

[54] MEANS AND METHOD FOR
CONTROLLING THE STRENGTH OF
ACID IN AN ALKYLATION UNIT

[75] Inventors: **Edward T. Child**, Hacienda Heights, Calif.; **John E. May**, Nederland, Tex.; **William D. Stepanek**, Fishkill, N.Y.

[73] Assignee: **Texaco Inc.**, New York, N.Y.

[22] Filed: Aug. 5, 1971

[21] Appl. No.: 169,385

[52] U.S. Cl.....**235/151.12**, 23/253 A, 23/230 A,
260/683.59

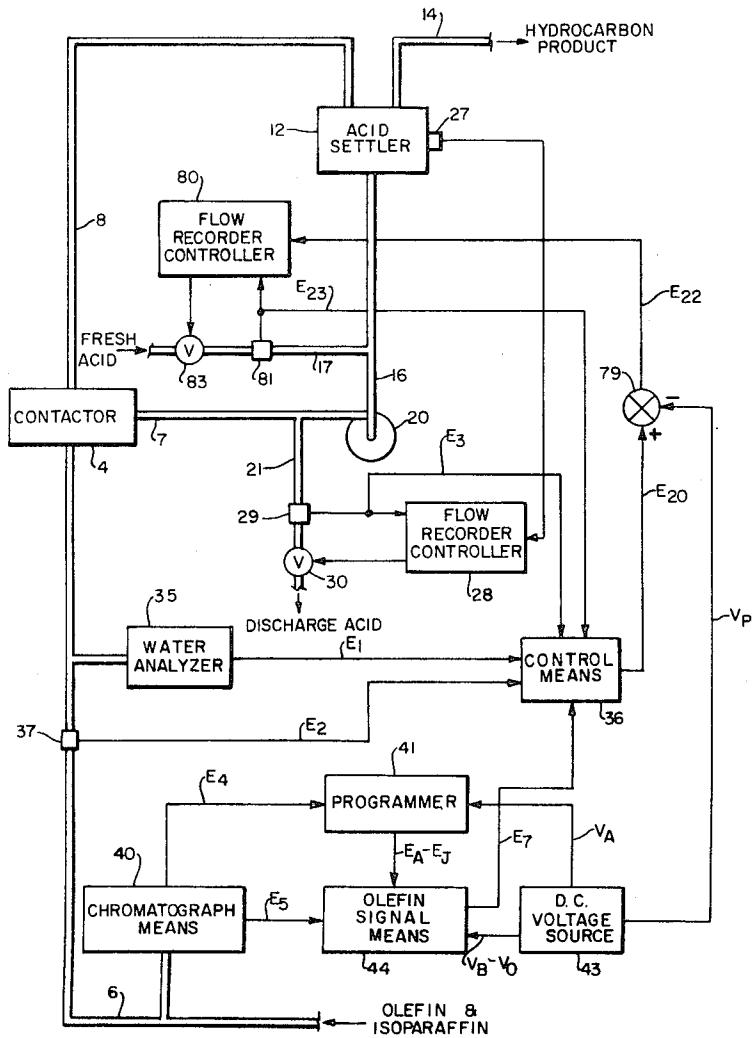
[51] Int. Cl. C07c 3/14

[51] Int'l. Classification.....
[58] **Field of Search.....** 235/151.12;
260/683.59, 683.46

[56] References Cited

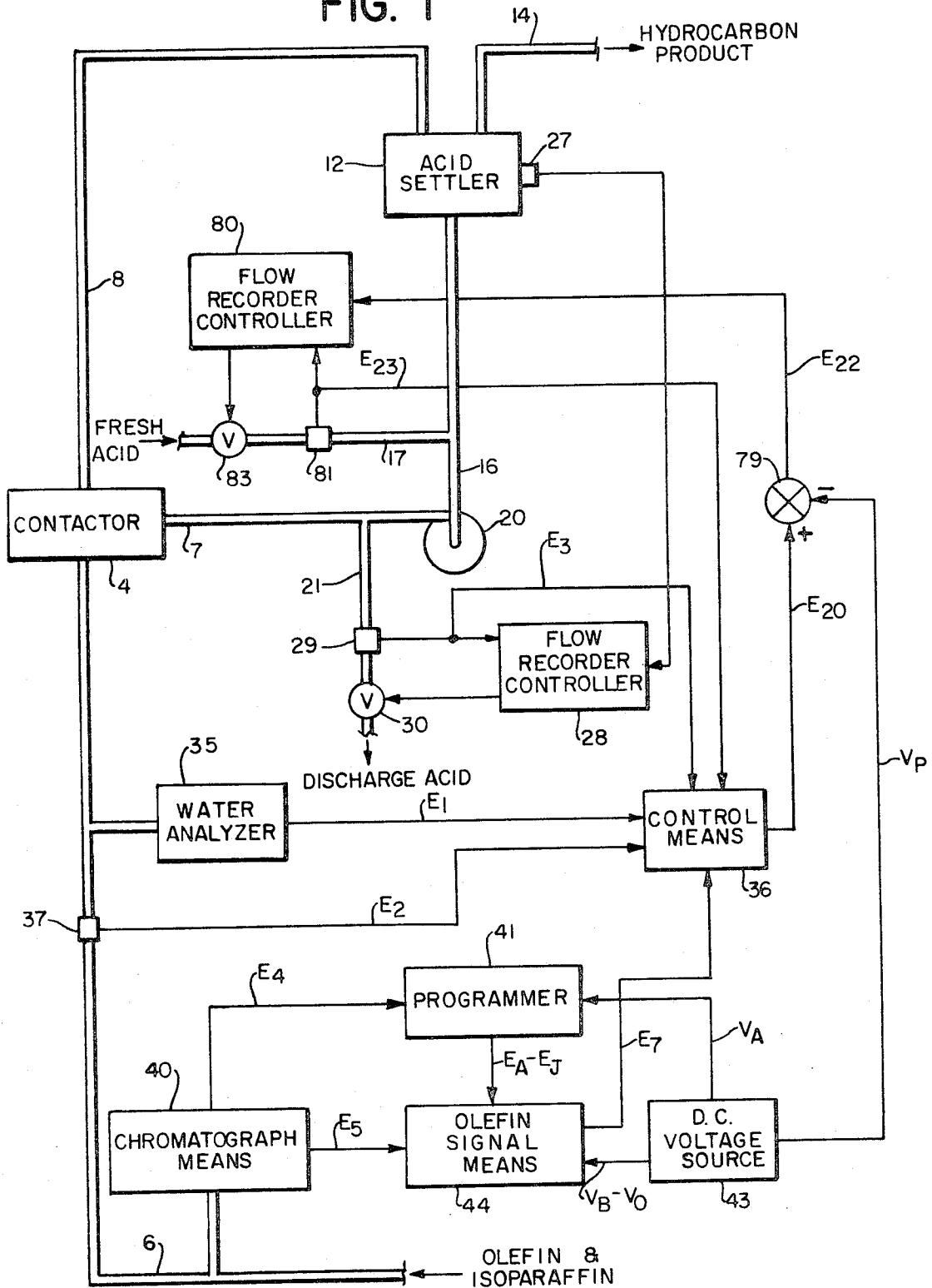
UNITED STATES PATENTS

2,592,063	4/1952	Persyn, Jr.....	.260/.683.59 X
3,108,094	10/1963	Morgan.....	.235/.151.12 X


Primary Examiner—Eugene G. Botz

Attorney—Thomas H. Whaley and Carl G. Ries

[57] ABSTRACT


The strength of acid in an alkylation unit is controlled by a system using a signal corresponding to the anticipated demand on the acid by the reaction of olefin and isoparaffin in the presence of the acid. The reaction weakens the acid so that it is necessary to replace some of the weakened acid with fresh acid to maintain a desired acid strength. The control system includes apparatus sampling the olefin and isoparaffin entering the alkylation unit which provides a signal corresponding to the percent volume of acid degrading constituents formed during alkylation. A water analyzer samples the olefin and isoparaffin and provides a signal corresponding to their water content. Signals corresponding to sensed flow rates of fresh and discharged acid entering and leaving, respectively, the alkylation unit and of the olefin and isoparaffin are provided by sensors. A control circuit using analog computers develop the control signal in accordance with the signals from the sensors, the volume signal and the signal from the analyzer and equations hereinafter disclosed. The control signal is applied to a flow recorder controller which controls the flow rate of the fresh acid entering the alkylation unit so as to maintain the desired acid strength.

