APPAREIL DE DEVELOPPEMENT PHOTOGRAPHIQUE AUTOMATIQUE, DISPOSITIF D'ALIMENTATION EN PAPIER, CABINE D'INSTALLATION A L'EXTERIEUR, MECANISME DE PRISE DE VUES UTILISE DANS CET APPAREIL ET BANDE D'IDENTIFICATION PHOTOGRAPHIQUE A MARQUES D'INTERCALATION

AUTOMATIC PHOTOGRAPHIC PROCESSOR APPARATUS, PAPER FEEDER DEVICE, OUTDOOR INSTALLATION BOOTH, AND OBJECT IMAGE CAPTURING MECHANISM USED IN THE AUTOMATIC PHOTOGRAPHIC PROCESSOR APPARATUS, AND IDENTIFICATION PHOTOGRAPH STRIP WITH CUTLINE MARKING
The present invention relates to an automatic photographic processor apparatus for automatically producing a set of photographic prints, e.g. identification photos or self-portraits, in a short period of time when a human object or client has shot himself or herself, a paper feeder device, an outdoor installation booth and an object image capturing mechanism mounted in the automatic photographic processor apparatus, and to an identification photograph strip with cutline markings.
ABSTRACT OF THE DISCLOSURE

The present invention relates to an automatic photographic processor apparatus for automatically producing a set of photographic prints, e.g. identification photos or self-portraits, in a short period of time when a human object or client has shot himself or herself, a paper feeder device, an outdoor installation booth and an object image capturing mechanism mounted in the automatic photographic processor apparatus, and to an identification photograph strip with cutline markings.
Automatic photographic processor apparatus, paper feeder device, outdoor installation booth, and object image capturing mechanism used in the automatic photographic processor apparatus, and identification photograph strip with cutline markings

BACKGROUND OF THE PRESENT INVENTION

The present invention relates to an automatic photographic processor apparatus for automatically producing a set of photographic prints, e.g. identification photos or self-portraits, in a short period of time when a human object or client has shot himself or herself, a paper feeder device, an outdoor installation booth and an object image capturing mechanism mounted in the automatic photographic processor apparatus, and to an identification photograph strip with cutline markings.

Automatic photographic processor apparatuses installed in their respective booths are generally located in stations and other public places for producing a set of photographic prints, e.g. identification photos or self-portraits, in 1 to 3 minutes when a client has shot himself.

Such an automatic photographic processor apparatus located in a station allows a client to shoot himself as follow steps of a shooting procedure explained in an instruction on its booth and then starts operating its printing paper feeder device for conveying a tape of printing paper to a printing stage. In common, a predetermined number of images of an upper half of the client are automatically printed on the printing paper which is then subjected to development.
One to three minutes later, resultant prints are discharged from the automatic photographic processor apparatus.

As the prints are discharged, they are directly received by the client who has been waiting for an instant.

Commonly, the printing paper feeder device in a known automatic photographic processor apparatus is provided with a single roll of printing paper (127 mm wide, 50 m long) for producing a number of prints.

Also, the booth in which the automatic photographic processor apparatus is installed includes outer walls covered with thermal insulating materials of closed-cell foam structure, a fan for ventilation, and a heater for maintaining a constant temperature in the booth by heating up in response to a temperature drop.

There is a height adjustable bench provided in the booth for allowing the client to seat and shoot himself with a camera located at an opposite position. However, as the positioning of himself to the camera is limited, the client is not allowed to check for framing or the like. For improvement, a modification of the known automatic photographic processor apparatus is developed as disclosed in Japanese Patent Laid-open Publication 6-110127 (1994). The modification allows each image produced by an imaging means such as a camera to be transferred to a central processing unit where it is processed to appear on a screen of which optical axis is coincided with the optical axis of the imaging means by a half mirror located across a bisector line between the imaging means and mirror. Also, the central processing unit produces control data from the image to drive a photographic printing means, e.g. a printer, for completing
optimum prints.

The known automatic photographic processor apparatus produces a predetermined number of identical prints of a desired size from one single image and discharges them through a discharge outlet. Actually, the overall size of each print is slightly larger than the desired size. This requires the client to remove a marginal section by cutting with scissors or a cutter to have the prints of the desired size. Accordingly, the known automatic photographic processor apparatus has some drawbacks.

For example, the known automatic photographic processor apparatus contains 50 (printing) paper sheets and a cartridge of ink ribbon (for printing 100 sheets) which should be replenished every few days. It is not easy but costly to repeat a replenishment task (including a maintenance routine) for (printing) paper and ink ribbon on a plurality of the automatic photographic processor apparatuses. To make the matter worse, the automatic photographic processor apparatuses are different in consumption of the paper sheets. The replenishment task will thus be carried out on time with difficulty.

In practice, the automatic photographic processor apparatuses are inspected by a service personnel periodically (once a month or 15 days) who systematically replaces the existing (printing) paper with a new roll while replenishes a developer agent. As the existing roll of printing paper is replaced regardless of its remaining length, it will never be consumed up during a common service period. The periodical replacement is hence uneconomical. Another drawback is that the automatic photographic processor apparatus cannot be used during the replacement of the roll thus leaving a possible client
waiting.

The booth of the known automatic photographic processor apparatus includes the outer walls of a closed-cell foamed thermal insulating material which is substantially high in ventilating capability but low in insulating efficiency, thus hardly maintaining optimum operational conditions of the automatic photographic processor apparatus. The fan for ventilation in the booth is rarely capable of keeping the temperature in the booth to a constant level because the temperature should be different between an upper region (higher) and a lower region (lower) of the booth. This will limit the location of relevant devices of the automatic photographic processor apparatus in the booth. If the booth is placed outside and exposed to an intensity of sunlight during the summer, its temperature will abruptly rise above the limit level and seriously affect the development of prints. It is extremely difficult to ensure stable operations of any thermally sensitive digital image processor under such a highly unstable temperature condition in the booth.

