(e.g. for toxicity or efficacy) pre-dose metabolic 
phenotyping would enable: 

0140 interpretation of variable results where that 
Variation resulted from phenotypic differences 
between different subjects or between different 
Subsets of Subjects. 

0141 selection of desired test groups having cer 
tain required metabolic characteristics. 

0142 (4) Biomarker identification 
0143 Instead of being used directly for analysis 
of test data, appropriate models could be used to 
identify biomarkers or combinations of biomark 
ers with which to determine metabolic phenotype 
or with which to predict responses determined by 
metabolic phenotype. Having established the rel 
evant biomarker(s), Simplified methods of analy 
sis, e.g. urine dipstickS or HPLC methods, could 
then be developed based on those biomarkers. 
This would reduce reliance on Sophisticated tech 
nologies Such as NMR spectroScopy and would 
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enable more remote testing e.g. in local laborato 
ries, pharmacies, hospitals or doctors' Surgeries. 

0144. The invention will now be described further, by 
way of example only, with reference to the accompanying 
drawings, in which: 

0145 FIG. 1.1 shows the variable urinary excretion of 
galactosamine after dosing with Galactosamine HCl (abbre 
viated GaN HCl) (800 mg/kg); 
0146 FIG. 1.2 shows the variable urinary excretion of an 
N-acetylated species after dosing with GalN HCl (800 
mg/kg), 

0147 FIG. 1.3 shows some urinary changes induced by 
GalN HCl (800 mg/kg) in a responder; 
0148 FIG. 1.4 shows the altered urinary excretion of 
hippurate and histidine after dosing with galactosamine HCl 
(800 mg/kg); 

0149 FIG. 1.5 shows the scores plot on PC 1 vs. PC 5 
from a PCA of the day -1 (pre-dose) urine NMR spectra 
from the galactosamine Study, 

0150 FIG. 1.6 shows the loadings plot on PC 1 vs. PC 
5 from the PCA of the day -1 (pre-dose) urine NMR spectra 
from the galactosamine Study, 

0151 FIG. 2.1 shows examples of the different patterns 
of N-acetylated metabolites seen in the NMR spectra of 
urine Samples collected from 0-7 hours after dosing iso 
niazid (400 mg/kg) to male Sprague-Dawley rats, 

0152 FIG. 2.2 shows the scores plot on PC 1 vs. PC 2 
from a PCA of the N-acetyls region (82.23 to 6 2.13) of the 
NMR spectra of the day 1 (0-7 hours from dosing) urine 
Samples from the animals dosed with isoniazid (200 mg/kg); 
0153 FIG. 2.3 shows two optional initial pathways for 
isoniazid metabolism; 

0154 FIG. 3.1 shows pre-dose prediction of the ratio 
(peak height a ?peak height allantoin) in the NMR spectra 
of urine Samples collected from 0-7 hours after dosing 
isoniazid (200 mg/kg); 
O155 FIG. 3.2 shows the regression coefficients pertain 
ing to the PLS analysis which gave rise to the results 
described in FIG. 3.1; 

0156 FIG. 3.3 shows pre-dose prediction of the amount 
of metabolite C excreted in the urine collected from 0-7 
hours after dosing rats with isoniazid (200 mg/kg). 
0157 FIG. 3.4 shows pre-dose prediction of the ratio 
(Fraction C)/(Fraction A+B) in the urine collected from 
0-7 hours after dosing rats with isoniazid (200 mg/kg). 

0158 FIG.3.5 shows the internal validation of the model 
relating to FIG. 3.4. 

0159 FIG. 3.6 shows pre-dose predictions of (Fraction 
C)/(Fraction A+B) for an external test set. 
0160 FIG. 4.1 shows pre-dose prediction of the total 
urinary excretion of N-acetylated compounds (Ö ca. 2.22-ca. 
2.11) in the 24-hour period after dosing rats with paraceta 
mol. (1 model for this parameter). 
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0.161 FIG. 4.2 shows pre-dose prediction of the amount 
of MA excreted in the 24-hour period after dosing rats with 
paracetamol. (1 model for this parameter). 
0162 FIG. 4.3 shows pre-dose prediction of the total 
urinary excretion of N-acetylated compounds (8 ca. 2.22-ca. 
2.11) in the 24-hour period after dosing rats with paraceta 
mol. (2" model for this parameter). 
0163 FIG. 4.4 shows the internal validation of the model 
relating to FIG. 4.3. 

0.164 FIG. 4.5 shows pre-dose prediction of the urinary 
excretion of paracetamol glucuronide (G) in the 24-hour 
period after dosing rats with paracetamol. 

0165 FIG. 4.6 shows the internal validation of the model 
relating to FIG. 4.5 

0166 FIG. 4.7 shows pre-dose prediction of the urinary 
excretion of MA in the 24-hour period after dosing rats 
with paracetamol. (2" model for this parameter). 
0167 FIG. 4.8 shows the internal validation of the model 
relating to FIG. 4.7FIG. 4.9 shows the external validation of 
the model relating to FIG. 4.7FIG. 4.10 shows pre-dose 
prediction of the urinary excretion of P in the 24-hour 
period after dosing rats with paracetamol. 

0168 FIG. 4.11 shows the internal validation of the 
model relating to FIG. 4.10 

0169 FIG. 4.12 shows the observed versus pre-dose 
predicted values for the amount of S excreted in the 
24-hour period after dosing rats with paracetamol. 

0170 FIG. 4.13 shows the observed versus pre-dose 
predicted values for the G/S ratio in the 24-hour urine 
Samples obtained after dosing rats with paracetamol. 

0171 FIG. 5.1 shows pre-dose prediction of the total 
urinary excretion of N-acetylated compounds (Ó 2.210 
2.135) per kg of body mass in the first three hours after 
dosing human males with paracetamol. 

0172 FIG. 5.2 shows the external validation of the 
model relating to FIG. 5.1. 

0173 FIG. 5.3 shows pre-dose prediction of the amount 
of paracetamol glucuronide (G) excreted in the urine per 
kg of body mass in the first three hours after dosing human 
males with paracetamol. 

0174 FIG. 5.4 shows the external validation of the 
model relating to FIG. 5.3. 

0175 FIG. 5.5 shows pre-dose prediction of the amount 
of 'P' excreted in the urine per kg of body mass in the first 
three hours after dosing human males with paracetamol. 

0176 FIG. 5.6 shows the external validation of the 
model relating to FIG. 5.5. 

0177 FIG. 5.7 shows pre-dose prediction of the total 
urinary excretion of N-acetylated compounds (Ó 2.210 
2.135) per kg of body mass in the first six hours after dosing 
human males with paracetamol. 

0178 FIG. 5.8 shows the external validation of the 
model relating to FIG. 5.7. 
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A. PREFERRED FEATURES OF THE MODEL 
BUILDING PROCEDURE 

0179 1. The Model Building Population. 
0180. The subjects who form the model-building popu 
lation should, as far as possible, be representative of the 
subjects who will form the test population. Diet can affect 
biofluid composition and inter-Subject dietary variation 
could therefore be important in relation to biofluid-derived 
models. Ideally, the methods would be sufficiently robust so 
as to be unaffected by dietary variation but this would 
require testing for each model. As a precaution against the 
possible effect of a variable diet, it would be advisable for 
all the model building, validation and test data relating to a 
particular model to be acquired from Subjects receiving the 
Same diet. This is easier to achieve for laboratory animals 
than it is for humans. In fact, it could be advantageous if 
Standard animal diets and a Standard human diet were to 
Specified for all relevant exercises as this would enable rapid 
checking of a test Subject's urine Sample against a range of 
different models. In general, the larger the Size of the 
model-building population, the more robust will be the 
model created. Once a model has been built it would need 
to be validated using a group of Subjects who were not 
members of the model-building population. 
0181 2. Dosing 
0182. The substance dosed, the dose level, the frequency 
of dosing and the means of dosing will depend on the 
application. Where the aim is to produce a method for 
metabolic phenotyping, the dosed Substance would need to 
provide one or more metabolites with which to characterise 
the extent of the transformation(s) of interest. Ideally, the 
selected metabolites would only be affected by the transfor 
mation(s) of interest and would not be subject to other 
complications. It is, therefore, likely that the dosed com 
pounds would be Small uncomplicated chemical compounds 
with perhaps mono- or bi-chemical functionality. For build 
ing Such phenotyping models it is likely that a single dose of 
the selected Substance would be Sufficient but this dose 
would need to be large enough to provide discrimination 
between metabolically-different individuals. Where the aim 
is to build a model for response prediction, the dosing 
regime should be identical to that for which the response is 
to be predicted in the test Subjects. 
0183) 3. Samples 
0184 
0185. The pre-dose sample(s) will need to be selected so 
as to contain relevant metabolic information. If necessary, 
Samples of more than one type could be taken and their 
information content combined. Preferably the sample(s) 
would be easy to obtain and the sampling procedure(s) 
would cause minimal pain and inconvenience. To minimise 
the potential for changes in metabolic phenotype to occur 
between time of pre-dose Sampling and the time of dosing, 
the pre-dose Samples should be obtained as near as possible 
to the time of dosing. 

a. Pre-Dose Samples 

0186 Urine is an ideal pre-dose sample because it con 
tains a wealth of metabolic information and can be sampled 
with little or no inconvenience especially to human Subjects. 
Additionally, with humans, urine can be sampled essentially 
on demand. Urine collection from animals. Such as rats is 
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Slightly more difficult; it cannot be obtained on demand and 
Smaller animals. Such as rats would generally have to be 
housed within individual cages for Several hours with Spe 
cial arrangements for urine collection. 

0187 Blood also contains metabolic information and, in 
Small quantities, is relatively easy to Sample from larger 
animals or humans by a pin-prick method. However, 
Special arrangements have to be made to inhibit clotting e.g. 
the use of blood Serum or of Vials containing lithium 
heparin. Larger quantities of blood are more difficult to 
obtain especially from Smaller animals and Specialised tech 
niques and phlebotomists may be required. Anaesthesia 
and/or Sedation may be required depending on the Site of 
blood Sampling and the ease of immobilising the Subject. 
Blood plasma or blood serum are the two blood-derived 
fluids that would normally be analysed. 

0188 Saliva, Sweat, exhaled breath or exhaled breath 
condensate, tears and maternal milk are other body fluids 
which would be easy to obtain and might contain relevant 
metabolic information depending on the nature of the inves 
tigation. 

0189 b. Post-Dose Samples 
0190. The post-dose sample type will depend on the 
application. The post-dose Sample could be the whole Sub 
ject e.g. a human or a rat, or a Sample derived from that 
organism, as in Section a. above. Where necessary, Samples 
of more than one type could be taken. 
0191) 
0.192 Special arrangements need to be taken to ensure the 
stability of biological samples which would otherwise be 
Subject to degradation by bacteria or other means. AS Stated 
above, Special arrangements need to be made to prevent the 
clotting of blood or blood plasma. Urine Samples, especially 
those which might have been subjected to faecal or other 
contamination, are best collected into Vials containing an 
anti-bacterial agent Such as Sodium azide. Sodium azide has 
the benefit of being invisible to "H NMR spectroscopy. 
Where the urine Sample is collected over a significant period 
of time, i.e. for hours rather than minutes, it is best if the 
collection vessel or bag is cooled by ice or other means. 
Once collected and stabilised, all biological fluids should 
either be analysed immediately or stored deep-frozen (-20C 
or below) pending analysis. Preferably, any Solid tissue 
Samples would be 'Snap frozen in liquid nitrogen immedi 
ately after collection and Subsequently Stored at -80C pend 
ing analysis. Collection and Storage vessels should be 
Selected which will not contaminate the Samples by leakage 
of plasticisers or other plastic components. 
0193 4. Sample Preparation 

c. Sample Stability 

0194 Some sample preparation or treatment may be 
required prior to analysis. Samples for "H NMR spectro 
Scopic analysis are typically prepared as follows although 
there may be much variation in the exact procedure used by 
different workers: 

0195 a. Urine Samples 
0196. Urine samples are typically prepared for NMR 
analysis by mixing 400 ul of urine with 200 ul of phosphate 
buffer (an 81:19 (v/v) mixture of 0.2 MNaHPO and 0.2M 
NaH2PO; pH 7.4); if insufficient urine is available the 
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shortfall is made up with purified water with a minimum of 
200 ul of urine being used. The urine-buffer mixture is left 
to Stand for 10 minutes at room temperature to enable 
buffering to take place and then centrifuged at 13,000 rpm 
for a further 10 minutes to remove Suspended particulates. 
500 ul of clear buffered urine is transferred to an NMR tube 
and 50 ul of a TSP/DO solution added. TSP (sodium 
3-trimethylsilyl-2, 2, 3, 3-H-1-propionate) is a chemical 
shift reference compound (Ö 0) used in the NMR experiment 
and the DO provides a field/frequency lock for the NMR 
spectrometer. The concentration of the TSP/DO Solution is 
such as to give a final TSP concentration of 0.1 mM in the 
NMR tube. 

0197) b. Plasma Samples 

0198 Plasma samples are typically prepared for "H NMR 
analysis by mixing 150 till of plasma with 350 lull of saline 
(0.9% (w/v) NaCl in a mixture of 10% (v/v) DO and 90% 
(v/v) HO). Chemical shift reference compounds such as 
TSP are not added because of the likelihood of binding to 
protein in the Sample. 

0199. Depending on the analytical technique to be 
employed, chemical derivatisation of the Sample could be 
used to enhance data recovery. Thus, for example Suitable 
chromophores could be attached to compounds which would 
otherwise be undetectable to spectrophotometric detectors 
monitoring the absorption of ultraviolet or visible light. 
Another option would be to attach fluorescent markers to 
enhance the detectability of compounds by fluorimetric 
analysis. By Such chemical derivatisation, previously unde 
tectable compounds could be made detectable and detection 
limits could be improved for others. Chemical derivatisation 
could also be employed to facilitate the chromatographic 
Separation of different Sample components. Physical and/or 
chemical treatments could also be employed to remove 
undesirable Sample components Such as plasma proteins 
which might otherwise cause problems during the analysis. 
0200 5. Physical-Chemical Analytical Techniques 

0201 a. Analysis of Post-Dose Samples 

0202) The analytical technique(s) need to be chosen with 
regard to the parameter(s) being measured and the number 
and nature of the Samples e.g. whole organism or biofluid 
type. The huge range of parameters that might be of interest 
in different models means that a wide range of analytical 
instrumentation and methods could be required. 

