PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7

GOGF 17/60 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/45319

3 August 2000 (03.08.00)

(21) International Application Number: PCT/US00/02249

(22) International Filing Date: 28 January 2000 (28.01.00)

(30) Priority Data:

60/117,828 US

29 January 1999 (29.01.99)

(71) Applicant: ONLINE INSIGHT, INC. [US/US]; 817 West
Peachtree Street, Suite 600, Atlanta, GA 30308 (US).

(72) Inventors: FORSTER, Kenneth, G.; 914 Virginia Avenue,
Atlanta, GA 30306 (US). KREBS, Paul, E.; 914 Collier
Road, #1304, Atlanta, GA 30318 (US). FLOWERS,
Charlie; 1206 Parkwood Chase, N.W., Acworth, GA 30102
(US).

(74) Agents: KIRSCH, Gregory, J. et al.; Needle & Rosenberg, P.C.,
Suite 1200, 127 Peachtree Street, N.E., Atlanta, GA 30303
(US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA; CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, T™M, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Titlee MULTI-ATTRIBUTE SEARCHING SYSTEM AND METHOD FOR ELECTRONIC COMMERCE APPLICATIONS

o

Lood Bolancing Device

(57) Abstract

170b 170¢

The invention relates to a multi-attribute searching system and method for electronic commerce applications. This system and method
provides purchase decision support to a purchaser with respect to a product type. A typical system includes a data store (110) for storing
user preferences and a server (105) to interact with a purchaser (135), generate user preferences and provide purchase recommendations.
The present invention provides a virtual salesperson that tailors its interaction for each individual consumer. A system according to the
present invention educates, asks questions, interprets responses and presents recommendations (370). Further, a detailed preference profile

for each individual consumer is collected and stored.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

5

10

15

20

25

30

WO 00/45319 PCT/US00/02249

1

MULTI-ATTRIBUTE SEARCHING SYSTEM AND METHOD FOR
ELECTRONIC COMMERCE APPLICATIONS

CROSS-REFERENCE TO RELATED PATENT APPLICATION
This application claims the benefit, pursuant to 35 U.S.C. § 119(e), of
applicants' provisional U.S. Patent Application Serial No. 60/117,828, filed January 29,
1999, entitled “MULTI-ATTRIBUTE SEARCHING SYSTEM AND METHOD FOR
ELECTRONIC COMMERCE APPLICATIONS”.

BACKGROUND OF INVENTION
1. FIELD OF INVENTION
The present invention relates to a multi-attribute searching system and method
for electronic commerce applications. More specifically, the present invention relates
to a system and method for generating individually-valid, statistics-based user
preferences, via a purchaser specific interview, which are used to provide purchase
recommendations. Generated user preferences are stored for subsequent analysis and

use at the individual and aggregate level.

2. DESCRIPTION OF PRIOR ART

The Internet is a global network of connected computer networks. Over the last
several years, the Internet has grown in significant measure. A large number of
computers on the Internet provide information in various forms. Anyone with a
computer connected to the Internet can potentially tap into this vast pool of
information.

The most wide spread method of providing information over the Internet is via
the World Wide Web (the Web). The Web consists of a subset of the computers
connected to the Internet; the computers in this subset run Hypertext Transfer Protocol
(HTTP) servers (Web servers). The information available via the Internet also
encompasses information available via other types of information servers such as
GOPHER and FTP.

Information on the Internet can be accessed through the use of a Uniform

Resource Locator (URL). A URL uniquely specifies the location of a particular piece

10

15

20

25

30

WO 00/45319 PCT/US00/02249

2

of information on the Internet. A URL will typically be composed of several
components. The first component typically designates the protocol by with the address
piece of information is accessed (e.g., HTTP, GOPHER, etc.). This first component is
separated from the remainder of the URL by a colon (':"). The remainder of the URL
will depend upon the protocol component. Typically, the remainder designates a
computer on the Internet by name, or by IP number, as well as a more specific
designation of the location of the resource on the designated computer. For instance, a
typical URL for an HTTP resource might be:
http://www.server.com/dir1/dir2/resource.htm
where http is the protocol, www.server.com is the designated computer and
/dir1/dir2/resouce.htm designates the location of the resource on the designated
computer.

Web servers host information in the form of Web pages; collectively the server
and the information hosted are referred to as a Web site. A significant number of Web
pages are encoded using the Hypertext Markup Language (HTML) although other
encodings using the eXtensible Markup Language (XML) or the Standard Generic
Markup Language (SGML) are becoming increasingly more common. The published
specifications for these languages are incorporated by reference herein. Web pages in
these formatting languages may include links to other Web pages on the same Web site
or another. Web servers, information servers of other types, await requests for the
information that they host from Internet clients.

Client software has evolved that allows users of computers connected to the
Internet to access this information. Advanced clients such as Netscape's Navigator and
Microsoft's Internet Explorer allow users to access software provided via a variety of
information servers in a unified client environment. Typically, such client software is
referred to as browser software.

As these technologies have evolved, the application of marketing research and
statistical techniques to the problem of modeling consumer purchasing behaviors has
also evolved greatly over the past several decades, but has been limited by several

problems, including a failure to appropriately model real-life purchase decisions, a

10

15

20

25

30

WO 00/45319 PCT/US00/02249

3

failure to customize the research task to the individual and the particular decision event,
and a failure to fully exploit technological developments.

Standard approaches have involved consumer surveys, with questions designed
to ask the consumer to state the importance of various features to their decision to buy a
particular product. Several methodologies such as conjoint analysis have been
developed to improve upon these efforts, using advanced statistical approaches to
model the trade-offs consumers make between these features and thereby better
understand how different products might compare to one another. By collecting this
information, conjoint has traditionally been used for new product development, pricing
studies, customer segmentation, and targeting of marketing messages. This early
development was extended with more sophisticated computer-assisted interviews that
were adaptive to the individual respondent with a technique called adaptive conjoint
analysis (ACA), first commercialized by Sawtooth Software, Inc.

Researchers later began to use a conjoint approach in a computer-assisted
environment for decision support, but this was not known to be used in commercial
applications due to the fact that these systems failed to exploit the real-time interactive
and distributed nature of client-server systems and Internet technologies.

At the same time, the application of advanced analysis and profiling to the e-
commerce space has been severely limited. Many companies have focused efforts on
tracking consumer behaviors online to infer attitudes and preferences, but not have
applied the analytical rigor of a statistically-valid and predictive approach, such as
conjoint, to the Internet. The application of the advanced analytics of conjoint analysis
on the Internet to aid in e-commerce purchase decisions is a new one. In order for
conjoint to be effective in this medium, significant changes need to be made as
traditional conjoint analysis is not user friendly, requires too many questions to be
asked to model user preferences, and requires that all respondents submit to the same
interview process.

Instead of conjoint, many online companies have relied on systems such as
collaborative filtering that infer an individual’s purchasing behavior from the behaviors
of the ‘like-minded’ consumer cluster to which they are assigned, or on systems that

allow users to query and/or filter a database eliminating product or service options that

10

15

20

25

30

WO 00/45319 PCT/US00/02249

4

do not meet specific criteria. The problem with these approaches is that they are
neither unique nor explainable to the individual in the case of the former, and may
result in two many or too few products being eliminated out of the consideration set,
and a need for consumers to understand the terms of the database constraints in the case
of the 1atter.

These systems have also suffered from deficiencies as it relates to the
customizability of the interview. This relates both to the ability for each interview to be
dynamically adapted to the individual respondent, the product being evaluated, and/or
the merchant offering the product, and to the ability for the user interface to be
customized in any manner deemed appropriate by the merchant.

Existing systems have not yet addressed these functional deficiencies nor have
they fully exploited the possibilities of existing technologies to provide the maximum

business benefits possible.

SUMMARY OF THE INVENTION

The present invention is directed to a system and method for multi-attribute
searching for electronic commerce applications. According to the present invention, a
purchaser may receive automated purchase decision support.

The present invention provides the e-commerce equivalent of an expert
salesperson in the traditional buying environment. In a preferred embodiment, a system
according to the present invention includes a server for interacting with the user and
generating preference profiles in communication with a data store for storing
preference profiles. Interactions occur with a consumer to help him or her find the right
solution for a purchasing decision. The server according to the present invention
typically is responsible for educating the consumer, asking questions of the consumer,
analyzing responses, and presenting product recommendations potentially with
explanations of the recommendations both overall and feature by feature.

The best salespeople learn everything they can about their customers and record
this information so that they can serve them more effectively in the future. For each
consumer, a preference profile that expresses and quantifies how this person makes

purchasing decisions is built and stored. During an interview, the processor walks a

10

15

20

25

30

WO 00/45319 PCT/US00/02249

5

consumer through a question and answer process. At the start of each interview, the
server accepts a definition of the attributes that define the decision being made. This
definition of attributes is called the study definition, or the study for short. Because the
server can accept this information at the start of each interview, a single
implementation can guide consumers through any number of different decisions.

The number of questions and types of attributes can be different for every
consumer, so novices can be treated differently than pros. A consumer can even specify
which attributes matter and which attributes do not matter, effectively controlling the
kinds of questions the server asks in the interview.

To provide maximum flexibility, all information input into or output from the
server is communicated in an XML format. This allows ease of integration between the
server and most any other software system.

Note also that at the start of each interview a product catalog may be provided
to the server. As with all other forms of input, this catalog is specified in terms of
XML. Specifying this information at the start of each interview results in a tremendous
amount of flexibility. Some products may not be available to certain consumers, or
certain special products may be available only to select individuals.

The above and other objects and advantages of the present invention will
become more readily apparent when reference is made to the following description,

taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of the components in a typical system according to the
present invention.

FIG. 2 is an example of a bar graph displaying relative importance of attributes
as displayed to a user.

FIG. 3 is a flowchart of a process according to the present invention.

FIG. 4 is a flowchart of a process to calculate priors utilities.

FIG. 5 is a flowchart of a process to calculate pairs utilities.

FIG. 6 is a diagram of the communication between the presentation layer and

the analysis engine of the preferred embodiment.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

6

FIGs. 7-20 are sample screen captures.

FIG. 21 is a block diagram depicting organization of clusters.

FIG. 22 is a block diagram of the structure of an adaptor.

FIGs. 23-29 are diagrams illustrating data flow from clients to a cluster.
FIG. 30 is a diagram of the architecture for an adaptor handling CORBA

objects.

DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the invention is now described in detail. Referring
to the drawings, like numbers indicate like parts throughout the views. As used in the

19 2 <<
a

description herein and throughout the claims that follow, the meaning of an,” and
“the” includes plural reference unless the context clearly dictates otherwise. Also, as
used in the description herein and throughout the claims that follow, the meaning of
“in” includes “in” and “‘on” unless the context clearly dictates otherwise. Further, the
terms defined in the following definitions section shall apply in the description herein
and throughout the claims that follow.

Definitions

Study: A study encapsulates the set of attributes, the levels for each attribute, and the
parameters that determine the nature of an interview.

Respondent: A respondent is a participant in an interview.

Purchaser: This term shall be construed as synonymous with respondent or consumer
and shall include both actual and potential purchasers of products.

Product: This term shall be construed to cover both goods and services.

Study Parameters: Configurable properties of a study that determine the nature of the
study. For example, interview time limit.

Attribute: An attribute is a feature of the product being studied which can have various
levels. For example, for a study involving cars, an attribute might be “Color™.
Attribute Level: Each attribute involved in a conjoint study can have many different
levels. For example, for a study involving cars, an attribute might be “Color”, and

attribute levels might be “Red”, “Black”, “Yellow”, and “Green”.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

7

Pairs: A type of question asked during the interview, which presents two profiles and
asks the respondent to indicate her preference for one or the other on a scale ranging
from “Strongly prefer left” to “Strongly prefer right”. Note: The term “Pairs” can also
refer to the section within the interview where the Pairs questions are asked.

Priorsv: A section of the interview that occurs before the Pairs section. Several
different types of questions may be asked in this section, including, for example,
Ranking and Importance questions.

Utilities: Numbers that represent the value that a respondent places on each attribute
level. There is one utility value per respondent per attribute level. 'To determine the
relative desirability of an entire product profile, the utilities of the attribute levels which
make up the product profile are summed. There may be two sets of utilities per
respondent: priors utilities and pairs utilities (both defined below).

Priors Utilities: The utility values that the system calculates based on the respondent’s
responses in the Priors section of the interview.

Pairs Utilities: The utility values that the system calculates based on the respondent’s
responses in the Pairs section of the interview.

Unacceptables: An optional section of the interview that can be used to eliminate
certain attribute levels if the interview would otherwise be too long. The respondent is
shown a list of levels for each attribute and asked to eliminate any that would be
completely unacceptable.

Preference Ranking/Rating: A question within the interview in which the respondent
is asked to indicate her preference for various attribute levels. The study can be
configured to allow respondents to rank the attribute levels in order of desirability or to
allow respondents to rate the desirability of each attribute level. This question can be
omitted for those attributes where the preference should be obvious (such as price).
Ranking: A method by which the respondent can indicate his or her preference for
various attribute levels. The ranking method does not allow for ties, and therefore the
respondent must assign each level a unique numerical value indicating his or her
preference, with lower numbers indicating a higher preference. Since ties are not

allowed, the scale of this response is between 1 and the total number of levels for the

attribute.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

8

Rating: A method by which the respondent can indicate his or her preference for
various attribute levels. The rating method allows for ties, and therefore the respondent
must assign each level a numerical value indicating his or her preference, with lower
numbers indicating a higher preference. Since ties are permitted, the scale of this
respohse is arbitrary.

(The number of attribute levels which can be considered during the interview is a
Study Parameter which the study-planner can set.)

Importance Ratings: A section of the interview which asks the respondent to rate the
importance of each attribute to his or her purchase decision. I n a preferred
embodiment, the system shows the respondent the best level and the worst level for an
attribute and asks him or her how important the difference between the two levels is.
For example, in a study concerning cars, an example question would ask “If 2 new cars
you were considering were both acceptable except for the SINGLE DIFFERENCE
shown below, how important would THAT DIFFERENCE be?...A) Made in USA; B)
Made in Japan.”

Calibration Concepts: A section in the interview where the system shows the
respondent a set of product profiles and, for each profile, asks the respondent to enter a
percentage (from 0 to 100) expressing how likely the respondent would be to buy that
particular product. The results are used to scale the respondent’s utilities, and may be
used to determine how to weight the priors utilities versus the pairs utilities.
Calibration is optional

Preliminary Questions: This term refers to the following sections of the interview:
Unacceptables, Preference Ranking/Rating, and Importance Ratings.

a priori Levels: Some attribute levels have a natural order of desirability that would
be the same for all (or nearly all) respondents. For example, all else being equal, a
price of $10,000 is more desirable than a price of $12,000. These kinds of attribute
levels are called a priori levels. The study-planner can specify that any attribute’s
levels have a priori desirability, either in increasing or decreasing order.

Prohibited Pairs: Some attributes or attribute levels should never appear in the same
question as other attributes or attribute levels. For example, if a study is exploring

different levels of “Dollars per gallon” and “Dollars per case”, the study-planner would

10

15

20

25

30

WO 00/45319 PCT/US00/02249

9

want to prohibit questions concerning both of these attributes from occurring in the
conjoint interview.

Constraints: Constraints refer to hard limits set on the attributes in a study. This
includes unnacceptables as well as ‘must haves’ (i.e. this laptop must have a 300mhz
processor).

Equal Weighting: The first of two possible methods for weighting the priors utilities
versus the pairs utilities. This method places equal weight on the priors utilities and the
pairs utilities.

Optimal Weighting: The second of two possible methods for weighting the priors
utilities versus the pairs utilities. This method used the responses from the calibration
questions to determine what weightings to apply.

Simulation: When a study-analyst has gathered the results of a study, she can run
simulations against it to determine the predicted success of various potential products.
A simulation consists of a Base Case Product (defined below) and/or any number of
Scenarios (also defined below). The study analyst can select one of three choice
models to apply to the base case and scenarios in the simulation: Maximum Likelihood,
Share of Preference, and Purchase Likelihood. Each of these is defined below.
Maximum Likelihood: A choice model that specifies that a simulation should allocate
each respondent’s preference entirely to the one product that has the highest utility for
that respondent.

Share of Preference: A choice model that specifies that a simulation should allocate
preferences fractionally, taking into account the respondent’s utilities for each product.
Purchase Likelihood: A choice model which specifies that a simulation should
estimate the probability that each specific respondent will purchase each product.

Base Case Product: A set of simulation parameters that defines the standard product
profile. When a simulation is run against the Base Case Product, the system will
calculate various predictions about the relative success of the product profiles.
Scenario: A set of simulation parameters and a list of product profiles. When a
simulation is run against the Scenario, the system will calculate various predictions
about the relative success of the product profiles.

Generation of User Preferences

10

15

20

25

30

WO 00/45319 PCT/US00/02249

10

Conjoint analysis, or simply conjoint, is a robust statistical technique that
supports learning how people make decisions about goods or services that are made up
of a several different features. For example, for computers, features may include RAM,
hard drive capacity, processor speed, screen size, etc. Conjoint is used in the preferred
embodiment of the present invention to generate user preferences. In other
embodiments, other forms of individually-valid statistical analysis may be used.

Conjoint utilizes a questioning method that mimics the real world by showing
consumers products, each composed of several features, and letting them indicate how
much they like them. By varying the features of the products and analyzing responses,
it is possible to quantify how each aspect of a product drives preference. As details of
how much value people place on each possible feature are acquired, these value
components can be added to predict how much the purchaser would like a potential
product offering. This allows the comparison of many possible products and uncovers
the best fit for the consumer.

There are several steps involved in the adaptive conjoint process 300 of the
preferred embodiment of the present invention. These steps are seen in FIGs. 3-5,
outlined and described more fully below:

1) Defining attributes and levels may optionally occur 310

2) The Priors Conjoint Section may optionally occur 320
e Ranking or Rating of levels within attributes may optionally occur 410
e Rating of attribute importance may optionally occur 420

e Setting attribute constraints 430 and identifying unacceptables may optionally
occur. In the preferred embodiment this will occur in conjunction with the
rating of attributes and levels, but in other embodiments this may occur either

before or after the rating of attributes and levels.

e (Calculating priors only utilities 440

3) The Pairs Conjoint Section may optionally occur 330
® Determining the number of pairs questions 510
e Prohibiting pairs may occur 520

® (Choosing pairs 530

10

15

WO 00/45319

e Calculating pairs only utilities 540

11

e Calculating equal weight utilities 340

4) Calibration Concepts may optionally occur 350

e (Calculating final optimal weighted utilities

5) Calculating of final attribute relative importance 360

PCT/US00/02249

6) Product Scoring and Recommending based on User Preference Profile(s) 370

Example Used Throughout

All of the calculations required will be explained based upon the example provided

below. The example study tests on 3 attributes with a total of 9 levels (4 levels in

Attribute 1, 3 levels in Attribute 2, and 2 levels in Attribute 3).

The example product type is laptop computers, and names have been added to the

attributes and levels below for clarity:

Attribute # | Attribute Level # | Level Name
Name
1 Brand 1 Dell
2 Compagq
3 IBM
4 Gateway
2 Price 5 $3,000
6 $2,250
7 $1,500
3 Processor 8 Pentium
9 Pentium II

Calculating Conjoint Priors

The “priors utilities’, or simply ‘priors’ are calculated from two pieces of

information given by the user — their ranking or rating of levels within each attribute

10

15

20

25

30

WO 00/45319 PCT/US00/02249

12

and their rating of the relative importance of each attribute. Priors are the initial set of
preferences used to shape and validate the questions in the next section, the conjoint
pairs. In a preferred embodiment, the calculation of priors occurs optionally.

Priors calculation process is described more fully below.

Attributes and Levels
Users will be explicitly instructed that they will see a series of product features,

known in conjoint analysis parlance as attributes. Consumers will be able to click on
any product feature and receive a detailed explanation of the feature and how it may or
may not influence their decision-making process. The ability to learn about a specific
product feature is an important aspect of the present invention.

There are some guidelines to be followed as to the numbers of attributes and levels

that can be included:

- Total number of attributes cannot be less than two or greater than some fixed

maximum

e The number of levels in an attribute cannot be less than two or greater than some
fixed maximum.

e Users may be able to place constraints on the levels that are/are not included in the
study/search. This is discussed in more detail below.
Self-explicated Rankings of Levels with Attributes

This is the first actual conjoint task introduced to consumers — the ranking or
rating of attribute levels. Once they fully understand the product features that they will
be interacting with, the consumer will be presented with a list of levels for each product
feature.

If the ranking approach is employed, they will be asked to rank these levels in
terms of their desirability or attractiveness from 1 to n, with n being the number of
levels for the particular attribute.

For many product attributes, the order of the levels can be predetermined
(ranked a priori) and does not need to be asked directly of the consumer. An example
is price, where if all other things are considered to be equal people almost universally
prefer a lower price to a higher one. Even if a priori, the attribute will still need to be

included in the relative importance rankings described in the next section.

