Title: CELL LINES FOR PRODUCTION OF REPLICATION-DEFECTIVE ADENOVIRUS

Abstract: The present invention provides cell lines for the production of E1-deleted adenovirus (rAd) vectors that complement E1A and E1B functions. The present invention also provides cell lines for the production of E1- and E2-deleted adenovirus vectors that complement E1A, E1B and E2B polymerase functions. The invention provides particular cell lines that complement E1A function by insertion of an E1A sequence containing mutations in the 243R and 289R proteins and an E1B sequence comprising the E1B-55K gene. Production yields in the resulting producer cell lines, designated S1,0003 and S1,0006, were similar to those obtained from 293 cells without generation of detectable recombinant replication competent adenovirus (“RCA”).
Cell Lines for Production of Replication-Defective Adenovirus

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of priority under 35 USC §119(e) of United
States provisional patent application Serial No.: 60/635,561, filed December 13,
2004 and United States provisional patent application Serial No.: 60/674,488 filed,
April 25, 2005, the disclosures of which are herein incorporated by reference in
their entirety.

1. FIELD OF THE INVENTION

The present invention relates to cell lines useful for the efficient production
of replication-defective adenoviruses. The invention also describes methods of use
of such cell lines to produce replication-defective adenoviruses.

2. BACKGROUND OF THE INVENTION

Recombinant adenovirus (rAd) vectors have desirable features for gene
delivery, including wide tissue and cell tropism, the capacity to accommodate large
expression cassettes and high transduction efficiency. In addition, adenovirus is
well suited for pharmaceutical development as the virus grows to high specific
titers and scalable manufacturing processes have been established (Huyghe et al.,
8:453-465). Production of rAd vectors requires engineered cell lines that can
complement functions removed from the viral genome. For pharmaceutical
development and commercial manufacture of viral vectors, the vector-cell line
combination also must be amenable to scale-up and provide material of sufficient
quality and purity.

Replication defective rAd vectors for gene therapy use are generally deleted
for the viral early region 1 (E1). E1 contains two transcription units, E1A and E1B,
which encode a number of proteins that have critical roles in the early and late
phases of the lytic cycle. Production of rAd vectors requires complementation of
these E1 activities. E1A and E1B gene functions have been extensively

Although 293 cells produce E1-deficient rAd vectors at acceptable levels, an undesirable contaminant called replication competent adenovirus ("RCA") is sometimes generated by homologous recombination between the rAd vector and the adenovirus sequences present in the 293 genome (Lochmuller et al., (1994) Hum. Gene Ther. 5:1485-1491; Zhu et al., (1999) Hum. Gene Ther. 10:113-121). To reduce the risk of generation of RCA by homologous recombination, Fallaux et al., (Hum. Gene Ther. 9:1909-1917 (1998)) transfected human embryonic retinoblasts with a recombinant plasmid containing E1 genes, in which the E1A promoter and E1B polyadenylation sequences were replaced by heterologous control elements. Deletion of the adenovirus flanking sequences in the E1 plasmid yielded a cell line, PER.C6, which does not generate RCA through homologous recombination when cell line-matched rAd vectors are employed (Fallaux et al., (1998) Hum. Gene Ther. 9:1909-1917). However, recent studies have shown that an atypical form of RCA, called helper-dependent E1-positive particles, can be formed when non-matched adenoviral vectors are propagated in PER.C6 cells (Murakami et al., (2002) Hum. Gene Ther. 13:1909-1920).

The E1 region used for complementation of E1-deleted adenoviruses in 293 cells and PER.C6 cells includes the entire E1B transcription unit, which encodes two major proteins: E1B-19K and E1B-55K. In adenovirus replication, the E1B-19K and E1B-55K proteins function in the early lytic cycle to limit E1A-induced apoptosis (Querido et al., (1997) J. Virol. 71:3788-3798; Rao et al., (1992) Proc. Natl. Acad.

The construction of stable human cell lines that effectively and efficiently complement replication deficient adenoviral vectors can be difficult. A barrier for developing E1-complementing cell lines is the toxicity associated with high levels of E1A gene product expression. For example, constitutive expression of the E1 proteins, especially E1A, has proven difficult in established cell lines (Imler et al., (1996) Gene Ther. 3:75-84). E1A has been shown to suppress cell growth and induce anoikis (Frisch, (1991) Proc Nati Acad Sci USA 88:9077-9081; Frisch and Mymryk, (2002) Nat Rev Mol Cell Biol 3:441-452; Mymryk et al., (1994) Oncogene 9: 1187-1193; Rao et al., (1992) Proc Nati Acad Sci USA 89:7742-7746). Thus, complementation cell lines, such as those known in the art, that constitutively express E1A proteins may be associated with poor survival rates prior to and/or during adenoviral vector production.

Others have previously used human tumor cell lines, such as the A549 cell line, to develop E1-complementing cell lines. For example, Massie (U.S. Patent 5,891,690) transformed A549 cells with an E1 region expression cassette in which the adenovirus E1A promoter was replaced with the human alpha-actin promoter. However, the yield of an adenovirus gene therapy vector expressing the bacterial beta-galactosidase gene was shown to be lower than from 293 cells. Imler, et al. used regulated induction of E1 as a strategy to avoid toxicity associated with constitutive expression of E1A, allowing generation of rAd producer cell lines based on A549 cells (Imler, et al., (1996) Gene Ther. 3:75-84). Production yields of rAd vectors from these Gal4-inducible producer cell lines were reported to be 5-10 fold lower than from 293 cells (Imler, et al., supra).
Accordingly, there is a need for more efficient recombinant cell lines to produce replication-defective adenoviruses (i.e., adenoviruses containing a deletion of the E1A and E1B coding regions of the adenoviral genome) which have low RCA and with production levels on the order of wild-type adenovirus production from the 293 cell line.

3. SUMMARY OF THE INVENTION

The present invention addresses the foregoing needs by providing new cell lines for the production of recombinant adenovirus based on combining selected viral and host functions required for adenovirus replication.

The present invention provides helper adenovirus nucleic acid sequences for use in the generation of host cells that complement the recombinant adenovirus vectors and recombinant adenoviruses described herein. The helper adenovirus nucleic acid sequences of the present invention: (i) provide viral functions for the replication of a recombinant adenovirus vector and/or its packaging into infectious virions; and (ii) are not replicated or assembled into viral particles to a measurable degree. The helper adenovirus nucleic acid sequences can be obtained and/or derived from any adenoviridae or a combination of adenoviridae. In a preferred embodiment, the helper adenovirus nucleic acid sequences are obtained and/or derived from a human adenoviridae.

In one embodiment, the helper adenovirus nucleic acid sequences include: (i) a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (ii) a nucleic acid molecule(s) comprising a nucleotide sequence(s) encoding an adenoviral E1B protein(s), such as E1B-55K and/or E1B-19K. In accordance with this embodiment, the helper adenovirus nucleic acid sequences may also include one, two or more of the following: (i) a nucleic acid molecule(s) comprising a nucleotide sequence(s) encoding an adenoviral E2 protein(s); (ii) a nucleic acid molecule(s) comprising a nucleotide sequence(s) encoding an adenoviral E4 protein(s); and/or (iii) a nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral L4 100K protein. Non-
limiting examples of adenoviral E2 proteins include E2A binding protein, E2B polymerase, E2B pre-terminal protein, and E2B IVa2 protein. Non-limiting examples of adenoviral E4 proteins include those encoded by open reading frame (ORF)-6, ORF3, and ORF6/7. Table 1 below provides examples of the nucleotide and amino acid sequences of human adenovirus serotype 5 E1A proteins, E1B-55K protein, E1B-19K protein and E2B polymerase protein.

Table 1: Sequences of the invention.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>plasmid pRSV-E1Adl01/07</td>
<td>SEQ ID NO: 1</td>
</tr>
<tr>
<td>plasmid pcDNA3.1(+)E1B 55K Hygro</td>
<td>SEQ ID NO: 2</td>
</tr>
<tr>
<td>nucleotide sequence encoding human adenovirus type 5, 289R E1A, wild type</td>
<td>SEQ ID NO: 3</td>
</tr>
<tr>
<td>amino acid sequence of human adenovirus type 5, 289R E1A, wild type</td>
<td>SEQ ID NO: 4</td>
</tr>
<tr>
<td>nucleotide sequence of human adenovirus type 5, 243R E1A, wild type</td>
<td>SEQ ID NO: 5</td>
</tr>
<tr>
<td>amino acid sequence of human adenovirus type 5, 243R E1A, wild type</td>
<td>SEQ ID NO: 6</td>
</tr>
<tr>
<td>amino acid residues 4-25 of human adenovirus type 5, E1A 289R, wild type, protein</td>
<td>SEQ ID NO: 7</td>
</tr>
<tr>
<td>amino acid residues 4-25 of human adenovirus type 5, E1A 243R, wild type, protein</td>
<td>SEQ ID NO: 8</td>
</tr>
<tr>
<td>amino acid residues 36-49 of human adenovirus type 5, E1A 289R, wild type, protein</td>
<td>SEQ ID NO: 9</td>
</tr>
<tr>
<td>amino acid residues 36-49 of human adenovirus type 5, E1A 243R, wild type, protein</td>
<td>SEQ ID NO: 10</td>
</tr>
<tr>
<td>amino acid residues 111-123 of human adenovirus type 5, E1A 289R, wild type, protein</td>
<td>SEQ ID NO: 11</td>
</tr>
<tr>
<td>amino acid residues 111-123 of human adenovirus type 5, E1A 243R, wild type, protein</td>
<td>SEQ ID NO: 12</td>
</tr>
<tr>
<td>amino acid residues 124-127 of human adenovirus type 5, E1A 289R, wild type, protein</td>
<td>SEQ ID NO: 13</td>
</tr>
<tr>
<td>amino acid residues 124-127 of human adenovirus type 5 E1A 243R, wild type, protein</td>
<td>SEQ ID NO: 14</td>
</tr>
<tr>
<td>nucleotide sequence of human adenovirus type 5, E1B-55K, coding region</td>
<td>SEQ ID NO: 15</td>
</tr>
<tr>
<td>amino acid sequence of human adenovirus type 5, E1B-55K, protein</td>
<td>SEQ ID NO: 16</td>
</tr>
<tr>
<td>nucleotide sequence of human adenovirus type 5, E1A gene</td>
<td>SEQ ID NO: 17</td>
</tr>
<tr>
<td>nucleotide sequence of human adenovirus type 5, E1B-55K and E1-19K, coding regions</td>
<td>SEQ ID NO: 18</td>
</tr>
<tr>
<td>plasmid pVITRO21RESPuroE1b</td>
<td>SEQ ID NO: 19</td>
</tr>
<tr>
<td>plasmid pMGCM2Bbpol</td>
<td>SEQ ID NO: 20</td>
</tr>
<tr>
<td>nucleotide sequence of human adenovirus type 5, E1B-19K, coding</td>
<td>SEQ ID NO: 21</td>
</tr>
</tbody>
</table>
In a specific embodiment, the helper adenovirus nucleic acid sequences include: (i) a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (ii) a nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B protein, wherein the E1B protein comprises an E1B-55K protein but not an E1B-19K protein. In a preferred embodiment, the helper adenovirus nucleic acid sequences include: (i) a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (ii) a nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and (iii) a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1B-55K and E1B-19K proteins.

To produce E1A proteins that are defective for binding to the cellular proteins p300/CBP and pRb, mutations in the E1A 289R and E1A 243R coding regions can be introduced. In a specific embodiment, the E1A proteins comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (d1/1101) and amino acid residues 4-25 of an E1A 243R protein (d1/1101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (d1/1107) of an E1A 289R protein and amino acid residues 111-123 (d1/1107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (d1/1108) of an E1A 289R protein and amino acid residues 124-127 (d1/1108) of an E1A 243R protein. In a preferred embodiment, the E1A proteins comprise: (a) a
first deletion corresponding to amino acid residues 4-25 of an E1A 289R protein (dl1101) and amino acid residues 4-25 of an E1A 243R protein (dl1101)); and (b) a second deletion corresponding to amino acid residues 111-123 (dl1107) of an E1A 289R protein and amino acid residues 111-123 (dl1107) of an E1A 243R protein.

The present invention provides host cells transfected or transformed with the helper adenovirus nucleic acid sequences. Such cells are useful in the production of recombinant adenovirus, in particular replication-defective recombinant adenovirus. The host cells of the present invention complement functions missing from the recombinant adenovirus vector or recombinant adenovirus of interest (i.e., the adenoviral E1A, for example, SEQ ID NO: 17, and E1B, for example, SEQ ID NO: 18, coding regions). Preferably, the host cells contain complementing adenoviral genes that lack any homology to those in the recombinant adenoviral vector of interest, which reduces the possibility of the viral genome recombining with the cellular DNA to produce replication competent adenovirus. Host cells that complement the recombinant adenovirus vectors and recombinant adenoviruses described herein are sometimes referred to herein as “complementing cell lines”, “rAd production cell lines”, “rAd complementation cells” and “rAd complementation cell lines”.

In a specific embodiment, the present invention provides an isolated host cell comprising: (a) first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein. In accordance with this embodiment, the second nucleic acid molecule, in certain embodiments, does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein. Further, in accordance with this embodiment, the host cell may further comprise additional nucleic acid molecules comprising nucleotide sequences encoding an adenoviral E2a DNA binding protein, an adenoviral E2b pre-terminal protein, an adenoviral E2b IVa2 protein, adenoviral E4 proteins (e.g., ORF 6, ORF 3 and ORF 6/7 of an adenoviral E4 gene), and/or an adenoviral protein encoded by L4 100K.
In a preferred embodiment, the present invention provides an isolated host cell comprising: (a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and (c) a third nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1B-55K and E1B-19K proteins. In accordance with this embodiment, the host cell may further comprise additional nucleic acid molecules comprising nucleotide sequences encoding an adenoviral E2a DNA binding protein, an adenoviral E2b pre-terminal protein, an adenoviral E2b IVa2 protein, adenoviral E4 proteins (e.g., ORF 6, ORF 3 and ORF 6/7 of an adenoviral E4 gene), and/or an adenoviral protein encoded by L4 100K.

In a specific embodiment, the E1A proteins expressed by the host cells comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (d/1101) and amino acid residues 4-25 of an E1A 243R protein (d/1101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (d/1107) of an E1A 289R protein and amino acid residues 111-123 (d/1107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (d/1108) of an E1A 289R protein and amino acid residues 124-127 (d/1108) of an E1A 243R protein. In a preferred embodiment, the E1A proteins expressed by the host cells comprise: (a) a first deletion corresponding to amino acid residues 4-25 of an E1A 289R protein (d/1101) and amino acid residues 4-25 of an E1A 243R protein (d/1101); and (b) a second deletion corresponding to amino acid residues 111-123 (d/1107) of an E1A 289R protein and amino acid residues 111-123 (d/1107) of an E1A 243R protein.

Any type of cell may be used as a host cell. In a preferred embodiment, a cell that is permissive to adenovirus, preferably human adenovirus, infection is used. In a preferred embodiment, human cells (including primary cells and cell lines) are used as host cells. Human established cell lines such as those from human tumor cells or human tumor cell lines have the ability to replicate
indefinitely in culture. In a specific embodiment, the host cell is a A549, HCT-15, IGROV-1, HeLa, U87, W162 or 293-D22 cell. In a preferred embodiment, the host cell is a A549 cell.

In one embodiment, the present invention provides a human cell comprising stably integrated nucleic acid sequences comprising: (a) a first expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members, wherein said proteins are expressed in said human cell; and (b) a second expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding an adenoviral E1B protein, wherein said E1B protein comprises an E1B-55K protein but not an E1B-19K protein, wherein said E1B-55K protein is expressed in said human cell. In a particular embodiment, the E1A proteins expressed by the human cell comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (dl/101) and amino acid residues 4-25 of an E1A 243R protein (dl/1101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (dl/1107) of an E1A 289R protein and amino acid residues 111-123 (dl/1107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (dl/1108) of an E1A 289R protein and amino acid residues 124-127 (dl/1108) of an E1A 243R protein. In a preferred embodiment the E1A proteins expressed by the human cell comprise: (a) a first deletion corresponding to amino acid residues 4-25 of said E1A 289R protein (dl/1101) and amino acid residues 4-25 of said E1A 243R protein (dl/1101); and (b) a second deletion corresponding to amino acid residues 111-123 (dl/1107) of said E1A 289R protein and amino acid residues 111-123 (dl/1107) of said E1A 243R protein.

The present invention provides the above human cells, wherein the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 26 and/or the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 15. In a specific embodiment, the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 1 and/or the second
expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 2. The present invention also provides the above human cell, wherein the cell is designated SL0003, deposited with the American Type Culture Collection (ATCC) under accession number PTA-6231. In a specific embodiment of the invention, the recombinant adenovirus production cell line, is the cell line designated SL0003, deposited with the American Type Culture Collection (ATCC) under accession number PTA-6231.

In one embodiment, the present invention provides a human cell comprising stably integrated nucleic acid sequences comprising: (a) a first expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members, wherein said proteins are expressed in said human cell; (b) a second expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding an adenoviral E2B polymerase protein, wherein said protein is expressed in said human cell; and (c) a third expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding adenoviral E1B-55K and E1B-19K proteins, wherein said proteins are expressed in said human cell. In a particular embodiment, the E1A proteins expressed by the human cell comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (d/l101) and amino acid residues 4-25 of an E1A 243R protein (d/l1101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (d/l107) of an E1A 289R protein and amino acid residues 111-123 (d/l107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (d/l108) of an E1A 289R protein and amino acid residues 124-127 (d/l108) of an E1A 243R protein. In a preferred embodiment the E1A proteins expressed by the human cell comprise: (a) a first deletion corresponding to amino acid residues 4-25 of said E1A 289R protein (d/l101) and amino acid residues 4-25 of said E1A 243R protein (d/l1101); and (b) a second deletion
corresponding to amino acid residues 111-123 (d/l107) of said E1A 289R protein and amino acid residues 111-123 (d/l107) of said E1A 243R protein.

The present invention provides the above human cells, wherein the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 26, the second expression cassette comprises the nucleic acid set forth in SEQ ID NO: 23 and/or the third expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 18. In a specific embodiment, the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 1, the second expression cassette comprises the nucleic acid set forth in SEQ ID NO: 20 and/or the third expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 19. The present invention also provides the above human cell, wherein the cell is designated SL0006, deposited with the American Type Culture Collection (ATCC) under accession number PTA-6663. In a preferred embodiment of the invention, the recombinant adenovirus production cell line, is the cell line designated SL0006, deposited with the American Type Culture Collection (ATCC) under accession number PTA-6663.

Host cells may be transiently or stably transfected with helper adenovirus nucleic acid sequences utilizing techniques known in the art and/or described herein. Preferably, the helper adenovirus nucleic acid sequences are stably integrated into the nuclear genome of the host cells.

The present invention provides methods for producing a host cell for the production of replication-defective adenovirus comprising transforming or transfecting a cell (preferably, a human cell) with a first nucleic acid molecule and a second nucleic acid molecule, wherein the first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (examples of such adenoviral proteins are described below), and the second nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E1B-55K protein (and preferably, does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein). The cell may be transformed or transfected with the first and second nucleic acid molecules simultaneously or sequentially in any order. In a specific
embodiment, the cell is transformed or transfected with the first nucleic acid molecule and then the second nucleic acid molecule.

The present invention provides methods for producing a cell for the production of replication-defective adenovirus comprising transforming or transfecting a cell (preferably, a human cell) with a first nucleic acid molecule, a second nucleic acid molecule and a third nucleic acid molecule, wherein the first nucleic acid molecule comprises a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (examples of such adenoviral proteins are described below), the second nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E2b polymerase, and the third nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E1B-55K protein and preferably, a nucleotide sequence encoding an adenoviral E1B-55K protein and E1B-19K protein. The cell may be transformed or transfected with the first, second and third nucleic acid molecules simultaneously or sequentially in any order. In a specific embodiment, the cell is transformed or transfected with the first nucleic acid molecule, the second nucleic acid molecule, and then the third nucleic acid molecule.

In one embodiment, the invention provides a method for producing a human cell for the production of replication-defective adenovirus comprising: (a) transforming a human cell with a first expression cassette, wherein said first expression cassette comprises a promoter active in said human cell operably linked to a nucleic acid sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members, wherein said proteins are expressed in said human cell; and (b) transforming said human cell with a second expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding an adenoviral E1B protein, wherein said E1B protein comprises an E1B-55K protein but not an E1B-19K protein, wherein said E1B-55K protein is expressed in said human cell. In a particular embodiment, the E1A proteins encoded by the first expression cassette comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an
E1A 289R protein (a/l101) and amino acid residues 4-25 of an E1A 243R protein (a/l101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (a/l107) of an E1A 289R protein and amino acid residues 111-123 (a/l107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (a/l108) of an E1A 289R protein and amino acid residues 124-127 (a/l108) of an E1A 243R protein. In another embodiment, the E1A proteins encoded by the first expression cassette comprise: (a) said first deletion corresponding to amino acid residues 4-25 of said E1A 289R protein (a/l101) and amino acid residues 4-25 of said E1A 243R protein (a/l101); and (b) said second deletion corresponding to amino acid residues 111-123 (a/l107) of said E1A 289R protein and amino acid residues 111-123 (a/l107) of said E1A 243R protein.

The present invention provides the above methods, wherein the cell is derived from an established cell line, a tumor cell line, an A549 cell line, and a HeLa cell line. Also provided are the above methods, wherein the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 26 and/or the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 15. In a specific embodiment, the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 1 and/or the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 2.

In one embodiment, the invention provides a method for producing a human cell for the production of replication-defective adenovirus comprising: (a) transforming a human cell with a first expression cassette, wherein said first expression cassette comprises a promoter active in said human cell operably linked to a nucleic acid sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members, wherein said proteins are expressed in said human cell; (b) transforming said human cell with a second expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding an adenoviral E2B polymerase protein, wherein said protein is expressed in said human cell; and (c) transforming said human cell with a third expression cassette comprising a promoter active in
said human cell operably linked to a nucleic acid sequence encoding adenoviral E1B-55K and E1B-19K proteins, wherein said protein is expressed in said human cell. In a particular embodiment, the E1A proteins encoded by the first expression cassette comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (d/l101) and amino acid residues 4-25 of an E1A 243R protein (d/l101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (d/l107) of an E1A 289R protein and amino acid residues 111-123 (d/l107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (d/l108) of an E1A 289R protein and amino acid residues 124-127 (d/l108) of an E1A 243R protein. In another embodiment, the E1A proteins encoded by the first expression cassette comprise: (a) said first deletion corresponding to amino acid residues 4-25 of said E1A 289R protein (d/l101) and amino acid residues 4-25 of said E1A 243R protein (d/l101); and (b) said second deletion corresponding to amino acid residues 111-123 (d/l107) of said E1A 289R protein and amino acid residues 111-123 (d/l107) of said E1A 243R protein.

The present invention provides the above methods, wherein the cell is derived from an established cell line, a tumor cell line, an A549 cell line, and a HeLa cell line. Also provided are the above methods, wherein the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 26, the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 23 and/or the third expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 18. In a specific embodiment, the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 1, the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 20 and/or the third expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 19.

In accordance with the invention, recombinant adenovirus (preferably, recombinant replication-defective adenovirus) may be produced by transfecting a rAd production cell line with a rAd vector to produce of recombinant adenovirus (preferably, recombinant replication-defective adenovirus). In a specific
embodiment, the present invention provides a method for producing recombinant adenovirus comprising culturing a rAd complementing cell line transfected with recombinant adenovirus vector under conditions so as to permit replication of the viral genome in the cell line, wherein the cell line comprises: (a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (see the description above regarding such E1A proteins); and (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein (and preferably, does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein). In a preferred embodiment, the present invention provides a method for producing recombinant adenovirus comprising culturing a rAd complementing cell line transfected with recombinant adenovirus vector under conditions so as to permit replication of the viral genome in the cell line, wherein the cell line comprises: (a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (see the description above regarding such E1A proteins); (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and (c) a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein, and preferably, an adenoviral E1B-19K protein.

The recombinant adenovirus vectors transfected into rAd production cell lines comprise adenoviral nucleotide sequences and optionally, one or more heterologous nucleotide sequences. In a preferred embodiment, the recombinant adenovirus vectors comprise adenoviral nucleotide sequences that lack any homology to the helper adenovirus nucleic acid sequences. The lack of homology between the adenoviral helper nucleic acid sequences and recombinant adenovirus vectors reduces the possibility of the viral genome recombining to produce replication competent adenovirus. In a preferred embodiment, the recombinant adenovirus vector encodes a replication-defective adenovirus. In accordance with this embodiment, the recombinant adenovirus vector may be engineered to comprise a mutated adenovirus genome by, e.g., introducing one or more
mutations in an adenovirus genome (e.g., introducing deletions in one or more coding regions for adenoviral proteins). Preferably, the mutations in the adenovirus genome result in lower levels of expression of adenoviral proteins than wild-type adenovirus. The reduction in adenoviral protein expression reduces the immune response to the adenoviral proteins in a subject.

In a specific embodiment, the recombinant adenovirus vector encodes a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, a complete) deletion of the E1A coding region (e.g., SEQ ID NO: 17) and E1B coding region (e.g., SEQ ID NO: 18), and may include one or more heterologous nucleotide sequences. In another embodiment, the recombinant adenovirus vector encodes a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, a complete) deletion of the E1A coding region (e.g., SEQ ID NO: 17), E1B coding region (e.g., SEQ ID NO: 18), and E2B polymerase coding region (for example, SEQ ID NO: 23), and includes one or more heterologous nucleotide sequences. The heterologous nucleotide sequences can be introduced into any region of the genome (e.g., the amino or carboxy-termini). In a specific embodiment, a heterologous nucleotide sequence is introduced into one of the deleted adenoviral coding regions, such as the E1A or E2B coding region, of the mutated adenoviral genome. In a preferred embodiment, the recombinant adenovirus vector encodes a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, a complete) deletion of the E1A coding region (e.g., SEQ ID NO: 17), E1B coding region (e.g., SEQ ID NO:18), E2B polymerase coding region (e.g., SEQ ID NO: 23), and E3 coding region, and includes a heterologous nucleotide sequence in the deleted E3 coding region.

In accordance with the invention, the recombinant adenovirus (rAd) vectors comprise an adenoviral genome or a portion thereof obtained and/or derived from any adenoviridae or a combination of adenoviridae. In a preferred embodiment, the recombinant adenovirus vectors comprise an adenoviral genome or portion thereof obtained and/or derived from a human adenoviridae. In another preferred embodiment, the recombinant adenovirus vectors comprise an adenoviral genome
or portion thereof obtained and/or derived from the human adenovirus serotype 2 or 5.

In accordance with the invention, any recombinant adenovirus may be produced and/or propagated utilizing the rAd production cell lines described herein. In the preferred embodiment of the invention, the recombinant adenoviruses are derived from the human adenoviridae. In another preferred embodiment of the invention, the recombinant adenovirus is derived from the human adenovirus serotype 2 or 5. In a specific embodiment, the recombinant adenovirus is a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, a complete) deletion of the E1A coding region (e.g., SEQ ID NO: 17) and E1B coding region (e.g., SEQ ID NO: 18), and may include one or more additional heterologous genes. In a preferred practice of the invention, the recombinant adenovirus is a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, a complete) deletion of the E1A coding region (e.g., SEQ ID NO: 17), E1B coding region (e.g., SEQ ID NO: 18), and E2B polymerase coding region (for example, SEQ ID NO: 23), and includes one or more heterologous nucleotide sequences. The preferred recombinant adenoviruses of the present invention comprise viral DNA sequences that lack any homology with the adenoviral DNA sequences in the rAd production cell line, which reduces the possibility of the viral genome recombining with the cellular DNA to produce RCAs.

In one embodiment, the present invention provides a method for producing and/or propagating recombinant adenoviruses comprising: (a) infecting human cells, said human cells comprising stably integrated nucleic sequences comprising: (i) a first expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members, wherein said proteins are expressed in said human cell; and (ii) a second expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding an adenoviral E1B protein, wherein said E1B protein comprises an E1B-55K protein but not an E1B-19K protein, wherein
said E1B-55K protein is expressed in said human cell; (b) culturing said infected
cells under conditions so as to permit replication of the viral genome in the cells;
(c) harvesting said cells; and (d) recovering said recombinant adenovirus, wherein
steps (c) and (d) are optional.

Also provided is the above method, wherein said E1A proteins comprise: (a)
a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R
protein (d/l101) and amino acid residues 4-25 of an E1A 243R protein (d/l101); or
(ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-
49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino
acid residues 111-123 (d/l107) of an E1A 289R protein and amino acid residues
111-123 (d/l107) of an E1A 243R protein; or (ii) amino acid residues 124-127
(d/l108) of an E1A 289R protein and amino acid residues 124-127 (d/l108) of an
E1A 243R protein. Also provided is the above method, wherein said E1A proteins
comprise: (a) said first deletion corresponding to amino acid residues 4-25 of said
E1A 289R protein (d/l101) and amino acid residues 4-25 of said E1A 243R protein
(d/l101); and (b) said second deletion corresponding to amino acid residues 111-
123 (d/l107) of said E1A 289R protein and amino acid residues 111-123 (d/l107)
of said E1A 243R protein.

Also provided are the above methods, wherein said cell is derived from the
group consisting of an established cell line, a tumor cell line, an A549 cell line, and
a HeLa cell line. Also provided are the above methods, wherein said cells are
designated SL0003, deposited with the ATCC under accession number PTA-6231.

Also provided are the above methods, wherein the first expression cassette
comprises the nucleic acid sequence set forth in SEQ ID NO: 27; and, the above
methods, wherein the second expression cassette comprises the nucleic acid
sequence set forth in SEQ ID NO: 15. In specific embodiment, the first expression
cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 1; and, the
above methods, wherein the second expression cassette comprises the nucleic acid
sequence set forth in SEQ ID NO: 2. Also provided are the above methods,
wherein the recombinant adenovirus comprises deletions of the E1A and E1B
coding regions. Also provided are the above methods, wherein the recombinant
adenovirus is replication-defective. Also provided are the above methods, wherein the recombinant adenovirus further comprises a heterologous gene.

In one embodiment, the present invention provides a method for producing and/or propagating recombinant adenoviruses comprising: (a) infecting human cells, said human cells comprising stably integrated nucleic sequences comprising: (i) a first expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRB protein family members, wherein said proteins are expressed in said human cell; (ii) a second expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding an adenoviral E2B polymerase protein, wherein said E2B polymerase protein is expressed in said human cell; and (iii) a third expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding adenoviral E1B-55K and E1B-19K proteins, wherein said proteins are expressed in said human cell; (b) culturing said infected cells under conditions so as to permit replication of the viral genome in the cells; (c) harvesting said cells; and (d) recovering said recombinant adenovirus, wherein steps (c) and (d) are optional.

Also provided is the above method, wherein said E1A proteins comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (d/1101) and amino acid residues 4-25 of an E1A 243R protein (d/1101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (d/1107) of an E1A 289R protein and amino acid residues 111-123 (d/1107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (d/1108) of an E1A 289R protein and amino acid residues 124-127 (d/1108) of an E1A 243R protein. Also provided is the above method, wherein said E1A proteins comprise: (a) said first deletion corresponding to amino acid residues 4-25 of said E1A 289R protein (d/1101) and amino acid residues 4-25 of said E1A 243R protein (d/1101); and (b) said second deletion corresponding to amino acid residues 111-
123 (d/1107) of said E1A 289R protein and amino acid residues 111-123 (d/1107) of said E1A 243R protein.

Also provided are the above methods, wherein said cell is derived from the group consisting of an established cell line, a tumor cell line, an A549 cell line, and a HeLa cell line. Also provided are the above methods, wherein said cells are designated SL0006, deposited with the ATCC under accession number PTA-6663.

Also provided are the above methods, wherein the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 27, the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 23 and/or the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 18. In a specific embodiment, the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 1, the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 20 and/or the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 19. Also provided are the above methods, wherein the recombinant adenovirus comprises deletions of the E1A, E2b polymerase, and E1B coding regions. Also provided are the above methods, wherein the recombinant adenovirus is replication-defective. Also provided are the above methods, wherein the recombinant adenovirus further comprises a heterologous gene.

The recombinant adenoviruses of the invention can be used in vitro to express proteins, polypeptides and peptides of interest. The recombinant adenoviruses of the invention can also be used in gene therapy. Further, the recombinant adenovirus of the present invention may be used to immunize a subject. The antibodies generated against an antigen by immunization with a recombinant adenovirus may used in diagnostic immunoassays, passive immunotherapy, and the generation of anti-Idiotypic antibodies.

The present invention also provides a plasmid system for producing a rAd production cell for the production and/or propagation of recombinant adenovirus. In one embodiment, the invention provides a plasmid system for producing and/or propagating a human cell for the production and/or propagation of recombinant adenovirus comprising in separate containers: (a) a first expression cassette
comprising a promoter active in said human cell operably linked to a nucleic sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (b) a second expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding an adenoviral E1B protein, wherein said E1B protein comprises an E1B-55K protein but not an E1B-19K protein. Also provided is the above plasmid system wherein said E1A proteins comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (d/l101) and amino acid residues 4-25 of an E1A 243R protein (d/l101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (d/l107) of an E1A 289R protein and amino acid residues 111-123 (d/l107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (d/l108) of an E1A 289R protein and amino acid residues 124-127 (d/l108) of an E1A 243R protein. Further provided is the above plasmid system, wherein said E1A proteins comprise: (a) said first deletion corresponding to amino acid residues 4-25 of said E1A 289R protein (d/l101) and amino acid residues 4-25 of said E1A 243R protein (d/l101); and (b) said second deletion corresponding to amino acid residues 111-123 (d/l107) of said E1A 289R protein and amino acid residues 111-123 (d/l107) of said E1A 243R protein. Also provided are the above plasmid systems, wherein said cell is derived from the group consisting of an established cell line, a tumor cell line, an A549 cell line, and a HeLa cell line. Also provided are the above plasmid systems, wherein the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 26. In a specific embodiment, the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 1. Also provided are the above plasmid systems, wherein the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 15. In a specific embodiment, the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 2.