0203 If the application is to measure specific 
response(s), e.g. the change in blood pressure, after dosing 
with a particular Substance then the most appropriate tech 
nique(s) should be chosen, e.g. sphygmomanometer. If the 
toxicity of a Substance is the focus of interest then it may be 
best to measure a range of blood plasma parameters, Such as 
enzyme activities, using, for instance, an automated clinical 
analyser equipped with appropriate kits. Alternatively, his 
topathological findings could be classified according to type 
of effect or could be numerically Scored according to degree 
of severity. Where the aim is to build a phenotyping model 
the post-dose analytical technique would normally need to 
provide quantitation, or at least relative quantitation, of one 
or more metabolites of the dosed Substance. 
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0204 b. Analysis of Pre-Dose Samples 
0205 As with the post-dose samples, the choice of ana 
lytical technique for the pre-dose Samples will be influenced 
by the nature of the Samples but, additionally, the chosen 
pre-dose analytical technique would need to be able to 
reveal metabolic information. Preferably, analysis of a body 
fluid or body tissue would be by means of NMR spectros 
copy or by another technique which is capable of undirected 
metabolite detection and quantitation i.e. the chosen tech 
nique would ideally detect and quantify individual metabo 
lites without the need to Specify analysis of those particular 
metabolites. This allows for the use, within the model, of the 
most useful metabolites even if they are not presently 
known. It also allows for the identification of new metabolite 
markers where that is of interest. For model-building, it is 
not necessary that each observed metabolite is identified but, 
rather, the analytical technique should provide a reliable 
quantitative fingerprint of each Sample. Ideally, the chosen 
technique would be readily accessible but this might not 
always be possible because of the expense and the level of 
Sophistication required. One possible technique, that is stan 
dard analytical equipment in most analytical chemistry 
laboratories, is High Performance Liquid Chromatography 
(HPLC) with, for instance, UV-Visible spectrophotometric 
detection. Although it can be rather time-consuming, the 
HPLC technique would be capable of providing the type of 
data that is required from a pre-dose Sample. The choice of 
the detector for HPLC would be a critical factor and data 
recovery could be facilitated by chemical derivatisation of 
the sample prior to analysis. The use of NMR spectroscopy 
would not be limited to any particular type of NMR experi 
ment. 

0206 c. Variable Performance of Different Analytical 
Instruments 

0207 Different analytical instruments may perform dif 
ferently and the performance of a single piece of equipment 
may vary over time. Such instrumental variation could be 
particularly important where Subtle pre-dose variation 
between Samples needs to be characterised to build a Suc 
cessful model although data filtering such as OSC could help 
to minimise its effects in Supervised PR analyses. There 
fore, in building a particular model, all measurements of a 
particular type would, ideally, be taken on a Single occasion 
using one specific instrument. If it were not possible to carry 
out all the analyses on one occasion it would be necessary 
to ensure that instrument performance had not varied Sig 
nificantly between the different periods of use. Where mul 
tiple pieces or types of equipment were used in taking 
measurements from the model-building population, it would 
be necessary to carry out cross-checks to ensure Similar 
performance from each instrument. DeSelection or recali 
bration of instruments would need to be carried out where 
there was a significant difference in performance between 
different instruments. 

0208 6. Data Manipulation Prior to Multivariate PR 
Analysis 
0209. It may be helpful or necessary to carry out some 
data manipulation prior to PR analysis. 
0210) Ideally, all the available physical and/or chemical 
data would be used in creating the input data for the 
chemometric analysis. However, depending on the type of 
data acquired, Some data reduction may be required prior to 
multivariate analysis. With H NMR spectroscopic data of 
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biofluids Such as urine this has been used, despite buffering, 
to cope with Small pH-induced shifts in the position of peaks 
on the chemical shift Scale. Thus, after deleting certain 
regions Such as the residual water Signals, the remainder of 
each 1D H NMR spectrum is divided along its abscissa into 
sequential segments (typically of 0.04 ppm width for a 600 
MHz spectrometer) and an integral obtained for each Seg 
ment. Where such data reduction is required it would be 
advisable to try a different data reduction method, e.g. to use 
different Spectral Segment widths, if the previous attempt 
had not yielded an adequate model. The use of a data 
filtering technique Such as OSC could facilitate data reduc 
tion by assisting with variable Selection. 
0211) With biofluid NMR data it is common practice to 
normalise each data-reduced spectrum and there are a 
number of ways of doing that. Frequently, each NMR 
Spectrum is normalised, or Scaled, to give the same total 
integration as every other NMR spectrum in the data set. 
Additionally, other data manipulations may prove to be 
helpful e.g. scaling the H NMR data from urine samples to 
a constant integration for the allantoin peak at Ö 5.4, if 
present, or to a constant integration for a creatinine peak. In 
man, urinary creatinine excretion is related to muscle mass 
which in turn is loosely related to body mass. Scaling urine 
data to constant creatinine should therefore help to eliminate 
differences in excretion that are related to body mass. 
Additionally, by determining a measure of metabolite con 
centrations in urine and by taking account of the amount of 
urine excreted by each subject it should be possible to obtain 
a data Set which truly represents metabolite excretion by 
each subject. Where metabolite excretion has been deter 
mined, and body mass is also known but variable, it may be 
useful to normalise urine data to excretion per unit body 
mass. It may also be useful to block the data so that 
variables with values falling within a particular range are 
treated as a discrete group. 
0212 A particular limitation of analyses such as PCA, 
PLS or PLS-DA is that they rely on finding useful linear 
combinations of existing variables despite the fact that a 
non-linear combination of variables might be more instruc 
tive. Thus, before carrying out Such analyses it would be 
Sensible to extend the X data matrix by adding non-linear 
combinations of the existing variables. In particular, the ratio 
of two variables is often more significant than the absolute 
value of either and taking ratioS could be especially helpful 
in relation to metabolic phenotyping where the relative 
amounts of different metabolites are often important. Thus, 
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the extended X matrix should include the original X vari 
ables together with the one-to-one ratioS of all those original 
variables except for the ratio of one variable to itself. This 
approach is shown in the following simple example: 

Sample or 
object 

A. 

B 

C 

0213) 

Sample or 
object 

A. 

B 

C 

0214) 

Original X matrix: 

Variable 

X1 

25 

16 

8 

Extended X matrix: 

Variable Variable 

X1 X2 

25 25 

16 

8 2 

Variable 

X2 

25 

Variable 

X1/X2 

In a slightly more complicated example three origi 
nal X variables are extended to produce a new Six variable 
matrix: 

Sample or 
Object 

A. 
B 
C 

0215) 

Variable X1 

Original 3 variable matrix: 

25 25 
16 8 
8 2 

Extended matrix: 

Sample or 
object Variable X1 Variable X2 Variable X3 

A. 25 25 50 

B 16 8 32 

C 8 2 4 

Variable X1/X2 

1. 0.5 

2 0.5 

4 2 

Variable X2 

Variable X1/X3 

Variable X3 

50 
32 
4 

Variable X2/X3 

0.5 

O.25 

0.5 
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0216) The potential benefit of this approach is demon 
strated in the following simple PLS-type example where one 
wishes to predict a single Y variable from two X variables: 

Original data matrix: 

Sample or Variable Variable Variable 
object X1 X2 Y1 

A. 25 25 2 
B 16 8 4 
C 8 2 8 

0217) 

Extended matrix: 

Sample or Variable Variable Variable Variable 
object X1 X2 X1/X2 Y1 

A. 25 25 1. 2 
B 16 8 2 4 
C 8 2 4 8 

0218. In the original matrix there was no constant linear 
combination of X1 and X2 that would produce Y1. How 
ever, by extending the X matrix as described a very simple 
linear relationship becomes apparent i.e. Y1=2(X1/X2). 
0219 For each variable in the data set some form of 
Scaling will normally be required prior to performing a 
chemometric analysis. Typical Scaling approaches include 
mean-centring, unit variance Scaling and pareto Scaling. 

0220 7. Chemometrics Methodology 
0221) It is important to realise that the scope of this 
invention is not limited to the use of particular Specified 
chemometricS methodologies. Any Such methodologies 
which could identify and establish pre-to-post-dose data 
correlations could be employed. 
0222 Supervised pattern recognition (PR) methods such 
as PLS or PLS-DA would normally be employed to achieve 
targeted model building i.e. pre-to-post dose data correla 
tions. It is possible that these Supervised methods would be 
preceded by the use of unsupervised PR methods such as 
PCA e.g. to examine the variation in the responses to a dosed 
compound or to examine the variation in the metabolism of 
a dosed compound. Such unsupervised analysis could be 
helpful in identifying outliers and in deciding whether to 
build a classification method or whether to build a numerical 
result model (see below). 
0223 Occasionally, in a less Sophisticated approach to 
achieving a model for pre-dose discrimination of Some 
aspect of metabolic phenotype or response prediction, it 
might be adequate to apply an unsupervised method Such as 
PCA to the pre-dose data. This approach has a Simplicity 
advantage although it would be much less able to determine 
Subtle discriminators than the Supervised methods. Such a 
method would rely on being able to code (e.g. colour code) 
the individual model building pre-dose data points according 
to post-dose behaviour. The success or otherwise of this 
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approach would depend on the ease with which the coded 
populations could be distinguished pre-dose. In general, this 
unsupervised approach would only be Suitable where there 
were relatively obvious pre-dose discriminators for the 
different response groups. It would not be suitable where the 
discriminators were complex and hidden and, importantly, 
data filtering methods such as OSC could not be employed 
with this unsupervised approach. 
0224. The chemometrics method(s) to be employed in the 
model building will depend on the final application that is 
envisaged or required. Thus, a classification method Such as 
PLS-DA would be appropriate when the objective was to 
achieve a method for classification of Some aspect of meta 
bolic phenotype (e.g. “fast or 'slow acetylation) or for 
prediction of the type of response to a dosed Substance (e.g. 
adverse drug reaction or no adverse drug reaction). 
Alternatively, where the objective was to achieve a quanti 
tative measure of Some aspect of metabolic ability or to 
predict a numerical measure of Some response to a dosed 
Substance, methods Such as PLS would be appropriate. 
Neural networks analysis (NNA) can be useful, depending 
on the application, and NNA has been proven to be advan 
tageous in a classification role where pre-dose discrimina 
tion may come from one of a number of independent Sources 
e.g. if the X data is of type A or B or C then the response will 
be Y1, if the X data is not of those types then the response 
will be Y2. Importantly, neural networks methods do not 
readily enable identification of those pre-dose features 
which provide the discrimination of interest. Methods Such 
as PCA, PLS and PLS-DA do readily enable the identifica 
tion of discriminatory features and this would be an impor 
tant advantage in understanding the Scientific basis of any 
discrimination and where it was desired to derive other 
analytical methods to perform the same discrimination. 
0225 Data filtering methods such as OSC would some 
times be employed to remove variation in the pre-dose data 
that is not correlated to the variation of interest in the 
post-dose data. For instance, OSC can help to minimise the 
effects of any variation in the performance of the analytical 
instrument(s) used in the physical and/or chemical analysis. 
0226 Frequently, a relatively small number of outliers 
will need to be excluded from the model-building data 
because their data is in Some way inconsistent or a hindrance 
to the model building, PCA scores plots and DmodX values 
may be used to identify outliers. In the case of PLS models, 
outliers could be legitimately excluded by any of the fol 
lowing means: 

0227 a) An examination of the X scores (t1/t2) 
0228 b) An examination of the X residuals 
(DmodX) 

0229 c) An examination of the correlation between 
the scores in the X and Y Spaces (e.g. t1/u 1). 

0230 d) An examination of the Y scores (e.g. u1/u2) 
0231 e) An examination of the Y residuals 
(DmodY). 

0232 8. Response Prediction Applications 
0233 Substances dosed to living organisms will fre 
quently be Subject to a variety of different metabolic trans 
formations. Each of the ensuing metabolites might then in 
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turn undergo a variety of further transformations and So on 
and So forth. Thus, the complete metabolism of one original 
compound could involve an extremely complex morass of 
different pathways and many different enzymes. Conse 
quently a multiplicity of different phenotypic influences 
could contribute to the nature of the response to a dosed 
substance and it could be very difficult to deconvolve all 
those different influences. Therefore, in regard to response 
prediction applications, it is preferred that the invention is 
used to directly predict the response without deconvolving 
the different influences. Thus, for instance, the vastly vari 
able degree of liver damage (as shown by histopathology 
and clinical chemistry parameters) caused when male Spra 
gue-Dawley rats are dosed galactosamine HCl (800 mg/kg) 
(see Example 1) might, in principle, be directly correlated 
with variation in pre-dose urine So as to provide a predictive 
model for susceptibility to galactosamine HCl, without 
needing to understand the metabolic factors that are deter 
minants of the response. 

0234 B. Preferred Features of the Model Validation 
Procedure 

0235 Verification of model validity is of great impor 
tance in all types of mathematical modelling. Validation of 
a model's robustneSS and predictive ability requires a vali 
dation data Set that is independent of the data used for model 
building. The predictive ability of a model is assessed 
according to the magnitude of the errors associated with the 
model-based predictions for the validation data set. The 
robustness of a model can be judged by comparing the 
magnitude of the estimated error for the model with the 
magnitude of the error associated with the model-based 
predictions for the validation data set. For a model to be 
considered as reliable for future predictions of unknown 
Samples both requirements, predictability and robustness, 
should be fulfilled. 

0236. In the case of PLS models, both internal and 
external validation may be performed as follows: 

0237 Internal validation of PLS models may be 
effected firstly by determining the RY and QY values and 
Secondly by observing the effect, on those values, of ran 
domising the positions of the Y data in relation to their 
corresponding rows in the X matrix (typically 20 Separate 
row permutations would be performed). RY provides a 
measure of the ability of the PLS model to explain the Y data 
from the X data, with all the data included in the model. 
However, spuriously high RY values can be obtained by 
over-fitting and the real test of a PLS model is its predictive 
ability. QY provides a measure of the predictive ability of 
a PLS model and is obtained by a cross-validation procedure 
wherein different portions of the XY data are sequentially 
held out for X to Yprediction using models derived from the 
remainder of the data. Both RY and QY have a theoretical 
maximum value of 1, although QY should normally be less 
than RY. Subject to the actual values of RY and QY, a 
value of QY close to RY implies good predictive ability. 
In the second stage of the internal validation of a PLS model, 
the positions of the Y data are randomised and both the RY 
and Q’Y values should decrease substantially if the original 
model was valid. Randomisation of the positions of the Y 
data relative to their corresponding rows in the X matrix 
should result in a large decrease in Q'Y, ideally to zero. RY 
values should also decrease Substantially on randomisation 
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of the Y data but would not necessarily decrease to zero 
because the modelling procedure will always try to find 
Something in the X data, even noise, that can predict the 
randomised Y data. 

