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OPTICAL FAULT MONITORING 

BACKGROUND 

Optical projectors and other optical devices may utilize a 
laser or other relatively bright light source to project an image 
onto a surface. For example, Some depth-sensing cameras 
may utilize a diffractive optical element to transform light 
from a laser source to project a structured light pattern on a 
target in the field of view of an image sensor. Variations in the 
structured light pattern from an expected pattern that are 
caused by the distance of the target from the camera may be 
used to determine a distance of the target from the camera. 

Depth-sensing cameras and other optical systems may rely 
upon the location of DOEs and other optical components to 
remain constant for proper device performance. Therefore, in 
the case of a depth-sensing camera, if an optical element 
becomes misplaced or damaged, the reference structured 
light image may change compared to that expected by the 
image processing Software. However, such an optical system 
fault may not be easily discernable by the camera and depth 
sensing image processing software. Therefore, various faults 
may result. 

SUMMARY 

Accordingly, various embodiments related to optical fault 
monitoring are disclosed herein. For example, one disclosed 
embodiment provides, in an optical system comprising a light 
Source, a light outlet, and an optical element disposed 
between the light source and the light outlet, a method of 
monitoring for optical system faults. The method includes 
detecting, via a light sensor directed toward an interface Sur 
face of the optical element closest to the light Source, an 
intensity of light traveling from the interface surface of the 
optical element to the light sensor, and comparing the inten 
sity of light detected to one or more threshold intensity values. 
The method further includes identifying an optical system 
fault condition based on comparing the intensity of light 
detected to one or more threshold values, and modifying 
operation of the optical system based upon the optical system 
fault condition. 

This Summary is provided to introduce a selection of con 
cepts in a simplified form that are further described below in 
the Detailed Description. This Summary is not intended to 
identify key features or essential features of the claimed sub 
ject matter, nor is it intended to be used to limit the scope of 
the claimed subject matter. Furthermore, the claimed subject 
matter is not limited to implementations that solve any or all 
disadvantages noted in any part of this disclosure. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows a schematic depiction of an example optical 
system. 

FIG. 2 shows a flow diagram of an embodiment of an 
example method of monitoring for optical system faults. 

FIG.3 shows a flow diagram of another embodiment of an 
example method of monitoring for optical faults. 

FIG. 4 shows a schematic depiction of an example depth 
sensing camera. 

DETAILED DESCRIPTION 

Optical devices Such as depth-sensing cameras may utilize 
a laser, or other such light source, modulated by a diffractive 
optical element to project a structured light pattern on a target 
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2 
in the field of view of an image sensor. As such, the distance 
from the camera to the target (i.e., the depth from the camera 
to the target) may be determined based on detecting variations 
in the projected structured light pattern. For example, a varia 
tion may be detected if the reference structured light image 
differs from that expected by the image processing software. 
However, other sources may cause variations in the projected 
structured light pattern that are independent of depth detec 
tion, and instead result from optical faults in the optical sys 
tem. Optical faults may include, but are not limited to, dam 
age to and/or contamination of an optical element, changes in 
positioning of an optical element, physical objects in an opti 
cal path of the optical element, and the like. Such optical 
faults may not be easily discernable by the camera and depth 
sensing image processing Software, resulting in ambiguity of 
fault mitigation. 

Therefore, the monitoring of faults in Such an optical 
device, as described herein may provide for the detection and 
determination of optical faults, and enable the application of 
corrective and/or mitigating actions. FIG. 1 shows an 
example optical system 100 within an optical device 102, 
wherein optical device 102 includes a light source 104 con 
figured to output a beam of light 106. Examples of suitable 
light producing elements 107 for use within light source 104 
may include, but are not limited to, one or more lasers, laser 
diodes, light emitting diodes, etc. Further, in Some embodi 
ments, light source 104 may include a collimating lens 109 
configured to collimate the beam of light 106. 
As depicted, the beam of light 106 exits optical device 102 