The present invention further provides a plasmid system for producing a human cell for the production and/or propagation of recombinant adenovirus
comprising in separate containers: (a) a first expression cassette comprising a promoter active in said human cell operably linked to a nucleic sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; (b) a second expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding an adenoviral E2B polymerase protein; and (c) a third expression cassette comprising a promoter active in said human cell operably linked to a nucleic acid sequence encoding adenoviral E1B-55K and E1B-19K proteins. Also provided is the above plasmid system wherein said E1A proteins comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (d/l1101) and amino acid residues 4-25 of an E1A 243R protein (d/l1101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (d/l1107) of an E1A 289R protein and amino acid residues 111-123 (d/l1107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (d/l1108) of an E1A 289R protein and amino acid residues 124-127 (d/l1108) of an E1A 243R protein. Further provided is the above plasmid system, wherein said E1A proteins comprise: (a) said first deletion corresponding to amino acid residues 4-25 of said E1A 289R protein (d/l1101) and amino acid residues 4-25 of said E1A 243R protein (d/l1101); and (b) said second deletion corresponding to amino acid residues 111-123 (d/l1107) of said E1A 289R protein and amino acid residues 111-123 (d/l1107) of said E1A 243R protein. Also provided are the above plasmid systems, wherein said cell is derived from the group consisting of an established cell line, a tumor cell line, an A549 cell line, and a HeLa cell line. Also provided are the above plasmid systems, wherein the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 26. In a specific embodiment, the first expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 1. Also provided are the above plasmid systems, wherein the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 23. In a specific embodiment, the second expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 20. Also provided are the above plasmid systems, wherein the third
expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 25. In a specific embodiment, the third expression cassette comprises the nucleic acid sequence set forth in SEQ ID NO: 19.

3.1 Terminology

As used herein, the term "A549" refers to a human lung carcinoma cell line which is commonly known in the art. In one embodiment, the A549 parental cell line used to produce the E1-complementing cell line is ATCC strain CCL-185.

As used herein, the term "adenovirus" refers to viruses of the genus adenoviridae. The term "recombinant adenovirus" refer to viruses of the genus adenoviridae capable of infecting a cell whose viral genomes have been modified through conventional recombinant DNA techniques. The term recombinant adenovirus also includes chimeric (or even multimeric) vectors, i.e. vectors constructed using complementary coding sequences from more than one viral subtype.

As used herein, the term "adenoviridae" refers collectively to animal adenoviruses of the genus mastadenovirus including but not limited to human, bovine, ovine, equine, canine, porcine, murine and simian adenovirus subgenera. In particular, human adenoviruses includes the A-F subgenera as well as the individual serotypes thereof. A-F subgenera including but not limited to human adenovirus types 1, 2, 3, 4, 4a, 5, 6, 7, 7a, 7d, 8, 9, 10, 11 (Ad11A and Ad11P), 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 34a, 35, 35p, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, and 91.

As used herein, the term "culturing under conditions to permit replication of the viral genome" means maintaining the conditions for the rAd complementation cell line infected with recombinant adenovirus and/or transfected with rAd vector so as to permit the virus to propagate in the cell. It is desirable to control conditions so as to maximize the number of viral particles produced by each cell. Consequently it will be necessary to monitor and control reaction conditions such as temperature, dissolved oxygen, pH, etc. Commercially available bioreactors such as the CelliGen Plus Bioreactor (commercially available from New Brunswick
Scientific, Inc. 44 Talmadge Road, Edison, NJ) have provisions for monitoring and maintaining such parameters. Optimization of infection, transfection and culture conditions will vary somewhat, however, conditions for the efficient replication and production of virus may be achieved by those of skill in the art taking into consideration, for example, the known properties of the producer cell line, properties of the virus and the type of bioreactor.

As used herein, the terms "a deficiency in a gene" or "a deficiency in a gene function" is a type of mutation which serves to impair or eliminate the function of the gene whose nucleic acid sequences was mutated in whole or in part.

As used herein, the term "deficient in binding" refers to a gene product forming a complex with less than 50% of the thermodynamic stability of the complex of the wild type gene product to its substrate under physiological conditions. For example, a 13S gene product which contains a deletion in the p300 binding domain would bind to p300 protein with less than 50% of the thermodynamic stability of the wild-type 13S protein. The thermodynamic stability of binding can readily be determined by conventional assay techniques to determine equilibrium binding constants under physiological conditions.

As used herein, the term "E1A gene" refers to the immediate early gene of the adenovirus genome first transcribed following infection. This genomic sequence represents at least the transcription of five mRNAs encoding the 9S, 10S, 11S, 12S and 13S proteins. The 12S and 13S proteins are expressed in the early phase following infection while the 9S, 10S and 11S proteins are expressed later in the adenovirus cycle. The 12S and 13S proteins have 243 and 289 amino acids, respectively. The 12S and 13S proteins are also known as 243R and 289R proteins, respectively. There are three conserved regions in the E1A genomic sequence referred to as conserved region ("CR")-1, CR2 and CR3. CR1 represents amino acids 41-80 of the 12S and 13S proteins. CR2 represents amino acids 121-139 of the 12S and 13S sequence.

GenBank® deposits of the complete human adenovirus type 5 genome are available, see for example, AY339865 and AC 000008. The human adenovirus type 5, 289R, wild type, amino acid sequence is defined by SEQ ID NO: 4. The human
adenovirus type 5, 243R, wild type, amino acid sequence is defined by SEQ ID NO: 6. GenBank® deposits of the human adenovirus type 5, 289R, wild type, amino acid sequence are also available, see, for example, AP 000197, AY339865 and AC 00008. GenBank® deposits of the human adenovirus type 5, 243R, wild type, amino acid sequence are also available, see, for example, AY339865.

As used herein, the term ”expression cassette” is used herein to define a nucleotide sequence capable of directing the transcription and translation of a heterologous coding sequence and the heterologous coding sequence to be expressed. An expression cassette comprises a regulatory element operably linked to a heterologous coding sequence so as to achieve expression of the protein product encoded by said heterologous coding sequence in the cell.

As used herein, the term “helper adenovirus nucleic acid sequence(s)” refers to a nucleic acid sequence(s) that: (i) provides viral functions for the replication of a recombinant adenovirus vector and/or its packaging into infectious virions; and (ii) is (are) not replicated or assembled into viral particles to a measurable degree.

As used herein, the term “heterologous” in the context of nucleic acid sequences, amino acid sequences and antigens refers to nucleic acid sequences, amino acid sequences and antigens that are foreign and are not naturally found associated with a particular adenovirus.

As used herein, the term “infecting” means exposing the recombinant adenovirus to the rAd production cell line under conditions so as to facilitate the infection of the producer cell with the recombinant adenovirus. In cells which have been infected by multiple copies of a given virus, the activities necessary for viral replication and virion packaging are cooperative. Thus, it is preferred that conditions be adjusted such that there is a significant probability that the cells are multiply infected with the virus. An example of a condition which enhances the production of virus in the cell is an increased virus concentration in the infection phase. However, it is possible that the total number of viral infections per cell can be overdone, resulting in toxic effects to the cell. Consequently, one should strive to maintain the infections in the virus concentration in the range of 10^6 to 10^{10}, preferably about 10^9, virions per ml. Chemical agents may also be employed to
increase the infectivity of the cell line. For example, the present invention provides a method to increase the infectivity of cell lines for viral infectivity by the inclusion of a calpain inhibitor. Examples of calpain inhibitors useful in the practice of the present invention include calpain inhibitor 1 (also known as N-acetyl-leucyl-leucyl-norleucinal, commercially available from Boehringer Mannheim). Calpain inhibitor 1 has been observed to increase the infectivity of cell lines to recombinant adenovirus.

As used herein, the term “operably linked” refers to a linkage of polynucleotide elements in a functional relationship. A nucleic acid sequence is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence. Operably linked means that the nucleotide sequences being linked are typically contiguous. However, as enhancers generally function when separated from the promoter by several kilobases and intronic sequences may be of variable lengths, some polynucleotide elements may be operably linked but not directly flanked and may even function in trans from a different allele or chromosome.

As used herein, the term “p300 protein family members” refers the proteins which associate with the amino terminus of E1A including p300 and CBP. In particular p300 co-activates the activity of the transactivating genes, Myb and C/EBP (Mink, et al. (1997) Molecular and Cellular Biology 17:6609-6617). The human p300 protein is known in the art and is publicly available from the Swiss-Prot database under accession number Q09472, its corresponding mRNA is available from GenBank under accession number U01877 deposited June 6, 1994 and is described in Eckner, et al. (1994) Genes Dev. 8:869-884.

As used herein, the term “regulatory element” refers to promoters, enhancers, transcription terminators, insulator regions, silencing region, polyadenylation sites, and the like. The term “promoter” is used in its conventional sense to refer to a nucleotide sequence at which the initiation and rate of transcription of a coding sequence is controlled. The promoter contains the site at which RNA polymerase binds and also contains sites for the binding of regulatory
factors (such as repressors or transcription factors). Promoters may be naturally occurring or synthetic. When the vector to be employed is a viral vector, the promoters may be endogenous to the virus or derived from other sources. The regulatory elements may be arranged so as to allow, enhance or facilitate expression of the transgene only in a particular cell type. For example, the expression cassette may be designed so that the transgene is under control of a promoter which is constitutively active, or temporally controlled (temporal promoters), activated in response to external stimuli (inducible), active in particular cell type or cell state (selective) constitutive promoters, temporal viral promoters or regulatable promoters.

As used herein, the term “recombinant adenovirus vector(s)” refers to a vector construct comprising adenoviral nucleotide sequences and optionally, one or more heterologous nucleotide sequences. In a preferred embodiment, the recombinant adenovirus vectors comprise adenoviral nucleotide sequences that lack any homology to the helper adenovirus nucleic acid sequences. In another preferred embodiment, the recombinant adenovirus vector encodes a replication-defective adenovirus. In accordance with this embodiment, the recombinant adenovirus vector may be engineered to comprise a mutated adenovirus genome by, e.g., introducing one or more mutations in an adenovirus genome (e.g., introducing deletions in one or more coding regions for adenoviral proteins).

As used herein, the terms, “rAd production cell line”, “rAd complementation cells”, and “rAd complementation cell lines” are synonyms and mean a cell able to propagate recombinant adenoviruses by providing viral functions for replication of a recombinant adenovirus and/or its packaging into infectious virions.

As used herein, the term “Rb protein family members” refers to the retinoblastoma gene product (p105), p107 and p130. The retinoblastoma gene is well characterized in the art. The amino acid sequence of human Rb is available from GenBank under accession Number 190959 deposited July 12, 1995 and the mRNA sequence is available from GenBank under accession number M15400 and is described in Lee, et al. (1988) PNAS (USA) 85:6017-6021.
As used herein, the term "stably integrated" means, with respect to an exogenous nucleic acid sequence, that such sequence is integrated into the genome of the cell such that successive generations of the cell retains the exogenous nucleic acid sequence.

As used herein, the term "transfection" or "transformation" means the introduction of a nucleic acid into a cell. A host cell that receives the introduced DNA or RNA has been "transformed" and is a "transformant" or a "clone." Examples of transformation methods which are very well known in the art include liposome delivery, electroporation, CaPO₄ transformation; DEAE-Dextran transformation, microinjection and viral infection.

As used herein, the term "transformation" may also refer to, in the context of in vitro animal cell culture, a permanent alteration of the cell phenotype that is presumed to occur via an irreversible genetic change. A "transformed cell" usually is a cell that, among other potential phenotypic characteristics, has an infinite or a significantly (or greatly) extended lifespan when compared with the cells of the finite or primary cell line from which it arose. The context in which the term is used will govern the meaning.

4. **BRIEF DESCRIPTION OF THE FIGURES**

Figure 1 is a schematic diagram of the functional domains of the 243R and 289R E1A proteins. Regions required for binding of the cellular proteins p300/CBP and pRb are indicated as are domains necessary for activation of cellular apoptosis, induction of cell cycle progression in quiescent cells and transcriptional activation of the adenovirus early gene regions.

Figure 2. Plasmid map of pRcRSV-E1Ad101/07.
- RSV promoter: Start:209 End:605
- BGH poly A signal: Start:1556 End:1782
- f1 origin: Start:1838 End:2360
- SV40 promoter: Start:2422 End:2747
- SV40 origin: Start:2616 End:2701
- Neomycin resistance gene: Start:2753 End:3547
SV40 poly A signal: Start:3551 End:3760
pUC19 sequence (448-2622): Start:3900 End:6074
Col E1 origin: Start:4083 End:4606
Ampicillin resistance gene: complement(5090..5950)
E1A 12S CDS N-term: Start:633 End:944
E1A proteins start (ATG): Start:633 End:635
E1A 13S CDS N-term: Start:633 End:1082
Splice donor for E1A 12s mRNA: Start:942 End:942
Splice donor for E1A 13s mRNA: Start:1080 End:1080
E1A 12S/13S CDS C-term CDS: Start:1199 End:1513
Stop TAA for E1A 32k/27k: Start:1511 End:1513
dl1101 mutation (amino acids 4-25 of WT are deleted): Start:644 End:645
dl1107 mutation (amino acids 111-123 of WT are deleted): Start:896 End:897

Figure 3. Plasmid map of pcDNA3.1(+)E1B-55k Hygro.
CMV promoter: Start: 209 End: 863
T7 promoter/priming site: Start:863 End: 882
pcDNA3.1 BGH reverse priming site: Start:2470 End:2487
BGH poly A signal: Start:2469 End:2683
f1 origin: Start:2746 End:3159
SV40 promoter and origin: Start:3224 End:3548
Hygromycin resistance gene CDS: Start:3566 End:4589
SV40 early poly A signal: Start:4602 End:4974
pMB1 (pUC derived) origin: complement(5234..5904)
Ampicillin resistance gene: complement(6049..6909)
E1B 55K (495R) CDS: Start:942 End:2430

Figure 4. Plasmid map of pVITRO21RESPuroE1b: Plasmid encoding the entire E1b and pIX coding sequence driven by the human ferritin heavy subunit
promoter and SV40 enhancer with a puromycin resistance gene for cell selection following an IRES element downstream of the adenovirus sequence.

Figure 5. Plasmid map of pMGCMVE2Bpol. Plasmid using a CMV promoter to drive expression of the full-length E2b polymerase coding sequence, followed by an IRES sequence and the hygromycin resistance gene which was used for selection.

Figure 6. Schematic representation of viral constructs. Similarities and differences between viral constructs in the E1, E2b, and E3 regions are indicated. CMV-GFP expression cassettes are inserted in the E1 region for GFCB and CGAB viruses, and as 5’ to 3’ orientation inserts in the E3 region for 42GC, 2GCP, and 46GC. CONG has expression cassettes in both the E1 and E3 regions as indicated. The 2GCP construct has a deletion in the E2b viral DNA polymerase region which prevents its expression. Further details can be found in Example 2.

Figure 7. Expression of E2b polymerase in cells and effect on viral productivity of E2b polymerase deleted virus. Panel A) Western analysis of E2b polymerase protein from cellular lysates of isolated clones 3C4, 3C9 and 3D8 relative to non E2b polymerase complementing parental clone 4 and unmodified A549 cells. Lower portion of Western shows detection of β-actin protein, verifying equal total protein loading per lane. Panel B) Virus particles produced per cell infected with the E2b polymerase deleted 2GCP virus. Results plotted are from duplicate 10 cm plates of the indicated clones infected with 5 x 10^8 P/ml of purified 2GCP virus +/- standard deviation.

Figure 8. E1b complementation and effects on viral productivity. Panel A) Pictures of GFP fluorescence from individual clones infected with either 5 x 10^8 P/ml of GFCB or CONG virus at 48 hours post-infection. Panel B) The ratio of GFP fluorescence as determined by Cytofluor analysis from CONG infected cells over the fluorescence from the same clone infected with GFCB virus is plotted. Panel C)
Virus particles produced per cell from the indicated clones infected with 5×10^8 P/ml of purified 2GCP virus +/- standard deviation.

Figure 9. Virus productivity in different cell lines and stability of clone 15M15. Panel A) Virus particles produced per cell from either parental clone 3D8 (no E1b complementation), selected clone 15M15 (with E1b complementation) or C7 cells (293 based, E2b polymerase complementing). Results plotted are from duplicate 10 cm plates of the indicated clones infected with 5×10^8 P/ml of purified 2GCP virus +/- standard deviation. Panel B) Viral productivity from clone 15M15. Cells were infected and harvested after 1, 5 or 10 passages of growth either in a selection mix media containing hygromycin, puromycin and G418 or regular growth media without the selection drugs. Cells were infected with 2GCP virus at either 2×10^9 or 1×10^9 P/ml virus as indicated. Results are plotted from each sample as virus particles / cell. Panel C) E1a and E2b polymerase protein expression. Parallel infections as outlined in Panel B were harvested, and the levels of E1a and E2b polymerase protein from cellular lysates were analyzed by Western analysis. Samples were loaded at equal total protein concentration per well based on Bradford assay results.

Figure 10. Late Ad gene expression from infected cells. Panels A-D show the levels of hexon and fiber expressed from infected cells and detected by Western analysis. Panel A) Clone 15M15 production cell line. Panel B) Non-complementing CHO cell line. Panels C) and D) Partial E1a function complementing cell lines Hela and HepG2, respectively. Virus designation: G=GFCB, C=CGAB, 4=42GC, 2=2GCP, 6=6GCP, U=uninfected, L=ladder.

Figure 11. In Vitro GFP Expression. Panel A) GFP expression from HOF or Saos2 cells over time after infection with 5×10^8 P/ml CGAB, 42GC, or 2GCP viruses. Graphs plot Cytofluor quantitation of GFP expression from duplicate infected wells +/- standard deviation, while photographs of infected cells 8 days post-infection are shown on the right. Panel B) GFP expression from infected CHO
cells as in Panel A. Graphs plot Cytofluor quantitation of GFP expression from
duplicate infected wells +/- standard deviation, while photographs above show
infected cells 15 days post-infection.

5. DETAILED DESCRIPTION OF THE INVENTION

The present invention provides, inter alia, rAd production cell lines, methods
for producing the rAd production cell lines, and methods for producing recombinant
adenoviruses using the rAd production cell lines.

In accordance with the present invention there may be employed
conventional molecular biology, microbiology, and recombinant DNA techniques
within the skill of the art. Such techniques are explained in the literature. See,
e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual,
New York (herein "Sambrook, et al., 1989"); DNA Cloning: A Practical Approach,
Volumes I and II (D.N. Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed.
1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. (1985));
Transcription And Translation (B.D. Hames & S.J. Higgins, eds. (1984)); Animal Cell
Culture (R.I. Freshney, ed. (1986)); Immobilized Cells And Enzymes (IRL Press,

5.1 Helper Adenovirus Nucleic Acid Sequences

The helper adenovirus nucleic acid sequences of the present invention: (i)
provide viral functions for the replication of a recombinant adenovirus construct
and/or its packaging into infectious virions; and (ii) are not replicated or assembled
into viral particles to a measurable degree. The helper adenovirus nucleic acid
sequences can be obtained and/or derived from any adenoviridae or a combination
of adenoviridae. In a preferred embodiment, the helper adenovirus nucleic acid
sequences are obtained and/or derived from a human adenoviridae. In another
preferred embodiment, the helper adenovirus nucleic acid sequences are obtained
and/or derived from human adenovirus serotype 2 or 5. The nucleic acid sequences for adenovirus proteins can be obtained, e.g., from the GenBank database or a database like it, literature publications, or by routine cloning and sequencing.

In one embodiment, the helper adenovirus nucleic acid sequences include: (i) a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (ii) a nucleic acid molecule(s) comprising a nucleotide sequence(s) encoding an adenoviral E1B protein(s), such as E1B-55K and/or E1B-19K. In accordance with this embodiment, the helper adenovirus nucleic acid sequences may also include one, two or more of the following: (i) a nucleic acid molecule(s) comprising a nucleotide sequence(s) encoding an adenoviral E2 protein(s); (ii) a nucleic acid molecule(s) comprising a nucleotide sequence(s) encoding an adenoviral E4 protein(s); and/or (iii) a nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral L4 100K protein. Non-limiting examples of adenoviral E2 proteins include E2A binding protein, E2B polymerase, E2B pre-terminal protein, and E2B IVa2 protein. Non-limiting examples of adenoviral E4 proteins include those encoded by open reading frame (ORF)-6, ORF3, and ORF6/7. Table 1 provides examples of the nucleotide and amino acid sequences of human adenovirus serotype 5 E1A proteins, E1B-55K protein, E1B-19K protein and E2B polymerase protein.

In certain embodiments, the helper adenovirus nucleic acid sequence includes a nucleic acid molecule comprising: (i) a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (ii) a nucleotide sequence(s) encoding an adenoviral E1B protein(s), such as E1B-55K and/or E1B-19K. In accordance with these embodiments, the nucleic acid sequence may also include one, two or more of the following: (i) a nucleotide sequence(s) encoding an adenoviral E2 protein(s); (ii) a nucleotide sequence(s) encoding an adenoviral E4 protein(s); and/or (iii) a nucleotide sequence encoding an adenoviral L4 100K protein.
In certain embodiments, a helper adenovirus nucleic acid sequence encodes a fusion or chimeric protein product comprising an adenoviral protein joined via a peptide bond to a heterologous protein sequence. Such chimeric products can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acids to each other by methods known in the art, in the proper coding frame, and expressing the chimeric products in a suitable host by methods commonly known in the art.

In a specific embodiment, the helper adenovirus nucleic acid sequences include: (i) a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (ii) a nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B protein, wherein the E1B protein comprises an E1B-55K protein but not an E1B-19K protein. In another preferred embodiment, the helper adenovirus nucleic acid sequences include: (i) a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (ii) a nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and (iii) a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1B-55K and E1B-19K proteins.

The nucleotide sequence(s) encoding the adenovirus mutant E1A proteins, which is utilized as a helper adenovirus nucleic acid sequence in accordance with the present invention, provides only the required functions for producing high levels of E1-deleted adenovirus vectors. More specifically, the nucleotide sequence(s) encodes E1A proteins that are defective for binding to the cellular proteins p300/CBP and pRb but still carry the wild-type CR3 domain which transactivates early viral promoters required for the initial phase of lytic growth. The use of such a nucleotide sequence overcomes the toxicity associated with wild-type adenoviral E1A proteins in tumor cells.

The rationale for using nucleotide sequences encoding E1A proteins defective in p300 and pRb binding is based, in part, on mapping studies that have
35

separated the E1A functions required for induction of cellular DNA synthesis and activation of the early adenovirus transcription units. The ability of the E1A adenoviral proteins to activate the early transcription units is required in all production cell lines for successful productive infection, but the ability of the E1A to induce the cell cycle may not be required in established cell lines that divide continuously. The nucleotide sequences encoding the mutated adenovirus E1A proteins described herein retain the ability to activate transcription, but are defective for induction of cellular DNA synthesis. The adenoviral E1A regions required for stimulation of cellular DNA synthesis may also be responsible for induction of apoptosis and this may hinder successful establishment of E1-complementing cell lines.

To produce E1A proteins that are defective for binding to the cellular proteins p300/CBP and pRb, mutations in the E1A 289R and E1A 243R coding regions can be introduced. In a specific embodiment, deletions in the E1A 289R and E1A 243 coding regions are introduced to achieve a reduction in the binding of p300 and pRb family members to E1A proteins. Preferably, the deletions in the E1A 289R and the E1A 243R coding sequences necessary to achieve reduction of p300 and pRb binding are as minimal as possible to prevent major disruption of the secondary and tertiary structure of the E1A 289R and the E1A 243R proteins.

In order to eliminate p300 binding it is preferred that a mutation be introduced in the nucleotide sequence encoding the p300 binding domains of E1A 289R and E1A 243R. The p300 binding domain of the E1A-12S and 13S proteins has been narrowed to the first 69 amino acids (Egan, et al. (1988) Mol. Cell Biol. 8:3955-3959). However, it has been shown that amino acids 26 to 35 are not necessary for p300 binding. There are two regions of p300 binding in the 12S and 13S molecules from approximately amino acid residues 4-25 and amino acid residues 36-49. Elimination of one or both is sufficient to disrupt p300 binding. Preferably, the elimination of amino acid residues 4-25 is employed to eliminate the p300 binding function. Deletions of less than about 30 amino acids in the C-terminal region to eliminate p300 binding are preferred, although smaller modifications are more preferred. In a specific embodiment, deletions in the C-
terminal region to eliminate p300 binding are 25 amino acids or less, 20 amino acids or less, 15 amino acids or less, or 10 amino acids or less. The deletion of amino acid residues 4-25 of the 289R and the 243R proteins are sufficient to disrupt p300 binding without affecting transactivational functions of CR3. The "transactivating function of the CR3 domain" refers to the ability of the products of the E1A gene to activate transcription of promoters later in the viral cycle such as E1B and E3. The CR3 region is functionally present only in the 13S protein and represents amino acids 140 to 188. The transactivating function of the E1A gene product is contained in the CR3 region. Alternatively preferred are a deletion of amino acids from amino acid residue 30 to amino acid residue 49 (d/l.103) and more particularly amino acid residue 36 to amino acid residue 49 to eliminate p300 binding.

Point mutations sufficient to disrupt binding p300 are particularly preferred. For example, a point mutation of the second amino acid from arginine to glycine (Arg2 to Gly2) in the 289R protein has been demonstrated to disrupt p300 binding (See e.g., pm563, Whyte, et al., (1989) Cell 56:67-75).

The Rb-105 binding domain of the E1A-12S and 13S proteins has been characterized as located within amino acids 111-127. Similarly, in regard to eliminating pRb105 binding, minimal modifications are preferred. In a specific embodiment, deletions in the pRb binding domain of less than 20 amino acids, 15 amino acids or less, 10 amino acids or less are introduced. Elimination of selective amino acids in the pRb105 binding domain such as amino acid 111-123 (d/l1107) and amino acids 124-127 (d/l108) are preferred. In an embodiment, the mutation set forth by Moran et al. (pm928 (C124G)) is used to disrupt pRb105 binding ((1986) Mol Cell Biol. 6(10):3470-3480).

In a specific embodiment, a nucleic acid molecule comprising a nucleotide sequence encoding the adenoviral E1A mutant E1Ad01/07 protein is utilized as a helper adenovirus nucleic acid sequence. The E1Ad01/07 protein is defective for binding to the cellular proteins p300/CBP and pRb but still carries the wild-type CR3 domain which transactivates early viral promoters required for the initial phase of lytic growth. It has mutations affecting the ability of the adenoviral E1A protein to

Helper adenovirus nucleic acid sequences may be propagated in microorganisms, for example, as part of a bacterial plasmid or bacteriophage. A nucleotide sequence encoding an adenoviral protein may be incorporated into a recombinant plasmid, bacteriophage, etc. by methods well known in the art.

In a specific embodiment, a nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral protein is operably linked to a regulatory element. In a particular embodiment, the nucleotide sequence encoding an adenoviral protein is inserted into an appropriate expression vector, i.e., a vector that contains the necessary elements for the transcription and translation of the inserted protein coding sequence. The necessary transcriptional and translational signals can be supplied by the native promoter of the adenoviral protein and/or a heterologous promoter. Any method available in the art can be used for the insertion of a nucleotide sequence into a vector to construct expression vectors containing appropriate transcriptional/translational control signals and protein coding sequences.

In one embodiment, each nucleotide sequence encoding an adenoviral protein is inserted into an expression vector. In alternative embodiment, two or more nucleotide sequences encoding adenoviral proteins are inserted into one expression vector.

In a specific embodiment, a vector is used that comprises a promoter operably linked to a nucleotide sequence encoding an adenoviral protein, one or more origins of replication, and optionally, one or more selectable markers (e.g., an antibiotic resistance gene). In accordance with this embodiment, a promoter can be any promoter known to the skilled artisan. For example, the promoter can be a constitutive promoter, a tissue-specific promoter or an inducible promoter. Examples of promoters that may be used in accordance with the invention include: the SV40 early promoter (Bemoist and Chambon, 1981, Nature 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus
(Yamamoto et al., 1980, Cell 22:787-797), the herpes thymidine kinase promoter
(Wagner et al., 1981, Proc. Natl. Acad. Sci. USA 78:1441-1445), the regulatory
sequences of the metallothionein gene (Brinster et al., 1982, Nature 296:39-42),
the beta-actin promoter, the CMV promoter, the SR-alpha promoter, the hFer/SV40
promoter, the RSV promoter, the Elf-1 promoter, the Tet promoter, the Ecdyson
promoter and a rapamycin promoter.

In a specific embodiment, a native promoter is utilized to regulate the
expression of a nucleotide sequence encoding an adenoviral protein. In alternative
embodiment, a promoter that is not native to the adenoviral gene encoding the
protein being expressed (i.e., a heterologous promoter) is utilized to regulate the
expression of the protein. In certain embodiments, the promoter is a constitutive
promoter (e.g., a viral, cellular or hybrid constitutive promoter). In other
embodiments, the promoter is an inducible promoter. In yet other embodiments,
the promoter is a tissue-specific promoter.

In certain embodiments, it is desirable to use a constitutive promoter, such
as a CMV promoter, beta-actin promoter, SR-alpha promoter or hFer/SV40
promoter, to regulate the expression of a nucleotide sequence encoding one or
more of the following proteins: E1B proteins, E2A proteins and/or E2B proteins. In
certain other embodiments, it is desirable to use a constitutive promoter, such as a
RSV promoter, SV40 promoter or Elf-1 promoter, to regulate the expression of a
nucleotide sequence encoding one or more of the following proteins: E1A proteins
and/or E4 proteins. In yet other embodiments, it is desirable to use an inducible
promoter, such as a Tet promoter or Ecdyson promoter, to regulate the expression
of L4 100K.

Expression vectors containing the nucleotide sequences of interest can be
identified by three general approaches: (1) nucleic acid hybridization, (2) presence
or absence of "marker" gene function, and (3) expression of the inserted
sequences. In the first approach, coding sequences can be detected by nucleic
acid hybridization to probes comprising sequences homologous and complementary
to the inserted sequences. In the second approach, the recombinant vector/host
system can be identified and selected based upon the presence or absence of
certain "marker" functions (e.g., resistance to antibiotics, occlusion body formation in baculovirus, etc.) caused by insertion of the sequences of interest in the vector. For example, if a nucleotide sequence encoding an adenoviral protein, or portion thereof, is inserted within the marker gene sequence of the vector, cells transfected with the encoded protein or portion will be identified by the absence of the marker gene function (e.g., loss of beta-galactosidase activity). In the third approach, expression vectors can be identified by assaying for the adenoviral protein expressed by the recombinant vector. Such assays can be based, for example, on the physical or functional properties of the interacting species in \textit{in vitro} assay systems, e.g., binding to an antibody.

The helper adenovirus nucleic acids may be incorporated into a cell line, thus bypassing the need to cotransfect helper adenovirus nucleic acid sequences and recombinant adenovirus vector sequences. Instead, transfection of the helper adenovirus nucleic acid sequence-containing cell line with recombinant adenovirus vector would directly result in production of recombinant adenovirus. The present invention provides for such cell lines. See Section 5.3, \textit{infra}.

\textbf{5.2 Recombinant Adenovirus Constructs}

The recombinant adenovirus vectors of the invention comprise adenoviral nucleotide sequences and optionally, one or more heterologous nucleotide sequences. In a preferred embodiment, the recombinant adenovirus vectors comprises adenoviral nucleotide sequences that lack of homology to the helper adenovirus nucleic acid sequences. The lack of homology between the adenoviral helper nucleic acid sequences and recombinant adenovirus vectors reduces the possibility of the viral genome recombining to produce replication competent adenovirus. In a preferred embodiment, the recombinant adenovirus vector encodes a replication-defective adenovirus. In accordance with this embodiment, the recombinant adenovirus vector may be engineered to comprise a mutated adenovirus genome by, e.g., introducing one or more mutations in an adenovirus genome (e.g., introducing deletions in one or more coding regions for adenoviral proteins). Preferably, the mutations in the adenovirus genome result in lower
levels of expression of adenoviral proteins than wild-type adenovirus. The reduction in adenoviral protein expression reduces the immune response to the adenoviral proteins in a subject.

In a specific embodiment, the recombinant adenovirus vector encodes a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, a complete) deletion of the E1A coding region (e.g., SEQ ID NO: 17) and E1B coding region (e.g., SEQ ID NO: 18), and may include one or more heterologous nucleotide sequences. In another embodiment, the recombinant adenovirus vector encodes a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, a complete) deletion of the E1A coding region (e.g., SEQ ID NO: 17), E1B coding region (e.g., SEQ ID NO: 18), and E2B polymerase coding region (for example, SEQ ID NO: 23), and includes one or more heterologous nucleotide sequences. The heterologous nucleotide sequences can be introduced into any region of the genome (e.g., the amino or carboxy-termini). In a specific embodiment, a heterologous nucleotide sequence is introduced into one of the deleted adenoviral coding regions, such as the E1A or E2B coding region, of the mutated adenoviral genome. In a preferred embodiment, the recombinant adenovirus vector encodes a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, a complete) deletion of the E1A coding region (e.g., SEQ ID NO: 17), E1B coding region (e.g., SEQ ID NO: 18), E2B polymerase coding region (e.g., SEQ ID NO: 25), and E3 coding region, and includes a heterologous nucleotide sequence in the deleted E3 coding region.

In accordance with the invention, the recombinant adenovirus (rAd) vectors comprise an adenoviral genome or a portion thereof obtained and/or derived from any adenoviridae or a combination of adenoviridae. In a preferred embodiment, the recombinant adenovirus vectors comprise an adenoviral genome or portion thereof obtained and/or derived from a human adenoviridae. In another preferred embodiment, the recombinant adenovirus vectors comprise an adenoviral genome or portion thereof obtained and/or derived from the human adenovirus serotype 2 or 5.
The rAd vector of the present invention may incorporate any heterologous nucleotide sequence, including genes or portions of genes. It may be desirable to incorporate a gene with a readily detectable product (known in the art as a marker, recorder, or reporter gene) as part of the rAd vector although the invention is not limited to such constructs. Non-limiting examples of reporter genes include beta-galactosidase, neomycin phosphorono-transferase, chloramphenicol acetyltransferase, thymidine kinase, luciferase, beta-glucuronidase, and xanthine-guanine phosphoribosyl transferase, to name but a few.

In an embodiment of the invention, the heterologous nucleotide sequence is obtained and/or derived from a source other than the rAd vector. In certain embodiments, the heterologous nucleotide sequence encodes an antigenic protein, a polypeptide or peptide of a virus belonging to a different species, subgroup or variant of adenovirus other than the species, subgroup or variant from which the rAd vector is derived. In other embodiments, the heterologous nucleotide sequence is not viral in origin. In accordance with these embodiments, the heterologous nucleotide sequence may encode a moiety, peptide, polypeptide or protein possessing a desired biological property or activity. Such a heterologous nucleotide sequence may encode a tag or marker. Such a heterologous nucleotide sequence may encode a biological response modifier, examples of which include, interleukins, hormones and growth factors.