0238 External validation of PLS models may be per 
formed by taking a test Set of animals that do not form part 
of the model-building population and whose Y values 
approximately span the range of the Y data in the model. For 
the model to be taken as valid the prediction errors for the 
test samples (In the SIMCA software from Umetrics this is 
designated RMSEP-root mean square error of prediction) 
must be in the Same range as the estimation errors for the 
model samples (In the SIMCA software from Umetrics this 
is designated RMSEE-root mean Square error of estima 
tion). 
0239) C. Preferred Features of the Testing Procedure 
0240 One very important feature of this invention con 
cerns the identification of Subjects with unusual or extreme 
metabolic phenotypes. Subjects Such as these may be par 
ticularly prone to Suffering adverse or idiosyncratic drug 
reactions. Given the practical limitations that apply to the 
numbers of Subjects that can be included in any model 
building exercise, it is impossible to build a model based on 
the full range of metabolic phenotypes and rare phenotypes 
are unlikely to be included. Additionally ethnic differences 
are likely to be important Sources of phenotypic variation. 
However, it is an important feature of the current invention 
that, at the testing Stage, any phenotype that does not 
conform to the range of phenotypes in the model will be 
identifiable as an outlier. In the case of PCA and PLS 
models, for example, these outliers will be detected either in 
the direction of the model plane or hyper-plane described by 
the PC- or PLS-scores or in the model residual direction, the 
distance to model (DModX, Y). Additionally, in the case of 
PLS modelling, outliers in the scores direction can be 
present in X-space (T), in Y-space (U) and in the inner 
relation between X and Y (T/U). With test subjects identified 
as outliers, their metabolic phenotype would not be identi 
fiable, or their response to the dosing Substance in question 
would not be predictable, with adequate confidence. There 
fore, in response prediction applications, it would be Sen 
Sible either not to dose the Substance at all to Such outliers 
or to proceed with great caution e.g. with an initial low dose. 
Thus, despite the practical limitations of the model building 
procedure, the model should be able to provide useful 
information with respect to all of the test Subjects. 
0241. A single NMR spectrum of, say, a subject's urine 
could be compared against a variety of models to predict that 
Subject's responses to a variety of treatments or to assess 
Several aspects of the Subject's metabolic phenotype. The 
NMR spectrum could be stored electronically for use as and 
when required. This type of approach would reduce the 
amount of physical and/or chemical testing required 
although testing at different Stages of a Subject's life could 
be required to allow for age-related alterations in metabolic 
phenotype. 
0242 Normally, a new model would be required for each 
Substance of interest although a model derived for one 
Substance might be uSeable in conjunction with a closely 
related Substance. 

0243 Preferred features of each aspect of the invention 
are as for each of the other aspects mutatis mutandis. The 
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prior art documents mentioned herein are incorporated to the 
fullest extent permitted by law. 

EXAMPLES 

Example 1 
0244. The variable response of Sprague-Dawley rats to 
dosing with galactosamine hydrochloride. An example of a 
possible response prediction method based on the use of a 
simple response-coded PCA of the NMR spectra of pre-dose 
biofluid samples. 
0245. Thirty young adult age-matched male Sprague 
Dawley rats were obtained from Charles River, France. After 
observation to ensure that they each appeared healthy they 
were placed in individual metabolism cages with free acceSS 
to water and a standard commercial laboratory diet (diet 
AO4C from Usine d'Alimentation Rationnelle, Villemois 
Son-sur-Orge, France). The laboratory temperature was 
maintained at 20t2 degrees C. and the relative humidity at 
60+20%. The laboratory air was filtered and changed 14 
times per hour. A fixed 12 hours light-12 hours dark cycle 
was imposed. The Study commenced after a short period of 
cage acclimatisation. The Sampling regime is as shown in 
Table 1.1. 

TABLE 1.1 
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0249 Blood was sampled from the orbital sinus, under 
isoflurane anaesthesia. Blood was Sampled from all animals 
on day -3 and just prior to euthanasia on either day 2 or day 
8. Following euthanasia each rat was Sampled for histo 
pathological examination with the Sampling including tak 
ing ten liver Samples from each rat (two from each liver 
lobe). The blood samples were collected into vials contain 
ing lithium heparin as anticoagulant and immediately cen 
trifuged at approx. minus four degrees C. to Separate plasma. 
A portion of each plasma Sample was analysed at thirty 
degrees C. on an AU600 multiparametric clinical analyser 
(Olympus) for a range of clinical chemistry parameters 
including alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) amongst many others. 
0250 Urine samples were prepared for NMR analysis by 
mixing 400 Eli of urine with 200 ul of phosphate buffer (an 
81:19 (v/v) mixture of 0.2 MNaHPO, and 0.2 MNaH2PO. 
pH 7.4); if insufficient urine was available the shortfall was 
made up with purified water with a minimum of 200 ul of 
urine being used. The urine-buffer mixture was left to stand 
for 10 minutes at room temperature to enable buffering to 
take place and then centrifuged at 13,000 rpm for a further 
10 minutes to remove suspended particulates. 500 ul of 
"clear buffered urine was transferred to an NMR tube and 50 

The sampling regime for the Galactosamine HCl study. B, U and P denote sampling for blood, 
urine and pathology respectively. Dosing was carried out at the start of day 1. 

Group\Day -3 -2 -1 1. 1. 2 3 4 
Urine O-7 O-7 O-7 
collection 
period/hrs 
Late BU U U U U U U U 
euthanased 
group 
Early BU U U U U 
euthanased 
group 

0246. At the time of dosing (at the start of day 1) the 
growing rats were each approximately 260 g in mass. 
Galactosamine (abbreviated GaN) HCl (from Sigma, 
France) was dissolved in physiological Saline and dosed by 
intraperitoneal injection at either 200 mg/kg or at 800 
mg/kg, ten animals (nos. 101-110) received the low dose and 
ten animals (nos. 201-210) received the high dose. Ten 
control animals (nos. 1-10) received an oral dose of corn oil. 
0247 Five of each group of ten rats were euthanased by 
means of CO on day 2 with the remainder being euthanased 
by the same technique on day 8. The early-euthanased rats 
were numbers 6-10, 106-110 and 206-210. The late-eutha 
nased rats were numbers 1-5,101-105 and 201-205. 

0248 Pre- and post-dose urine samples were collected for 
7 hours daily into ice-cooled vessels containing Sodium 
azide (0.100 ml of a 10% (w/v) solution of sodium azide in 
water) as an antibacterial preservative. There was an addi 
tional overnight urine collection on the day of dosing (from 
7-24 hours post-dose). The urine collection apparatus was 
cleaned prior to each collection to minimise bacterial, food 
and faecal contamination. The urine Samples were deep 
frozen pending NMR analysis. 

6 7 8 
0-7 0-7 - 

ul of a TSP/DO solution added. TSP (sodium 3-trimethyl 
silyl-2, 2, 3, 3-2H-1-propionate) is a chemical shift ref 
erence compound (8 0) used in the NMR experiment and the 
DO provided a field/frequency lock for the NMR spectrom 
eter. The concentration of the TSP/DO solution was such as 
to give a final TSP concentration of 0.1 mM in the NMR 
tube. The NMR analyses were carried out at thirty degrees 
C. on a Bruker AMX 600 MHz NMR spectrometer with the 
NOESYPRESAT pulse sequence (Claridge, 1999) used to 
reduce the size of the water Signal. The principal acquisition 
parameters were: 

0251 Spectrometer Frequency: 600 MHz 
0252) Spectral Width: ca. 7200 Hz (12 ppm) 
0253) Bruker Pulse Program: noesyprld 
0254) Number of Data Points in Time Domain: 65536 
0255) Number of Scans: 64 
0256) 
0257) 
0258 
0259 

Number of Dummy Scans: 4 
Acquisition Time: ca. 4.55 Seconds 
Presaturation Time: 3 seconds 

Mixing Time: 0.1 second. 
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0260. After acquisition, the NMR spectra were Fourier 
transformed into 32768 data points following application of 
0.3 Hz line-broadening by means of an exponential multi 
plication applied to the free induction decay Signal. The 
Spectra were phased to give an even baseline around the 
NMR signals and the chemical shift scale was set by 
assigning the value of 8 0 to the TSP peak. Prior to 
data-reduction, the baseline of each day -1 spectrum was 
moved to Zero intensity using a Straight-line baseline cor 
rection algorithm. All these spectral processing operations 
were carried out on a Silicon Graphics computer using the 
Xwinnmr software (Bruker GmBH). 
0261 Visual examination of the post-dose urine NMR 
Spectra revealed great inter-animal variation in respect of the 
effects of galactosamine HCl (800 mg/kg) on endogenous 
metabolites (see Table 1.5 and FIGS. 1.3 and 1.4). On the 
basis of this visual examination, animals could be readily 
categorised as either (i) responders or (ii) as weak or 
non-responders. Additionally, the responders were found to 
excrete much greater amounts of galactosamine in their 
urine over the period from 0-24 hours post-dosing than did 
the weak/non-responders (see FIG. 1.1 and Table 1.6) and 
this indicates a connection between galactosamine metabo 
lism and its toxicity. 

0262 FIG.1.1 shows three NMR spectra. Spectrum 'a' is 
of the day 1 urine collected from animal 201 from 0-7 hours 
after dosing. Spectrum “b was obtained from authentic 
GalNHC1. Spectrum 'c' is of the day 1 urine collected from 
animal 203 from 0-7 hours after dosing. Spectra 'a and “c 
are Scaled to constant allantoin (Ö 5.4) peak height. GaN is 
clearly present in the urine from animal 201 but not in the 
urine from animal 203. 

0263. Furthermore, in the NMR spectra of the urine 
Samples collected from 24-31 hours post-dosing, the 
responders showed the presence of a certain N-acetyl peak 
that was, at least largely, absent from the Spectra of the 
weak/non-responders (see FIG. 1.2). This peak was provi 
Sionally assigned to N-acetylgalactosamine. The great inter 
animal variability in response to the 800 mg/kg dose was 
also reflected in the histopathology and clinical chemistry 
data (see Tables 1.2 to 1.4). 
0264 FIG. 1.2 shows NMR spectra of the day 2 urine 
samples collected from animals 202 (spectrum 'a) and 203 
(spectrum b) from 24-31 hours after dosing. The spectra 
are Scaled to constant creatinine. An N-acetylated Species, 
believed to be N-acetylgalactosamine, is clearly present in 
Spectrum a but not in Spectrum b. 

0265 PCA was then carried out on the NMR spectra of 
the day -1 (pre-dose) urine samples for the animals that 
were Subsequently dosed with galactosamine hydrochloride 
(800 mg/kg). This data set consisted of nine spectra because 
there was insufficient day -1 urine to obtain an NMR 
spectrum for animal 206. Prior to the PCA each day -1 
Spectrum was data-reduced in a fixed manner using the 
AMIX software (Bruker GmBH). Certain spectral regions 
were excluded with the retained regions being 8 9.0-ö 6.25 
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and 6 4.5-6 2.76 and 82.48-ö 0.5. The retained regions were 
divided as far as possible into Sequential 0.04 ppm-wide 
Segments and an integral obtained for each Segment of each 
Spectrum. The data-reduced values were then normalised 
uniformly to give a total integration value of 1000 for each 
spectrum. The resultant data Set was loaded into a multi 
variate statistical analysis Software package (Pirouette 
from Infometrix). The PCA was then carried out using 
mean-centred Scaling for each variable. The resultant Scores 
plots were colour-coded according to post-dose behaviour 
and, by inspection, it was found that the scores plot for PC1 
verSuS PC5 gave separation of responders and non-respond 
ers. This plot and the corresponding loadings plot are 
presented as FIGS. 1.5 and 1.6 respectively. Examination of 
FIG. 1.5 Suggests that an individual rat's response to dosing 
with galactosamine HCl (800 mg/kg) could be predicted 
from the appropriate pre-dose PCA Scores plot depending on 
how it mapped in relation to known responders and non 
responders. FIG. 1.6 demonstrates how such an analysis 
could reveal the pre-dose features that enable discrimination 
of responders and non-responders. 

0266 The various figures and tables that follow provide 
Some details of the variable responses of the different rats to 
galactosamine HCl (800 mg/kg) and show how PCA can be 
used to distinguish responders and non-responders pre-dose. 
It is likely that a Supervised PR method using PLS, PLS-DA 
or neural networks analysis would be able to achieve much 
better pre-dose discrimination of responders and non-re 
sponders than the unsupervised PR approach described here. 

TABLE 1.2 

Summary of histopathological changes 
in galactosamine HCl-dosed rats. 

Dose of galactosamine hydrochloride 

Day 200 mg/kg 800 mg/kg 

2 No differences Multifocal randomly scattered foci of 
from controls hepatocellular necrosis were present in 4/5 

animals. Severity of changes: 
208 - none 

207 - mild 

206, 210 - marked 
209- severe 

Most necrotic hepatocytes were rounded with a 
deeply eosinophilic cytoplasm and pyknotic 
nucleus. Some degenerated hepatocytes 
showed fine cytoplasmic vacuolation. Necrotic 
foci and portal spaces were infiltrated by mixed 
inflammatory cells while foci of haemorrhage 
were occasionally seen. 

8 No differences Minimal bile duct hyperplasia was found in 2/5 
animals (201 and 202) this change being 
accompanied by slight hepatocellular 

from controls 

anisocaryosis and a few scattered hemosiderin 
laden macrophages. 
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0267 

TABLE 1.3 

Clinical chemistry analysis of plasma sampled at 24 hours post-dosing. 
See Table 1.4 for key to abbreviations and for units of measurement. 

STUDY ANIMAL 5'-NT A/G ALAT ALB AP ASAT TBA 

99023 6 23 1.4 51 34 635 82 69.0 
99023 7 27 1.4 52 33 688 77 24.O 
99023 8 21 1.3 62 33 732 103 29.0 
99023 9 18 1.5 46 32 497 75 2O.O 
99023 1O 26 1.5 50 34 492 86 16.0 
99023 106 23 1.3 43 33 606 107 48.0 
99023 107 21 1.4 46 33 495 84 22.O 
99023 108 21 1.5 49 37 566 73 29.0 
99023 109 19 1.4 38 34 697 67 23.O 
99023 110 27 1.4 47 33 637 75 29.0 
99023 2O6 156 1.7 2350 32 787 432O 493 
99023 2O7 23 2.1 178 33 983 264 43.O 
99023 208 17 1.5 45 34 666 79 2O.O 
99023 209 2O3 2.4 43OO 33 999 106OO 13OO 
99023 210 35 18 479 31 852 832 65.O 

STUDY ANIMAL BILI CHOL CREA GGT GLUC PROT TRG UREA 

99023 6 O.11 72 0.5 O 144 58 108 27 
99023 7 O.09 77 0.4 O 186 56 93 23 
99023 8 O1 78 0.5 O 173 58 142 22 
99023 9 O1 70 0.5 O 185 53 130 31 
99023 1O 62 0.5 176 57 96 24 
99023 106 O.09 73 0.5 O 173 59 94 29 
99023 107 O.05 60 0.5 O 184 56 158 40 
99023 108 O.11 91 0.5 O 167 61 140 33 
99023 109 O1 72 0.4 O 138 58 109 28 
99023 110 O.12 81 0.5 O 182 57 127 28 
99023 2O6 1.26 60 0.4 2 1OO 51 38 45 
99023 2O7 O.O6 15 0.4 O 162 49 89 24 
99023 208 O.11 61 0.5 O 168 56 148 29 
99023 209 1.37 42 0.4 5 8O 47 95 40 
99023 210 O.12 46 0.4 1. 130 48 38 25 

0268) 0269) 

TABLE 1.4 TABLE 1.5 

Plasma chemistry abbreviations and units Summary of urinary changes observed by NMR in galactosamine 
o HC-dosed rats. These results refer to the late-euthanased 

group of rats (animals 1-5, 101-105 and 201-205). 
Abbreviation Parameter Units 

Dose of galactosamine hydrochloride 
5'-NT 5'-nucleotidase IU/L 
AG albumin/globulin ratio Ole 200 mg/kg 800 mg/kg 

ALAT alanine aminotransferase IU/L Very variable Very variable amount of 
ALB albumin g/L amounts of galactosamine were present in the 
AP alkaline phosphatase IU/L galactosamine were day 1 urine samples. The 
ASAT aspartate aminotransferase IU/L present in the day 1 samples from animals 201 and 202 

p urine samples. contained much galactosamine 
TBA total bile acids Atmol/L. whilst the samples from 
BILI bilirubin mg/dL animals 203-205 contained very 
CHOL total cholesterol mg/dL little. See Table 1.6 and 

FIG. 1.1. 
CREA creatinine mg/dL N-acetyl at ca. 2.07 ppm: this 
GGT Y-glutamyl transferase IU/L new peak was only apparent in 
GLUC glucose mg/dL the day 2 samples from animals 
PROT total protein g/L 201 and 202. This peak was 

provisionally identified by 
TRIG triglycerides mg/dL addition of authentic standard as 
UREA lea mg/dL originating from N 

acetylgalactosamine. 
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TABLE 1.5-continued 

Summary of urinary changes observed by NMR in galactosamine 
HC-dosed rats. These results refer to the late-euthanased 

group of rats (animals 1-5, 101-105 and 201-205). 