4 Claims, 11 Drawing Figures

SHEET 1 OF 6

FIG. 1

SHEET 2 OF 6

FIG. 2

PROGRAMMER 41

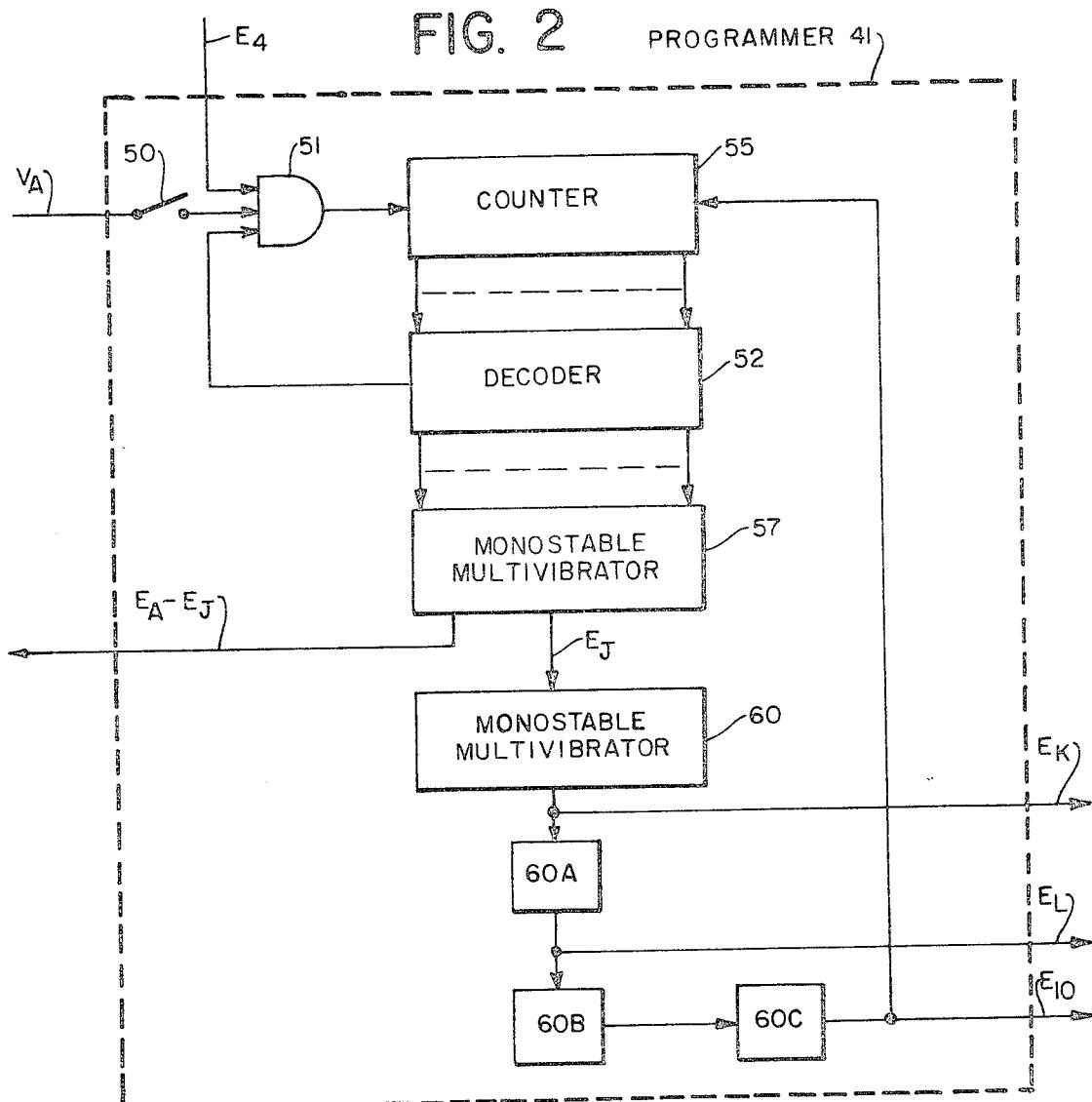