through a light outlet 108. Light outlet 108 may be any suit 
able outlet through which the light may leave the optical 
device, such as a hole, a filter, a plastic cover, a lens, etc. 
Optical device 102 further includes an optical element 110 
disposed between light source 104 and light outlet 108. Opti 
cal element 110 may be any suitable optical element config 
ured to receive the beam of light 106 on a light-source side of 
the optical element (i.e., at an interface Surface 112) and to 
diffract the beam of light 106 to form a structured pattern, as 
depicted in FIG. 1 at 114. As an example, in a structured light 
depth sensor, optical element 110 may comprise a diffracting 
optical element. 
Due to propagation reciprocity symmetry, optical element 

110 may be bidirectional. As such, in addition to optical 
element 110 directing the beam of light 106 from an interface 
surface 112 toward the light outlet 108 as described above, 
optical element 110 may also direct light received through the 
light outlet 108 toward the interface surface 112. As an 
example, upon exiting light outlet 108, beam of light 106 may 
reflect off of a physical object within the optical path, and this 
reflected light may then be directed back throughlight outlet 
108 and through optical element 110 toward the interface 
surface 112. 
As such, optical device 102 further includes a light sensor 

116 directed toward interface surface 112 of optical element 
110 closest to the light source 104 (i.e., a light-source side of 
the optical element 110) so as to detect such light traveling 
from interface surface 112 toward light sensor 116. Light 
sensor 116 may comprise any Suitable sensor for detecting an 
intensity of light traveling from interface surface 112 of opti 
cal element 110 to light sensor 116. Examples include, but are 
not limited to, photodetectors and image sensors. 

Optical device 102 further includes a controller 118 con 
figured to perform various device functions. For example, 
where the optical device 102 is a structured light depth sensor, 
the controller 118 may be configured to control the projection 
of a structured light pattern, and to determine a distance of 
objects located in front of the depth sensor via an image of the 
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structured light pattern, as described above. Further, control 
ler 118 may be configured to detect an optical fault condition 
based upon a signal received from the light sensor 116. Con 
troller 118 may determine an optical fault condition in any 
suitable manner. For example, controller 118 may monitor an 
intensity of light received from interface surface 112 as mea 
Sured by light sensor 116, and compare the measured inten 
sity of light to one or more threshold intensity values. Con 
troller 118 may be further configured to apply one or more 
response actions upon detecting an optical fault condition. 
For example, controller 118 may be further configured to 
change a power state of optical device 102 if an upper or lower 
threshold is met (e.g. shut offlight source 104), and/or display 
a warning message on a display device. Methods of optical 
fault monitoring are described in more detail hereafter with 
reference to FIGS. 2-4. 

FIG. 2 shows a flow diagram of an embodiment of an 
example of a method 200 of monitoring for optical system 
faults in an optical system, wherein the optical system com 
prises a light source, a light outlet, and an optical element 
disposed between the light Source and the light outlet, as 
described above. At 202, method 200 includes detecting an 
intensity of light traveling from the interface surface of the 
optical element to the light sensor. As described above, in 
Some embodiments, an interface Surface of an optical element 
may comprise the Surface of the optical element closest to the 
light source. The intensity of the light may be detected via any 
Suitable sensor, including but not limited to a photodetector 
and/or an image sensor directed toward the interface Surface 
of the optical element closest to the light source. 

Next, at 204, method 200 includes comparing the intensity 
oflight detected to one or more threshold intensity values, and 
then at 206, determining if an optical fault condition exists 
based on this comparison. As will be described in more detail 
hereafter with reference to FIG. 3, identifying an optical 
system fault condition may include determining that the 
intensity of light detected is less than a threshold value, 
greater than a threshold value, outside of an operating range 
of expected values, etc. Examples of optical system fault 
conditions include, but are not limited to, a change in a loca 
tion of the optical element within the optical system, a physi 
cal object close to or blocking the light outlet, a contamina 
tion of the optical element, and other such conditions that may 
interfere with proper optical system operation. 