WO 00/45319 PCT/US00/02249

13

Calculation Process for Priors Ranks
As mentioned above, users are asked to rank each of the levels within each
attribute. The rankings given by the users are recorded as a series of numbers. Each
number is the answer given by the web visitor and is an ordinal number — 1 for the first
5 level chosen, 2 for the second, etc. Next the rankings are reversed — the lowest rank
becomes the highest; the highest becomes the lowest, etc. So, if there are five levels,
the 1 becomes 5 and 2 becomes 4 and so on. Finally, the ranked values for each level

are centered at zero for each attribute, using the rules below:
-® Values for levels are to be centered at zero
10 & Values for levels are to be evenly spaced with a unit value of one between each
level
e The computation to center values at zero is:

New Value = Reversed rank—Average rank of levels in the attribute

The average rank of levels in an attribute is as follows:

Number of Levels in the Attribute Rule
2 levels 1.5
3 levels 2
4 levels 2.5
5 levels 3
And so on....where Average = (Number of Levels+1)/2

15 After the first stage of ranking the levels within each attribute the values should look as
follows (assuming the user provided the rank detailed in the ‘Rank Given’ field below):

Attribute | Level Rank Reversed | Centered
Number | Number | Given Rank At Zero
1 1 1 4 1.5

2 2 3 5

3 3 2 -.5

WO 00/45319 PCT/US00/02249

14
4 4 1 -1.5

2 5 3 1 -1
6 2 2 0
7 1 3 1

3 8 1 2 .5
9 2 1 -5

Note: the spread between the highest and lowest values within each attribute is equal to
the number of levels within that attribute minus one.

Rating of Attribute Relative Importance

From the ranking questions, the order of levels will now have been established
5 for each product feature. The consumer must then indicate how important each
attribute is to his or her purchase decision. In the preferred embodiment, they will do
this by indicating how important the difference between their most preferred level and
their least preferred level is for each attribute. The stronger the importance between the
highest and lowest level, the more important the attribute is to the consumer. Ina
10 preferred embodiment, the rating of attribute relative importance may occur

concurrently with the ranking or rating of the levels within the attributes.

The importance rating for each attribute will be the answer (1,2,3, or 4) given

by the user. In the example, let’s suppose that the following importance ratings were

given:
Attribut | Attribute Importance
e Name Rating
1 Brand 3
2 Price 4
3 Processor 1

15 Adjusting Prior Ranks for Attribute Importance
For each attribute, the zero-centered values from the ranking section must be

adjusted so that the range from the highest to the lowest value equals the importance

10

15

WO 00/45319

PCT/US00/02249

rating for that attribute. Also, the difference between all adjacent values within an

attribute must be a constant.

Example: For Attribute 2 the importance rating is 4. So the range from the high to the

low value must also be 4. Centered at zero, this implies a high of 2 and a low of 2.

The adjusted values for the three levels in Attribute 2 will then be -2, 0 and 2. Note

that the difference between adjacent values is the same.

The following rules can be used to make these adjustments in the rank values:

e The highest value is 1/2 of the importance rating and the lowest value is the

negative of the highest value. This will ensure that the range is equal to the

importance rating.

e Ifthere are an odd number of levels, the middle value is 0.

e Ifthere are 4 levels, the second highest value is 1/3 of the highest value and the

second lowest value is the negative of the second highest.

o And so on...With the general formula being that the Adjusted Prior Utility equals:

(Centered at*Zero value)/(n-1)*(Importance Ranking) where n equals the number of

levels in the attribute.
Attribute | Level Rank | Reversed | Centered | Importanc | Adjusted
Number | Number Rank At Zero | e Ranking | Prior Utilities
1 1 1 4 1.5 3 L5
2 2 3 5 3 5
3 3 2 -5 3 -5
4 4 1 -1.5 3 -1.5
2 5 3 1 -1 4)
6 2 2 0 4 0
7 1 3 1 4 2
3 8 1 2 5 1 5

10

15

20

25

WO 00/45319 PCT/US00/02249

16

9 2 1 -5 1 -5

The final column in the table above is the vector of values of the dependent variable to
be used in the regression equations later. These are the prior utilities for the nine
example levels.
Calculation Process for Priors Ratings

The ranking approach to calculating priors level utilities is described above, and
the ratings approach is defined as follows. The advantage of ratings over rankings is
that it allows ties —i.e. allows two levels to be equally preferable, and also allows the
user to state the absolute attractiveness of each given level — i.e. even with the highest
relative rating, a level can be given a high rating or low rating, the latter indicating that
none of the levels are particularly attractive.

The calculation of Prior Utilities depends on the type of question being posed.
If the preference order of levels within an attribute can be reasonably inferred, the
attribute is considered an a priori attribute. That is, the level of importance within the
attribute can be defined at the beginning of the study. An example of an a priori
attribute is price. The attribute price refers to the product cost, while the levels within
price represent the various possible prices for the product. Price is a priori because one
can reasonably assume that lower prices will always be preferred by consumers.

Using a ratings approach, Priors Utilities are calculated differently for a priori
and non-a priori attributes as defined below.
A Priori Ratings-based Priors Utility

A priori levels are treated similarly to the standard ranking approach. For each
level within the attribute, create a rank from one to n, where n is the total number of
levels within the attribute. A rank of one is assigned to the level within the attribute
that is most preferred and n is assigned to the least preferred level. Assume the a priori
attribute is price and that price has four levels: $1000, $2000, $3000and $4000. The
price of $1000 receives a rank of one, $2000 a rank of two, etc.

Next, reverse the rankings so that the most preferred level receives the highest

rank. Thus, $1000 receives a four, $2000 receives a three, etc.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

17

Third, adjust the reversed ranks so they are centered at zero. This is done by
subtracting the following number from each reversed rank: the sum of the ranks
divided by the number of levels in the attribute. In the example having four levels, 2.5
is subtracted from each reverse rank ({4+3+2+1} /4).

Finally, calculate the Prior Utility using the following equation:

Prior Utility = (zero-centered rank*importance) / (number of levels in attribute — 1)

Importance is a number from one to four provided by the interviewee — four
being very important and one being very unimportant.

Non-A Priori Ratings-based Priors Utility

For variables where preference order may not be assumed up front, the ratings
method, which differs from rankings in its calculations, is used to derive Priors Utility.
In addition to providing attribute importance, the user also provides a rating for each
level within the attribute using a scale from one to five — five representing a very
attractive level and one representing a very unattractive level. For our example, assume
the interviewee is rating three laptop computer brands: Dell, Compagq, and IBM.

Assume the interviewee provided the following ratings:

Level Rating
Dell 5
Compagq 3
IBM 2

First, adjust the ratings so they are zero-centered on a five point scale. Thus,
possible scores will range from 2 to +2, rather than one to five. This is done by
subtracting the following number from each rating: the sum of the numbers in the
rating scale divided by the number 6f levels in the rating scale. For a one to five scale,
three is subtracted from each rating ({5+4+3+2+1}/5).

Then, calculate Prior Utility using the following equation:

Prior Utility = { (zero-centered rating*importance) / spread of interviewee ratings } —
{ sum of zero-centered ratings / number of levels in attribute }
Priors Matrix
These utilities are used to set up the priors matrix. This matrix will be updated

in the pairs section and used to calculate pairs utilities as well as to determine the pairs

10

15

WO 00/45319 PCT/US00/02249

18

to be asked. At the beginning the matrix is set to be the identity matrix for the nine
levels (independent variables) in the study and the prior utilities are set as the

dependent variables.

Priors Utility Matrix
Independent X variables (levels)
Attribute | Level |1 |2 [3 |4 |5 |6 |7 {8 |9 Dependent
Y
1 1 1100 (0|00 |0]|0]O 1.5
2 01110 0(01]0 10|00 .5
3 0|01 (0|0 |0 00O -5
4 001011 0|00 }0|O -1.5
2 5 0|00]0 101010 |0 -2
6 001|000 }1 |00 (O 0
7 0|0 {00001 (OO 2
3 8 0|0 {0]0 0100 |1 |0 5
9 0 {0 (0|0]O0O]O]O |01 -5

At this point, prior utilities have been established and attributes are carried over into the
pairs section of the conjoint. In a preferred embodiment, if an attribute has more than
five levels (even after removing levels due to constraints or unacceptables) then only
the top five ranked levels for that attribute are carried into the pairs section (ties are
broken by the predetermined order of the levels). In other embodiments, more or fewer
of the top ranked levels may be carried into the pairs section.

For the sake of simplicity to the user, in the preferred embodiment a limit to the
number of pairs questions used is set at seven pairs questions (compared to 20 or more
for traditional conjoint). As a result the number of levels that are included in the pairs
section of the study is limited. This can be accomplished by bringing forward to the

pairs section the top five attributes in importance (ties are broken by the predetermined

10

15

20

25

30

WO 00/45319 PCT/US00/02249

19

order of the attributes). Within attributes at most five levels from each (not to exceed a
total of 25 levels) will be brought forward. Other embodiments may impose greater or
lesser limits to the number of pairs questions. In a preferred embodiment, the number
of pairs questions actually presented may vary within the set limit by the individual
purchaser, who may choose to stop answering questions and receive recommendations
at any time.

Setting Attribute Constraints and Identifying Unacceptables

Constraint specification allows the user to specify constraints on attributes and
levels to be included in the product consideration set. For example, a user may set a
specific maximum price limit they are willing to pay, or a minimum hard drive capacity
which they are willing to accept.

Users will be encouraged to avoid using constraints (their use limits the options
available to the search algorithm), but may be allowed to do so anyway. As a result the
system will need to be able to adjust accordingly both the levels included in the study
and the final scoring algorithm used to search for products. For example, if a user
specifies a price constraint of $2,500 for a laptop then several adjustments will need to
be made.

First, all levels above $2,500 within the price attribute will need to be removed
for the duration of the study. However, the attribute level representing $2,500, or the
level immediately greater than $2,500 will need to be retained in the study.

e Ifthe constraint value, $2,500, is a defined level then we simply eliminate all other
levels above that value.
e Ifitis not a defined level, then it can be handled in one of two ways.

» The first, but less clean method, would be to simply keep the closest level to the
constraint level. For example, if a study had levels of $1,750, $2,250, $2,750,
$3,250, and $3,750, then the last two levels would be removed and the first
three would remain (i.e. we would keep the closest inclusive level to $2,500 or
$2,750).

» The second and preferred, but perhaps more involved method would be to

create a new level for the constraint and re-scale the other levels accordingly.

10

15

20

WO 00/45319 PCT/US00/02249

20

[Note that the preferred definition of numeric levels for conjoint is that they be

either equidistant, or in an exponential relationship to each other]

Equidistant (by Exponential None (not preferred)
$500) ($100%2%)
$500 $200 $400
$1000 $400 $750
$1500 $800 $1,000
$2000 $1600 $1,600

Again, suppose we had levels of $1,750, $2,250, $2,750, $3,250, and $3,750.
Using the second approach eliminates the top three levels and add a level for the
constraint value, $2,500, leaving three levels: $1,750, $2,250, $2,500. Since
these levels are not equidistant, the intermediate level(s) are re-scaled so that
they would be: $1,750, $2,125, and $2,500.
Finally, the scoring algorithm would need to reflect the specification of a constraint in
that the system would be instructed not to return any products that exceed the constraint

—1.e. no laptops with a price greater than $2,500 (regardless of the other features).

e For some embodiments, hard constraints such as $2,500 can be exceeded by a
certain percentage (10% or 20%), at the request of the system administrator, to
allow for the fact that users are often flexible in the price they are willing to pay if
presented with a superior product.

Another variation on the constraint theme, is the asking of unacceptables. This
question type may or may not be used in certain embodiments. In this type of question,
users are presented with all of the levels for each attribute and asked to indicate those

that are absolutely unacceptable.

e Again, users will be encouraged to limit the number of levels they declare

unacceptable.

e At least two levels must remain for each attribute.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

21

e Once unacceptable levels have been specified they are removed from the remainder
of the study. The scoring algorithm also needs to be updated to reflect the fact that
no products containing an unacceptable level should be returned.

 Special consideration needs to be employed with respect to the brand attribute.

Since the conjoint is only capable of handling a certain number of levels per attribute,

and since the number of brands available in a merchant’s product database can be quite

large, constraints are specified on the brand attribute to accommodate this.

Three potential approaches to doing this are:

1) List all possible brands and have consumers identify up to X number of brands they
will not accept. The remaining brands then get presented again to the user during
the ranking questions where the user will be asked to rank their top five.

2) Present users with a list of brands available in the study. The user is asked to place
all attributes into one of three categories — ‘unacceptable’, ‘acceptable’ and ‘most
desired’ (‘acceptable’ would be the default and would require no user action). Only
‘most desired’ brands (up to a Maximum X) would be carried into the conjoint.

3) Present users with up to five drop down boxes so that they can choose their five
most preferred brands.

Regardless of method used, the consumer would also be given the option to say that all

brands are acceptable. In this case NO brands (i.e. no brand attribute) are carried

forward to the conjoint — the purchaser is relatively brand neutral.

There may be several types of attributes that have too many levels to be
effectively included in the conjoint — color may be another example. If this attribute is
determined to be un-correlated with the remaining attributes, then the attribute may
simply be excluded. For example, if a buyer can choose any model and then simply
select the color they want, then color does not need to be included as an important
decision criterion. However, if the attribute is correlated with others — say some colors
cost more or certain models are unavailable in certain colors — then it must be handied
in a manner similar to that discussed for “brand” above. All of these decisions can be
made by the system administrator and specified in the system configurations.

Conjoint Pairs Section

10

15

20

25

WO 00/45319 PCT/US00/02249

22

The conjoint pairs section places users in actual decision-making situations.
They are presented with pairs of hypothetical, but realistic, products or services, and
then asked to choose which of the pair they prefer, and how strongly they prefer it.

Unlike full profile conjoint techniques that require all product features be
evaluated in each product pair, adaptive conjoint presents only a subset of attributes at a
time. More than four attributes are rarely shown at once, although five may be shown
occasionally. In fact, most begin with several screens comparing products using only
two attributes at one time, and then several screens showing three attributes.

The pairs section relies on a calculation procedure based upon multiple
regression routines, that is run after each pair. The calculation procedure is designed to

accomplish two tasks:

‘e First, the calculations are used to update the estimated utilities for each level of
each attribute. This requires a matrix of the values of the independent variables (the

questions) and a vector of the values of the dependent variables (the answers).

e Second, based on the previous pair shown and the respondent’s answer (or
preference rating), the calculation is used to determine which pairs to show next.
Since this is an interactive process, both the utilities for levels and for potential
product configurations are estimated repeatedly to select the next question — the one
that will provide the most useful information in refining the utility estimations for
the individual respondent.

Determining Number of Paris to be shown

The number of pairs to be shown is a function of the number of attributes and

levels in the study. Some of the elements required in pairs calculations are detailed

below:

e NATT =# of Attributes =3

‘¢ NLAC() = # of levels in ith attribute where I =1 to NATT NLA(1)=4
NLA(2) =3
NLA(3)=2

‘@ NL = total # of levels in the study 4+3+2=9

10

15

20

WO 00/45319 PCT/US00/02249

23

e NAP = # of available unique products with one level from each attribute
4¥3%2 =24

e NAP2 = # of available unique products when only two attributes are shown at one

time = £ NLA(1)*NLA() = (4*3)+(4*2)+(3*2) = 26
e NPR = # of pairs questions that need to be asked = 3(NL-NATT-1)-NL
= 3(9-3-1)-9 =6

Selecting Pairs to be Shown
In a preferred embodiment, the number of pairs to be shown will be limited to seven

pairs in the following format:

Number of Attributes per Number of Pairs of this kind
Pair Shown
2 2
3 4
4 1

Choosing the pairs to be shown
The first pairs question is selected using only the priors data. Only two
attributes will be used in the initial pairs questions, and will later expand to three
attributes once several questions have been asked and the web visitor accumulates some
experience with this type of question. The pairs shown are designed with two purposes
in mind — to keep the design balanced (all attributes and levels shown roughly the same
number of times) and to present the pairs that will require the most difficult decision
from the user and thus give the most information to the software. There are three
general steps involved in choosing the pairs to be shown.
1) Identify the set of attributes (2 or three depending on how many will be shown in
cach pair) that have been shown together the least often. Break a tie randomly.
2) Identify the pairs of levels (one to be shown on each side of the screen) within each
of the chosen attributes that have been shown together the least often. Break a tie

randomly.

10

15

WO 00/45319

PCT/US00/02249

24

3) From the many possible product combinations that can be generated using the
chosen attributes and levels, identify the two that have the most similar total utility
value (each being defined as the sum of utilities for the levels making up the
product)

Each of these three steps is described in more detail below:

1) Identify the set of attributes (2 or three depending on how many will be shown in
each pair) that have been shown together the least often. Break a tie randomly.

To keep track of how often each attribute is used in a question with every other

attribute a simple n X n matrix is set up, where n equals NATT:

Attribute |1 2 3
1 0 0 0
2 0 0 0
3 0 0 0

Initially all values are 0. Each element is incremented by one each time the row and
column attributes are used together in a question. The attribute combination with the
lowest value is chosen. Ties are broken randomly.

The analysis according to the present invention, in order to begin with a
balanced design, preorders the attributes for the first NATT pairs. The first pair is
always attributes 1 and 2. Thus if two attributes were to be shown at a time, in a study
of three attributes, the next two pairs would use attributes 2 and 3 and attributes 3 and

1. Assuming the first pair uses attributes 1 and 2, the matrix above would be updated.

Attribute |1 2 3
1 1 0
2 0
3

Note: To make the updating process easier, only the top half of the matrix is used. The

diagonal or identity array has also been deleted, as it is not relevant here.

10

15

WO 00/45319 PCT/US00/02249

25

Since only a small number of pairs are being used, in the preferred embodiment,
it is possible to pre-ordain all of the attributes selected for each of the pairs to ensure as
efficient and orthogonal a design as possible. In an alternate embodiment, the selection

approach as detailed above may be used.

Possible Pre-Selected Attribute Pairs for Precision Choice

Pair [NATT (1% Attribute[2™ 3r 4™

Attribute Attribute |Attribute

1 2 Att. 1 Att. 2

2 2 Att. 3 Att. 4

3 3 Att. 1 Att. 3 Att. 5

4 3 Att. 1 Att. 4 Att. 5

5 3 Att. 2 Att. 3 Att. 5

6 3 Att. 2 Att. 4 Att. 5

7 4 Att. 1 Att. 2 Att. 3 Att. 4

This will ensure that each attribute pairing will be shown together an equal number of
times (two times for each combination). Levels and products will still be selected as
described.

2) Identify the pairs of levels (one to be shown on each side of the screen) within each
of the chosen attributes that have been shown together the least often. Break a tie
randomly.

To keep track of how often each level in a selected attribute has been used together

with every other level, similar matrices are created for each attribute. Since attribute 3

has only two levels, it is not necessary to create a matrix — both levels will always be

used when the attribute is selected.

Attribute 1

Level 1 2 3 4

1 0 0 0

WO 00/45319 PCT/US00/02249

26
2 0 0
3 0
4
Attribute 2

Level 5 6 7

5 0 0

6 0

7

Levels are chosen randomly if there is more than one combination that has been used
the fewest number of times. In the example, the first pair chosen uses Attributes 1 and
2. The selected levels were 1 and 3 and 6 and 7 (1st and 3rd from Attribute 1 and 2nd
and 3rd from Attribute 2). The matrices above are then updated accordingly. For
example, if the first question pairs levels 1 and 3 in Attribute 1 and levels 6 and 7 in
Attribute 2, then the elements (1,3) and (6,7) are each increased by 1.

Attribute 1

Level 1 2 3 4
1 0 1 0
2 0 0
3 0
4
Attribute 2

Level 5 6 7

5 0 0

6 1

10

15

20

WO 00/45319 PCT/US00/02249

27

7

3) From the many possible product combinations that can be generated using the
chosen attributes and levels, identify the two that have the most similar total utility
value (each being defined as the sum of utilities for the levels making up the
product)

The priors utilities are used to estimate the total utility for each possible product

(a combination of features that could be shown). This requires one or more tables of

the total utilities of each product and one or more matrices representing the differences

in the total utilities between all possible pairs of products. |

The pair of products chosen for a question is the pair of products that have the
most similar total utility. Break a tie randomly. Randomly assign one product to the
left-hand side of the question screen and the other to the right hand side. The purpose
of this step is to present to the web visitor a choice between two products thought from
his/her earlier responses to be valued closely. This is a credible question to ask the web
visitor and the answer provides meaningful information in the interactive process of
calculating the total utility for each product.

For 3 attributes with a total of nine levels, as in the example, there are 24
possible products (4*3*2) when three attributes are shown at a time and 26 possible
products (4*3+4%2+3%2) when only two are shown. Several tables as shown below can

represent these permutations and the utilities for each.