As shown in Figs. 31 and 32, the known automatic photographic processor apparatus employs a half mirror 101 located across the bisector line for coinciding the optical axis 102a of an imaging means 102 with the optical axis 103a of a screen 103. In case of a passport photo which is a type of identification photograph and strictly specified in the location and size of an object face and the overall dimensions, the face is always shot from a lower angle and its image appears facing above but not straight.

Furthermore, a group of the prints produced and discharged from the automatic photographic processor apparatus have to be separated
by the client cutting with scissors or a cutter. As understood, the cutting to an identical size is not easy while the balance between upper, lower, left, and right sides is maintained. It generally happens that the prints are separated in unbalance to each other or the overall dimensions are decreased due to overtrimming in a series of cutting actions.

It is an object of the present invention, for eliminating the foregoing drawbacks, to provide an automatic photographic processor apparatus in which a plurality of cartridges are loaded in a storage and systematically used one by one for enabling a non-stop long-run operation without the need of manual service.

It is another object of the present invention to provide a paper feeder device for use in an automatic photographic processor apparatus in which each roll of printing or thermal transfer paper can be used up to its trailing end without loss and replaced with a new, unused roll without stopping the action of the automatic photographic processor apparatus.

It is a further object of the present invention to provide an outdoor installation booth for an automatic photographic processor apparatus capable of being installed at any place such as outside where it is exposed to direct sunlight while preventing an automatic shooting device mounted in the apparatus from being affected by a change in the ambient temperature.

It is a still further object of the present invention to provide an object image capturing mechanism for use in an automatic photographic processor apparatus in which the face of an object client is shot from direct front with a camera being leveled with the eyes,
avoiding a low angle shot.

It is a still further object of the present invention to provide an identification photograph strip with cutline markings and an automatic photographic processor apparatus for producing the identification photograph strip with cutline markings in which an identification photo print is instantly produced at lower cost and easily separated from the strip by cutting with a cutter or the like to a desired size without impairing its proportional balance.

SUMMARY OF THE INVENTION

For achievement of the foregoing objects, the following arrangements are introduced.

An automatic photographic processor apparatus as defined in claim 1 of the present invention is provided comprising: a printer for printing an image on a sheet of paper; a cartridge feeder for storing a plurality of cartridges and feeding them in a sequence to a predetermined location; a transfer unit provided with a cartridge holding chuck device for removing a used cartridge from the printer, and unloading a new, unused cartridge from the cartridge feeder and loading it to the printer; and a paper feeder for automatically feeding the sheet of paper from its roll.

As defined in claim 2, a paper feeder device for use in an automatic photographic processor according to the present invention is characterized in that a pair of paper feeding means are switched one from the other by the forward and backward switching action of a driving means for selectively feeding a sheet of paper from its roll loaded in desired one of the two paper feeding means.
Also, a paper feeder device for use in an automatic photographic processor defined in claim 3 is characterized by two pairs of paper feed rollers for feeding sheets of paper from their rolls as pinching them therebetween and a one-way clutch mounted on each pair of the paper feed rollers which are driven in opposite directions by a driver device, in which when one of the two pairs of the paper feed rollers are rotated through the one-way clutch by a forward or backward movement of the driver device for feeding a sheet of paper from a desired roll, the other pair of the paper feed rollers remain idle due to a release action of its one-way clutch.

Referring to claim 4, an outdoor installation booth for an automatic photographic processor apparatus according to the present invention has a given shape for and size for accommodating the automatic photographic processor apparatus and is characterized by an outer wall of its shell made of a closed-cell foam type thermal insulating material and a combination of a ventilation fan and an air conditioner mounted in upper and lower regions of the booth shell respectively.

As defined in claim 5, the outdoor installation booth for accommodating an automatic photographic processor apparatus according to claim 4 is further characterized by a lighted signboard mounted outside on the top of the booth shell.

As defined in claim 6, an object image capturing mechanism for use in an automatic photographic processor apparatus according to the present invention comprises: a camera mounted opposite to and spaced by a distance from an object client; a monitor arranged at a right angle to the optical axis of the camera; and a half mirror mounted
across and at a given angle to the optical axis of the camera, the monitor arranged to display an image taken by the camera, the optical axis of the monitor reflected by the half mirror for allowing the client to view the monitor, and the camera located such a position that its optical axis is not coincided with the optical axis of the monitor on the half mirror.

Referring to claims 7, the object image capturing mechanism for use in an automatic photographic processor apparatus according to claim 6 is arranged wherein the camera is dislocated from the optical path of the monitor after reflected on the half mirror by 10 to 20 mm towards the monitor.

As defined in claim 8, an identification photograph strip with cutline markings according to the present invention is characterized in that at least one photograph print of a desired pattern size printed on a printing sheet is accompanied with cutline markings which are marked down outside the print for ease of cutting to the desired size.

Also, the identification photograph strip with cutline markings according to claim 8 is modified as defined in claim 9 wherein left and right cutting ones of the cutline markings are located above and below the photograph print of the pattern size on the printing sheet, inside the left and right sides of the same, and upper and lower ones of the cutline markings are on the left and right sides of the print, inside the upper and lower sides of the same.

As defined in claim 10, an automatic photographic processor apparatus for producing an identification photograph strip with cutline markings is provided comprising: a reading means for reading
an image, an arithmetic operating device including a calculating means for converting data of the image read to a specified size format and an editing means for editing the image data from the calculating means to producing a background image data with cutline markings; and a printer for producing identification photograph prints from the image data supplied from the editing means.

In the automatic photographic processor apparatus of claim 1 of the present invention, upon receiving a detection signal indicative of the trailing end of an ink ribbon in the cartridge at the printer, the transfer unit drives the chuck device to unload the used cartridge from the printer and convey it to a discharge location. The chuck device of the transfer unit is then moved to a cartridge feed location in the cartridge feeder.

Accordingly, the used cartridge is unloaded from the printer and replaced with one of the new, unused cartridges stored in the cartridge feeder by the action of the chuck device.