Continuing with FIG. 2, if it is determined at 206 that an 
optical fault is not detected, then method 200 returns to 202. 
However, if it is determined at 206 that an optical fault is 
detected, at 208, method 200 includes modifying operation of 
the optical system based upon the optical system fault condi 
tion. The operation of the optical system may be modified in 
any suitable manner depending upon the nature of the optical 
fault detected. Examples include, but are not limited to, 
changing a power state of the optical device, performing a 
corrective action, displaying a warning message on a display 
device, displaying a message prompting a user to performan 
action, etc. The optical system may further determine 
whether or not the user has performed the action, and the 
optical system may then further modify operation of the opti 
cal system based on this determination. 
As an example, in one embodiment, the optical system may 

determine an optical fault condition indicating presence of a 
physical object located on a light-outlet side of the optical 
element and in the optical path of the optical element. The 
optical system may in response display on a display device a 
warning message asking the user to remove the physical 
object. If the optical system determines that the physical 
object has not been removed, for example after a predeter 
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4 
mined time duration, the optical system may further modify 
operation of the optical system by performing a shutdown 
operation. Additional examples of optical fault conditions 
and corrective actions are described hereafter. 

FIG.3 shows a flow diagram of another embodiment of an 
example method 300 of monitoring for optical faults. Method 
300 may be performed, for example, by a structured light 
depth-sensing camera comprising a light source, a light out 
let, and a diffractive optical element disposed between the 
light source and the light outlet. FIG. 4 shows a schematic 
depiction of an example embodiment of a depth-sensing cam 
era 400 comprising a light source 402 configured to output a 
beam of light 404 that is directed through a diffractive optical 
element 406 toward a light outlet 408. As a nonlimiting 
example, light source 402 may comprise a laser diode, and 
may utilize a lens 410 to collimate the beam of light as 
indicated at 412. Diffractive optical element 406 then outputs 
diffracted light through light outlet 408 as a structured pat 
tern, as indicated at 414. 

Returning to FIG.3, at 302 method 300 includes detecting, 
via a photodetector located on a light-source side of the DOE, 
an intensity of light traveling from the diffractive optical 
element. As described above, a diffractive optical element and 
other optical components may be bidirectional in that in addi 
tion to transmitting and diffracting light received from the 
light Source, it may also receive light at the light outlet and 
transmit the light toward the photodetector. FIG. 4 shows an 
example photodetector 416 located on the light-source side of 
diffractive optical element 406, and configured to measure an 
intensity of light traveling from the light-source side of dif 
fractive optical element 406 via inherent reflections. 

Continuing with FIG. 3, method 300 next includes com 
paring the measured intensity of the light to one or more 
threshold values. Two thresholds are described in more detail 
as follows, however, it is to be understood that additional 
and/or other comparisons to additional and/or other threshold 
values may also be made without departing from the scope of 
this disclosure. At 304, method 300 includes determining if 
the intensity of light is less than a first threshold value. If it is 
determined that the intensity of light is less than a first thresh 
old value, at 306 method 300 includes identifying an optical 
fault due to a change in a location of the diffractive optical 
element. For example, the diffractive optical element may 
have fallen, become dislodged, broken, etc. Such that it is no 
longer properly located within the optical path, thus reducing 
the intensity of (unintended but inherent) light reflected from 
the diffractive optical element interface that reaches the pho 
todetector. In this case, as indicated at 308, method 300 may 
include applying a first corrective action. For example, in 
Some specific embodiments, the first corrective may include 
performing a shutdown operation to the projector or overall 
depth-sensing camera, as indicated at 310. It will be under 
stood that the term "shutdown operation as used herein 
refers to any operation in which the projected beam of light is 
shut off, whether or not other device components remain 
powered. 