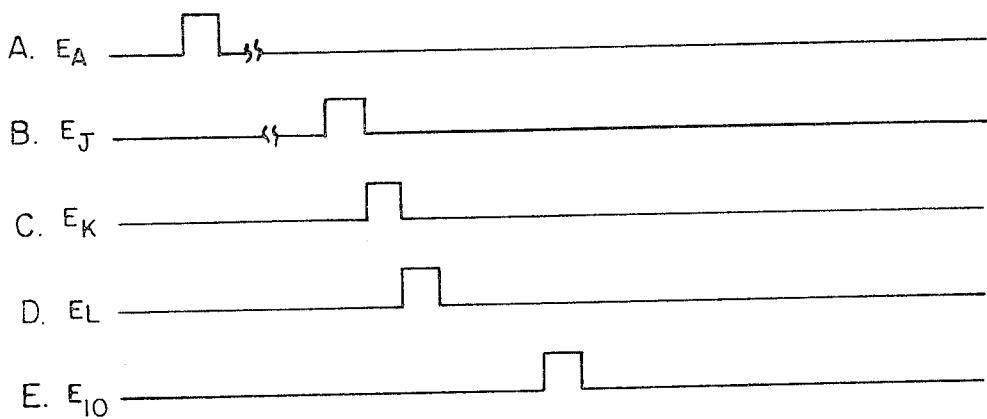
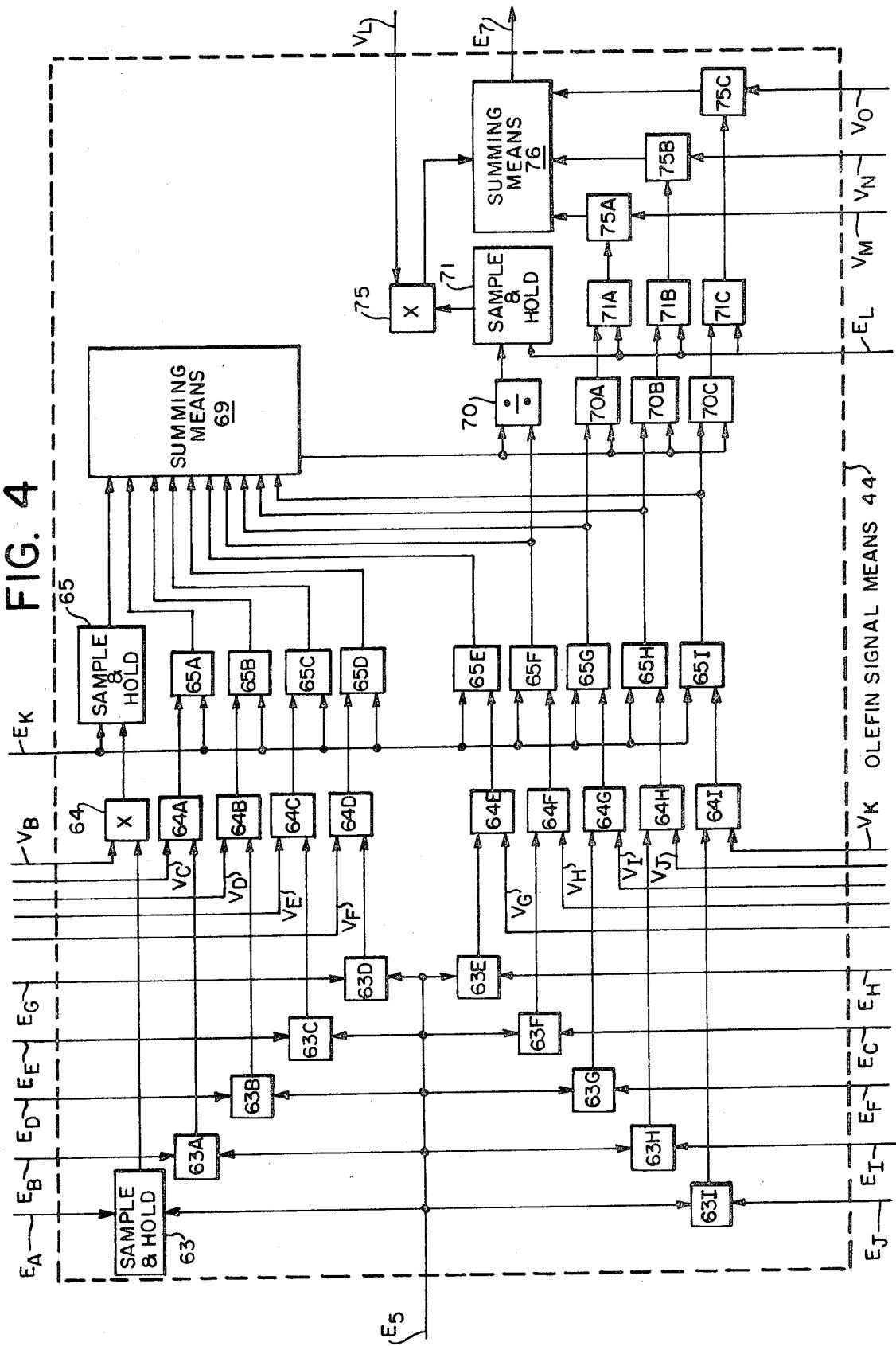
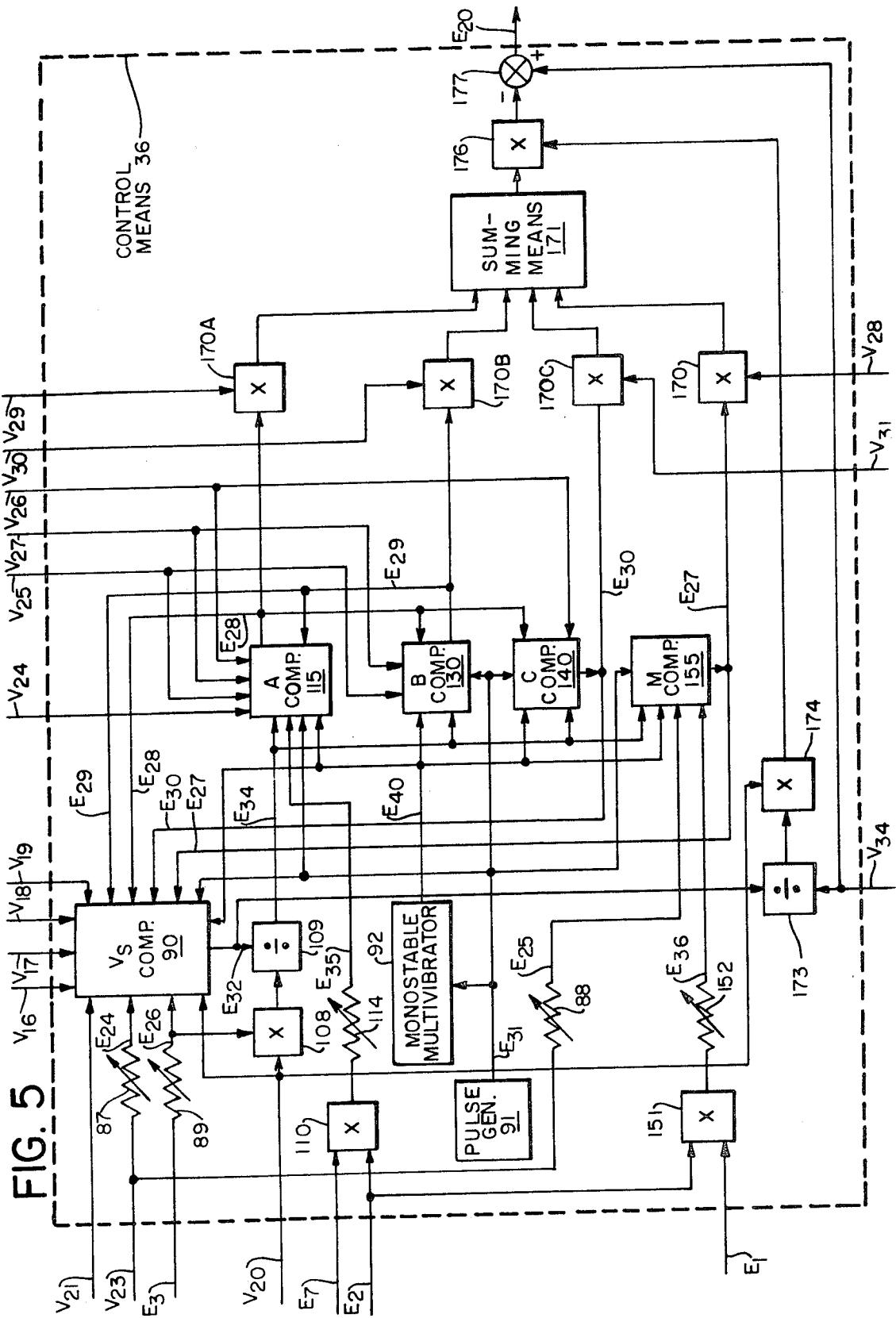