The new cartridge is conveyed by the transfer unit to the printer. When the new cartridge has been released from the chuck device and loaded to the printer, the transfer unit with the chuck device is moved back to its original position.

Also, a sheet of paper to be used in the printer is sequentially fed from its roll loaded in the paper feeder.

As described, the cartridge is automatically replaced with a new cartridge while the sheet of paper is continuously fed by the paper feeder, allowing the apparatus to run for a long period without the need of manual service. In other words, the replenishment of cartridges and paper will be carried out only at extended intervals.
In the paper feeder device in the automatic photographic processor apparatus of claim 2, one of the two paper feeding means is driven by the forward (or backward) movement of the driving means while the other remains idle. A sheet of paper is thus fed from its roll at the side of the driven paper feeding means. At the side of the idling paper feeding means, an empty roll may be replaced with a new roll.

Accordingly, the two rolls of paper loaded in place can be used alternately without pausing the paper feeder device in the automatic photographic processor apparatus.

The paper feeder device of claim 3 in the automatic photographic processor apparatus allows the drive device to rotate two pairs of the paper feed roller in opposite directions. Due to the action of the one-way clutch linked to each pair of the paper feed rollers, a desired pair of the paper feed rollers are driven. Simultaneously, the other pair of the paper feed rollers remain idle due to a linked action of its one-way clutch.

A sheet of paper is hence released from its roll and conveyed by a transfer action of the driven pair of the paper feed rollers as pinched between the two paper feed rollers.

When the sheet of paper conveyed by the driven pair of the paper feed rollers has been used up, the drive device is electrically controlled to perform a reverse action. This allows the paper feed rollers to rotate in the reverse directions. The driven pair of the paper feed rollers are thus shifted by their one-way clutch to turn idle. Simultaneously, the idling pair of the paper feed rollers are linked to power transmission by their one-way clutch and starts
rotating and feeding out a sheet of paper from its roll at the side.

In the outdoor installation booth of the automatic photographic processor apparatus of the present invention defined in claim 4, the outer wall of its shell is made of the closed-cell foam type thermal insulating material thus to increase the thermal insulating effect. As the ventilation fan mounted in the upper region of the booth is operated synchronous with the air conditioner mounted in the lower region of the booth, the air can be circulated throughout the booth thus maintaining a uniform temperature. This prevents the automatic photographic processor apparatus installed in the booth from being affected by an outside temperature. It is also possible to install in the booth a temperature sensitive digital image processor and thus reduce the overall processing time considerably.

The outdoor installation booth of the automatic photographic processor apparatus of the present invention defined in claim 5 has the lighted signboard mounted on the top thereof thus forming a double roof construction. The lighted signboard prevents the booth from being exposed at the top to direct sunlight regardless of the location of the booth. This allows the booth to increase the thermal insulating effect.

In the object image capturing mechanism in the automatic photographic processor apparatus of the present invention defined in claim 6, the optical axis of the camera is not coincided with the optical axis of the monitor. This allows the eyes of a client who is seated opposite to the camera to meet the optical axis of the camera and thus be photographed from the straight front. Accordingly, a resultant identification photograph print appears a straight face
front view of the client.

The object image capturing mechanism in the automatic photographic processor apparatus of the present invention defined in claim 7 allows the camera to be dislocated from the optical path of the monitor after reflected on the half mirror by 10 to 20 mm towards the monitor. Accordingly, the eye view line of a client who is seated opposite to the camera is overlapped with the optical axis of the camera. A resultant photograph print appears a more accurate straight front view of the client.

The identification photograph strip with cutline markings of the present invention defined in claim 8 is provided in which the photograph print of a desired pattern size can be separated from a printing sheet by placing a rule between the two corresponding cutline markings and cutting along the rule with a cutter. Accordingly, the desired size of the print is obtained without making a cutting error.

From the identification photograph strip with cutline markings of the present invention defined in claim 9, an identification photograph print of the desired size is separated by placing a rule between the left and right ones and the upper and lower ones of the cutline markings and cutting with a cutter along the same.

In the automatic photographic processor apparatus for producing the identification photograph print with the cutline markings according to the present invention as defined in claim 10, data of an image read with the reading means is calculated by the calculating means to a format of the passport size and combined by the editing means with a background image data of the cutline markings printed
outside a pattern of the print. Upon receiving a resultant combined image data, the printer prints out a print of the image data with the cutline markings on a sheet of paper.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is an overall perspective view, seen from a cartridge feeder side, of an automatic photographic processor apparatus showing Embodiment 1 of the present invention;

Fig. 2 is an overall perspective view, seen from a printer side, of the automatic photographic processor apparatus of Embodiment 1;

Fig. 3 is a schematic front view of a transfer unit in Embodiment 1;

Fig. 4 is an explanatory view of a cartridge feeder in Embodiment 1;

Fig. 5 is a plan view of a chuck device in Embodiment 1;

Fig. 6 is a front view of the chuck device of Embodiment 1;

Fig. 7 is an explanatory view showing an action of the automatic photographic processor apparatus of Embodiment 1;

Fig. 8 is a diagram explaining a series of actions (1) to (12) of the automatic photographic processor apparatus of Embodiment 1;

Fig. 9 is a front view of a paper feeder device showing Embodiment 2 of the present invention, in which an upper pair of paper feed rollers are driven in an automatic photographic processor apparatus;

Fig. 10 is a right side view of the paper feed rollers shown in Fig. 9;

Fig. 11 is a plan view of the paper feed rollers shown in Fig. 9;
Fig. 12 is a left side view of the paper feed rollers shown in Fig. 9;

Fig. 13 is a front view of the paper feeder device of Embodiment 2, showing that a lower pair of paper feed rollers are driven in the automatic photographic processor apparatus;

Fig. 14 is a right side view of the paper feed rollers shown in Fig. 13;