Attribute Product Utility Total
Attributes | Product 1 2 3|Priorl |Prior2 |Prior3 | Priors
1&2 1 1 1 1.5 -2 -0.5
2 2 1 0.5 -2 -1.5
3 3 1 -0.5 -2 25
4 4 1 -1.5 -2 -3.5
5 1 2 1.5 0 1.5
6 2 2 0.5 0 0.5
7 3 2 -0.5 0 -0.5
8 4 2 -1.5 0 -1.5

WO 00/45319 PCT/US00/02249
28
9 1 3 1.5 2 35
10 2 3 0.5 2 2.5
11 3 3 -0.5 2 1.5
12 4 3 -1.5 2 0.5
Attribute Product Utility Total
Attributes | Product 1 2 3|Prior1 |Prior2 |Prior3 | Priors
1&3 13 1 1 1.5 0.5 2
14 2 1 0.5 0.5 1
15 3 1 -0.5 0.5 0
16 4 1 -1.5 0.5 -1
17 1 2 1.5 -0.5 1
18 2 2 0.5 -0.5 0
19 3 2| -0.5 -0.5 -1
20 4 2l -15 -0.5 -2
Attribute Product Utility Total
Attributes | Product 1 2 3/Priorl |Prior2 |Prior3 | Priors
2&3 21 1 1 -2 0.5 -1.5
22 2 1 0 0.5 0.5
23 3 1 2 0.5 2.5
24 1 2 2 -0.5 -2.5
25 2 2 0 -0.5 -0.5
26 3 2 2l -0.5 1.5
Attribute Product Utility Total
Attributes | Product 1 2 3|Priorl |Prior2 |Prior3 | Priors
1&2&3 1 1 1 1 1.5 -2 0.5 0
2 20 1 1 05 2/ 05 -1
3 3 1 1 -0.5 -2 0.5 -2
4 4 1 1 -1.5 -2 0.5 -3
5 1 2 1 1.5 0 0.5 2
6 2 2 1 0.5 0 0.5 1
7 3 2 1 -0.5 0 0.5 0
8 4 2 1 -1.5 0 0.5 -1

WO 00/45319 PCT/US00/02249

29

9 1 3 1 1.5 2 0.5 4
10 2 3 1 0.5 2 0.5 3
11 3 3 1 -0.5 2 0.5 2
12 4 3 1 -1.5 2 0.5 1
13 1 1 2 1.5 -2 -0.5 -1
14 2 1 2 0.5 -2 -0.5 -2
15 3 1 2 -05 21 -05 -3
16 4 1 20 -15 -2 -0.5 -4
17 1 2 2 1.5 0 -0.5
18 2 2 2 0.5 0 -05 0
19 3 2 21 -0.5 0 -05 -1
20 4 2 2| -1.5 o -05 -2
21 1 3 2 1.5 21 -05 3
22 2 3 2 0.5 2| -0.5 2
23 3 3 2l -05 2l -05 1
24 4 3 2l -1.5 2l -05 0

Once all of the possible products have been outlined and their total utilities
calculated based on the priors, a matrix of the absolute values of the differences
between total product utilities can be constructed. Only half of each of the matrices

5 shown below needs to be filled in.

Looking at the following tables of product pairs choose the appropriate table
based upon the attributes and levels shown. Within the subset of products possible
from those levels and attributes, the pairs of products with the most similar utility (i.e.
zero values except for the principal diagonal) must be identified in the matrix so that

10 one of them can be selected as the first question to be asked.
In general, these are the rules to use:
1) Calculate the difference in total priors utilities between each possible product
combination.
2) Find the minimum value in the matrix by examining all the elements. Identify the
15 two products associated with that minimum value. Identify any other product pair
that has the identical minimum value. Record the products associated with those

elements.

WO 00/45319 PCT/US00/02249

30

3) If the minimum value occurs only once, the two products associated with that value
are the products to use in the first pairs question.

4) If the minimum value occurs more than once (this will certainty be the case for the
first question in every experiment), then randomly select one of the occurrences; the
two products associated with that selection are used in the first pairs question. In an

alternate embodiment, the first occurrence may be selected instead of by random

selection.

Attribut [Product| 1| 2| 3| 4 5/ 6/ 7, 8 9|10| 11| 12

e v

1&2 1 0 20 31 2] 1| O] 1| 4] 3] 2] 1
2 of 1| 2| 3| 2| 1] 0} 5 4] 3] 2
3 Of 1] 4] 3| 2| 1] 6| 5 4| 3
4 O 5| 4 3] 2/ 7] 6/ 5 4
5 o 1 2{ 3] 2{ 1] 0] 1
6 of 1| 2| 31 2/ 1] O
7 of 1 4/ 3| 2| 1
8 0] 5 4 3] 2
9 0 1} 2/ 3
10 o 1 2
11 0 1
12 0

Attribut |Product| 13| 14| 15| 16| 17| 18| 19| 20

e

1&3 13] O 1} 2| 3| 1| 2| 3| 4
14 0 20 O 1} 2| 3
15 o 1] 1| 0f 1| 2
16 of 2| 1} 0] 1
17 0 11 2| 3
18 of 11 2
19 0] 1
20 0

Attribut |Product| 21| 22| 23| 24| 25| 26

e

PCT/US00/02249

WO 00/45319

31

aTIolwINjon| N~ ||~ |F|n| N |~ |~ NN |TF|—|O|—~ N[N}~]O
AN~ N ||~ || =N][N|N |~ O N[N T | O~ NN —|O
AN T N[O~ NN N~ | O N[O~ ||| —|O
amlnltin|le|l~ ANl —|O|—|aN i[OOt | n|O
2021014321654310123210
—_ IO NN N[—~[OD N F|N|N| O] =N~ DO
| Ol ||| =]~ TN N~ N ||| —~]|OD
—_m Nt | O~ [N N~ || NN T | n|O
—_oltln|N|~O|ln|F|njo Ol || —~|D
—_MNM NN~ n|iF|(n|N| N[Ot~ O
_ TN~ O NN] = OV FTIN|— O
—_ =IO~ NN AN~ [([O W |T| N[O
N|—l—=t|N|O _ O~ NN =[N NN —[O
_™ANN TN | O = N|N | —]|O
|| O
—_ LN T N | O~ NN [T~ O
|| e o tlwv|lolr|aN|n|lF|n|o
T N[O > -] O~ NN N | — | O
o~ Ol AN ||~} O
N O
o —~iIAN| NI | — O
< w N[|| n|O
—lQle xS = AN Banll B
NN NN\ . ~N| =] o
o -1 o
—t ()
N
=
S|l NN It N CI~|R0 N O| v (XN}
m -m NI S RN T | ot |k |l [t [[t [[QRPN N S
o
N R
= n
2)
ool
s (%
< -

10

15

20

25

WO 00/45319 PCT/US00/02249

32

As an alternate approach, a slightly modified procedure may be used to ensure
that the question asked is not a choice between two products, either both very desirable
or very undesirable. Instead of breaking the tie randomly, select the pair of products
whose total utility is the median of all the product sets involved in the tie. Then select
randomly if there is another tie.

While the above represent the entire matrices of possible product combinations,
in reality only a subset of these matrices needs to be considered each time — only the
subset of product combinations that can be created out of the selected levels within the
chosen attributes. For a pair of NATT attributes on each side of the screen, with two
levels of each attribute shown, the number of possible product configurations that can
be created from those levels is equal to 2NATT Qo for a two-attribute pair using
attributes 1&2 in the example above, only 22 or 4 of the 12 possible products will need
to be compared.

Calculating Equal Weighted Utilities

As mentioned earlier, the first question in the example pairs contains levels 1

and 3 in attribute 1 with levels 6 and 7 in attribute 2. This results in four possible

product combinations from our product matrix of 26 possible products:

Attribute Product Utility Total
Product 1 2 3|Priorl |Prior2 |Prior3 | Priors
5 1 2 1.5 0 1.5
7 3 2 -0.5 0 -0.5
9 1 3 1.5 2 3.5
11 3 3 -0.5 2 1.5

Choosing the products with the least difference in total utility from the priors would
result in product 5 and product 11 being shown together. Choosing randomly, product
11 is shown on the left side and product 5 is shown on the right.

Once the first pair of products to be shown has been chosen the pairs
information is appended as an additional row to the priors matrix. Attribute levels
shown on the left side of the screen (levels 3 and 7) are coded as —1 while levels shown
on the right (levels 1 and 6) are coded as 1. Levels that are not shown are coded as

ZCro.

10

WO 00/45319 PCT/US00/02249

33

The respondent’s answer, given on a nine-point scale is re-centered at zero by
subtracting five from the answer given. Assuming the respondent answered 4 to the

first question, the updated matrix would be as follows:

Priors Utility Matrix
Independent X variables (levels)
Level |1 2 3 4 5 6 7 8 9 Dependent
Y
1 1 0 0 0 0 0 0 0 0o - L5
2 0 1 0 0 0 0 0 0 0 5
3 0 0 1 0 0 0 0 0 0 -5
4 0 0 0 1 0 0 0 0 0 -1.5
5 0 0 0 0 1 0 0 0 0 -2
6 0 0 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 1 0 0 2
8 0 0 0 0 0 0 0 1 0 5
9 0 0 0 0 0 0 0 0 1 -5
Pairl |1 0 -1 0 0 1 -1 0 0 -1

A multiple regression is then run across the nine independent variables (levels)
and one dependent variable (utilities/answers) across all 10 cases in the dataset (rows).
The regression, will produce nine coefficients for each of our independent variables.
These nine values are similar to the priors utilities (first nine rows in the Dependent Y
column) in the matrix above. These new utility values will replace the priors values in
the product tables and in the calculation of total product utilities. However, the original
prior values will be retained for the regression routines.

Recalculate utilities in the Regression Module **After first Pair**

10

15

20

WO 00/45319 PCT/US00/02249

34

After the first pair in the example, the regression routine produces the following

coefficients.
X1 | 13
X2 5
X3 -3
X4 | -15
X5 -2
X6 | -2
X7 | 22
X8 S
X9 | -5

Note that the coefficients for the 1st, 3rd, 6th and 7th levels have changed
because the first pairs question had additional preference information about these four
levels. The remaining coefficients remain unchanged.

To continue with this example, the answers to the next five pairs questions
presented will be used. After the answer to each pairs question is incorporated:

a) New utilities for each level are estimated

b) New total utilities for each unique product concept are estimated

¢) New differences in total utility between possible sets of pairs are estimated

After the product matrices have been updated, the next pair is chosen according to the

same rules:

1) Identify the set of attributes (2 or three depending on how many will be shown in
each pair) that have been shown together the least often. Break a tie randomly.

2) Identify the pairs of levels (one to be shown on each side of the screen) within each
of the chosen attributes that have been shown together the least often. Break a tie
randomly.

3) From the many possible product combinations that can be generated using the
chosen attributes and levels, identify the two that have the most similar total utility
value (each being defined as the sum of utilities for the levels making up the

product). This will be based on the new utility values in the updated matrix.

WO 00/45319 PCT/US00/02249

35

This process will be repeated after every pair until all of the required 3*(NATT-
NL-1)-NL pairs have been asked. In the example, six pairs questions needed to be

asked, at which point our priors matrix will look like the following:

Independent X variables (levels)

Level |1 2 3 4 5 6 7 8 9 Dependent
Y

1 1 0 0 0 0 0 0 0 0 | 1.5

2 0 1 0 0 0 0 0 0 0 S

3 0 0 1 0 0 0 0 0 0 -5

4 0 0 0 1 0 0 0 0 0 -1.5

5 0 0 0 0 1 0 0 0 0 -2

6 0 0 0 0 0 1 0 0 0 0

7 0 0 0 0 0 0 1 0 0 2

8 0 0 0 0 0 0 0 1 0 5

9 0 0 0 0 0 0 0 0 1 -5

Pairl |1 0 -1 0 0 1 -1 0 0 -1

Pair2 | -1 1 0 0 0 0 0 1 -1 0

Pair3 |0 0 0 0 -1 0 1 -1 1 2

Pair4 | -1 0 0 1 0 0 0 1 -1 -3

PairS | 0 0 -1 1 -1 1 0 1 -1 -1

Pair6 | 0 1 -1 0 1 0 -1 1 -1 -3

Pairs 5 and 6 were products composed of three attributes each instead of two

(represented by six rather than four non-zero values). The model did not require this

10

15

20

WO 00/45319 PCT/US00/02249

36

change. However, three attribute questions are able to provide more information to the
regression equation and calculation of utilities.

Once all of the pairs have been asked and the matrix updated, a final regression
is run to calculate what are called the “final equal weight utilities”. These values are a
standard output of conjoint and are used to help choose the products shown in the
calibration questions (explained in detail in that section).

For the example, the final equal weighted utilities produced by the regression

are:
X1 1.415441
X2 | 0.370098
X3 0.316176
X4 | -2.101716
X5 | -1.471814
X6 | -0.346814
X7 1.818627
X8 | 0.352941
X9 | -0.352941

Prohibition of Pairs

Note, in addition to the process described above for choosing product pairs,
sometimes it is necessary to prohibit certain pairs of attributes/levels from being shown
together. Specifically, in some studies there are combinations of levels that should not
be shown together — i.e. they will not make sense. Examples may include bill
presentment without bill payment for a banking product or a bagel and high fat for
takeout breakfast foods. (Bill payment functionality is usually a prerequisite to bill
presentment, and bagels are by definition non-fat.)
Calculating Pairs Only Utilities

Another critical component of conjoint is the calculation of the pairs utilities,
isolated from the priors. This enables the understanding of how the products presented

in the pairs related directly to the respondent’s preferences. This is important so that

WO 00/45319

37

PCT/US00/02249

the priors and pairs can be properly weighted to come up with an accurate overall

utility estimation for the respondent.

Calculation of the pairs comes from a multiple regression utilizing only the

pairs piece of the matrix shown previously (with 9 levels as independent variables and

Y as our dependent variable). An identity matrix with the dependent variables set at

zero is placed below the pairs values to stabilize the regression, resulting in the

following matrix:

Independent X variables (levels)

Level 1 3 4 5 6 7 8 9 Dependent
Y

Pairl 1 -1 0 0 1 -1 0 0 -1

Pair2 -1 0 0 0 0 0 1 -1 0

Pair3 0 0 0 -1 0 1 -1 1 2

Pair4 -1 0 1 0 0 0 1 -1 -3

Pair5 0 -1 1 -1 1 0 1 -1 -1

Pair6 0 -1 0 1 0 -1 1 -1 -3

Identityl | 1 0 0 0 0 0 0 0 0

Identity |0 0 0 0 0 0 0 0 0

2

Identity |0 1 0 0 0 0 0 0 0

3

Identity | O 0 1 0 0 0 0 0 0

4

Identity |0 0 0 1 0 0 0 0 0

5

Identity | O 0 0 0 1 0 0 0 0

10

WO 00/45319 PCT/US00/02249
38

6

Identity |0 0

7

Identity |0 0

8

Identity | O 0

9

Performing a multiple regression on the above matrix (and setting the intercept

to zero) will yield nine coefficients which are our pairs utilities for the nine levels in the

study. The regression results yield the following coefficients as estimates of the

utilities contributed by the pairs. These are the pairs only utilities.

X1 0.151961
X2 | 0.218954
X3 0.460784
X4 -0.83170
X5 -0.71732
X6 | 0.116013
X7 | 0.601307
X8 -0.43137
X9 | 0.431373

These are still RELATIVE NOT ABSOLUTE utilities because the response

scale for the questions was arbitrary.

Assigning Utilities to omitted levels

If the number of levels is large some levels are likely not to be included in any

paired questions. Extreme undesirables are the most likely to be omitted because they

are less likely to add significant value to the understanding of the decision making

process. With a very large number of levels some levels with non-extreme utilities may

10

15

20

25

30

WO 00/45319 PCT/US00/02249

39

also be omitted. Levels with missing values have all zeros in the column for the level

in the pairs section of the independent variable matrix.

Many levels may be omitted as we will only be bringing the 5 most important
attributes and three most important levels of each into the pairs section. Some levels,
1.e. bfands may even be omitted from the ranking sections.

After the last pairs question has been asked, answered and the utilities re-
estimated, values must be assigned to any missing values before weighting them with
the prior utilities.

Rules:

1) The rank order of desirability is known for all levels from the priors stage. If two
levels had the same prior utility, they would have the same rank order. If a level
with a missing pairs utility value has a prior rank value between the rank values for
levels for which pairs utilities have been estimated, the missing value is estimated
by interpolation.

e For example: Suppose Level 1 has a missing value (never used in a pairs
question) and its desirability is 3. Suppose also that Level 2 has a desirability of

4 and an estimated utility coefficient of 1.55 while Level 3 has a desirability of

2 and an estimated utility coefficient of 1.75.

e The desirability of Level 1 is midway between Level 2 and Level 3. So the
estimated utility for Level 1 is set midway between the utilities of Level 2 and

Level 3. Midway is 1.65. Thus Level 1 is assigned a utility coefficient of 1.65.

e If another level also has the same desirability as one of the levels used in
interpolation, such as Level 3, then the utility used in interpolation is the
average between the additional level and Level 3.

2) If any level with missing values has a desirability more extreme than the
desirabilites for levels for which utilities have been estimated, then the utility for
the level with the missing value is set, as appropriate, at the maximum or minimum

utility estimated for any level for which a utility estimate has been made.

e For example: Suppose Level 5 has a missing value (never used in a pairs

question) and its desirability is 6. Suppose that Level 6 has a desirability of 5,

10

15

WO 00/45319

40

PCT/US00/02249

an estimated utility coefficient of 1.55 and was the lowest ranked level included

in the pairs section.

e In this case, since we cannot extrapolate beyond the value of Level 6 (the

extreme minimum value), Level 5 would be given the same utility value of 1.55.

As another example, assume we had a study with 3 attributes and 9 levels (different

from our current example).

If Prior utilities were as in the table below, and levels 2,4,8 and 9 were not

included in the pairs, the pairs utilities for those levels could be estimated. This

procedure can be undertaken even if a whole attribute was excluded from the conjoint

pairs section — Attribute 3 below.

Attribute | Level Prior Observed Pairs Estimated Pairs
Utility Utility Utility

1 1 1.5 .980 980
2 .5 - 419%

3 -5 -.186 -.186

4 -1.5 — -.508%*

2 5 1 542 542
6 0 .296 296

7 -1 -.508 -.508

3 8 5 - 419*
9 -5 - - 186%**

*Pairs utility estimate for levels 2 and 8 is based on an interpolation between the closest

levels for which there are pairs values. Levels 2 and 8 both had a prior value of .5. The

nearest values are 0 (Level 6) and 1 (Level 5). Since .5 is halfway between 0 and 1,

Levels 2 and 8 are assigned the mid-point of .542 and .296.

**Since the prior value for Level 4 is lower than any other prior value it is assigned the

pairs utility equal to that of the level with the minimum prior value for which a pairs

value was calculated. Thus it is assigned a value of -.508 from Level 7.

***Since Level 9 has the same prior value as Level 3 it is assigned the same pairs

utility.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

41

Assigning utilities to levels omitted through unacceptables

There may also be levels that were not included in either the priors or the pairs
section of the conjoint. These would include levels from attributes with many levels
such as brand — levels beyond those ranked in the top five (not included in priors
rankings or pairs) and would also include levels eliminated through unacceptables.
These adjustments will be made based upon the combined optimal weight utilities after
the calibration concepts, rather than based on priors utilities as above. This is described
in more detail below.

Calibration Concepts

After the pairs section is complete, the application will have computed two sets
of preference data (i.e., utilities) for a user — a set of priors utilities based on the original
ranking and importance questions and a set of pairs utilities based on the product pairs
questions. The next step, in a preferred embodiment, is to ask calibration questions
which are used to adjust the respondent’s utilities. Other embodiments may forego the
calibrating step.

The user will be asked a series of four questions that help the software finish its
evaluation. In each question, they will be shown a hypothetical product and will be
asked to rate how likely they would be to choose, use, or purchase (terminology will
depend on the type of product/service being analyzed) this product on a scale of 0 to
100%. Users are instructed to interpret 0% to mean they would absolutely not use the
product and 100% to mean that they would definitely use the product if it were
available.

How the Calibration Concepts Work

Each question in the calibration section asks the respondent to evaluate a
product, which is described by up to five attributes — the five attributes determined to
be the most important to the user based on the analysis of equal weight utilities. Since
our example only contains three attributes only three attributes are used.

In the preferred embodiment, the first product contains the worst level of each
attribute, and asks the consumer to rate how likely they would be to buy, from 0% to
100% likely. The second question offers the best level of each attribute and again asks

the consumer to rate how likely they would be to buy. The third and subsequent profiles

10

15

20

25

WO 00/45319 PCT/US00/02249

42

choose a combination of attribute levels that should fall in the middle-range of

attractiveness.

1)

2)

3)

The answers to the calibrations are used for three purposes:
To determine how to weight the priors utilities versus the pairs utilities to get final
optimal weighted respondent utilities,
To do this, responses to the calibration questions are compared to what would be
predicted by the prior and pairs utilities
To determine how to scale the utilities for that particular respondent,
Utility values are scaled based upon the range between the answers to the first and
second (worst and best) calibration concepts.
If the range of answers to the calibration questions is narrow, then the consumer is
not really “in the market” and their utilities will be scaled smaller (i.e. a narrow
range). Conversely, if the range between responses is high, then they are more
discerning and the utilities are scaled larger. Note that this process is especially
important when looking at consumers in the aggregate, or when merging profiles
between users, to determine how respondents should be weighted. By scaling the
utilities according to their level of discernment between the worst and best
products, aggregating customers becomes a simple process of averaging their
utilities.
To determine the internal consistency of the respondent between the priors and the
pairs
The goodness of fit is measured for the regression. When examining aggregate
data, it is often useful to eliminate respondents with a poor internal consistency of

responses.

Select first two calibration questions

The first two questions are selected using the estimated equal weight utilities

(prior plus pairs) after any missing values for level pairs utilities have been inserted and

the utilities restated. The first calibration question will be the full profile product

concept with the least desirability (lowest total utility) based on the web visitors’

5

WO 00/45319

43

PCT/US00/02249

answers. The second question will be the full profile product concept with the most

desirability.

The utilities of the levels in the example are reproduced below.