In certain embodiments, the heterologous nucleotide sequence encodes an antigenic protein, polypeptide or peptide obtained and/or derived from a virus other than an adenovirus. Non-limiting examples of such viruses from the following families: adenoviridae (e.g., arenavirus, lymphocytic choriomeningitis virus, Ippy virus, and lassa virus), arterivirus (e.g., equine arteritis virus), astroviridae (e.g., astrovirus), bunyaviridae (e.g., bunyavirus, bunyamwera virus, hantavirus, Crimean-congo hemorrhagic fever virus, phlebovirus, and Rift Valley fever complex), caliciviridae (e.g., calicivirus), Coronaviridae (e.g., coronavirus, torovirus and SARS), deltavirus, filoviridae (e.g., filovirus, Marburg virus and Ebola virus Zaire), flaviviridae (e.g., flavivirus, yellow fever virus, tick-borne encephalitis virus group, Japanese encephalitis Group, pestivirus and hepatitis C virus),
hepadnaviridae (e.g., hepatitis B virus), herpesviridae (e.g., human herpesvirus 1, varicellovirus, human herpesvirus 3, cytomegalovirus, human herpesvirus 5, roseolovirus, human herpesvirus 6, and human herpesvirus 4), orthomyxoviridae (e.g., influenza virus A, B and C), papovaviridae (e.g., papillomavirus), paramyxoviridae (e.g., paramyxovirus, human parainfluenza virus 1, morbillivirus, measles virus, rubulavirus, mumps virus, pneumovirus and human respiratory syncytial virus), paroviridae (e.g., parovirus and adeno-associated virus (AAV)), picornaviridae (e.g., enterovirus, human poliovirus 1, rhinovirus, hepatovirus, human hepatitis A virus, cardiovirus, encephalomyocarditis virus, aphthovirus and foot-and-mouth disease virus O), poxviridae (e.g., vaccinia virus, fowlpox virus and myxoma virus), reoviridae (e.g., reovirus, rotavirus, coltivirus, cypovirus, and fijivirus), retroviridae (e.g., murine leukemia virus, human T lymphocyte leukemia (HTLV)-1 and 2, and lentivirus such as human immunodeficiency virus 1, human immunodeficiency virus 2, and simian immunodeficiency virus), rhabdoviridae (e.g., vesiculovirus, lyssavirus and rabies virus), and togaviridae (e.g., Sindbis virus, Rubivirus and Rubella virus). See, e.g., Fields et al., (ed.), 1991, Fundamental Virology, Second Edition, Raven Press, New York, incorporated by reference herein in its entirety, for a description of viruses and viral antigens.

In certain embodiments, the heterologous nucleotide sequence encodes an antigenic protein, polypeptide or peptide of obtained and/or derived from a bacteria, fungi, and/or other pathogen or parasite. Examples of heterologous nucleotide sequences obtained and/or derived from bacteria include, but are not limited to, nucleotide sequences encoding antigens derived from species of the following genera: Salmonella, Shigella, Chlamydia, Helicobacter, Yersinia, Bordatella, Pseudomonas, Neisseria, Vibrio, Haemophilus, Mycoplasma, Streptomyces, Treponema, Coxiella, Ehrlichia, Brucella, Streptobacillus, Fusospirocheta, Spirillum, Ureaplasma, Spirochaeta, Mycoplasma, Actinomycetes, Borrelia, Bacteroides, Trichomorbas, Branhamella, Pasteurella, Clostridium, Corynebacterium, Listeria, Bacillus, Erysipelothrix, Rhodococcus, Escherichia, Klebsiella, Pseudomonas, Enterobacter, Serratia, Staphylococcus, Streptococcus, Legionella, Mycobacterium, Proteus, Campylobacter, Enterococcus, Acinetobacter,
Morganella, Moraxella, Citrobacter, Rickettsia, Rochligeae, as well as bacterial species such as: P. aeruginosa; E. coli, P. cepacia, S. epidermis, E. faecalis, S. pneumonia, S. aureus, N. meningitidis, S. pyogenes, Pasteurella multocida, Treponema pallidum, and P. mirabilis.

Examples of heterologous nucleotide sequences derived from fungi, include, but are not limited to, nucleotide sequences encoding antigens obtained and/or derived from fungi such as Cryptococcus neoformans; Blastomyces dermatitidis; Acielomyces dermatitidis; Histoplasma capsulatum; Coccidioides immitis; Candida species, including C. albicans, C. tropicalis, C. parapsilosis, C. guilliermondii and C. krusei, Aspergillus species, including A. fumigatus, A. flavus and A. niger, Rhizopus species; Rhizomucor species; Cunninghamhamella species; Apophysomyces species, including A. saksenae, A. mucor and A. absidia; Sporothrix schenckii, Paracoccidioides brasiliensis; Pseudallescheria boydii, Torulopsis glabrata; Trichophyton species, Microsporum species and Dermatophytes species, as well as any other yeast or fungus now known or later identified to be pathogenic.

Finally, examples of heterologous nucleotide gene sequences obtained and/or derived from parasites include, but are not limited to, nucleotide sequences encoding antigens derived from members of the Apicomplexa phylum such as, for example, Babesia, Toxoplasma, Plasmodium, Eimeria, Isospora, Atoxoplasma, Cystoisospora, Hammondia, Besniotia, Sarcocystis, Frenkelia, Haemoproteus, Leucocytozoon, Theileria, Perkinsus and Gregarina spp.; Pneumocystis carinii; members of the Microspora phylum such as, for example, Nosema, Enterocytozoon, Encephalitozoon, Septata, Mrazekia, Amblyospora, Ameson, Glugea, Pleistophora and Microsporidium spp.; and members of the Ascetospora phylum such as, for example, Haplosporidium spp., as well as species including Plasmodium falciparum, P. vivax, P. ovale, P. malaria; Toxoplasma gondii; Leishmania mexicana, L. tropica, L. major, L. aethiopica, L. donovani; Trypanosoma cruzi, T brucei, Schistosoma mansoni, S. haematobium, S. japonium; Trichinella spiralis; Wuchereria bancrofti; Brugia malayi; Entamoeba histolytica; Enterobius vermiculoar; Taenia solium, T. saginata, Trichomonas vaginalis, T. hominis, T. tenax; Giardia lamblia; Cryptosporidium parvum; Pneumocytis carinii, Babesia bovis, B. divergens, B.
microti, Isospora belli, L. hominis, Dientamoeba fragilis, Onchocerca volvulus, Ascaris lumbricoides, Necator americanus, Ancylostoma duodenale, Strongyloides stercoralis, Capillaria philippinensis, Angiostrongylus cantonensis, Hymenolepis nana; Diphyllobothrium latum; Echinococcus granulosus; E. multilocularis, Paragonimus westermani, P. caliensis; Clonorchis sinensis; Opisthorchis felineus, G. Viverini, Fasciola hepatica, Sarcoptes scabiei, Pediculus humanus, Pthirius pubis, and Dermatobia hominis, as well as any other parasite now known or later identified to be pathogenic.

Other heterologous nucleotide sequences of the present invention include nucleotide sequences encoding antigens that are characteristic of an autoimmune disease. These antigens will typically be derived from the cell surface, cytoplasm, nucleus, mitochondria and the like of mammalian tissues. Examples of such antigens include, but are not limited to, antigens characteristic of diabetes mellitus, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, pernicious anemia, Addison's disease, scleroderma, autoimmune atrophic gastritis, juvenile diabetes, and discoid lupus erythematosus.

In certain embodiments, the heterologous nucleotide sequences of the present invention include antigens that are allergens. Antigens that are allergens generally include proteins or glycoproteins, including antigens derived from pollens, dust, molds, spores, dander, insects and foods. In other embodiments, the heterologous nucleotide sequences of the present invention include tumor antigens. Tumor antigens typically will be derived from the cell surface, cytoplasm, nucleus, organelles and the like of cells of tumor tissue. Non-limiting examples of tumor antigens include proteins encoded by mutated oncogenes; viral proteins associated with tumors; and glycoproteins. Tumors include, but are not limited to, those derived from the types of cancer: lip, nasopharynx, pharynx and oral cavity, esophagus, stomach, colon, rectum, liver, gall bladder, pancreas, larynx, lung and bronchus, melanoma of skin, breast, cervix, uterine, ovary, bladder, kidney, uterus, brain and other parts of the nervous system, thyroid, prostate, testes, Hodgkin's disease, non-Hodgkin's lymphoma, multiple myeloma and leukemia.

In certain embodiments, the heterologous nucleotide sequence encodes a
biological response modifier such as a cytokine, cytokine receptor, hormone, growth factor or growth factor receptor. Non-limiting examples of such biological response modifiers include interferon (IFN)-alpha, IFN-beta, IFN gamma, interleukin (IL-1), IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12, IL-15, IL-18, IL-23, erythropoietin (EPO), basic fibroblast growth factor (bFGF), acidic fibroblast growth factor (aFGF), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF), epidermal growth factor (EGF), thymic stromal lymphopoietin (TSLP), TNFR and TNFR ligand superfamily members including TNFRSF 18 and TNFSF18. In other embodiments, the heterologous nucleotide sequence encodes an antibody. In yet other embodiments, the heterologous nucleotide sequence encodes a chimeric or fusion protein.

According to the invention, if the heterologous nucleotide sequence of the rAd vector is to be expressed in host cells, a transcriptional control element, also called a promoter/enhancer sequence, should be provided. The promoter/enhancer sequence may be widely active or may, alternatively, be tissue specific. The promoter/enhancer sequence may be derived from a non-adenovirus source or may be an adenovirus promoter. In a preferred embodiment, the promoter/enhancer sequences used to regulate the expression of the heterologous nucleotide sequence are not shared with those promoter/enhancer sequences that regulate the expression of the helper adenovirus nucleic acid sequences. In certain embodiments, the promoter is a constitutive promoter. In other embodiments, the promoter is an inducible promoter. In yet other embodiments, the promoter is a tissue-specific promoter. See Section 5.1, supra, for examples of promoters.

The desirable size of inserted non-adenovirus or heterologous nucleotide sequence is limited to that which permits packaging of the rAd vector into virions, and depends on the size of retained adenovirus sequences. The genome of a human adenovirus is approximately 36 kilobase pairs in length (measured to be 35938 nucleotides in length by Davison et al. (2003) J. Gen. Virology 84 (Pt 11), 2895-2908). The total size of the rAd to be packaged into virions should be about 37735 nucleotides in length (about 105% of the normal genome length). Therefore, it may be desirable to exclude portions of the adenovirus genome in the
rAd vector in order to maximize expression of the inserted heterologous nucleotide sequence.

Insertion of a foreign gene sequence into a rAd vector of the invention can be accomplished by either a complete replacement of a viral coding region with a heterologous nucleotide sequence or by a partial replacement or by adding the heterologous nucleotide sequence to the viral genome. Complete replacement would probably best be accomplished through the use of PCR-directed mutagenesis. Briefly, PCR-primer A would contain, from the 5' to 3' end: a unique restriction enzyme site, such as a class IIS restriction enzyme site (i.e., a "shifter" enzyme; that recognizes a specific sequence but cleaves the DNA either upstream or downstream of that sequence); a stretch of nucleotides complementary to a region of the gene that is to be replaced; and a stretch of nucleotides complementary to the carboxy-terminus coding portion of the heterologous nucleotide sequence. PCR-primer B would contain from the 5' to 3' end: a unique restriction enzyme site; a stretch of nucleotides complementary to the gene that is to be replaced; and a stretch of nucleotides corresponding to the 5' coding portion of the heterologous or non-native gene. After a PCR reaction using these primers with a cloned copy of the heterologous or non-native gene, the product may be excised and cloned using the unique restriction sites. Digestion with the class IIS enzyme and transcription with the purified phage polymerase would generate a RNA molecule containing the exact untranslated ends of the viral gene that carries now a heterologous or non-native gene insertion. In an alternate embodiment, PCR-primed reactions could be used to prepare double-stranded DNA containing the bacteriophage promoter sequence, and the hybrid gene sequence so that RNA templates can be transcribed directly without cloning.

When inserting a heterologous nucleotide sequence into the rAd vector of the invention, the intergenic region between the end of the coding sequence of the heterologous nucleotide sequence and the start of the coding sequence of the downstream gene can be altered to achieve a desired effect. As used herein, the term "intergenic region" refers to nucleotide sequence between the stop signal of one gene and the start codon (e.g., AUG) of the coding sequence of the next
downstream open reading frame. An intergenic region may comprise a non-coding region of a gene, i.e., between the transcription start site and the start of the coding sequence (AUG) of the gene. This non-coding region occurs naturally in some viral genes.

The expression of the inserted heterologous nucleotide sequence can be determined by various indexes including, but not limited to, protein or mRNA expression levels, measured by following non-limiting examples of assays: immunostaining, immunoprecipitation and immunoblotting, enzyme-linked immunosorbent assay, nucleic acid detection (e.g., Southern blot analysis, Northern blot analysis, Western blot analysis), employment of a reporter gene (e.g., using a reporter gene, such as Green Fluorescence Protein (GFP) or enhanced Green Fluorescence Protein (eGFP), integrated to the viral genome the same fashion as the interested heterologous gene to observe the protein expression), or a combination thereof. Procedures of performing these assays are well known in the art (see, e.g., Flint et al., PRINCIPLES OF VIROLOGY, MOLECULAR BIOLOGY, PATHOGENESIS, AND CONTROL, 2000, ASM Press pp 25-56, the entire text is incorporated herein by reference).

For example, expression levels can be determined by infecting cells in culture with a recombinant adenovirus of the invention and subsequently measuring the level of protein expression by, e.g., Western blot analysis or ELISA using antibodies specific to the gene product of the heterologous nucleotide sequence, or measuring the level of RNA expression by, e.g., Northern blot analysis using probes specific to the heterologous sequence. Similarly, expression levels of the heterologous sequence can be determined by infecting an animal model and measuring the level of protein expressed from the heterologous nucleotide sequence of the recombinant virus of the invention in the animal model. The protein level can be measured by obtaining a tissue sample from the infected animal and then subjecting the tissue sample to Western blot analysis or ELISA, using antibodies specific to the gene product of the heterologous sequence.

Further, if an animal model is used, the titer of antibodies produced by the animal against the gene product of the heterologous sequence can be determined by any
technique known to the skilled artisan, including but not limited to, ELISA.

According to the invention, a rAd vector may be propagated in microorganisms, for example, as part of a bacterial plasmid or bacteriophage, in order to obtain large quantities of rAd vector.

5.3 Generation of Cell Lines for Production of Recombinant Adenovirus

The present invention provides host cells comprising the helper adenovirus nucleic acid sequences described herein and methods for producing such cells. The host cells transfected or transformed with the helper adenovirus nucleic acid sequences are useful in the production of recombinant adenovirus, in particular replication-defective recombinant adenovirus. Specifically, the host cells of the present invention complement functions missing from the recombinant adenovirus vector and/or recombinant adenovirus of interest (i.e., the adenoviral E1A, for example, SEQ ID NO: 17, and E1B, for example, SEQ ID NO: 18, coding regions). More specifically, host cells transfected or transformed with the helper adenovirus nucleic acid sequences described herein express adenoviral proteins that complement the recombinant adenovirus vectors described herein. Preferably, the host cells contain complementing adenoviral genes that lack any homology to those in the recombinant adenoviral vector of interest, which reduces the possibility of the viral genome recombining with the cellular DNA to produce replication competent adenovirus. Host cells that complement the recombinant adenovirus vectors described herein are sometimes referred to herein as “complementing cell lines”, “rAd production cell lines”, “rAd complementation cells” and “rAd complementation cell lines”.

In a specific embodiment, the present invention provides an isolated host cell comprising: (a) first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein. In accordance with this embodiment, the second nucleic acid molecule, in certain
embodiments, does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein. In a preferred embodiment, the present invention provides an isolated host cell comprising: (a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and (c) a third nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1B-55K and E1B-19K proteins. In accordance with these embodiments, the host cell may further comprise additional nucleic acid molecules comprising nucleotide sequences encoding an adenoviral E2a DNA binding protein, an adenoviral E2b pre-terminal protein, an adenoviral E2b IVa2 protein, adenoviral E4 proteins (e.g., ORF 6, ORF 3 and ORF 6/7 of an adenoviral E4 gene), and/or an adenoviral protein encoded by L4 100K.

In certain embodiments, the present invention provides an isolated host cell comprising a nucleic acid molecule comprising: (i) a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (ii) a nucleotide sequence encoding an adenoviral E1B-55K protein. In certain other embodiments, the present invention provides an isolated host cell comprising a nucleic acid molecule comprising: (i) a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; (ii) a nucleotide sequence encoding an adenoviral E2B polymerase; and (iii) a nucleotide sequence encoding adenoviral E1B-55K and E1B-19K proteins.

In a specific embodiment, the E1A proteins expressed by the host cells comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (dl/101) and amino acid residues 4-25 of an E1A 243R protein (dl/1101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (dl/107) of an E1A 289R protein and amino acid residues 111-123 (dl/107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (dl/108) of an E1A 289R protein and amino acid residues 124-127
(d/1108) of an E1A 243R protein. In a preferred embodiment, the E1A proteins expressed by the host cells comprise: (a) a first deletion corresponding to amino acid residues 4-25 of an E1A 289R protein (d/1101) and amino acid residues 4-25 of an E1A 243R protein (d/1101); and (b) a second deletion corresponding to amino acid residues 111-123 (d/1107) of an E1A 289R protein and amino acid residues 111-123 (d/1107) of an E1A 243R protein.

The ability of the E1A adenoviral proteins to activate the early transcription units is required in all production cell lines for successful productive infection, but the ability of the E1A to induce the cell cycle may not be required in established cell lines that divide continuously. The mutated E1A adenovirus genes expressed in the rAd complementing cell lines of the present invention retain the ability to activate transcription, but are defective for induction of cellular DNA synthesis. The adenoviral E1A regions required for stimulation of cellular DNA synthesis, which are not expressed in the rAd complementing cell lines of the invention, may also be responsible for induction of apoptosis which may hinder successful establishment of rAd complementing cell lines.

Any type of cell may be used as a host cell. In a preferred embodiment, a cell that is permissive to adenovirus, preferably human adenovirus, infection is used. A host cell strain may be chosen which modulates, or modifies and processes the expression of a gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells (e.g., mammalian host cells) which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of a gene product may be used. Examples of such mammalian host cells include, but are not limited to, CHO, VERY, BHK, Hela, COS, MDCK, 293, 3T3, W138, BT483, Hs578T, HTB2, BT2O and T47D, NS0 (a murine myeloma cell line that does not endogenously produce any immunoglobulin
chains), CRL7030 and HsS7Bst cells. In a specific embodiment, the host cell is a A549, HCT-15, IGROV-1, HeLa, U87, W162 or 293-D22 cell. In a preferred embodiment, the host cell is a A549 cell. In certain embodiments, the host cells can be cultured and propagated in suspension.

In a preferred embodiment, human cells are used as host cells. Human established cell lines such as those from human tumor cells or human tumor cell lines have the ability to replicate indefinitely in culture. Human tumor cells, cells from human established cell lines or cells from human tumor cell lines are preferred over human primary cells for generating complementing cell lines of the present invention because the mutated E1A adenovirus genes expressed in the E1-complementing cell lines of the present invention retain the ability to activate transcription, but are defective for induction of cellular DNA synthesis and for transformation of a primary cell line to a continuously replicating cell line or an established cell line. Such cell lines can be generated in accordance with standard molecular biological techniques.

Host cells may be transiently or stably transfected with helper adenovirus nucleic acid sequences. Non-limiting methods for transfecting a host cell include the DEAE dextran method (McCutchen and Pagano, 1968, J. Natl. Cancer Inst. 41:351-357), the calcium phosphate procedure (Graham et al., 1973, J. Virol. 33:739-748), microinjection, lipofection, electroporation, and any other method known in the art. Preferably, the helper adenovirus nucleic acid sequences are stably integrated into the nuclear genome of the host cells. It is believed that genomic integration of the heterologous nucleic acid sequences encoding the complementary factors is required to generate stable recombinant cell lines for adenoviral vector production. Additionally, complementation by transient transfection is labor-intensive, difficult to scale-up and may provide low adenovirus yields. The introduction and stable integration of the heterologous nucleic acid sequences into the genome of the cell requires standard molecular biological techniques that are within the skill of the art, (see, e.g., Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).
For long-term, high-yield production of recombinant adenoviral proteins, stable expression is preferred. For example, cell lines which stably express the adenoviral proteins encoded by the helper adenovirus nucleic acid sequences may be engineered. Host cells can be transformed with nucleotide sequences controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign nucleotide sequences, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the adenoviral proteins encoded by the helper adenovirus nucleic acid sequences.

A number of selection systems may be used, including but not limited to, the herpes simplex virus thymidine kinase (Wigler et al., 1977, Cell 11:223), hypoxanthineguanine phosphoribosyltransferase (Szybalska & Szybalski, 1992, Proc. Natl. Acad. Sci. USA 48:202), and adenine phosphoribosyltransferase (Lowy et al., 1980, Cell 22:8-17) genes can be employed in tk-, hgppt- or aprt-cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., 1980, Natl. Acad. Sci. USA 77:357; O'Hare et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Wu and Wu, 1991, Biotherapy 3:87-95; Tolstoshev, 1993, Ann. Rev. Pharmacol. Toxcol. 32:573-596; Mulligan, 1993, Science 260:926-932; and Morgan and Anderson, 1993, Ann. Rev. Biochem. 62: 191-217; May, 1993, TIB TECH 11(5):155-2 15); and hygro, which confers resistance to hygromycin (Santerre et al., 1984, Gene 30:147). Methods commonly known in the art of recombinant DNA technology may be routinely applied to select the desired recombinant clone, and such methods are described, for example, in

The expression levels of adenoviral proteins encoded by helper adenovirus nucleic acid sequences can be increased by vector amplification (for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing an adenoviral protein(s) is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the adenoviral protein(s), production of the adenoviral protein(s) will also increase (Crouse et al., 1983, Mol. Cell. Biol. 3:257).

The present invention provides methods for producing a host cell for the production of replication-defective adenovirus comprising transforming or transfecting a cell (preferably, a human cell) with a first nucleic acid molecule and a second nucleic acid molecule, wherein the first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (see above for examples of such adenoviral proteins), and the second nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E1B-55K protein (and preferably, does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein). The cell may be transformed or transfected with the first and second nucleic acid molecules simultaneously or sequentially in any order. In a specific embodiment, the cell is transformed or transfected with the first nucleic acid molecule and then the second nucleic acid molecule.

The present invention provides methods for producing a cell for the production of replication-defective adenovirus comprising transforming or transfecting a cell (preferably, a human cell) with a first nucleic acid molecule, a
second nucleic acid molecule and a third nucleic acid molecule, wherein the first nucleic acid molecule comprises a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (see above for examples of such adenoviral proteins), the second nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E2b polymerase, and the third nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E1B-55K protein and preferably, a nucleotide sequence encoding an adenoviral E1B-55K protein and E1B-19K protein. The cell may be transformed or transfected with the first, second and third nucleic acid molecules simultaneously or sequentially in any order. In a specific embodiment, the cell is transformed or transfected with the first nucleic acid molecule, the second nucleic acid molecule, and then the third nucleic acid molecule.

The rAd production cell lines of the invention may be propagated using standard cell culture techniques (see e.g., R.I. Freshney, Culture of Animal Cells-A Manual of Basic Techniques, Second Edition, Wiley-Liss, Inc. New York, N.Y., 1987). The rAd production cell lines are propagated by culturing the cells in an appropriate cell culture medium, such as Dulbecco's Modified Eagle's medium supplemented with 1-10% fetal bovine serum (in certain embodiments, it is 1% fetal bovine serum and other embodiments, it is 10% fetal bovine serum), antibiotics (e.g., 200 μg/ml hygromycin B and 200 μg/ml G418 for SL0003, and 150 μg/ml hygromycin B, 350 μg/ml G418, and 0.2 μg/ml puromycin for SL0006). For suspension culture of the rAd production cell lines, the rAd production cell lines are propagated by culturing the cells in, e.g., OptiPro media supplemented with 0.1% pluronic F-68, 1% chemically purified lipids, 4 mM glutamax, and antibiotics (e.g., 15 μg/ml hygromycin B, 35 μg/ml G418, and 0.02 μg/ml puromycin for SL0006). The antibiotics such as, e.g., hygromycin B, G418 and puromycin are included in the cell culture medium to maintain the selection pressure on the cell line. In certain embodiments, the rAd production cell lines of the invention are propagated in suspension culture.

The cells may be cryopreserved and stored for future use. Preferably, the cells are cryopreserved by propagating the cells to late exponential phase of
growth; concentrating the cells; exchanging the growth medium to a medium supplemented with a cryoprotectant and a stabilizer; freezing the cells; and storing the cells at a temperature of 0°C or less. Preferably, the cells are stored at −70°C or less (e.g., −80°C) or in liquid nitrogen or in the vapor phase of liquid nitrogen.

The cells may be concentrated by any method known in the art. For example, the cells may be concentrated by centrifugation, sedimentation, concentration with a perfusion device (e.g., a sieve) or by filtration. Preferably, the cells are concentrated to at least about 1 x 10^7 cells/ml. The cells may be stored in any cryoprotectant known in the art. For example, the cryoprotectant may be dimethyl sulfoxide (DMSO) or glycerol. The cells may be stored in any stabilizer known in the art. For example, the stabilizer may be methyl cellulose or serum.

Prior to freezing down, the concentrated cells may be portioned into several separate containers to create a cell bank. The cells may be stored, for example, in a glass or plastic vial or tube or in a cell culture bag. When the cells are needed for future use, a portion of the cryopreserved cells (from one container) may be selected from the cell bank, thawed and propagated.

The rAd production cell line may be propagated or grown by any method known in the art for mammalian cell culture. Propagation may be done by a single step or a multiple step procedure. In a single step propagation procedure, the production cells are removed from storage and inoculated directly to a culture vessel where production of virus is going to take place. In a multiple step propagation procedure, the production cells are removed from storage and propagated through a number of culture vessels of gradually increasing size until reaching the final culture vessel where the production of recombinant adenovirus is going to take place. During the propagation steps, the cells are grown under conditions that are optimized for growth. Culture conditions, such as temperature, pH, dissolved oxygen level and the like are those known to be optimal for the particular cell line and will be apparent to the skilled person or artisan within this field (see e.g., Animal Cell culture: A Practical Approach 2nd edition, Rickwood, D. and Hames, B.D. eds., Oxford University Press, New York (1992)).
The rAd production cells or rAd production cell lines may be grown in any suitable vessel which is known in the art. For example, cells may be grown and the infected cells may be cultured in a biogenerator or a bioreactor. Generally, "biogenerator" or "bioreactor" means a culture tank, generally made of stainless steel or glass, with a volume of 0.5 liter or greater, comprising an agitation system, a device for injecting a stream of CO₂ gas and an oxygenation device. Typically, it is equipped with probes measuring the internal parameters of the biogenerator, such as the pH, the dissolved oxygen, the temperature, the tank pressure or certain physicochemical parameters of the culture (for instance the consumption of glucose or of glutamine or the production of lactate and ammonium ions). The pH, oxygen, and temperature probes are connected to a bioprocessor which permanently regulates these parameters. In other embodiments, the vessel is a spinner flask, a roller bottle, a shaker flask or in a flask with a stir bar providing mechanical agitation. In another embodiment, a the vessel is a WAVE Bioreactor (WAVE Biotech, Bridgewater, NJ, U.S.A.).

Cell density in the culture may be determined by any method known in the art. For example, cell density may be determined microscopically (e.g., hemacytometer) or by an electronic cell counting device (e.g., COULTER COUNTER; AccuSizer 780/SPOS Single Particle Optical Sizer).

5.3.1 SL0003 Cell Line
As described in Example 1, the transformed cell line A549E1Ad01/07, that constitutively expressed the E1A mutated E1Ad01/07 gene, was selected for further development because it supported replication of E1-deleted rAd vectors at levels higher than A549 cell clones expressing either wild-type E1A or the single mutations E1Ad1101 or E1Ad1107. As shown in Example 1, infra, A549 cell clones, A549E1Ad01/07-1 to A549E1Ad01/07-5, supported replication of E1-deleted rAd vectors at levels higher than A549 cell clones A549E1Awt-1 to A549E1Awt-5, or A549 cell clones A549E1Ad1101-1 to A549E1Ad1101-5, or A549 cell clones A549E1Ad1107-1 to A549E1Ad1107-5.
The transformed cell line, A549E1Ad01/07, was also selected for further development because of its reduced sensitivity to apoptosis during adenovirus vector production. A549 clones expressing wild-type E1A, i.e., A549E1A{\textit{wt}}, were especially sensitive to apoptosis following infection with E1-deleted rAd vectors and viral yields were extremely low. The rapid induction of apoptosis in clone A549E1A{\textit{wt}}-2 suggested that early events in viral infection may supply death signals that may be recognized by A549 cells expressing wild-type E1A but not E1Ad01/07.

Apoptosis in adenovirus-infected cells has been reported to be stimulated though p53-dependent and p53-independent pathways (Teodoro \textit{et al.}, (1995) Oncogene 11:467-474). It was found that both E2F and p53 pathways were stimulated in the A549{\textit{wt}}-2 clone as compared to the A549E1Ad01/07 clones in which E2F and p53 transcriptional activity was similar to the parental A549 cells. It was found that A549E1A{\textit{wt}}-2 cells were driven into apoptosis by low levels of cycloheximide, but that A549E1Ad01/07 clones were unaffected by this treatment. The stimulation of the E2F and p53 pathways by wild-type E1A was not sufficient to induce apoptosis in the A549{\textit{wt}}-2 clone, but may have contributed to the increased sensitivity of these cells to death stimuli.

Although the transformed cell line, A549E1Ad01/07, was capable of producing replication defective adenovirus, it was reasoned that the viral yield may be further improved by complementation using E1B. It was unknown whether both E1B genes were needed for rAd vector complementation in the E1Ad01/07-expressing A549 cell line. Analysis of virus yield using a series of E1B-mutant viruses showed that in A549E1Ad01/07-4 cells, expression of E1B-55K alone was sufficient for production of the mutant viruses at wild-type levels. These results suggested that efficient complementation may be achieved in A549 cells by E1Ad01/07 plus E1B55K, which was subsequently achieved in the SL0003 cell line. The yield of rAd vectors from the SL0003 cell line was similar to that obtained from 293 cells, without generation of detectable replication competent adenovirus (RCA).

The SL0003 cell line was deposited under the Budapest Treaty, on September 22, 2004 with the American Type Culture Collection (ATCC), 10801
5.3.2 SL0006 Cell Line

As described in Example 2, to improve viral yield, the transformed cell line, A549E1Ad101/07, was transformed with a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E2b polymerase and a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1B-55K and E1B-19K proteins. The results presented in Example 2 demonstrate that efficient complementation may be achieved in A549 cells by E1Ad101/07 plus E2b polymerase, E1B-55K and E1B-19K. The yield of rAd vectors from the SL0006 cell line was similar to that obtained from 293 cells, without generation of detectable replication competent adenovirus (RCA).

The SL0006 cell line was deposited under the Budapest Treaty, on April 7, 2005 with the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, VA, 20110-2209, USA, under the indicated name and accession number as follows; Deposit name: “SL0006”; ATCC Accession Number: PTA-6663. All restrictions on access to the cell line deposited with the ATCC will be removed upon grant of a patent.

5.4 Production of Recombinant Adenovirus

In accordance with the invention, recombinant adenovirus (preferably, recombinant replication-defective adenovirus) may be produced by co-transfecting an appropriate cell type with rAd vector and helper adenovirus nucleic acid sequences. Co-transfection may be performed by the DEAE dextran method (McCutchen and Pagano, 1968, J. Natl. Cancer Inst. 41:351-357), the calcium phosphate procedure (Graham et al., 1973, J. Virol. 33:739-748) or by any other method known in the art, including but not limited to microinjection, lipofection, and electroporation. Amounts of rAd vector and helper adenovirus nucleic acid
sequences used in transfection are approximately 0.2 to 10 μg of DNA per 10^6 cells, but may vary among different DNA constructs and cell types. Cells suitable for transfection include any cell line permissive for adenovirus infection, including, but not limited to HeLa cells, 293-D22 cells, A549 cells, HCT-15 cells, IGROV-1 cells, U87 cells and W162 cells.

Alternatively, a rAd complementing cell line may be transfected with rAd vector to produce of recombinant adenovirus (preferably, recombinant replication-defective adenovirus). In a specific embodiment, the present invention provides a method for producing recombinant adenovirus comprising culturing a rAd complementing cell line transfected with recombinant adenovirus vector under conditions so as to permit replication of the viral genome in the cell line, wherein the cell line comprises: (a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (see the description above regarding such E1A proteins); and (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein (and preferably, does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein). In a preferred embodiment, the present invention provides a method for producing recombinant adenovirus comprising culturing a rAd complementing cell line transfected with recombinant adenovirus vector under conditions so as to permit replication of the viral genome in the cell line, wherein the cell line comprises: (a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (see the description above regarding such E1A proteins); (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and (c) a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein, and preferably, an adenoviral E1B-19K protein.

In a specific embodiment, the present invention provides a method for propagating recombinant adenovirus comprising culturing a rAd complementing cell line infected with a recombinant adenovirus (preferably, a replication-defective
adenovirus) under conditions so as to permit replication of the viral genome in the cell line, wherein the cell line comprises: (a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (see the description above regarding such E1A proteins); and (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein (and preferably, does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein). In a preferred embodiment, the present invention provides a method for propagating recombinant adenovirus comprising culturing a rAd complementing cell line infected with a recombinant adenovirus (preferably, a replication-defective adenovirus) under conditions so as to permit replication of the viral genome in the cell line, wherein the cell line comprises: (a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members (see the description above regarding such E1A proteins); (b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and (c) a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein, and preferably, an adenoviral E1B-19K protein.

Recombinant adenovirus of the present invention may be produced by any suitable method, many of which are known in the art (see, e.g., Berkner et al., Nucl. Acids Res. 12:925-941 (1984); Berkner et al. Nucl. Acids. Res. 11:6003-6020 (1983); Brough et al., Virol. 190:624-634 (1992)). In the preferred practice of the invention, the recombinant adenoviruses are derived from the human adenoviridae. In a preferred embodiment of the invention, the recombinant adenovirus is derived from the human adenovirus serotype 2 or 5. In another preferred practice of the invention, the recombinant adenovirus is a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, complete) deletion of E1A coding region (e.g., SEQ ID NO: 17) and E1B coding region (e.g., SEQ ID NO: 18), and may include one or more additional heterologous genes. In another preferred practice of the invention, the recombinant adenovirus is a replication-defective adenovirus and comprises a mutated genome with a partial or
complete (preferably, complete) deletion of the E1A coding region (e.g., SEQ ID NO: 17), E1B coding region (e.g., SEQ ID NO: 18), and E2B polymerase coding region (for example, SEQ ID NO: 23), and includes one or more heterologous nucleotide sequences. In a more preferred practice of the invention, the recombinant adenovirus is a replication-defective adenovirus and comprises a mutated genome with a partial or complete (preferably, complete) deletion of the E1A coding region, E1B coding region, E2b polymerase coding region, and E3 coding region, and includes one or more heterologous nucleotide sequences in the deleted E3 coding region. The preferred recombinant adenoviruses of the present invention comprise viral DNA sequences that lack any homology with the adenoviral DNA sequences in the rAd production cell, which reduces the possibility of the viral genome recombining with the cellular DNA to produce RCAs.