FIG. 3




PATENTED MAY 15 1973

3,733,473

SHEET 3 OF 6

4
FIG.

SHEET 5 OF 6

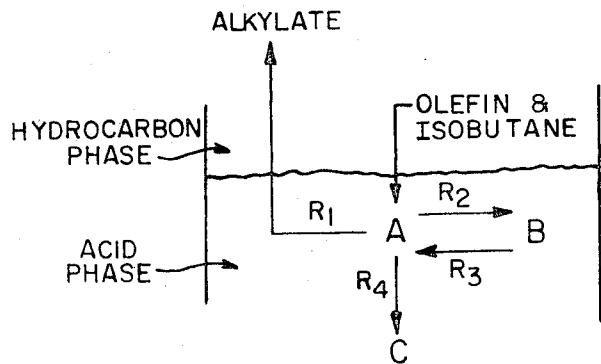


FIG. 6

FIG. 7

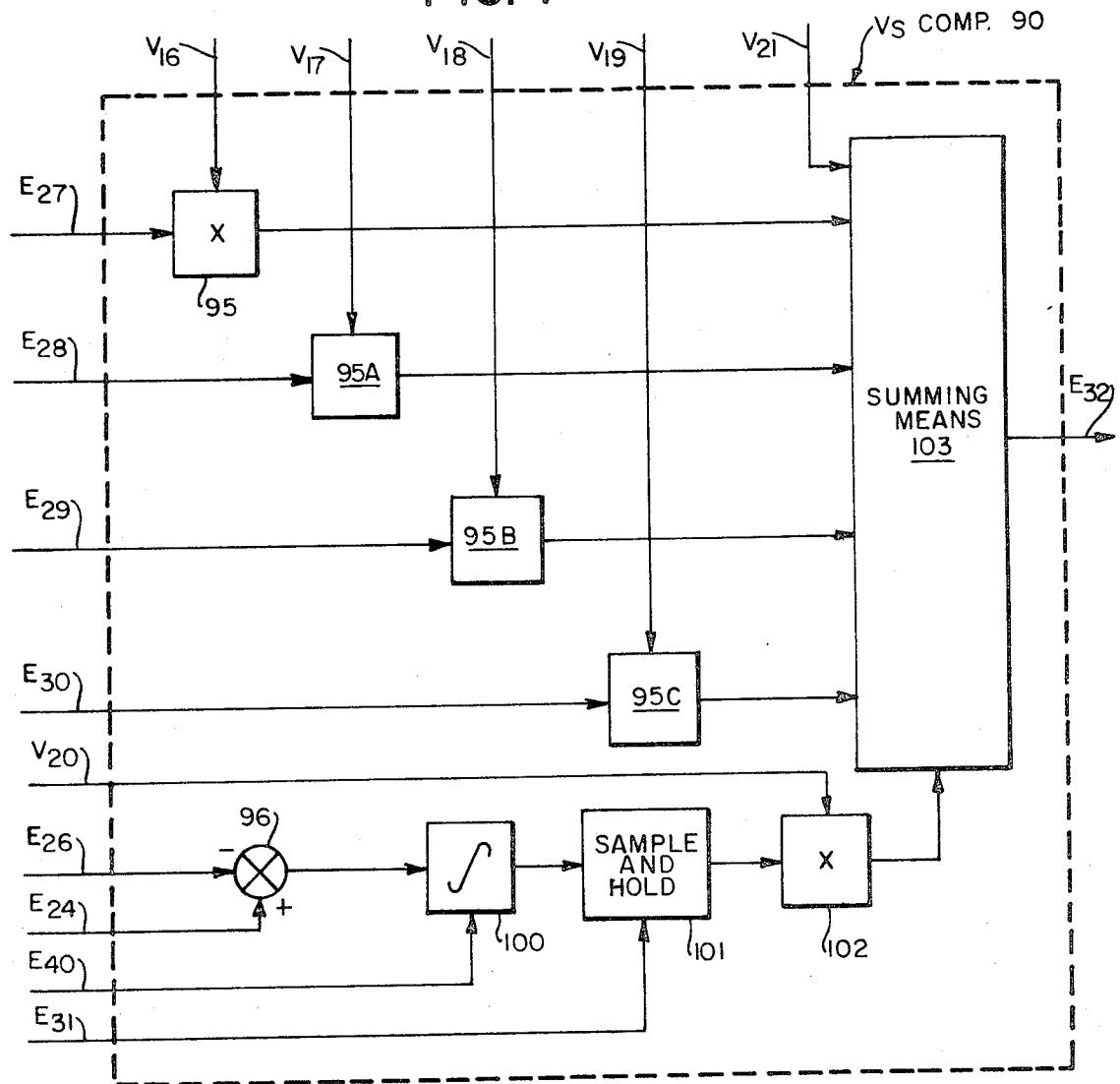


FIG. 8

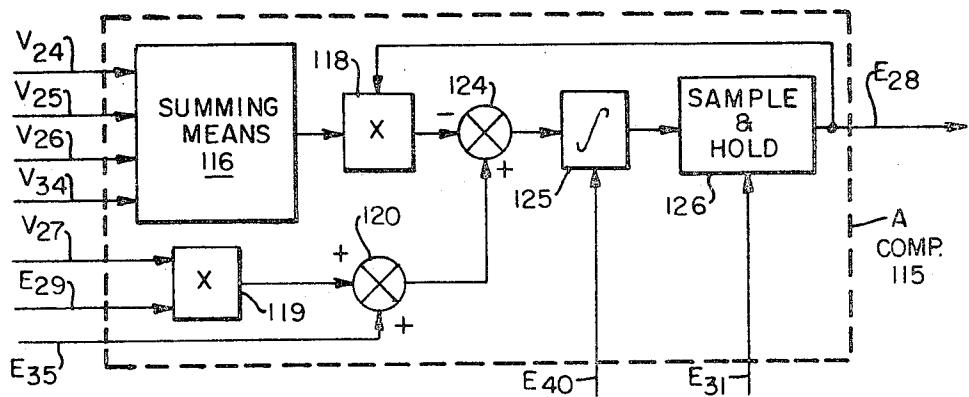


FIG. 9

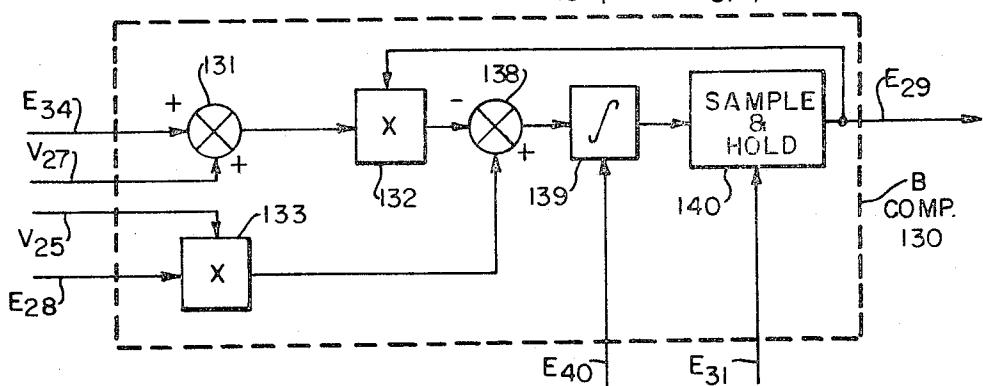


FIG. 10

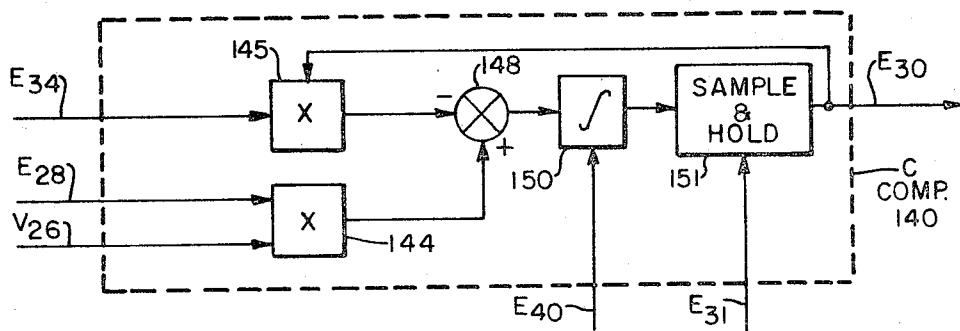
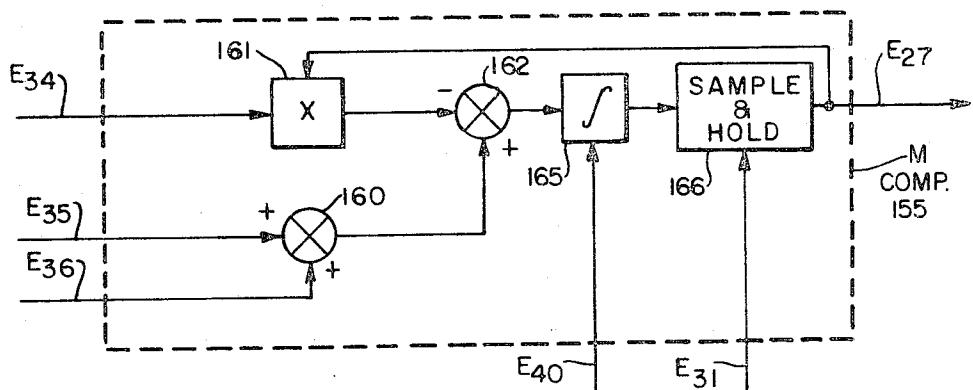



FIG. 11

MEANS AND METHOD FOR CONTROLLING THE STRENGTH OF ACID IN AN ALKYLATION UNIT

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The present invention relates to alkylation units in general and, more particularly, to a control system for an alkylation unit.