Level Prior Pairs Prior plus pairs
utilities utilities equal weight utilities
x1 1.5 0.151961 1.415441
x2 S 0.218954 0.370098
x3 -5 0.460784 0.316176
x4 -1.5 -0.83170 -2.010172
x5 -2.0 -0.71732 -1.47181
x6 0.0 0.116013 -0.34681
x7 2.0 0.601307 1.818627
x8 S -0.43137 0.352941
x9 -5 0.431373 0.35294

These values can be used to calculate the total utilities for each product

combination by taking the sum of the utilities for each level in the product, as below:

Product | Level Level Level From | Total Total Total prior
From From Attribute 3 | Priors | Pairs plus pairs
Attribute | Attribute Utility | Utility equal weight
1 2 utilities
1 1 5 8 0 - 0.296572
0.996729
2 2 5 8 -1 - -0.739069
0.929736
3 3 5 8 -2 - -0.802693
0.687906
4 4 5 8 -3 -1.98039 | -3.129041
1 6 8 2 - 1.421572
0.163396
6 2 6 8 1 - 0.376229
0.096403
7 3 6 8 0 0.322307
0.145427
8 4 6 8 -1 - 2.004041

WO 00/45319 PCT/US00/02249
44

1.147057

9 1 7 8 4 3.587009
0.321898

10 2 7 8 3 2.541666
0.388891

11 3 7 8 2 2.487744
0.630721

12 4 7 8 1 - 0.161396
0.661763

13 1 5 9 -1 - 0.296572
0.133986

14 2 5 9 -2 - -0.739069
0.066993

15 3 5 9 -3 -0.802693
0.174837

16 4 5 9 -4 - -3.129041
1.117647

17 1 6 9 1 1.421572
0.699347

18 2 6 9 0 0.76634 | 0.376229

19 3 6 -1 1.00817 | 0.322307

20 4 6 9 -2 - 2.004041
0.284314

21 1 7 9 3 3.587009
1.184641

22 2 7 9 2 2.541666
1.251634

23 3 7 9 1 2.487744
1.493464

24 4 7 9 0 0.20098 | 0.161396

Note that in the table above:

‘@ Levels 8 & 9 have the same utility so the total equal weight utilities for products 13-

24 are identical to the utilities for products 1-12.

10

WO 00/45319

45

PCT/US00/02249

e Products 4 and 16 (pick one randomly) have the lowest total equal weight utility.

One of these will be used as the first calibration question. Product 4 was chosen in

the example.

e Products 9 and 21 (pick one randomly) have the highest total equal weight utility.

One of these will be used as the second calibration question. Product 21 was

chosen in the example.

Select remaining calibration questions

Subsequent calibration questions will use the products which have the largest

difference in total utility between the pairs only and the priors only estimates. This 1s

to be sure that the questions asked are useful — i.e. to get information to clear up

discrepancies. Ties are broken randomly.

Product | Level Level Level From | Total Total Difference
From From Attribute 3 | Priors Pairs between
Attribute | Attribute Utility | Utility priors and
1 2 pairs (AV)
1 1 5 8 0 - 0.996729
0.996729
2 2 5 8 -1 - 0.070264
0.929736
3 3 5 8 -2 - 1.312094
0.687906
4 4 5 8 -3 -1.98039 | 1.01961
1 8 2 - 2.163396
0.163396
6 2 6 8 1 - 1.096403
0.096403
7 3 6 8 0 0.145427
0.145427
8 4 6 8 -1 - 0.147057
1.147057
9 1 7 8 4 3.678102
0.321898
10 2 7 8 3 2.611109

0.388891

WO 00/45319 PCT/US00/02249

46

11 3 7 8 2 1.369279
0.630721

12 4 7 8 1 - 1.661763
0.661763

13)1 5 9 -1 - 0.866014
0.133986

14 2 5 9 -2 - 1.933007
0.066993

15 3 5 9 -3 3.174837
0.174837

16 4 5 9 -4 - 2.882353
1.117647

17 1 6 9 1 0.300653
0.699347

18 2 6 9 0 0.76634 | 0.76634

19 3 6 9 -1 1.00817 | 2.00817

20 4 6 9 -2 - 1.715686
0.284314

21 1 7 9 3 1.815359
1.184641

22 2 7 9 2 0.748366
1.251634

23 3 7 9 1 0.493464
1.493464

24 4 7 9 0 0.20098 | 0.20098

Products 4 and 21 have been shown. Of the remaining products, product 9 has
the greatest difference in total utility between the priors and the pairs. It will be the
third calibration concept. The fourth concept will be the product with the next highest
difference, product 15.

Ask calibration questions and receive answers

The answers to the calibration questions are on a scale from 0 to 100. First
answers are adjusted, if necessary, so that the minimum answer is 5 and the maximum
answer is 95. This is not re-scaling. Simply raise any number below 5 to 5 and lower

any number above 95 to 95. This is done to eliminate extreme values.

WO 00/45319 PCT/US00/02249

47

Next, the answers are adjusted again so that they equal the logit value of the
respondent’s answer, using this formula:

Adjusted answer = Ln [answer/(100-answer)]
Thus, if the answer is 10, the adjusted answer is -2.197.

5 Staying with the example, the adjusted answers are:

Answer | Adjusted
answer

10 -2.197

80 1.386

40 -.405

5 -2.944

Calculate the weights for the prior and pairs utilities

To calculate the optimally weighted utilities (the “final utilities”), the software
must first calculate the weights for the priors and pairs, respectively. To accomplish
this, the application will first calculate user utilities for each product concept that was

10 included in the calibration concept section of the study.

The weights are based on a regression in which the adjusted answers to the
calibration questions calculated above are used as the dependent variables, while the
independent variables are the values of the total utilities of the product concept asked

for 1) the pairs only utilities, and 2) the priors only utilities.

15 For the example:
Product | Prior total Pairs total Adjusted
utility utility answer
4 -3 -1.980 -2.197
21 3 1.185 1.386
9 4 0.322 -0.405
16 -4 -1.118 -2.944

This regression can be computed in the same manner as the previous
regressions. Note: This regression equation requires that a constant term, or intercept,

also be calculated. So the matrix of independent variables has a third column - a vector

10

15

20

25

WO 00/45319 PCT/US00/02249

48

of 1’s - and the regression module returns three coefficients — the intercept value, the

priors coefficient and the pairs coefficient.

However, since there are only two independent variables and we wish to have
an intercept, the regression can also be calculated using the formulae below:
ml = ((Zx1y*Ex2-(Zxy*3x1%)))
(Zx 74 2x,0)-(Bxi %)
m2 = (Zxoy*Ex 2)-(TXy*TX1%7))
(x4 2%,7)-(Zxixa)
b= MeanY — (m1*MeanX;) — (m2*MeanX,)
Where:
Xy; = the ith observation of the priors, Xy; = the ith observation of the pairs, and Y;
= the ith observation of the adjusted logit answers.
MeanX; equals the mean of the X; values, MeanX, equals the mean of the X,
values, and MeanY equals the mean of the Y values.
x; = X, — MeanXj, x; = X; — MeanX;, and y=Y — MeanY
m1 equals the coefficient for the priors weight, m2 equals the coefficient for the
pairs weight, and b equals the intercept.

For the example, the following values are returned from the regression equation:
e coefficient for priors total utility =0.172
e coefficient for pairs total utility = .805
e intercept =-0.720
Calculation of Final Weighted Utilities
The final utility for each level = prior utility * prior weight + pairs utility *
pairs weight + (intercept / NATT)
Example for level 1:
The new utility = 1.500 * 0.172 +.152 * .805 + (-0.720 / 3) = 0.141
The final utilities, in the table below, are now used to calculate the total utility
of each product concept in the database to determine which products to present to the

web visitor upon search.

X1 0.141

10

15

20

WO 00/45319 PCT/US00/02249

49
X2 0.023
X3 0.045
X4 -1.168
X5 -1.163
X6 -0.147
X7 0.589
X8 -0.501
X9 0.021

Managing Reversals

During the calculation of the final utilities, in a preferred embodiment, the
system must also be able to appropriately deal with reversals. A reversal is where a
respondent has explicitly stated that one attribute level is preferred over another during
the ranking section, but as a result of the pairs the final utility has the preference
reversed. Reversals are often accurate, and thus are allowed to occur in traditional
conjoint studies (where the user never sees their results). However, reversals are often
difficult for the user to understand, and should therefore be avoided (in the preferred
embodiment the user sees her own results). In this case the two utilities should be set
equal to each other at the average of their values.

Calculation of R2 on the calibration regression

The system must be capable of calculating R?* (R squared), which is a
mathematical value indicating the goodness of fit between a respondent’s answers — in
short, how good of a respondent the person was. If this value is low, the results will
often be discarded.

The R? comes from the regression performed on the calibration responses an
can be calculated using the following formula:

R’= 1-(X(EstimatedY-Y)*/ Z(Y-MeanY)?)
Where:
EstimatedY; =m1*X; + m2*Xy +b

Accounting for low R-sq respondents

10

15

20

25

30

WO 00/45319 PCT/US00/02249

50

The system must be capable of excluding respondents whose internal
consistency of answers, represented by the R-squared, does not meet a certain
threshold. The study manager is able to set this threshold. It is usually recommended
that the cutoff be set so that approximately 10-15% of the respondents are eliminated —
a level of around 0.3 is often sufficient.

It can be handled similarly for the Preferences Database created. Each record
will need to be appended with an R-squared value so that it can be filtered when later
analyses are run.

During usage of an application according to the present invention — i.e. while
being used by a shopper — a user cannot be eliminated per se during the interview.
Nonetheless the R-squared value is calculated and databased so that the respondent may
be excluded from aggregate level analysis at the discretion of the system administrator.
Calculation of Attribute Relative Importance

One of the main outputs of a conjoint study is an understanding of attribute
relative importance — a percentage breakdown of the impact each attribute exerts on the
purchase decision/product evaluation process. To calculate relative importance, the
system first needs a set of standardized final scaled utilities.

Calculation of Final Scaled Utilities

The system must be capable of calculating the Final Scaled Utilities, which are
the final optimal weighted utilities scaled for each attribute so that the lowest level of
each attribute has a value of zero and the sum of all utility values is equal to
NATT*100.

The calculation of final scaled utilities requires several steps:

e First, the minimum final optimal weight utility value from the levels in each
attribute is calculated. For example, in the table below, Attribute 1 has four levels
with corresponding utility values of 0.141, 0.023, 0.045, and —1.168. So the
minimum or lowest value 1s —1.168.

e Utilities are then adjusted to be equal to the final optimal weight utility for the level
minus the minimum value for the attribute. This will scale the lowest level in each

attribute to a utility of zero.

10

15

WO 00/45319

PCT/US00/02249

e Next, the sum of all of these new Adjusted Values across all attributes is calculated

and divided by the number of attributes. This is done to standardize the values

across attributes and ensure that the sum of the utilities is equal to the number of

attributes. In our example the sum of 7.004 is divided by NATT (three) to yield an

average utility/attribute value of 2.335

e The Scaled Adjusted Value for each level is then calculated by dividing each of the

adjusted values by this new value, the average utility/attribute of 2.335

e Finally, these last values are multiplied by 100 and rounded to the nearest whole

integer to produce the values in the table below.

Attribute |Level |Final Attribute [Adjusted Scaled Final
Optimal Min. Value Adjusted Scaled
Weight Value (Final-Min.) Value Utilities
Utilities
1 1 0.141 -1.168 1.310 0.561 56
2 0.023 -1.168 1.191 0.510 51
3 0.045 -1.168 1.213 0.520 52
4 -1.168 -1.168 0.000 0.000 0
2 5 -1.163 -1.163 0.000 0.000 0
6 -0.147 -1.163 1.016 0.435 44
7 0.589 -1.163 1.752 0.750 75
3 8 -0.501 -0.501 0.000 0.000 0
9 0.021 -0.501 0.522 0.224 22

Dealing with Omitted Levels

Remember that levels excluded from the conjoint due to unacceptables or other reasons

need to be accounted for at this stage. Unacceptables are given a final scaled utility

value of =200, while other missing levels are given the value equal to the lowest

scoring value for the attribute in question (zero).

Relative Importance

The final scaled utility data, individual scores for each attribute level, is used to

calculate the relative weight of each product attribute to the consumer’s purchasing

10

15

20

25

WO 00/45319 PCT/US00/02249

52

decision. The relative importance of each attribute is based on an analysis of the spread
between the highest and lowest scaled utility levels for each attribute.

To calculate relative importance we calculate the absolute strength or value of
each attribute, which is equal to the value of the highest level minus the value of the
lowest level within the attribute. Since the lowest level has been fixed at zero,
effectively the value or strength of the attribute is represented by the utility of its best
level. Relative importance of each attribute is then calculated by the value for the

attribute divided by the sum of the values across all attributes.

Attribut | Attribute Value Percentage Percentage
e (Highest-lowest
level)
1 56 =56/153 36.6%
2 75 =75/153 49.0%
3 22 =22/153 14.4%
Total 153 100% 100%

Attributes then need to be re-sorted in order of their importance for presentation
to the user.
Presentation of data to the end-user

This information can be converted into a relative importance chart such as seen
in FIG. 2, which shows the impact of each attribute or feature on the respondent’s
decision making process. In this example for a laptop, processor speed 1is the most
important determinant for this consumer when choosing a laptop, followed by
manufacturer brand and by price. Battery life is the least important of the features
tested. Each value in the chart above will be rounded to the nearest whole decimal
place.
Modify Personal Profile

Consumers can adjust their preference profile to exert some direct control over
the process. For example, if after viewing the chart, suppose the consumer felt that
processor speed really is not that important to him or her. In this case, he would be able
to click on the graph, and one attribute at a time, manually adjust an attribute’s
importance. The software would automatically adjust the remaining attributes

accordingly so that the total remained 100%. So, if the consumer ratcheted down the

10

15

20

WO 00/45319 PCT/US00/02249

53

importance of processor speed to a 20% weight, the remaining 10% would be

proportionally distributed across the other attributes.

The new totals would look as follows:

® Processor Speed 20%
e Brand 22.9%
e Price 22.9%
¢ RAM 17.1%
e Hard Drive Capacity 11.4%
e Battery Life 5.7%

The user can adjust one attribute at a time. Each time an attribute is adjusted,

the relative importance values will be recalculated according to the following

procedures:

The adjusted attribute assumes the new value given by the user. [Note, we may
choose to set bands on the extent to which a user can adjust a value, say +/-25%.]
The remaining values are re-scaled up or down in proportion to their relative
importance — more important attributes would gain or lose proportionately more or
less of the difference.

The formula (it works even if multiple attributes, up to NATT-1, are adjusted at
once) is:

The new relative importance for Attribute n equals

Attribute n = (1-Z(new values of adjustedv attributes)) / (1-Z(original values of
adjusted attributes))*original value of Attribute n

In the example, suppose the user decided to change the importance of Attribute 1,

brand, to 30%.

Attribut | Attribute Value Percentage Percentage Adjusted

e (Highest-lowest Percentage
level)

1 56 =56/153 36.6% 30.0%

2 75 =75/153 49.0% X%

3 22 =22/153 14.4% Y%

10

15

20

25

WO 00/45319 PCT/US00/02249

54

. Total 153 100% 100% 100%

To calculate for X and Y we use the formula above:

o X =(1-30%)/(1-36.6%)*49% = 0.7/0.634*.49 = 54.1%
e Y =(1-30%)/(1-36.6%)*14.4% = 0.7/0.634*.144 = 15.9%
Save Personal Profile
The consumer will also be given the option to save their preference profile. They

may want to do this for several reasons:
e To show to someone else and or/ merge with another person’s profile
e To take a break and then search at a later time,

e To be able to repeat the search more than once (so they can investigate the returns
at their leisure).

Note that this will require them to provide a user name/password and/or email address

for verification.

Combining Results Across Multiple Users

The system also needs to be able to combine results across multiple users —
from a segment as small as two users to the entire population of users. Combined
results are used for three purposes:

1) Search for products based on a segment of users: What type of car would “Price
Shoppers” want, or ‘women under 25, or a husband and wife?

2) Perform standard types of conjoint analyses, such as relative importance, for the
aggregate sample of users or for a particular segment.

3) Run product/market simulations using the aggregate or segment level data.

For the preferred method to combine two or more users is to merge their
profiles into one composite profile. If another user has a saved profile, a consumer may
want to merge the profiles to with his/her own profile to see how the different product
attributes drive a unified buying strategy. For example, if a husband and a wife are
looking for a car together, they may want to search individually, but they may also
want to search jointly using a combined profile.

The math behind this is straightforward, simply taking the averages of the final

optimal weight utilities for each level among all of the users whose profiles are to be

10

15

20

25

30

WO 00/45319 PCT/US00/02249

55

merged. Once new utility values representing the averages are calculated, scaled

utilities and relative importances can be calculated as described earlier.

Search Product Database based on User Buying Profile and Report Results

The system must be capable of searching the product database and scoring
produéts against the user’s buying profile. Results will be provided in a rank-ordered
list with a horizontal bar indicating the degree of fit. Product names and high-level
descriptions are to be returned during this step. The user, or the system administrator,
can define how many results are to be returned at once.

Product Scoring Algorithm

Search results will contain i) high-level descriptions and ii) ‘best match scoring’
based on the overall fit with the consumer’s preference profile will be presented.
Obviously, to retrieve and present this information, each product/service in the database
will need to contain descriptors that can be scored against the criteria that define the
individual’s buying strategy.

To accomplish this, each feature of each product in the database is coded as a
level corresponding to the conjoint. Once the conjoint is completed, the software
simply adds the utility values for each level that makes up the product and scores that
relative to the scores for each available product. For example, if the best product had
an overall utility score of 74 and the second best a score of 71, then the first would
receive a rating of 100% and the second a rating of 96%. Utility values would have to
be estimated/interpolated for feature levels that were not expressly tested in the
conjoint. The scoring algorithm would also be subject to some additional constraints:
1) It would need to account for constraints or unacceptables specified at the beginning

of the interview.

2) An additional field may be added for manufacturer/merchant margin to help up-sell
consumers. For example, if a consumer places the exact same utility on two
products, we would want to recommend first the product that delivered the higher
margin to the merchant. We may even have the software choose the ten most
preferred and then select the five among those with the highest margins for
presentation to the user.

Recall, from the example:

PCT/US00/02249

WO 00/45319
56
Attribute [Attribute Level {Level Name Final Scaled
Name Utilities
1 Brand 1 Dell 56
2 Compaq 51
3 IBM 52
4 Gateway 0O
2 Price 5 $3,000 0
6 $2,250 44
7 $1,500 75
3 Processor 8 Pentium 0
9 Pentium IT 22

Now, suppose the database contained six product profiles:

First the utility of each product level would be calculated.

Product Brand Brand Price Price Processor | Processor
Utility Utility Utility

1 Dell 56 $3,000 0 Pentium 0

2 Compaq |51 $2,250 44 Pentium II | 22

3 IBM 52 $1,500 75 Pentium 0

4 Gateway 0 $2,250 44 Pentium IT | 22

5 Compaq 51 $2,500 20% Pentium 0

6 Toshiba O** $2,000 54%:* Pentium 0

* Interpolated value — Since $2,500 is two-thirds of the way between $3,000 and

$2,250 it receives two-thirds of the difference in value of 44 points. All values are

rounded to the nearest whole integer.

*# Since Toshiba was not one of the levels included in the conjoint it would receive a

value equal to the lowest level (zero).

10

15

20

WO 00/45319 PCT/US00/02249

57

Interpolated value — Since $2,000 is one-third of the way between $2,250 and
$1,500 it receives the value of 44 points (equal to $2,250) plus one-third of the
difference in value between 44 and 75 points (31 point difference). All values are

rounded to the nearest whole integer.

Second, the total utility would be calculated. This value would then be compared to the

best product in the database to generate a recommendation score.

Product Total Calculatio | Recommendati
Utility n on Score

1 56 =56/127 44%
2 117 =117/127 92%
3 127 =127/127 100%
4 66 =66/127 52%
5 80 =80/127 63%
6 54 =54/127 43%

Provide Explanation of Product Scoring

The system must be capable of providing an explanation to the user of how the
products were scored and how each product compares to the user’s own buying profile.
In one embodiment, this may be displayed using two dynamically generated charts
side-by-side. The users preference profile will be displayed in one chart and the
product’s feature by feature fit with the user’s preferences will be displayed in the other
chart. The product fit will be calculated as follows:

Each attribute level that makes up the product will be assigned a utility score. If
the attribute level is identical to one of the levels in the study it will be assigned that
level’s value, otherwise the value will be interpolated. The fit will then be the value of
the particular product attribute level utility divided by the maximum attribute level
utility in the product database for that specific product attribute. For example, if the
product has a price of $1200 with a utility of 84, and the lowest price in the database is
$1100 with a utility of 89, then the product’s price fit score will be equal to 84/89, or a
fit of 94.4%.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

58

Regression Module
This module is called repeatedly to calculate regression coefficients that are also

the utilities of the levels. The module needs to be sent two items: 1) a matrix of
independent variables which indicate the presence or absence of each level in the
product being evaluated and 2) a vector of dependent variables which represent the
respondents’ evaluation of the product with that combination of levels. The regression
module returns the regression coefficients (utilities).

The general equation for multiple linear regression is:

(1) Yi =bl X1i+ eeeee +bk Xki for i=1ton
Where

Yi is the ith observation of the independent variable (to be explained)

XKki is the value of the kth dependent variable (the explanors)

b1 is the coefficient of the 1st of k dependent variables

Y and X are known. The b’s are unknown. The statistical procedure solves the
set of simultaneous equations for the values of b in terms of Y and X. Note: The
unknown error term, usually written ui, has been omitted because we will not have to
use the estimated values of the errors. These values are used to calculate various
measures of how well the estimated values for b explain the variationin Y. In our
application, we have to use the values we get for b instantly to choose the next question
to ask the web visitor so we have no opportunity to get additional data or re-specify the
equation to change the values for b and related goodness of fit statistics.