Fig. 15 is a plan view of the paper feed rollers shown in Fig. 13;

Fig. 16 is a left side view of the paper feed roller shown in Fig. 13;

Fig. 17 is an explanatory view showing step 1 of the paper conveying action of the paper feeder device of Embodiment 2;

Fig. 18 is an explanatory view showing step 2 of the paper conveying action of the paper feeder device of Embodiment 2;

Fig. 19 is an explanatory view showing step 3 of the paper conveying action of the paper feeder device of Embodiment 2;

Fig. 20 is an explanatory view showing step 4 of the paper conveying action of the paper feeder device of Embodiment 2;

Fig. 21 is an explanatory view showing step 5 of the paper conveying action of the paper feeder device of Embodiment 2;

Fig. 22 is an explanatory view showing step 6 of the paper conveying action of the paper feeder device of Embodiment 2;

Fig. 23 is an explanatory view showing step 7 of the paper conveying action of the paper feeder device of Embodiment 2;

Fig. 24 is a partially cross sectional front view of an outdoor
installation booth for an automatic photographic processor apparatus showing Embodiment 3 of the present invention;

Fig. 25 is a partially cross sectional side view of the outdoor installation booth for an automatic photographic processor apparatus of Embodiment 3;

Fig. 26 is a schematic front view of the outdoor installation booth for an automatic photographic processor apparatus of Embodiment 3;

Fig. 27 is a schematic explanatory view of an object image capturing mechanism in an automatic photographic processor apparatus showing Embodiment 4 of the present invention;

Fig. 28 is an explanatory view of a primary part of the object image capturing mechanism of Embodiment 4;

Fig. 29 is a partially cut-away perspective view of the automatic photographic processor apparatus according to Embodiment 4;

Fig. 30 is a schematic explanatory view of Embodiment 4 showing a primary region in cross section;

Fig. 31 is a schematic explanatory view of a prior art mechanism related to the object image capturing mechanism in the known automatic photographic processor apparatus of the present invention;

Fig. 32 is a schematic explanatory view of another prior art mechanism related to the object image capturing mechanism in the known automatic photographic processor apparatus of the present invention;

Fig. 33 is a perspective view of an automatic photographic processor apparatus for producing an identification photograph strip with cutline markings showing Embodiment 5 of the present invention;

Fig. 34 is a front view of the identification photograph strip
with cutline markings according to Embodiment 5;

Fig. 35 is a block diagram showing the automatic photographic processor apparatus for producing an identification photograph strip with cutline markings of Embodiment 5; and

Fig. 36 is a flowchart of the action of the automatic photographic processor apparatus for producing an identification photograph strip with cutline markings of Embodiment 5.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments 1 to 5 of the present invention will be described referring to the accompanying drawings of Figs. 1 to 36. The numerals (1, 2, 3, ...) in each drawing are substantially independent from identical numbers in the other drawings. It should thus be noted that components denoted by like numerals are different more or less from each other in the construction while being similar substantially.

Embodiment 1

Embodiment 1 of the present invention will first be explained referring to Figs. 1 to 8. Embodiment 1 relates to an automatic photographic processor apparatus according to the present invention as defined in claim 1 of the present invention. Referring to Figs. 1 and 2, the automatic photographic processor apparatus 1 comprises a printer 2, a cartridge feeder 3, a transfer unit 5 including a chuck device 4, and a paper feeder 6.

The printer 2 is a digital color printer of e.g. thermal transfer type for printing an image on a sheet of thermal transfer printing
paper supplied from the paper feeder 6 with the ink ribbon of a cartridge A.

The cartridge feeder 3 comprises a cartridge storage 7 and a cartridge unloader 8, as best shown in Fig. 4. The cartridge storage 7 has a square tubular shape for vertical storage of a plurality of cartridges A, each cartridge containing an ink ribbon.

The cartridge unloader 8 comprises a chain conveyor 9 and a drive unit (not shown). The chain conveyor 9 includes a chain 9a provided with a detecting plate 10. As the chain conveyor 9 is driven, the detecting plate 10 draws out the lowest one of the cartridges A in the cartridge storage 7 and conveys it forward from the storage 7.

The detecting plate 10 is arranged to drive the cartridge A and operate with a sensor (not shown) for examining whether or not the cartridge A has been conveyed and remains at a given position forwardly of the cartridge storage 7.

The chuck device 4 is mounted to the transfer unit 5 for upward and downward movements. More particularly, the chuck device 4 includes a pair of rotary solenoids 11 and 12 which have two wings 11a and 12a thereof respectively. In action, the wings 11a and 12a of their respective rotary solenoids 11 and 12 are rotated (or pivoted) to hold and release the cartridge A. The chuck device 4 also has a roller 4a for closing a cover 2a of the printer 2 which will be described later in more details.

The two wings 11a and 12a are linked to each other. When the wing 12a is rotated clockwise by the clockwise rotary solenoid 12, it moves into a casing of the cartridge A. When the wing 11a is turned counter-clockwise by the counter-clockwise rotary solenoid
11, it moves to a cassette holding location for holding the cartridge A from inside.

The transfer unit 5 (Figs. 1 to 3) is arranged so that its portable frame 5a is driven by an actuator 13 for forward and backward movements of the transfer unit 5 and its transverse frame 5b mounted to the chuck device 4 is driven by an actuator 14 for upward and downward movements. By controlling the transfer unit 5 and the chuck device 4, the cartridge A is loaded to and unloaded from the printer 2 and also, the cover 2a of the digital color printer machine in the printer 2 is opened and closed.

The paper feeder 6 is adapted to hold two rolls of the printing paper (not shown) which are selectively supplied to the printer 2 by forward or backward rotating action of a drive unit. Upon one of the two rolls having been consumed up, the other is automatically fed to the printer 2 without producing any down time on the printer 2.

There is provided a shooter 15 for removing an empty cartridge A.

The prescribed components are safely installed in protective casings of minimum sizes.