SUMMARY OF THE INVENTION

A control system controls the strength of acid in an alkylation unit so as to maintain the acid's strength at a predetermined level. The alkylation unit reacts an isoparaffin with olefin in the presence of the acid to provide an acid-hydrocarbon mixture to a settler where the hydrocarbon is separated from the acid to provide a hydrocarbon product. A portion of the acid is recycled while the remaining acid is discharged from the alkylation unit. Fresh acid is added to the recycled acid to affect the strength of the acid. The control system includes apparatus for controlling the strength of the acid in accordance with a control signal. A water analyzer samples the olefin and isoparaffin to provide a signal corresponding to the water content of the olefin and isoparaffin. A network samples the olefin and isoparaffin and provides a signal corresponding to the composition of the olefin. The flow rates of the olefin and isoparaffin, the fresh acid and the discharge acid are sensed by flow sensors which provide corresponding signals. A control circuit develops the control signal in accordance with the signals from the analyzer, the composition determining circuit and the sensors.

One object of the present invention is to control the strength of acid in an alkylation unit by determining the demand that will be made on the acid during an alkylation process which reacts olefins with an isoparaffin in the presence of acid.

Another object of the present invention is to sense the composition of an olefin prior to being reacted with an isoparaffin in the presence of acid to determine the quantity of acid degrading compounds formed during alkylation.

The foregoing and other objects and advantages of the invention will appear more fully hereinafter from a consideration of the detailed description which follows, taken together with the accompanying drawings wherein one embodiment of the invention is illustrated by way of example. It is to be expressly understood, however, that the drawings are for illustration purposes only and are not to be construed as defining the limits of the invention.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a control system, constructed in accordance with the present invention, for controlling the strength of acid in an alkylation unit which is also partially shown in schematic form.

FIG. 2 is a detailed block diagram of the programmer shown in FIG. 1.

FIGS. 3A through 3E are diagrammatic representations of pulse voltages provided by the programmer shown in FIG. 1 during one cycle of operation.

FIGS. 4 and 5 are detailed block diagrams of the olefin signal means and the control means shown in FIG. 1.

FIG. 6 is a diagrammatic representation of the reaction of an olefin and an isoparaffin in the presence of acid.

FIGS. 7 through 11 are detailed block diagrams of the V_S computer, the A computer, the B computer, the C computer and the M computer, respectively, shown in FIG. 1.

DESCRIPTION OF THE INVENTION

10 Referring to FIG. 1, there is shown a portion of an alkylation unit in which an olefin is reacted with isoparaffin in the presence of a catalyst, such as sulfuric or hydrofluoric acid, to form a higher molecular weight isoparaffin. For purpose of explanation, the acid in the following description shall be sulfuric acid. The olefin may be butylene, propylene or a mixture of butylene and propylene, while the isoparaffin may be isobutane. The control system shown in FIG. 1 anticipates changes in the acid strength due to changes in the quantities of acid degrading compounds formed during alkylation to control the acid strength accordingly so as to speed up the control process.

The charge olefin and isoparaffin enters a contactor 4, by way of a line 6, where the charge olefin and isoparaffin are contacted with acid entering by way of a line 7. Contactor 4 provides an acid-hydrocarbon mix by way of a line 8 to an acid settler 12. Settler 12 separates the hydrocarbon product from the acid and the hydrocarbon product is discharged through a line 14 while the acid is removed by way of a line 16. Acid settler 12 may be the only acid settler in the alkylation unit or it may be the last acid settler of a group of acid settlers. Fresh acid enters line 16 by way of a line 17 as needed to maintain a desired acid strength. A pump 20 pumps the acid from line 16 into line 7. A portion of the acid in line 7 is discharged by way of a line 21. The discharge acid may be provided to another alkylation unit or disposed of.

25 The level in acid settler 12 is maintained by a conventional level sensor 27, a level recorder controller 28, a flow sensor 29 and a valve 30. Sensor 27 provides a signal to flow recorder controller 28 corresponding to the sensed acid level in settler 12. Flow sensor 29 and valve 30 are located in line 21. Sensor 29 provides signal E₃ to flow recorder controller 28 corresponding to the discharge acid flow rate. The set point of controller 28 is adjusted by the signal from level sensor 27. When the acid level in settler 12 is high, the set point of flow recorder controller is adjusted by the signal from sensor 27 for an increased discharge acid flow rate. Controller 28 provides a signal to valve 30 causing it to pass more discharge acid until the sensed flow rate in line 21 corresponds to the target flow rate determined by the set point position of controller 28. By increasing the flow rate of the discharge acid while maintaining the fresh acid flow rate, the acid level in acid settler 12 decreases. Conversely, when the acid in level settler 12 is low, sensor 27 and controller 28 control valve 30 to decrease the discharge acid flow rate thereby increasing the acid level in acid settler 12.

30 A water analyzer 35 senses the water content of the olefin and isoparaffin in line 6 and provides a corresponding signal E₁. Analyzer 35 may be of the type manufactured by Panametrics Inc. as their part No. 1000. Signal E₁ is applied to control means 36 which also receives a signal E₂ corresponding to the flow rate of the olefin and isoparaffin in line 6 from a sensor 37.

Chromatograph means 40, which may be of the type manufactured by Bendix-Greenbriar Co. as their part No. C-118, provides signals E_4 and E_5 . Signal E_4 is a pulse signal whose pulses coincide with the peaks of signal E_5 which corresponds to the composition of the olefin and isoparaffin. Pulse signal E_4 is applied to a programmer 41 which provides control pulses E_4 through E_7 to olefin signal means 44. Programmer 41 also receives a direct current voltage V_A from a source 45 of direct current voltages.

Programmer 41, which is shown in detail in FIG. 2, includes a manually-operable switch 50 which controls the starting and the stopping of the control operation. When closed, switch 50 passes direct current voltage V_A to an AND gate 51 which enables AND gate 51 along with a high level direct current output from a logic decoder 52. When open, switch 50 blocks voltage V_A thereby disabling AND gate 51. AND gate 51 controls the counting by a counter 55 of pulses in pulse signal E_4 . AND gate 51 when enabled passes pulse signal E_4 to counter 55 and blocks pulse signal E_4 when disabled. Counter 55 provides a plurality of outputs to decoder 52. Decoder 52 includes a plurality of AND gates receiving the outputs from counter 55, each AND gate providing an output when a particular count is reached so that decoder 52 provides a plurality of outputs corresponding to different counts in counter 55.

When the number of pulses of pulse signal E_4 equals the number of peaks to be sampled and held, decoder 52 provides a low level direct current output to AND gate 51 thereby disabling AND gate 51 to prevent further counting by counter 55, until counter 55 is reset by a reset pulse E_{10} .

