Abstract: A self-contained welding power supply (10) capable of, upon termination of welding operation, automatically setting a control signal for auxiliary power is provided. The power supply (10) comprises an engine (20), a generator (30) driven by the engine (20), and an excitation system (40) that controls power output of the engine (20). The output controller (80) and a DC controller (74). The output controller is to be sent to the DC controller (74) to regulate DC power going to field windings of the generator (30). Upon termination of the welding operation, the field voltage control signal is automatically set to a value appropriate for the auxiliary system operation.
AUTOMATIC CONTROL ON AUXILIARY VOLTAGE FOR ENGINE DRIVEN WELDER

PRIORITY

BRIEF SUMMARY OF THE INVENTION

Field of the Invention

[02] This invention relates in general to equipment used in welding. Devices, systems, and methods consistent with the invention relate to the auxiliary power system in engine-driven welders. More particularly, the invention provides a self-contained welding power supply according to the preamble of claim 1 and a method for controlling auxiliary power according to the preamble of claim 17.

Description of the Related Art

[03] Welding is an important process in the manufacture and construction of various products and structures. Applications for welding are widespread and used throughout the world, for example, the construction and repair of ships, buildings, bridges, vehicles, and pipe lines, to name a few. Welding may performed in a variety of locations, such as in a factory with a fixed welding operation or on site with a portable welder. For example, welding operations often take place on construction sites, and remote sites, and in other locations where a self-contained power supply is advantageous.
Self-contained gasoline or diesel fuel welding power supplies are popular products. Such products generally comprise a gasoline or diesel engine that drives an electrical generator having an electrical output, which is used to create an arc and weld metal. Single and three-phase alternating current generators are often used. As these power supplies are used in remote locations, it is often beneficial to have power available for other devices such as lights, appliances, and power tools. Thus, along with providing the welding power output, some related-art self-contained power supplies also provide auxiliary power to power common electrical devices. For example, welders will typically alternate between welding and grinding during the course of a job. Accordingly, a self-contained power supply that supplies both welding power and auxiliary power to auxiliary power receptacles at, e.g., 120 or 240 volts A.C. is beneficial.

In the related-art systems, the welding voltage and current from the generator is regulated by the amount of field excitation provided to the generator rotor. Because the same generator supplies both welding power and auxiliary power, the excitation controller will also affect the voltage at the auxiliary power receptacles. During many welding operations, full excitation is not needed and thus the excitation controls will be set to less than 100%. However, when welding operations cease and auxiliary power is utilized, e.g., for grinding, the excitation controller must be set to 100% again in order to ensure that full voltage is available to the auxiliary devices such as, e.g., power tools. Repeatedly adjusting the excitation controller when switching between welding operations and utilizing auxiliary power creates a nuisance and the potential for improper welding operations.

BRIEF SUMMARY OF THE INVENTION

This invention relates to a system or method that is capable of automatically setting a permissible power setting on the auxiliary power output(s) of a welding power
supply. For example, the maximum safe power setting on the auxiliary power outlets of an engine-driven welder can be automatically be set when welding operations cease.

[07] Various aspects, embodiments and features of the invention will become apparent to those skilled in the art from the following detailed description, claims and the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[08] The above and/or other aspects of the invention will be more apparent by describing in detail exemplary embodiments of the invention with reference to the accompanying drawings, in which:

[09] FIG. 1 is a block diagram of a welding system according to the present invention;

[10] FIG. 2 is a block diagram of an exemplary embodiment of the exciter in Figure 1; and

[11] FIG. 3 is a schematic diagram of an embodiment consistent with the present invention to set the field voltage input signal.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[12] Exemplary embodiments of the invention will now be described below by reference to the attached Figures. The described exemplary embodiments are intended to assist the understanding of the invention, and are not intended to limit the scope of the invention in any way. Like reference numerals refer to like elements throughout.
Referring now to the drawings, there is illustrated in FIG. 1 a self-contained welding power supply 10. The welding power supply 10 contains an engine 20, which can be, e.g., a gasoline engine, diesel engine or some other type of engine, e.g., natural gas/propane. The engine 20 is physically connected to generator 30 via shaft 22. The generator 30 can be, e.g., a single-phase or three-phase generator. The generator 30 provides power for welding operations through leads 32 to power converter 50. The power converter 50 receives the AC power from the generator 30 and converts it to the welding voltage and current required by the system. The welding current is sent to the electrode E and workpiece W via leads 52 and 54. The output of the power converter 50 can include an output reactor 56. The topology of the power converter is not limiting and can range from simple diode bridges to inverter-based systems. The various topologies of welding power supplies are well-known and will not be further discussed except as needed to describe various embodiments of the present invention.