Continuing with FIG.2, if it is determined that the intensity 
of light is not less than the first threshold value, then method 
300 proceeds to 312, where it is determined if the intensity of 
light is greater than a second threshold value. If it is deter 
mined that the intensity of light is greater than a second 
threshold value, at 314 method 300 includes identifying an 
optical fault due to a physical object blocking the projected 
beam of light. Such a physical object may be proximal to the 
light outlet such that light exiting the light-outlet is reflected 
by the physical object, and then returns back through the 
diffractive optical element toward the photodetector, thus 
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increasing the intensity of light reaching the photodetector, 
causing the second threshold to be reached. If it is determined 
that the intensity of light is greater than the second threshold 
value, then method 300 comprises applying a second correc 
tive action. As an example, the second corrective action may 
include displaying a warning message on a display device as 
indicated at 318. For example, the warning message may 
indicate to a user that there may be a physical object present 
in the optical path of the depth-sensing camera interfering 
with proper operation of the depth-sensing camera and 
request that the user remove the physical object to continue 
operation of the depth-sensing camera. It will be understood 
that any other suitable corrective action may be applied in 
other embodiments. 

In some embodiments, method 300 may further include 
determining that no response has yet been taken to the warn 
ing message, for example, within a predetermined time dura 
tion, and performing another corrective action, such as per 
forming a shutdown operation. Then, in Some embodiments, 
the depth-sensing camera may periodically be re-powered to 
determine whether the object has been removed from the 
beam path. In some embodiments, after performing a shut 
down operation, a response may be detected to the warning 
message and the optical system may be returned to a normal 
operating state. In other embodiments, the depth-sensing 
camera may remain in the shut-down state until re-activated 
by a user. 

Continuing with FIG. 3, if it is determined at 312 that the 
intensity of light is not greater than a second threshold value, 
then method 300 returns to 302. 
As described above, any other additional and/or alternative 

threshold comparisons may be used to determine other fault 
conditions without departing from the scope of this disclo 
sure. For example, in some embodiments, method 300 may 
include determining if the intensity of light is outside of an 
operating range of accepted values, for example, due to con 
tamination of an optical component (e.g. moisture on the 
diffractive optical element, etc.). If it is determined that the 
intensity of light is outside of Such an operating range, 
method 300 may include identifying an optical fault due to 
degraded performance of the diffractive optical element or 
other optical element, and applying a third corrective action. 

In some embodiments, the above-described optical system 
and methods may be tied to a computing device. As an 
example, a depth-sensing camera may be included within a 
gaming system including a gaming console and a display 
device. It will be appreciated that the computing devices 
described herein may be any suitable computing device con 
figured to execute the programs described herein. For 
example, the computing devices may be a mainframe com 
puter, personal computer, laptop computer, portable data 
assistant (PDA), computer-enabled wireless telephone, net 
worked computing device, or other Suitable computing 
device, and may be connected to each other via computer 
networks. Such as the Internet. These computing devices typi 
cally include a processor and associated Volatile and non 
Volatile memory, and are configured to execute programs 
stored in non-volatile memory using portions of volatile 
memory and the processor. As used herein, the term “pro 
gram' refers to Software or firmware components that may be 
executed by, or utilized by, one or more computing devices 
described herein, and is meant to encompass individual or 
groups of executable files, data files, libraries, drivers, Scripts, 
database records, etc. It will be appreciated that computer 
readable media may be provided having program instructions 
stored thereon, which upon execution by a computing device, 
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6 
cause the computing device to execute the methods described 
above and cause operation of the systems described above. 

It should be understood that the embodiments herein are 
illustrative and not restrictive, since the scope of the invention 
is defined by the appended claims rather than by the descrip 
tion preceding them, and all changes that fall within metes 
and bounds of the claims, or equivalence of Such metes and 
bounds thereof are therefore intended to be embraced by the 
claims. 