Dose of galactosamine hydrochloride 

200 mg/kg 

Taurine: some 
instances of raised 
taurine but no clear 
and consistent 
pattern. 
Creatine: no increase 

800 mg/kg 

Taurine: Animals 203-205 
showed no clear change whilst 
animals 201 & 202 showed 
highly elevated levels. 

Creatine: Only animals 201 
and 202 showed a clear increase 
in creatine - which occurred 
on day 3. 
Guanidinoacetic acid: Only 
animals 201 and 202 showed a 
clear change in the level of 
GAA; both those animals showed 
very much increased levels on 
day 3 and perhaps somewhat 
low levels on day 7. 
2-Oxoglutarate: Animals 203 
205 showed no obvious change 
in the level of 2-oxoglutarate. 
Animals 201 & 202 showed 
reduced levels on days 2 and 
3 but very high levels on day 7. 
Trimethylamine-N-oxide: Animals 
203-205 showed no 
obvious change in TMAO levels. 
Despite normal pre-dose 
levels, TMAO had essentially 
disappeared from the day 3 
urine samples obtained 
from animals 201 & 202. 
Bile acids: clearly increased 
(seen as C18 methyl) in the day 
3 samples from animals 201 and 202. 
Betaine: appeared very clearly 
in the day 2 and day 3 samples 
from animals 201 & 202 and some 
betaine was still present in 
the day 7 samples from those 
two animals. No betaine was 
detected in any of the urine 
samples from animals 204-205. A 
tiny amount of betaine was 
possibly present in the day 3 
sample from animal 203. 
Urocanic acid: appeared 
clearly in the day 2 and day 3 
samples from animals 201 and 
202 but was not present in any 
other samples. 
Histidine: appeared very 
clearly in the day 3 sample from 
animal 201 and less clearly 
in the day 3 sample from animal 
202. Histidine was not present 
in any of the other urine 
samples examined from the 
high dose group. 
Threonine: was very clearly 
elevated in the day 3 samples 
from animals 201 and 202. 
Threonine levels appeared to be 
normal in all the other high 
dose samples. 
Alanine: was clearly elevated 
in the day 3 samples from 
animals 201 and 202 but was 
otherwise normal. 
Glucose: appeared to be 
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TABLE 1.5-continued 

Summary of urinary changes observed by NMR in galactosamine 
HC-dosed rats. These results refer to the late-euthanased 

group of rats (animals 1-5, 101-105 and 201-205). 

Dose of galactosamine hydrochloride 

200 mg/kg 800 mg/kg 

elevated in the day 2 and day 3 
urine samples from animals 
201 and 202. Occasionally 
elevated glucose was shown 
by other high dose animals 
(animal 204 on day 3; animal 
205 on day 7). 
A doublet at ca. 85.21, 
arising from an unidentified compound, 
was clearly present in the 
day 2 urine spectra from animals 
201 & 202. This doublet was not 
clearly visible in the spectra 
of any urine samples from 
animals 201-205. 
Hippurate: was depleted in 
the day 3 samples from animals 
201 and 202. 
Glutamate and glutamine were 
elevated in the day 3 urine 
spectrum from animal 201 and 
possibly also elevated in the 
day 3 urine spectrum from 
animal 202. 
Other unlisted changes occurred. 

0270 FIG. 1.3 shows a portion of the noesypresat NMR 
Spectra of the day -1 and day +3 urine Samples from animal 
202. The pre-dose sample (spectrum a) was collected from 
24-17 hours before dosing. The post-dose sample (spectrum 
b) was collected from 48-55 hours post-dosing. The spec 
tra are Scaled to constant creatinine. In comparison to 
Spectrum 'a, Spectrum 'b shows increases in creatine, 
betaine, guanidinoacetic acid (GAA) and taurine and 
decreases in trimethylamine-N-oxide (TMAO) and 2-oxo 
glutarate. 
0271 FIG. 1.4 shows a portion of the noesypresat NMR 
Spectra of the day -1 and day +3 urine Samples from animal 
201. The pre-dose sample (spectrum a) was collected from 
24-17 hours before dosing. The post-dose sample (spectrum 
b) was collected from 48-55 hours post-dosing. The spec 
tra are Scaled to constant allantoin. In comparison to Spec 
trum 'a, Spectrumb shows increased excretion of histidine 
and decreased excretion of hippurate. 

TABLE 1.6 

The variability of response to galactosamine HCl (800 mg/kg) in 
relation to the amount of galactosamine excreted in the urine. 

This table shows, for each animal, the amount of galactosamine 
excreted in the urine collected from 0–24 hours post-dosing 
and lists whether or not a toxic response was observed. 

Total amount of 
galactosamine Responder 
excreted in the (R) or 
urine from 0-24 non 

Animal hours post- responder 
Number dosing (mg) (NR) 

Source of evidence 
regarding RNR 
classification 

2O1 40.O R 
2O2 26.2 R 

Urine NMR, Histopathology 
Urine NMR, Histopathology 
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TABLE 1.6-continued 

The variability of response to galactosamine HCl (800 mg/kg) in 
relation to the amount of galactosamine excreted in the urine. 

This table shows, for each animal, the amount of galactosamine 
excreted in the urine collected from 0–24 hours post-dosing 
and lists whether or not a toxic response was observed. 

Total amount of 
galactosamine Responder 
excreted in the (R) or 
urine from 0-24 non- Source of evidence 

Animal hours post- responder regarding R/NR 
Number dosing (mg) (NR) classification 

2O3 0.4 NR Urine NMR, Histopathology 
2O4 O1 NR Urine NMR, Histopathology 
205 O.3 NR Urine NMR, Histopathology 
2O6 14.9 R Histopathology 
2O7 8.4 NR Histopathology 

(or weak R) 
208 2.3 NR Histopathology 
209 28.2 R Histopathology 

(severe) 
210 30.5 R Histopathology 

0272. The measured amount of galactosamine excreted 
by animal 206 was Somewhat lower than expected, given 
that it was a strong responder, and this may be because of 
urine retained in the bladder. Only 3.7 ml of urine was 
excreted by animal 206 over the period from 0-24 hours 
post-dosing and this was the lowest amount of urine pro 
duced by any animal during that period. Metabolite excre 
tion is most likely to be underestimated when the measured 
urine Volume is very low; this is because there may be a 
Significant amount of highly concentrated urine in the blad 
der which is insufficient to cause urination. 

0273 FIG. 1.5 shows a PC scores plot obtained by PCA 
of the H NMR spectra of the nine available day -1 urine 
Samples for the high dose (800 mg/kg) animals; insufficient 
day -1 urine was available to obtain an NMR spectrum for 
animal 206. The data points are coded using diamonds for 
non-responders (animal nos. 203, 204, 205, 207 and 208) 
and crosses for responders (animal nos. 201, 202, 209, 210), 
but it should be noted that animal 207 was on the borderline 
between responder and non-responder. This plot shows that 
there are features in the pre-dose urine Spectra which can 
distinguish between those animals which will and will not be 
badly affected by galactosamine 800 mg/kg. The responders 
had higher pre-dose levels of urinary creatine than non 
responders and all but one of the responders (animal 201) 
had a lower pre-dose ratio of urinary 2-oxoglutarate/creati 
nine than non-responders (see also FIG. 1.6). 
0274 Each of the plotted points of FIG. 1.6 is labelled 
according to the centre of the 0.04 ppm-wide spectral 
Segment that it represents. Thus, for instance, the point 
labelled 3.02 represents the spectral Segment (or variable) 
from 83.04 to 6 3.00 ppm. The points of interest are those 
that make Substantial, non-Zero, contributions to PCS 1 and 
5. Comparison of FIGS. 1.5 and 1.6 indicates that, in 
comparison to the responders, the non-responderS have a 
relatively high value for the integral of the spectral Segment 
centred at 6 3.02. This difference appears to be attributable 
to a higher level of 2-oxoglutarate in the non-responders and 
2-oxoglutarate also contributes to the Segment centred at Ö 
2.46. Trimethylamine-N-oxide makes a major contribution 
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to the Segment centred at Ö 3.26 and non-responders could 
therefore have high urinary levels of TMAO. One possible 
explanation for this is that the non-responders were slow 
acetylators. 

Example 2 

0275 Variable urinary isoniazid metabolite patterns and 
their relationship to the toxicity of isoniazid in rats. An 
example of the major Significance of inter-individual differ 
ences in metabolic capacities. 

0276. Thirty young adult age-matched male Sprague 
Dawley rats were obtained from Charles River, France. After 
observation to ensure that they each appeared healthy they 
were placed in individual metabolism cages with free acceSS 
to water and a standardised diet (diet AO4C from Usine 
d'Alimentation Rationnelle, Villemoisson-Sur-Orge, 
France). The laboratory temperature was maintained at 20+2 
degrees C. and the relative humidity at 60+20%. The labo 
ratory air was filtered and changed 14 times per hour. A fixed 
12 hours light-12 hours dark cycle was imposed. The study 
commenced after a short period of cage acclimatisation 
when the rats were about 6 weeks old and about 200 g in 

SS. 

0277 Dosing was on the day designated as 'day 1 when 
the growing rats were each approximately 250 g in mass. 
Isoniazid (from Sigma, France) was dissolved in physiologi 
cal Saline and dosed by intraperitoneal injection at either 200 
mg/kg or at 400 mg/kg, ten animals (nos. 101-110) received 
the low dose and ten animals (nos. 201-210) received the 
high dose. Ten control animals (nos. 1-10) received an 
intraperitoneal injection of Saline. 

0278 Pre- and post-dose seven hour urine samples were 
collected daily into ice-cooled vessels containing Sodium 
azide (0.1 ml of a 10% (w/v) solution of sodium azide in 
water) as an antibacterial preservative. There was an addi 
tional overnight urine collection from 7-24 hours post 
dosing. The urine collection apparatus was cleaned prior to 
each collection to minimise bacterial, food and faecal con 
tamination. The final Volume of each urine Sample was 
determined without making any correction for the azide 
Solution. The urine Samples were Stored frozen pending 
analysis. 

0279. It was intended that post-dose blood samples would 
be taken immediately before euthanasia with euthanasia 
being immediately followed by Sampling for histopathology. 
AS in Example 1, the intention was that five of each group 
often rats would be euthanased by means of CO2 at one day 
after dosing thereby providing early blood and histopathol 
ogy Samples, the remainder were to be euthanased by the 
Same technique at Seven days after dosing thereby providing 
late blood and histopathology Samples. It was planned that 
the early-euthanased rats would be numbers 6-10, 106-110 
and 206-210 whilst the late-euthanased rats would be num 
bers 1-5, 101-105 and 201-205. However, some animals 
(nos. 204, 205, 207 and 209) from the group which received 
the high dose of isoniazid, Suffered unexpected convulsions 
and either died or had to be euthanased early to prevent 
Suffering. Remarkably, by comparison, the other animals 
(nos. 201-203,206, 208 and 210) from the high dose group 
showed no obvious clinical signs of ill effects. The urine 
Samples were deep-frozen pending NMR analysis. 
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0280 Urine samples were prepared for NMR analysis by 
mixing 4001 ul of urine with 200ul of phosphate buffer (an 
81:19 (v/v) mixture of 0.2 M NaHPO and 0.2 M 
NaH2PO); if insufficient urine was available the shortfall 
was made up with purified water with a minimum of 200 ul 
of urine being used. The urine-buffer mixture was left to 
Stand for 10 minutes at room temperature to enable buffering 
to take place and then centrifuged at 13,000 rpm for a further 
10 minutes to remove suspended particulates. 500 ul of 
"clear buffered urine was transferred to an NMR tube and 50 
ul of a TSP/DO solution added. TSP (sodium 3-trimethyl 
silyl-2, 2, 3, 3-2H-1-propionate) is a chemical shift ref 
erence compound (8 0) used in the NMR experiment and the 
DO provided a field/frequency lock for the NMR spectrom 
eter. The concentration of the TSP/DO Solution was such as 
to give a final TSP concentration of 0.1 mM in the NMR 
tube. The NMR analyses were carried out at 303K on a 
Bruker AMX 600 MHz NMR spectrometer with the NOE 
SYPRESAT pulse sequence (Claridge, 1999) used to reduce 
the size of the water Signal. The principal acquisition param 
eterS Were: 

0281 Spectrometer Frequency: 600 MHz 

0282) Spectral Width: ca. 7200 Hz (12 ppm) 
0283 Bruker Pulse Program: noesyprld 

0284) Number of Data Points in Time Domain: 65536 

0285) Number of Scans: 64 
0286 Number of Dummy Scans: 4 

0287. Acquisition Time: ca. 4.55 seconds 

0288 Presaturation Time: 3 seconds 
0289 Mixing Time: 0.1 second. 

0290. After acquisition the NMR spectra were Fourier 
transformed into 32768 data points following application of 
0.3 Hz line-broadening by means of an exponential multi 
plication applied to the free induction decay Signal. The 
Spectra were phased to give an even baseline around the 
NMR signals and the chemical shift scale was set by 
assigning the value of 8 0 to the TSP peak. Spectra and 
Selected expansions were plotted on paper. Where a set of 
Spectra was to be examined by multivariate pattern recog 
nition methods, the baseline of each spectrum was moved to 
Zero intensity using a Straight-line baseline correction algo 
rithm. These Spectral processing operations were carried out 
on a Silicon Graphics computer using the XWinnmr Soft 
ware (Bruker GmBH). 
0291 Visual examination of the NMR spectra collected 
from 0-7 hours post-dosing revealed Substantial variation in 
the patterns of certain metabolites which are believed to be 
derived from isoniazid. This variation was particularly obvi 
ous in three peaks in the region of 2 ppm which are thought 
to originate from three different N-acetylated Species. These 
peaks at ca. 2.22, 2.20 and 2.15 ppm are henceforth desig 
nated as peaks a, b and 'c' respectively and the com 
pounds from which they arise are henceforth designated as 
compounds A, B and C. At each dose there appeared to 
be essentially two different types of pattern of these metabo 
lites and examples of these different patterns, referred to as 
Type 1 and Type 2, are shown in FIG. 2.1. 
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0292 PCA of the data-reduced NMR spectra of the urine 
samples collected from 0-7 hours after dosing isoniazid (200 
mg/kg) also revealed the metabolic variation (see FIG.2.2). 
To achieve this analysis the NMR spectra of the nine 
available Samples were first data-reduced in a fixed manner 
using the AMIX program (Bruker GmBH). All spectral 
regions except for the N-acetyls region from 6 2.23 to 6 2.13 
were discarded. The remaining portion of each Spectrum was 
divided into two consecutive 0.05 ppm-wide Segments and 
an integral obtained for each Segment. The data-reduced 
values were then normalised to give a total integration value 
of 1000 for each spectrum. The resultant data set was 
loaded into a multivariate Statistical analysis Software pack 
age (Pirouette from Infometrix) and Principal Components 
Analysis (PCA) carried out using mean-centred Scaling of 
each variable (spectral segment). With only two input vari 
ables this was a trivial example of PCA but it supported the 
presence of two different types of N-acetyls patterns as 
previously determined, the Type 1 animals being animals 
101,103 and 109 and the Type 2 animals being animals 102, 
105,106, 107, 108 and 110. In FIG. 2.2 the data points for 
the Type 1 animals are marked with crosses whilst the data 
points for the Type 2 animals are marked with diamonds. 