In certain embodiments, the quantity of recombinant adenovirus is titrated. Titrating the quantity of the adenovirus in the culture may be performed by techniques known in the art. In a particular embodiment, the concentration of viral particles is determined by the Resource Q assay as described by Shabram, et al. Human Gene Therapy 8:453-465 (1997). As used herein, the term "lysis" refers to the rupture of the virus-containing cells. Lysis may be achieved by a variety of means well known in the art. For example, mammalian cells may be lysed under low pressure (100-200 psi differential pressure) conditions, by homogenization, by microfluidization, or by conventional freeze-thaw methods. Exogenous free DNA/RNA may be removed by degradation with DNAse/RNAse.

Virus-containing cells may be frozen. Virus may be harvested from the virus-containing cells and the medium. In one embodiment, the virus is harvested from both the virus-containing cells and the medium simultaneously. In a particular embodiment, the virus producing cells and medium are subjected to cross-flow microfiltration, for example, as described in U.S. Patent Number 6,146,891, under conditions to both simultaneously lyse virus-containing cells and clarify the medium of cell debris which would otherwise interfere with virus purification.
As used herein, the term “harvesting” means the collection of the cells containing the recombinant adenovirus from the media and may include collection of the recombinant adenovirus from the media. This may be achieved by conventional methods such as differential centrifugation or chromatographic means. At this stage, the harvested cells may be stored or further processed by lysis and purification to isolate the recombinant virus. For storage, the harvested cells should be buffered at or about physiological pH and frozen at -70°C.

Virus may also be harvested from the virus-containing cells and medium separately. The virus-containing cells may be collected separately from the medium by conventional methods such as differential centrifugation. Harvested cells may be stored frozen or further processed by lysis to liberate the virus. Virus may be harvested from the medium by chromatographic means. Exogenase free DNA/RNA may be removed by degradation with DNase/RNase, such as BENZONASE (American International Chemicals, Inc.).

The virus harvest may be further processed to concentrate the virus by methods such as ultrafiltration or tangential flow filtration, for example, as described in U.S. Patent Numbers 6,146,891; 6,544,769 and 6,783,983.

As used herein, the term “recovering” means the isolation of a substantially pure population of recombinant virus particles from the lysed producer cells and optionally from the supernatant medium. Viral particles produced in the cell cultures of the present invention may be isolated and purified by any method which is commonly known in the art. Conventional purification techniques such as chromatographic or differential density gradient centrifugation methods may be employed. For example, the viral particles may be purified by cesium chloride gradient purification, column or batch chromatography, diethylaminoethyl (DEAE) chromatography (Haruna et al. Virology 13: 264-267 (1961); Klemperer et al., Virology 9: 536-545 (1959); Philipson Virology 10: 459-465 (1960)), hydroxyapatite chromatography (U.S. Patent Application Publication Number US2002/0064860) and chromatography using other resins such as homogeneous cross-linked polysaccharides, which include soft gels (e.g., agarose), macroporous polymers based on synthetic polymers, which include perfusion chromatography resins with
large "throughpores", "tentacular" sorbents, which have tentacles that were
designed for faster interactions with proteins (e.g., fractogel) and materials based
on a soft gel in a rigid shell, which exploit the high capacity of soft gels and the
rigidity of composite materials (e.g., Ceramic HyperD® F) (Boschetti, Chromatogr.
658: 207 (1994); Rodriguez, J. Chromatogr. 699: 47-61 (1997)). In the preferred
practice of the invention, the virus is purified by column chromatography in
substantial accordance with the process of Huyghe, et al. (1995) Human Gene
Therapy 6: 1403-1416 as described in Shabram, et al., United States Patent
5,837,520 issued November 17, 1998, the entire teaching of which is herein
incorporated by reference.

The rAd production cell lines producing virus may be cultured in any suitable
vessel which is known in the art. For example, cells may be grown and the
infected cells may be cultured in a biogenerator or a bioreactor. Generally,
"biogenerator" or "bioreactor" means a culture tank, generally made of stainless
steel or glass, with a volume of 0.5 liter or greater, comprising an agitation system,
a device for injecting a stream of CO₂ gas and an oxygenation device. Typically, it
is equipped with probes measuring the internal parameters of the biogenerator,
such as the pH, the dissolved oxygen, the temperature, the tank pressure or
certain physicochemical parameters of the culture (for instance the consumption of
glucose or of glutamine or the production of lactate and ammonium ions). The pH,
oxygen, and temperature probes are connected to a bioprocessor which
permanently regulates these parameters. In other embodiments, the vessel is a
spinner flask, a roller bottle, a shaker flask or in a flask with a stir bar providing
mechanical agitation. In another embodiment, a the vessel is a WAVE Bioreactor

Recombinant adenoviruses may be propagated in the rAd production cell
lines of the invention. Virus may be produced by culturing the cells; optionally
adding fresh growth medium to the cells; inoculating the cells with the virus;
incubating the inoculated cells; optionally adding fresh growth medium to the
inoculated cells; and optionally harvesting the virus from the cells and the medium.
Typically, when the concentration of viral particles, as determined by conventional
methods, such as high performance liquid chromatography using a Resource Q column, as described in Shabram, *et al.* Human Gene Therapy 8:453-465 (1997), begins to plateau, the harvest is performed.

Proteins produced by recombinant adenoviruses grown in the rAd production cell lines of the invention (*e.g.*, adenovirus comprising a deletion of the E1A and E1B coding regions and comprising a heterologous nucleotide sequence, or adenovirus comprising a deletion of E1A, E1B and E2B polymerase coding regions and comprising a heterologous nucleotide sequence) may also be isolated and purified. Proteins, polypeptides and peptides may be purified by standard methods, including, but not limited to, salt or alcohol precipitation, affinity, preparative disc-gel electrophoresis, isoelectric focusing, high pressure liquid chromatography (HPLC), reversed-phase HPLC, gel filtration, cation and anion exchange and partition chromatography, and countercurrent distribution. Such purification methods are well known in the art and are disclosed, *e.g.*, in "Guide to Protein Purification", *Methods in Enzymology*, Vol. 182, M. Deutscher, Ed., 1990, Academic Press, New York, NY.

5.5 Utility of Recombinant Adenovirus

The recombinant adenoviruses can be used for *in vivo* or *ex vivo* gene therapy. For *in vivo* gene therapy, recombinant adenovirus is directly administered to a subject. For *ex vivo* gene therapy, cells are infected with the recombinant adenovirus *in vitro* and then the infected cells are transplanted into the subject. In
a specific embodiment, the recombinant adenovirus is directly administered *in vivo*, where a protein of interest is expressed.

In another embodiment, a cell is infected with a recombinant adenovirus and the resulting recombinant cell is administered to a subject. The resulting recombinant cells can be delivered to a subject by various methods known in the art. Recombinant blood cells (*e.g.*, hematopoietic stem or progenitor cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art. In accordance with the invention, any cells which can be infected with a recombinant adenovirus can be for purposes of gene therapy. Non-limiting examples include epithelial cells (*e.g.*, respiratory epithelial cells), endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes, blood cells (such as T lymphocytes, B lymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes), and various stem or progenitor cells (in particular, hematopoietic stem or progenitor cells, *e.g.*, as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.). In a preferred embodiment, the cell used for gene therapy is autologous to the subject. In an embodiment in which recombinant cells are used in gene therapy, the proteins encoded by the genome of the recombinant adenovirus are expressible by the cells or their progeny, and the recombinant cells are then administered *in vivo* for therapeutic effect.

The recombinant adenovirus of the present invention may be used to immunize a subject. For example, the recombinant adenovirus may be used to generate antibodies against a heterologous antigen expressed by the recombinant adenovirus. The amount of recombinant adenovirus to be used to immunize a subject and the immunization schedule will be determined by a physician skilled in the art and will be administered by reference to the immune response and antibody titers of the subject.

The antibodies generated against an antigen by immunization with a recombinant adenovirus may used in diagnostic immunoassays, passive immunotherapy, and generation of anti-idiotypic antibodies. The generated
antibodies may be isolated by standard techniques known in the art (e.g., immunoaffinity chromatography, centrifugation, precipitation, etc.) and used in diagnostic immunoassays. The antibodies may also be used to monitor treatment and/or disease progression. Any immunoassay system known in the art may be used for this purpose including, but not limited to, competitive and noncompetitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme-linked immunosorbent assays), "sandwich" immunoassays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays and immunoelectrophoresis assays, to name but a few.

The recombinant of the present invention can be used to produce antibodies for use in passive immunotherapy, in which short-term protection of a subject is achieved by the administration of pre-formed antibody directed against a heterologous antigen. The antibodies generated by the recombinant adenovirus of the present invention can also be used in the production of anti-idiotype antibody. The anti-idiotype antibody can then in turn be used for immunization, in order to produce a subpopulation of antibodies that bind the initial antigen (Jerne, 1974, Ann. Immunol. (Paris) 125c:373; Jerne et al., 1982, EMBO J. 1:234).

In certain embodiments, the antibody produced by immunization with a recombinant adenovirus is modified prior to administration to a subject. For example, the antibody may be humanized and/or affinity matured.

5.6 Compositions and Methods of Administering Recombinant Adenovirus

The invention encompasses compositions comprising a recombinant adenovirus (preferably, replication-defective recombinant adenovirus) generated by the methods of the invention. In a preferred embodiment, the compositions are pharmaceutical compositions suitable for administration to a subject.

The pharmaceutical compositions of the present invention comprise an effective amount of recombinant adenovirus, and a pharmaceutically acceptable
carrier. In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopoeia or other generally recognized pharmacopoeiae for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the pharmaceutical composition is administered. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. These compositions can be formulated as a suppository. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin. Such compositions will contain an effective amount of recombinant adenovirus, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

The amount of the pharmaceutical composition of the invention which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.
Methods of administration of the compositions include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The pharmaceutical compositions of the present invention may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compositions of the invention into the lungs by any suitable route. Pulmonary administration can be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

In a specific embodiment, it may be desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, nonporous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. In one embodiment, administration can be by direct injection at the site (or former site) of a malignant tumor or neoplastic or pre-neoplastic tissue.

the composition's target, \textit{i.e.}, the lung, thus requiring only a fraction of the systemic dose (see, \textit{e.g.}, Goodson, 1984, in Medical Applications of Controlled Release, \textit{supra}, vol. 2, pp. 115-138). Other controlled release systems are discussed in the review by Langer (1990, Science 249:1527-1533).

In a specific embodiment, a composition of the invention is a vaccine or immunizing composition comprising a recombinant adenovirus (preferably, replication-defective recombinant adenovirus) generated by the methods of the invention, and a suitable excipient. Many methods may be used to introduce the vaccine compositions, these include but are not limited to intranasal, intratracheal, oral, intradermal, intramuscular, intraperitoneal, intravenous, and subcutaneous routes. It may be preferable to introduce the recombinant adenovirus vaccine composition via the natural route of infection of adenovirus.

\textbf{5.7 Plasmid Systems}

The present invention provides plasmid systems for generating cell lines for production of recombinant adenovirus. In a specific embodiment, the present invention provides a plasmid system for generating a cell line (preferably, a human cell line) for the production of recombinant adenovirus comprising in separate containers: (a) a first expression cassette comprising a regulatory element operably linked to a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and (b) a second expression cassette comprising a regulatory element in said cell line operably linked to a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein. In an alternative embodiment, the plasmid system comprises a single expression cassette that comprises a nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members and a nucleotide sequence encoding an adenoviral E1B-55K protein.

In a specific embodiment, the present invention provides a plasmid system for generating a cell line (preferably, a human cell line) for the production of
recombinant adenovirus comprising in separate containers: (a) a first expression cassette comprising a regulatory element operably linked to a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; (b) a second expression cassette comprising a regulatory element operably linked to a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and (c) a third expression cassette comprising a regulatory element operably linked to a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein. In an alternative embodiment, the plasmid system comprises a single expression cassette that comprises a nucleic acid molecule comprising (i) a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members, (ii) a nucleotide sequence encoding an adenoviral E1B-55K protein and (iii) a nucleotide sequence encoding an adenoviral E2B polymerase.

In another embodiment, the present invention provides a plasmid system for generating a cell line (preferably, a human cell line) for the production of recombinant adenovirus comprising in separate containers: (a) a first expression cassette comprising a regulatory element operably linked to a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; (b) a second expression cassette comprising a regulatory element operably linked to a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and (c) a third expression cassette comprising a regulatory element operably linked to a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein and an adenoviral E1B-19K protein. In an alternative embodiment, the plasmid system comprises a single expression cassette that comprises a nucleic acid molecule comprising (i) a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members, (ii) a
nucleotide sequence encoding adenoviral E1B-55K and E1B-19K proteins and (iii) a nucleotide sequence encoding an adenoviral E2B polymerase.

In a specific embodiment, the E1A proteins encoded by the first expression cassette comprise: (a) a first deletion corresponding to: (i) amino acid residues 4-25 of an E1A 289R protein (d/l101) and amino acid residues 4-25 of an E1A 243R protein (d/l101); or (ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and (b) a second deletion corresponding to: (i) amino acid residues 111-123 (d/l107) of an E1A 289R protein and amino acid residues 111-123 (d/l107) of an E1A 243R protein; or (ii) amino acid residues 124-127 (d/l108) of an E1A 289R protein and amino acid residues 124-127 (d/l108) of an E1A 243R protein.

6. EXAMPLES

The following examples are merely illustrative and not meant to be limiting of the scope of the invention described herein.

Example 1: Generation an E1A and E1b Complementing Cell Line and Use of the Cell Line in the Production of Recombinant Adenovirus

This example demonstrates the utility of an E1A and E1b complementing cell line for the production of high titers of replication-defective, helper-independent recombinant viruses.

I. Materials & Methods

Cell Culture

293 (ATCC# CRL-1573), A549 (ATCC# CCL-185) and HeLa (ATCC# CCL-2) cells were obtained from the American Type Culture Collection (ATCC, Manassas, VA). Cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (JRH Biosciences, Lenexa, KS), 1% (v/v) antibiotic-antimycotic solution (Cellgro, Kansas, MO) and 1 mM sodium pyruvate (BioWhittaker, Inc., Walkersville, MD).

Plasmids
The Ad5 wild-type E1A gene, and E1A sequences containing the E1Ad/1101, E1Ad/1107 and E1Ad/01/07 mutations were cloned by standard procedures from pXC1 (McKinnon et al., (1982) Gene 19:33-42) or Ad-d01/07 (Howe et al., (1990) Proc. Natl. Acad. Sci. USA 87:5883-5887) into the RSV promoter/SV40 polyA expression cassette of pRC/RSV-Neo (Invitrogen, Carlsbad CA) to create pRC/RSV-E1Awrt, pRC/RSV-E1Ad/1101, pRC/RSV-E1Ad/1107 and pRC/RSV-E1Ad/01/07. pcDNA3.1-E1B-55K, was constructed by cloning the E1B-55K gene from pXC1 using PCR into the CMV promoter/BGH poly A expression cassette of pcDNA3.1-hygro (Invitrogen Carlsbad, CA). p53con-luc contained 4 consensus p53 binding sites, and a TATA box from the simian virus-40 (SV40) early promoter (Ramachandra et al., (2001) Nat. Biotechnol. 19: 1035-1041), upstream of the luciferase gene in pGL3-basic (Promega, Madison, WI). pE2F-luc contained 4 copies of the E2F binding sites from the adenovirus early region 2 promoter and an SV40 TATA box upstream of the luciferase gene in pGL3-basic.

Viral Constructs

rAd-β-gal and rAd-GFP were E1/E3 deleted adenovirus vectors with expression cassettes inserted into the E1-deletion and which contained either the β-galactosidase (β-gal) gene, or green fluorescent protein (GFP) gene, under control of the constitutively active CMV immediate early promoter (Cheney et al., (1998) Cancer Res. 58:2331-2334; Wills et al., (1994) Hum. Gene Ther. 5:1079-1088).

The p53 reporter rAd-PRE-GFP contained an expression cassette in the E3-deletion in which a p53-response element (Ramachandra et al., (2001) Nat. Biotechnol. 19:1035-1041) regulated expression of GFP. Ad5-d809 (Jones and Shenk, (1979) Proc. Natl. Acad. Sci. 76:3665-3669) was used as a wild-type control virus. The Ad5-d809 based mutant viruses E1B/19K-, which does not produce the E1B-19K protein (Marcellus et al., (1996) J. Virol. 70:6207-6215), and NT1010, which has a large deletion in the E1A region (Whyte et al., (1989) Cell 56:67-75), have been described previously. d/d520 (Barker and Berk, (1987) Virology 156:107-121) was a chimeric adenovirus (Ad2 and Ad5-d809) containing a deletion in the E1B coding region (Ad5 coordinates 2496 – 3233) and a stop codon at the third codon of E1B-
55K. The Ad-E1B- virus was constructed by removing the E1B coding region in
plasmid pXC1 by EcoRI and BglII digestion, Klenow fill in and blunt end ligation to
create pXC1-E1B-. Ad sequence containing the mutated E1B region was
transferred from pXC1-E1B' into a larger transfer plasmid pTG9530 (Transgene
S.A., Strasbourg), to create pTG9530-E1B'. Homologous recombination in E. coli
strain BJ5183 (Chartier et al., (1996) J. Virol. 70:4805-4810) was used to generate
infectious Ad-E1B' adenoviral DNA by transformation of pTG9530-E1B' and viral
plasmid pTG4213-Ad5-d809. The resulting Ad-E1B' plasmid was isolated and
transfected into 293 cells to generate virus. All viruses were purified by column
Gene Ther. 6:1403-1416). Particle concentrations were estimated by an ion
exchange HPLC-based method (RQ-HPLC) that determines concentrations of intact
adenovirus particles relative to an internal adenovirus standard (Shabram et al.,

Selection of A549 cell clones expressing E1Awt, E1A-mutant proteins and E1B-55K

For selection of clones expressing E1Awt or E1A-mutant proteins plasmids
pRc/RSV-E1Awt, pRc/RSV-E1A1101, pRc/RSV-E1A1107 and pRc/RSV-E1A01/07
were transfected into A549 cells using Superfect reagent (Qiagen, Valencia CA).
After incubation for two days, selection was initiated in growth medium containing
350 μg/ml neomycin (Invitrogen, Carlsbad, CA). Drug-resistant colonies from the
cultures transfected with the E1Awt, or E1A-mutant selection plasmids, were
trypsinized, established as cell pools, and dilution cloned in 96-well plates.
Selection in culture medium containing neomycin was carried out three more
weeks, after which 48 individual clones from each transfection were expanded and
screened for virus production potential. A549-E1Ad01/07-4 based cell lines were
enengineered to express E1B-55K using the same procedure except that A549-
E1Ad01/07-4 cells were transfected with pcDNA3.1-E1B-55K and selected in 350
μg/ml hygromycin (Invivogen, San Diego, CA)
Generation of the E1-complementing cell line

The Ad5 E1A sequences containing the E1Ad01/07 mutation were cloned by standard procedures from Ad-d01/07 (Howe et al., (1990) Proc. Natl. Acad. Sci. USA 87:5883-5887) into the RSV promoter/SV40 polyA expression cassette of pRc/RSV-E1A to create pRc/RSV-E1Ad01/07. See Figure 2 for a map of pRc/RSV-E1Ad01/07. pcDNA3.1-E1B-55K was constructed by cloning the E1B-55K gene from pXC1 (McKinnon et al., (1982) Gene 19:33-42) using PCR into the CMV promoter/BGH poly A expression cassette of pcDNA3.1-hygro (Invitrogen Carlsbad, CA). See Figure 3 for a map of pcDNA3.1-E1B-55K.

The plasmid pRc/RSV-E1A01/07 was transfected into A549 cells using Superfect reagent (Qiagen, Valencia CA). After incubation for two days, selection was initiated in growth medium containing 350 µg/ml neomycin (Invitrogen, Carlsbad, CA). Drug-resistant colonies from the transfected cultures were trypsinized, established as cell pools, and dilution cloned in 96-well plates.

Selection in culture medium containing neomycin was carried out three more weeks, after which 48 individual clones from the transfection were expanded and screened for virus production potential. The plasmid pcDNA3.1-E1B-55K was transfected into A549-E1Ad01/07-4, a transformed cell line, using Superfect reagent. After incubation for two days, selection was initiated in growth medium containing hygromycin (350 µg/ml) (Invivogen, San Diego, Ca). Drug-resistant colonies from the transfected cultures were trypsinized, established as cell pools, and dilution cloned in 96-well plates. Selection in culture medium, Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (JRH Biosciences, Lenexa, KS), hygromycin (200 µg/ml) and neomycin (200 µg/ml), was carried out three more weeks, after which 48 individual clones from the transfection were expanded and screened for virus production potential.

Screening procedures for cells clones

The virus production potential of A549-based clones expressing E1Awt or E1A-mutant proteins was assessed by infecting cells that were plated on 6-well
plates with rAd-GFP (1 x 10^8 particles/ml). Virus replication efficiency was estimated by monitoring green fluorescence protein intensity and cytopathic effect (CPE). For screening E1A01/07-4 based clones established by transfection with pcDNA3.1-E1B-55K cells were infected with rAd-PRE-GFP (1 x 10^8 particles/ml) and clones with low GFP intensity, suggesting reduced p53 activity, and robust CPE were chosen for further characterization.

Virus production in the selected clones was determined by measuring the number of particles produced on a per cell basis. For this assay, cells were infected with rAd vector at 5 x 10e8 particles/ml, and at the time of infection cells in duplicate plates or flasks were trypsinized and counted using a Coulter Counter (Beckman-Coulter, Miami, FL). At a time point when the infection was complete (3-4 days) cells, and media were collected, freeze/thawed three times and centrifuged to remove cellular debris. The particle concentration in the cleared lysates was determined using anion-exchange high-performance liquid chromatography (Shabram et al., (1997) Hum. Gene Ther. 453-465).

Western blotting analysis to determine E1A protein levels

Whole cell protein lysates were prepared by incubation of the indicated cells in lysis A buffer (50 mM Tris [pH 8.0], 150 mM NaCl, 0.5% [vol/vol] IGEPAL CA-630 [Sigma, St. Louis, MO] and protease-inhibitor cocktail [Roche, Indianapolis, IN]) followed by centrifugation. Total protein concentration in the lysates was determined by the Bio-Rad protein assay (Bio-Rad, Hercules, CA) and 50 µg aliquots were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with gradient (4% -12%) NUPAGE gels (Invitrogen, Carlsbad, CA). After transfer onto PVDF membranes (Invitrogen, Carlsbad, CA) western detection was performed using antibodies specific for E1A (M73, Calbiochem, La Jolla, CA) or α-actin (Sigma-Aldrich, St. Louis, MO). Binding patterns were determined by incubating the membranes with horseradish peroxidase–conjugated anti-mouse immunoglobulin G and M (Roche, Indianapolis, IN) and detected by enhanced chemiluminesce (Amersham BioSciences, Piscataway, NJ).
Analysis of viral DNA

Small molecular weight DNA was isolated from cells infected with rAd-β-gal (1 x 10^8 particles/ml) on 6-well plates at the indicated time points using a modified Hirt extraction (Hirt, 1967). Infected cells were harvested by scraping and lysed in TNE buffer [500 mM NaCl, 10 mM Tris (7.5), 10 mM EDTA, 1% SDS, 0.5 mg/ml proteinase K (Sigma), 0.25 mg/ml pronase E (Sigma)]. After a freeze-thaw cycle lysates were cleared by centrifugation, extracted with a phenol:chloroform mixture (Sigma, St. Louis, MI) and ethanol precipitated. The nucleic acid pellets were suspended in 60 μl of TE containing RNase (Ambion, Austin, TX), after which 12 μl samples were restricted with XhoI, separated on 1% agarose gels. DNA restriction patterns were visualized by ethidium bromide staining.

Flow cytometric determination of apoptosis with FITC-VAD-FMK

E1A/wt, E1A-mutant clones and A549 control cells were plated on 6-well plates at 150,000 cells per well and infected at 24 hours with rAd-β-gal (1 x 10^8 particles/ml). At 20 hours after infection, 5 μM CaspACE FITC-TM-VAD-FMK (Promega, Madison, WI) was added directly to the culture medium. After incubation for 20 minutes at 20°C, the cells were trypsinized, washed two times with PBS and fixed in 0.5% formaldehyde for 30 minutes at 20°C. Flow cytometry analysis was performed using an FACSCalibur (Becton Dickinson, San Jose, CA) and fluorescence was measured at 530 nm (excitation of 488 nm).

Luciferase Assays

Lysates of cells transfected with reporter plasmids using Superfect (Qiagen, Valencia, CA) were mixed with the reconstituted luciferase substrate (Promega, Madison, WI) according to the manufactures specifications. Luciferase activity of
each lysate was determined using an Analyst AD (Molecular Devices, Sunnyvale, CA).

Immunoprecipitation of E1B-55K

Protein lysates (1 mg total protein), prepared as described above, were pre-cleared with protein-G sepharose beads (Amersham BioSciences, Piscataway, NJ) and incubated with 5 μg of the E1B-55K specific mouse monoclonal antibody, 2A6 (Sarnow et al., 1982) Cell 28:387-394). E1B-55K-immunoglobulin complexes were purified on protein-G sepharose, washed extensively with lysis buffer and incubated with SDS-PAGE sample buffer containing reducing agent (Invitrogen, Carlsbad, CA). The samples were separated on SDS-PAGE gels and E1B-55K protein was detected by Western blot as described above, using the 2A6 monoclonal antibody.

Serial Passage of an E1-Deleted rAd-vector in 293 or SL0003

The rAd-β-gal virus to be used for serial passage was first plaque purified three times, propagated using SL0003 cells grown in a cell factory (Nunc A/S, Kamstrupvej, Denmark) and purified by column chromatography. The resulting virus stock, rAd-β-gal (p0), tested free of replication competent adenovirus (RCA) using the 21-day bioassay described below. For the first serial passage, cell factories containing 293 or SL0003 were infected with purified rAd-β-gal (p0) at 5 x 10e8 particles/ml. Cell lysates, prepared when the infections were complete were used to infect a second set of fresh 293 or SL0003 cells seeded in cell factories. Lysates for infection of passages 2 to 5 were prepared similarly and at passage 5, virus was purified by column chromatography.

Assay for RCA

A modified bioassay based on a previously described protocol (Zhu et al., 1999) Hum. Gene Ther. 10:113-121) was used to detect RCA using 1 x 10e11 total particles of rAd-β-gal purified after propagation in 293 or SL0003. For the
initial RCA bioassay infection, 10-T225 flasks were each seeded with 1 x 10e7 cells of A549 cells and infected, 24 hours later with 1 x 10e10 particles per flask of rAd-\(\beta\)-gal prepared from 293 or SL0003 cells. After three days, a cell lysate was prepared from the infected A549 cells and used to infect a second set of flasks that had been seeded with 3 x 10e6 A549 cells. For the second infection, the rAd-\(\beta\)-gal and control lysates from the first infections were divided in half and used to infect a set of 5-T225 flasks. At 12 days after the initial infection, lysates from the second round of infections were prepared. Each lysate was divided in half and used to infect 5 flasks seeded with 3 x 10e6 A549 cells and incubated for 9 more days. Control samples included Ad5 wild-type (6 virus particles per 10 flasks) and 1 x 10e11 virus particles of rAd-\(\beta\)-gal spiked with 6 virus particles of Ad5 wild-type. Both the spiked and wild-type adenovirus controls were required to produce CPE during the 21 day infection. If CPE was observed in the rAd-\(\beta\)-gal samples during the bioassay, low molecular weight DNA was isolated from approximately 1 x 10e7 cells for viral DNA analysis.

II. Results

Production Levels

Virus production potential in selected cell lines was assessed by infection with the replication competent virus Ad5-d\(\beta\)09. A549 cells and HeLa cells produced virus at 558,000 and 444,000 particles/cell, respectively. Other lines tested including, DLD-1, U87MG, MDA468 and IGROV-1, all produced less than 120,000 particles/cell. 293 cells produced Ad5-d\(\beta\)09 virus at 139,000 particles/cell and rAd-\(\beta\)-gal virus at 127,000 particles/cells. The production capacity for Ad5-d\(\beta\)09 in HeLa and A549 cell lines suggested that these human tumor lines were the best candidates for use in development of E1-complementing cell lines.

Complementation of E1A in A549 cells

Expression of wild-type E1A has been reported to reduce the proliferative capacity of A549 cells and leads to apoptosis under serum-depleted conditions.
(Hubberstey et al., (2002) Cancer Gene Ther. 9:321-329. To limit the toxicities associated with E1A expression in A549 cells, several E1A mutants were tested for stable expression and complementation of E1 function for rAd vector production. The E1A mutants used, E1Ad/l101, E1Ad/l107 and E1Ad/01/07, carried deletions in regions of E1A proteins that were required for induction of cell cycle progression and apoptosis (Figure 1) but did not compromise the E1A transactivation domain required for stimulation of the other early virus promoters. Specifically, the E1Ad/l101 and E1Ad/l107 mutants were defective for binding to the cellular proteins p300/CBP and pRb, respectively, whereas the E1Ad/01/07 mutant was defective for binding both cellular proteins.

Plasmids expressing either E1Ad/l101, E1Ad/l107, E1Ad/01/07 or wild-type E1A under control of an RSV promoter were used to transfect A549 cells. The plasmids also contained a neomycin resistance gene as a selectable marker. Individual clones from pools of G418 resistant cells were isolated and screened by infection with rAd-GFP. The level of GFP expression was visually examined in 48 clones and then five clones were selected for further characterization. The production capacity of each clone (A549E1Ad/l101-1 to A549E1Ad/l101-5, A549E1Ad/l107-1 to A549E1Ad/l107-5, A549E1Ad/01/07-1 to A549E1Ad/01/07-5, A549E1Aw t-1 to A549E1Aw t-5) was determined by quantification of rAd-GFP particles produced per cell as described herein. Results of the production assays (see Table 2) show that the cell clones expressing either E1Aw t, or E1Ad/l101, had low virus productivity. Cell clones isolated from the E1Ad/l107 generally gave poor production yields, with the exception of cell clone E1Ad/l107-1 which had a yield of over 20,000 particles per cell. In contrast, cell clones isolated from the E1Ad/01/07 transfection pool had the highest production yields as four of the five cell clones assayed yielded particle concentrations between 20,000 and 30,000 per cell.
Table 2: rAd-GFP yield from indicated cell clones (virus particles/cell)

<table>
<thead>
<tr>
<th>Cell Clone #</th>
<th>Clone and E1A Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E1Ad/1101</td>
</tr>
<tr>
<td>Clone #1</td>
<td>2700</td>
</tr>
<tr>
<td>Clone #2</td>
<td>2200</td>
</tr>
<tr>
<td>Clone #3</td>
<td>800</td>
</tr>
<tr>
<td>Clone #4</td>
<td>3600</td>
</tr>
<tr>
<td>Clone #5</td>
<td>1200</td>
</tr>
</tbody>
</table>

Measurement of E1A protein levels in E1A expressing A549 clones

E1A protein levels in the selected clones (E1Ad/1101-1 to E1Ad/1101-5, E1Ad/1107-1 to E1Ad/1107-5, E1Ad/01/07-1 to E1Ad/01/07-5, E1Awt-1 to E1Awt-5) were determined by Western blot analysis using an E1A-specific monoclonal antibody (Harlow et al., (1985) J. Virol. 55:533-546) that recognized an epitope in the C-terminal region of E1A. This epitope was unaffected by the d/1101 and d/1107 mutations. Western analysis showed that expression levels of E1A proteins varied greatly between the clones. In addition, the amount of wild-type or mutant E1A protein expressed did not correlate with the production yields. All cell clones expressing wild-type E1A or the E1Ad/1101 mutant were inefficient producers regardless of the amount of E1A protein expressed. Among the E1Ad/1107 cell clones only E1Ad/1107-1 was an efficient producer despite expressing nearly undetectable levels of E1A protein. The E1Ad/1107-1 cell clone was not further analyzed as it grew poorly, a characteristic undesirable in a production cell line. The E1Ad/01/07 cell clones also displayed various levels of protein with the best producer cell clone E1Ad/01/07-4 expressing lower levels as compared to E1Ad/01/07-5, which had comparatively high levels.

Analysis of viral replication and apoptosis after infection

The E1Awt-2 and E1Ad/01/07-5 cell clones, which expressed similar levels of E1A proteins, were selected to further characterize the biological basis for the different production yields. Because the E1Ad/01/07-4 cell clone produced viral
particles more efficiently than any other line (see Table 2), it was also selected for further characterization.

The ability of the A549-E1Awt-2 and the two A549-E1Ad01/07 cell clones (E1Ad01/07-4 and E1Ad01/07-5) to support replication of an E1-deleted virus rAd-β-gal virus was analyzed by restriction enzyme digest of low molecular weight DNA from infected cells. Restriction analysis indicated that there were differences in the quantity and quality of viral DNA isolated from the various cell lines. The quality of rAd-β-gal DNA from the E1Ad01/07 cell clones was comparable to 293 cell isolated viral DNA. Extremely low levels of rAd-β-gal viral DNAs were produced from the E1Awt-2 clone, and the DNA that was isolated smeared on the agarose gel with DNA fragmentation suggesting high levels of apoptosis in these cells.

Analysis of viral DNA produced from clone E1Awt-2 suggested that apoptosis could be occurring, potentially limiting the amount of virus produced. A FITC-VAD-FMK peptide was used to measure caspase activity by flow cytometry as an indicator of apoptotic cell death after infection. As shown in Table 3 almost half of the E1Awt-2 cells were apoptotic 20 hours after infection, whereas apoptosis was not induced in the E1Ad01/07-4 and E1Ad01/07-5 cell clones. Together these results suggest that viral infection of the E1Awt-2 cells induces premature apoptosis, limiting viral DNA replication and subsequent virus particle production.

Table 3: Percentage of apoptotic cells at 20 hours after infection with rAd-β-gal

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Clone</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E1Awt-2</td>
<td>E1Ad01/07-4</td>
</tr>
<tr>
<td>Experiment 1</td>
<td>49%</td>
<td>4%</td>
</tr>
<tr>
<td>Experiment 2</td>
<td>49%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Status of the E2F and p53 transcription factors in E1Awt and E1Ad01/07 cell clones

Induction of apoptosis by E1A has been shown to be linked to binding of pRb and p300/CBP, resulting in activation of the E2F and p53 transcription factors (Querido et al., (1997) J. Virol. 71: 3526-3533). To measure E2F and p53 activity
levels in the selected production cell clones, reporter plasmids were constructed in which a luciferase gene was placed under control of either a consensus p53 promoter or an E2F promoter. p53 and E2F promoter activities were found to be elevated in the E1Awt-2 clone (see Table 4). In contrast, p53 and E2F activity levels in the E1Ad01/07-4 and E1Ad01/07-5 clones were similar to the control A549 cells.