A constant term, usually written b0, is also omitted since it is not needed 1n the
pairs section. The constant or intercept it set to zero when running the regression for
the pairs. However, the constant term will be needed for the regression equations 1n the
calibration section. The addition of the constant term does not change the formulas for
the value of b (but it does change the values calculated). Note: As the regression used
in the calibration section only has two independent variables, a formulaic approach will
be used instead of the matrix algebraic approach used for the pairs regressions. Either
approach will generate the same coefficient and intercept values for the calibration

questions.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

59

Our application is preferably programmed in matrix rather than scalar algebra
(the formulaic approach) because of the potentially large number of independent
variables (one for each attribute level). In other embodiments, scalar formulas as
known in the art may be implemented.

| Methodologies for regression are well known in the art as exhibited by Applied
Linear Regression Models, Neter, Wasserman and Kutner, 1983, pp. 226-238, which is
expressly incorporated herein by reference. The process of matrix multiplication is
well know in the art as described in Algorithms, 2" Ed., Robert Sedgewick, 1988, pp.
532 — 533, which is incorporated herein by reference. Similarly, the process of matrix
inversion is also well known in the art, typically inverses may be calculated via
Guassian elimination or Cramer’s rule; these approaches are summarized in Computer
Graphics; Principles and Practice, ond Ed., Foley, van Dam, Feiner and Hughes, 1990,
pp. 1105-1106, which is incorporated herein by reference.

FIG. 1 displays the architecture of a typical system according to the present
invention. A purchase decision support environment 100 will include a server 155a,
155b, 155¢ and a data store 110 in communication with the server. The data store may
include one or more database servers 160a, 160b, 160c¢ connect to a central or
distributed storage system 165. Alternative storage architectures for data store 110, as
will be known to those of skill in the art, are possible with in the scope of the present
invention. Data store 110 communicates with server 155a, 155b, 155¢ via ethernet 130
although in other embodiments the communication may be by other means such as
Internet 120 or direct bus or serial connection. Distribution of sessions with purchasers
170a, 170b, 170c, 170d from the user community 135 may occur across a set of servers
105. In such an arrangement, the distribution in one embodiment could be managed by
load balancing device 140. The environment 100 may also include firewall 143 and
router 146 for managing and controlling access to ethernet 130; firewall 143 and router
146 may in some embodiments reside on the same hardware platform.

Purchasers 170a, 170b, 170¢, 170d communicate with a server (e.g. 155a)
through the Internet 120 and ethernet 130 although alternate communication channels
may be used such as direct connection, dial-up to the server, or direction connection via

ethernet 130 in other embodiments. Similarly, sellers and manufacturers 125 will

10

15

20

25

30

WO 00/45319 PCT/US00/02249

60

communicate with a server (e.g. 155a) through the Internet 120 and ethernet 130.
Again, other communications channels may be used within the scope of the present
invention.

The foregoing discussion makes reference to the PRECISION CHOICE
software tool (Precision Choice hereinafter); PRECISION CHOICE is a trademark of
Online Insight Incorporated (Atlanta, GA). Precision Choice is a preferred
embodiment of the present invention. The details of this preferred embodiment are
provided as exemplary. It will be readily appreciated that many deviations may be
made from the specific embodiment disclosed in this specification without departing
from the invention.

Precision Choice is the e-commerce equivalent of an expert salesperson in the
traditional buying environment. Precision Choice interacts with a consumer to help him
or her find the right solution for a purchasing decision. In a nutshell, Precision Choice
educates the consumer, asks questions, analyzes responses, and presents ranked product
recommendations.

Precision Choice also goes one important step further. The best salespeople
learn everything they can about their customers and record this information so that they
can serve them more effectively in the future. For each consumer, Precision Choice
builds and stores a preference profile that analyzes how this person makes purchasing
decisions.

During an interview, Precision Choice walks a consumer through a question and
answer process. At the start of each interview, Precision Choice accepts a definition of
the attributes that define the decision being made. This definition of attributes is called
the study definition, or the study for short. For example, if the consumer is purchasing a
laptop computer, attributes in the study definition might be hard drive size, screen size,
and amount of RAM. Because Precision Choice can accept this information at the start
of each interview, a single Precision Choice implementation can guide consumers
through any number of different decisions.

For example, a Web site selling financial services could use a single Precision
Choice implementation to help consumers choose mutual funds, credit cards, life

insurance policies, and checking accounts. If the online merchant adds a

10

15

20

25

30

WO 00/45319 PCT/US00/02249

61

recommendation process for mortgages, absolutely no configuration changes or new
software deployment within the Precision Choice engine are required to add a mortgage
finder. A travel site could use a single implementation of Precision Choice to guide
consumers to the right cruise, airline, honeymoon package, and/or hotel.

The number of questions and types of attributes can be different for every
consumer, so novices can be treated differently than experienced buyers. A consumer
can even specify which attributes matter and which attributes do not matter, effectively
controlling the kinds of questions Precision Choice asks in the interview.

Overview of the Interview Process

The FIG. 6 illustrates the process of using Precision Choice to conduct an
interview. Note that the Figure shows the interaction of two software systems:
Precision Choice and an external system that feeds information to Precision Choice and
receives product recommendations. Note that certain information is fed into Precision
Choice and that Precision Choice outputs certain information. To provide maximum
flexibility, all information input into or output from Precision Choice is communicated
in an XML format, although other formats may be used in alternate embodiments. This
allows ease of integration between Precision Choice and most any other software
system.

The recommendation engine accepts inputs and outputs in terms of an XML
language called the Precision Choice XML Command Language. This XML language
creates a standard, documented API by which other software systems can interact with
Precision Choice as more fully described below, yielding a tremendous amount of
flexibility. The Precision Choice presentation layer does the job of transforming the
XML output from the Precision Choice recommendation engine into an attractive set of
screens, which serve as the user-interface. The presentation layer also receives input
from the user, translates it into XML, and sends it as input to the Precision Choice
engine. Because these two layers are cleanly separated, it is possible to use an external
or custom user-interface layer if desired.

For example, a bank might have information that indicates which type of
checking account a consumer prefers, and, therefore, might know the answer to some

questions that Precision Choice generates without having to ask the individual

10

15

20

25

30

WO 00/45319 PCT/US00/02249

62

consumer. Since Precision Choice outputs questions via XML, the bank can have a
software system intercept some questions, answer the questions, and supply the
responses to Precision Choice (again via XML). By implementing such a process, the
bank avoids asking questions for which it already knows the answers, saving time for
the consumer.

Note also that at the start of each interview a product catalog is provided to
Precision Choice. As with all other forms of input into Precision Choice, this catalog is
specified in terms of XML. Specifying this information at the start of each interview
results in a tremendous amount of flexibility. Some products may not be available to
certain consumers, or certain special products may be available only to select
individuals.

In some cases, product pricing and other product attributes may vary from
individual to individual. In addition, some products change almost continually: 1.e.
mortgage rates are updated as often as every 15 minutes. Precision Choice can
accommodate all of these situations because the product catalog’s definition catalog
can be different for each interview. For product catalogs reused in different interviews,
it is possible to give Precision Choice the catalog definition once and then to refer to it
for subsequent interviews.

Once the study definition and the product catalog definition are provided, the
interview can occur. Precision Choice starts the interview process by generating the
questions it needs to ask the consumer. Precision Choice delivers these questions in an
XML format so that another software system can parse these questions, present them to
the consumer, and submit the responses back to Precision Choice via XML. A
presentation layer that utilizes Java Servlets and Java Server Pages generates HTML
representations of these questions and handles the interaction with the consumer. After
the consumer responds to all questions, Precision Choice provides a preference profile
for this consumer and provides product recommendations. Precision Choice records the
preference profile in the preferences database, and the interview is then complete.
Technical Overview of Precision Choice

Precision Choice is designed to meet the demands of e-commerce:

It offers platform independence because it was developed in Java 2

10

15

20

25

30

WO 00/45319 PCT/US00/02249

63

It has powerful built-in load balancing features that result in high availability
and numerous options for improving performance and handling load

It offers ease of integration with other software systems because of its
commitment to open standards such as XML and CORBA

As noted above, all input into and output from Precision Choice is
communicated in terms of an XML language called Precision Choice Command XML.

Precision Choice offers a flexible load-balancing scheme. It is easy to configure
clusters of Precision Choice servers to work together to handle the load required for a
deployment. Each cluster can operate on a single piece of hardware or be spread across
multiple pieces of hardware.

Precision Choice is capable of interacting with external systems via CORBA,
Enterprise JavaBeans, Java RMI, Microsoft COM/DCOM, HTTP, or virtually any other
communication protocol. Precision Choice defines the specifications for an adaptor
through which it communicates with external systems. When Precision Choice
communicates with a Java/ RMI-based software system, an adaptor may not be
necessary. For communicating with external systems based on other technologies, it is a
simple process to develop a custom adaptor.

Precision Choice is implemented entirely within Java 2. While the system
should be compatible with any platform that can host a Java 2 virtual machine, it has
been tested and certified on Solaris 2.6 and Windows NT.

Precision Choice uses JDBC to communicate with the preferences database and
to store study definitions and product catalog definitions. Precision Choice has been
tested and certified to work with Oracle 8.1. Any database that can communicate via
JDBC or ODBC should be compatible with Precision Choice, and, therefore, other
databases may be supported after sufficient testing.

As mentioned earlier, the preferences data that Precision Choice collects offers
a detailed understanding of the consumer’s preferences and can be used for purposes
such as the following:

Predicting the market share of potential product introductions

Measuring brand equity

Many other analyses

10

15

20

25

30

WO 00/45319 PCT/US00/02249

64

Interview Process

To offer successful client solutions based on Precision Choice, it is necessary to
understand the rationale behind the questions that Precision Choice asks consumers.
The foregoing discussion asks and explains what Precision Choice learns from the
consuiners’ responses through the use of two examples: helping a consumer identify the
best mutual fund and helping a consumer identify the right laptop computer.

Precision Choice Question Types

Ratings Questions

To identify the best mutual fund, Precision Choice needs to know how a
consumer feels about the various mutual fund categories. One person may prefer
Aggressive Growth funds and loathe Bond funds: another person may have completely
divergent feelings. To uncover this information, Precision Choice asks a rating question
for Category. This question might look something like the screen capture seen in FIG.
7:

Precision Choice uses a rating question when it needs to discover how a
consumer feels about each level of one specific product feature. In this example,
Precision Choice learns that "Aggressive Growth" and "Growth" are tied for this
consumer’s favorite Category, that "Small Company" is third, and that the consumer
does not find the other categories of mutual funds appealing.

Comsumers should answer ratings questions from the perspective of "all else
being equal." In other words, a consumer ideally looks at the question in the screenshot
above and thinks, "All else being equal, I prefer Aggressive Growth and Growth mutual
funds."

Precision Choice does not want a consumer to think something like the
following: "Since International stock funds tend to have a higher Load, I'll rate
International Stock as an unattractive Category." The Precision Choice engine would
interpret this response as if the consumer said, "If I were presented with two mutual
funds that were exactly the same in every way, but one was an International Stock fund
and the other was an Aggressive Growth fund, I would prefer the Aggressive Growth

fund four times more than I would the International Stock fund." Precision Choice uses

10

15

20

25

30

WO 00/45319 PCT/US00/02249

65

this information as part of the input it needs to calculate a numerical score representing
how appealing each Category is to this consumer.

Ratings questions are only necessary for attributes that different consumers
value differently, i.e., for attributes that are subjective. Brand is a good example, as
people have different feelings about brands.

For some attributes, Precision Choice does not ask a rating question. For
example, Precision Choice does not ask a rating question about price because,
everything else being equal, virtually everyone prefers a lower price. If Precision
Choice presents a consumer with two laptops that are alike in every way (same brand,
same hard drive capacity, etc.) except that one costs $3500 and the other costs $3000,
almost any consumer would prefer the one that costs $3000. In the mutual fund arena,
Load is a good example. If minimum investment, Morningstar ratings, and returns are
the same for two mutual funds, almost anyone would prefer the mutual fund with a
lower Load. Precision Choice skips the rating question for these types of attributes,
saving time for the consumer.

Attributes that do not vary in appeal from consumer to consumer - and therefore
do not require a rating question - are called a priori attributes. Often, priceis an a priori
attribute. For laptops, hard drive capacity and RAM are a priori attributes. For mutual
funds, Three-Year Return and Load are a priori attributes.

For the rating questions, Precision Choice accepts responses as numeric values
between 1 and 5, inclusive. Ties are allowed.

Importance Questions

Precision Choice next needs to learn what importance a consumer places on
certain attributes. For example, some people could care less about Morningstar ratings,
but are very sensitive to Load. Others are not Load-sensitive, but place special
emphasis on Three-Year Return. To generate relevant product recommendations,
Precision Choice needs to learn what importance a consumer places on each attribute.

The basic kinds of questions Precision Choice asks are like the following:

e How important to you is getting the Category that you want?

e How important is Load to you?

10

15

20

25

30

WO 00/45319 PCT/US00/02249

66

Precision Choice goes one step further to make such questionsvi'nore precise, as
the following example illustrates.

Imagine that a consumer has a budget of $5000 to buy a laptop. When Precision
Choice asks, "How important to you is price?", the consumer might respond that price
is extremely important. There is $5,000 to spend, and anything over $5,000 is over
budget. However, if the consumer knows that prices of the laptops in the product
database range from $2,000 to $4,500, he or she would probably respond that price is
somewhat important, but not extremely important, since all the laptops are within
budget.

As this example illustrates, a precise importance question is framed in terms of
the best and worst values. Thus, Precision Choice includes the best and worst setting
for each attribute when presenting an importance question. For price, Precision Choice
would ask, "How important to you is price, considering that the laptops range in price
from $2,000 - $4,500?" For RAM, Precision Choice would ask, "How important to you
is RAM, considering that the laptops range from 16 MB to 128 MB?"

There is an interesting ramification of supplying the best and worst values with
importance questions: Precision Choice cannot generate importance questions until it
receives responses to its ratings questions. Based on the consumer’s previous
responses, Precision Choice would ask an importance question for Category that might
look like the following, "How important to you is Category, considering that the least
desirable Category available is International Stock, and the most desirable Category is
Aggressive Growth?" In other words, importance questions for non-a priori attributes
are also expressed in terms of the best and worst values. Precision Choice does not
know the best and worst values for non-a priori attributes until it receives a consumer’s
response to a rating question.

FIG. 8 illustrates how Precision Choice might present an importance question to
a consumer:

From the consumer’s response to this question, Precision Choice learns what
weight to place on each attribute, relative to the other attributes. Precision Choice uses
this information to calculate a numerical score that indicates how much appeal each

possible setting for each attribute has for this consumer.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

67

For the importance questions, Precision Choice accepts responses as numeric
values between 1 and 4, inclusive: 1 is the worst rating, and 4 is the best rating.
Pairs Questions

The next kind of question that Precision Choice generates is called a pairs
questi‘on. This question type affords Precision Choice much of its precision.

When people express what they want, a natural tendency is to rate everything as
being important. After all, consumers really want a laptop computer that is their
favorite brand, with the greatest amount of RAM and hard drive space available on the
market, for less than $50! Many consumers would express their overt preferences in
such terms. In our universe of limited resources, however, such products do not exist.

Pairs questions are so important because they force the consumer to evaluate
trade-offs. Pairs questions often take the following form: "If you were forced to choose
between a bigger hard drive with a higher price or a smaller hard drive with a lower
price, which would you choose?"

To build pairs questions, Precision Choice generates hypothetical products and
displays them side-by-side. Each hypothetical product is built so that it has some
desirable features and some undesirable features. Precision Choice builds the pairs
questions so that the hypothetical product on the left is similar in appeal to the
hypothetical product on the right.

For example, consider the pairs question in the screenshot seen in FIG. 9. The
hypothetical product on the left has a lower Load, which is desirable, and a lower
Three-Year Return, which is undesirable. All pairs questions present the consumer with
such a trade-off decision. Precision Choice is designed to generate pairs questions that
are as difficult as possible because the answers to difficult questions teach Precision
Choice the most about the consumer’s preferences. For each pairs question, Precision
Choice builds two hypothetical products as similar as possible in appeal to the
consumer, displays the two products side-by-side, and asks the consumer to choose.

For the pairs questions, Precision Choice asks the consumer to respond along a
nine-point scale, ranging from "Strongly prefer left product” to "Neutral" to "Strongly
prefer right product.” This nine-point scale enables Precision Choice to quantify the

consumer’s preferences precisely.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

68

In the example above, if the consumer clicks on "Strongly prefer right product,”
Precision Choice learns that Three-Year Return is much more important than Load. On
the other hand, if the consumer clicks on the sixth radio button (just to the right of
neutral), this reflects the consumer’s slight preference for the product on the right. In
this case, Precision Choice learns that Three-Year Return is slightly more important
than Load. Either way, Precision Choice precisely quantifies how strongly or slightly
the consumer prefers a product feature.

In the example above, the pairs question has only two attributes: Three-Year
Return and Load. The trade-off in the pairs question directly pits these two attributes
against each other. However, pairs questions are not limited to two attributes.

By default, Precision Choice asks seven pairs questions. The first few pairs
questions are limited to two attributes. The next few pairs questions have three
attributes. The final pairs question has four attributes. The questions that Precision
Choice asks the consumer become more complex as the number of attributes increases.

The sample question in the screenshot of FIG. 10 is a pairs question with four
attributes.

Pairs questions are generated dynamically. Precision Choice only generates one
pairs question at a time. The system receives a response to a pairs question, interprets
the response, refines its understanding of the consumer’s preferences based upon the
response, and uses its updated understanding to decide how to build the next pairs
question. Each consumer sees pairs questions that are relevant directly to him or her,
and the pairs questions grow increasingly more difficult as the system hones in on the
consumer’s preferences. To generate pairs questions, Precision Choice freely combines
various product features to produce tough trade-offs. In this way, each consumer’s
experience with Precision Choice is unique.

Although the values that Precision Choice uses to create hypothetical products
are representative of the acceptable range of values for each attribute, it is important to
emphasize that the pairs questions present hypothetical products. The example in
Figure 3 (above) shows a fund on the left side with a Load of 6% and a Three-Year

Return of 30%; there may not actually be a product in the database with these features.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

69

Likewise, there may not be a mutual fund in the product database that matches the
features displayed on right side: 0% Load for a Three-Rear Return of 0%.

Whether or not matching products exist is irrelevant. Precision Choice is trying
to learn how the consumer trades off various product features against each other.
Calibration Questions

By this point in an interview, Precision Choice has an excellent understanding
of the consumer’s preferences. As noted above, one of the benefits of Precision Choice
is that it stores preference profiles in a preferences database. This preference profile can
be used at both individual and aggregate levels to guide important marketing decisions.

It is possible that a consumer might stop paying attention to the questions
during an interview. The interview’s results would be inaccurate because of the
inconsistency in the answers. For subsequent analysis of the preference data Precision
Choice collects, it is helpful to be able to identify interviews with inconsistencies and to
discard their results, or at least to weigh them appropriately.

To address this concern, Precision Choice offers an optional question type
called calibration questions. Precision Choice asks calibration questions to determine
how consistent a consumer is throughout the course of an interview. Responses to
calibration questions can also indicate which consumers are "just looking" and which
are definitely "in the market." A sample calibration question appears in the screen shot
of F1G. 11.

Precision Choice does not ask calibration questions by default. Most business
situations require the shortest possible process for the end-user. Since calibration
questions do not increase the actual precision of the recommendations, they can be
eliminated from the Precision Choice process. However, some situations require greater
precision in the preference data that Precision Choice gathers, even at the expense of an
extra step for the consumer.

When calibration questions are active, Precision Choice asks four calibration
questions in it spreferred embodiment, but Precision Choice can be configured to ask
fewer calibration questions. Each question presents the consumer with a hypothetical
product and asks how likely it is that he or she would purchase that product on a scale

from 0% to 100%. One calibration question presents a hypothetical product that,

10

15

20

25

30

WO 00/45319 PCT/US00/02249

70

according to the preference profile, Precision Choice knows is unappealing to the
consumer. Another hypothetical product is one that Precision Choice knows is
appealing to the consumer. The other two calibration products are somewhere between
these two.

Precision Choice’s detection of inconsistency is quite precise. If the consumer
indicates that he or she is more likely to purchase the unappealing product than the
appealing product, Precision Choice detects inconsistency and quantifies how different
the consumer’s responses to the calibration questions are from expected responses: the
resulting numerical value indicates the level of consistency in the responses.

A Sample Precision Choice Interview

This sample interview shows how the concepts discussed above work in
practice and illustrates how Precision Choice interacts with a consumer. This
interview's purpose is to identify a mutual fund that meets the consumer’s preferences.
In this example, we consider the following attributes of mutual funds.

Category. Mutual funds are grouped into categories that express each fund's
overall investment philosophy at the most fundamental level: Aggressive Growth,
Growth, Small Company, International Stock, Balanced, Equity Income, Corporate
Bond, and Municipal Bond.

Morningstar Rating. Morningstar is an independent rating service that rates
mutual funds on a scale of 1 to 5, based on risk-adjusted return. Funds are rated in
comparison with other similar funds broken into US Stock, International Stock,
Taxable Bond, and Tax-Free Bond. The top 10% of funds receive a rating of five, the
next 22.5% receive a four, the middle 35% receive a three, the next 22.5% a two, and
the bottom 10% receive one. Values for this attribute range are whole numbers from 1
through 5.

Morningstar Risk. Morningstar is an independent rating service that gives
every fund a risk rating. In this case, risk is a measurement of fund under-performance
in the past, i.e., returns less than those that could be achieved by investing in a Treasury
bill. A fund that has under-performed during many months of recent years receives a

high risk rating. Values for this attribute range from .5 through 1.5.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

71

Three-Year Return. This is the average annual amount of value that the funds
have created, either through income or capital growth, over the three years from March
1996 to March 1999, measured as a percentage of initial investment. These values have
an infinite possibility range, but typical numbers range from 0% - 30%.