0293 Isoniazid is a classic example of a substance whose 
metabolism, in humans, is affected by N-acetylator pheno 
type and the different metabolite patterns that were observed 
in this example Suggested the existence of Slow and fast 
N-acetylators within the test group. The isoniazid metabolite 
patterns were Somewhat dose-dependent but it was possible, 
regardless of dose level, to assign all the day 1 (0-7 hours) 
urine Spectra as having either Type 1 or Type 2 patterns on 
the basis of fixed peak height ratio criteria (see Table 2.1). 
Remarkably it was observed, at the high dose level, that only 
those animals showing the Type 2 pattern of N-acetyls 
developed certain toxic responses which included loss of 
kidney function (revealed by increased urinary glucose 
and/or lactate), convulsions and death (see Table 2.1). 
0294 Table 2.1. Summary of the metabolic and other 
behaviour observed after dosing isoniazid to male Spague 
Dawley rats at 200 and 400 mg/kg. 

TABLE 2.1 

part 1. 

Animal Dose a = 2.22 b = 2.20 c = 2.15 
No. (mg/kg) ppm plk. ht. ppm pk. ht. ppm pk. ht. 

101 2OO 5 3O 66.5 
102 2OO 4 62.5 75 
103 2OO 3 22 49 
104 2OO no Spectrum no spectrum no spectrum 
105 2OO 4.5 101 82.5 
106 2OO 8.5 79 110 
107 2OO 2 42 44.5 
108 2OO 41 140 101 
109 2OO 6 29 89 
110 2OO 7 70 47.5 
2O1 400 9 44 65.5 
2O2 400 O 48 76.5 
2O3 400 9.5 49 72 
204 400 21.5 99.5 28.5 
205 400 2.5 68 14 
2O6 400 45 157 69.5 
2O7 400 34 113 25 
208 400 4 81 114.5 
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TABLE 2.1-continued 

part 1. 

Animal Dose a = 2.22 b = 2.20 c = 2.15 
No. (mg/kg) ppm plk. ht. ppm pk. ht. ppm pk. ht. 

209 400 34 128 31.5 
210 400 6.5 41 77 

0295) The peak heights (abbreviated pk.ht.) were mea 
Sured in millimetres from the plotted Spectra after Subtrac 
tion of a local baseline. 

TABLE 2.1 

part 2. 

Animal Dose cfb pk. cfapk. 
No. (mg/kg) ht. ratio ht. ratio Acetyls type 

101 2OO 2.2 13.3 1. 
102 2OO 1.2 5.4 2 
103 2OO 2.2 16.3 1. 
104 2OO no spectrum no spectrum no spectrum 
105 2OO O.8 5.7 2 
106 2OO 1.4 5.9 2 
107 2OO 1.1 3.7 2 
108 2OO O.7 2.5 2 
109 2OO 3.1 14.8 1. 
110 2OO O.7 2.8 2 
2O1 400 1.5 7.3 1. 
2O2 400 1.6 7.7 1. 
2O3 400 1.5 7.6 1. 
2O)4 400 O.3 1.3 2 
205 400 O.2 1.1 2 
2O6 400 0.4 1.5 2 
2O7 400 O.2 O.7 2 
208 400 1.4 8.2 1. 
209 400 O.2 O.9 2 
210 400 1.9 11.8 1. 

0296) 

Criteria for determination of N-acetyls pattern type: 

Low Type 1: cfb 2 2.2; cfa 2 13.3 Type 2: cfb s 1.4; cfa s 5.9 
dose: 
High Type 1: cfb 2 1.4; cfa 2 7.3 Type 2: cfb s 0.4; cfa s 1.5 
dose: 
Either Type 1: cla 2 7.3 Type 2: cfa s 5.9 
dose: 

Type 1: cfb 2 1.4 Type 2: cfb is 1.4 

0297 Table 2.1, part 3. No loss of kidney function was 
detected at the 200 mg/kg dose but Some animals showed 
impaired kidney function at the 400 mg/kg dose. Further 
more, there is a correlation, at the 400 mg/kg dose, between 
the type of acetyls pattern observed and whether or not there 
was any loSS of kidney function. Only the Type 2 animals 
showed a loSS of kidney function as evidenced by increased 
urinary levels of glucose and lactate. As an animal producing 
the Type 2 acetyls pattern, animal 206 showed Somewhat 
anomalous behaviour in regard to urinary lactate. However, 
it is noteworthy that this animal was at the extreme edge of 
Type 2 region as defined by the acetyls peak height ratioS. 
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TABLE 2.1 

part 3 

Animal Dose Increased Increased 
No. (mg/kg) Acetyls type lactate? glucose? 

101 2OO 1. No No 
102 2OO 2 No No 
103 2OO 1. No No 
104 2OO no spectrum no spectrum no spectrum 
105 2OO 2 No No 
106 2OO 2 No No 
107 2OO 2 No No 
108 2OO 2 No No 
109 2OO 1. No No 
110 2OO 2 No No 
2O1 400 1. No No 
2O2 400 1. No No 
2O3 400 1. No No 
204 400 2 Yes Yes 
205 400 2 Yes Yes 
2O6 400 2 No Yes 
2O7 400 2 Yes Yes 
208 400 1. No No 
209 400 2 Yes Yes 
210 400 1. No No 

0298) 

TABLE 2.1 

part 4. 
There is a further association, at the 400 mg/kg dose, between 

the type of acetyls pattern observed and whether or not convulsions 
and premature death occurred. Only Type 2 animals suffered convulsions 

and premature death. Again animal 206 was anomalous in that it 
was Type 2 but did not die prematurely. 

Animal Dose Impaired kidney Premature 
No. (mg/kg) Acetyls type function? Death? 

101 2OO 1. No No 
102 2OO 2 No No 
103 2OO 1. No No 
104 2OO no spectrum no spectrum No 
105 2OO 2 No No 
106 2OO 2 No No 
107 2OO 2 No No 
108 2OO 2 No No 
109 2OO 1. No No 
110 2OO 2 No No 
2O1 400 1. No No 
2O2 400 1. No No 
2O3 400 1. No No 
204 400 2 Yes Yes 
205 400 2 Yes Yes 
2O6 400 2 Yes (mild) No 
2O7 400 2 Yes Yes 
208 400 1. No No 
209 400 2 Yes Yes 
210 400 1. No No 

0299 Table 2.1 Suggests that some metabolic difference, 
reflected in the N-acetyls patterns, has a critical effect on 
isoniazid toxicity. The critical metabolic Step is Suspected to 
be the initial transformation of isoniazid which may proceed 
either 1) to N-acetylisoniazid, by N-acetylation, or 2) to 
hydrazine and isonicotinic acid, by hydrolysis of the amide 
group of isoniazid (see FIG. 2.3). 
0300 We suspect that hydrazine was responsible for the 
observed convulsions and we postulate that the animals 
showing the toxic responses in this Study had a particular 
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N-acetylator phenotype i.e. that they were relatively slow 
N-acetylators and that they therefore produced more toxic 
hydrazine from the 400 mg/kg dose of isoniazid than did the 
other high dose animals which were presumably relatively 
fast N-acetylators. To confirm the nature of the factor(s) 
underlying the variable effects of isoniazid (400 mg/kg) that 
were observed in this study, compounds A and B giving 
rise to peaks a, b must be identified. Compound C has 
already been identified as N-acetylisoniazid. 
0301 This example demonstrates, as is well known, that 
the metabolite patterns of a dosed Substance can be used to 
distinguish different metabolic phenotypes. This example 
also shows that these metabolite patterns may be interro 
gated by the use of PR methodology. This example also 
demonstrates the crucial importance of metabolic phenotype 
in determining an individual’s response to being dosed with 
a particular Substance. In the next example it is demonstrated 
that the present invention allows variation in post-dose 
metabolic behaviour to be correlated with pre-dose variation 
in biological Samples So as to provide a predictive model. 

Example 3 

0302 Pre-dose prediction of urinary isoniazid metabolite 
quantities in male Sprague-Dawley rats Subsequently dosed 
with isoniazid (200 mg/kg). An example showing that 
numerical pre-dose to post-dose predictions can be 
achieved. 

0303 75 young adult age-matched male Sprague-Dawley 
rats were obtained from Charles River, France. After Screen 
ing to ensure that they appeared healthy they were assigned 
numbers 101-175 and placed in individual metabolism cages 
with free access to water and a standardised diet (diet AO4C 
from Usine d'Alimentation Rationnelle, Villemoisson-Sur 
Orge, France). The laboratory temperature was maintained 
at 20+2 degrees C. and the relative humidity at 60+20%. The 
laboratory air was filtered and changed 14 times per hour. A 
fixed 12 hours light-12 hours dark cycle was imposed. The 
Study commenced after a short period of cage acclimatisa 
tion when the rats were about 6 weeks old and about 200 g 
in mass. Dosing was carried out when the growing rats were 
each approximately 250 g in mass. Isoniazid (from Sigma, 
France) was dissolved in physiological Saline and dosed to 
each rat by intraperitoneal injection at 200 mg/kg. 
0304 Individual pre-dose (48-41 hours before dosing) 
and post-dose (0-7 hours after dosing) urine samples were 
collected into ice-cooled vessels containing Sodium azide 
(0.1 ml of a 10% (w/v) solution of sodium azide in water) 
as an antibacterial preservative. The urine collection appa 
ratus was cleaned prior to each collection to minimise 
bacterial, food and faecal contamination. The final Volume 
of each urine Sample was determined without making any 
correction for the azide Solution. 

0305 The urine samples were prepared for NMR analysis 
by mixing 400 ul of urine with 200 ul of phosphate buffer (an 
81:19 (v/v) mixture of 0.2 MNaHPO and 0.2 MNaH2PO; 
pH 7.4); if insufficient urine was available the shortfall was 
made up with purified water with a minimum of 200 ul of 
urine being used. The urine-buffer mixture was left to stand 
for 10 minutes at room temperature to enable buffering to 
take place and then centrifuged at 13,000 rpm for a further 
10 minutes to remove suspended particulates. 500 ul of 
"clear buffered urine was transferred to an NMR tube and 50 
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ul of a TSP/DO solution added. TSP (sodium 3-trimethyl 
silyl-2, 2, 3, 3-2H-1-propionate) is a chemical shift ref 
erence compound (8 0) used in the NMR experiment and the 
DO provided a field/frequency lock for the NMR spectrom 
eter. The concentration of the TSP/DO solution was such as 
to give a final TSP concentration of 0.1 mM in the NMR 
tube. 

0306 The NMR analyses of the prepared urine samples 
were carried out at thirty degrees C. on Bruker 600 MHz 
NMR spectrometers with the NOESYPRESAT pulse 
sequence (Claridge, 1999) used to reduce the size of the 
water signal. A Bruker DRX spectrometer was used to 
acquire the post-dose NMR data whilst a Bruker AMX 
Spectrometer was used to acquire the pre-dose NMR data. 
The principal acquisition parameters were: 

0307 Spectrometer Frequency: 600 MHz 
0308) Spectral Width: ca. 7200 Hz (12 ppm) 
0309 Bruker Pulse Program: noesyprld 
0310 Number of Data Points in Time Domain: 65536 
0311) Number of Scans: 32 (post-dose spectra); 64 
(pre-dose spectra) 

0312) Number of Dummy Scans: 4 
0313 Acquisition Time: ca. 4.55 seconds 
0314 Presaturation Time: 3 seconds 
0315 Mixing Time: 0.1 second. 

0316. After acquisition the NMR spectra were Fourier 
transformed into 32768 data points following application of 
0.3 Hz line-broadening by means of an exponential multi 
plication applied to the free induction decay Signal. The 
Spectra were phased to give an even baseline around the 
NMR signals and the chemical shift scale was set by 
assigning the value of 8 0 to the TSP peak. Each of the 
post-dose NMR spectra was plotted on paper and peak 
height measurements were made manually on Selected peaks 
after localised baseline correction. The peaks whose heights 
were measured were the allantoin peak at Ö 5.4, the three 
peaks at ca. 6 2.22, Ö 2.20 and ö 2.15, known as peaks 'a', 
*b and 'c' respectively as in Example 2, and the TSP peak 
at 8 0. Prior to data reduction leading to multivariate 
Statistical analysis, the baseline of each digital Spectrum was 
moved to Zero intensity using a Straight-line baseline cor 
rection algorithm. The Spectral processing and plotting 
operations described above were carried out on a Silicon 
Graphics computer using the XWinnmr Software (Bruker 
GmBH). 
0317. After data reduction, PCA of the N-acetyls region 
(ö 2.3 to 6 2.1) of the post-dose NMR spectra was carried out 
using the Pirouette Software from Infometrix. However, in 
contrast to the results for Example 2, distinct groupings for 
Type 1 and Type 2 spectra were not observed despite the 
wide range of patterns present in the data Set. AS it was not 
possible to identify suitable natural boundaries within the 
distribution, the individual post-dose spectra were better 
described by numerical measures rather than by membership 
of a particular class. This in turn meant that the following 
pre-dose to post-dose correlation analysis would be better 
based on numerical prediction rather than on class predic 
tion. 