The generator 30 also provides auxiliary power to auxiliary power box 60 via line 34. The auxiliary power box 60 includes auxiliary receptacles 62 and 64 that can be used by power tools, appliances, lighting, etc. As such, the generator 30 is configured to provide the appropriate auxiliary voltage such as e.g., 120 volts A.C. and 240 volts A.C. The receptacles 62 and 64 can be standard receptacles that accept standard power plugs, e.g., 120 and 240 volt A.C. power plugs or can be configured as desired.

The output of the generator 30 is controlled by the excitation system 40. The excitation system 40 receives an input signal via line 41 and provides DC power via lead 42 to the generator 30 field windings (not shown) to control the output voltage and current of the generator 30. The excitation system 40 can be, e.g., a static excitation system in which power is provided by the generator 30 via a stationary device such as a transformer. Of course, the type of excitation system is not limiting and other types of excitation
systems can be used as desired, e.g., DC or AC rotating systems in which the excitation power is provided by a small DC or AC generator that is coupled to the same shaft as the generator 30, or some other power source.

[16] An exemplary embodiment of an excitation system is illustrated in Figure 2. As seen in Figure 2, the excitation system 40 includes an excitation source 70, which can be a transformer that is connected to the output of generator 30. In some embodiments, the excitation source 70 can be integral to generator 30. The excitation source 70 provides an AC signal that is sent to rectifier system 72. Rectifier system 72 converts the AC signal from excitation source 70 to a DC signal that is sent to the generator field. The rectifier system 72 can include, e.g., silicon-controlled rectifiers, thyristors, or other appropriate devices that can be controlled so as to regulate the DC power going to the field of generator 30. By regulating the DC power going to the generator field(s), the welding power and current can be regulated as desired.

[17] As illustrated in Figure 2, DC controller 74 sends a control signal via line 76 to rectifier system 72 to appropriately control the rectifier system 72 to maintain the desired DC field voltage at the output of the rectifier system 72. A DC field voltage feedback signal representing the output of the rectifier system 72 can be sent to the DC controller 74 via line 78. The DC controller 74 receives the desired DC field voltage setpoint from output controller 80. The DC controller 74 includes the appropriate controls to compare the DC field voltage feedback signal to the desired DC field voltage setpoint and make the appropriate adjustments to the control signal to rectifier system 72.

[18] In some embodiments of the present invention, the output controller 80 includes a field voltage input device 82 that can output a desired field voltage control signal
V_f to DC controller 74. In some embodiments, the field voltage input device 82 can be manually set by the welder as desired. For example, in some embodiments as illustrated in Figure 2, the field voltage input device 82 can be a potentiometer that the welder adjusts using an output control knob 81 that is located on, e.g., the welder 10. Based on the position of the potentiometer, the desired field voltage control signal V_f can range from V_{fmin} and V_{fmax}. V_{fmin}, based on the value of R_1, can represent the minimum DC field voltage that can be applied to the generator fields, e.g., based on the generator ratings or some other design criteria. V_{fmax} can represent the maximum DC field voltage that can be applied to the generator, e.g., based on the generator ratings or some other design criteria.

[19] During welding operations, the welder can set the field voltage control signal V_f to achieve the desired welding voltage and current. The desired DC field voltage signal V_f is then sent to the DC controller 74, which compares the setpoint signal V_f to the DC field voltage feedback signal on line 78. The DC controller 74 will appropriately control the rectifier system 72 so that the desired DC field voltage is sent to the generator field and thus the desired generator welding voltage and current is output for welding operations at electrode E.

[20] However, when welding operations are stopped, the auxiliary receptacles 62, 64, may not be at the proper voltage because adjusting the field voltage input device 82 during welding operations will also affect the voltage at auxiliary receptacles 61, 64, unless the DC field voltage signal V_f is set back to the proper value for the auxiliary system devices (e.g., back to 100% excitation or some other appropriate value). Thus, in embodiments of the present invention, the DC field voltage signal V_f is automatically set back to a value that is appropriate for auxiliary power operation after welding operations have stopped. For example, in some embodiments, relay 84 with coil 86 and contact 88 can
automatically set the DC field voltage signal V_f back to the proper value for the auxiliary system devices after welding operations have stopped.

[21] For example, coil 86 of relay 84 can be connected across the output reactor 56 as shown in Figures 1 and 2. When welding operations are being performed, current will flow through the output reactor 56, and the voltage across the output reactor 56 will build up. When the voltage reaches an upper threshold level, the coil 86 will energize and the normally closed contact 88 will open thereby allowing field voltage input device 82 to function as described above. However, when welding operations are stopped and power converter 50 is turned off, the current through the output reactor 56 will go to zero and the voltage across the reactor 56 will drop to zero. When the voltage drops to a lower threshold level, the coil 86 will de-energize and the normally closed contacts will close and by-pass, i.e., short circuit, the field voltage input device 82. Thus, the voltage corresponding to $V_{f_{\text{max}}}$ will be sent as the DC field voltage signal v_f to DC controller 74. Of course, the upper threshold level and the lower threshold levels are set so that welding operations are not adversely affected. That is, when welding operations start, the upper threshold level will be set such that the relay 84 will almost immediately pick up to allow the field voltage input device 82 to be active. The lower threshold is set such that normal voltage fluctuations during the welding process will not inadvertently de-energize relay 84.