Load. This is a percentage of the initial investment charged up-front before any
money is invested. For example, if $10,000 is invested in a fund with a 2% Load, then
$200 is charged up front, leaving $9,800 to be invested. Load charges typically range
from 0% to 6%.

The above information is the kind of information that makes up the study
definition, as explained above. Given this study definition, Precision Choice would ask
the consumer the following questions in the interview.

First, Precision Choice needs to know how this consumer feels about the
various mutual fund categories. Category is a non-a priori attribute, and, therefore,
Precision Choice asks a ratings question to learn about the consumer’s preferences
related to Category. This question might look like the sample in the screenshot of FIG.
12. |

In this study, there are no remaining non-a priori attributes. The remaining
attributes (Morningstar Rating, Morningstar Risk, Three-Year Return, and Load) are all
a priori. Precision Choice does not ask ratings questions for the a priori attributes.

Precision Choice then asks importance questions to learn what importance the
consumer places on each attribute. In this study, the next five questions would be
importance questions. Precision Choice generates these five questions at one time. The
sample screen shot of FIG. 13shows all five questions presented on one screen. Note
that it displays the best and worst values for each product.

Precision Choice then moves into the pairs questions. Precision Choice analyzes
what it knows of the consumer’s preferences to this point and uses that information to
build the toughest trade-off question it can. The number of attributes in each pair is
configurable, but in the preferred embodiment, the first pairs question contains only
two attributes. FIG. 14 illustrates how Precision Choice might present this first pairs

question.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

72

After Precision Choice receives the consumer's response to the first pairs
question, it adjusts the preference profile to incorporate what it has learned. Precision
Choice again builds the toughest trade-off question that it can. The second pairs
question for the consumer also contains two attributes. FIG. 15 illustrates how
Precision Choice might present this question to a consumer.

Precision Choice generates the third pairs question after it receives the response
to the second pairs question and incorporates it into the preference profile. At this point,
Precision Choice presents pairs questions with three attributes each, as in the sample
screenshot of FIG. 16.

The fourth pairs question also has three attributes. The trade-offs are becoming
harder because Precision Choice is honing in precisely on the consumer’s preferences,
as seen in FIG. 17. The fifth pairs question has three attributes, as illustrated in FIG.
18. Further, the sixth pairs question also has three attributes, as depicted in the screen
capture of FIG. 19. Precision Choice then generates the seventh pairs question, the
only pairs question with four attributes. FIG. 20 displays a sample seventh pairs
question.

Precision Choice would then ask calibration questions, if configured to do so.
Calibration questions are not asked by default and, therefore, are not included in this
sample interview.

At this point, Precision Choice’s interview process is complete, and Precision
Choice is ready to provide product recommendations.

Introduction to Precision Choice XML Command Language

This foregoing provides an introduction to the Precision Choice XML command
language by examining the sample interview discussed above.
Overview of XML

All interaction with Precision Choice is accomplished through use of the
Precision Choice command language. Commands are expressed using XML, a
technology that allows data portability across platforms and applications. With XML, a
source can provide data and also indicate what the data means in the document. Any

process that can parse XML can understand the document.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

73

With XML, you define your own tags and then provide the values for those
tags. An XML document can define whatever tag is needed to describe the data
accurately. XML is a textual document made up of elements and data. Each element
can contain other elements, data, or nothing. An element can also contain parameters,
called attributes, that further define an element. Since the example contains a tag called
“attribute,” the text refers to an element’s attributes as parameters. An XML snippet
that defines a product in Precision Choice follows:

<product id="1" name="Fund A">

<attribute id="Category">Aggressive Growth</attribute>

<attribute id="Morningstar Rating">5</attribute>

<attribute id="Morningstar Risk">1.2</attribute>

<attribute id="One Year Return">66.5</attribute>

<attribute id="Three Year Return">39.0</attribute>

<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2500</attribute>

</product>

In the code above, the product is the first element defined:

<product id="1" name="Fund A">

The element contains multiple attributes. This one has two parameters: an id
(id="1") and a name (name="Fund A”). Each attribute contains text for the attribute
and has one parameter: id (id="Category"). The first attribute defined for this product is
Category: "Aggressive Growth."

A document tag definition file (dtd) ensures that an XML document provides all
required information required. An example dtd for the above product would be the
following:

<!ELEMENT product (attribute+) >

<IATTLIST product id NMTOKEN #REQUIRED>

<!ATTLIST product name CDATA #REQUIRED>

<!ELEMENT attribute (##CDATA)>
<IATTLIST attribute id CDATA #IMPLIED>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

74

This dtd specifies that there is an element called product and that it contains an
element called attribute:

<!ELEMENT product (attribute+) >

The plus (+) sign after attribute indicates that there must be at least one attribute
for the product. The product has two parameters called id and name:

<!ATTLIST product id CDATA #REQUIRED>

<!ATTLIST product name CDATA #REQUIRED>

The name and id parameters are defined as CDATA, which means that this
parameter can contain any type of text. Both parameters are required.

The next element defined is the attribute element. This element can contain
PCDATA, which means the element can contain any type of text. It has one attribute
called id that is not required (#iIMPLIED) and is of type CDATA. An application that
processes XML data uses a dtd file to ensure that the XML data are correct.

XML documents are case-sensitive. The tags <PRODUCT> and <product> are
different. If the <PRODUCT> tag were in an XML document and the above dtd was
used to validate it, there would be an error: the dtd defines <product>, not
<PRODUCT>.

There are many books and Web resources devoted to XML. This overview only
begins to define what you can accomplish with XML. Websites such as www.xml.com
and msdn.microsoft.com/xml contain extensive information on XML.

Overview of the Sample Interview

The sample interview above addresses finding a mutual fund that is the best
match for an end-user. The interview is based upon the following study definition:

Category: Mutual funds are grouped into categories that express each fund's
overall investment philosophy at the most fundamental level. Values for this attribute
include Aggressive Growth, Growth, Small Company, International Stock, Balanced,
Equity Income, Corporate Bond, and Municipal Bond.

Morningstar Rating: Morningstar is an independent rating service that rates
mutual funds on a scale of 1 to 5, based on risk-adjusted return. Funds are rated in
comparison with similar funds: US Stock, International Stock, Taxable Bond, and Tax-

Free Bond. The top 10% of funds receive a rating of 5, the next 22.5% receive a 4, the

10

15

20

25

30

WO 00/45319 PCT/US00/02249

75

middle 35% receive a 3, the next 22.5% a 2, and the bottom 10% receive 1. Values for
this attribute range are whole numbers from 1 through 5.

Morningstar Risk: Morningstar is an independent rating company that gives
every fund a risk rating. Risk is a measure of fund under-performance in the past, i.e.,
returns less than those that could be achieved by investing in a Treasury bill. A fund
that has under-performed during many months of recent years will receive a high risk
rating. Values for this attribute range from .5 through 1.5.

Three-Year Return: This is the average annual amount of value that the fund
has created, either through income or capital growth, over the three years from March
1996 to March 1999, measured as a percentage of initial investment. These values have
an infinite possibility range, but typical numbers range from 0% - 30%.

Load: This is a percentage of the initial investment charged before any money
is invested. For example, if $10,000 is invested in a fund with a 2% load, then $200 is
charged up front, leaving $9,800 to be invested. Load charges typically range from 0%
to 6%.

Defining the Study and the Product Catalog

The XML below represents this study:

<study name="mutual funds" version="1.0">

<attribute desc="Category" unit="text">

<level>Aggressive Growth</level>

<level>Growth</level>

<level>Small Company</level>

<level>International Stock</level>

<level>Balanced</level>

<level>Equity Income</level>

<level>Corporate Bond</level>

<level>Municipal Bond</level>

</attribute>

<attribute desc="Morningstar Rating" unit="numeric"

interpolate="no" apriori="yes">

<level>5</level>

10

15

20

25

30

WO 00/45319

76

<level>4</level>
<level>3</level>
<level>2</level>
<level>1</level>
</attribute>
<attribute desc="Morningstar Risk"
unit="numeric"
interpolate="yes"
apriori="yes">
<level>0.5</level>
<level>0.75</level>
<level>1.0</level>
<level>1.25</level>
<level>1.5</level>

</attribute>

<attribute desc="Three Year Return"

unit="percent"
interpolate="yes"
apriori="yes">
<level>30</level>
<level>20</level>
<level>10</level>
<level>0</level>
</attribute>
<attribute desc="Load"
unit="percent"
interpolate="yes"
apriori="yes">
<level>0</level>
<level>2</level>

<level>4</level>

PCT/US00/02249

10

15

20

25

30

WO 00/45319 PCT/US00/02249

71

<level>6</level>

</attribute>

</study>

To define a study, you specify the attributes and levels of a particular type of
product, in this case of mutual funds. There are three elements in the study definition.
Study, the first element, must contain at least three attribute elements and cannot
contain more than nine elements. The study has two parameters: name and version.
Both elements are used to identify the study. They are required, but are not used in
Precision Choice processing.

There are four parameters that Precision Choice uses to determine when and
how to present an attribute in the questions. The parameter desc contains text that
should be displayed to the user when this attribute is present in a question. This
alphanumeric parameter is required. The unit parameter determines how this attribute is
formatted. The value for this parameter must be defined in the units.xml file. For
details, see Appendix A.

Interpolate and apriori, the last two parameters, are not required. The default
value for each parameter is "No." Interpolate tells Precision Choice whether the
attribute levels can be interpolated. For example, the attribute Morningstar Rating
cannot be interpolated. This attribute has five distinct levels. The attribute Category
cannot be interpolated and is not a priori. A priori tells Precision Choice that there is a
preferred order for the attribute’s values.

Each level defines a different value for an attribute. The order in which the
levels are defined determines each level’s rank for an a priori attribute. The first level
defined is the best level, and the last level defined is the worst level. Values for the
level should be defined so that they cover all values for an attribute. In the case of
Load, values could range between 0 and 6. Hence, that level has four equidistant
values: the best level is 0, and the worst is 6.

The goal of this interview is to provide mutual fund product recommendations
for an end-user. To accomplish this, products are defined for Precision Choice using the
following command.

<catalog name="mutualfunds" version="1.0">

10

15

20

25

30

WO 00/45319 PCT/US00/02249

78

<product id="1" name="Fund A">

<attribute id="Category">Aggressive Growth</attribute>
<attribute id="Morningstar Rating">5</attribute>
<attribute id="Morningstar Risk'">1.2</attribute>
<attribute id="One Year Return">66.5</attribute>
<attribute id="Three Year Return">39.0</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

<product id="4" name="Fund B">

<attribute id="Category">Aggressive Growth</attribute>
<attribute id="Morningstar Rating">5</attribute>
<attribute id="Momingstar Risk">1.4</attribute>
<attribute id="One Year Return">47.4</attribute>
<attribute id="Three Year Return">28.1</attribute>
<attribute id="Load">5.0</attribute>

<attribute id="Minimum Investment">0</attribute>
</product>

<product id="11" name="Fund C">

<attribute id="Category">Growth</attribute>
<attribute id="Morningstar Rating">5</attribute>
<attribute id="Morningstar Risk">0.9</attribute>
<attribute id="0One Year Return">79.9</attribute>
<attribute id="Three Year Return">47.9</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

<product id="14" name="Fund D">

<attribute 1d="Category">Growth</attribute>
<attribute id="Morningstar Rating">4</attribute>

<attribute id="Momingstar Risk">1.2</attribute>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

79

<attribute 1d="One Year Retum">63.3</attribute>
<attribute id="Three Year Return">31.8</attribute>
<attribute id="Load">5.5</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="31" name="Fund E">

<attribute id="Category">Small Company</attribute>
<attribute id="Momingstar Rating">4</attribute>
<attribute id="Morningstar Risk">1.9</attribute>
<attribute id="One Year Return">80.9</attribute>
<attribute id="Three Year Return">32.7</attribute>
<attribute id="Load">5.0</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="32" name="Fund F">

<attribute id="Category">Small Company</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">1.7</attribute>
<attribute id="One Year Return">38.5</attribute>
<attribute id="Three Year Return">31.6</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">5000</attribute>
</product>

<product id="41" name="Fund G">

<attribute id="Category">Equity Income</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.8</attribute>
<attribute id="One Year Return">28.3</attribute>
<attribute id="Three Year Return">22.3</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">1000</attribute>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

80

</product>
<product id="43" name="Fund H">
<attribute id="Category">Equity Income</attribute>

<attribute id="Morningstar Rating">4</attribute>

<attribute id="Morningstar Risk">0.8</attribute>

<attribute id="One Year Return">15.2</attribute>
<attribute id="Three Year Return">26.5</attribute>
<attribute id="Load">5.8</attribute>

<attribute id="Minimum Investment">500</attribute>
</product>

<product id="51" name="Fund I">

<attribute id="Category">International Stock</attribute>
<attribute id="Morningstar Rating">2</attribute>
<attribute id="Morningstar Risk">1.6</attribute>
<attribute id="One Year Return">83.4</attribute>
<attribute id="Three Year Return">-0.8</attribute>
<attribute id="Load">3.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

<product id="52" name="Fund J">

<attribute id="Category">International Stock</attribute>
<attribute id="Morningstar Rating">1</attribute>
<attribute id="Morningstar Risk">3.2</attribute>
<attribute id="One Year Return">41.6</attribute>
<attribute id="Three Year Return">-19.2</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="81" name="Fund K">

<attribute id="Category">Balanced</attribute>

<attribute id="Morningstar Rating">3</attribute>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

81

<attribute id="Morningstar Risk">0.7</attribute>
<attribute id="One Year Return">30.7</attribute>
<attribute id="Three Year Return">21.2</attribute>

<attribute id="Load">5.0</attribute>

<attribute id="Minimum Investment">0</attribute>

</product>

<product id="82" name="Fund L">

<attribute id="Category">Balanced</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.5</attribute>
<attribute id="One Year Return">29.5</attribute>
<attribute id="Three Year Return">24.6</attribute>
<attribute id="Load">5.5</attribute>

<attribute id="Minimum Investment">500</attribute>
</product>

<product id="83" name="Fund M">

<attribute id="Category">Balanced</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.5</attribute>
<attribute id="One Year Return">28.2</attribute>
<attribute id="Three Year Return">24.3</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

<product id="91" name="Fund N">

<attribute id="Category">Corporate Bond</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.9</attribute>
<attribute id="One Year Return">11.4</attribute>
<attribute id="Three Year Return">10.0</attribute>

<attribute id="Load">3.8</attribute>

10

15

20

25

30

WO 00/45319

82

<attribute id="Minimum Investment">2000</attribute>
</product>

<product id="92" name="Fund O">

<attribute id="Category">Corporate Bond</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">1</attribute>
<attribute id="One Year Return">8.2</attribute>
<attribute id="Three Year Return">8.7</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2000</attribute>
</product>

<product id="111"

name="CitiFunds National Tax-Free Income A">
<attribute id="Category">Municipal Bond</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">1.1</attribute>
<attribute id="One Year Return">8.3</attribute>
<attribute id="Three Year Return">0.3</attribute>
<attribute id="Load">4.5</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="112"

name="Delaware National High Yield Municpals A">
<attribute id="Category">Municipal Bond</attribute>
<attribute id="Morningstar Rating">5</attribute>
<attribute id="Morningstar Risk">0.2</attribute>
<attribute id="One Year Return">6.6</attribute>
<attribute id="Three Year Return">8.2</attribute>
<attribute id="Load">3.8</attribute>

<attribute id="Minimum Investment">1000</attribute>

</product>

PCT/US00/02249

10

15

20

25

30

WO 00/45319 PCT/US00/02249

83

<product id="118" name="Strong Municipal Bond">
<attribute id="Category">Municipal Bond</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.7</attribute>
<attribute id="One Year Return">6.2</attribute>
<attribute id="Three Year Return">8.4</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

</catalog>

The catalog element defines a group of products for Precision Choice. It must
contain at least one product. There is no upper limit to the number of products that can
be defined in a catalog. The catalog has two parameters: name and version. Both
elements are used to identify the catalog. They are required, but are not used in
Precision Choice processing.

A product is defined by multiple attributes, and a product must contain a value
for each attribute defined in the study. The product definition may define attributes not
in the study. These attributes are not part of the interview process, but they are returned
in the Product Recommendations. The product element contains two parameters: id and
name. The id parameter is the product key. It must be unique in the catalog and is
required. The name parameter is the display value of the product. It is required.

Each product attribute is defined by one parameter and contains the value of the
product attribute. The id parameter must match the desc parameter of the attribute in
the study command.

The study and catalog must be loaded into Precision Choice before the
interview begins. To accomplish this, the following XML command must be sent into
Precision Choice.

<BATCHSET>

<SETSTUDY CID="1" NAME="mutualfunds">

<study name="mutual funds" version="1.0">

<attribute desc="Category" unit="text">

10

15

20

25

30

WO 00/45319

84

<level>Aggressive Growth</level>
<level>Growth</level>
<level>Small Company</level>
<level>International Stock</level>
<level>Balanced</level>
<level>Equity Income</level>
<level>Corporate Bond</level>
<level>Municipal Bond</level>
</attribute>

<attribute desc="Morningstar Rating"
unit="numeric"

interpolate="no"

apriori="yes">

<level>5</level>

<level>4</level>

<level>3</level>

<level>2</level>

<level>1</level>

</attribute>

<attribute desc="Morningstar Risk"
unit="numeric"

interpolate="yes"

apriori="yes">

<level>0.5</level>
<level>0.75</level>
<level>1.0</level>
<level>1.25</level>
<level>1.5</level>

</attribute>

<attribute desc="Three Year Return"

unit="percent"

PCT/US00/02249

10

15

20

25

30

WO 00/45319

85

interpolate="yes"
apriori="yes">
<level>30</level>
<level>20</level>
<level>10</level>
<level>0</level>
</attribute>
<attribute desc="Load"
unit="percent"
interpolate="yes"

apriori="yes">

<level>0</level>

<level>2</level>

<level>4</level>

<level>6</level>

</attribute>

</study>

</SETSTUDY>

<SETCATALOG CID="2" NAME="mutualfunds">
<catalog name="mutualfunds" version="1.0">

<product id="1" name="Janus Olympus">

<attribute id="Category">Aggressive Growth</attribute>
<attribute id="Morningstar Rating">5</attribute>
<attribute id="Morningstar Risk">1.2</attribute>
<attribute id="One Year Return">66.5</attribute>
<attribute id="Three Year Return">39.0</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

<product id="4" name="Alger Capital Appreciation B">
<attribute id="Category">Aggressive Growth</attribute>

PCT/US00/02249

10

15

20

25

30

WO 00/45319 PCT/US00/02249

86

<attribute id="Morningstar Rating">5</attribute>
<attribute id="Morningstar Risk">1.4</attribute>
<attribute id="One Year Return'">47.4</attribute>
<attribute id="Three Year Return">28.1</attribute>
<attribute id="Load">5.0</attribute>

<attribute id="Minimum Investment">0</attribute>
</product>

<product id="11" name="Janus Twenty">

<attribute id="Category">Growth</attribute>
<attribute id="Morningstar Rating">5</attribute>
<attribute id="Morningstar Risk">0.9</attribute>
<attribute id="One Year Return">79.9</attribute>
<attribute id="Three Year Return">47.9</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

<product id="14" name="WM Growth A">

<attribute id="Category">Growth</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">1.2</attribute>
<attribute id="One Year Return">63.3</attribute>
<attribute id="Three Year Return">31.8</attribute>
<attribute id="Load">5.5</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="31" name="TCW/DW Mid-Cap Equity B">
<attribute id="Category">Small Company</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Momningstar Risk">1.9</attribute>
<attribute id="One Year Return">80.9</attribute>

<attribute id="Three Year Return">32.7</attribute>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

87

<attribute id="Load">5.0</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="32"

name="Robertson Stephens Emerging Growth A">
<attribute id="Category">Small Company</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">1.7</attribute>
<attribute id="One Year Return">38.5</attribute>
<attribute id="Three Year Return">31.6</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">5000</attribute>
</product>

<product id="41" name="Value Line Income">
<attribute id="Category">Equity Income</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.8</attribute>
<attribute id="One Year Return">28.3</attribute>
<attribute id="Three Year Return">22.3</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="43" name="GE Value Equity A">
<attribute id="Category">Equity Income</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.8</attribute>
<attribute id="One Year Return">15.2</attribute>
<attribute id="Three Year Return">26.5</attribute>
<attribute id="Load">5.8</attribute>

<attribute id="Minimum Investment">500</attribute>

</product>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

88

<product id="51" name="Fidelity Japan Small Co">
<attribute id="Category">International Stock</attribute>
<attribute id="Morningstar Rating">2</attribute>
<attribute id="Morningstar Risk">1.6</attribute>
<attribute id="One Year Return">83.4</attribute>
<attribute id="Three Year Return">-0.8</attribute>
<attribute id="Load">3.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

<product id="52" name="Matthews Korea 1">
<attribute id="Category">International Stock</attribute>
<attribute id="Morningstar Rating">1</attribute>
<attribute id="Mormingstar Risk">3.2</attribute>
<attribute id="One Year Return">41.6</attribute>
<attribute id="Three Year Return">-19.2</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="81" name="Alger Balanced B">
<attribute id="Category">Balanced</attribute>
<attribute id="Morningstar Rating">3</attribute>
<attribute id="Morningstar Risk">0.7</attribute>
<attribute id="One Year Return">30.7</attribute>
<attribute id="Three Year Return">21.2</attribute>
<attribute id="Load">5.0</attribute>

<attribute id="Minimum Investment">0</attribute>
</product>

<product id="82" name="Idex JCC Balanced A">
<attribute id="Category">Balanced</attribute>
<attribute id="Morningstar Rating">4</attribute>

<attribute id="Morningstar Risk">0.5</attribute>

10

15

20

25

30

WO 00/45319

&9

<attribute id="One Year Return">29.5</attribute>
<attribute id="Three Year Return">24.6</attribute>
<attribute id="Load">5.5</attribute>

<attribute id="Minimum Investment">500</attribute>
</product>

<product id="83" name="Janus Balanced">

<attribute id="Category">Balanced</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.5</attribute>
<attribute id="One Year Return">28.2</attribute>
<attribute id="Three Year Return">24.3</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

<product id="91" name="Calvert Income A">
<attribute id="Category">Corporate Bond</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.9</attribute>
<attribute id="One Year Return">11.4</attribute>
<attribute id="Three Year Return">10.0</attribute>
<attribute id="Load">3.8</attribute>

<attribute id="Minimum Investment">2000</attribute>

</product>

<product id="92" name="Crabbe Huson Contrarian Income A">

<attribute id="Category">Corporate Bond</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Momingstar Risk">1</attribute>
<attribute id="One Year Return">8.2</attribute>
<attribute id="Three Year Return">8.7</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2000</attribute>

PCT/US00/02249

10

15

20

25

30

WO 00/45319 PCT/US00/02249

90

</product>

<product id="111"

name="CitiFunds National Tax-Free Income A">
<attribute id="Category">Municipal Bond</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">1.1</attribute>
<attribute id="One Year Return">8.3</attribute>
<attribute id="Three Year Return">0.3</attribute>
<attribute id="Load">4.5</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="112"

name="Delaware National High Yield Municpals A">
<attribute id="Category">Municipal Bond</attribute>
<attribute id="Morningstar Rating">5</attribute>
<attribute id="Morningstar Risk">0.2</attribute>
<attribute id="One Year Return">6.6</attribute>
<attribute id="Three Year Return">8.2</attribute>
<attribute id="Load">3.8</attribute>

<attribute id="Minimum Investment">1000</attribute>
</product>

<product id="118" name="Strong Municipal Bond">
<attribute id="Category">Municipal Bond</attribute>
<attribute id="Morningstar Rating">4</attribute>
<attribute id="Morningstar Risk">0.7</attribute>
<attribute id="One Year Return">6.2</attribute>
<attribute id="Three Year Return">8.4</attribute>
<attribute id="Load">0.0</attribute>

<attribute id="Minimum Investment">2500</attribute>
</product>

</catalog>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

91

</SETCATALOG>

</BATCHSET>

Use the BATCHSET tag to group commands sent into Precision Choice. Use
the SETSTUDY command to indicate to Precision Choice that a study is being loaded.
This command contains two parameters: CID and NAME. CID is the command
identification used to associate a command response with a command. Precision Choice
returns the CID with the response to this command so that the application is able to
match up the response to the command with this parameter. The parameter NAME is
the key of the study. Precision Choice maintains a persistent copy of this study and
subsequent interviews can access it by referring to the NAME. Precision Choice allows
only one active study per NAME. The study elements are then contained inside the
SETSTUDY command.