US 2005/0074745 A1 

0318. There are certain problems associated with achiev 
ing useful measurements of urinary metabolite excretion 
and, consequently, two different approaches were taken to 
quantifying the excretion of the different N-acetylated Spe 
cies in the post-dose Samples. The first approach was to 
quantify the excretion of metabolites A, B and C (designated 
as in Example 2) with respect to an endogenous urinary 
component, allantoin. Thus, the intensities of peaks a, b and 
c in each NMR spectrum were described as peak height 
ratios with respect to the allantoin peak at 6 5.4. The 
allantoin peak was a convenient internal reference point 
although the creatinine methylene Signal at 6 4.05 could also 
have been used for that purpose. The Second approach was 
to make Some measure of the absolute excretion of compo 
nents A, B and C by reference to the size of the TSP signal, 
which was added in known constant quantity to each NMR 
Sample, and taking into account the Volume of urine pro 
duced by each rat. Thus, for example, a relative measure of 
the absolute excretion of compound C by different animals 
was obtained using the formula (height of peak c/height of 
TSP peak)*(volume of urine collected). It is important to 
note here that this measurement is valid because all of the 
post-dose NMR samples were prepared in a constant fashion 
using 400 ul of urine except for animal 138 where no urine 
was available and no NMR sample was prepared. Peak 
heights were measured in millimetres and urinary Volumes 
were measured in millilitres. The limitation of this second 
approach is that the urine collected from an animal over a Set 
period may not be representative of what was passed to the 
bladder during that period and experience has shown that 
Such excretion errors are particularly likely when very little 
urine is collected. The limitation of the first approach to 
quantitation is that the excretion of the endogenous refer 
ence compound, allantoin in this case, may not be invariant 
although prior experience has indicated it to be a useful 
reference point. 
03.19 Each pre-dose NMR spectrum was data-reduced 
in a constant fashion using the AMIX program (Bruker 
GmBH). Certain spectral regions were discarded (e.g. the 
regions containing the TSP and residual water signals) 
before dividing the remainder of each spectrum into Sequen 
tial 0.04 ppm-wide Segments and obtaining an integral for 
each Segment. The data-reduced Spectra were then norma 
lised to give the same total intensity for each spectrum. 
PLS analyses were then carried out in an attempt to find 
pre-dose features that would enable prediction of the post 
dose excretion of the various N-acetylated metabolites, A, 
'B' and C. These PLS analyses were carried out using the 
SIMCA Software from Umetrics. 

0320. It was found that, for certain animals, the heights of 
peaks 'a and b, relative to the height of the allantoin peak 
at 6 5.4, in the NMR spectra of the urine samples collected 
from 0-7 hours after dosing isoniazid (200 mg/kg), could be 
predicted Surprisingly well from the pre-dose data (see 
FIGS. 3.1 and 3.2 which relate to peak 'a). Considering the 
case of peak 'a, its peak height ratio with respect to 
allantoin provides a relative measure of the ratio of (amount 
of compound A?amount of allantoin) in the NMR sample. If 
allantoin excretion over the 7 hour urine collection period on 
day 1 is assumed to be constant for all the rats in this study, 
the ratio (height of peak a/height of allantoin peak) pro 
vides a relative measure of the amounts of compound A 
excreted by the different rats during that period. Thus, these 
findings indicate that, with a Suitable model, the amounts of 
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compounds A and B excreted after dosing isoniazid (200 
mg/kg) are predictable, for Some rats, from the pre-dose 
data. 

0321. It was also found that, for the vast majority of 
animals that produced more than 3 ml of urine during the 0-7 
hour collection period on day 1, the quantity (height of peak 
'c'/height of TSP peak)*(volume of urine collected) could 
be predicted from the pre-dose data (see FIG. 3.3). Given 
that the NMR samples and associated spectra were all 
prepared and obtained in the exact same way, this quantity 
is a relative measure of the amount of compound C excreted 
by each rat. Thus, with a suitable model, it is possible to 
predict, from pre-dose data, the amount of compound C 
excreted after dosing isoniazid (200 mg/kg). 
0322 FIG. 3.1 shows the model building and validation 
data for a PLS model predicting, from pre-dose urinary 
NMR spectroscopic data, the values of (height of peak 
a/height of allantoin peak) in the NMR spectra of urine 
samples collected from 0-7 hours after dosing isoniazid (200 
mg/kg) to male Sprague-Dawley rats. The data points are 
marked and coded using unfilled triangles for model build 
ing data and filled triangles for validation data. The unfilled 
triangles show the observed and predicted results for the rats 
whose data was used to build the predictive PLS model. The 
filled triangles show the observed and predicted results for 
eleven rats (numbers 110, 111, 122, 125, 128, 135, 140,144, 
147, 167 and 172) whose data were excluded from the 
model-building process. Visual assessment of this figure 
indicates that a valid model has been obtained and that it is 
possible to predict the level of excretion of peak a relative 
to the level of allantoin from an analysis of the pre-dose data. 
0323 The regression coefficients pertaining to the PLS 
analysis of FIG. 3.1 are shown in FIG. 3.2 for each of the 
variables used in the analysis. AS previously described, these 
variables were derived from integrals of consecutive Seg 
ments of the pre-dose spectra. The different variables used in 
the PLS analysis are identified, in FIG. 3.2, according to the 
chemical shift at the centre of the relevant 0.04 ppm-wide 
Spectral Segments. The greater the magnitude, either positive 
or negative, of the regression coefficient for a spectral 
Segment, the greater the predictive contribution of that 
Segment and, for example, the pre-dose spectral Segment 
centred at Ö 3.42 is negatively correlated with the concen 
tration of Apost-dose. 
0324 FIG. 3.3 shows the model building and validation 
data for a PLS model predicting, from pre-dose urinary 
NMR spectroscopic data, the post-isoniazid (200 mg/kg) 
excretion of compound C by Sprague-Dawley rats. The data 
points in FIG. 3.3 are marked and coded using unfilled 
triangles for model building data and filled triangles for 
validation data. The unfilled triangles show the observed and 
predicted values for the various rats whose data was used in 
building the model. The filled triangles show the observed 
and predicted results for eight rats (numbers 105, 108, 115, 
116,121, 142, 157 and 163) whose data were excluded from 
the model-building process. The relative amount of metabo 
lite C excreted by each animal was measured as (height of 
peak 'c'/height of TSP peak)*(volume of urine produced). 
Visual assessment of this figure indicates that a valid model 
has been obtained. 

0325 In a further analysis of the data, a different 
approach was taken to the quantitation of the compounds A, 
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B and C that were excreted after dosing isoniazid. In this 
approach the region from 6 2.24-2.12, containing the three 
peaks a, b and 'c', was first integrated as a whole. Then 
Separate integrations for the regions ö 2.24-2.17 (containing 
peaks 'a and b) and ö 2.17-2.12 (containing peak c) were 
obtained as fractions of the total ö 2.24-2.12 integration, 
giving Fraction A+B and Fraction C. The ratio Fraction 
C/(Fraction A+B) was then calculated from the latter two 
quantities. The rationale for this approach was that integra 
tions should provide better estimates of relative amounts 
than are obtainable from peak height measurements, whilst 
recognising that the individual ratios (Amount C/Amount A) 
and (Amount C/Amount B), that provided phenotypic dis 
crimination, might be usefully replaced by the Single ratio 
Fraction C/(Fraction A+B)). Knowledge of either Fraction 
A+B or Fraction C means that the ratio Amount C/(Amount 
A+Amount B) can be calculated. Thus, using the SIMCA 
Software from Umetrics, we attempted to build PLS models 
for predicting Fraction A+B, Fraction C and Fraction 
C/(Fraction A+B) from the pre-dose data. This gave three 
possible ways of arriving at a Successful prediction of 
Fraction C/(Fraction A+B)). 
0326 Using pre-dose NMR data normalised to constant 
total spectral area (after excluding certain spectral regions), 
we found that PLS models were obtained that were Success 
ful in individually predicting each of the three quantities, 
Fraction A+B, Fraction C and the ratio Fraction C/(Fraction 
A+B), from that pre-dose data. 
0327 FIG. 3.4 shows a plot of the observed versus 
pre-dose predicted values for Fraction C/(Fraction A+B) in 
the urine collected from 0-7 hours after dosing male Spra 
gue-Dawley rats with isoniazid (200 mg/kg). The results 
shown are for modelling data only. This plot indicates that 
correlation between the pre- and post-dose data can be 
detected. 

0328 FIG. 3.5 shows the results of the internal model 
validation analysis proving that the observed correlation 
between the pre-dose data and the post-dose values of 
Fraction C/(Fraction A+B) was not random. 
0329 FIG.3.6 shows the prediction of Fraction C/(Frac 
tion A+B) for an externally generated test set. In this case 
a pre-to-post dose prediction model built using the present 
isoniazid Study data was used in an attempted pre-to-post 
dose prediction of the results for 9 low dose animals from 
the isoniazid study described in Example 2. The prediction 
Set (filled circles) was comprised of six Type 2 animals and 
three Type 1 animals and the results showed that Fraction 
C/(Fraction A+B) could be successfully predicted for the 
Type 2 test animals but was not well predicted for the Type 
1 test animals (RMSEE=0.1524; RMSEP (Types 1 and 
2)=0.4416; RMSEP (Type 2)=0.2325). However, examina 
tion of the modelling data (unfilled circles) indicated that it 
was almost entirely composed of Type 2 animals and this 
provides a likely explanation why Type 2 test data could be 
better predicted than Type 1. However, it is important to note 
that the model was sufficiently robust to provide some useful 
predictions for test data obtained in a Separate Study. 
0330. With further work it may prove possible to make 
pre-dose predictions of Susceptibility or non-Susceptibility 
to isoniazid (400 mg/kg)-induced toxicity as seen in 
Example 2. However, the crucial result obtained here is that 
certain metabolic phenotype-determined post-dose results 
can be predicted from pre-dose biofluid NMR spectra. 
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Example 4 
0331 Pre-dose Prediction of urinary Paracetamol 
metabolite quantities in male Sprague-Dawley rats Subse 
quently dosed with paracetamol (600 mg/kg). An example 
showing that numerical pre-dose to post-dose predictions 
can be achieved. 

0332 75 male Sprague-Dawley rats were obtained which 
were matched for age and body mass. At 3 days before 
dosing the mean body mass of the rats was 260.2 g (standard 
deviation: 12.6 g) and at the time of dosing the rats were 
approximately 7 weeks old. They were kept in individual 
cages in a temperature-, humidity- and light/dark-controlled 
laboratory with free access to water and a Standard rodent 
diet. The Study commenced after a period of cage acclima 
tisation. 65 of the rats were dosed orally with paracetamol 
(600 mg/kg) in an aqueous Solution containing methylcel 
lulose (0.5% w/v) and Tween 80 (0.1% w/v). 10 of the rats 
were used as a control Set and were orally dosed with the 
dosing vehicle only. Individual pre- and post-dose 24-hour 
urine Samples were collected from each rat into ice-cooled 
vessels, which also contained a fixed volume of Sodium 
azide Solution as a preservative. The pre-dose urine Samples 
were collected from 48-24 hours before dosing. The post 
dose urine samples were collected from 0-24 hours after 
dosing. The final Volume of each urine Sample was deter 
mined without making any correction for the azide Solution. 
The urine samples were all prepared for NMR analysis 
according to a Standard procedure that involved the use of 
fixed volumes of urine, of a pH buffer solution and of a 
TSP/DO solution. The "H NMR spectra were acquired at 
600 MHz on a Bruker NMR spectrometer equipped with a 
flow probe, using Bruker's Xwinnmr and iconnmr Soft 
ware. Water Suppression was achieved using the 'noesyprld 
program. The post-dose Spectra of the paracetamol-dosed 
rats showed extra N-acetyl signals which were found to be 
located at ca. 2.18, 2.165, 2.155 and 2.15 ppm after reso 
lution enhancement. These Signals were initially assigned to 
paracetamol Sulphate (now designated S), paracetamol 
glucuronide (now designated G), the mercapturic acid 
derived from paracetamol (now designated MA), and 
paracetamol itself (now designated 'P), respectively. The 
mercapturic acid of paracetamol (MA) is also sometimes 
referred to as the N-acetylcysteine conjugate of paracetamol. 
Spiking with paracetamol glucuronide and paracetamol con 
firmed their peak assignments and the assignment of the MA 
acetyl was confirmed from the Similarly sized peak at 1.86 
ppm. Reference to the literature (Bales et al. (1984) Urinary 
excretion of acetaminophen and its metabolites as Studied by 
proton NMR spectroscopy, Clin. Chem., 30, 10, 1631-1636) 
Suggested that the N-acetyl peak of the cysteine conjugate of 
paracetamol would potentially overlap the N-acetyl peak of 
paracetamol but, in fact, it seems more likely that the 
N-acetyl peak of the cysteine conjugate would overlap the 
equivalent N-acetyl peak from the mercapturic acid. This 
leaves Some uncertainty over the quantitation of both MA 
and Pand, henceforth, when we refer to models and data for 
MA and P, it should be remembered that the measured 
quantities might contain Some contribution from the cysteine 
conjugate. No significant interferences were present in the 
Spectra of the post-dose control Samples. Quantitation of the 
various paracetamol-related urinary metabolites, including 
paracetamol itself, was achieved by reference to the relevant 
acetyl signals in the chemical range 2.22-2.11 ppm although 
other signals could also potentially have been used. The 
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complete cluster of N-acetyls signals from ca. 2.22 to ca. 
2.11 ppm was first integrated relative to the TSP signal, in 
the post-dose Spectra, giving a measure of the total amount 
of N-acetylated species in each NMR sample. A relative 
measure of the total excretion of N-acetylated Species by 
each rat in the 0-24 hr post-dose period was then calculated 
as (total N-acetyls integration/TSP integration)*volume of 
urine collected (in millilitres). Subsequently, each post-dose 
Spectrum was resolution-enhanced using a gaussian multi 
plication (1b-1, gb 0.5) and the signals from the four 
components S, G, MA and P were integrated relative to one 
another. These values were Summed and then the amount of 
each component was calculated as a fraction of the total. AS 
other components of the N-acetyls cluster were relatively 
insignificant, combining these fractional values for S, G, 
MA and P with the value for the total acetyls excretion for 
each animal gave an estimate of the amount of each com 
ponent excreted by that animal. The S/G ratio was calcu 
lated. The pre-dose spectra were normalised in two different 
ways. In the first approach, the total Spectral integration 
between 9.5 and 0.5 ppm was adjusted to constant total area 
after excluding the region from 6.3-4.0 ppm, which con 
tained the residual water Signals and the Signal from urea, 
which is affected by the water Suppression procedure. In the 
Second approach, the pre-dose spectra were normalised 
relative to TSP, which had been added in constant amount to 
each NMR sample. Subsequently, each of the TSP-norma 
lised pre-dose spectra was multiplied by the relevant Volume 
(in millilitres) of urine collected during the pre-dose collec 
tion. Thus, in this Second approach, a relative measure was 
obtained of the 24-hour excretion of each of the pre-dose 
urinary metabolites. The TSP signal was excluded prior to 
carrying out the chemometricS analyses. 
0333 PLS models for pre-dose to post-dose prediction 
were constructed using the SIMCA Software from Umetrics. 
0334 FIG. 4.1 shows a plot of the observed versus 
PLS-predicted values for the total 0-24 hour excretion of 
N-acetylated compounds by rats dosed with paracetamol 
(600 mg/kg). The results shown are for modelling data only 
and relate to the first model for this parameter. This plot 
indicates clear correlation between the pre-dose and post 
dose data. The value of RMSEE for the model is 7.98. 