[22] Of course, other configurations can be used to energize and de-energize relay 84. For example, the relay 84 control can be based on whether a trigger on the welding torch is depressed. That is, the relay 84 will energize whenever the welder presses the trigger on the welding torch to initiate welding operating, and relay 84 will de-energize whenever the welder releases the trigger to stop welding operations.
In some embodiments, a voltage other than V_{fmax} is sent to the DC controller 74 when welding operations have stopped. For example, in Figure 3, one end of the normally closed contact 88 is connected to a predetermined voltage V_{aux} and a normally open contact 89 is placed in series with field voltage input device 82. When welding operations have stopped, V_{aux} is sent as the field voltage input signal V_f to DC controller 74. When welding operations begin, the normally closed contacts 88 open and normally open contacts 89 close to activate field voltage input device 82. V_{aux} can be greater or less than V_{fmax}, depending on the needs of the system.

In some embodiments of the invention, contacts on the relay 84 can send a welding operations status signal directly to the DC controller 74. In this embodiment, when welding operations are stopped, the DC controller will ignore field voltage input signal V_f and output a predetermined voltage signal that corresponds to the desired auxiliary voltage. The predetermined voltage signal can be based on a value stored in memory.

It should be noted that exemplary embodiments of the present invention can be used in either 50 or 60Hz systems.

While the invention has been particularly shown and described with reference to exemplary embodiments thereof, the invention is not limited to these embodiments. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the above embodiments.

In one embodiment, a self-contained welding power supply 10 capable of, upon termination of welding operation, automatically setting a control signal for auxiliary power is provided. The power supply 10 comprises an engine 20, a generator 30 driven by
the engine 20, and an excitation system 40 that controls power output of the generator 30. The excitation system 40 includes an output controller 80 and a DC controller 74. The output controller 80 includes circuitry that generates a field voltage control signal to be sent to the DC controller 74 to regulate DC power going to field windings of the generator 30. Upon termination of the welding operation, the field voltage control signal is automatically set to a value appropriate for the auxiliary system operation.
Reference Numbers

10 self-contained welding power supply
20 engine
22 shaft
30 generator
32 welding operations through leads
34 line
40 excitation system
41 line
42 lead
50 power converter
52 lead
54 lead
56 output reactor
60 power box
62 auxiliary receptacles
64 auxiliary receptacles
70 excitation source
72 rectifier system
74 DC controller
76 line
78 line
80 output controller
81 output control knob
82 field voltage input device
84 relay
86 coil
88 contact
89 contact
CLAIMS

1. A self-contained welding power supply (10), the welding power supply comprising:
 a prime mover, e.g. a gasoline engine or a diesel engine (20);
 a generator (30), e.g. a single-phase generator or a three-phase generator, driven by the prime mover to produce power for welding power and for auxiliary system operation; and
 an excitation system (40) that controls power output of the generator by regulating DC power going to field windings of the generator (30), the excitation system (40) including a DC controller (74) that receives a field voltage control signal, compares the field voltage control signal with a DC field voltage feedback signal, and regulates the DC power going to the field windings of the generator (30) based on the comparison; and
 an output controller (80) that generates the field voltage control signal, characterized in that the output controller (80) includes
 a field voltage input device (82), and
 a field voltage reset circuit.

2. The welding power supply of claim 1, wherein, when a welding operation is in progress, the field voltage input device (82) is enabled such that the field voltage control signal value is settable to a desired value for the welding operation, and
 wherein, when no welding operation is in progress, the field voltage reset circuit is enabled such that the field voltage control signal value is set to a predetermined value appropriate for the auxiliary system operation.
3. The welding power supply of claim 2, further comprising an output reactor (56), wherein a determination of whether the welding operation is in progress is based on a current flow through the output reactor (56).

4. The welding power supply of claim 3, wherein the field voltage reset circuit includes a relay (84) having at least one contact and at least one coil (86), wherein the relay (84) operates between a first state and a second state based on whether a current is flowing through the output reactor (56), and wherein the first state of the relay (84) permits the setting the field voltage control signal value to the desired value for the welding operation and the second state of the relay (84) sets the field voltage control signal value to the predetermined value appropriate for the auxiliary system operation.