A plurality of monostable multivibrators 57 provides pulse voltages E_4 through E_7 . Each multivibrator of multivibrators 57 is triggered by a different output from decoder 56 to provide a pulse voltage which coincides with a different peak in signal E_5 . Pulse voltages E_4 and E_7 are shown in FIGS. 3A and 3B, respectively. The breaks in FIGS. 3A, 3B signify a break in time during which pulse voltages E_8 through E_1 occur. The trailing edge of pulse voltage E_7 triggers a monostable multivibrator 60 to provide a pulse voltage E_K . The trailing edge of pulse voltage E_K triggers a monostable multivibrator 60A causing multivibrator 60A to provide a pulse voltage E_L . Pulse voltage E_L triggers multivibrator 60B which operates as a time delay to provide a pulse to multivibrator 60C. The width of the pulse from multivibrator 60B is such as to allow sufficient time for the operation of the analog computers. Multivibrator 60C provides reset pulse E_{10} which resets counter 55 so that the control operation may be recycled again.

Referring to FIG. 4, there is shown in detail, olefin signal means 44 providing a signal E_7 , which corresponds to the percent volume of acid consuming constituents in the olefin, to control means 36. Signal E_5 from chromatograph means 40 is applied to sample and hold circuits 63 through 63I. Pulses E_4 through E_7 from programmer 41 control sample and hold circuits 63 through 63I, respectively, to hold different peaks of signal E_5 .

The following Table relates a particular sample and hold circuit to a corresponding constituent.

Circuit	Constituent	Circuit	Constituent
63	Ethane	63E	Normal Pentane
63A	Propane	63F	Propylene
63B	Iso-Butane	63G	Butylene
63C	Normal Butane	63H	Pentylene

63D	Iso-Pentane	63I	All compounds with six or more carbon atoms
-----	-------------	-----	---

The outputs from sample and hold circuits 63 through 63I are applied to multipliers 64 through 64I, respectively, where they are multiplied with direct current voltages V_B through V_K which correspond to various chromatograph means 40 scaling factors pertaining to the particular constituents. By way of example, voltages V_B through V_K may correspond to 0.02, 0.2, 1.0, 0.2, 0.15, 0.02, 0.2, 0.1, 0.02 and 0.1 volts, respectively.

Sample and hold circuits 65 through 65I are controlled by pulse E_K from programmer 41 to sample and hold the outputs from multipliers 64 through 64I. Summing means 69 sums all of the outputs from sample and hold circuits 65 through 65I to provide a signal to dividers 70 through 70C. Dividers 70 through 70C also receive the outputs from sample and hold circuits 65F through 65I, respectively and divide those outputs by the signal from summing means 69 to effectively normalize the outputs corresponding to the acid degrading constituents of the olefin. The signals from dividers 70 through 70C are sample and held by sample and hold circuits 71 through 71C, respectively, in response to pulse E_L from programmer 41. The outputs from sample and hold circuits 71 through 71C are multiplied with direct current voltages V_L through V_O which correspond to ratios of pounds of acid consumed per gallon of olefin for the acid consuming constituents, by multipliers 75 through 75C, respectively. Summing means 76 sums the outputs of multipliers 75 through 75C to provide signal E_7 to control means 36.

Control means 36 as shown in detail in FIG. 5 develops a control signal E_{20} which is used to control the fresh acid entering the alkylation unit. Control E_{20} subtracted from a direct current voltage V_P provided by source 43, which corresponds to a predetermined target acid strength, by subtracting means 79. Subtracting means 79 provides an error signal E_{22} to a conventional type flow recorder controller 80 which receives a signal E_{23} from a sensor 81 in line 17. Signal E_{20} adjusts the set points of controller 80. Signal E_{23} corresponds to the flow rate of the fresh acid entering the alkylation unit. Controller 80 controls a valve 83 to regulate the fresh acid flow rate in accordance with the difference between the sensed flow rate signal E_{23} and the desired flow rate as determined by the set points positions. Control means 36 develops signal E_{20} in accordance with signals E_1 , E_2 , E_7 and E_{23} , direct current voltages V_{16} through V_{21} , V_{24} through V_{31} and V_{34} and the following equations:

$$\begin{aligned}
 1. \quad A &= \int_0^T \left\{ \alpha_0 - \left(R_1 + R_2 + R_4 + \frac{F_s}{\rho_s V_s} \right) A + R_3 B \right\} dt \\
 2. \quad B &= \int_0^T \left\{ R_2 A - \left(R_3 + \frac{F_s}{\rho_s V_s} \right) B \right\} dt \\
 3. \quad C &= \int_0^T \left\{ R_4 A - \left(\frac{F_s}{\rho_s V_s} \right) C \right\} dt \\
 4. \quad M &= \int_0^T \left\{ \alpha_m + \gamma_m - \left(\frac{F_s}{\rho_s V_s} \right) M \right\} dt \\
 5. \quad \frac{\text{Wt. \% acid}}{100} &= 1.0 - (W_M M + W_A A + W_B B + W_C C) \frac{1}{\rho_s V_s} \text{ and}
 \end{aligned}$$

$$6. V_s = V_{so} + \frac{W_M M}{\rho_m} + \frac{W_A A}{\rho_A} + \frac{W_B B}{\rho_B} + \frac{W_C C}{\rho_C} + \frac{1}{\rho_s} \int_0^T (F_F - F_s) dt$$

where A, B, C are quantities of three compounds occurring within contactor 4, i.e. the first compound results from an ultimate reaction of the olefin with the isoparaffin to form an alkylate, the second compound is an acid contaminant which is formed from a reversible reaction with the first compound, and the third compound is an acid contaminant resulting from an irreversible reaction with the first compound. The second and third compounds remaining in the acid in line 16, respectively, M is the water in the acid phase and the olefin and isobutane in line 6; R₁, R₂, R₃ and R₄ are reaction rates constants which are predetermined from a laboratory analysis of the reaction of the olefin with the isobutane in the presence of the acid. A math model is shown in FIG. 6 from which equations 1 through 6 were obtained; V_o and V_s are the initial volume and the present volume, respectively, of acid phase in c.c.; ρ_s, ρ_A, ρ_B, ρ_C and ρ_M are the densities of the acid in the contactor 4, the three compounds and water, respectively; W_A, W_B, W_C and W_M are the molecular weight of the three compounds and water, respectively, F_F corresponds to the fresh acid flow rate and F_s corresponds to the discharge acid flow rate. Values for W_A, W_B, W_C, W_M, ρ_s, ρ_A, ρ_B, ρ_C and ρ_M may be predetermined from laboratory analysis of the olefin, the isobutane and the acid, while the density ρ_M and the molecular weight W_M of the water are known.

Referring to FIG. 5, variable resistors 87, 88 reduce signal E₂₃ to provide signals E₂₄, E₂₅ which correspond to the terms F_F and γ_m, respectively, in the aforementioned equations, having units of grams/sec and moles of water in the fresh acid per second. Signal E₃ is conditioned by a variable resistor 89 to provide a signal E₂₆, which corresponds to the term F_s in equation 6 having units of gms/sec.