0335 FIG. 4.2 shows a plot of the observed versus 
PLS-predicted values for the 0-24 hour excretion of MA by 
rats dosed with paracetamol (600 mg/kg). The results shown 
are for modelling data only and relate to the first model for 
this parameter. This plot indicates clear correlation between 
the pre-dose and post-dose data. The value of RMSEE for 
the model is 1.28. 

0336 FIG. 4.3 shows a plot of the observed versus 
PLS-predicted values for the total 0-24 hour excretion of 
N-acetylated compounds by rats dosed with paracetamol 
(600 mg/kg). The results shown are for modelling data only 
and relate to the Second model for this parameter. This plot 
indicates clear correlation between the pre-dose and post 
dose data. The value of RMSEE for the model is 12.99. 

0337 FIG. 4.4 shows the successful internal validation 
of the model that generated the pre-dose predictions shown 
in FIG. 4.3. This plot proves that the correlation between the 
pre- and post-dose data, indicated by FIG. 4.3, is not 
random. External validation of the model was also Success 
ful and produced an RMSEP value of 12.89, which was 
comparable with the RMSEE value of 12.99 for the model. 
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0338 FIG. 4.5 shows a plot of the observed versus 
PLS-predicted values for the 0-24 hour excretion of parac 
etamol glucuronide (G) by rats dosed with paracetamol 
(600 mg/kg). The results shown are for modelling data only. 
This plot indicates clear correlation between the pre-dose 
and post-dose data. The value of RMSEE for the model is 
6.99. 

0339 FIG. 4.6 shows the successful internal validation 
of the model that generated the pre-dose predictions shown 
in FIG. 4.5. This plot proves that the correlation between the 
pre- and post-dose data, indicated by FIG. 4.5, is not 
random. External validation of the model was also Success 
ful and produced an RMSEP value of 7.27, which is com 
parable with the RMSEE value of 6.99 for the model. 
0340 FIG. 4.7 shows a plot of the observed versus 
PLS-predicted values for the 0-24 hour excretion of MA by 
rats dosed with paracetamol (600 mg/kg). The results shown 
are for modelling data only and relate to the Second model 
for this parameter. This plot indicates clear correlation 
between the pre-dose and post-dose data. The value of 
RMSEE for the model is 1.90. 

0341 FIG. 4.8 shows the successful internal validation 
of the model that generated the pre-dose predictions shown 
in FIG. 4.7. This plot proves that the correlation between the 
pre- and post-dose data, indicated by FIG. 4.7, is not 
random. External validation of the model was also Success 
ful and produced an RMSEP value of 1.32, which is com 
parable with the RMSEE value of 1.90 for the model. The 
external validation is shown in FIG. 4.9 where the unfilled 
circles are the model-building data and the filled circles are 
test data that were not used in the model-building exercise. 
0342 FIG. 4.10 shows a plot of the observed versus 
PLS-predicted values for the excretion of P by rats dosed 
with paracetamol (600 mg/kg). The results shown are for 
modelling data only. This plot indicates that there is corre 
lation between the pre-dose and post-dose data. The value of 
RMSEE for the model is 3.51. 

0343 FIG. 4.11 shows the internal validation of the 
model that generated the pre-dose predictions shown in 
FIG. 4.10. This plot proves that the correlation between the 
pre- and post-dose data, indicated by FIG. 4.10, is not 
random. External validation of the model was also Success 
ful and produced an RMSEP value of 3.30, which is com 
parable with the RMSEE value of 3.51 for the model. 
0344) Direct pre-dose prediction of the amount of 'S 
excreted post-dose was not achieved. However, by Subtract 
ing the predictions for the amounts of 'G', 'P' and MA 
excreted from the prediction for the total excretion of 
N-acetylated Species it was possible to generate a pre-dose 
prediction for the amount of S excreted by each rat in the 
24-hour post-dose period. By combining that prediction for 
“S with the appropriate prediction for 'G' it was possible to 
obtain a pre-dose prediction for the post-dose G/S ratio for 
each rat. FIG. 4.12 shows the observed versus predicted 
values for the amount of 'S' excreted. FIG. 4.13 shows the 
observed versus predicted values for the G/S ratio. 
0345 The results of this study demonstrate that the new 
methodology is not limited Simply to predictions of 
responses determined by acetylator phenotype. The results 
presented here indicate that pre-dose predictions can be 
made regarding the amounts, and the relative extent, of 
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glucuronidation and mercapturic acid formation and that 
occur on dosing paracetamol. Prediction of the amount of 
paracetamol Sulphate excreted in the urine was not So readily 
achieved but the results obtained Suggested that it might be 
predictable by difference. MA, the mercapturic acid 
derived from paracetamol, has special toxicological signifi 
cance as it thought to originate from the conjugation of a 
toxic, reactive intermediate with glutathione. Glucuronida 
tion, Sulphation and glutathione conjugation are three of the 
most important transformations of Phase 2 metabolism and 
each has a major defensive role in regard to a variety of 
exogenous Substances. Thus, the present data indicate that 
Subject-specific pre-dose predictions might be made with 
respect to the metabolism and toxicity of a large number of 
exogenous compounds. Given the examples shown, there is 
every reason to believe that pre-dose urinary discriminators 
exist for a wide variety of other aspects of metabolic 
phenotype i.e. that pre-dose prediction models could be built 
for a wide variety of aspects of metabolic phenotype and for 
dosing responses governed by one or more of those aspects. 

Example 5 
0346 Pre-dose Prediction of urinary paracetamol 
metabolite quantities in human males Subsequently dosed 
with paracetamol (1000 mg). An example showing that 
numerical pre-dose to post-dose predictions can be achieved 
in humans. 

0347) 99 adult human male subjects were recruited for an 
ethically-approved clinical trial. Certain dietary restrictions 
were stipulated Such as not eating fish and not drinking 
alcohol for a certain period. To be eligible for the study, it 
was necessary that the Subjects were not taking paracetamol 
or other drugs for a certain period prior to the Study. The 
weight and height of each Subject was recorded. On the day 
of the Study, a SnapShot mid-Stream pre-dose urine Sample 
was first provided by each Subject. Subsequently, each 
subject took 2x500 mg tablets of paracetamol BP with a 
fixed volume of water. After dosing, each Subject was 
required to provide all of the urine that he produced over two 
consecutive time periods, namely 0-3 hours and 3-6 hours 
from dosing. At the end of each of those time periods, each 
Subject was requested to empty his bladder as completely as 
possible and the mass of urine produced by each Subject over 
each post-dose time period was recorded. The urine Samples 
were all prepared for NMR analysis according to a Standard 
procedure, which involved the use of 440 microlitres of 
urine. The "H NMR spectra were acquired at 600 MHz on 
a Bruker NMR spectrometer using Bruker's XWinnmr and 
iconnmr Software. Water Suppression was achieved using 
the noesyprld program. In the post-dose spectra, the 
N-acetyls signals from 2.210 to 2.135 ppm were first inte 
grated relative to TSP and a measure of the total excretion 
of N-acetylated Species by each Subject for each period was 
determined as (acetyls integration/TSP integration) mass of 
urine collected (ing). This formula is based on the assump 
tion that the density of the urine Samples is nearly constant. 
AS a check, the Sample densities of a number of represen 
tative Samples were measured and were found to lie in the 
range 1.00-1.04 g/ml i.e. the assumption of nearly constant 
density was reasonable. Subsequently, the post-dose Spectra 
were resolution-enhanced using a gaussian multiplication of 
the FID (1b -1, gb 0.5). Where possible, the amounts of 
paracetamol Sulphate (S), paracetamol glucuronide (G) and 
unchanged paracetamol (P) were then measured directly as 
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fractions of the total integration from 2.210-2.135 ppm. It 
was not possible to obtain an accurate measure of the 
amounts of unchanged paracetamol (P) excreted during the 
3-6 hour collection and this data was not used. The level of 
paracetamol mercapturic acid (MA) was not generally high 
enough to be measurable with accuracy. The amounts of the 
individual paracetamol metabolites (S, G and P) excreted by 
each Subject during a particular collection period were 
calculated by multiplying the total excretion of N-acetylated 
Species for that Subject and period (previously calculated) by 
the relevant fractions of the 2.210-2.135 ppm integration. 
Where appropriate the data for the two collections was 
Summed to give data for the whole 0-6 hour post-dose 
period. Because the effective dose of paracetamol received 
by any particular Subject was dependent on his body mass, 
the excretion results for total N-acetyls, S, G and P were 
combined with the body mass data to give excretion per kg 
of body mass. It should be noted that, as with the paraceta 
mol Study in the rat, it is possible that the cysteine conjugate 
of paracetamol could have influenced the quantitation of 
unchanged paracetamol. The pre-dose Spectra were norma 
lised in two different ways (to total spectral area, after 
excluding certain regions, and to constant creatinine) and 
PLS models for pre-dose to post-dose prediction were 
constructed using the SIMCA Software from Umetrics. 
0348 FIG. 5.1 shows the observed versus PLS-predicted 
values for the total excretion of N-acetylated compounds 
(0-3 hour collection) per kg of body mass for male volun 
teers who took paracetamol (1000 mg). The results shown 
are for modelling data only. This plot indicates that clear 
correlation was found between the pre-dose and post-dose 
data. The value of RMSEE for the model was 1.12. 

0349 FIG. 5.2 shows the observed versus PLS-predicted 
values for the total excretion of N-acetylated compounds 
(0-3 hour collection) per kg of body mass for an external test 
Set that was analysed in relation to the model underlying 
FIG. 5.1. The RMSEP value was 0.80, which compares 
favourably with the model's RMSEE value of 1.12. 
0350 FIG. 5.3 shows the observed versus PLS-predicted 
values for the excretion of paracetamol glucuronide (G) 
(0-3 hour collection) per kg of body mass for male volun 
teers who took paracetamol (1000 mg). The results shown 
are for modelling data only. This plot indicates that corre 
lation was found between the pre-dose and post-dose data. 
The value of RMSEE for the model was 0.84. 

0351 FIG. 5.4 shows the observed versus PLS-predicted 
values for the excretion of G (0-3 hour collection) per kg 
of body mass for an external test Set that was analysed in 
relation to the model underlying FIG. 5.3. The RMSEP 
value was 0.70, which compares favourably with the mod 
el's RMSEE value of 0.84. 

0352 FIG. 5.5 shows the observed versus PLS-predicted 
values for the excretion of P (0-3 hour collection) per kg 
of body mass for male Volunteers who took paracetamol 
(1000 mg). The results shown are for modelling data only. 
This plot indicates that correlation was found between the 
pre-dose and post-dose data. The value of RMSEE for the 
model was 0.185. 

0353 FIG. 5.6 shows the observed versus PLS-predicted 
values for the excretion of P (0-3 hour collection) per kg 
of body mass for an external test Set that was analysed in 
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relation to the model underlying FIG. 5.5. The RMSEP 
value was 0.170, which compares favourably with the 
models RMSEE value of 0.185. 

0354 FIG. 5.7 shows the observed versus PLS-predicted 
values for the total excretion of N-acetylated compounds 
(0-6 hour period) per kg of body mass for male volunteers 
who took paracetamol (1000 mg). The results shown are for 
modelling data only. This plot indicates that clear correlation 
was found between the pre-dose and post-dose data. The 
value of RMSEE for the model was 1.47. 

0355 FIG. 5.8 shows the observed versus PLS-predicted 
values for the total excretion of N-acetylated compounds 
(0-6 hour period) per kg of body mass for an external test set 
that was analysed in relation to the model underlying FIG. 
5.7. The RMSEP value was 1.13, which compares favour 
ably with the model's RMSEE value of 1.47. 
0356. The results from this study confirm the principle 
that the methodology can be extended from rats to humans 
and it is assumed that the methodology could be applied 
Successfully to all mammals. In particular, it is notable that 
the method worked in humans who were not subject to full 
dietary control and, with Such control in place, improved 
results would be expected. The findings presented here 
represent a preliminary analysis of the samples and data and 
improved models may well be possible. It is possible that 
use of a standard analytical method, such as HPLC with 
UV-Visible detection, in relation to the post-dose samples 
would provide improved quantitation of the paracetamol 
metabolites and would therefore facilitate the model build 
ing. In particular, the use of Such a technique should permit 
improved quantitation of P and MA compared to the NMR 
method used here. Furthermore, it is believed that improved 
models might be obtained by taking ratioS and other com 
binations of the pre-dose variables (which, in this case, are 
the 0.04 ppm wide segments of the pre-dose NMR spectra) 
before carrying out the PLS analysis. 

Hypothetical Examples 

0357 Aprincipal feature of the present invention is to be 
able to predict responses to dosing and thereby to Select 
appropriate dosing Substances and treatment regimes e.g. 
pharmaceutical treatments, anaesthetics etc. Such methods 
would enable, on the basis of pre-determined criteria, Such 
as toxicity, efficacy and Side-effects, the identification of 
appropriate dosing Substances, the identification of maxi 
mum or minimum doses, the identification of appropriate 
doses, appropriate dosing frequencies, appropriate numbers 
of doses and the Selection of appropriate controlled-release 
formulations. Typical construction of these methods is 
shown in the following hypothetical example, which 
involves identifying the minimum dose of an antibacterial 
Substance for clearing an infection of a particular type within 
a Set period of time. Thus, different model building popu 
lations suffering from the specified infection would be 
treated with different levels of the antibacterial. Data per 
taining to dose levels which did not clear up the infection in 
any of the subjects within the set period would be deleted 
from the analysis. For each of the other data Sets, a classi 
fication model would be built to identify the pre-dose 
characteristics of those Subjects that met the clear-up crite 
rion and the pre-dose characteristics of those Subjects that 
did not. Test data of a subject would be analysed in relation 
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to each of the models to find the minimum dose commen 
Surate with clear-up of the infection in a Subject of that 
phenotype. This dose would not necessarily be adminis 
tered; Such administration might depend, for instance, on 
whether unacceptable side effects would be expected in the 
Subject at that dose level. 
0358 Another feature of the present invention is the 
ability to Select a phenotypically homogenous Set of Subjects 
for whatever purpose. Typically, the requirement would be 
to Select a group of Subjects which were homogenous with 
respect to one element of metabolic phenotype e.g. N-acety 
lator phenotype. For this example a model would be built 
using a dosing Substance that challenged N-acetylation. A 
classification model would then be built according to 
imposed homogeneity criteria. Test data relating to Subjects 
of unknown N-acetylator phenotype would be examined in 
relation to the model and the Subject classified accordingly. 
The Subjects falling into one class would be considered as 
phenotypically homogenous with respect to N-acetylation of 
the dose Substance. 