5. The welding power supply of claim 4, wherein the at least one coil (86) of the relay (84) is connected across the output reactor.

6. The welding power supply of one of the claims 3 to 5, wherein the relay (84) has an upper threshold voltage level and is energized when a voltage across the output reactor (56) becomes equal to or higher than the upper threshold voltage level.

7. The welding power supply of claim 6, wherein the upper threshold voltage level is set such that when welding operation starts, the relay (84) is energized substantially immediately.

8. The welding power supply of one of the claims 3 to 7, wherein the relay (84) has a lower threshold voltage level and the relay (84) is de-energized when a voltage
across the output reactor (56) becomes equal to or lower than the lower threshold voltage level.

9. The welding power supply of claim 8, wherein the lower threshold voltage level is set such that the relay (84) is prevented from being de-energized due to normal voltage fluctuations during welding operation.

10. The welding power supply of one of the claims 3 to 9, wherein upon termination of welding operation, a current through the output reactor (56) becomes zero.

11. The welding power supply of one of the claims 1 to 11, further comprising a torch having a trigger,

 wherein a determination of whether the welding operation is in progress is based on operation of the trigger.

12. The welding power supply of claim 11, wherein the field voltage reset circuit includes a relay (84) having at least one contact and at least one coil (86),

 wherein the relay (84) operates between a first state and a second state based on whether the trigger is pressed, and

 wherein the first state of the relay (84) permits the setting the field voltage control signal value to the desired value for the welding operation and the second state of the relay (84) sets the field voltage control signal value to the predetermined value appropriate for the auxiliary system operation.

13. The welding power supply of one of the claims 1 to 12, wherein the field voltage control signal is manually set by a welding operator.
14. The welding power supply of one of the claims 1 to 13, wherein the welding power supply further comprises an auxiliary power box (60) that receives auxiliary power from the generator (30), wherein preferably: the auxiliary power box (60) includes one or more receptacles (62, 64) that receive at least one of 120 volts AC plug and 240 volts AC plug.

15. The welding power supply of one of the claims 1 to 14, wherein the output controller includes a potentionmeter, wherein preferably: the potentionmeter has an adjustable knob by which a desired field voltage control signal is set by a welding operator.

16. The welding power supply of one of the claims 1 to 15, wherein the excitation system is configured such that upon termination of welding operation, the field voltage control signal is automatically set to a predetermined control voltage signal appropriate for the auxiliary system operation.

17. A method for controlling auxiliary power in a self-contained welding power supply, in particular according to one of the claims 1 to 16, that provides power for welding and auxiliary operation, the welding power supply comprising a prime mover, a generator driven by the prime mover to produce power, and an excitation system that controls, via a DC controller, power output of the generator by regulating DC power going to field windings of the generator, the method comprising:

 automatically de-energizing, upon termination of welding operation, at least one relay included in circuitry of the excitation system, which generates a field voltage control signal to be sent to the DC controller during welding operation;

 providing a voltage control signal predetermined by the circuitry to the DC controller;
regulating the DC power going to the field windings of the generator based on the
predetermined voltage control signal, and

providing auxiliary power corresponding to the regulated DC power to an auxiliary
power box of the self-contained welding power supply.
FIG. 2

TO DC CONTROLLER 74

FIG. 3

TO REACTOR 56

OUTPUT CONTROL SYSTEM 81

DC CONTROLLER 74

TRANSFORMER 70

RECTIFIER SYSTEM 72

V_F

V_FMAX

R1

V_FMIN

80

84

87

86

81

82

88
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B23K9/10

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B23K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>AU 582 535 B2 (UNI POWER PTY LTD) 6 April 1989 [1989-04-06]</td>
<td>1, 17</td>
</tr>
<tr>
<td>Y</td>
<td>page 4, line 10 - page 5, line 15</td>
<td>2-16</td>
</tr>
<tr>
<td>Y</td>
<td>page 14, line 25 - page 15, line 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0028] ; figures 4, 5, 7, 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0027] ; paragraph [0032] ; figure 2</td>
<td></td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.
[] See patent family annex.

*Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another invention or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

TT later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search:
26 June 2015

Date of mailing of the international search report:
07/07/2015

Name and mailing address of the ISA/ European Patent Office, P.O. Box 5618 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 940-2040, Fax (+31-70) 940-3016

Authorized officer:

Fri sch, Ulri ch
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU 582535</td>
<td>06-04-1989</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 102639275 A</td>
<td>15-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2483030 A</td>
<td>06-08-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011073569 A1</td>
<td>31-03-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015158104 A1</td>
<td>11-06-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WD 2011041037 A1</td>
<td>07-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004226930 A1</td>
<td>18-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005185368 A1</td>
<td>25-08-2005</td>
</tr>
</tbody>
</table>