The invention claimed is: 
1. In an optical system comprising a light source, a light 

outlet, and an optical element disposed between the light 
Source and the light outlet, a method of monitoring for optical 
system faults, the method comprising: 

detecting, via a light sensor directed toward an interface 
Surface of the optical element closest to the light source, 
an intensity of light traveling from the interface Surface 
of the optical element to the light sensor; 

comparing the intensity of light detected to one or more 
threshold intensity values; 

identifying an optical system fault condition based on com 
paring the intensity of light detected to one or more 
threshold values; and 

modifying operation of the optical system based upon the 
optical system fault condition, wherein modifying 
operation of the optical system includes one or more of 
changing a power state of the optical device and provid 
ing a warning message for display on a display device. 

2. The method of claim 1, wherein identifying the optical 
system fault condition includes determining that the intensity 
of light detected is less than a threshold value. 

3. The method of claim 2, wherein modifying operation of 
the optical system includes performing a shutdown operation 
to the optical system. 

4. The method of claim 1, wherein identifying the optical 
system fault condition includes determining that the intensity 
of light detected is greater than a threshold value. 

5. The method of claim 1, further comprising detecting no 
response to the warning message, and performing a shutdown 
operation to the optical system. 

6. The method of claim 5, further comprising, after per 
forming the shutdown operation, detecting a response to the 
warning message and in response, returning the optical sys 
tem to a normal operating state. 

7. An optical device, comprising: 
a light source configured to output a beam of light; 
a diffractive optical element configured to receive the beam 

of light on a light-source side of the diffractive optical 
element and to diffract the beam of light to form a 
structured pattern; 

a photodetector directed toward the light-source side of the 
diffractive optical element, the photodetector configured 
to measure an intensity of light traveling from the light 
source side of the diffractive optical element; and 

a controller configured to detect an optical fault condition 
by monitoring the intensity of light as measured by the 
photodetectorand comparing the intensity of light to one 
or more threshold values and apply a response action 
upon detecting the optical fault condition, wherein the 
response action includes one or more of changing a 
power State of the optical device and providing a warn 
ing message for display on a display device. 

8. The optical device of claim 7, wherein the controller is 
further configured to change the power state of the optical 
device if an upper threshold value is met. 
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9. The optical device of claim 7, wherein the controller is 
further configured to change the power state of the optical 
device if a lower threshold value is met. 

10. The optical device of claim 7, wherein the light source 
comprises a laser diode. 

11. The optical device of claim 7, wherein the optical 
device is a depth-sensing camera. 

12. In a depth-sensing camera comprising a light Source, a 
light outlet, and a diffractive optical element disposed 
between the light source and the light outlet, a method of 10 
monitoring for optical faults, the method comprising: 

detecting via a photodetector located on a light-source side 
of the diffractive optical element an intensity of light 
traveling from the diffractive optical element; 

comparing the intensity of light to one or more threshold 15 
values; 

if the intensity of light is less than a first threshold value, 
identifying an optical fault due to a change in a location 
of the diffractive optical element and applying a first 
corrective action; and 

if the intensity of light is greater than a second threshold 
value, identifying an optical fault due to a physical 
object located on a light-outlet side of the diffractive 

8 
optical element, and in an optical path of the diffractive 
optical element, and applying a second corrective action. 

13. The method of claim 12, further comprising, if the 
intensity of light is outside of an operating range of accepted 
values, identifying an optical fault due to degraded perfor 
mance of the diffractive optical element and applying a third 
corrective action. 

14. The method of claim 12, wherein applying the first 
corrective action includes performing a shutdown operation 
to the depth-sensing camera. 

15. The method of claim 12, wherein applying the second 
corrective action includes displaying a warning message on a 
display device. 

16. The method of claim 15, further comprising detecting 
no response to the warning message within a predetermined 
time duration, and performing a shutdown operation to the 
depth-sensing camera. 

17. The method of claim 16, further comprising, upon 
applying the shutdown operation, detecting a response to the 
warning message and in response, returning the depth-sens 
ing camera to a normal operating state. 
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