The action of the automatic photographic processor apparatus 1 will now be explained referring to Figs. 7 and 8.

When the trailing end of an ink ribbon in the cartridge A loaded in the printer 2 is detected, a resultant detection signal releases the locking state of the cover 2a of the thermal transfer color printer machine. As the result, the cover 2a is opened by the action of a wire and a counter weight which are not shown. The transfer unit 5 is then moved from a position (1) to a position (5) shown in Fig. 8. Upon picking up the used cartridge A with the chuck device 4,
the transfer unit 5 carries it from (5) to (2), (11), and (12). At
the position (12), the cartridge A is removed out through the shooter
15.

The transfer unit 5 travels from (12) to (11), (1), and (6) for
picking up an unused cartridge A, and conveys it from (1) to (5) for
loading to the printer 2. The transfer unit 5 further moves from (5)
to (3), (7), and (8). As the roller 4a of its chuck device 4 runs
over to close the cover 2a of the thermal transfer color printer
machine, the transfer unit 5 travels to (9) and (10). After a cycle
of action is completed, the transfer unit 5 moves back to its start
position (1).

Meanwhile, the thermal printing paper is continuously supplied
from its roll in the paper feeder 6 to the printer 2.

Embodiment 2

Embodiment 2 of the present invention will be described referring
to Figs. 9 to 22.

Embodiment 2 illustrates a paper feeder device installed in an
automatic photographic processor apparatus and defined in claims 2 and
3 of the present invention. As its primary parts are illustrated in
the drawings, the paper feeder device is provided for feeding a
printing paper from one of two rolls and upon the roll being consumed
up, switching to the other roll.

The paper feeder device 1 comprises two paper feeding means 2 and
3, a driving means 4, and other components, as best shown in Fig. 9.
Each of the paper feeding means 2 and 3 includes paper feed rollers
and one-way clutches. The driving means 4 consists mainly of a motor
and a plurality of toothed wheels. As the paper feeding means 2 and 3 are driven by the driving means 4, the printing paper is released from its roll.

More specifically, a pair of paper feed rollers 6 and 7 are rotatably mounted to a support base 5 as shown in Figs. 9 to 12. The two paper feed rollers 6 and 7 are arranged in direct contact with each other at their outer surfaces. The one-way clutch 8 is mounted adjacent to one end of the paper feed roller 7 (specific one of the two rollers) so that the paper feed roller 7 when rotated in a direction denoted by the arrow a is shifted to a lock state by the action of the one-way clutch 8 for creating a driving force. The driving force allows a sheet of printing paper S1 to be drawn from its roll L1 (Fig. 12) and conveyed between the two paper feed rollers 6 and 7.

Another pair of paper feed rollers 9 and 10 are rotatably mounted to the support base 5 beneath the paper feed roller 7. While the two paper feed rollers 9 and 10 are similar in construction to the higher paper feed rollers 6 and 7, a one-way clutch 11 is mounted adjacent to the paper feed roller 10 (specific one of the two paper feed rollers). As the paper feed roller 10 is rotated in a direction denoted by the arrow b in Figs. 13 to 16, it creates a driving force due to the action of the one-way clutch 11. Accordingly, a sheet of printing paper S2 is drawn from its roll L2 (Fig. 12) and transferred between the two paper feed rollers 9 and 10.

When the paper feed rollers 7 and 10 are rotated in reverse directions, they are unlocked to turn freely by the action of their respective one-way clutches 8 and 11, allowing the paper sheets S1
and S2 not to be conveyed.

As shown in Figs. 9 to 12 (and Figs. 13 to 16), the motor 12 and the toothed wheels 13 of the driving means for the paper feed rollers 7 and 10 are located at one side of the support base 5. More particularly, the motor 12 is mounted to a lower end of the support base 5. The motor 12 has a drive shaft 14 thereof on which a toothed wheel 15 is fitted. The toothed wheel 15 is engaged with a toothed wheel 16 mounted to one end of the paper feed roller 10. The toothed wheel 16 is then engaged with a toothed wheel 17 mounted to one end of the paper feed roller 7. Accordingly, as the motor 12 drives the toothed wheels 15, 16, and 17, the paper feed rollers 7 and 10 are rotated in opposite directions.

There are also provided two guide pulleys 18 and 19 for guiding the forward movement of the paper sheets S1 and S2 through the paper feed roller 7 and 10, as shown in Figs. 12 to 16. More specifically, the two guide pulleys 18 and 19 are arranged to direct forward either of the paper sheets S1 and S2 driven by the paper feed roller 7 or 10 whichever is in service.

A loop sensor 20 is provided for detecting a loop form of the paper sheet S1 (or S2) which is produced after passing the guide pulleys 18 and 19 and will be explained later in details. Also, overfeed sensors 21 and 22 are mounted before the guide pulleys 18 and 19 for detecting inadequate behaviors of the paper sheets S1 and S2 respectively forwarded from the paper feed rollers 7 and 10, as shown in Fig. 17.

A combination of a drive shaft 23 and a hold-down roller 24 is mounted for forwarding the paper sheet S1 (or S2) passed between the
guide pulleys 18 and 19. The drive shaft 23 is linked by a belt 26 (or a chain) to a motor 25. Accordingly, as the motor 25 rotates, a half roller 27 of which periphery is partially flattened is turned one full revolution to forward the paper sheet S1 (or S2). A pair of grip rollers 28 and 29 are provided for pausing the paper sheet S1 (or S2) in-between before transferring further.

In common, the paper feeder device 1 in the automatic photographic processor apparatus allows two rolls L1 and L2 of the printing paper to be stored in place (not shown). An upper paper sheet S1 from its roll L1 (Fig. 12) is forwarded between the paper feed rollers 6 and 7 mounted to the support base 5, as shown in Fig. 17. Simultaneously, another paper sheet S2 from its roll L2 (Fig. 12) is conveyed between the paper feed rollers 9 and 10.