A V_s computer 90 receives signals E₂₄, E₂₆ from resistors 87 and 89, respectively, control pulses E₃₁ from a pulse generator 91, direct current voltages V₁₆ through V₂₁ from source 43, and signals E₂₇, E₂₈, E₂₉ and E₃₀. The development of signals E₂₇, E₂₈, E₂₉ and E₃₀ which correspond to the M, A, B and C terms in the aforementioned equation, will be hereinafter disclosed. Multivibrator 94 is triggered by the trailing edge of each control pulse E₃₁ to provide a pulse E₄₀ so that a pulse E₃₁ immediately precedes each pulse E₄₀. Computer 90 provides a signal E₃₂ corresponding to the present volume V_s of the acid phase in accordance with the received signals and voltages, and equation 6. Referring to FIGS. 5 and 7, voltages V₁₆ through V₁₉ are multiplied with signals E₂₇ through E₃₀, respectively by multipliers 95 through 95C, respectively. Voltages V₁₆, V₁₇, V₁₈ and V₁₉ correspond to the predetermined ratios of molecular weight to density W_M/ρ_M, W_Aρ_A, W_B/ρ_B and W_C/ρ_C of the three compounds and the water in the acid phase, respectively; while signals E₂₇, E₂₈, E₂₉ and E₃₀ correspond to the terms M, A, B and C, respectively. Subtracting means 96 subtracts signal E₂₆ from signal E₂₇ to provide an output, corresponding to the term (F_F-F_s) in equation 6, to an integrator 100.

A sample and hold circuit 101 samples and holds the output of integrator 100 just prior to pulse E₄₀. Pulses E₄₀ control integrator 100 causing integrator 100 output to go to zero when a timing pulse E₄₀ occurs. The

output from sample and hold circuit 101 corresponds to the integral

$$\int_0^T (F_F - F_s) dt$$

10 . A multiplier 102 multiplies the output from sample and hold circuit 101 with voltage V₂₀, which corresponds to the reciprocal 1/ρ_s of the density of the acid to provide an output corresponding to the term

$$\frac{1}{\rho_s} \int_0^T (F_F - F_s) dt$$

15 in equation 6. Summing means 103 sums the outputs from multipliers 95 through 95C and 101 with voltage V₂₁, which corresponds to the initial volume V_{so}, to provide signal E₃₂.

20 Referring again to FIG. 5, a multiplier 108 multiplies voltage V₂₀ from source 43 with signal E₂₆ from resistor 89 to provide a signal corresponding to F_s/P_sV_s in the aforementioned equations. Signals E₇ and E₂ are multiplied together by a multiplier 110 whose output is reduced by a variable resistor 114 to provide a signal E₃₅ corresponding to the term α_o in equation 1. Resistor 114 is used so as to conform units of measurement, the term α_o is in gms/sec.

25 An A computer 115 provides signal E₂₈ in accordance with signals E₂₉, E₃₁, E₃₅, and E₄₀ direct current voltages V₂₄ through V₂₇ from source 43 and equation 1. Referring now to FIG. 5 and 8 voltages V₂₄ through

30 V₂₈, which correspond to the terms R₁, R₂ and R₄, respectively, are summed along with signal E₃₄ by summing means 116 to provide a signal corresponding to the quantity (R₁ + R₂ + R₄ + F_s/ρ_sV_s). A multiplier 118 multiplies the output from summing means 116 with signal E₂₈, which corresponds to the term A. Another multiplier 119 multiplies direct current voltage V₂₇, which corresponds to the term R₃, with signal E₂₉, which corresponds to the term B, to provide a signal which is summed with signal E₃₅ by summing means 40 120. Subtracting means 124 subtracts the output provided by multiplier 118 from the output provided by summing means 120. The output from subtracting means 124 is operated upon by an integrator 125 and a sample and hold circuit 126 receiving pulses receiving pulses E₄₀ and E₃₁, respectively, to provide signal E₂₈ which is also fed back to multiplier 118.

45 Referring to FIGS. 5 and 9, signal E₂₉, which corresponds to the term B, is provided by a B computer 130 in accordance with direct current voltages V₂₅ and V₂₇, signals E₂₈ and E₃₄ and equation 2. Signal E₃₄ is summed with direct current voltage V₂₇, which corresponds to the term R₃, by summing means 131 to provide a signal corresponding to R₃ + F_s/ρ_sV_s which is multiplied with signal E₂₉ by a multiplier 132. Another multiplier 133 multiplies signal E₂₈ with voltage V₂₅ to provide an output corresponding to the term R₂A. Subtracting means 138 subtracts the output provided by multiplier 132 from the output provided by multiplier 133. An integrator 139 and a sample and hold circuit 140, receiving pulses E₄₀ and E₃₁, respectively, operates on the output from subtracting means 138 to provide signal E₂₉ which is also fed back to multiplier 132.

50 Signal E₃₀ which corresponds to the term C in the aforementioned equations, is provided by a C computer 140 in accordance with signals E₂₈ and E₃₄ and direct current voltage V₂₆. Referring to FIGS. 5 and 10, signal E₂₈ is multiplied with voltage V₂₆ by a multiplier 144 to provide a signal corresponding to the term R₄A. Another multiplier 145 multiplies signal E₃₄ with signal

E_{30} to provide an output corresponding to the term $(F_s/\rho_s V_s)C$. Subtracting means 148 subtracts the output provided by multiplier 145 from the output provided by multiplier 144. An integrator 150 and a sample and hold circuit 151, receiving pulses E_{40} and E_{31} , respectively, operates on the output from subtracting means 148 to provide signal E_{30} which is also fed back to multiplier 145.

Referring back to FIG. 5, a multiplier 151 multiplies signals E_1 , E_2 together and the resulting output is reduced by variable resistor 152 to provide a signal E_{38} corresponding to the term α_m .

Signal E_{27} is provided by an M computer 155 in accordance with signals E_{25} , E_{34} and E_{32} and equation 4. Referring now to FIG. 11, summing means 160 sums signals E_{25} and E_{32} to provide an output corresponding to the term $\alpha_m \gamma_m$. Signal E_{34} is multiplied with signal E_{27} by a multiplier 161 to provide an output corresponding to the term $(F_s/\rho_s V_s)M$. Subtracting means 162 subtracts the output provided by multiplier 161 from the output provided by summing means 160 to provide a signal which is operated on by an integrator 165 and a sample and hold circuit 166, receiving pulses E_{40} and E_{31} , respectively, to provide signal E_{30} . Signal E_{30} is also fed back to multiplier 161.

Referring back to FIG. 5, signals E_{27} , E_{28} , E_{29} and E_{30} from computers 115, 130, 140 and 155, respectively, are multiplied with direct current voltages V_{28} through V_{31} , respectively, by multipliers 170 through 170C. Voltages V_{28} through V_{31} correspond to the predetermined molecular weights of water and the first, second and third compounds, respectively. Summing means 171 sums the outputs of multipliers 170 through 170C. Direct current voltage V_{34} which corresponds to the term 1 in equation 5 is divided by signal E_{32} by a divider 173. The output from divider 173 is multiplied with voltage V_{20} by a multiplier 174 to provide an output corresponding to the term $1/\rho_s V_s$. Another multiplier 176 multiplies the same signal from summing means 171 with the signal from multiplier 174 and the resulting output is subtracted from voltage V_{34} by subtracting means 177 to provide control signal E_{20} .

A digital computer may be used instead of control means 36, programmer 41 and olefin signal means 44. Signals E_1 , E_2 , E_3 , E_5 and E_{23} are converted to digital signals by conventional type analog-to-digital converters and the digital signals are applied to the digital computer. The digital computer provides a digital control signal in accordance with the aforementioned equations. The digital control signal is then converted to an analog signal E_{20} by a conventional type digital-to-analog converter.

The system of the present invention as heretofore described controls the strength of acid in an alkylation unit by determining the demand that will be made on the acid during the alkylation process. The alkylation process reacts an olefin with an isoparaffin in the presence of acid. The composition of the olefin is sensed and the quantity of acid consuming constituent of the olefin is determined from the sensed composition of the olefin.