The parameters of the SETCATALOG command are similar to those of the
SETSTUDY command. The parameters perform the same functions for the catalog that
the parameters of the SETSTUDY command do for the study. There can only be one
active catalog per catalog name.

Precision Choice loads the study and the catalog and makes them available for
future interviews. If the commands are processed successfully, Precision Choice
responds with the following XML document.

<BATCHSET>

<CMDRESPONSE CID="1" STATUS="OK"/>

<CMDRESPONSE CID="2" STATUS="OK"/>

</BATCHSET>

A CMDRESPONSE contains two parameters. The CID contains the value that
the application sent into Precision Choice, and the STATUS indicates if there were any
problems. In this example, both commands were successful. If there were a problem,
the STATUS would be ERR and the CMDRESPONSE would contain a MESSAGE
element identifying the error.

Once a study and catalog have been loaded into Precision Choice, an interview
can begin. To start an interview, the STARTINTERVIEW command must be sent to

Precision Choice. It is a batch command and must be contained inside of a BATCH

10

15

20

25

30

WO 00/45319 PCT/US00/02249

92

element. All interview processing commands are batch commands. Multiple interview
commands for the same interview can be batched up and sent as one transaction into
Precision Choice. The list below identifies the interview commands:

e STARTINTERVIEW

e GETNEXTQUESTIONSET

e SETRESPONSES

e GETSCORES

e GETRECOMMENDATIONS

e ENDINTERVIEW

The sample interview above begins as follows:

First, Precision Choice needs to know how this end-user feels about the various
mutual fund categories. Category is a non-a priori attribute, and, therefore, Precision
Choice asks a ratings question to learn about the end-user’s preferences as related to
category. This question might look like the sample in the screenshot below.

To start the interview and get the first set of questions, the following commands
must be sent into Precision Choice.

<BATCHSET>

<BATCH UID="user1" >

<STARTINTERVIEW CID="3"

STUDY="mutualfunds"

CATALOG="mutualfunds">

</STARTINTERVIEW>

<GETNEXTQUESTIONSET CID="4" MAX="10"/>

</BATCH>

</BATCHSET>

The BATCHSET element contains the BATCH of commands to process for an
interview. The BATCH element has a UID parameter to allow storage of a user
identification. Precision Choice stores the UID with the results of the interview for later
analysis. It is required, but if the user specific data will not be collected, the value

passed into Precision Choice can be the same for every batch. With this approach, you

10

15

20

25

30

WO 00/45319 PCT/US00/02249

93

will not be able to trace Precision Choice recommendations back to a specific user, but
you will still be able to analyze the results of each interview and aggregate the results.

The first command in the batch is the STARTINTERVIEW command. This
command, the first command for an interview, indicates which previously loaded study
and cétalog to use for this interview. The CID parameter performs the same function as
mentioned above. The next two parameters point to the study and catalog to use for this
interview. Their values should match the NAME attribute from the appropriate
SETSTUDY and SETCATALOG commands.

The next command causes Precision Choice to return the first set of questions.
For this interview, the questions returned contain one ranking question for the attribute
category. The parameter MAX tells Precision Choice how many questions to provide in
the question set returned to your application. This example indicates that the
application could accept and process ten questions. However, this study only needs one
ratings question, so Precision Choice only returns one question. The response from
Precision Choice is the following:

<BATCHSET><BATCH UID="user1"

INTERVIEWID="user1:947262866239">

<CMDRESPONSE CID="3" STATUS="OK" />

<CMDRESPONSE CID="4" STATUS="0OK">

<QUESTIONSET>

<RATINGQUESTION ID="0">

<ATTRIBUTE ID="0">

<LEVEL ID="0" VALUE="Aggressive Growth" />

<LEVEL ID="1" VALUE="Growth" />

<LEVEL ID="2" VALUE="Small Company" />

<LEVEL ID="3" VALUE="International Stock" />

<LEVEL ID="4" VALUE="Balanced" />

<LEVEL ID="5" VALUE="Equity Income" />

<LEVEL ID="6" VALUE="Corporate Bond" />

<LEVEL ID="7" VALUE="Municipal Bond" /></ATTRIBUTE>

<DEFAULTQUESTION></DEFAULTQUESTION>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

94

</RATINGQUESTION>

</QUESTIONSET>

</CMDRESPONSE>

</BATCH></BATCHSET>

Note that the responses to the input commands are contained in a BATCHSET
element. All responses are like this. Since batch commands were sent into Precision
Choice, all responses to the commands are contained in a batch command. The UID
that was sent in is returned, and a new INTERVIEWID parameter is also returned.
Precision Choice uses the INTERVIEWID to identify which interview the commands
are for. All future batches for this interview must contain this value.

The STARTINTERVIEW command (CID="3") was successfully completed.
The GETNEXTQUESTIONSET (CID="4") was also completed successfully: it
contains the question set that Precision Choice generated.

The only question type contained in the question set is a ratings question, and
there is only one ratings question. The attribute Category is the only non-a priori
attribute defined in the study; it is the only attribute that Precision Choice needs to ask
the user to rate. All other attributes have assumed ratings since they are a priori.

Both the ID of the attribute and the NAME of the attribute are returned. All
levels defined in the study are returned with both the ID and VALUE. No
DEFAULTQUESTION was defined in the study, so this element is empty (the
application would use this information to present this question to the user and gather
the answers, if it had been provided). To send the answer into Precision Choice and to
get the next set of questions, use the following command.

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947259311241">

<SETRESPONSES CID="4">

<RATINGRESPONSE ID="0" >

<LEVEL ID="0" RATING="5"/>

<LEVEL ID="1" RATING="4" />

<LEVEL ID="2" RATING="5"/>

<LEVEL ID="3" RATING="4"/>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

95

<LEVEL ID="4" RATING="3"/>

<LEVEL ID="5" RATING="2"/>

<LEVEL ID="6" RATING="1"/>

<LEVEL ID="7" RATING="1"/>

</RATINGRESPONSE>

</SETRESPONSES>

<GETNEXTQUESTIONSET CID="5" MAX="10"/>

</BATCH>

</BATCHSET>

The SETRESPONSES command sets the responses to questions. In the
example, there is one ratings question. The RATINGSRESPONSE indicates an answer
for a ratings question, and the ID indicates the question. This ID should match up to the
ID returned in the RATINGQUESTION tag that provided the question. For a ratings
response, there must be a rating for each level returned in the RATINGQUESTION
element. To indicate the level for an answer, use the level’s ID returned in the
RATINGQUESTION element. The RATING parameter in the level command indicates
the user's rating of the level. The RATING must be a whole number between 1 and 5,
with 5 being the most desirable rating. In this example, the end-user strongly prefers the
Aggressive Growth and Small Company levels. This end-user prefers the levels Growth
and International Stock slightly less, is ambivalent about Balanced, and does not want
Equity Income, Corporate Bond, or Municipal Bond funds.

Note carefully that this batch also includes GETNEXTQUESTIONSET with a
CID of 5. Precision Choice returns the following response:

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947252113784">

<CMDRESPONSE CID="4" STATUS="OK" />

<CMDRESPONSE CID="5" STATUS="0K"><QUESTIONSET>

<IMPORTANCEQUESTION ID="1">

<ATTRIBUTE

ID="0"

NAME="Category"

10

15

20

25

30

WO 00/45319 PCT/US00/02249

96

BEST="Aggressive Growth"

WORST="Municipal Bond" />
<DEFAULTQUESTION></DEFAULTQUESTION>
</IMPORTANCEQUESTION>
<IMPORTANCEQUESTION ID="2">
<ATTRIBUTE

ID="1"

NAME="Moringstar Rating"

BEST="5"

WORST="1"/>
<DEFAULTQUESTION></DEFAULTQUESTION>
</IMPORTANCEQUESTION>
<IMPORTANCEQUESTION ID="3">
<ATTRIBUTE

D="2"

NAME="Morningstar Risk"

BEST="0.5"

WORST="1.5" />
<DEFAULTQUESTION></DEFAULTQUESTION>
</IMPORTANCEQUESTION>
<IMPORTANCEQUESTION ID="4">
<ATTRIBUTE

D="3"

NAME="Three Year Return”

BEST="30"

WORST="0" />
<DEFAULTQUESTION></DEFAULTQUESTION>
</IMPORTANCEQUESTION>
<IMPORTANCEQUESTION ID="5">
<ATTRIBUTE

ID="4"

10

15

20

25

30

WO 00/45319 PCT/US00/02249

97
NAME="Load"
BEST="0"
WORST="6" />

<DEFAULTQUESTION></DEFAULTQUESTION>

</IMPORTANCEQUESTION></QUESTIONSET>

</CMDRESPONSE>

</BATCH>

</BATCHSET>

The CMDRESPONSE with a CID value of 4 indicates that the SETRESPONSE
command was processed successfully. The next response contains the importance
questions and is a response to the GETNEXTQUESTIONSET command. Since a
maximum of ten questions was specified in the GETNEXTQUESTIONSET, Precision
Choice returns all five importance questions. This interaction matches up with the
sample interview above at the point below:

In this study, there are no remaining non-a priori attributes. The remaining
attributes (Morningstar Rating, Morningstar Risk, Three Year Return, and Load) are all
a priori. This is why Precision Choice does not ask ratings questions for the remaining
attributes.

Precision Choice then asks importance questions to learn what importance the
end-user places on each attribute. In this study, the next five questions would be
importance questions. Precision Choice generates these five questions at one time
because it knows the elements necessary to generate each one in advance.

Each importance question contains an ATTRIBUTE to identify which study
attribute the question is about. The element also contains parameters to indicate the best
and worst levels of the attribute, according to the end-user’s ranking. If the attribute is a
priori, the level ranking is determined by the order the levels are defined in the study.
No importance default question was defined in the study, so DEFAULTQUESTION is
empty. To answer all importance questions and to get the next set of questions from
Precision Choice, use the following syntax:

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947252113784">

10

15

20

25

30

WO 00/45319 PCT/US00/02249

98

<SETRESPONSES CID="6">
<IMPORTANCERESPONSE ID="1" >
<ATTRIBUTE ID="0" RATING="3" />
</IMPORTANCERESPONSE>

<IMPORTANCERESPONSE ID= "2" >
<ATTRIBUTE ID="0" RATING="4" />
</IMPORTANCERESPONSE>

<IMPORTANCERESPONSE ID="3" >
<ATTRIBUTE ID="0" RATING="2" />
</IMPORTANCERESPONSE>

<IMPORTANCERESPONSE ID= "4" >
<ATTRIBUTE ID="0" RATING="4" />
</IMPORTANCERESPONSE>

<IMPORTANCERESPONSE ID= "5" >

<ATTRIBUTE ID="0" RATING="3" />

</IMPORTANCERESPONSE>

</SETRESPONSES>

<GETNEXTQUESTIONSET CID="7" MAX="10"/>

</BATCH>

</BATCHSET>

In this BATCHSET, the SETRESPONSES command contains
IMPORTANCERESPONSE elements, as opposed to the RATINGSRESPONSE in the
previous SETRESPONSES command. This indicates answers for importance questions.
The ID parameter must match up to the ID returned previously in the
IMPORTANCEQUESTION element. This tells Precision Choice which importance
question is being answered. Each importance response contains an ATTRIBUTE

element to indicate the attribute that the answer is for. This information comes from the

10

15

20

25

30

WO 00/45319 PCT/US00/02249

99

ATTRIBUTE tag contained in the IMPORTANCEQUESTION element previously
returned. The rating should be a whole number between 1 and 4, inclusive. Four
represents the highest importance to the user. In the sample command shown above, the
user places the highest importance on the attributes Morningstar Rating and Three-Year
Return. The user rates the attributes Category and Load slightly less important and
assigns lower importance to Morningstar Risk. This BATCHSET also contains the
GETNEXTQUESTIONSET command to instruct Precision Choice to send the next set
of questions. Precision Choice now moves to the following section of the sample
interview:

Precision Choice then moves into the pairs questions. Precision Choice analyzes
what it knows of the end-user’s preferences to this point and uses that information to
build the toughest trade-off question it can. The first pairs question contains only two
attributes

The response to the previously discussed BATCHSET is as follows:

<BATCHSET>

<BATCH UID="userl" INTERVIEWID="user1:947252113784">

<CMDRESPONSE CID="6" STATUS="0OK" />

<CMDRESPONSE CID="7" STATUS="0OK">

<QUESTIONSET><PAIRSQUESTION ID="6">

<SAMPLE SIDE="low">

<ATTRIBUTE ID="1" NAME="Morningstar Rating">

<LEVEL VALUE="5" />

</ATTRIBUTE>

<ATTRIBUTE ID="3" NAME="Three Year Return">

<LEVEL VALUE="20"/>

</ATTRIBUTE>

</SAMPLE>

<SAMPLE SIDE="high">

<ATTRIBUTE

ID="1"

NAME="Morningstar Rating">

10

15

20

25

30

WO 00/45319 PCT/US00/02249

100

<LEVEL VALUE="4" />

</ATTRIBUTE>

<ATTRIBUTE

ID="3"

NAME="Three Year Return">

<LEVEL VALUE="30" >

</ATTRIBUTE>

</SAMPLE>

<DEFAULTQUESTION></DEFAULTQUESTION>

</PAIRSQUESTION>

</QUESTIONSET>

</CMDRESPONSE>

</BATCH>

</BATCHSET>

The SETRESPONSES command was completed successfully, and Precision
Choice returns the next question set. This question set contains one pairs question.
Since Precision Choice dynamically generates pairs questions based upon the user's
previous questions, only one is available at a time. The PAIRS QUESTION element
contains two sample products with two attributes each. The end-user’s response is on a
scale of 1 to 9. The closer the end-user's response is to 1, the more he or she prefers the
"low" sample. The closer the end-user's response is to 9, the more he or she prefers the
"high" sample. A choice of 5 indicates that the end-user has no preference between the
two sample products.

The next interaction with Precision Choice provides an answer to this question
and gets the next question set.

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947252113784">

<SETRESPONSES CID="8">

<PAIRSRESPONSE ID="6" RATING ="7"/>

</SETRESPONSES>

<GETNEXTQUESTIONSET CID="9" MAX="10"/>

5

10

15

20

25

30

WO 00/45319 PCT/US00/02249

101

</BATCH>
</BATCHSET>
This BATCHSET tells Precision Choice that this end-user prefers the "high"

sample more than the "low" sample. The response to this batchset would look like the

following:

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947252113784">
<CMDRESPONSE CID="8" STATUS="0OK" />
<CMDRESPONSE CID="9" STATUS="0OK">
<QUESTIONSET><PAIRSQUESTION ID="7">
<SAMPLE SIDE="low">

<ATTRIBUTE ID="0" NAME="Category">

<LEVEL VALUE="Aggressive Growth" /></ATTRIBUTE>
<ATTRIBUTE ID="4" NAME="Load">

<LEVEL VALUE="2" /></ATTRIBUTE>

</SAMPLE>

<SAMPLE SIDE="high">

<ATTRIBUTE ID="0" NAME="Category">

<LEVEL VALUE="Small Company" /></ATTRIBUTE>
<ATTRIBUTE ID="4" NAME="Load">

<LEVEL VALUE="(0" /></ATTRIBUTE>

</SAMPLE>
<DEFAULTQUESTION></DEFAULTQUESTION>
</PAIRSQUESTION></QUESTIONSET>
</CMDRESPONSE></BATCH></BATCHSET>

The answer to the previous question was accepted, and the next pairs question

was generated. Precision Choice is now at the following point in the sample interview

After Precision Choice receives the end-user's response to the first pairs

question, it adjusts the preference profile to incorporate what it has learned. Precision

WO 00/45319 PCT/US00/02249

102

Choice again builds the toughest trade-off question that it can. The second pairs
question for the user contains only two attributes.
To indicate to Precision Choice that the end-user prefers the "high" sample and

to get the next question set, send the following BATCHSET:

10

15

20

25

30

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="userl 1947252113784">
<SETRESPONSES CID="9">

<PAIRSRESPONSE ID="7" RATING ="9"/>
</SETRESPONSES>

<GETNEXTQUESTIONSET CID="10" MAX="10"/>
</BATCH>

</BATCHSET>

Precision Choice's response to this BATCHSET is the following:
<BATCHSET>

<BATCH

UID="userl"
INTERVIEWID="user1:947259311241">
<CMDRESPONSE CID="6" STATUS="OK" />
<CMDRESPONSE CID="7" STATUS="0K">
<QUESTIONSET>

<PAIRSQUESTION ID="10">

<SAMPLE SIDE="low">

<ATTRIBUTE

ID="3"

NAME="Three Year Return">

<LEVEL VALUE="10" />

</ATTRIBUTE>

<ATTRIBUTE

ID="0"

NAME="Category">

<LEVEL VALUE="Aggressive Growth" />

10

15

20

25

WO 00/45319

</ATTRIBUTE>
<ATTRIBUTE

D="2"
NAME="Morningstar Risk">
<LEVEL VALUE="0.5" />
</ATTRIBUTE>
</SAMPLE>

<SAMPLE SIDE="high">
<ATTRIBUTE

ID="3"

NAME="Three Year Return">
<LEVEL VALUE="30" />
</ATTRIBUTE>
<ATTRIBUTE

ID="0"

NAME="Category">
<LEVEL VALUE="Growth" />
</ATTRIBUTE>
<ATTRIBUTE

ID="2"
NAME="Morningstar Risk">
<LEVEL VALUE="1.0" />
</ATTRIBUTE>
</SAMPLE>

<DEFAULTQUESTION></DEFAULTQUESTION>

</PAIRSQUESTION>
</QUESTIONSET>
</CMDRESPONSE>
</BATCH></BATCHSET>

103

PCT/US00/02249

10

15

20

25

30

WO 00/45319 PCT/US00/02249

104

The answer to the previous question was accepted and the next pairs question
was generated. Precision Choice has reached the following point in the sample
interview above:

Precision Choice generates the third pairs question after it receives the response
to the second pairs question and incorporates it into the preference profile. At this point,
Precision Choice presents pairs questions with three attributes each.