For feeding the upper paper sheet S1, the motor 12 is turned on to rotate the toothed wheel 15 in the (forward or reverse) direction denoted by the arrow in Figs. 9 to 12. In response, the toothed wheel 16 of the paper feed roller 10 and the toothed wheel 17 of the paper feed roller 7 are rotated in their corresponding directions.

As the rollers rotate, the one-way clutch 8 on the paper feed roller 7 mounted to the upper of the support base 5 is activated thus to transfer the paper sheet S1 of the upper roll L1.

At the time, the one-way clutch 11 on the paper feed roller 10 mounted to the lower of the support base 5 remains idle allowing the paper sheet S2 of the lower roll L2 to pause.

When the upper roll L1 (Fig. 12) is consumed up, the motor 12 rotates systematically in the reverse direction to rotate the toothed wheels 15, 16, and 17 in the directions denoted by the arrows in
Figs. 13 to 16.

Accordingly, the one-way clutch 11 on the paper feed roller 10 mounted to the lower of the support base 5 is activated to transfer the lower paper sheet S2. Meanwhile, the one-way clutch 8 on the paper feed roller 7 mounted to the upper of the support base 5 remains idle. Then, an unused roll is loaded at the upper side for allowing the automatic photographic processor apparatus to run continuously without having any down time.

The feeding of the upper paper sheet S1 will be explained referring to Figs. 17 to 23. As shown in Fig. 17, the action starts with (manually) forwarding the paper sheets S1 and S2 from their respective rolls L1 and L2 (Fig. 12) to two, upper and lower, paper inlets X and Y respectively to the place that the overfeed sensors 21 and 22 do not detect the paper.

The upper paper sheet S1 is preferentially conveyed by the paper feeding means 2 and the driving means 4 which are electrically controlled until its leading end reaches the grip rollers 28 and 29 as shown in Fig. 18. Meanwhile, the feeding of the paper sheet S1 from its roll L1 (Fig. 12) is continued so that a loop L is produced between the guide pulleys 18, 19 and the drive shaft 23.

When the loop L becomes large as shown in Fig. 19, it is detected by the loop sensor 20 and the feeding of the paper sheet S1 is halted.

The drive shaft 23 is then turned to its original position just before the grip roller 29 starts rotating as shown in Fig. 20. This allows the paper sheet S1 to be gripped between the half roller 27 and the hold-down roller 24 and thus transferred correctly to between the
grip rollers 28 and 29.

Referring to Fig. 21, as the paper sheet S1 is further conveyed, a printing action starts. During the printing action, the loop L is varied in size.

After the printing action is completed, the paper sheet S1 is cut off at the forward side of the grip rollers 28 and 29. Meanwhile, the loop L becomes minimum in size.

Upon the cutting action being finished, the remaining paper sheet S1 is withdrawn from the grip rollers 28 and 29 as shown in Fig. 23. If the loop L remains too small to be detected by the loop sensor 20, the paper sheet S1 is further fed from its roll L1 until the loop sensor 20 produces a detection signal.

When the upper roll L1 (Fig. 12) is consumed up, the feeding is switched to the lower roll L2. By repeating the above action, the paper sheet S2 is conveyed forward. As described, the sheet of thermal transfer or printing paper is driven by the paper feeder device 1 for passing through the automatic photographic processor apparatus which in turn operates exposure and development actions to produces a series of photographic prints.

It would be understood that the paper feeder device of Embodiment 2 may successfully be used in a ticket machine or a register machine.

Embodiment 3

Embodiment 3 of the present invention will be described referring to Figs. 24 to 26. Embodiment 3 relates to an outdoor installation housing or booth for an automatic photographic processor apparatus as defined in claims 4 and 5 of the present invention.
As shown, the outdoor installation booth 1 for an automatic photographic processor apparatus has an overall shape of rectangular parallelopipied, in which the automatic photographic processor apparatus 3 is installed in a booth shell 2. Also, a bench 4 is placed opposite to and at a distance from the automatic photographic processor apparatus 3. The automatic photographic processor apparatus 3 can be operated by a client who is seated on the bench 4 for shooting himself or herself.

The booth shell 2 has an entrance opening 5 in one side thereof for easy access of the client to the automatic photographic processor apparatus 3 and its other sides are enclosed with walls 6. The wall 6 is made of metal sheets 7 and a closed-cell foam type thermal insulating material 8. More specifically, the metal sheets 7 are arranged to cover the entire wall 6 and bonded at their inner side to the closed-cell foam type thermal insulating material 8. Joints between the metal sheets 7 are filled with a sealant.

The booth shell 2 also has a top side 2a and a bottom side 2b arranged in the same construction as of the walls 6 or of other ceiling and floor materials respectively.

A ventilation fan 9 is mounted to the inner side of the booth shell 2 above the automatic photographic processor apparatus 3. Also, an air-conditioner 10 of a small size is provided beneath the ventilation fan 9. The air-conditioner 10 delivers a flow of cool air towards the ventilation fan 9 which blows down a gas of warm air stagnated above in the booth towards below. Accordingly, the air is circulated about the automatic photographic processor apparatus 3 which thus stays in an optimum temperature condition. The automatic
photographic processor apparatus 3 includes a digital image processor (not shown) which is preferably located in a lower region of the automatic photographic processor apparatus 3 where the temperature is relatively low.

A lighted signboard 11 is mounted on the top of the booth shell 2. The lighted signboard 11 is larger in the plan area than the top of the booth shell 2 and has a square hollow construction in which a lighting appliance is installed for illuminating characters or pictures provided on an outer side 11a of the lighted signboard 11 for advertising purpose.

As the lighted signboard 11 is mounted on the top of the booth shell 2 forming a double roof arrangement, the booth shell 2 is prevented from being directly exposed to sunlight and will be increased in the thermal insulating effect.

Embodiment 4

Embodiment 4 of the present invention will now be described referring to Figs. 27 to 30. Embodiment 4 relates to an object image capturing mechanism in the automatic photographic processor apparatus as defined in claims 6 and 7 of the present invention.