What is claimed is:

1. A system for controlling the strength of an acid in an alkylation unit wherein an isoparaffin is reacted with olefin in the presence of the acid to provide an acid-hydrocarbon mixture to a settler where the hydrocarbon is separated from the acid to provide a hydrocarbon product and a portion of the acid is recycled while

the remaining acid is discharged from the alkylation unit, wherein fresh acid is added to the recycle acid to affect the strength of the acid and wherein the reaction of the olefin with the isoparaffin in the presence of the acid results in a first compound being formed from the olefin and isoparaffin in the acid phase and immediately leaving the acid phase after formation, a second compound being formed in the acid phase from the first compound and which may return to the first compound, and a third compound in the acid phase formed from the first compound and which cannot return to the first compound, comprising means for controlling the strength of the acid in accordance with a control signal, means for sensing the water content of the olefin and the isoparaffin and providing a signal corresponding thereto, means for determining the composition of the olefin and providing a corresponding composition signal, means for sensing the flow rate of the olefin and providing a signal corresponding thereto, means for sensing the flow rates of the fresh acid and the discharged acid and providing signals corresponding thereto, said control signal means includes a first circuit connected to the olefin and isoparaffin flow rate sensor and to the composition signal means provides a signal corresponding to the quantity α_o of acid consuming constituents contacting the acid; a second circuit connected to the analyzer and to the olefin and isoparaffin flow rate sensing means provides a signal corresponding to the quantity α_m of water in the olefin and isoparaffin contacting the acid; means connected to the fresh acid flow rate sensing means for providing a signal corresponding to the quantity γ_m of water in the fresh acid entering the alkylation unit; means for providing direct current voltages corresponding to the reaction rates R_1 , R_2 , R_3 and R_4 between the olefin, the isoparaffin, the acid, the first, second and third compounds, to the initial volume V_o of acid in the alkylation unit, to the molecular weights W_A , W_B and W_C of the first, second and third compounds, respectively, to the molecular weight W_M of water, to the densities ρ_A , ρ_B and ρ_C of the first, second and third compounds, respectively, to the densities ρ_s and ρ_M of the acid and of water, respectively, and to a unit value 1; first analog computing means for providing signals corresponding to the quantities A , B and C of the first, second and third compounds, respectively, and to the quantity M of water in accordance with the α_o , α_m and γ_m signals and the discharged acid flow rate and the following equations:

$$50 \quad A = \int_0^T \left\{ \alpha_o - \left(R_1 + R_2 + R_4 + \frac{F_s}{\rho_s V_s} \right) A + R_3 B \right\} dt$$

$$B = \int_0^T \left\{ R_2 A - \left(R_3 + \frac{F_s}{\rho_s V_s} \right) B \right\} dt$$

$$55 \quad C = \int_0^T \left\{ R_4 A - \frac{F_s}{\rho_s V_s} C \right\} dt$$

$$M \int_0^T \left\{ \alpha_m + \gamma_m - \frac{F_s}{\rho_s V_s} M \right\} dt$$

$$60 \quad V_s = V_{so} + \frac{W_M M}{\rho_M} + \frac{W_A A}{\rho_A} + \frac{W_B B}{\rho_B} + \frac{W_C C}{\rho_C} + \frac{1}{\rho_s} \int_0^T (F_F - F_s) dt$$

65 where T is a predetermined time; and an analog computing circuit receiving some of the direct current voltages and the signals from the last mentioned computing means for providing a signal corresponding to the weight of the acid as the control signal in accordance

with the following equation:

$$\text{Wt. \% acid/100} = 1.0 - (W_M M + W_A A + W_B B + W_C C) \\ (1/\rho_s V_s).$$

2. A system as described in claim 1 in which the determining means includes chromatograph means periodically sampling the olefin and isoparaffin for providing a first signal, whose amplitude peaks correspond to different constituents of the olefin and isoparaffin, and a pulse signal, each pulse in the pulse signal coincides with a different peak of the signal from the chromatograph means, program means connected to the chromatograph means and responsive to the pulse signal for providing control pulses, and means connected to the chromatograph means, to the control signal means and to the program means and controlled by the control pulses, for providing a signal which corresponds to the portion of the olefin that is acid consuming as the composition signal in accordance with the first signal from the chromatograph means.

3. A method for controlling the strength of an acid in an alkylation processing unit wherein an isoparaffin is reacted with olefin in the presence of the acid to provide an acid-hydrocarbon mixture to a settler where the hydrocarbon is separated from the acid to provide a hydrocarbon product and a portion of the acid is recycled while the remaining acid is discharged from the alkylation unit, wherein fresh acid is added to the recycle acid to affect the strength of the acid and wherein the reaction of olefin with isoparaffin in the presence of acid results in the first compound being formed from the olefin and isoparaffin in the acid phase and which leaves the acid phase upon formation, a second compound in the acid phase being formed from the first compound and which may return to the first compound, and a third compound in the acid phase formed from the first compound and which cannot return to the first compound, which comprises determining the composition of the olefin; sensing the flow rates of the olefin and isoparaffin, the fresh acid and the discharge acid; providing a signal corresponding to the quantity α_o of acid consuming constituents contacting the acid in accordance with the sensed olefin and isoparaffin flow rate and with the determination of the olefin composition; providing a signal corresponding to the quantity α_m of water in the olefin and isoparaffin contacting the acid; providing a signal corresponding to the quantity γ_m of water in the fresh acid entering the alkylation unit; providing direct current voltages corresponding to the reaction rates R_1 , R_2 , R_3 and R_4 between the olefin,

50

the isoparaffin, the acid, the first, second and third compounds, to the initial volume V_o of acid in the alkylation unit, to the molecular weights W_A , W_B and W_C of the first, second and third compounds, respectively, to the molecular weight W_M of water, to the densities ρ_A , ρ_B and ρ_C of the first, second and third compounds, respectively, the densities ρ_s and ρ_M of acid and water, respectively, and to a unit value 1; providing signals corresponding to the quantities A , B and C of the first, second and third compounds, respectively, formed during the reaction and to the quantity M of water in accordance with the α_o , α_m and γ_m signals and the discharged acid flow rate and the following equations:

15

$$A = \int_0^T \left\{ \alpha_o - \left(R_1 + R_2 + R_4 + \frac{F_s}{\rho_s V_s} \right) A + R_3 B \right\} dt$$

$$B = \int_0^T \left\{ R_2 A - \left(R_3 + \frac{F_s}{\rho_s V_s} \right) B \right\} dt$$

$$C = \int_0^T \left\{ R_4 A - \left(\frac{F_s}{\rho_s V_s} \right) C \right\} dt$$

$$M = \int_0^T \left\{ \alpha_m + \gamma_m - \left(\frac{F_s}{\rho_s V_s} \right) M \right\} dt$$

and

$$V_s = V_{so} + \frac{W_M M}{\rho_M} + \frac{W_A A}{\rho_A} + \frac{W_B B}{\rho_B} + \frac{W_C C}{\rho_C}$$

$$+ \frac{1}{\rho_s} \int_0^T (F_F - F_s) dt$$

30

where T is a predetermined time and providing a signal corresponding to the weight of the acid as the control signal in accordance with 1.0, W_M , W_A , W_B and W_C

35 voltages, the A , B , C , M and V_s signals and the following equation:

$$\text{Wt. \% acid/100} = 1.0 - (W_M M + W_A A + W_B B + W_C C) \\ (1/\rho_s V_s).$$

40 4. A method as described in claim 3 in which the determination step includes sampling the olefin and isoparaffin; providing a signal, whose amplitude peaks correspond to different constituents of the olefin and isoparaffin; providing control pulses, each control pulse coinciding with a different peak of the last mentioned provided signal, and providing a signal which corresponds to the portion of the olefin that is acid consuming as the composition signal in accordance with the last mentioned provided signal.

* * * * *

55

60

65