Table 4: Activation of the p53 and E2F transcription factors in the indicated cell clones (relative fluorescence units x 1e+6)

<table>
<thead>
<tr>
<th>Reporter Plasmid</th>
<th>Clones</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E1Awt-2</td>
<td>E1Ad01/07-4</td>
</tr>
<tr>
<td>p53-luciferase</td>
<td>3.7 +/- 0.22</td>
<td>0.81 +/- 0.14</td>
</tr>
<tr>
<td>E2F-luciferase</td>
<td>4.7 +/- 0.19</td>
<td>0.53 +/- 0.17</td>
</tr>
</tbody>
</table>

Complementation of E1B in E1Ad01/07-4

Although the E1Ad01/07-4 clone was capable of producing replication defective adenovirus in small scale format, it was reasoned that the yield may be further improved by complementation using E1B. To study the production yield of E1Ad01/07-4 cells after E1B complementation, E1Ad01/07-4 cells were infected, at two different concentrations (1 x 10e8 particles/ml and 5 x 10e8 particles/ml), with a series of E1 adenovirus mutants to express E1B-19K and E1B-55K either individually or together. It was found that infection of E1Ad01/07-4 cells of a virus that produces a non-functional truncated E1A and wild-type E1B (Ad-NT1010) yielded virus comparable to Ad5-d309 (see Table 5). In contrast, a mutant virus that expressed E1A but no E1B (AdE1B') yielded only about 55,000 particles per cell after infection at both concentrations of test virus. These results suggested that complementation of E1B increases production yield. To further define the contribution of the E1B region, viruses expressing either E1B-19K (d1520) or E1B-55K (AdE1B-19K') alone were tested for growth on E1Ad01/07-4 cells. The E1B-
19K expressing virus productivity was considerably lower than Ad5-d309 whereas the E1B-55K expressing virus produced at levels higher than Ad5-d309.

Table 5: Virus yield from E1Ad01/07-4 cells after infection with various E1\(^{-}\) mutant adenovirus (E1A, E1B-19K, E1B-55K status indicated)

<table>
<thead>
<tr>
<th>Status</th>
<th>Virus</th>
<th>d309</th>
<th>d1520</th>
<th>E1B19K</th>
<th>E1B</th>
<th>NT1010</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1A</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E1B-55K</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E1B-19K</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Virus Yield</td>
<td>(1e+8 p/ml)</td>
<td>15500</td>
<td>86000</td>
<td>231000</td>
<td>55000</td>
<td>177000</td>
</tr>
<tr>
<td>Yield</td>
<td>(5e+8 p/ml)</td>
<td>24200</td>
<td>84000</td>
<td>306000</td>
<td>58000</td>
<td>261000</td>
</tr>
</tbody>
</table>

These results suggested that addition of an E1B-55K gene increases the viral yield in the E1Ad01/07-4 cell line. Use of only the E1B-55K coding sequences may further reduce the possibility of generating RCA during rAd production. A selection plasmid was used in which the E1B-55K gene was cloned under control of the CMV promoter (pcDNA-55K) to complement E1B-55K function in E1Ad01/07-4 cells. The sequence of the expression cassette in pcDNA-55K was verified by DNA sequencing and expression of intact E1B-55K protein was demonstrated by transient transfection in HeLa cells.

A549E1Ad01/07-4 cells were transfected with pcDNA-55K, which also carried a hygromycin resistance marker, and individual clones (A549E1Ad01/07-4-E1B-55K-1 to A549E1Ad01/07-4-E1B-55K-6) were selected from the drug-resistant pool by dilution cloning. Clones were screened for E1B-55K function using an immunofluorescent assay that measured inhibition of a p53 responsive promoter (PRE) controlling GFP expression carried in a replication defective adenovirus named rAd-PRE-GFP. In cells expressing wild type p53, such as the parental A549E1Ad01/07-4 line, GFP was expressed at high levels from rAd-PRE-GFP. In contrast, expression of GFP from rAd-PRE-GFP was low in 293 cells (control) and A549E1Ad01/07-4-E1B-55K cells, which express E1B-55K and wild-type p53.
Several clones including A549E1Ad/01/07-4-E1B-55K-2 were selected using this assay and further characterized for E1B-55K expression and virus production.

Similar levels of E1B-55K protein were detected by immunoprecipitation, with the E1B-55K specific monoclonal antibody 2A6, in cell lysates from all of the selected clones (A549E1Ad/01/07-4-E1B-55K-1 to A549E1Ad/01/07-4-E1B-55K-6) and one clone A549E1Ad/01/07-4-E1B-55K-2, hereafter designated SL0003, was selected for further characterization based on its growth properties and virus production.

Cell line stability is important for pharmaceutical scale-up production and therefore the virus growth capacity of SL0003 cells was evaluated during 20 cell culture passages. Table 6 shows that SL0003 cells assayed at passage 5, 15 and 20 produced rAd-β-gal virus at an average of about 96,000 particles per cell.

Table 6: rAd-β-gal yield from SL0003 cells

<table>
<thead>
<tr>
<th>SL0003 Passage No.</th>
<th>Particle No. (+/- Std.Dev.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>88800 +/- 2800</td>
</tr>
<tr>
<td>15</td>
<td>105600 +/- 3700</td>
</tr>
<tr>
<td>20</td>
<td>93021 +/- 2800</td>
</tr>
</tbody>
</table>
RCA testing of virus produced in SL0003 cells

To test for RCA generation during production of rAd vectors, rAd-β-gal was serially-passaged in either SL0003 cells or 293 cells grown in cell factories containing approximately 1×10^9 cells, using a RCA-free virus lot as the initial inoculum. The bioassay used for detection of RCA had a sensitivity level of 1 particle of wild-type virus per 1.7×10^{10} particles of rAd-β-gal (see above). After five serial passages, RCA was detected in rAd-β-gal virus purified from 293 cells, but no RCA was detected in rAd-β-gal purified from SL0003 cells. PCR analysis confirmed that the virus detected in the RCA assay from the 293 cells arose from recombination rather than contamination by Ad5.

III. Discussion

As exemplified herein, a human cell line (designated "SL0003") was created which incorporates separate expression cassettes, the first expression cassette containing an adenoviral E1A gene comprising the d01/07 deletions and a second expression cassette containing the adenoviral E1B-55K gene which provides selected viral and cellular functions to complement adenovirus replication in A549 tumor cells. Optimization of E1 complementation in SL0003 cell line was achieved using sequential addition of separate E1A and E1B expression cassettes. In the SL0003 cell line, the E1Ad01/07 mutant gene was constitutively expressed to provide E1A function and to reduce cellular toxicity associated with wild-type E1A. E1B function in the SL0003 cell line was provided by constitutive expression of the E1B-55K gene; the E1B-19K gene was not included. Separation of the E1A and E1B cassettes, use of a mutant E1A gene, and only the E1B-55K gene eliminated the possibility of reconstitution of an intact E1 region through either homologous or non-homologous recombination and subsequent generation of RCA. Although the adenovirus sequences used for complementation in the SL0003 cell line are extensively modified compared to the wild-type E1 adenovirus sequence in 293 cells, the SL0003 cell line was shown to produce rAd vectors at viral production levels comparable to those obtained from the 293 cell line and without generation of detectable RCA.
Example 2: Generation of E1A, E1b and E2b Complementing Cell Line and Use of the Cell Line in the Production of Recombinant Adenovirus

This example demonstrates the utility of an E1A, E1b and E2b complementing cell line for the production of high titers of replication-defective, helper-independent recombinant viruses.

I. Materials & Methods

Tissue Culture

A549, CHO-K1, Saos2, HeLa, and HepG2 cells were all purchased from ATCC. C7 cells (Amalfitano et al. (1996) PNAS 93:3352-3356) were kindly provided by J. Chamberlain, U. of Michigan. Human Tenon's capsule ocular fibroblast cells (designated as HOF cells) were isolated as described in Perkins et al (2002) Arch. Ophthalmol. 120 :941-9). The development of Clone 4 cells are described above in Example 1; the clone is designated clone E1A01/07-4i. A549, C7, and HepG2 cells were maintained in Dulbecco's modified Eagle's medium (DME) supplemented with 10% fetal bovine serum (FBS). HeLa cells were maintained in Eagle's minimal essential media (MEM) supplemented with 5% FBS. CHO-K1 and Saos2 cells were maintained in Hams F12/DME media supplemented with 10% FBS. HOF cells were maintained in DME + 20% FBS. Clone 4 cells were maintained in DME + 10% FBS supplemented with 350 μg/ml of G418 (Geneticin, Invitrogen).

Isolation of Ad E2b Pol Expressing Cells

Clone 4 cells were transfected with 10 μg of linearized plasmid pMGCME2bPol using CaPO4 transfection (Sambrook et al. Molecular Cloning: A Laboratory Manual (1998) Cold Spring Harbor Laboratory Press, Plainview, New York). Following transfection, the cells were selected in DME + 10% serum supplemented with 150 μg/ml of hygromycin. The pool underwent limiting dilution cloning under drug selection and clone 3D8 was chosen. Clone 3D8 was grown in DME + 10% serum supplemented with 150 μg/ml of hygromycin and 350 μg/ml G418.
Isolation of Ad E1b Expressing Cells

15M15 cells were derived from clone 3D8 described above. 3D8 cells were transfected with 10 µg linearized pVITRO2IRESPuroE1b (Figure 4) using CaPO₄ transfection as before. Clone 15 was originally isolated from transfected pools treated with 0.2 µg/ml puromycin. Clone15M15 was further isolated from clone 15 through limiting dilution isolation and propagated in DME + 10% FBS supplemented with 350 µg/ml of G418, 150 µg/ml of hygromycin, and 0.2 µg/ml of puromycin.

Plasmid Constructs Expressing Adenovirus Functions

Adenovirus E2b polymerase sequence was isolated from the plasmid pACN (Wills et al. (1995) Can. Gene Ther. 2:191-197) by PCR utilizing primers to add the first three upstream amino acids ‘MAL’, as described by Shu et al. (1988) Virol. 165:348-356, to the rest of the Ad 5 E2b polymerase coding sequence. The primers also added restriction sites allowing the PCR fragment to be cloned into the vector pMG (InvivoGen, San Diego, CA) downstream of the CMV promoter into the Bam HI restriction site. The resulting plasmid was named pMGCMVE2Bpol (Figure 5). The CMV driven full-length E2b polymerase coding sequence was followed by an IRES sequence and the hygromycin resistance gene which was used for selection.

The plasmid pIRESPuro2 (from Clontech, Palo Alto, CA) was digested with NdeI and BstBI, and the 4.7 kb fragment containing the ampicillin and puromycin resistance genes were isolated from a 1% TAE agarose gel following the protocol from the QIAEX II gel extraction kit from Qiagen (Valencia, CA). The plasmid pVITRO2 (from InvivoGen, San Diego, CA) was digested with NdeI and AccI, and the 3.9 kb fragment containing the human ferritin light and heavy subunit promoters with enhancers was isolated from a 1% TAE agarose gel as above. The two fragments were ligated together to form the plasmid pVITRO2IRESPuro. Adenovirus E1b sequence was isolated from the adenoviral plasmid pTG4609 (Transgene, FR) by PCR and subcloned into the plasmid pCR-Blunt II TOPO (Invitrogen, Carlsbad, CA) cloning vector. From there, the E1b fragment was
digested out with EcoRI and BamHI and treated with Klenow and blunt end cloned into EcoRV digested pVITRO2IRESPuro. This created the plasmid pVITRO2IRESPuroE1b which had the E1b region driven by the human ferritin heavy subunit promoter and SV40 enhancer with a puromycin resistance gene for cell selection. The correct orientation of the E1b sequence was verified through restriction digestion patterns.

Viral Constructs

The construction of GFCB has been described previously (Cheney *et al.*, 1998) Can. Res. 58: 2331-2334). Briefly, it is an E1,pIX, E3 deleted virus expressing the enhanced green fluorescent protein (eGFP, Clontech, Palo Alto, CA) from the human cytomegalovirus immediate-early promoter/enhancer and Ad 2 TPL cDNA from the E1 deleted region, utilizing the E1b/pIX viral polyA signal to terminate its message. CONG has also been described previously. It contains a consensus p53 response element driving eGFP in the 3’ to 5’ orientation in the deleted E3 region of an E1/E3 deleted viral backbone similar to GFCB. The viral constructs CGAB, 42GC, 46GC, and 2GCP all utilize the same expression cassette isolated from the plasmid pEGFP-N1 (Clontech, Palo Alto, CA). The cassette contains the human CMV immediate-early promoter / enhancer, the enhanced green fluorescent protein gene, and the SV40 early mRNA polyadenylation signal. For CGAB, this expression cassette replaces that contained in GFCB. 42GC, 46GC and 2GCP all contain their expression cassettes in the 5’ to 3’ orientation in the E3 deleted region of the viral backbone. 42GC and 2GCP are also E1a and E1b deleted, with pIX remaining intact. 46GC is an E1 intact virus and is replication competent. The 2GCP virus also has approximate 600 bp deletion in the E2b viral DNA polymerase region as reported in Amalfitano et al. (1998) (1996) PNAS 93: 3352-3356) rendering it replication incompetent in the absence of exogenous E2b polymerase protein.
Western

To determine E2b polymerase expression levels, clones 3C4, 3C9, 3D8, and parental clone 4 and A549 cells were seeded in 10 cm dishes. The cells were incubated and allowed to grow for 2 days and then harvested. Equal protein, as determined by Bradford assay (Bio-Rad cat# 500-0006), was loaded onto a 4-12% NuPAGE Bis-Tris gel (Invitrogen, Carlsbad, CA). The protein was transferred and the filter was blocked, then incubated with a 1:2,000 dilution of rabbit anti E2b polymerase polyclonal antibody (provided by Dr Padmanabhan, U. Kansas), followed by a 1:2,000 dilution of goat anti-rabbit IgG-HRP (Jackson ImmunoResearch, West Grove, PA). The filters were developed with SuperSignal West Pico Chemiluminescent kit (Pierce, Rockford, IL) and exposed to film. The filters were then stripped and re-probed with β-actin (Sigma, St. Louis, MO) at a 1:10,000 dilution, followed by sheep anti-mouse IgG-HRP (Amersham Biosciences, Piscataway, NJ) at a 1:2,000 dilution.

In determining adenovirus late gene protein expression, CHO, HELA, HepG2, and 15M15 cells were seeded in 6 well plates and infected the following day with 5 x 10⁸ P/ml of CGAB, 42GC, 2GCP, 46GC or GFCB virus. The cells were harvested 4 days post transduction, and total protein content was determined by Bradford assay. Equal total protein was loaded onto 4-12% NuPAGE Bis-Tris gel and transferred onto PVDF filters (Millipore Corp, Bedford, MA). The filters were incubated with rabbit anti sera to Adenovirus type 5 (Access Biomedical, San Diego, CA) at a 1:2,500 dilution, followed by a 1:2,000 dilution of goat anti-rabbit IgG-HRP. The filters were then processed as described above.

Virus Productivity

To evaluate the viral productivity in the engineered cells, selected clones were seeded in 10 cm dishes and infected with 5x10⁸ p/ml of 2GCP virus. An additional control plate was seeded for counting at the time of infection. Infected cells were harvested 3 – 4 days post infection when the majority of cells had rounded up and lifted off the plate, indicating viral replication had occurred. Virus was released from the cellular lysates by 3 cycles of freeze / thawing and removal
of cellular debris by centrifugation. Virus was then purified and quantitated by column chromatography as described previously (Shabram et al. (1997) Hum. Gene Ther. 8: 453-465).

Productivity was determined by dividing the total virus particles by the number of cells at the time of infection, giving the virus particle per cell ratio as a measure of productivity of the cells in complementing virus growth.

Cytofluor / Transgene expression

Cells were seeded in 6 well plates and returned to their incubators until they had reached 80-90% confluency. They were then infected with 5×10^8 P/ml of viruses in triplicate in a total volume of 3 ml per well. Cells were measured for GFP transgene expression using the CytoFluor Series 4000 Multi-well plate reader (PerSeptive Biosystems) and photographed using a Hamamatsu 3CCD analog camera and controller. GFP fluorescence is plotted as the average of relative Cytofluor values for the triplicate wells at each time point, minus background fluorescence, and +/- the standard deviation. Twice a week, 0.5 ml of fresh media was added per well for all cells.

E1b Complementation

Clones to be analyzed for E1b expression were seeded in 6 well plates and allowed to incubate and grow until they had reached approximately 80-90% confluency. At this point, the cells were infected with 5×10^8 P/ml of either GFCB or CONG virus in triplicate. Infected cells were then photographed using a Hamamatsu 3CCD analog camera and controller and assayed for GFP fluorescence using the CytoFluor Series 4000 Multi-well plate reader (PerSeptive Biosystems) set at 450 nm excitation and 508 nm emission at 48 hours post-infection. Average values from the duplicate wells +/- standard deviation were plotted as the ratio of CONG fluorescence over the GFCB derived fluorescent values.

II. **Results**
Addition of E2b polymerase to E1a complementing cells

Following transfection of clone 4 cells with the E2b polymerase expressing plasmid pMGCMVE2bPol, resistant cells were selected by treatment with hygromycin and isolated as individual clones by limiting dilution purification. Western analysis of cellular lysates was used to select clones specifically expressing the 140 kd band representing E2b polymerase. In Figure 7A, the clones 3C4, 3C9, and 3D8 all show the expected band for E2b Pol. This band is not present in the parental clone # 4, or in A549 cells upon which all clones were based. All lanes were loaded at equal total protein concentrations as determined by Bradford assay and verified by β-actin detection. Since equal total protein was loaded per lane, the density of the polymerase band should reflect its level of expression in that particular clone. When compared to the ability of the particular clones to produce the polymerase deleted virus 2GCP, there is a positive correlation between the amount of polymerase expressed and the productivity of the clone (Figure 7B). Since clone 4 was not engineered to express E2b polymerase, it is not able to support the growth of a polymerase deleted virus and no virus was recovered. Clone 3D8 expressed the highest amount of polymerase protein and also produced the most virus particles per cell. This clone was chosen for further analysis and was used as the parental line for introducing and expressing adenovirus E1b proteins.

Addition of E1b to 3D8

Clone 3D8 was transfected with the E1b encoding plasmid pVITRO2IRESPuroE1b, and individual clones resistant to puromycin treatment were selected and isolated as before. A functional assay was used to detect E1b function during the isolation process using the viruses CONG and GFCB. Clones isolated by limiting dilution which had been expanded to duplicate 6 well plates and were infected with 5 x 10e8 P/ml of CONG or GFCB virus. Forty eight hours later, GFP expression from the infected clones was measured by Cytofluor analysis. Infection with GFCB is used to control for potentially differing infectability of clones to adenovirus and so that a ratio of E1b mediated decrease in GFP fluorescence
can be established. CONG is a virus using a p53 consensus sequence response
5 element (p53RE) to drive GFP expression. The clones are based on A549 cells,
which are positive for p53 expression. Therefore, infection of A549 based clones
such as 3D8 will lead to p53 mediated expression of GFP. Adenovirus E1b 55 kd
protein is known to bind p53 and convert it from a transcriptional activator to a
transcriptional repressor (Yew and Berk (1992) Nature 357:82-85, Roth and
10 should then bind up p53 and prevent or reduce GFP fluorescence from CONG
infected cells. Although the p53RE driving GFP expression is a weaker promoter
than the CMV utilized in GFCB, clones expressing E1b proteins should lead to a
further decrease in GFP expression from CONG dependent on the amount of E1b
55 expressed. In Figure 8A, parental cell line 3D8 and three clones infected with
15 either GFCB or CONG virus were photographed and their GFP fluorescence levels
were quantitated using Cytofluor analysis. In Figure 8B, the ratio of GFP
fluorescence from CONG to GFCB was plotted. The change in values represents
the varying degrees of decrease in GFP expression from CONG infections relative to
the parental 3D8 clone due to differences in expression of E1b 55kd from the cells.
Clone 15 showed the greatest differential, suggesting that it should be expressing
the greatest amount of E1b protein. It was shown above that the addition of E1b
20 55 to A549 based clones already expressing E1a function leads to an increased
productivity of virus growth in the cells. When the clones in Figure 8 were tested
for productivity in the growth of 2GCP virus, an inverse correlation was found
between the degree of GFP expression and productivity (Figure 8C). Clones which
25 showed the greatest decrease in GFP expression, which should result from greater
expression of the E1b 55 protein, had the greatest increase in productivity
compared to the non-E1b expressing parental clone 3D8 (Figure 8C). Based on
these results, clone C15 was chosen for further study.

Final Clone analysis 15M15

Clone 15 underwent further purification through sub-cloning in a
30 combination selection media of G418, hygromycin, and puromycin. This
combination should select for retention of E1a, E1b and E2b function. Further screening of isolated clones by productivity assays with 2GCP virus led to the selection of 15M15 as the final choice for the new complementing cell line. In Figure 9A shows the productivity of clone 15M15 for 2GCP growth compared to its parental clone 3D8, as well as to C7 cells. C7 cells are based on the Ad E1 complementing 293 cells which have been further engineered to also express E2b polymerase (Amalfitano et al. (1996) PNAS 93:3352-3356). The 15M15 cell line is able to propagate the polymerase deleted virus 2GCP to a higher extent than its 293 based counterpart (C7) or its E1b lacking parental cell line 3D8. The genomic stability of the new line was tested by serial passage and infection of the cells either in their complete selection media mix or just media alone. Figure 9B shows the results of viral productivity under each condition at passages 1, 5, and 10 for cells infected with 2 different doses of 2GCP virus. The clone’s ability to complement the adenovirus functions necessary to propagate polymerase deleted virus to high yields appears very stable through 10 passages, even without selection drugs in the media. Western analysis was used to detect the E1a and E2b polymerase proteins from cells isolated at passages 1, 5, and 10. As shown in Figure 9C, both proteins also appeared to be stable over 10 passages, even in the absence of selection media.

Viral Constructs

Figure 6 shows a schematic for the viruses used in this study. The E3 and E1 deletions indicated are the same for all but two of the viruses. For control virus GFCB, the E1 deletion extends an additional 700 base pairs into the pIX coding sequence, allowing the E1b/pIX viral polyA signal to be used for the GFP expression cassette. Virus 46GC is E1 wild-type and replication competent. The CMV-GFP-pA expression cassette is identical for the CGAB, 42GC, 2GCP and 46GC viruses as verified by restriction analysis, PCR, and sequencing. In the CONG virus, the CMV promoter in the expression cassette is replaced by a p53 consensus response element to drive the GFP gene. The E2b polymerase deletion in 2GCP restricts its
growth to cell lines expressing E2b polymerase. 2GCP was originally isolated in the E2b polymerase expressing cell line C7.

Decreased Late Ad Gene Expression

Infected cell lysates were analyzed for adenovirus protein expression by Western analysis using polyclonal antibody against Ad 5. The complementing producer cell line 15M15 was infected with GFCB, CGAB, 42GC, and 2GCP. All 4 viruses are able to replicate well in this cell line and all show expected viral bands (Figure 10A).

CHO cells were infected with CGAB, 42GC, 2GCP and 46GC virus. As shown in Figure 10B, only the replication competent 46GC virus showed any viral bands corresponding to hexon and fiber in this non-complementing cell line.

HeLa and HepG2 cells were infected with CGAB, 42GC, 2GCP and 46GC virus. HepG2 cells were also infected with GFCB virus. HeLa cells are able to partially complement E1a function due to the expression of the E7 gene from integrated human papillomavirus (Schneider-Gadicke and Schwarz (1986) EMBO 5:2285-2292, Phelps et al. (1988) Cell 53:539-547), while HepG2 cells have been reported to have high NFIL-6 responsive activity, which can functionally substitute for E1a in activation of other adenovirus promoters (Spergel and Chen-Kiang (1991) PNAS 88:6472-6476). In both cell lines, there is a greatly reduced or absent expression of viral proteins observed with the polymerase deleted 2GCP virus compared to the other E1/E3 deleted but polymerase intact viruses (Figures 10C and 10D). These results are in agreement with the findings of others using viruses deleted for essential replication functions (refs, E2b pol, pT,p, DBP). A decrease in the ability of a virus to express its own proteins in infected cells is the basis for reducing the immune mediated clearance of infected cells and prolonging transgene expression (Yang et al., (1994) PNAS 91: 4407-4411; Gilgenkrantz et al., (1995) Hum. Gene Ther. 6: 1265-1274; Yang et al., (1995) J. Immunol. 155: 2564-2570). The replication competent 46GC virus shows the highest levels of viral proteins as expected.
Improved Transgene Expression

In comparing GFP fluorescence \textit{in vitro}, despite having identical expression cassettes, there was a consistent ranking of constructs. GFP fluorescence was consistently greatest with 2GCP, followed by 42GC, and then CGAB. This was found in multiple cell types, including CHO, Saos 2, and human ocular fibroblasts (HOF) cells as shown in Figure 11. Cytofluor values are plotted as the average from triplicate infections +/- their standard deviation, along with representative pictures of the cells infected with the indicated constructs for HOF and Saos 2 cells in Figure 11A and for CHO cells in Figure 11B. The high levels of \textit{in vitro} expression from the new constructs persisted over extended periods of time.

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

Patents, patent applications, publications, product descriptions, and protocols are cited throughout this application, the disclosures of which are incorporated herein by reference in their entireties for all purposes.
What is claimed is:

1. An isolated human cell line comprising:
 a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and
 b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein.

2. The cell line of claim 1, wherein the second nucleic acid molecule does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein.

3. An isolated human cell line comprising:
 a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members;
 b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and
 c) a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein.

4. The cell line of claim 3, wherein the third nucleic acid molecule comprises a nucleotide sequence encoding adenoviral E1B-55K and E1B-19K proteins.

5. The cell line of claim 1, wherein the E1A proteins comprise:
 (a) a first deletion corresponding to:
 (i) amino acid residues 4-25 of an E1A 289R protein (d/1101) and amino acid residues 4-25 of an E1A 243R protein (d/1101); or
(ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and

(b) a second deletion corresponding to:

(i) amino acid residues 111-123 (d/l107) of an E1A 289R protein and amino acid residues 111-123 (d/l107) of an E1A 243R protein; or

(ii) amino acid residues 124-127 (d/l108) of an E1A 289R protein and amino acid residues 124-127 (d/l108) of an E1A 243R protein.

6. The cell line of claim 3 or 4, wherein the E1A proteins comprise:

(a) a first deletion corresponding to:

(i) amino acid residues 4-25 of an E1A 289R protein (d/l101) and amino acid residues 4-25 of an E1A 243R protein (d/l101); or

(ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and

(b) a second deletion corresponding to:

(i) amino acid residues 111-123 (d/l107) of an E1A 289R protein and amino acid residues 111-123 (d/l107) of an E1A 243R protein; or

(ii) amino acid residues 124-127 (d/l108) of an E1A 289R protein and amino acid residues 124-127 (d/l108) of an E1A 243R protein.

7. The human cell of claim 1, wherein said E1A proteins comprise:

(a) a first deletion corresponding to amino acid residues 4-25 of an E1A 289R protein (d/l101) and amino acid residues 4-25 of an E1A 243R protein (d/l101); and
(b) a second deletion corresponding to amino acid residues 111-123 (Δl1107) of an E1A 289R protein and amino acid residues 111-123 (Δl1107) of an E1A 243R protein.

8. The human cell of claim 3 or 4, wherein said E1A proteins comprise:

(a) a first deletion corresponding to amino acid residues 4-25 of an E1A 289R protein (Δl1101) and amino acid residues 4-25 of an E1A 243R protein (Δl1101); and

(b) a second deletion corresponding to amino acid residues 111-123 (Δl1107) of an E1A 289R protein and amino acid residues 111-123 (Δl1107) of an E1A 243R protein.

9. The cell line of claim 1 further comprising a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2a DNA binding protein, an adenoviral E2b pre-terminal protein, or an adenoviral E2b IVa2 protein.

10. The cell line of claim 1 further comprising a third nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E4 proteins.

11. The cell line of claim 10, wherein the adenoviral E4 proteins are encoded by ORF 6, ORF 3 and ORF 6/7 of an adenoviral E4 gene.

12. The cell line of claim 1 further comprising a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral protein encoded by L4 100K.

13. The cell line of claim 3 further comprising a fourth nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2a DNA binding protein, an adenoviral E2b pre-terminal protein, or an adenoviral E2b IVa2 protein.
14. The cell line of claim 3 further comprising a fourth nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E4 proteins.

15. The cell line of claim 14, wherein the adenoviral E4 proteins are encoded by ORF 6, ORF 3 and ORF 6/7 of an adenoviral E4 gene.

16. The cell line of claim 3 further comprising a fourth nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral protein encoded by L4 100K.

17. The cell line of claim 1 or 5, wherein the first and second nucleic acid molecules are each operably linked to a regulatory element.

18. The cell line of claim 3 or 4, wherein the first, second and third nucleic acid molecules are each operably linked to a regulatory element.

19. The cell line of claim 6, wherein the first, second and third nucleic acid molecules are each operably linked to a regulatory element.

20. The cell line of claim 1, wherein the cell line is derived from a A549 cell line, HCT-15 cell line, IGROV-1 cell line, HeLa cell line, U87 cell line, W162 cell line or 293-D22 cell line.

21. The cell line of claim 3 or 4, wherein the cell line is derived from a A549 cell line, HCT-15 cell line, IGROV-1 cell line, HeLa cell line, U87 cell line, W162 cell line or 293-D22 cell line.

22. The cell line of claim 1, 3 or 4, wherein the first nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:26.

23. The cell line of claim 1, wherein the second nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:15.

24. The cell line of claim 3 or 4, wherein the second nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:23.
25. The cell line of claim 3, wherein the third nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:15.

26. The cell line of claim 4, wherein the third nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:25.

27. A recombinant adenovirus production cell line, designated SL0003, deposited with the American Type Culture Collection (ATCC) under accession number PTA-6231.

28. A recombinant adenovirus production cell line, designated SL0006, deposited with the American Type Culture Collection (ATCC) under accession number PTA-6663.

29. A plasmid system for producing a human cell for the production of recombinant adenovirus comprising in separate containers:

 (a) a first expression cassette comprising a regulatory element operably linked to a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and

 (b) a second expression cassette comprising a regulatory element operably linked to a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein.

30. The plasmid system of claim 29, wherein the second nucleic acid molecule does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein.

31. A plasmid system for producing a human cell for the production of recombinant adenovirus comprising in separate containers:

 (a) a first expression cassette comprising a regulatory element operably linked to a first nucleic acid molecule comprising a nucleotide sequence encoding
adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members;

(b) a second expression cassette comprising a regulatory element operably linked to a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and

(c) a third expression cassette comprising a regulatory element operably linked to a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein.

32. The plasmid system of claim 31, wherein the third nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E1B-55K protein and E1B-19K protein.

33. The plasmid system of claim 29, 31 or 32, wherein the E1A proteins comprise:

(a) a first deletion corresponding to:

(i) amino acid residues 4-25 of an E1A 289R protein (d/l101) and amino acid residues 4-25 of an E1A 243R protein (d/l101); or

(ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and

(b) a second deletion corresponding to:

(i) amino acid residues 111-123 (d/l107) of an E1A 289R protein and amino acid residues 111-123 (d/l107) of an E1A 243R protein; or

(ii) amino acid residues 124-127 (d/l108) of an E1A 289R protein and amino acid residues 124-127 (d/l108) of an E1A 243R protein.

34. A method for producing a human cell for the production of replication-defective adenovirus comprising transforming a human cell with a first nucleic acid molecule and a second nucleic acid molecule, wherein the first nucleic acid...
molecule comprises a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members, and the second nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E1B-55K protein.

35. The method of claim 34, wherein the second nucleic acid molecule does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein.

36. A method for producing a human cell for the production of replication-defective adenovirus comprising transforming a human cell with a first nucleic acid molecule, a second nucleic acid molecule and a third nucleic acid molecule, wherein the first nucleic acid molecule comprises a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members, the second nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E2b polymerase and the third nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E1B-55K protein.

37. The method of claim 36, wherein the third nucleic acid molecule comprises a nucleotide sequence encoding an adenoviral E1B-55K protein and E1B-19K protein.

38. The method of claim 34, 36 or 37, wherein said E1A proteins comprise:

(a) a first deletion corresponding to:

(i) amino acid residues 4-25 of an E1A 289R protein (d/1101) and amino acid residues 4-25 of an E1A 243R protein (d/1101); or

(ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and

(b) a second deletion corresponding to:
(i) amino acid residues 111-123 (d/l1107) of an E1A 289R protein and amino acid residues 111-123 (d/l1107) of an E1A 243R protein; or

(ii) amino acid residues 124-127 (d/l1108) of an E1A 289R protein and amino acid residues 124-127 (d/l1108) of an E1A 243R protein.

39. The method of claim 34, wherein the first and second nucleic acid molecules are each operably linked to a regulatory element.

40. The method of claim 36 or 37, wherein the first, second and third nucleic acid molecules are each operably linked to a regulatory element.

41. The method of claim 34, 36 or 37 wherein the cell is derived from a A549 cell line, HCT-15 cell line, IGROV-1 cell line, HeLa cell line, U87 cell line, W162 cell line or 293-D22 cell line.

42. The method of claim 34, 36 or 37, wherein the first nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:26.

43. The method of claim 34, wherein the second nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:15.

44. The method of claim 36 or 37, wherein the second nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO: 23.

45. The method of claim 36, wherein the third nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:15.

46. The method of claim 37, wherein the third nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:18.

47. A method for producing recombinant adenovirus comprising culturing human cells transfected with recombinant adenovirus vector under conditions so as to permit replication of the viral genome in the cells, wherein the cells comprise:
(a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members; and

(b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein.

48. The method of claim 47, wherein the second nucleic acid molecule does not comprise a nucleotide sequence encoding an adenoviral E1B-19K protein.

49. A method for producing recombinant adenovirus comprising culturing human cells transfected with recombinant adenovirus vector under conditions so as to permit replication of the viral genome in the cells, wherein the cells comprise:

(a) a first nucleic acid molecule comprising a nucleotide sequence encoding adenoviral E1A proteins deficient in binding to p300 protein family members and pRb protein family members;

(b) a second nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E2B polymerase; and

(c) a third nucleic acid molecule comprising a nucleotide sequence encoding an adenoviral E1B-55K protein.

50. The method of claim 49, wherein the third nucleic acid molecule comprises a nucleotide sequence encoding adenoviral E1B-55K and E1B-19K proteins.

51. The method of claim 47, 49 or 50 further comprising harvesting the cells and recovering the recombinant adenovirus.

52. The method of claim 47, 49 or 50, wherein the E1A proteins comprise:

(a) a first deletion corresponding to:

(i) amino acid residues 4-25 of an E1A 289R protein (d/1101) and amino acid residues 4-25 of an E1A 243R protein (d/1101); or
(ii) amino acid residues 36-49 of an E1A 289R protein and amino acid residues 36-49 of an E1A 243R protein; and

(b) a second deletion corresponding to:

(i) amino acid residues 111-123 (d/1107) of an E1A 289R protein and amino acid residues 111-123 (d/1107) of an E1A 243R protein; or

(ii) amino acid residues 124-127 (d/1108) of an E1A 289R protein and amino acid residues 124-127 (d/1108) of an E1A 243R protein.