0359 Likewise the invention permits the rationalisation 
of variable data obtained in Studies Such as Studies of 
toxicity or efficacy. For instance, a dosing regime which 
caused toxicity in one group but not in another group might 
be rationalised if it was found, by use of pre-dose pheno 
typing, that one group were fast O-methylators whilst the 
other group were slow O-methylators. Such an indication 
would lead to a consideration of the metabolism of the dosed 
Substance and possibly to the identification of a critical 
O-methylation Step which either produced or eliminated a 
toxic metabolite. 

0360 Another feature of the present invention is to 
facilitate the identification of pre-dose biomarkers or biom 
arker combinations, which by their presence or concentra 
tions in a pre-dose Sample would indicate a particular 
metabolic phenotype or a particular response to a potential 
dosing Substance. For example, in a PCA, a Scores plot 
which provides Separation of the different classes of interest 
would be compared to the corresponding loadings plot. The 
pre-dose variables that provide the discrimination, and the 
positive or negative nature of their correlation to the class 
Separation, can then be identified. Sometimes these variables 
may be directly attributable to particular compounds. In the 
case of NMR spectroscopic data, a particular variable or 
combination of variables would indicate the Spectral regions 
containing the discriminating features. By examination of 
those regions of the model building spectra the discriminat 
ing compound(s) (or “biomarkers') could then, in principle, 
be identified. 

0361 Sometimes it would be necessary to take samples 
from a number of subjects to be representative of a wider 
group of Subjects. For instance, one would normally only be 
able to Sample a few plants from a field of Such plants. From 
analysis of the characteristics of the Selected plants one 
might then wish to Select a particular dose of herbicide for 
the whole field. 

1. A method of generating models with which to charac 
terise Selected aspects of a metabolic phenotype of Subjects 
without dosing a test Substance to those Subjects or with 
which to predict, without dosing, the post-dose responses of 
Subjects where those responses are dependent on metabolic 
phenotype, the method comprising: 
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obtaining pre-dose data relating to a plurality of Subjects 
before dosing with a dosing Substance; 

obtaining post-dose data relating to the plurality of Sub 
jects after dosing with the dosing Substance; and 

correlating inter-Subject variation in the pre-dose data 
with inter-Subject variation in the post-dose data, and 
generating a pre-to-post-dose predictive model on the 
basis of the observed correlation. 

2. A method according to claim 1, wherein the pre- and/or 
post-dose data are obtained from Samples which are bioflu 
ids. Such as urine, blood, blood plasma, blood Serum, Saliva, 
Sweat, tears, breath or breath condensate. 

3. A method according to claim 1, wherein the pre- and/or 
post-dose data are obtained from Samples which are plant 
tissues, plant fluids or homogenates, plant extracts or plant 
exudates, including, for example, essential oils. 

4. A method according to claim 1, wherein the pre- and/or 
post-dose data are obtained from Samples which are human 
or animal tissues, fish tissueS or oils, tissue extracts, tissue 
culture extracts, cell culture Supernatants or extracts or are 
of microbial origin. 

5. A method according to claim 1 wherein the pre- and/or 
post-dose data comprise data relating to chemical composi 
tion or physical parameters. 

6. A method according to claim 1, wherein the pre- and/or 
post-dose Samples or Subjects are treated prior to analysis 
(e.g. treated with one or more chemical reagents So as to 
produce derivative(s) of one or more existing Substances) So 
as to enhance data recovery or to improve Sample Stability. 

7. A method according to claim 6 wherein the pre- and/or 
post-dose data are derived from or are compositional data 
acquired using nuclear magnetic resonance (NMR) spec 
troScopy and/or any other chemical analysis techniques Such 
as mass spectroscopy (MS), infrared (IR) spectoScopy, gas 
chromatography (GC) and high performance liquid chroma 
tography (HPLC) or by using any integrated combination of 
Such techniques e.g. GC-MS. 

8. A method according to claim 7 wherein the pre- and/or 
post-dose data are physical data or data derived therefrom. 

9. A method according to claim 8 wherein, by dosing 
appropriate Substances, a phenotyping model is generated 
for each of a plurality of biochemical transformations. 

10. A method according to claim 8 wherein, by dosing 
appropriate Substances, a response prediction model is built 
for each of a plurality of dosing Substances. 

11. A method according to claim 10 wherein the original 
pre-dose data Set is extended, prior to pattern recognition, by 
taking ratioS and/or other combinations of existing variables. 

12. A method according to claim 11 wherein, for a group 
of Subjects dosed with any particular Substance, a pattern 
recognition method is used to identify patterns in the Vari 
able metabolism of, or the variable reactions to, the dosing 
Substance. 

13. A method according to claim 8 wherein, for a group 
of Subjects dosed with any particular Substance, an unsu 
pervised pattern recognition method is used to identify 
variation in the pre-dose data that correlates with the varia 
tion of interest in the post-dose data. 

14. A method according to claim 2 wherein, for a group 
of Subjects dosed with any particular Substance, a Supervised 
pattern recognition method is used to identify variation in 
the pre-dose data that correlates with the variation of interest 
in the post-dose data. 
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15. A method according to claim 3 wherein, for a group 
of Subjects dosed with any particular Substance, a data 
filtering method Such as Orthogonal Signal Correction 
(OSC) is used to remove variation in the pre-dose data that 
is not correlated with the variation of interest in the post 
dose data. 

16. A method according to claim 1 when used to identify 
biomarkers or combinations of biomarkers which provide 
information on metabolic phenotype or which may be used 
to predict responses to dosing. 

17. A method of determining selected aspects of the 
metabolic phenotype of a Subject, the method comprising: 

analysing data relating to an un-dosed Subject in relation 
to a model describing the correlation of pre-dose and 
post-dose data relating to a plurality of Subjects dosed 
with a particular Substance which challenges the bio 
chemical transformation or pathway of interest; 

generating, according to a predetermined criteria of the 
model, a numerical measure or classification describing 
the metabolic phenotype of the un-dosed Subject. 

18. A method according to claim 17, wherein data relating 
to the un-dosed subject is obtained from a biofluid such as 
urine, blood, blood plasma, blood Serum, Saliva, Sweat, 
tears, breath or breath condensate or from a plant tissue, 
plant fluid, plant homogenate, plant extract or plant exudate, 
including, for example, an essential oil, or from human or 
animal tissue, fish tissue or oil, or from a tissue extract, 
tissue culture extract, cell culture Supernatant or cell culture 
extract or from a sample of microbial origin or from any one 
of the above Sample types after treatment to enhance data 
recovery or Sample Stability. 

19. A method according to claims 17, further comprising 
generating characteristic compositional and/or physical data 
relating to a Subject using nuclear magnetic resonance 
(NMR) spectroscopy and/or any other techniques or by 
using any combination of techniques. 

20. A phenotyping method according to claim 19 when 
used for the purpose of making a metabolic phenotype 
influenced risk assessment and/or for the purpose of target 
ing the use of Special health monitoring regimes and/or for 
the purpose of targeting the use of precautionary/preventa 
tive treatments and/or for the purpose of characterising risk 
for insurance purposes and/or for the purpose of Selecting 
Subjects for any other purpose e.g. for breeding. 

21. A method of predicting a reaction of a Subject to a 
dosing Substance, the method comprising: 

analysing data relating to an un-dosed Subject in relation 
to a model characterising the correlation of pre-dose 
and post-dose data relating to a plurality of Subjects 
dosed with the particular dosing Substance, and 

generating, according to the predetermined criteria of the 
model, a numerical or class prediction for the expected 
response of the un-dosed Subject if it were to be dosed 
with the dosing Substance. 

22. A method according to claim 21 wherein, according to 
pre-determined criteria, a maximum or minimum dose of a 
Substance that a Subject should receive can be predicted. 

23. A method according to claims 21 wherein, according 
to pre-determined criteria, an amount of a dosing Substance 
that a Subject should receive can be predicted. 

24. A method according to claim 23 wherein, according to 
pre-determined criteria, a frequency with which a Subject 
should be dosed with a Substance can be predicted. 
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25. A method according to claim 24 wherein, according to 
pre-determined criteria, a number of doses of a Substance 
that a Subject should receive can be predicted. 

26. A method according to claim 25 wherein, according to 
pre-determined criteria, an appropriate controlled release 
formulation for a Subject can be Selected. 

27. A method according to claim 26, wherein data relating 
to the un-dosed subject is obtained from a biofluid such as 
urine, blood, blood plasma, blood Serum, Saliva, Sweat, 
tears, breath or breath condensate or from a plant tissue, 
plant fluid, plant homogenate, plant extract or plant exudate, 
including, for example, an essential oil, or from human or 
animal tissue, fish tissue or oil, or from a tissue extract, 
tissue culture extract, cell culture Supernatant or cell culture 
extract or from a Sample of microbial origin or from any one 
of the above Sample types after treatment to enhance data 
recovery or Sample Stability. 

28. A method according to claim 27, further comprising 
generating characteristic compositional and/or physical data 
relating to a Subject using nuclear magnetic resonance 
(NMR) spectroscopy and/or any other techniques or by 
using any combination of techniques. 

29. A method of determining Selected aspects of a meta 
bolic phenotype of a Subject or of predicting a reaction of a 
Subject to a dosing Substance, the method comprising anal 
ySing data relating to the un-dosed Subject with respect to 
one or more biomarkers which have been previously iden 
tified as described in claim 16. 

30. A method according to claim 29 wherein the biom 
arker(s) react(s) with one or more added reagents to produce 
a visible change Such as a colour change. 

31. A method according to claim 30 when used to select 
a group of phenotypically homogenous or similar Subjects 
for a laboratory experiment or clinical trial or for any other 
purpose. 

32. A method, according to claim 31, for rationalising 
biological variation in experimental databased on pre-dose 
analysis of biofluids or tissues, where Such variation is 
caused by phenotypic heterogeneity. 

33. A method according to claim 32 wherein the data is 
based on physical and/or chemical measurements taken from 
the Subject as a whole. 

34. A method according to claim 28 wherein the post-dose 
data describes a change relative to the pre-dose State e.g. a 
decrease in blood pressure of a human Subject treated with 
a drug that lowers blood pressure. 

35. A method according to claim 30 wherein test data that 
does not conform to the limits of a particular model and/or 
method can be identified. 

36. A method according to claim 33 wherein the subject 
is a animal, in particular a mammal Such as a human, a 
mouse, a rat, a pig, a cow, a bull, a sheep, a horse, a dog or 
a rabbit or any farmed animal or any animal, Such as a race 
horse, used for the purpose of Sport or for breeding. 

37. A method according to claim 33 wherein the subject 
is a plant, a fish or any other aquatic organism 

38. A method according to claim 33 wherein the subject 
is a biological tissue, a tissue culture, a cell culture or a 
microbial culture. 

39. A method according to claim 28 wherein data are 
obtained from a Sample which is representative, or is taken 
to be representative, of a group of Subjects which are 
considered as a single Subject. 
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40. A method according to claim 29 wherein the dosed 
Substance is any Substance or mixture or formulation of 
Substances including especially pharmaceutical or medicinal 
Substances or Substances in research or development which 
might potentially become pharmaceutical or medicinal Sub 
stances, but also including, for example, toxins, pesticides, 
herbicides, food or feed Substances, food or feed additives 
and fluids of any Sort including liquids, gases, vapours and 
Smoke e.g. tobacco Smoke. 

41. A method according to claim 40 whereby the dosed 
Substance is actively or passively dosed in any matrix or 
medium, by any means or route, including for example, by 
injection, by eating, by drinking, by inhaling or by Smoking, 
over any time period including a Subject's lifetime or any 
Specified part or fraction thereof, Such dosing to include that 
resulting from environmental exposure or pollution or from 
medical, dental, Veterinary or Surgical procedures. 

42. A method, according to claim 41, for identifying the 
acetylator phenotype of a Subject without dosing a test 
Substance to that Subject. 

43. A method, according to claim 41, for predicting the 
response of a Subject to dosing with a Substance where that 
response is dependent on acetylator phenotype. 

44. A method according to claim 2 for predicting the 
Susceptibility of a Subject to isoniazid-induced toxicity. 

45. A method according to claim 2 for predicting the 
Susceptibility of a Subject to galactosamine-induced toxicity. 

46. A method according to of claim 43 for predicting the 
Susceptibility of a Subject to paracetamol-induced toxicity. 

47. Apparatus for generating models according to claim 1. 
48. Apparatus for response prediction and/or for meta 

bolic phenotyping, the apparatus comprising: 

one or more models, each model modelling the correla 
tion of pre-dose and post-dose data relating to a plu 
rality of Subjects dosed with a particular dosing Sub 
Stance, 

a processor for analysing data relating to an un-dosed 
Subject in relation to at least one of the models and 
thereby determining one or more aspects of the meta 
bolic phenotype of the un-dosed Subject or predicting 
its responses to dosing according to the model(s) 
employed. 

49. Apparatus, according to claim 48, the apparatus being 
further arranged to generate one or more models according 
to claims 1. 

50. Apparatus according to claim 49, further comprising 
one or more analytical instruments or devices to carry out 
physical and/or chemical analysis, Such as NMR spectros 
copy, mass SpectroScopy, infrared SpectroScopy or high 
performance liquid chromatography. 

51. Apparatus for identifying one or more biomarkers 
according to claim 16. 

52. Apparatus according to claim 1 for response predic 
tion or metabolic phenotyping which is based on the use of 
one or more biomarkers which have been previously iden 
tified as described in claims 16. 

53. Apparatus for metabolic phenotyping or for predicting 
a Subject's response(s) to dosing, the apparatus comprising: 

a test area to receive a Sample from the Subject under test, 
Said test area incorporating one or more reagents which 
may react chemically with one or more biomarkers in 
the Sample to produce a change in the Visual appear 
ance of the test area, the biomarkers having been 
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previously identified according to claim 51, and the 
resulting visual appearance of the test area being char 
acteristic of metabolic phenotype or predictive of 
response(s) to dosing. 

54. Apparatus for carrying out the methods claimed in 
claim 21 wherein an appropriate dosing regime for a Subject 
can be identified. 

55. Apparatus according to claim 47, which is based on 
the use of antibodies raised against Specific biomarkers. 
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56. Apparatus according to claim 55 wherein Selected 
biomarkers are detected and/or quantified by means of 
enzyme-catalysed reactions using, for instance, enzymes 
immobilised on a Solid Support. 

57. Apparatus comprising one or more models generated 
by a method according to claim 2. 
58 Apparatus, according to claim 57, which is further 

arranged to identify test data that does not conform to the 
limits of a particular model. 
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