As shown in Figs. 29 and 30, a booth 2 of a rectangular parallelepiped shape has an interior space 1 which is divided by a center partition 3 into two areas 1a and 1b. A stool 4 is provided in the area 1a for allowing a client to be seated. One side of the area 1a in the booth 2 has an entrance opening 6 wherein provided with a curtain 5 for closing.

The other area 1b in the booth 2 contains the object shooting mechanism A of this embodiment for shooting an object or client, a
central processing unit (not shown) for processing an image, and a photographic processor (not shown). The partition 3 has a window 7 provided therein opposite to the client who is seated on the stool 4 to face the front (towards the space 1b). The booth 2 may be arranged to any other appropriate shape.

The object image capturing mechanism A in the automatic photographic processor apparatus comprises a half mirror 8, a monitor 10, and a camera 12 mounted in an upper region of the area 1b. The half mirror 8 is spaced by a distance from the window 7. More specifically, the half mirror 8 is arranged with its reflecting surface 9 tilted at an angle of 45 degrees to the window 7, as shown in Fig. 30.

Also, the monitor 10 is disposed above the half mirror 8 so that it faces at 45 degrees to the reflecting surface 9 of the half mirror 8. An image displayed on the monitor 10 is viewed by the client for confirmation as is reflected 90 degrees on the reflecting surface 9 of the half mirror 8.

The camera 12 is disposed behind the half mirror 8 so that its lens 11 faces the client through the window 7. In particular, the camera 12 is dislocated by 10 to 20 mm towards the monitor 10 from the optical axis 14 of the monitor 10 extending after reflected on the half mirror 8, preventing its optical axis 13 from overlapping the optical axis 14 of the monitor 10.

As shown in Figs. 27 and 28, the dislocation of the optical axis 13 of the camera 12 from the optical axis 14 of the monitor 10 allows the eyes of the client who is seated on the stool 4 and faces the front (towards the window 7) to meet the optical axis 13 of the camera
12. Accordingly, the client will be shot from the direct front. Simultaneously, the client can view an image of his or her face displayed on the monitor 10 through the half mirror 8. The image on the monitor 10 displays a straight viewing state of the face which is most preferred for any type of identification photograph.

Embodiment 5

Embodiment 5 of the present invention will be described referring to Figs. 33 to 36. Embodiment 5 relates to an identification photo strip with cutline markings and its automatic photographic processor apparatus, as defined in claims 8, 9, and 10 of the present invention.

Fig. 33 is a perspective view of an automatic photographic processor apparatus for the identification photo with a cutline marking, in which the numeral 1 denotes an overall arrangement of the automatic photographic processor apparatus.

The automatic photographic processor apparatus 1 for the identification photo with a cutline marking has a booth 2 of substantially a box shape thereof divided by a partition 3 into two spaces, a machine room 4 and a shooting room 5.

The shooting room 5 has an entrance opening 6 provided in a front side thereof. The partition 3 has a window 7 provided in a central region thereof, two lighting devices 8 and 9 mounted thereon above and below the window 7 respectively, and a coin/note insertion 10 mounted thereto. There are also provided a stool 12, a back rest 33, and button-switch controls (not shown) so that an object client 11 (who wants identification photos) faces directly the window 7 of the partition 3 when is seated on the stool 12.
A video camera 13 is installed in the machine room 4 for shooting the client 11 seated on the stool 12 through a half mirror (not shown).

The video camera 13 is a known CCD camera (an imaging means) which converts an optical image captured by an optical system of lens and sensor to an electric signal.

Also, a visual display terminal 14 (namely CRT) for displaying the captured image and relevant instruction screens is mounted in a position which is closed to the video camera 13 and thus viewed through the window 7 by the client 11. A microcomputer 15 is mounted beneath the video camera 13 for processing data of the image transferred from the camera 13. Provided beneath the microcomputer 15 is a printer 17 for printing on an identification photo printing sheet 16 shown in Fig. 34 the image data of Y (yellow), M (magenta), and C (cyan) colors of a print format which have been converted by the microcomputer 15 from RGB signals of the three optical primary colors.

The microcomputer 15 comprises, as shown in Fig. 35, a central processing unit (CPU) 21 including a calculating means 18 for converting the image data captured by the video camera 13 to a format suited for producing prints of a desired size, and an editing means 19 for producing from the image data of the calculating means 18 a printout format of the image data accompanied with background data in which cutline markings are printed about a group of pattern photographs 20, and a sub-central processing unit (SUB-CPU) 23 for controlling a power source and other peripheral devices 22.

The procedure of printing an identification photo sheet 16 for
passport and visa size pictures accompanied with the cutline markings, shown in Fig. 34, with the automatic photographic processor apparatus 1 will be explained in conjunction with a flowchart of Fig. 36. The procedure starts with specifying a desired size, e.g. passport and visa size, of identification photographs. The client is seated on the stool 12 to face the window 7 and switches on the video camera 13 for shooting himself or herself. A resultant image captured by the video camera 13 is displayed at real time on the VDT 14. While viewing the image through the (unshown) half mirror, the client can determine a shooting proportion. The determined proportion is then displayed as a still image on the VDT 14.

If the displayed proportion is not wanted, it can be deleted by using a cancel switch (not shown). As the result, the video camera 13 starts again and its current image is displayed on the VDT 14. When a desired still image is obtained, it is transferred as the image data to the CPU 21.

Upon being received by the CPU 21, the image data of 64 mm long by 48 mm width is shifted by the editing means 19 to a passport size of 45 mm x 35 mm which is then pasted in the passport pattern 20 of which each corner is marked down with the cutline marking 24.

In more details, the image data of 64 mm x 48 mm is scaled down in the CPU 21 by reducing 40 mm of the width to 35 mm which is a width of the passport size. Accordingly, the reduced image has a length of 46.6 mm. Then, 46.6 mm is trimmed by 0.8 mm from both sides.