53. The method of claim 47, wherein the first and second nucleic acid molecules are each operably linked to a regulatory element.

54. The method of claim 49 or 50, wherein the first, second and third nucleic acid molecules are each operably linked to a regulatory element.

55. The method of claim 47, 49 or 50 wherein the cells are derived from a A549 cell line, HCT-15 cell line, IGROV-1 cell line, HeLa cell line, U87 cell line, W162 cell line or 293-D22 cell line.

56. The method of claim 47, 49 or 50, wherein the first nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:26.

57. The method of claim 47, wherein the second nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:15.

58. The method of claim 49 or 50, wherein the second nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:23.

59. The method of claim 49, wherein the third nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:15.

60. The method of claim 50, wherein the third nucleic acid molecule comprises the nucleotide sequence set forth in SEQ ID NO:18.
61. The method of claim 47, 49 or 50, wherein the recombinant adenovirus is replication-defective.

62. The method of claim 47, 49 or 50, wherein the recombinant adenovirus comprises a heterologous gene.

63. A method for producing recombinant adenovirus comprising culturing the human cell line designated SL0003 transfected with recombinant adenovirus vector under conditions so as to permit replication of the viral genome in the cell line, wherein the human cell line is deposited with the American Type Culture Collection under accession number PTA-6231.

64. A method for producing recombinant adenovirus comprising culturing the human cell line designated SL0006 transfected with recombinant adenovirus vector under conditions so as to permit replication of the viral genome in the cell line, wherein the human cell line is deposited with the American Type Culture Collection under accession number PTA-6663.

65. The method of claim 63 or 64, wherein the recombinant adenovirus is replication-defective.

66. The method of claim 63 or 64, wherein the recombinant adenovirus comprises a heterologous gene.
Figure 2

- **pRcRSV-E1Adl01/07**
- **6074 bp**

- **pUC19 seq (448-2622)**
- **AmpR**
- **RSV promoter**
- **dl 1101**
- **dl 1107**
- **splice donor for E1A 12s mRNA**
- **splice donor for E1A 13s mRNA**
- **E1A 12S CDS N-term**
- **E1A 13S CDS N-term**
- **E1A 12S/13S CDS C-term**
- **stop TAA for E1A 32k/27k**
- **Neomycin**
- **f1 origin**
- **SV40 origin**
- **SV40 promoter**
- **BGH polyA**
- **ColE1 origin**
FIGURE 4
FIGURE 5
Ad E2b Polymerase Complementation

A. 3C4 3C9 3D8 27 L A549

B. Productivity of 2GCP in E1a+E2b pol clones

![Graph showing productivity of 2GCP in E1a+E2b pol clones]

FIGURE 7
Late Ad Gene Expression

CHO

- B.
 - C, 4, 2, L, U, 6
 - Hexon
 - Fiber
 - β-actin

HepG2

- D.
 - L, 2, 4, C, G, U, 6
 - Hexon
 - Fiber
 - β-actin

15M15

- A.
 - U, G, C, 4, 2, L

Hela

- C.
 - 6, U, L, 2, 4, C
 - **HEXON**
 - **FIBER**
 - **β-actin**
SEQUENCE LISTING

<110> Canji, Inc.
<120> Cell Lines for Production of Replication-Defective Adenovirus
<130> C706335
<140> To be assigned

<141> 2005-Dec-12
<150> 60/635,561
<151> 13-Dec-2004
<150> 60/674,488
<151> 25-Apr-2005
<160> 27

<170> PatentIn version 3.3
<210> 1
<211> 6074
<212> DNA
<213> Artificial Sequence

<220>
<223> plasmid pCrRSV-B1Ad101/07

<400> 1

```
gacgatatgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg
ccgcatagtt aagccagtat ctgctcctgt cttgttgttt ggaggtcgct gagtgtgctg
 cgagcaaat ttaagctaca acaagggcag gcttgaccga caatttgcatg aagaatctgc
 ttagggttag gcgtttttgcc ctgcttccggc atgtacgggc cagatatagcg cgtatctgag
gggactaggg tgtgtttttag cgaagaagcgg ggtcctgggt gtagcgcgttc aggacgccc
 tccagatata gtatgttcgc ttttgcatag gagggggaa atgtatgtctt atgcaataca
 cttgtagttc tgcaacatgg taacgatgag ttgcaacat gctttcaacg gagaagaaaaa
 gcaccgtgca tgccgattgg tgggaagtag ttggtacag ctgtgccttat taggaaggca
 acagacaggt ctgacatgga ttggagcagc acctgaattc ggcattgcag agataattgt
 atttaaggtc ctggctctgat acaataaagg ccatattgcc attcaccaca ttggtgtgca
 cccccaagct tgtgtccgagct ccggatcca aatgagaca tgaggtactgt gtctgataatc
 tcccaacctcc tagcccatttt gaaccaccta cccttacgca actgtatgat ttgacaagtg
 cgccccccga agatccccac gaggaggcgg tttccgcat gttcctccggac tgtgtaattgt
 tggcgtgtca ggaaggatt gaccttctca ttttcctgcc ggcgccggtt tttcgggagc
```

500 1
cctagggcttt tgcagaaagtc tcccgggagct tggatatcc aatttccggtat cgtgataaga 2760
gacaggatgag gatcgtttccc gcatgattga acaagatgga tggcaccgcag gtttcctcgcc 2820
cgcttgggttg gagaggctat cgtgcatatga cttgggacaa cagacaatcg gctgctctga 2880
tgccgcctgttg tcgcggctgtg cagcgcaggg gcgcgcgggtc ttttttgcag acagccgacct 2940
gctccggtgcc ctaatagaca gtcagagcca gccagcgccgc ctaatgcgtggc tgtgcaagac 3000
gggctttcct tgtgcagcgcgt tgtcgcactga tgcactgaa gcgggaaggg aacctggtccct 3060
atgggggcgaa tgtgcgcgggc aggatctcct gcatactcgtac etttgctctcg cccgagaaagt 3120
atcctcattgt gctgatgcaac tgtgggagggct gcataaggctt gatccgggcta cctgccccatt 3180
cgaccaccaaa ggcagacactgc gatccgacgc aggacgtaactc cggatgggaag cgggtacttg 3240
cgatcaggat gatctggagac aagacgcatca ggggtctcgcg ccagcgcgaa ctttggcgcag 3300
gccggaaggcg cgccggagcg acggcgaggg tctccgctgct tgtccatggctg acctagtgggct 3360
gccgatatcg atgggtgaaat atgggagcctt ttctggatttc atgcagcttg gcggcgctgg 3420
tgtggccggac cgctatcagg acatagccttg gctctaccgcgt gattttgctag aagagcttg 3480
cggcggagcgt gcctgagcgttc cttgacagtgct tttctggagag cggccggtgctc gttcacaagt 3540
catgctcccct tatacgccctt ttcctcggagc gcggccgacttg gatgctgagctg 3600
acccaccaag cgcgccccaaa cctgcccatca cgagatccgc attccacgac cgatcctcctat 3660
gaagagctgg cttccggat gcttctccgag cgttttccgg gcagcgcgct ttgatgccctc caccgcccgggg 3720
agtacctgc tggagtctctt cggcccccccc aacctttttcg atgcagctgtat gcttgtgagct 3780
aatattagca atacagacatc aatatctcctc aataaaagcatt tttttttcact gcatttctagt 3840
tggtgttttct caaactcatc caatgtactt tatcatgtcag ggtatccccgtc gactctgaga 3900
gcttggcgtat atctagcatct atgggttcttc cttggtgaaat tggcatcagct cttcacaatc 3960
caacacacat acgcagccgac aggataaaagt gttaagccctg ggcgctcctaa tgaaggtgagt 4020
aattctcatt aatgtggtagt ccgcagatgcg ccgttttcca gtggggagca cttgctcgccc 4080
agctgccatt atggacgcggc caacgccgaggg ggaagagcggc tttcggtattt gggccgcttt 4140
cgcgctccct gcgcagctgctc gttccagctgc gttggtcggct cgggtgctacgc 4200
cgcttcacaa cggggtgataa cgggttctcag csgatcaagca ggcgggacca 4260
tggtgagcaca aggccagccag cggccgaggg tggcctcgccgt tggagtgttctt 4320
tccatagcct ccgccccccc ccgcagatcac aaaaaaatcg acgctcctgt cagaggtggccc 4380
gaaccagcgac aggactataa atgattccag cttctccccc tggagaacttc cttcgcctgct 4440
cggctttgcc gacccgccaagttcggccagcctctctcggct 4500
tgccgcttcc tcaatgtcaca cgtctagtgt atctcagtttc ggtgtaggtg ttcgccttca 4560
agctggggctg tgtgcaagaa ccocccccggc acgcggacgc ctgcgccctta tccggttaact 4620
atctgcctcgca gtcacccacc gcgcagagtc acttatcgcc aclgggccagc gccactcgga 4680
acaggattag cagagcggag ttagtagggc gttgtaagag ttggtgccctca 4740
actacgggctca cactaggaag acagtatttg gtatctgcgc tcgtgctgaag ccagttacct 4800
tcggataag aggtggttagc tcctgatccg gcacaaccac caccgctgtgt acggggtggt 4860
tttttgttgta cagcagcgag attacgocca gaaaaaagga atctcaagaa gatccttttga 4920
tctttttcac ggggtctgac gctcagttgga acgcagacagtac aagtttaagg attttggctca 4980
tgagattatcg aaaaagatcc ttcaacctga tcttttaaaat ttaaaatga agttttaaat 5040
caatctaaag tatatatag taaactctgc tctgagcttta ccaatgctta atacgtgagg 5100
caacctatcct acggattcttg ctatttttgct cattcattgt tgcctgaactcc cccgtccggtg 5160
agataactac gatacggggag ggttaaccagt ttcgccccag cgtgctaatg atacccggag 5220
acccacgtctc aacggcttcca gatttatcag caaacaaccg gcagccggaga aagggccgagc 5280
gcagaagtggt cctctgcaact ttatcgcctc ccatccggtc tatattaattg tgcggaggaag 5340
cagtgaatag tgattcgcgca gttatatagtt tgcgcaaggt tggttgccatt gctacaggca 5400
tcgctggtgct acgctctgctg tttgtatggt cttcatctcgct cttcaaggcc caacgatcaca 5460
ggcaggttac atgatcccccactgttgctca aaaaaagctgt tagctccttc ggtcctcggca 5520
tcgctggtcag aagtaatttg ggcgcagtttg tatcaactcat ggttatggca gcagctgcata 5580
atctctctcct ctgctcatccga tcggtaagat gctttttctgt gactgggttag tatactacca 5640
agtcatttctg agaataagttg atgcgggacgc cgagttgcttc ttggcgcggcg tcaataaggc 5700
ataatacgcc gccacatagc ggactttaa aagtgtcctcat cattggaaaa cttgtcctgg 5760
ggcagaaact ctcagagcat ttccgttgctc tggatccagc ttcggatctaa ccacactcggt 5820
ccacacgtct atctctcagtc cttttttactctc accaggcgcgct ttcgggtgcga ccaacacag 5880
gagggccaaattagcgccttc aaggggaataa ggctggacagc gaaatgttggt atacctcata 5940
tctcttttct ctaaatattt tgaagccttt atcagggtta tttgttcctag aggcggatcaca 6000
tattttgatg ttttagaaaa aataaacaaga taggggttcc gcgcacatttc cccgaaaaag 6060
tgcacccgtgc cgc 6074

<210> 2
<211> 7049
<212> DNA
<213> Artificial Sequence
<220>
<223> plasmid pcDNA3.1(+)ElB 55K Hygro

<400> 2
 gacggatcgg gagatctccc gatcccccct ggtgctgccct cagtacaatc tgctctgtag 60
 cccgcatagtt cagccgaatt cgtctccctgt ccttggtggtc ggaggtgct gcggtagcgtg 120
 cgagcataag ttaagctaca acaagggcaag gcttgcacgca caatgtcatg aagaatctgc 180
 ttagggttag gcgggtgtcc gcgtccctcc gcgtcctgcag atgtaggggc cagatatacg gttgacatt 240

gattattgac tagtattaa tagtaatcaaa ttacggggtgc attagtattac agcccaatata 300
tggagttccg cggtaacata cttacggtaa atgggcccgc ctcggtgaacc ccaagacc 360
 cccgcccctatt gaagtcaata tgggtctagt ctttaaatagt aagcgaatata ggcacattccc 420
 attgagctca atggtgtaag tatttacggt aaactgcaca cttggacgctga catcaagtgt 480
 atcatatgccc aagttgccc cctatgtcag tcaatgaacgg taaatgcccc gcgggtgtcatt 540
 atgccccagta ctagacotta tgggttccct ctacttgcag gtactacact gtttagtca 600
tcgtctattac catggtgtagt cgttttttgcg agtacatcaaa tgggggtgaga tagccggttgg 660
 actcaggggg atctccagga ctcacccccca tgggtcggcaat tgggtgatcc ttttgacacc 720
 aaatcaacgc ggacatttccc aatgtcgtca acaactccgc cccatgtcag caatgaggcg 780
 gtaggcttgt acgggtggag gcttcttata gcggagcctg ctggctactg agagaccca 840
tcgctctagt gcctatcaga attaatcagc ctcaactatg ggcagcaccga gctgggtgacg 900
 gttttaacctt aagcttggta cggagctcgg atccaggaag aatgagacga aagaacccat 960
 ctgagcgggg ggtactgtctg gattttttgt gaactgcctcg tgggagacgc gtttggtgag 1020
 cacaagaatgt gcctgctactgt gggtcccccc cgataatacc gcggagagag 1080
 cgcagcgcagcgagagag ggcgagagag gggggcagagc aacccgcccc ctcggtgacg 1140
 agagccgccc tggaccctcg ggaatgatgt ttgtagctgt ggctgaacctg tatacaggcc 1200
 ttagacgcat tttgacaatt acaagattgc cggagggcc cagagagagc taaatgatcc 1260
 ggggggctgg tggagctcag gcggaggtcg gatgtgtagc tttttagctta aggagagagc 1320
 accgctcgtga gtgattattc ctcaactagc tcaaggtaaa tgggtcctatg gacgggtgatc 1380
 tgctggcgaag aagattcccc atagagacgc tggacactatctgtggctgaac cagggggct 1440
 attttgaggag gcgtattagg gtagatgcag aagttggcact taggggatg tggacaaaatgcttc 1500
 agatcagca aactgtataat atcaggaatg tggctcataat tcggggacgc gggggtgcag 1560
 tggagataga taagagggagt aaggggtgcct ttagatgtcg catgataaat agttgggcccag 1620
 ggtgccttgg catggacggg gttgttatag tgaatgttaag ttttacgtgc cccatatttta 1680
gctgtacggt ttctctggcc aatcacaacc ttatacctaca cggtgtaagc ttctatatggt
1740
ttaacaataac ctgttgtagaa gctgtggacc atgtaagggc tgggggtctgt gcctttttact
1800
gctgtggaa ggggggtggtg tgtgcgcaca aaagcagggc ttcaattaag aaatgtcctot
1860
ttgaaggttg t acetctgtctg atctctgtctg aggtgtactc caggtgctgc cacactgtgg
1920
cctccagctg tgggtgtcttc atgtcattga aaagcgtggtg tgtgattaag ctaacatggt
1980
tatgtggcaac ctgoggagac aggccctcgtc agatgctgac ctgtcgggac ggcacactgtc
2040
acctgtggaa gaccattcac gtagcaggcc acctctgcgaag ggcctgggccggttttgagc
2100
ataacatact gcaccctgctg tctctgtcatt tgggttaacag gaggaggttg ttctctacct
2160
accaatgcaaa ttgtagtacact actaagatata tgtcttgagcc cggactagctg ttcaaggtgga
2220
acctgaaaggg ggtgtgttgac atgcagatga agatcttggaag ggtgtctgagg taccagtgaga
2280
ccgcacagct gcaccagctg ctggagatgtg ggcgtgtaaaca cttggagagc cagctgtgga
2340
tgctggatgtgc accaggagcgcttgaggccctgtggtggctgc acccgcgctg
2400
agttttgctc tagctgatgaa gatacagatt gactcgagtc tagaggcccg gtttaaacc
2460
gctgtacgctc tctgtctgtc cttctctgttgg gcacggcactc tggttttttgc cccctcccccg
2520
tgctcttccttt gacccccggga ggtgcacaacctc ccaactgtcct ttctctataa aaatgaggaaga
2580
ttgctgcaaatc tttgtctgattg aggtgtcatt ctattctggg gggtaggggtg ggccagggaca
2640
gcaagggggga gaattgggga aacaatagcag cggcatgctgg ggatgctggtg ggctctatgga
2700
cttctgaggg cggagaaacca agctggggtccctc atgggggttg gaacccacccg cctgtgaagc
2760
gccacattag gcgggccgggt gtgtggtgtta cgcgcagcgt gaccgcatac cttgcacgacg
2820
ccctactgcctgc cgctcttttcc gttttttttcc atctctcttcc gcacgctgccg ccggccttctc
2880
cccgtcaagcg cttataaggg ggcataccttt taggtttcccg atttatgtct ttacggccacg
2940
tgaccccaaa aaaaatgtcagatgtgtggt acttagtagt gttccgctagc ccctgatagaa
3000
cgggttttcggccccttgag tgggtgctat ccgtcaaatc atctctggtct cttcttttttct attatagggg ggggtatatagctgta aataaagggg gtttttgagc
tttaacaaaa atattaacagc gtttaacaaaa aattaacagc atattaacagc
3180
agtttttttac gtaatgtggcgcaattggaatgatggtaacgg cgggtgggtttg
3240

tgcaaaaaagctcgctggtcat ctagcagccag gggcgggagc gggcgggagc
3300
cagcgcagag ctagcaacgtg gtcctcgcaag ctcggtgcag gtcggtgcag gtcggtgcag
3360
ctctgttcctc aggccccgtac cggcccccca gttggcgcctac gttggcgcctac gttggcgcctac
3420

tatatttttt tattttttttt gaggccggg gtcggtgcag gtcggtgcag gtcggtgcag
3480
cgtggtggc gtttttccat aggtctccgc cccctgacga gcacacaaaa aatcagacgtc 5340
caaagtcagag gtggcagaaac ccgcagagcc tataaagata cccaggcttt ccccctggaa 5400
gtccccctcggt ccgctctctgct gttccgaccc tggcggcttac cggatacctg tcgcgttccc 5460
tcccttcggg aagcgttggcg cttttctcaaat gcctacgctg tagtattctc agttcgggtgt 5520
aggtggttccg cttcacaacggt ggctgtgtgct gggagacgac caggaaccce ccgggacacg 5580
ccttatccgg tactatcgct cttgagtcaca accgggaagta acacgacatta tggccacgtgg 5620
cagcagccac tgtgtaaccagg attacgagag cagaggtattg agggcgtgct acagagttct 5700
tgaagtggttg gctcatatcact gggagcacta gaagagagtt gttgggtatctc tgcgcgtctgc 5760
tgaagcggagt taccttcggaa aaaaagattg gtagctctttc atccggcaca aacaaccacgc 5820
cggagtggcgg tgtggggttttt gtttgcaagc agcagattac gggcagaaac aaaaaggttc 5880
aagaagatcc tttgagctct ctctcaggggt ctgacgctcga gttggaaagga aacaccagtct 5940
aaggagatattt ggtcatagaga ttatcaaaaa ggtcttcctc ctagatcctt ttaattaaaa 6000
aatgaagtattt tataatacatctta taagatataaattgagtaaac tggagcttgac agttaccaat 6060
gctttaactcag tgagggccct atcccgacgta cttggctattc tggagctatcc ataagtgctt 6120
gatctcccggt cggtgttagata actacgatac gggagggctt accatctggcc cccagtgtcgtg 6180
caatgatacgc gcagagccac ccggcactccgg ctctcagattt atcagacaata aaccagcagc 6240
caggagcagc caggagcagc agttgcgcctgt caacctcttcg cgcctccacgc ggtcatctatt 6300

atttttgctcg ggaagctagaga ttaagtagttt cggccagttaa tagtttgcgc aacggtttgtg 6360
ccatcttctac aggccagcttg gtgtcagcgtc cttgggtttgcg tattggctctc ttcagctcg 6420
gttcccaacgc atcaaggcga gttatactgaat cccccatggt gttgaaaaaag ggggtgaactc 6480
cctccggctcc ttgcagactgt ctggagagatgg tggctccgcagct cgtttatca tctcatggtta 6540
tgccagcaact gcataatctt cttactgtca gtcgccagct aagatgtccttt tgcttgacgtg 6600
gtgagtcacct aaccaagtctt tttgggtgtat gtagtgacgtcgc gcagaggactt gtctcgtgcc 6660
cggcgctaat aacggataat acocgcgccac atcagcagaag ttttaaaagtgc tctcatcattg 6720
gaaaaaggttct tcgggggccga aacctctccaag ggtaccttac gctgggtgaga tccagttccga 6780
tgtaaccacc tctgtgacccatat gcagcatccctc tattttcacc aagctttctgtg 6840
gtgagcacaat aacaggagctt caaaaattgccc caaaaaaggag aaaaattgcag acaacggaat 6900
gttgaattact ctaactcttct ctttttccaat attattgaggt catttatcag ggtttattgtgc 6960
tcattgagcggt atacatatattt aatgtattttg aaaaaaaaaa aacccataggct gttccgcgca 7020
cattctcccg aaaaagtggca cctgacgtc 7049
Artificial Sequence

nucleotide sequence encoding human adenovirus type 5, 289R E1A, wild type

3
atgagacata ttatctgcca cggaggtggtt attacccgaag aatggcgcg cagtctttttg 60
gaccagctga tcgaagaggt actggtctgat aatctttccac ctcttagcca ttttgaacca 120
cctacccctc acgaacctga tgaattagac gtgacggccc cgaagaatcc caacgaggag 180
gcggtttgacg agatttttccc gcacttcgta atgttgccgg tcaggaagaag gatggactta 240
cctacttttc cgcggcggcc cggtctcccg gacgctgctc accttttcccg gcagcccgag 300
cagccggagc agagagcttt gggtccgggt tcctatgcac accttggtacc ggaggtgatc 360
gatctttacct gcacacgacc gcgggttttca cccagtagcg acggagatag agagggtgag 420
gagtgtgtgt tagattagtg ggacgcacc gcggcaaggt gcaggtcttg tcattatcac 480
cggaggaata cgggggaccg agatattatg tgttgccttt gctatatag gcacgttgcc 540
atgtttgtct acagtctcgtc gtctgaaccgt gacgctgacgc cagcgccaga accggagcct 600
gcaagaccta cccgcctgcc taaaatgccc ccttgctatcc tgagacgcc gcacatcacct 660
gtgtctagag aatgcaatag tagtacgtag atgtgctgacg cccgtcttcc taacaacacct 720
cctgagatac accggttggt cccgcttgtc gccataaac cagttgcccgt gagagtgggt 780
ggcggctgcc aggtgtgaga atgtatcag gactttgctta acgagcttgg gcaacctttg 840

gacggtgact gttaaagccg caggccataa 870

PRT

amino acid sequence of human adenovirus type 5, 289R E1A, wild type, protein

4

Met Arg His Ile Ile Cys His Gly Gly Val Ile Thr Glu Glu Met Ala
1 5 10 15

Ala Ser Leu Leu Asp Gln Leu Ile Glu Glu Val Leu Ala Asp Asn Leu
<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro</td>
<td>Pro</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>Pro</td>
<td>Pro</td>
<td>Ser</td>
<td>His</td>
</tr>
<tr>
<td>Pro</td>
<td>Phe</td>
<td>Glu</td>
<td>Pro</td>
</tr>
<tr>
<td>Pro</td>
<td>Thr</td>
<td>Leu</td>
<td>His</td>
</tr>
<tr>
<td>Pro</td>
<td>His</td>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td>Tyr</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Leu</td>
<td>Asp</td>
<td>Val</td>
<td>Thr</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Glu</td>
<td>Asp</td>
</tr>
<tr>
<td>Pro</td>
<td>Asn</td>
<td>Glu</td>
<td>Glu</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Ser</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Ile</td>
<td>Phe</td>
<td>Pro</td>
<td>Asp</td>
</tr>
<tr>
<td>Ser</td>
<td>Val</td>
<td>Met</td>
<td>Leu</td>
</tr>
<tr>
<td>Ala</td>
<td>Val</td>
<td>Gln</td>
<td>Glu</td>
</tr>
<tr>
<td>Gln</td>
<td>Gly</td>
<td>Ile</td>
<td>Asp</td>
</tr>
<tr>
<td>Leu</td>
<td></td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Phe</td>
<td>Pro</td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>Ser</td>
<td>Pro</td>
<td>Glu</td>
<td>Pro</td>
</tr>
<tr>
<td>Pro</td>
<td>Pro</td>
<td>His</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Arg</td>
<td>Gln</td>
<td>Pro</td>
<td>Glu</td>
</tr>
<tr>
<td>Gln</td>
<td>Pro</td>
<td>Glu</td>
<td>Gln</td>
</tr>
<tr>
<td>Arg</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
</tr>
<tr>
<td>Pro</td>
<td>Val</td>
<td>Ser</td>
<td>Met</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>Pro</td>
<td>Asn</td>
<td>Leu</td>
<td>Val</td>
</tr>
<tr>
<td>Pro</td>
<td>Glu</td>
<td>Val</td>
<td>Ile</td>
</tr>
<tr>
<td>Asp</td>
<td>Leu</td>
<td>Thr</td>
<td>Cys</td>
</tr>
<tr>
<td>His</td>
<td>Glu</td>
<td>Ala</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Phe</td>
<td>Pro</td>
<td>Pro</td>
<td>Ser</td>
</tr>
<tr>
<td>Pro</td>
<td>Asp</td>
<td>Asp</td>
<td>Glu</td>
</tr>
<tr>
<td>Asp</td>
<td>Glu</td>
<td>Asp</td>
<td>Glu</td>
</tr>
<tr>
<td>Glu</td>
<td>Glu</td>
<td>Phe</td>
<td>Val</td>
</tr>
<tr>
<td>Leu</td>
<td></td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Tyr</td>
<td>Val</td>
<td>Glu</td>
</tr>
<tr>
<td>His</td>
<td>Pro</td>
<td>Gly</td>
<td>His</td>
</tr>
<tr>
<td>Glu</td>
<td>His</td>
<td>Gly</td>
<td>Cys</td>
</tr>
<tr>
<td>Arg</td>
<td>Ser</td>
<td>Cys</td>
<td>His</td>
</tr>
<tr>
<td>Tyr</td>
<td>His</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
<td>Asn</td>
<td>Thr</td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td>Pro</td>
<td>Asp</td>
</tr>
<tr>
<td>Ile</td>
<td>Met</td>
<td>Cys</td>
<td>Ser</td>
</tr>
<tr>
<td>Leu</td>
<td>Cys</td>
<td>Tyr</td>
<td>Met</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Arg</td>
<td>Thr</td>
<td>Cys</td>
<td>Gly</td>
</tr>
<tr>
<td>Met</td>
<td>Phe</td>
<td>Val</td>
<td>Tyr</td>
</tr>
<tr>
<td>Ser</td>
<td>Pro</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>Glu</td>
<td>Pro</td>
<td>Glu</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td>Glu</td>
<td>Pro</td>
<td>Glu</td>
<td>Pro</td>
</tr>
<tr>
<td>Glu</td>
<td>Pro</td>
<td>Glu</td>
<td>Pro</td>
</tr>
<tr>
<td>Ala</td>
<td>Arg</td>
<td>Pro</td>
<td>Thr</td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
<td>Pro</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>195</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>Met</td>
<td>Ala</td>
<td>Pro</td>
<td>Ala</td>
</tr>
<tr>
<td>Ala</td>
<td>Ile</td>
<td>Leu</td>
<td>Arg</td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
<td>Pro</td>
<td>Thr</td>
</tr>
<tr>
<td>Ser</td>
<td>Pro</td>
<td>Val</td>
<td>Ser</td>
</tr>
<tr>
<td>Pro</td>
<td>Val</td>
<td>Ser</td>
<td>Arg</td>
</tr>
<tr>
<td>Glu</td>
<td></td>
<td>210</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td></td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Cys</td>
<td>Asn</td>
<td>Ser</td>
<td>Thr</td>
</tr>
<tr>
<td>Ser</td>
<td>Asp</td>
<td>Ser</td>
<td>Cys</td>
</tr>
<tr>
<td>Asp</td>
<td>Ser</td>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>Ser</td>
<td>Asn</td>
<td>Thr</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
<td>225</td>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Glu</td>
<td>Ile</td>
<td>His</td>
</tr>
<tr>
<td>Pro</td>
<td>Val</td>
<td>Val</td>
<td>Pro</td>
</tr>
<tr>
<td>Leu</td>
<td>Cys</td>
<td>Pro</td>
<td>Ile</td>
</tr>
<tr>
<td>Lys</td>
<td>Pro</td>
<td>Val</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td></td>
<td>245</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>
Val Arg Val Gly Gly Arg Arg Gln Ala Val Glu Cys Ile Glu Asp Leu
260 265 270
Leu Asn Glu Pro Gly Gln Pro Leu Asp Leu Ser Cys Lys Arg Pro Arg
275 280 285

Pro

5 732 DNA Artificial Sequence

nucleotide sequence of human adenovirus type 5, 243R, wild type

5
atgagacata ttatctgcca cggaggtgtt attaccggaag aatggtccgc cagtttttttg 60
gaccagctga tcgaagaggt actggctgat aatcttccact ctcctagcca ttttgaacca 120
cctacccttc acgaactgtga tgattttagac gtagcggccc cccagaatcc caacgaggag 180
gcggtttgcag agatggggcctt gacactctgta actatggggg gtcaggaagg gattgactta 240
cctactttttc gggcgggccc ggttatcccg gacgccgctc acctttccccg gcagcccgag 300
cagccgggcag agagagccttt ggttccgggttt tctatgccaac acctttagcac gcaggtgatc 360
gatctttcct gccacgagggc agcgggcctca cccagttgcc gcagaggtgacgagcggctct 420
gtggcctgac gctagccgtga gcggcggcagc gaacgagggc gtcgagccacc tacgccgggtt 480
cctaaatgg cgctgtcctat cctgagacgc cccagcatcac gtgtgtcctag agaatgcaat 540
agggcgttag atagctcgatt ccggtcctct tctacacacc ctcctgagat acacccgggtg 600
gtcccggttgt gcggccatcaac acaggtgcgggt gtagaggtgg gttgcgtcgg ccaggtctgtg 660
gaagcacgtcagt taacgcagccct ggccaaacctt tgtgacttgg ctgtaaacgc
720
cccagcccat aa

6 243 PRT Artificial Sequence

amino acid sequence of human adenovirus type 5, 243R E1A wild type, protein

6
Met Arg His Ile Ile Cys His Gly Gly Val Ile Thr Glu Glu Met Ala
1 5 10 15
Ala Ser Leu Leu Asp Gln Leu Ile Glu Glu Val Leu Ala Asp Asn Leu
20 25 30

Pro Pro Pro Ser His Phe Glu Pro Pro Thr Leu His Glu Leu Tyr Asp
35 40 45

Leu Asp Val Thr Ala Pro Glu Asp Pro Asn Glu Glu Ala Val Ser Gln
50 55 60

Ile Phe Glu Pro Asp Ser Val Met Leu Ala Val Gln Glu Gly Ile Asp Leu
65 70 75 80

Leu Thr Phe Pro Pro Ala Pro Gly Ser Pro Glu Pro Pro His Leu Ser
85 90 95

Arg Gln Pro Glu Gln Pro Glu Gln Arg Ala Leu Gly Pro Val Ser Met
100 105 110

Pro Asn Leu Val Pro Glu Val Ile Asp Leu Thr Cys His Glu Ala Gly
115 120 125

Phe Pro Pro Ser Asp Asp Glu Asp Glu Gly Pro Val Ser Glu Pro
130 135 140

Glu Pro Glu Pro Glu Pro Glu Pro Glu Pro Ala Arg Pro Thr Arg Arg
145 150 155 160

Pro Lys Met Ala Pro Ala Ile Leu Arg Arg Pro Thr Ser Pro Val Ser
165 170 175

Arg Glu Cys Asn Ser Ser Thr Asp Ser Cys Asp Ser Gly Pro Ser Asn
180 185 190

Thr Pro Pro Glu Ile His Pro Val Val Pro Leu Cys Pro Ile Lys Pro
195 200 205

Val Ala Val Arg Val Gly Gly Arg Arg Gln Ala Val Glu Cys Ile Glu
210 215 220

Asp Leu Leu Asn Glu Pro Gly Gln Pro Leu Asp Leu Ser Cys Lys Arg
225 230 235 240

Pro Arg Pro
amino acid residues 4-25 of human adenovirus type 5, E1A 289R, wild type, protein

Ile Ile Cys His Gly Gly Val Ile Thr Glu Glu Met Ala Ala Ser Leu Leu Asp Gln Leu Ile Glu

amino acid residues 4-25 of human adenovirus type 5, E1A 243R, wild type, protein

Ile Ile Cys His Gly Gly Val Ile Thr Glu Glu Met Ala Ala Ser Leu Leu Asp Gln Leu Ile Glu

amino acid residues 36-49 of human adenovirus type 5, E1A 289R, wild type, protein

Ser His Phe Glu Pro Pro Thr Leu His Glu Leu Tyr Asp Leu
Artificial Sequence

amino acid residues 36-49 of human adenovirus type 5, E1A 243R, wild type, protein

Ser His Phe Glu Pro Thr Leu His Glu Leu Tyr Asp Leu
1 5 10

Artificial Sequence

amino acid residues 111-123 of human adenovirus type 5, E1A 289R, wild type, protein

Ser Met Pro Asn Leu Val Pro Glu Val Ile Asp Leu Thr
1 5 10

Artificial Sequence

amino acid residues 111-123 of human adenovirus type 5, E1A 243R, wild type, protein

Ser Met Pro Asn Leu Val Pro Glu Val Ile Asp Leu Thr
1 5 10

Artificial Sequence

amino acid residues 124-127 of human adenovirus type 5, E1A 289R, wild type, protein

Cys His Glu Ala
1
amino acid residues 124-127 of human adenovirus type 5, E1A 243R, wild type, protein

nucleotide sequence of human adenovirus type 5, E1B-55K, coding region
<210> 16
<211> 496
<212> PRT
<213> Artificial Sequence

<220> amino acid sequence of human Ad type 5, E1B-55K protein

<400> 16

Met Glu Arg Arg Asn Pro Ser Glu Arg Gly Val Pro Ala Gly Phe Ser
1 5 10 15

Gly His Ala Ser Val Glu Ser Gly Cys Glu Thr Gln Glu Ser Pro Ala
20 25 30

Thr Val Val Phe Arg Pro Pro Gly Asp Asn Thr Asp Gly Gly Ala Ala
35 40 45

Ala Ala Ala Gly Gly Ser Gln Ala Ala Ala Ala Ala Gly Ala Gly Ala
50 55 60

Glu Pro Glu Ser Arg Pro Gly Pro Ser Gly Met Asn Val Val Gln Val
65 70 75 80

Glu Leu Tyr Pro Glu Leu Arg Arg Ile Leu Thr Ile Thr Glu Asp
85 90

Gly Gln Gly Leu Lys Gly Val Lys Arg Glu Arg Gly Ala Cys Glu Ala
100 105 110

Thr Glu Ala Arg Asn Leu Ala Phe Ser Leu Met Thr Arg His Arg
115 120 125

Pro Glu Cys Ile Thr Phe Gln Gln Ile Lys Asp Asn Cys Ala Asn Glu
130 135 140

16
Leu Asp Leu Leu Ala Gln Lys Tyr Ser Ile Glu Gln Leu Thr Thr Tyr
145 150 155 160

Trp Leu Gln Pro Gly Asp Asp Phe Glu Glu Ala Ile Arg Val Tyr Ala
165 170 175

Lys Val Ala Leu Arg Pro Asp Cys Lys Tyr Lys Ile Ser Lys Leu Val
180 185 190

Asn Ile Arg Asn Cys Cys Tyr Ile Ser Gly Asn Gly Ala Glu Val Glu
195 200 205

Ile Asp Thr Glu Asp Arg Val Ala Phe Arg Cys Ser Met Ile Asn Met
210 215 220

Trp Pro Gly Val Leu Gly Met Asp Gly Val Val Ile Met Asn Val Arg
225 230 235 240

Phe Thr Gly Pro Asn Phe Ser Gly Thr Val Phe Leu Ala Asn Thr Asn
245 250 255

Leu Ile Leu His Gly Val Ser Phe Tyr Gly Phe Asn Asn Thr Cys Val
260 265 270

Glu Ala Trp Thr Asp Val Arg Val Arg Gly Cys Ala Phe Tyr Cys Cys
275 280 285

Trp Lys Gly Val Val Cys Arg Pro Lys Ser Arg Ala Ser Ile Lys Lys
290 295 300

Cys Leu Phe Glu Arg Cys Thr Leu Gly Ile Leu Ser Glu Gly Asn Ser
305 310 315 320

Arg Val Arg His Asn Val Ala Ser Asp Cys Gly Cys Phe Met Leu Val
325 330 335

Lys Ser Val Ala Val Ile Lys His Asn Met Val Cys Gly Asn Cys Glu
340 345 350

Asp Arg Ala Ser Gln Met Leu Thr Cys Ser Asp Gly Asn Cys His Leu
355 360 365

Leu Lys Thr Ile His Val Ala Ser His Ser Arg Lys Ala Trp Pro Val
370 375 380
Phe Glu His Asn Ile Leu Thr Arg Cys Ser Leu His Leu Gly Asn Arg
385 390 395 400
Arg Gly Val Phe Leu Pro Tyr Gln Cys Asn Leu Ser His Thr Lys Ile
405 410 415
Leu Leu Glu Pro Glu Ser Met Ser Lys Val Asn Leu Asn Gly Val Phe
420 425 430
Asp Met Thr Met Lys Ile Trp Lys Val Leu Arg Tyr Asp Glu Thr Arg
435 440 445
Thr Arg Cys Arg Pro Cys Glu Cys Gly Gly Lys His Ile Arg Asn Gln
450 455 460
Pro Val Met Leu Asp Val Thr Glu Glu Leu Arg Pro Asp His Leu Val
465 470 475 480
Leu Ala Cys Thr Arg Ala Glu Phe Gly Ser Ser Asp Glu Asp Thr Asp
485 490 495

<210> 17
<211> 986
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleotide sequence of human Ad type 5, E1A gene

<400> 17
atgagacata ttatctgccg cggaggtgctt attaccgaag aatggccgc cagttcttcttg 60
| gaccagctga tcaagagagt actggctgat aatctttccac ctctctagcca tttggaaccc |
120	ccatatccttccc agcaactgta tgatttagac gtgacgccc ccgaagatcc caacgaggag
180	ggggttttccag aagtttttcg cgaccttgta atggttggcgg tgcaggaagg gattgactta
240	gctcttttttc cgcgggccc cgggttctccg gagccgcctc acctcttcgcc gcagccccag
300	ccagcgggcc agagagcttt gggcttcccc tctatgccaa acctttgctt ggaaggtgatc
360	gatcttactct ggcagagggc tggcttttcc cccagtgcac aacgagatag agaggttgag
420	gagggtttgtg tagattatgc ggacacccgg gggcaggtt ggaggtttctg tcattatcaca
480	ccggaggaata cgggggccagc agatatttgc tggctgcttt gtctatgag gcaccttgaga
540	atgtttgctgc atagtaagtg aaaattatgg gcagttgggttc atagagtigttt ggggtttgggtg
600	tggtaatttgg ttttttaatttttacagttt tgtggttttaaa agaattttgg attttggtattt
660	
ttttaaaggg tctgtgtctt gaaacctgacg cttgacccga gcccagacg gagcctgcaaa 720

gacctaccg cctgtctaaa atggccgcttg ctatctctgag acgcctggaca tcaacctgtgt 780
cctagagaatg caaatagagt acggatatcgttgactcgg gctcttcaac acactctctgt 840

agatacaccc ggtgtgcoccg ctgtgcoccca ttaaaccagt tgcctgtgaga gttgggtgggc 900
gtcgcagggct tggcctaatgct atcgaggact tgccttaacga gccttgcccaa cttttgact 960
tgcagctgtaa aagcccccagg ccataa 986

<210> 18
<211> 1794
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleotide sequence of human Ad type 5, B1B-55K and B1B-19K, coding regions

<220>
<221> misc_feature
<222> (1). .(529)
<223> nucleotide sequence encoding B1B-19K

<220>
<221> misc_feature
<222> (306). .(529)
<223> Overlapping sequence C-terminal 19K and N-terminal 55K - (2019-2242 Ad 5 seq.)

<220>
<221> misc_feature
<222> (306). .(1794)
<223> nucleotide sequence encoding B1B-55K

<400> 18
atggaggtctt ggagtgtttt ggaagatttt tctgctgtgc gtaacttgc ggaacagagc 60
tctaacagta cctctttgttt ttggagtttt cttgctggct cttgacccagc aaagttagtc 120
tgcagaatta aggaggatta caagtgagac tttaaggaaatt ccctgtgctacct gccttggtgag 180
cctgtttgatt cttggatatcg ggtcatccagag ccgttttccc aaggaaggt catcaagact 240
ttggatctt ccacaccgag ggcgcgctcgct gcctgtgtgtg cttttttgtgg ctatttataaag 300
gataaatgga ggcaagaaac ccatcttgac gggggttacc tcctgtgatttt ttcgctgactg 360
catctgtgga gacgcgcttggt gagacacaag aaccgctggctg ttcgtgtggct ttcgctcgc 420
cgagccgataa tacccgacgga ggacacagag cagcagcag aggaacaccag ggcgcgctggc 480
caggagcaga gcccatggagaaa ccccagacg cccctggacc ttcggaatag aatgtgtgtac 540
agtggtgtga aagtgtatcc aacgtgagac gccattttgac aattacagag gatgggcagg 600
ggcataaagg ggtaaagagc gaggcgggggg cttgtgaggg tacagagagg gctaggaatc 660
tagcttttag cttaatgacc agacacgctc ctgagtgatc taacttttcaa cagatcaagg 720
ataatgagcc taatgacgtt gctctgtcgg cgcagaagta ttccatacag cagctgacca 780
tctacggtct gcagccaggg gaggatatttg aggaggtcat tagggtatat gcasaaggtg 840
caacctgccc agatgcaag tacaagatca gcacaatttg aataatcaggg aatgtgttgct 900
acatctctgg gcagcggggg cagggtgaga tagatacgg gaagtgggtgc gccttttagat 960
gtagcatgat aaatatgtgg ccgggggtgc ttggcatgga cgagggtggtt attatgatg 1020
taggttttac tgcccccaat tttgctggta cgggcttcct cggccaatacc aaccttatcc 1080
tacacgcggtg tagcttctat ggtgtaaaca atacctgttgt ggaagcttgg accgatgtaa 1140
gggctcgggg ctgtgccttt tactgctgtc ggaagggggt ggtgtgtcgc cccaaagaca 1200
ggcctccta taagaaatgc tcttttgaa ggtgtacctt ggttgtactt cttgagggta 1260
actccaggtt gcgcacccag gtggctctccg actgtggttgc cttcctagtca gttgaaacgc 1320
tggctggtat taagcataac atggatgttg gcacagtgcgg gcagacggcc cttcagatgc 1380
tgacctgctc ggacgccagg ctgtagcttc gtaagcacat tcaacgtgacc agccactctc 1440
gcaagccttg gccaggtgttt gagccataaca tactgaccgc ctgttctctg cattttggta 1500
acaggagggt ggttggttctca ccttaccaat gcaattttag tcacactaag atattgtcttg 1560
agccgagag catgtcccaag gttgacagtga caggggttgt tgcacatgacc atgaaagact 1620
ggaaggtgct gaggttacag gacgacgccg ccaggctgca accctgcagc tgtggccgta 1680
aacatattag gaaccagcct gtgtgctgtc acctgacgcc ggaagctgagg cccgactcact 1740
tggctgctggt ctgcaccgcc gcctgtgcttg gcctcagcga tgaagataca gatt 1794

210
211 11128
212 DNA

213 Artificial Sequence

220
223 plasmid pVITRO2IRESPuroE1b

400 19
gacggatcgg gagatctccc gatcccccct ggtcgaacctc cagtacaaat cgtctctgatg 60
cggcatagtt aagccagtatt ctgctctcccgt cttgtggttt ggaggctgct gagtagttgc 120
cggccaaatat ttaagctcag acaagggcag gctggaccca caatggctag aagaattctgc 180
ctagggttag gcctttttcg gccttttgcc atgtacgagc cagatatacg cggtggacatt 240
gattattgac tagttattaa tagtaataca ttcgcgggtgct attagttcat agcccatata 300
tggagtttccg cgttacataa cttacggttaa atggccccgcc tggctgaccgc ccaacgcacc 360
cccgcccccatt gacgtcaata atgacgtatag cgggcatatg aacgccccata gggactttcc 420
attgacgtca atggtggtgac tattttgcgtt aacgctgca cttggcagata catcaagtgt 480
actaatgcctc ccctattgacg tcagaaagggg taaatggcccc ggcctggcatt 540
atgcctagatg catgaccccta tggagaacttcc catctgggcc gaatcatctag 600
tcgctattac catgtatgtag cgggattttgcc agtaacatcaca tgggaggggta tagcggttgg 660
actcaogggg atttccaaagtt ctcacacccct acaaaagaaaagtgggccctct ggcctcctcgag 720
tcagggcccc aacccccccatt tcacacaccc actgggctcag aagggggtgccggccacttgaa 780
cctcccccttg ctttggtgcg ggggggtgtgct aacgctatgtg gtcctgggatt ggctaggccac 840
ggccttcggc ccgcctctccgc gcacccgcag atggggctgct aagcctccccc ggccgcctcg 900
cctccggggg ccgcgacccttg cagctccctgc acgctccctgc ccgcttctggg 960
cgctccccggg ggtctgtgtcctaatcctgtaccgacagccagaca ggaatgggcc cgtgtgtgtggt 1020
ccgccccggc tcgctccttt acgggttatag gcctctgggg cctccagaatt ctctcttagcc 1080
cctggtgtgcg agtactgttac tcgctgctccg gagctttcggc cggaggtgtgg gcctagaggt 1140
tgaggccttc gcgccctagtgg gcgcctgtctctgc gcacccggctg ctcgcctggcg 1200
cctgggccc gcgcgtgtctg aatctgtggg cacccctcttg cctgctctgc gcacccgcttg 1260
aagttcctctg ccatattaaaa tttttgataa ccagctcgca gctctttttt tttggggagat 1320
agtctctttaa atgcgccccca ggcacgccat cagtgtcacc gcggctttgg ggcggggggg 1380
ggcagcgggg ccgctgtctgc ccagcgcacg ttctgcggcga ggcgggggtt gcagggggtgg 1440
ccaccgaga tcggacgggg gtagctacca actggcgccgc ctgtcgctgtg gcctgctgctc 1500
ggccgccccgt gatcgcggcct gcgcctctgg gcacaggtgg cccgctgccg ccgccctgcg 1560
tgagcgggaa gatggcgcggt ccgcgtcctct gcgtgcaggg gctcctcaaat ggcagggccc 1620
cggcgccggg agcggggcggc ttagctaccg acacaagagagacggggcct tccacaattc 1680
tcgctgcctt caggtgactc cggaggtacg ccgggccccgt ccagggcatcg gcagaggatt 1740
tcgagcttttt cggagctgcct gcttttaggt ttgggggagg ggttmttaggc gatggaggtt 1800
cccccacactg aggctgggctga acctagaaag ttagggcaccg ccggcacttg atgatatctt 1860
ccttgaatt cggccctttttt gaggcttggtt cgcctcctatct ccacacagcttcc 1920	tcacattttt tttcttccca ttctgccgttt gcggacacact acccctaaaac gccacggggtg 1980
tgcgcaagagt ccttgatttt ccgaaactgag gctgagctggg cagacatacc gagatacatc 2040
gatgagtttg gacaacacac aactgagatg cagttgaaaaa aatgtttttac tggaaaaact 2100
tgtgatgcta tttcattatg atagctgca ataaacagt taacaacac 2160
aatgtcatt ttatatatgt tetcaggctc tagaggttgc gggaggtttt 2220
taaactttt acaaatgtgg tatgggaaat gtaataactg accgcaagcc 2280
aacgggtgaa ttgtgccgat tagactgcgg tagtttgcgta aagatccaac 2340
gagatccttt ttttctgcgc gtaactgtct gccgcaaac gaaaaacacc 2400
cggggtgttg tttggcggat caagacgctc caactccttt ttgcaaggtc 2460
ccagcagcag cattacaat actgtctctgc taggtaggc ctaacacttca 2520
agaactctgtg agcagcgctc acataacccg ctcttgcaat tctgttagcc 2580
ccagtgccga taagtgtgtg cttaggagtcc tggactcaag cggatatgta cggataagg 2640
cgcagcggtc gggctgaacg ggggtgcttg gcacacagcc cagttggaag gagacacctt 2700
acaccaacgt gagaactctg cagctgagcc tatgagaagc cgcacacttt cccgaagggga 2760
gaaagcggcg caggtatccg gtaagcgcga gggctggggac agggagagcg aaggggggagc 2820
ctccccagca ggcagaagta tgcaagactg gcatctcaat tagtcagcaac ccataatgccc 2880
actagttccc cccagagccg cagggcctc ctagggccgc cccctccccg cagcaggggc 2940
ggggtccggc gcacccaggg caagaggggc tggggggcgg gccgctgtgag tggccgggggc 3000
gggctgcagc cgcagctggc tataagacca cagaacgacg cgcagggcgc agacgctttc 3060
gcccaaagct ttgctgcagc aogcaggttg gaaggggggt gtttcctggc gcggcggcga 3120
gctggaggttc ctgggtcagc ggccggggc cccgcgttcag tgggctggggga tagctgcca 3180
gcattcccc cttcgaggttg cggggcggcgc ggaggcgagc tggccagcct aggccgcaacc 3240
cctactcgg gcggacccag gttcgtcttc ttttttcgta ttgtgctcgtg ctgcgccttc 3300
tgcggttcca gcaatagggg ctaacaaggg gagggtcggg ggctgttcag cccggagccc 3360
ggagaggtca tgtgttggga ggaatagggg gacagaggtg cggctggggg cccgcgggcc 3420	tccggagcac atgtccgagc ccacccgtat tggggttttt ttgcaagcca 3480
accaggtcgg ggttagcgtg ccagggccat tgtgcccccag caccoggcac gatctgtcgtt 3960
ggcggcgcg cgtgccccctg cctcctcaac taggggtgagg ccactccgcgt cggcaccaggt 4020
tgctgtgcttg gaagagatgcc cgctccggcgg cccttgcttca caggtagtctaa aatggaggac 4080
ggcggcagcc ggtgggagcgg ggcggtgtagt caccacaaca aaggaagagg gctttgtctcc 4140
tcacccggtct ctgctctctctg tgaaccctggtg tctcttatcgg cggcaatagt cacctcgggc 4200
ttttgagcac ggttagcggc ggccggggggga gggtggtaaa tggggttgga gtttggttcac 4260
atttgggtgg tggagaactag tcacgccagc ctggcgcttg aagtcattttt tgaatattgt 4320
cccttctgagt tttaggagggc gctaatatttc gggctcttta gcggttcaaa ggtatcttttt 4380
aaacccttttt taggtgttgtg taaaaaccac gcctataata aaccaaccgg gtataattcg 4440
ccttaaccgg tgtgtgttaa aaggttatata atgcgccgtg gcctaatctt ggtttaactct 4500
gacctcattgg aggtcttgagc gtggttggaga gatgagcttctg ctgtgcgttaa ttgggtgggaa 4560
cagagctctta acagtaacctt ttgggtggggt aggtctctgtt ggggtctcatc ccaggcaaaag 4620
ttaggtctgca gaattaagga ggtagaactt taggggaatttg aagagcttttt gaaatcctgt 4680
gttgaggcgtg ttgattttttt gacatctggct caccaggggc ttttcaaga gaaggtcattc 4740
aagacttttgg aatttttccac acgggaggcg gcgtgcgggttg ctgtttgttt tttgagttttt 4800
ataaaggata aatgggagcg aagaaaccct ctaggcgggg ggtactctgt ggatttttctg 4860
gccatgctacg tgtggagagg gcgtgttgaga cacaagaatc gctctgtact tgttttttcc 4920
gtccgcggcg cgtataattcc gacggaggg aacagcagcgc aggaggaggg aacaggcggcgg 4980
cggccggagg aggccagccc atggcaaccc agaggccggc cggccctctg ggaatgaagt 5040
ttgtacaggt ggctgaactgt tatccagaaactg tgaagaacgct ttggcaattt acagaggagt 5100
ggcagggtttaa aagggggtga aagaggaggc gggtggcttgg tggagctaca gaggaggctga 5160
ggaatctacg ttggtagctta atgaccagac acgcctctga gttgttactt ttttaacagga 5220
tcaaggataa ttagccctaat gacgcttgata tgcgttggaga gaagtttactt ataagaggacg 5280
tgaccacatta cgccgtgactgc ccaggggtat attttggag ggcctatttg gttatagtcaa 5340
aggtggcaact taggcacagattgcagtaac aagtaacctca acctctgaattt atccaggaaatt 5400
gttgatcacat ttctgggaaac gcggccgagg tggagatagc tacggaggag agggtgggctt 5460
tttagatgag catgataaat atgtggcgcgg ggggtgttgg catggacggg ggttgatttta 5520
tgaatgtaag gtttactgctc ccaattaattg cgggtactgt ttcttggcact atacacacaacc 5580
ttaaatcaca cgggtgtaaag ttctatgggt ttaacaaatac ctgtgtggaga gctcggacg 5640
atgttaaggtg tccaggtgtg gcccttttact gcgtgtggaa gggggtgttg gtcggccccga 5700
aaagcagggc ttcaattaag aaatgcctct ttgaaaggtg taccttggtg atcctgtcttg 5760
agggtaacctc cagggtgcgc cacactgattg cctccgacctg tggtgtgcttc atgtcagtga 5820
aaagcgtggc tgtgattaag catacatacg tatgtagcgcg acaatccctga atggcaccagc 5880
agatgcgac acctgctggac ggccgagctc acctgtgatag gacccgctgtt ccttgtgcatt 5940
actctcgcaaa ggccctgacca cgtgctgagc ataaacatagt caccctgcgttc acaatatcatt 6000
tgggtaacag gaggggttgt tttctacacctt accaatgcaaa tttgtgctcag actaagatata 6060
tgcttgagcccc cgagacatacg tccaaggtgaa acctgaaagc aggttggctac atggcccata 6120
agatctgggg aagtctgtgagg tacagtgaga cccgcacccag tgcacagacc atcgaggtgtg 6180
gcggtaaaca gtagctgtaag cagcctgagt aatcctggtgatt aacccggcag ggcgtcttt 6240
atcactttggt gctggccctgc acgccgctgtg agttggctgct tactgctgagc tagaatgatt 6300
gaggtaactga aaatgttgtgg cgtgctctaa ggtggggaaat gatatatataa ggtgggggtc 6360
ttatgtgttt tttatatgtcct tttgacacag cccgcccgcag cattgacacg aacctgccttg 6420
atggaagcat tgtgagctca tatttgacaa ccgcatgacc cccatggcgc ggtggtgctcg 6480
agaaatgtgat gggtccacag attgctgact gcccgtcctct gcccgcacaac ttcaactacctt 6540
tgacactaca gacgctgttc ggagacgcct tgtgagacgcc agctccggcc gcggctcctca 6600
ccgctgacgc cacgcgccgc ggagattgtga ctgcaatctgc tttctctgac gcggctgcaaa 6660
gcagtgcagc ttccgcttcac tccgcccgcgc atgacaaattt gaccggccttt tttggcacaat 6720
tggatttttt gccgagggaa cttaatgtcgt tttctcagca gctgttgtggt ctgcgcggcgc 6780
aggtttctgc cctgaaagct ttatcctctcc caaatgcggtg tttaacactca aataaaaaac 6840
cagacctcgc catggattgg cattgaccta ggggttgatt catcgagatcc acgctgcatcg 6900
attgctcaat tcgagatgcc ggccgctgatg ataatctgactc cagtgtgctg gaattacttc 6960
gctgtctccg aggccagctcg gtggggtgcgc gtaactccctt tccaaaaggg gcgtacccggc 7020
tgcgcataaag ttgttcagttt ccacaacaag gggaggtttg atatatcactt ggcggcggctt 7080
gatcgccttt gaggggcgcgg cgcctcctcgt gcagaaaaag caaatcttttt ttgtagcaag 7140
cctggaggttc ggcagcggctt gcataacttg gcgacatacg cactcccacttt 7200
gccttccctc cactaggtgg tcactcctcgc gttcaacagt gcgtaagctt tgcattcagg 7260
gcggccaat cgcctcctcc ctctcccccc cccttacagt tacgccccgag aggccagcgtt 7320
aataaggccc gtggccgctggt gcattatatgt gattttccac cattactgcc tcttttggcag 7380
atggcagccc cggcaacaacct gcggctgctct tttgagctag ccatttctagg ggtttttccc 7440
cctctgcgcaaa aggaatgccaa gttctgtgtag atgtctgtaaa ggagaagactt cctctgaaag 7500
ctctttagag ccccaaaacaag ttggtacgcag ccccttgcag gcagcggcac ccccacacctg 7560
gttgctggcgc tttttcata ggctccgccc cccgtgacgag catcacaaaa atcgacgctc 9420
aagtcagagg tgccgaaacc ccagacagact ataagaatata caggcttttc cccctggaag 9480
cctccctcggt cgctctctcttg tccgacccct ggcgcttacc ggataacctgt ccgcttttct 9540
cccttccggga agcggtggggc cccttcatact ctcacgcgtgt aggttatctca gttccgtgtga 9600
gtctggttcgc tccaagctgg ctgtgtgctca gcaaaccccc gttcagcgcgc acgctgtggc 9660
cctatccggt aactatcgtc ttgagtccaa cggggtaaga caagaccttat cgccactggc 9720
agcagcccact ggttacagga ttgagcagac gaggatgtga ggcggtctga cagatctctt 9780
gaagtggtagg cctaaactacg gctacactag aagacagta tttggtatct gctgctctgtc 9840
gaagcccagtt acctttcgga aaaaaagtttg tagctcttta tcgggcaaac aaaccacgc 9900
tggtagccgt ggttccccctcc ttttcaagca gcagattact gcggagaaaa aaggtatctca 9960
agaagatcct ttgatctttct ctacggggtgc tgacgtcctg tggagagaaaa acctacgta 10020
aggatttttg gtcatgagat tatcaaaag gatctctcccac tagatctcttt taaattaaaa 10080
atgaagttttt aaatcatctt aagatataca ttagttaact tggctctgaca gttacaatgg 10140
ccttaactcgt gaggcaacct tctcagcgat cttgctctttt cttcatcctta tagttgcctg 10200
actcccgggtc gtgtgtagataa ctagcattag ggaggtccttc ccatctggcgc ccagctgtgc 10260
aatgataacgc cgagaccccg gctcaccgggc ccctgacattta ctcagcaataa accagccacg 10320
cggagggcc gagccgagaa ttggtctcgc gaccttatcc gcctcctatc ccgcttattaa 10380
tttgtggcgg ggagcttagat taagtaccttc gccagatttaaa agtttggcga acgtttgtgc 10440
cattgcataa gcagatctgg tggctacgctg cttggttttggt atggctctcat tcagcttccg 10500
ttcccaacga tcgaagcagag ttcatcgtcct ccctacgtagtg tgcaaaaaag cggattgctc 10560
ccctgcctct ccgtgctggt ccgaagatgca cttggtgccga cttgtatcact ctatggttat 10620
ggcagcactg ctaattctct ctaagtctct gccacgcgta agatgtctttt ctgtgcctgg 10680
tgagtaatca acacgtagtt cttgagaata cggtatcggg gcacagagtt gctcttgccc 10740
ggtctcaata ccgggataaa cccgcggcaca tagcagaaaact tttaaagatgc ttcattcattg 10800
aaaacgcttc tgggtggcga aacctctcaag gatctctacgc ctggtgagat ccagttccgt 10860
gtaaccacact cgtgcacagca actgatcttc agcatcttttt actttcatcag gcgggtttcgg 10920
gttgacaaaa acagggaccc aaaaaatccgc gaaaaaagga ataannggca cagggaaatg 10980
ctggtacttc attacctttcc tttttcataa ttattgaagc atttatatgg gttatatgtct 11040
cctgagcagg tacatatttg aatgttatatta gaaaaataaa caaatagggg ttcggcgcac 11100
atcccccaga aagttgcacag ctgacgctc 11128
tcctgctctc gtgtgacgtc tgaacaagcg cgccttctctc agatccgctt cggatccgca
1560
aacaaccgc ctcgttgtac ggtagtatttt tggcttgccaa gcacgagatt acgctgagca
1620
aaaagggtc tcaagaagat cctttgcagtt ttctacgctgg gcctgagct cagttgaaag
1680
aaaacctcag ttaagggatt ttggctcaaggt ctagttaaatt aagtgcgaatta aaacattcat
1740
tattttttttt ggttctgtgct gttggtgggt ctgtgtggtcgg tgggggaggg gcgggcaca
1800
atgactttcaaa gatgtcctgg gggcagcccg agacacacc caagacatcg ctagtgcggg
1860
ctctgacacca taacacacaa tcacacgggg aagtcgagttc atcggacgtg atcgctggtc
1920
ataaccttacg gtaatgtgcgcc ggcctggtggt acggccaaaa gaccccccga cattgaacgtc
1980
ataaatgacg tattttccaa taatgacgcc aataggggtc tttccattgcag tcgagttcgc
2040
ggagtattttta ccgtaaactcg cccactgtgc acgttactcag agtcttactcag tcggtatcgtc
2100
gccctctattt gcctgttactcg acggttaataag gcccggccttg gctctatgtcgc aggatacgact
2160
cttatgaggac tttcctacttt ggcgtactaatc ctacaatgtgctc ttcagttctc gcgggttttcc
2220
agtgcgggttt tggcattgaca tcagctgtcgg tggatagcgg tgtttactcag gcgggttttcc
2280
aagctcttcaac cccttgacag tcaatgggag tttgttttta gcacaaaaatc aacgggacct
2340
tccaaaaagtgt ctaacactct ccggcccccatt gcgcttgggcgc gcggcttaggc gcgtacggtgt
2400
ggaggtctatt atacgcatg ATACGGTACTGC gcgcgtctggt gacggtctcgac gcctggatatcc
2460
agcgttgtttt gaccttcataa agaagacacgg gacggcataag accctggcgcgg ccggggagcg
2520
gttgagttgga acggggtagtt cccgctgcacaa gaggctagta agtccgcttcct atagagtctca
2580
taggccccaac cctcgtggttt cttatgtctgct ctagaatttttt tgggttgcgg tgtcatcata
2640
ccccctggcct ctcctatctt ggttgattgcg atacgttatgc ctagagttgt ggttatttta
2700
ccattatgtgg ccaactccccat atggtgtaacg atacccaaaaa ttataaatcctc ataacatggc
2760
ttttggccag aacgtaaaaaa atggctata agacacatcag cggactgaca
2820
cggactcggag attttttcctt cggacgctttt atcacaattgc atacagttcaca
2880
caccacgttc cccagtgtggc gcagttttttt tttatatatg ctgggtgatct cccacttcatg
2940
ctggtggtcgg aactacttcgg tgtgtacttgct ctcggttaggc gcgggtgtctg tcacatcgg
3000
gccctctcct ctcgctgtctg gcagctcactg gctctgctgctg gctctgtgcct gcctaacagt
3060
ggggcagaga cttctgacgca gcaagtgcgtgc caccaccacc cagctgcccc acagaaggcgt
3120
gcgggtgcgtc attagtggttc aggggagcgg gcttcgccagc gccgtgcgatt
3180
tggaagactg aagacagcgg cagagagaag tgcagagcgc tgagttggtg tttttctgata
3240
agagtcagag gtaatccttct tgtggtggttc tggataaagg gaagagctgt gtagtcgatc
3300
gagtactgga aagacccgga aaggtttgtc tttcaaacgcc agctgtggaa aaaaaaggga
5100
caggataagt atgcacatcat caaggaaccct gctgcaactgt cggccccctaga cgtgcaaggtc
5160
accgcgcgagc tcgctcaggt cgtgaccggata tctccgctggg ccctctttctgc cgaaccacgt
5220
gtgctcacag acctgcgctc gccgcttcaac cagctccatc ccaactgccatt
5280
ggcctcccttga ggcagatagt cttcgcggcagc cggcagcggct ccctgggtcc cctcgggtcc
5340
gacctcctcg cctcctccgca cgaactatacg gattaagtgcc ggcgcggcagcat cgcggtggga
5400
agatgttaaat ctcatacttc ttggaatactcg acagagcccc ttctagttta cacattttcg
5460
ggccagtacg cctgccgctct caacccacccct atgcagatgg ggccccccacct ccaacccatc
5520
ggcgcgcgcg tcggcgcgcc gccgcagctcg cagcccccgag actgctcgata atggaaatgta
5580
gactacttcag acgcgcgccct gtgtccccggg gttctttacgc ttgacgccca cccccccgaggc
5640
gagacgcagc cagacccaccc ttgcggctgca agggccgcct cctctctggtg
5700
acccacgcgc gccctacgccg agggcagtcga accagcgttg accctttgtcct cctgcaacac
5760
cgcggttgcc ggcgtgctctcc gttgccccgc acgcgcaccc cctctctctcg ggaattgccg
5820
tgggggcgcgcgcc ggcatactca gcagtaaccat atggcgcggcacc agggccgcct cctctcgtgg
5880
cccaccacccag ctcctgctctt ctcgctctcc accggccctca cgggtctggta
5940
gccaccaacag cggcctccct cgggccaccc agatggacgc ccgcacaccct ccttcgagcgc
6000
aaaggcaacac ccctgccgctcc aatctcccag tttctgcacc agatggacgc cggccacccct
6060
ctttgagcc aatccaatcc gcccttttttgc agggagtact ccccccacac ccctgcccctc
6120
gcagacgagc atggagaggaa gaggacagc gaaacgcgacc ccaccccccttt ttaacgccccc
6180
cctccgggaa cccgcgtctca cgtggtgcta ctaacctaaccg tttttttggag aactgcaaatcc
6240
ggaagggcc acatgtgtct cttcacacctgg cggcagtagt acccccctagt ggaaaaacgc
6300
cgtctaccct ccctcttacgc gcgctttgctgg cggcctggga cggcagcctct cgtgccagag
6360
tttcagcagtt ttctctactg gggggacgcc gggacagcgc gcgtcaggtg accggagcctg
6420
tcgtctacac gcgacgcgcc gcgccctccct gctccgccagc gctgccagcg gcgtccgtgaa
6480
accagaggta agaaacccat cccacccgtc ggggggaacc cccttttttggg cccccacacgc
6540
ccagacgctgct cctcttgctcag cgcagctcgcg cggcagcggag ccgggtgccc
6600
tcctttctgc gcgtcgtcctcc cagccggagc ggcgctgggg cggggtgccc
6660
cctctctcgc gcgccccgaa agggccctata agggccctgag ccgggagggcctg
6720
ctggacactcg ccaaggctgct cttgcgcggcag cgcagggcagc agacggcagag
6780
cgcttcagc cccagccaggc ccgctctcag ccggcccctgcc cgggccagcc gcgggagggg
6840
caccctttca cccgtaacca gactacgctg a cgacggaccc tgcggcccttg gaagaagactg 6900
acccctggccc gttcttgagca gcacgcctaa ctgcgttaca gcaaaagccc ccccaacccg 6960
cgaaagcagg agatagtcgg atgcagatgc ccgtagacgca cgtgcacagg cgtggtggacc 7020
gctggaact gtcttgctcaaa aggtgataa ccagcgcaca ttccagactgac gtctctagatt 7080
gagctcagct tactgctggca agcgctttgg a atticgcatgg gatgtggcttg ttgctataggt 7140
tatatcctcc catattgcgg tctttttgca atgtaggggc ccggaaaacct ggcctctctct 7200
tcttgacgag catcctcagg ggtcttttcccc ctctcgcaggg aggaatgcaag ggtctgtgtgaa 7260
atgtgctgaa ggaagcagtt cttcttgagcc attctctgaag acaaaaaacgc tctgtagcga 7320
ccttttgcag gcagccggaac cccccacccgg ccgacaggttg cctctgagag cccaaaaacc 7380
gttgataaga tacacgctgca aagcggacca aacccctaggt ccacgggtggt agttgggtag 7440
tttggtgaaag agtccaaattg ctttctccaa ggcttattca ccaggggtctt aagagttccc 7500
agaggtaccc ccattgtgcc ggtcttggtct ccagcttcccag gttcagctctgc tttaacagtgg 7560
ttttagctgag gttaaaaaaa cgctctaggg cccccgccag cgggacaggtg gtttctctctt 7620
gaaaaacacg ataattacatt ggttaagttt tatctctagct tgtgacgggg cgcctagtttg 7680
tgacaattta tcatcggcatt agatatacgcc catagttaa tcagactccc tattaggggg 7740
ccacctgtgc gacactaaca ctttctctcttc ttctcatgag tcagactcacc gttaggagg 7800
ccatcatgaa aacaagctgaa ctcaccgcgca ggtcgtggcc gaagttcttctg atcgaaaaag 7860
tgcacagctgt ctccgcacgctg atgcagctctg ccagggggccagaatctcctgc gttttctagct 7920
tgcagcagctgttc gaggcttggga taattttcctct gcctcttgagag cggtaatagag ccaccttacagttc 7980
aagatgctcta tgttcatcgcgt tcgagctgtgcag cggccggccct cccgatttccg gaagtcttccg 8040
acattggggaa acctgcagcgag gctcctcaccgt attcgcacttc ccgcccgtgcca caccgggtga 8100
cgggttacta cctgtctgtaa cccgactgctgc cccgtttcttc gcaaccctgct ggcagctctc 8160
tggatactgac gctgtcgggcc gatcttatggc agacgagcgc gtttggcccc ttcggaagccc 8220
aaggaatcagg tcatacaactc acatggtctn atttctcattgt ccgctggtctgc atcccctattcg 8280
tgatctactg gcctgtaatgg acggggagaa ccgctgcaggt gtcggcggggtg atgcagctctc 8340
atgctactgtc gtttttgggoc gaggactgcc ccgaagctgg gcacctctgtgc ccggcgtattg 8400
tggcttccaag caatgcctgttat acggcataag ccggaataac agcgggtcatt gactggagcc 8460
aggcagtttt ggggtctcctc ccatacgagc tgcgcaacact ttctttcttg ccggtctgtgct 8520
tggttgtgatg ggacgacagc acggctacctc tcagggctgag gcataccgagct cttgcaggtat 8580
cggaggggtcc gaggggtcatattgctggcctcttcctgagtcctcaacataag agacgctgccagtg 8640
ttgacggcgtg cttttgagtttc gtctgagttttc ctaactctagct cagagctctg 8700
cggagccgg gactgtcggg cgtacacaaa tcgccgcgcg aagcgcggcc gtctggaccg 8760
atggctgtgt agaagtactc gcggatagtg gaaacsccac gccagcact cgtccgagg 8820
caaaggaatg agtcgagaat tcgctagagg gccctatctct atagtgtagc ctaaatgcta 8880

gagctcgtctc actacgctcct ctatgtgcca gccatttttt gttttgocccct 8940
ccccctgcct cttcctgacc ctgagaggtt ccactcccac tgtccctttcc taataaaaatg 9000
aggaacctgc atcgcaattg tggataagtct gcatttgtat ttcggttggtt ggggtggggc 9060
aggacagcaag ggggaggtat gggagacactg acagcagcct tgtcgcagggg ccaattgctc 9120
gaccggcggc aataaaatct ctttatattttc attacatctcttgtgttgtggtt tttggtgtga 9180
atcgtaacta acatacgctct cctcataaag ccaaaagaaa ccaaaacacc tagaaaaata 9240
ggctgtcccc aggcaagtgt cagggcggag accttttccct tatoaaa 9287