Similarly, the image data is shifted in the CPU 21 to a visa size by the same calculating and editing manners as of the passport size.
More particularly, the image data of 64 mm x 48 mm received by the CPU 21 is reduced to 50 mm x 50 mm of the visa size. When 48 mm of the width of the image data is changed to 50 mm, the length turns to 66.6 mm which is then trimmed by 8.3 mm from both sides by the action of the editing means 19. The resultant visa size of data is pasted on the visa pattern 20 accompanied with the cutline markings 24 at each corner.

The cutline markings 24 are printed to cut a desired size. As each photograph pattern 20 of the image is printed slightly greater by 1 to 2 mm at each side than its actual desired size, left and right cutting ones 24a of the cutline markings 24 at upper and lower ends of the pattern 20 fall in the inner side of its vertical side 20b on the identification photograph sheet 16, and upper and lower cutting ones 24b at left and right ends of the pattern 20 in the inner side of its horizontal side 20a. Accordingly, the cutting is made between the two corresponding markings 24 but not along the border line between the pattern 20 and a margin area of the sheet 16. This allows each photo to be cut out without creating a no-image fragment at each edge even if the cutting is not straight.

After the image data is reduced to the passport or visa size by the calculating and editing actions, its RGB color signals of the optical format are converted to three print colors of the YMC format which are transmitted to the printer 17 for printing out. As the result, the identification photo sheet 16 shown in Fig. 34 is obtained where the patterns 20 of the passport size 16a and the visa size 16b are printed with their respective cutline markings 24 appearing at
each corner of the pattern 20.

The patterns 20 can easily be separated from each other by cutting the identification photo sheet 16 with a cutter along a rule (both not shown) which extends between the two corresponding cutline markings 24. Accordingly, each resultant identification photograph of the passport or visa size is produced with its top and bottom edges, and left and right edges well balanced.

The size of identification photographs is not limited to the passport or visa size prescribed in Embodiment 5 and any other sizes including a common format fabricated by the right rows of steps in Fig. 36 will successfully be produced in the same manner as of Embodiment 5. Although the image taken by the video camera in Embodiment 5 is viewed at real time on the VDT, a given number of the same may be recorded on a magnetic tape or hard disk for allowing the client to select the most favorable one in playback.
THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. An automatic photographic processor apparatus comprising:
 a printer for printing an image on a sheet of paper;
 a cartridge feeder for storing a plurality of cartridges and feeding them in a sequence to a predetermined location;
 a transfer unit provided with a cartridge holding chuck device for removing a used cartridge from said printer and for unloading a new, unused cartridge from said cartridge feeder and loading it into said printer; and
 a paper feeder for automatically feeding the sheet of paper from a roll to said printer.

2. An automatic photographic processor apparatus as claimed in claim 1, wherein said printer comprises a printing device operable to print on the sheet of paper by use of an ink ribbon of a cartridge loaded into said printing device.

3. An automatic photographic processor apparatus as claimed in claim 1, further comprising a chute located to receive the used cartridge from said chuck device and to discharge the thus received used cartridge from said apparatus.

4. An automatic photographic processor apparatus as claimed in claim 3, wherein said chuck device is movable within said apparatus between said cartridge feeder, said chute and said printer.

D
5. An automatic photographic processor apparatus as claimed in claim 4, wherein said chuck device is movable both vertically and horizontally within said apparatus.

6. An automatic photographic processor apparatus as claimed in claim 1, wherein said chuck device includes movable wings, and drives for moving said wings between a hold position for holding a cartridge and a release position for releasing a cartridge.

7. An automatic photographic processor apparatus as claimed in claim 1, wherein said paper feeder comprises a pair of paper feeding means for feeding respective paper rolls, and driving means alternately switchable forwardly and backwardly for selectively feeding a sheet of paper from its respective roll by a respective one of said paper feeding means.

8. An automatic photographic processor apparatus as claimed in claim 7, further comprising two pairs of paper feed rollers for feeding sheets of paper from their respective rolls by pinching therebetween, and a one-way clutch mounted on each said pair of paper feeding rollers which are driven in opposite directions by a driving means, wherein when one of said two pairs of paper feed rollers are rotated through the respective said one-way clutch by a forward or backward movement of said driving means for feeding a sheet of paper from a desired roll, the other said pair of paper feed rollers remain idle due to release of its respective said one-way clutch.
9. An automatic photographic processor apparatus as claimed in claim 1, further comprising a camera mounted at a position to be opposite to and spaced by a distance from an object to be imaged, a monitor arranged at a right angle to an optical axis of said camera, a half mirror mounted across and at a given angle to said optical axis of said camera, said monitor displaying an image taken by said camera, an optical axis of said monitor being reflected by said half mirror, and said position of said camera being located such that said optical axis of said camera is not coincided with said optical axis of said monitor on said half mirror.

10. An automatic photographic processor apparatus as claimed in claim 9, wherein said camera is dislocated from said optical path of said monitor after being reflected by said half mirror by 10 to 20 mm towards said monitor.

11. An automatic photographic processor apparatus as claimed in claim 1, for producing an identification photograph strip with cutline markings and further comprising a reading means for reading an image, and an arithmetic operating device including a calculating means for converting data of the image read to a specified size format and an editing means for editing the image data from said calculating means to produce a background image data with cutline markings, and said printer is operable to produce identification photograph prints from the image data supplied from said editing means.
PRIOR ART
Fig. 31

PRIOR ART
Fig. 32

imaging means

screen

half mirror
Fig. 36

Transfer the image data (640x480) -> Shot

Specifying a desired size

Input passport pattern with cutline making in each corner

Edit the image data to passport size

Paste the image date in the passport pattern with cutline making in each corner

Input visa pattern with cutline making in each corner

Edit the image data to visa size

Paste the image date in the visa pattern with cutline making in each corner

Convert RGB to YMC

Transfer YMC signal to thermal transfer color printer

Print