<210> 21
<211> 529
<212> DNA
<213> Artificial Sequence

<220>
<223> nucleotide sequence of human Ad type 5, B1b-19kd, coding region

<400> 21
atggagccctt gggagtgtttt ggaagattdtt tctgctgtgc gtaactttgcct ggaacacagc 60
tctaatcgtca ttccttacgt tttgagtttt ctgtggtgtttt gattcccagc aaagttgatc 120
tgtaagaattt aggagatta caaggtggag tttggaagag cttttgaaaacct gttctggtgaag 180
catttttgttt ctttgaatctt gggcaccagc gggctttttcc aagagaaggt ctaaagact 240
ttttttttttt cccacacggg gccgctgttggt ctgtgcttggtt gttttttag gttttttcag 300
gataaatgga gcgaagaac acatcctgag ggggggttttt tgtcggatttt tcttgccccg 360
catcgtgagc gacggcgtgttg gagaacaagc aacgcctcttc tctcagttgtgtgtctcgcc 420
cggcgcataa tasgaacgga gggcgcagc agcacagcac aggaagaccag gcgggcggcg 480
caggagcaga gcggctggaaaa cccagagcgc gcggcttgacc cttggaat 529

<210> 22
<211> 176
<212> PRT
<213> Artificial Sequence

<220>
<223> amino acid sequence of human Ad type 5, B1b 19K, protein
<400> 22
Met Glu Ala Trp Glu Cys Leu Glu Asp Phe Ser Ala Val Arg Asn Leu
1 5 10 15
Leu Glu Gln Ser Ser Asn Ser Thr Ser Trp Phe Trp Arg Phe Leu Trp
20 25 30
Gly Ser Ser Gln Ala Lys Leu Val Cys Arg Ile Lys Glu Asp Tyr Lys
35 40 45
Trp Glu Phe Glu Glu Leu Leu Lys Ser Cys Gly Glu Leu Phe Asp Ser
50 55 60
Leu Asn Leu Gly His Gln Ala Leu Phe Gln Glu Lys Val Ile Lys Thr
65 70 75 80
Leu Asp Phe Ser Thr Pro Gly Arg Ala Ala Ala Val Ala Phe Leu
85 90 95
Ser Phe Ile Lys Asp Lys Trp Ser Glu Glu Thr His Leu Ser Gly Gly
100 105 110
Tyr Leu Leu Asp Phe Leu Ala Met His Leu Trp Arg Ala Val Val Arg
115 120 125
His Lys Asn Arg Leu Leu Leu Leu Ser Ser Val Arg Pro Ala Ile Ile
130 135 140
Pro Thr Glu Gln Gln Gln Gln Gln Gln Glu Ala Arg Arg Arg Arg
145 150 155 160
Gln Glu Gln Ser Pro Trp Asn Pro Arg Ala Gly Leu Asp Pro Arg Glu
165 170 175

<210> 23
<211> 3597
<212> DNA
<213> Artificial Sequence

<220>
<223> Nucleotide sequence of human Ad type 5, E2b polymerase coding region

<400> 23
atggccttgg ttcaagctca cggggcccggt cgtcttcagc cagaggcccc agattcagga 60
gatcaaaccgc cgctcggtcg cgttgcgcag caacctacgc gcgcaagcacc gcctcctgc 120
cgccgccagca tcgccgggtgg aagatgcctac cctacatate ttggaatact cagagagccc 2040
cctcaagttt acgacatttg ccggcatgtac gcoccggcgc tcaccacccc ctaagcagtg 2100
ggcccccaac tcaacacatca ccggcggcgc cttggccgccc cggcatggca gcaagcacc 2160
gacttcgaag gatgcaagatt agactaccttc gacgogccgga tggctggcccc ggcggcc 2220
gcggacgta ccactccccgggg cgaagactcgc ctaagagcatt tggcttcgccc 2280
gagggccgcc gcctctcgctg gacccagcag cgcctacgcg gagagtagc caccagcgtt 2340
gaccttggctca cctgtgcacaa cggccggtgg ccgctgacacc tggctgcgcca cgcagcgacc 2400
acgtcttttc ccgatactggc gttggcttgcg ccggaggtcggt cgcagctaaa ccccgcccgg 2460
aagggagcgc cggagcggag ccagaaaaac caaccctgtcc ccaagacgcag ttgctgtgct 2520
aagcgcctct acgggctgttt tgcccaacac cttgacaa cgaacagatgtcct cttcttgac 2580
cagatggagc cggggaaccct caaaagcccc cccgcgggccc aggtctgataa caaatctccc 2640
tcggtttttgg aactgcacaa ttcattgca cggctcagtcc gctgctttccg gacgggttagc 2700
tcaccccaac acgtgctgcct ccgacagcagc gatgacagaaa agagtaggga cgcagcccgc 2760
ccccccccc tttatatcct cctctcagga ccaccggtgc agctggctgaca cacccatcacca 2820
ccatcactct tccttgagtg ccagaggggcc gacactgtgtcc tacacacccc ggagccagttg 2880
gacccccctag tggacacagc cccgctaccc tcccaacctg ctcctctctgt gctgctgctgg 2940
acgcagacct tcggattcaga gttgggcgag tttctatacg aggaggacgc ccgaacaaccg 3000
tcgagggcag gcgctctcaca gttgctatgac cggcagccgg agcagctttt ccgctcaggag 3060
cggtggacacc gcggctcagttg aaccagaggg aacagacgca tcacacagcgc gcggggaaac 3120
cgggtttcgg acccgggacc gcgcagactc acgctgcttg tggaatgcag gccgcgc 3180
ggccccctgg cggaggatgc gcactccccc gcagtcgtgc ctcctgcacc cagcctcgc 3240
gcctctcaca gttgctgtcc ccgctggcc ccagccggtc ccccttctctg ggcggctcctt 3300
aaggccacgc ccggcggaggc gttgagcttgt gacacacatcc tcaatgtgaca acggcgc 3360
gcgcagggcgc aagacccgcca ggcgcttcgg ccagcctcaac cgcgacccctg 3420
ggcagcgccc agcggcggcgc cggcctccctac gcggcttcacc gacgtgaccc gacgagcacc 3480
cgctgccccgt ggaagacact gcgcctggcc ccgtcgtggacc gcagacacgact ctcgctgtc 3540
agcgaagcgc gcccacaacc gcggaacacag gagatatgcgc ggctgacagt gccgttag 3597

<210> 24
<211> 1198
<212> PRT
<213> Artificial Sequence
Amino acid sequence of human Ad type 5, E2b polymerase protein

Met Ala Leu Val Gln Ala His Arg Ala Arg Arg Leu His Ala Glu Ala
 1 5 10 15

Pro Asp Ser Gly Asp Gln Pro Pro Arg Arg Val Arg Gln Gln Pro
 20 25 30

Thr Arg Ala Ala Pro Ala Pro Ala Arg Ala Arg Arg Arg Ala Pro
 35 40 45

Ala Pro Ser Pro Gly Gly Ser Gly Ala Pro Pro Thr Ser Gly Gly Ser
 50 55 60

Pro Ala Ser Pro Leu Leu Asp Ala Ser Ser Lys Asp Thr Pro Ala Ala
 65 70 75 80

His Arg Pro Pro Gly Thr Val Val Ala Pro Arg Gly Cys Gly Leu
 85 90 95

Leu Gln Ala Ile Asp Ala Ala Thr Asn Gln Pro Leu Glu Ile Arg Tyr
 100 105 110

His Leu Asp Leu Ala Arg Ala Leu Thr Arg Leu Cys Glu Val Asn Leu
 115 120 125

Gln Glu Leu Pro Pro Asp Leu Thr Pro Arg Glu Leu Gln Thr Met Asp
 130 135 140

Ser Ser His Leu Arg Asp Val Val Ile Lys Leu Arg Pro Pro Arg Ala
 145 150 155 160

Asp Ile Trp Thr Leu Gly Ser Arg Gly Val Val Arg Ser Thr Val
 165 170 175

Thr Pro Leu Glu Gln Pro Asp Gly Gln Gly Gln Ala Ala Ala Glu Val Glu
 180 185 190

Asp His Gln Pro Asn Pro Pro Gly Glu Gly Leu Lys Phe Pro Leu Cys
 195 200 205

Phe Leu Val Arg Gly Arg Gln Val Asn Leu Val Gln Asp Val Gln Pro
Val His Arg Cys Glu Tyr Cys Ala Arg Phe Tyr Lys Ser Gln His Glu
225
Cys Ser Ala Arg Arg Arg Asp Phe Tyr Phe His His Ile Asn Ser His
245
Ser Ser Asn Trp Trp Arg Glu Ile Gln Phe Phe Pro Ile Gly Ser His
260
Pro Arg Thr Glu Arg Leu Phe Val Thr Tyr Asp Val Glu Thr Tyr Thr
275
Trp Met Gly Ala Phe Gly Lys Gln Leu Val Pro Phe Met Leu Val Met
290
Lys Phe Gly Gly Asp Glu Pro Leu Val Thr Ala Ala Arg Asp Leu Ala
305
Val Asp Leu Gly Trp Asp Arg Trp Glu Gln Asp Pro Leu Thr Phe Tyr
325
Cys Ile Thr Pro Glu Lys Met Ala Ile Gly Arg Gln Phe Arg Thr Phe
340
Arg Asp His Leu Gln Met Leu Met Ala Arg Asp Leu Trp Ser Ser Phe
355
Val Ala Ser Asn Pro His Leu Ala Asp Trp Ala Leu Ser Glu His Gly
370
Leu Ser Ser Pro Glu Glu Leu Thr Tyr Glu Glu Leu Lys Lys Leu Pro
385
Ser Ile Lys Gly Thr Pro Arg Phe Leu Glu Leu Tyr Ile Val Gly His
405
Asn Ile Asn Gly Phe Asp Glu Ile Val Leu Ala Ala Gln Val Ile Asn
420
Asn Arg Ser Glu Val Pro Gly Pro Phe Arg Ile Thr Arg Asn Phe Met
435
Pro Arg Ala Gly Lys Ile Leu Phe Asn Asp Val Thr Phe Ala Leu Pro
<table>
<thead>
<tr>
<th>450</th>
<th>455</th>
<th>460</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asn Pro Arg Ser Lys Lys Arg Thr Asp Phe Leu Leu Trp Glu Gln Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>470</td>
<td>475</td>
</tr>
<tr>
<td>480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly Cys Asp Asp Thr Asp Phe Lys Tyr Gln Tyr Leu Lys Val Met Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>485</td>
<td>490</td>
<td>495</td>
</tr>
<tr>
<td>Arg Asp Thr Phe Ala Leu Thr His Thr Ser Leu Arg Lys Ala Ala Gln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>505</td>
<td>510</td>
</tr>
<tr>
<td>515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala Tyr Ala Leu Pro Val Glu Lys Gly Cys Cys Ala Tyr Gln Ala Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn Gln Phe Tyr Met Leu Gly Ser Tyr Arg Ser Glu Ala Asp Gly Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>540</td>
<td></td>
</tr>
<tr>
<td>545</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro Ile Gln Glu Tyr Trp Lys Asp Arg Glu Glu Phe Val Leu Asn Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>555</td>
<td>560</td>
</tr>
<tr>
<td>565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu Leu Trp Lys Lys Gly Gln Asp Lys Tyr Asp Ile Ile Lys Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr Leu Asp Tyr Cys Ala Leu Asp Val Gln Val Thr Ala Glu Leu Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>585</td>
<td>590</td>
<td></td>
</tr>
<tr>
<td>595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn Lys Leu Arg Asp Tyr Ala Ser Tyr Ala Ser Phe Val Arg Asp Ala Val Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leu Thr Asp Ala Ser Phe Asn Val Phe Gln Arg Pro Thr Ile Ser Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>615</td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asn Ser His Ala Ile Phe Arg Gln Ile Val Phe Arg Ala Glu Gln Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>635</td>
<td>640</td>
</tr>
<tr>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ala Arg Ser Asn Leu Gly Pro Asp Leu Leu Ala Pro Ser His Glu Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>655</td>
<td></td>
</tr>
<tr>
<td>660</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr Asp Tyr Val Arg Ala Ser Ile Arg Gly Gly Arg Cys Tyr Pro Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>665</td>
<td>670</td>
<td></td>
</tr>
<tr>
<td>675</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr Leu Gly Ile Leu Arg Glu Pro Leu Tyr Val Tyr Asp Ile Cys Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>685</td>
<td></td>
</tr>
</tbody>
</table>
Met Tyr Ala Ser Ala Leu Thr His Pro Met Pro Trp Gly Pro Pro Leu
690 695 700

Asn Pro Tyr Glu Arg Ala Leu Ala Ala Arg Ala Trp Gln Gln Ala Leu
705 710 715 720

Asp Leu Gln Gly Cys Lys Ile Asp Tyr Phe Asp Ala Arg Leu Leu Pro
725 730 735

Gly Val Phe Thr Val Asp Ala Asp Pro Pro Asp Glu Thr Gln Leu Asp
740 745 750

Pro Leu Pro Pro Phe Cys Ser Arg Lys Gly Gly Arg Leu Cys Trp Thr
755 760 765

Asn Glu Arg Leu Arg Gly Glu Val Ala Thr Ser Val Asp Leu Val Thr
770 775 780

Leu His Asn Arg Gly Trp Arg Val His Leu Val Pro Asp Glu Arg Thr
785 790 795 800

Thr Val Phe Pro Glu Trp Arg Cys Val Ala Arg Glu Tyr Val Gln Leu
805 810 815

Asn Ile Ala Ala Lys Glu Arg Ala Asp Arg Asp Lys Asn Gln Thr Leu
820 825 830

Arg Ser Ile Ala Lys Leu Leu Ser Asn Ala Leu Tyr Gly Ser Phe Ala
835 840 845

Thr Lys Leu Asp Asn Lys Lys Ile Val Phe Ser Asp Gln Met Asp Ala
850 855 860

Ala Thr Leu Lys Gly Ile Thr Ala Gly Gln Val Asn Ile Lys Ser Ser
865 870 875 880

Ser Phe Leu Glu Thr Asp Asn Leu Ser Ala Glu Val Met Pro Ala Phe
885 890 895

Glu Arg Glu Tyr Ser Pro Gln Gln Leu Ala Leu Ala Asp Ser Asp Ala
900 905 910

Glu Glu Ser Glu Asp Glu Arg Ala Pro Thr Pro Phe Tyr Ser Pro Pro
915 920 925
Ser Gly Thr Pro Gly His Val Ala Tyr Thr Tyr Lys Pro Ile Thr Phe
930 935 940
Leu Asp Ala Glu Glu Gly Asp Met Cys Leu His Thr Leu Glu Arg Val
945 950 955 960
Asp Pro Leu Val Asp Asn Asp Arg Tyr Pro Ser His Leu Ala Ser Phe
965 970 975
Val Leu Ala Trp Thr Arg Ala Phe Val Ser Glu Trp Ser Glu Phe Leu
980 985 990
Tyr Glu Glu Arg Gly Thr Pro Leu Glu Asp Arg Pro Leu Lys Ser
995 1000 1005
Val Tyr Gly Asp Thr Asp Ser Leu Phe Val Thr Glu Arg Gly His
1010 1015 1020
Arg Leu Met Glu Thr Arg Gly Lys Lys Arg Ile Lys Lys His Gly
1025 1030 1035
Gly Asn Leu Val Phe Asp Pro Glu Arg Pro Glu Leu Thr Trp Leu
1040 1045 1050
Val Glu Cys Glu Thr Val Cys Gly Ala Cys Gly Ala Asp Ala Tyr
1055 1060 1065
Ser Pro Glu Ser Val Phe Leu Ala Pro Lys Leu Tyr Ala Leu Lys
1070 1075 1080
Ser Leu His Cys Pro Ser Cys Gly Ala Ser Ser Lys Gly Lys Leu
1085 1090 1095
Arg Ala Lys Gly His Ala Ala Glu Gly Leu Asp Tyr Asp Thr Met
1100 1105 1110
Val Lys Cys Tyr Leu Ala Asp Ala Gln Gly Glu Asp Arg Gln Arg
1115 1120 1125
Phe Ser Thr Ser Arg Thr Ser Leu Lys Arg Thr Leu Ala Ser Ala
1130 1135 1140
Gln Pro Gly Ala His Pro Phe Thr Val Thr Gln Thr Thr Leu Thr
1145 1150 1155
Arg Thr Leu Arg Pro Trp Lys Asp Met Thr Leu Ala Arg Leu Asp
1160 1165 1170

Glu His Arg Leu Leu Pro Tyr Ser Glu Ser Arg Pro Asn Pro Arg
1175 1180 1185

Asn Glu Glu Ile Cys Trp Ile Glu Met Pro
1190 1195

<210> 25
<211> 6454
<212> DNA
<213> Artificial

<220>
<223> Nucleotide sequence of E2B coding region (PTP,POL,IVA2)

<400> 25
atggagcacg ttgtgcgctt gcggacaacct tggaaccccg tccgcgcactt tccgcgcgcc
60
tccaccacg cggccggttc acactgttag tccaggtaca tctacggtata tcatgccttt
120
atgtttggag atctgctccc cggagccccg gcccacctac gctgccccct ctaccgccag
180
cgccgcgcgc actttttagt ggatgagag tacctgtgtgc ggacttgccaa cgaactcga
240
tttagctgca gggctttact cgtcttcggt tacccagagc tctgcacgcc gggctccagcc
300
acgtttaact gttctgttacag gcgaactgcct actacacca tcaacaggg gcctacacac
360
cgcttttgtg acatggttata cttcctacgtt acctctagcgg acgtgcagcag gcctcatattta
420
gcccagcgcag ttcgggtcgtg acatcagagtc cattcagctg ttgggctggt gccgtgcagctg
480
cgaagagag ggaggagccg ccacactcgg ccaaccctcg ccgcgcgcgc gcacagctg
540
cgactagct cggacaagcag ccgccagcgg gcctgaggttg gcgatcgggc ggtgcagcagcagc
600
gactacac gtcgctgcgc cggactgctg aacagcagcc gcgccgtgcc gcacagcctctg
660
cgctcgcag gcgtcggcac ccggagcgcg ccgtgctgtg cgcgtcgcgt gcgtctgagcag
720
accgcctcct ttaattacat ccctagccca acctccgcca gaaacaaccc ccgacggcgcg
780
cgcgctcgcc ccgcacgcgct gtcagccaca ctctggcagc tctctggttt acacgcttcttt
840
tcgcagagtt ttgacggccgg gcgtgatggcag ctgcaggcgt cgtcctgctgg cggccggagta
900
cctacacccg aatgtggatg agctatcttg gcggcgcgat ctcctgcgca tggcgccgcccc
960
cggccaccc ccagcgggaa cagacgctgg ggcgtctgcc cacgtggcgg ggcgtgctgg gcagtggcagac
1020
gccggcgccg tccaggagtc ggtgcgtggtgc gctgtgctgcgt gcgccggggg gcgtcttggcc
1080
gccggctccg ccggctgcgcg tgcgtgcgcgc gctgctgccgcc ctcccctccgccg ccgccctggagaa
1140
gagaagaggg cgacggcctt tttggagaag gaggattg aagagaagaga cgctccgctgta
1200
gcttttgagc gcggagtgcg ccgaactgtcc gcggaccttc tccgtttctct ggaggaggg

1260
ttaacccgttgt cggcccgcag cccacctttt ttcacaacctgc cctggactct ctcaggggcc

1320
atggagcgcc ttggagcccttt ggaggatatc aacgaactcc gcggagctgg ctggcttcag

1380	taaccttcccg tcggacagacc cacgccccacct ccctccaccttc gcctccctgg aacgctggag

1440
aactaacctgc ctttcgccgc gcacagttggg cttactctct gcggagagtct gcacagctgc

1500
cggatgtcg ccggagccgt tggctctcgag cggctctgcgc agccggaggg gtcacacctgc

1560
tcttctgcag ccactgtgccc cactttaccc gacccctgccc cccacaggtta aagagccgag

1620
cggagacgt ccagagaggt gcaggtcagac cacttttcgc cccacagctg ccagagcggag

1680
aatcagggag acgtggcagg aatgggctgc cagcccgccgg ctcacaagc cacaacttgtat

1740
tctgtcgaacc tctttttcag gtcagctcc acggccgccc ctgccttcac gcagagggcg

1800
ccagttacag agataacgcc ccggctcgcgt gcggcgcgcta gcacactcgc ccgaccggtc

1860
caggtctcgcgc cggccgagtt ccgcgcgttc cccctccgtc gcggcggcct gcggcgttc

1920
ccccccctac ccgtgggtcg gcacgacggttg cctgcctctt aggtgcatca ttcagacacc

1980
cccccgtgcca ccagccggcgc ccggccggga gcggcggggt gcggcggggt gcggcggggt

2040
tgcagcctcc gacgggctt tcgaggttaa actgtagcga ccccgctgct gacgtggagt

2100
ccggcgcctg gacgggtccta tcggaggtcg acgtggcagga ccccggtcct gcacgcgtcc

2160
ccggagggct ccagggagcc atgcgccccgc tctgcgtcag gactgcgtcg ctgcggaggt

2220
cgcacgtcgc gcgggtctgg acaggtggct gcgcggctgc gttggcgtcgt tccacgtagta

2280
cctgctgcag gcagggggag gtaactggctg ttcgggctct ttcgcggcgt gcggcgttc

2340
acctgcgtcc gccctgcgact gccgtgtcgtc gcggtctcgc gtcgcagaatgc aatgggtcctg

2400
gccgagagcgc ccgcagggga ctactgtcttc tccgggctgc gtcgcagatc ctcacggtgg

2460
tctttccagt gccgcgcagc ccccttcaga ttcctggcgc tgggtttgct tccctgcggt

2520
tcttcccac ccggggttcc cgctctggat cccctgctgc gtcgcacgat gcctggcttg

2580
gttgggttg gcgggctgtgc gttgggcttg gggggcttgg ggggagcgcgc

2640
tcggcctcct ccgctgtgctt tcgagactgc atacgtgcct tggggctttg ggcgtcgcgct

2700
gagactgct gcggcgggct gcggggtgc ccggggactgc gccgggctg gtcgcggcggct

2760
ccatcagag ggacactgag gcgggctggg gcgggctggg aagcaggtgc gcggagcttg

2820
aatgtgact gcggcgggct gcggggtgc ccggggactgc gcgggctggg aagcaggtgc

2880
actgggctgc cccagagcgc gcggggtgc ccggggactgc gcgggctggg aagcaggtgc

2940
aaaattgccc ttctcatcagg gcggggccgc gtcgtgggag acctttcactt gtggggccaca

3000
acatcaacgg ctttgaacag atcgtgcctcg cggcccgagtt aattaaacac cdttccgagg 3060

tgcggaggacc cttccgcatc acacgcaact ttatgcctcg oggggaaag atactctttca 3120

cagatgctac cttcgccctcg ccaaatcgcgt gttccaaaaa ggcgacaggc tttttgtctt 3180

gggagcagg cggatgctgcc gacactgact tcacaatacag tgaacctaaa gtcatactgta 3240

gggacaccttt tgctgctcacc cacaacctgcg tcgggaaggg cggcgagggc taacgcgtac 3300

ccgtagaaaa gggatgctgc gcctaccaggg cggctcaacca gttctagcatcg ttaggctctt 3360

accgctccgga ggcgacccgg gttgatgatcc aagagtagcg gaaagacgac gcagaggtgg 3420

tctcaaccc gtagctgtgg aaaaaaaagc gagaggactaa gtatgacact atccagaaaa 3480

ccctggacta cgccgccccta gagcgtgaggg tcacgcgcagtagtcgtcacc aagcgtgcgg 3540

actctacgcct ctcctttccgct cgtgaacggcct tagtgtctcac agaacgacgct tccaacctct 3600

tccagctgcct accacattcaca tccacactcct atgcctcatcttt caggagatata gtcctttcag 3660

cagacgaccc cgccgctagcg aacctctgcg cccacctcctcg cggacactat ccaaaactat 3720

acgattacggt gcgcgccacgc ataaccggttg gaagatgctca cccctacatat tctgggaatac 3780

tcagagacgcc cctctcaagt tccagacattt gcggcatgta gcgcctccgag ctcaccaccac 3840

ccatgccccat gggtcctccca ctcacccact aacgcggcgc gcctgccgccc ggcgcctggtc 3900

agcagagcct aaacctgc tagacacatct gcgacgcgc gcggctcgcct 3960

gggtctttaac gttggaag-cgca gacccccccggc acagagcgca gctagaccccc tcaacgccat 4020

tctgtctgcgg caagggcgcgt cgcctctgtct gcggacaccc gcggctgcag tagaggtgtag 4080

ccaccagcgt tgcaccttgct acaccctgacaa accggggtgta gcgcgctgcag ctcgctcgcct 4140

acagacgcac cagcgtctttt ccggaatgcc ggtgcgtttgc gcgcgcacact atgcagctaaa 4200

acatcgccgc caagagcgcc gcggatcgcg caacaaaaac caaccctgcgct tcctagccga 4260

agttgtgtcgc caagccctggct aacggggtct gcggccacaa gccgacacac caaaaagattg 4320

ttttttttctgg ccagatgggt cggccacacc tccaaagccat cccgccccgc caggttgaata 4380

tcaaatcttcct ctcgctttttttg gaaactgcata atccctgaccg agaagtcctag ccggtttttc 4440

agagggagta ctcaccccaaa cagcggctgg gccgcagacag cggactgcgg gagaagtttgg 4500

acgaacgcgc cccccccccc tttttatagcg cccgctcagg aaacccggtg cacggtgctcct 4560

acacctacaa accaatcacc ttttttttttagc cggagaggcg cgaacatgtct tccacaccc 4620

tggagcaggt gcggccccgta gttgagagcaacc caccgctacc tccacactta gctctcttctg 4680

tgctgtgcttg cggcgagccc tttttttctag cagtgctccga gttttctatac gaggaggacc 4740

gcggacaccc gctgccggagc aggcctttca agtgctgtata cggccagcagc gacagcctttt 4800
tcgtcaccga gcgtggacac cggcctcatgg aacccagagg taagaaacgc atcaaaaa gc
atgggggaaa cctgtgctttt gacccggcaac gggccagagc cacctggctc gtgggaatgcg
agacccgtcg tggggccctgc gcggccggatg cctactcccc ggaatccgta tttctcgcgc
ccaaagtcta cgcccctcaaa agttcgcact gcccctcgag gcggcgcctcc tccaagggca
agctgcggcgc caaggggccca ggcggccagg gcggccgacta tgcaccctag gtcctattgc
acctgccccga cggcgcggagg gaagacggcc agcgcttcag caccagcagg accagccctc
agcgacacct gcgcacgccgc cagccgagag cgcacccctc taccggtacc cacactaagc
tgacgaggac cctgcgcgccgc tgtgaaacagc tggaccctggc ccgtctggag gcgccaccgc
tactgcgcta cagcgaatgcg ccgccaagagc gcggaaacgc ccggtagatgc tgtagagaga
tgacgttagag caggtagccc cggcgactgttca cccgctggag cctcgtggttc ctaacgtcga
aagcatgctt agcgccgagc gcgctcaaccct gttgaaaaaac tttgtcttcc tggacaagact
gctatogctt cggccgaggac gcctctcgag gcagtttggc tggagaaaaac cgccagctagc
gcacatatt cagcagtcgg gccggacgcc gggggtttttaa cgggctggag ctaagctcga
cgctgctagg aacctctgttt tttcagcagt gatctccctt acccgagaaa ccgcttttttt
catgcccggg caggtacctg cattccacgc acccgagacc cagcagggtag aatgtgaaat
ctgtgaggtt aactacgccct tgggacgggaga tgggacgctt atacgcaagt ctggcacctt
ccgcgcggct gttgtaaaaa tggcctctga cgtctcctac tggcacaaca actacgacgt
tagtgatcccc agaataattt tcggcggcac gcggcgcgcggt gccggccattt ccataattt
ggcgcagctc atggaaaacctt tgggacgctg caaggggctc tccaaaggtct tccagcctt
tccttctaaag ctacatgcgca aatttcccaaaa gggcagccga taccatgcttgc tgtgtgttc
gcacaactgt aatccgcggga gggatagccgc tgggacatca gcacaacctaa aaatagcgtc
cagatgcat cctatatcgc accgtatgcga cccatcccag cttaaccggt tgtggaacac
ttacaccaag gcggctccccc tgtgcaacagt cttgctactgtt aaagacatttt ttaggcacca
cgcccagcgc tctgctactg aacctggcgac ctacacacacc cccgcgcagc atgaaagctt
gcagttgtgc tacelccacc ccagacgcgg gccttatgcct a tgtactgca acatcccgag
tcacttttac cagctctcgg aaaaaataaca caggacccctc aacggacccag aacgcctttc
cgggctcac gcggcgcgca aacccctaa ataa

<210> 26
<211> 765
<212> DNA

44
Artificial

Nucleotide sequence of human adenovirus type 5, E1A-d101/07, coding region

26
atgagacagt aggtactggc tgataaatct ccaacctcta gccattttga accacctacc 60
cttcacgaac tgtatgattt agacgtgagc gcccccagaa atcccaacga ggaggccggtt 120
tcgcgagatttt ttcgccactc tgtaatgttg gcgggtgagg aagggattga cttaacctact 180
ttcccgcggc cggccggttc tcggagccgc cctcaccttt cccgacgacc cgagcagcgc 240
gagcagagag ccttgggtcc gggttggccac gaggctggtct ttccaccccg tgacgacgag 300
gatgaagagg gtgaaggagt ttgtgttagat tatgtgagac accccgggca cggtttccagg 360
tcttgtcatt atcacccgag gaatacgggg gaccacgata ttatgtgcta tggggtctat 420
atgagcagct tgtggcatgtt tgcctcgatct cctgtgtcgtg aacctgagcc tgagcgcggg 480
ccagaacccc cgcctgcaag acctacccgc cggtctctaaag tgggacctgc tattcgaga 540
cgccgcaac cactctgtgc tagagaatgc aattatgtga ccggagctgc tgacccgggt 600
ccttctacaac ccctctctga gatacaccgc gttggccggc tggttaacat gtaaccagtt 660
gcgttgagag tttggggcgc tgcggccagt gtggatgtat tgcagagcct gcgttaacgag 720
cctgggcaac ctttggacat gggctgtaaa cggcccccgg ctaaa 765

Amino acid residues of human adenovirus type 5, E1A-d101/07, protein

27
Met Arg His Glu Val Leu Ala Asp Asn Leu Pro Pro Pro Ser His Phe
1 5 10 15
Glu Pro Pro Thr Leu His Glu Leu Tyr Asp Leu Asp Val Thr Ala Pro
20 25 30
Glu Asp Pro Asn Glu Glu Ala Val Ser Gln Ile Phe Pro Asp Ser Val
35 40 45
Met Leu Ala Val Gln Glu Gly Ile Asp Leu Leu Thr Phe Pro Pro Ala
50 55 60
Glu His Pro Gly His Gly Cys Arg Ser Cys His Tyr His Arg Arg Asn
 115 120 125

Thr Gly Asp Pro Asp Ile Met Cys Ser Leu Cys Tyr Met Arg Thr Cys
 130 135 140

Gly Met Phe Val Tyr Ser Pro Val Ser Glu Pro Glu Pro Glu Pro Glu
 145 150 155 160

Pro Glu Pro Glu Pro Ala Arg Pro Thr Arg Arg Pro Lys Met Ala Pro
 165 170 175

Ala Ile Leu Arg Arg Pro Thr Ser Pro Val Ser Arg Glu Cys Asn Ser
 180 185 190

Ser Thr Asp Ser Cys Asp Ser Gly Pro Ser Asn Thr Pro Pro Glu Ile
 195 200 205

His Pro Val Val Pro Leu Cys Pro Ile Lys Pro Val Ala Val Arg Val
 210 215 220

Gly Gly Arg Arg Gln Ala Val Glu Cys Ile Glu Asp Leu Leu Asn Glu
 225 230 235 240

Pro Gly Gln Pro Leu Asp Leu Ser Cys Lys Arg Pro Arg Pro
 245 250