To indicate to Precision Choice that the end-user prefers the "high" sample, use
the following BATCHSET:

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947259311241">

SETRESPONSES CID="6">

<PAIRSRESPONSE ID="10" RATING="7"/>

</SETRESPONSES>

<GETNEXTQUESTIONSET CID="7" MAX="10"/>

</BATCH>

</BATCHSET>

Precision Choice responds to this BATCHSET as follows:

<BATCHSET>

<BATCH

UID="userl"

INTERVIEWID="user1:947259311241">

<CMDRESPONSE CID="6" STATUS="OK" />

<CMDRESPONSE CID="7" STATUS="0OK">

<QUESTIONSET>

<PAIRSQUESTION ID="11">

<SAMPLE SIDE="low">

<ATTRIBUTE

ID="3"

NAME="Three Year Return">

<LEVEL VALUE="30" /></ATTRIBUTE>

<ATTRIBUTE

10

15

20

25

WO 00/45319 PCT/US00/02249

105

ID="4"

NAME="Load">

<LEVEL VALUE="6" /></ATTRIBUTE>
<ATTRIBUTE

ID="2"

NAME="Morningstar Risk">

<LEVEL VALUE="1.25" /></ATTRIBUTE>
</SAMPLE>

<SAMPLE SIDE="high">

<ATTRIBUTE

ID="3"

NAME="Three Year Return">

<LEVEL VALUE="0" /></ATTRIBUTE>
<ATTRIBUTE

ID="4"

NAME="Load">

<LEVEL VALUE="0" /></ATTRIBUTE>
<ATTRIBUTE

ID="2"

NAME="Morningstar Risk">

<LEVEL VALUE="0.75" /></ATTRIBUTE>
</SAMPLE>
<DEFAULTQUESTION></DEFAULTQUESTION>
</PAIRSQUESTION></QUESTIONSET>
</CMDRESPONSE>
</BATCH></BATCHSET>

The answer to the previous question is accepted and the next pairs question is

generated. Precision Choice has reached the following point from the sample interview

above:
The fourth pairs question also has three attributes. The questions are becoming

harder because Precision Choice is honing in precisely on the end-user’s preferences.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

106

The following BATCHSET indicates to Precision Choice that the end-user

prefers the "low" sample:

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947259311241">
<SETRESPONSES CID="6">
<PAIRSRESPONSE ID="11" RATING="3"/>
</SETRESPONSES>
<GETNEXTQUESTIONSET CID="7" MAX="10"/>
</BATCH>

</BATCHSET>

Precision Choice responds with the following:
<BATCHSET>

<BATCH

UID="user1"
INTERVIEWID="user1:947259311241">
<CMDRESPONSE CID="6" STATUS="0OK" />
<CMDRESPONSE CID="7" STATUS="0OK">
<QUESTIONSET>

<PAIRSQUESTION ID="12">

<SAMPLE SIDE="low">

<ATTRIBUTE

ID="1"

NAME="Morningstar Rating">

<LEVEL VALUE="3" /></ATTRIBUTE>
<ATTRIBUTE

ID="3"

NAME="Three Year Return">

<LEVEL VALUE="20" /></ATTRIBUTE>
<ATTRIBUTE

ID="0"

NAME="Category">

10

15

20

25

WO 00/45319

107

<LEVEL VALUE="International Stock" /></ATTRIBUTE>
<ATTRIBUTE

ID="4"

NAME="Load">

<LEVEL VALUE="2" /></ATTRIBUTE>
</SAMPLE>

<SAMPLE SIDE="high">

<ATTRIBUTE

ID="1"

NAME="Morningstar Rating">

<LEVEL VALUE="4" /></ATTRIBUTE>
<ATTRIBUTE

ID="3"

NAME="Three Year Return">

<LEVEL VALUE="10" /></ATTRIBUTE>
<ATTRIBUTE

ID="0"

NAME="Category">

<LEVEL VALUE="Small Company" /></ATTRIBUTE>
<ATTRIBUTE

ID="4"

NAME="Load">

<LEVEL VALUE="4" /></ATTRIBUTE>
</SAMPLE>
<DEFAULTQUESTION></DEFAULTQUESTION>
</PAIRSQUESTION>

</QUESTIONSET>

</CMDRESPONSE>

</BATCH></BATCHSET>

PCT/US00/02249

5

10

15

20

25

WO 00/45319 PCT/US00/02249

108

The answer to the previous question is accepted and the next pairs question is
generated. Precision Choice has reached the following point from the sample interview
above:

Precision Choice then generates the seventh pairs question, the only pairs
question with four attributes.

Send the following BATCHSET to indicate to Precision Choice that the end-
user prefers the "low" sample:

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947259311241">

<SETRESPONSES CID="6">

<PAIRSRESPONSE ID="12" RATING="3"/>

</SETRESPONSES>

<GETNEXTQUESTIONSET CID="7" MAX="10"/>

</BATCH>

</BATCHSET>

Precision Choice responds with the following:

<BATCHSET>

<BATCH

UID="user1"

INTERVIEWID="user1:947259311241">

<CMDRESPONSE CID="6" STATUS="OK" />

<CMDRESPONSE CID="7" STATUS="OK">

<QUESTIONSET />

</CMDRESPONSE>

</BATCH></BATCHSET>

In this response, Precision Choice indicates that it accepted the end-user’s
answer to the last Pairs question and that there are no more questions to generate. When
Precision Choice sends an empty QUESTIONSET element, as in the sample code
above (SQUESTIONSET />), there are no more questions in the interview.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

109

Precision Choice would now ask calibration questions, if it were configured to
do so. Calibration questions are not asked by default, and therefore are not included in
this example.

Precision Choice’s questioning process is complete, and Precision Choice is
ready to provide product recommendations to the user. Precision Choice calculates the
utility scores and then compares this information to the products in the catalog. The
products are then ranked and returned. Before getting the product recommendations
from Precision Choice, you must get the scores. To calculate the utilities and return the
first page of products, send the following BATCHSET into Precision Choice:

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947259311241 ">

<GETSCORES CID="1"/>

<GETRECOMMENDATIONS CID="2" MAX="5"/>

</BATCH>

</BATCHSET>

The GETSCORES command is an empty tag that only specifies a command id.
The GETRECOMMENDATIONS command also defines a command id and the
maximum number of products to return. Precision Choice responds to this batch set
with the following response.

<BATCHSET>

<BATCH

UID="user1"

INTERVIEWID="user1:947259311241">

<CMDRESPONSE CID="1" STATUS="OK">

<SCORES>

<ATTRIBUTE

NAME="Category"

RELATIVEIMPORTANCE="0.18824428756238512">

<LEVEL

ID="7"

NAME=""

10

15

20

25

30

WO 00/45319

VALUE="Municipal Bond">
<UTILITY
NAME="FinalScaledUtilities"
VALUE="0.0" />

" </LEVEL>

<LEVEL

ID="6"

NAME=""
VALUE="Corporate Bond">
<UTILITY
NAME="FinalScaledUtilities"
VALUE="0.0" />

</LEVEL>

<LEVEL

ID="5"

NAME=""

VALUE="Equity Income">
<UTILITY
NAME="FinalScaledUtilities"
VALUE="8.0" />

</LEVEL>

<LEVEL

ID="4"

NAME=""
VALUE="Balanced">
<UTILITY
NAME="FinalScaledUtilities"
VALUE="17.0" />
</LEVEL>

<LEVEL

ID="3"

110

PCT/US00/02249

10

15

20

25

30

WO 00/45319

NAME=""
VALUE="International Stock">
<UTILITY
NAME="FinalScaledUtilities"
VALUE="37.0" />
</LEVEL>

<LEVEL

ID="2"

NAME=""

VALUE="Small Company">
<UTILITY
NAME="FinalScaledUtilities"
VALUE="24.0" />
</LEVEL>

<LEVEL

ID="1"

NAME=""
VALUE="Growth">
<UTILITY
NAME="FinalScaledUtilities"
VALUE="25.0" />
</LEVEL>

<LEVEL

ID="0"

NAME=""
VALUE="Aggressive Growth">
<UTILITY
NAME="FinalScaledUtilities"
VALUE="37.0" />
</LEVEL>

</ATTRIBUTE>

111

PCT/US00/02249

10

15

20

25

30

WO 00/45319

112

<ATTRIBUTE
NAME="Morningstar Rating"
RELATIVEIMPORTANCE="0.2509938521942569">
<LEVEL

ID="4"

NAME=""

VALUE="1">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="17.0" />
</LEVEL>

<LEVEL

ID="3"

NAME=""

VALUE="2">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="37.0" />
</LEVEL>

<LEVEL

ID="2"

NAME=""

VALUE="3">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="24.0" />
</LEVEL>

<LEVEL

ID="1" NAME=""
VALUE="4">

<UTILITY

PCT/US00/02249

WO 00/45319

10

15

20

25

30

NAME="FinalScaledUtilities"
VALUE="25.0" />
</LEVEL>

<LEVEL

ID="0"

NAME=""

VALUE="5">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="37.0" />
</LEVEL>

</ATTRIBUTE>
<ATTRIBUTE
NAME="Morningstar Risk"

RELATIVEIMPORTAN CE="0.09292788744402652">

<LEVEL

ID="4"

NAME=""

VALUE="1.5">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="17.0" />
</LEVEL>

<LEVEL

ID="3"

NAME=""

VALUE="1.25">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="37.0" />
</LEVEL>

113

PCT/US00/02249

10

15

20

25

30

WO 00/45319

<LEVEL

ID="2"

NAME=""

VALUE="1.0">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="24.0" />
</LEVEL>

<LEVEL

ID="1"

NAME=""

VALUE="0.75">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="25.0" />
</LEVEL>

<LEVEL

ID="0"

NAME=""

VALUE="0.5">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="37.0" />
</LEVEL>

</ATTRIBUTE>
<ATTRIBUTE
NAME="Three Year Return"

RELATIVEIMPORTANCE="0.3048983003353743">

<LEVEL
ID=" 3 "
NAME=""

114

PCT/US00/02249

WO 00/45319

10

15

20

25

30

VALUE="0">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="37.0" />
</LEVEL>

<LEVEL

ID="2"

NAME=""

VALUE="10">

<UTILITY
NAME="FinalScaledUltilities"
VALUE="24.0" />
</LEVEL>

<LEVEL

ID="1"

NAME=""

VALUE="20">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="25.0" />
</LEVEL>

<LEVEL

ID="0"

NAME=""

VALUE="30">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="37.0" />
</LEVEL>

</ATTRIBUTE>
<ATTRIBUTE

115

PCT/US00/02249

WO 00/45319

10

15

20

25

30

116

NAME="Load"
RELATIVEIMPORTANCE="0.1629356724639573">
<LEVEL

ID="3"

NAME=""

VALUE="6">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="37.0" />
</LEVEL>

<LEVEL

ID="2"

NAME=""

VALUE="4">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="24.0" />
</LEVEL>

<LEVEL

ID="1"

NAME=""

VALUE="2">

<UTILITY
NAME="FinalScaledUtilities"
VALUE="25.0" />
</LEVEL>

<LEVEL

ID="0"

NAME=""

VALUE="0">

<UTILITY

PCT/US00/02249

WO 00/45319

10

15

20

25

30

117

NAME="FinalScaledUtilities"
VALUE="37.0" />

</LEVEL>

</ATTRIBUTE

></SCORES>

</CMDRESPONSE>
<CMDRESPONSE CID="2" STATUS="OK">
<MAXPRODUCTS VALUE="18" />
<PRODUCTS>

<PRODUCT

ID="1"

NAME="Janus Olympus"
FIT="100.0"

RANK="1">

<ATTRIBUTE

NAME="Three Year Return"
VALUE="39.0"

FIT="100.0"
RELATIVEIMPORTANCE="30.0" />
<ATTRIBUTE

NAME="Minimum Investment"
VALUE="2500"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
<ATTRIBUTE

NAME="Load"

VALUE="0.0"

FIT="100.0"
RELATIVEIMPORTANCE="16.0" />
<ATTRIBUTE

NAME="Category"

PCT/US00/02249

WO 00/45319 PCT/US00/02249

10

15

20

25

30

118

VALUE="Aggressive Growth"
FIT="100.0"
RELATIVEIMPORTANCE="19.0" />
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="1.2"

FIT="56.0"
RELATIVEIMPORTANCE="9.0" />
<ATTRIBUTE

NAME="Morningstar Rating"
VALUE="5"

FIT="100.0"
RELATIVEIMPORTANCE="25.0" />
<ATTRIBUTE

NAME="One Year Return"
VALUE="66.5"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
</PRODUCT>

<PRODUCT

ID="11"

NAME="Janus Twenty"

FIT="96.0"

RANK="2">

<ATTRIBUTE

NAME="Three Year Return"
VALUE="47.9"

FIT="100.0"
RELATIVEIMPORTANCE="30.0" />
<ATTRIBUTE

NAME="Minimum Investment"

WO 00/45319 PCT/US00/02249

10

15

20

25

30

119

VALUE="2500"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
<ATTRIBUTE

NAME="Load"

VALUE="0.0"

FIT="100.0"
RELATIVEIMPORTANCE="16.0" />
<ATTRIBUTE

NAME="Category"
VALUE="Growth"

FIT="68.0"
RELATIVEIMPORTANCE="19.0" />
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="0.9"

FIT="78.0"
RELATIVEIMPORTANCE="9.0" />
<ATTRIBUTE

NAME="Morningstar Rating"
VALUE="5"

FIT="100.0"
RELATIVEIMPORTANCE="25.0" />
<ATTRIBUTE

NAME="0One Year Return”
VALUE="79.9"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
</PRODUCT>

<PRODUCT

ID="32"

10

15

20

25

30

WO 00/45319

120

NAME="Robertson Stephens Emerging Growth A"
FIT="82.0"

RANK="3">

<ATTRIBUTE

NAME="Three Year Return"
VALUE="31.6"

FIT="100.0"
RELATIVEIMPORTANCE="30.0" />
<ATTRIBUTE

NAME="Minimum Investment"
VALUE="5000"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
<ATTRIBUTE

NAME="Load"

VALUE="0.0"

FIT="100.0"
RELATIVEIMPORTANCE="16.0" />
<ATTRIBUTE

NAME="Category"

VALUE="Small Company"
FIT="65.0"
RELATIVEIMPORTANCE="19.0" />
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="1.7"

FIT="0.0"
RELATIVEIMPORTANCE="9.0" />
<ATTRIBUTE

NAME="Morningstar Rating"
VALUE="4"

PCT/US00/02249

10

15

20

25

30

WO 00/45319

121

FIT="76.0"
RELATIVEIMPORTANCE="25.0" />
<ATTRIBUTE

NAME="0One Year Return"
VALUE="38.5"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
</PRODUCT>

<PRODUCT

ID="83"

NAME="Janus Balanced"

FIT="78.0"

RANK="4">

<ATTRIBUTE

NAME="Three Year Return"
VALUE="24.3"

FIT="72.0"
RELATIVEIMPORTANCE="30.0" />
<ATTRIBUTE

NAME="Minimum Investment"
VALUE="2500"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
<ATTRIBUTE

NAME="Load"

VALUE="0.0"

FIT="100.0"
RELATIVEIMPORTANCE="16.0" />
<ATTRIBUTE

NAME="Category"
VALUE="Balanced"

PCT/US00/02249

WO 00/45319 PCT/US00/02249

10

15

20

25

30

122

FIT="46.0"
RELATIVEIMPORTANCE="19.0" />
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="0.5"

FIT="100.0"
RELATIVEIMPORTANCE="9.0" />
<ATTRIBUTE

NAME="Morningstar Rating"
VALUE="4"

FIT="76.0"
RELATIVEIMPORTANCE="25.0" />
<ATTRIBUTE

NAME="0One Year Return"
VALUE="28.2"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
</PRODUCT>

<PRODUCT

ID="4"

NAME="Alger Capital Appreciation B"
FIT="78.0"

RANK="5">

<ATTRIBUTE

NAME="Three Year Return"
VALUE="28.1"

FIT="90.0"
RELATIVEIMPORTANCE="30.0" />
<ATTRIBUTE

NAME="Minimum Investment"

VALU'E="0"

WO 00/45319

10

15

20

25

30

123

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
<ATTRIBUTE

NAME="Load"

VALUE="5.0"

FIT="9.0"
RELATIVEIMPORTANCE="16.0" />
<ATTRIBUTE

NAME="Category"
VALUE="Aggressive Growth"
FIT="100.0"
RELATIVEIMPORTANCE="19.0" />
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="1.4"

FIT="22.0"
RELATIVEIMPORTANCE="9.0" />
<ATTRIBUTE

NAME="Morningstar Rating"
VALUE="5"

FIT="100.0"
RELATIVEIMPORTANCE="25.0" />
<ATTRIBUTE

NAME="0One Year Return"
VALUE="47.4"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
</PRODUCT>

</PRODUCTS>
</CMDRESPONSE>

</BATCH>

PCT/US00/02249

WO 00/45319 PCT/US00/02249

10

15

20

25

30

124

</BATCHSET>

The first CMDRESPONSE in this BATCHSET indicates that the GETSCORES
command was completed successfully. Scores are produced for each attribute and each
level defined in the study. The ATTRIBUTE tag displays a new parameter,
RELATIVEIMPORTANCE. Every attribute in the study has
RELATIVEIMPORTANCE value that is decimal. Each LEVEL of an attribute is
returned, and this element contains the calculated utilities for that level. Only the final
scaled utility value is contained in the response. For details on how to interpret and use
the final scaled utility, see the foregoing discussion.

The second command response contains the recommended products. Since the
GETRECOMMENDATIONS command set MAX to five, five products are returned.
The total number of products in the catalog is also returned in the MAXPRODUCTS
element. This value is used to display to the end-user statements like "Product 1 of
18."The products are contained in a PRODUCTS element. Two new parameters are
displayed in the PRODUCTS tag: FIT and RANK. FIT is a number between 0 and 100
that indicates how closely this product matches the end-user's product preferences.
Every product in the recommendation set contains this value. The RANK parameter
identifies where this product stands in relation to the other products in the catalog.
RANK number one is the product that best matches the end-user's preferences. All
product attributes, not just the attributes defined in the study, are returned in the
PRODUCT element. FIT and RELATIVEIMPORTANCE parameters are added to the
ATTRIBUTE tag. The FIT parameter defines how closely the value of the product’s
attribute matches the end-user’s preferences. If this attribute is not defined in the study,
FIT is -1. RELATIVEIMPORTANCE defines how important this attribute is to the
end-user. It is -1 when this attribute is not defined in the study.

The first time that you call GETRECOMMENDATIONS, Precision Choice
stores the user's preferences and top five product recommendations for later analysis.
To continue with more product recommendations, you need to send in the
GETRECOMMENDATIONS command specifying how many products to return. You

can only move down the list.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

125

Once an end-user has finished viewing all of the recommendations that he or
she wants to see, the end-user should end the interview. Ending the interview allows
Precision Choice to reclaim any resources in use for this interview. To get another set
of recommendations and to end the interview, send the following BATCHSET:

<BATCHSET>

<BATCH UID="user1" INTERVIEWID="user1:947259311241">

<GETRECOMMENDATIONS CID="2" MAX="1"/>

<ENDINTERVIEW CID="3" />

</BATCH>

</BATCHSET>

Precision Choice responds with the following BATCHSET:

<BATCHSET>

<BATCH

UID="user1"

INTERVIEWID="user1:947259311241">

<CMDRESPONSE CID="2" STATUS="0OK">

<MAXPRODUCTS VALUE="18" />

<PRODUCTS>

<PRODUCT

ID="14"

NAME="WM Growth A"

FIT="72.0"

RANK="6">

<ATTRIBUTE

NAME="Three Year Return"

VALUE="31.8"

FIT="100.0"

RELATIVEIMPORTANCE="30.0" />

<ATTRIBUTE

NAME="Minimum Investment"

VALUE="1000"

WO 00/45319 PCT/US00/02249

10

15

20

25

30

126

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
<ATTRIBUTE

NAME="Load"

VALUE="5.5"

FIT="6.0"
RELATIVEIMPORTANCE="16.0" />
<ATTRIBUTE

NAME="Category"
VALUE="Growth"

FIT="68.0"
RELATIVEIMPORTANCE="19.0" />
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="1.2"

FIT="56.0"
RELATIVEIMPORTANCE="9.0" />
<ATTRIBUTE

NAME="Morningstar Rating"
VALUE="4"

FIT="76.0"
RELATIVEIMPORTANCE="25.0" />
<ATTRIBUTE

NAME="One Year Return"
VALUE="63.3"

FIT="-1.0"
RELATIVEIMPORTANCE="-1.0" />
</PRODUCT>

</PRODUCTS>
</CMDRESPONSE>
<CMDRESPONSE CID="3" STATUS="OK" />

WO 00/45319 PCT/US00/02249

10

15

20

25

30

127

</BATCH></BATCHSET>

This BATCHSET shows that the seccond GETTRECOMMENDATIONS
command was successfully completed. This time one product is returned, the sixth
product in rank, since the command specified MAX of 1. ENDINTERVIEW, the
seéond command, was also completed successfully. The interview is complete, and
Precision Choice has reclaimed all resources by this point.
Precision Choice XML Command Language

The forgoing present elements and attributes of the Precision Choice command
language. Commands are grouped according to their function: Administration or
Interview

The Administration commands are the following:

e SETSTUDY

e SETCATALOG

e GETSTATUS

The Interview commands are the following:

e STARTINTERVIEW

e GETNEXTQUESTIONSET

¢ SETRESPONSES

¢ GETSCORES

e GETRECOMMENDATIONS

e ENDINTERVIEW

All Precision Choice commands are defined in a inputcmd.dtd file. All
responses from Precision Choice are defined in a outputcmd.dtd file.
Administration Commands

Administration commands are not used within the context of a specific
interview. Usually, they are used to provide information for the interview sessions in
Precision Choice.

SETSTUDY Command

Use the SETSTUDY command to load a study into Precision Choice.

Interviews are based upon studies that must be loaded into Precision Choice before an

WO 00/45319 PCT/US00/02249

10

15

20

25

30

128

interview can reference the study. Normally, the defined studies are loaded when
Precision Choice is started, but a study can be loaded as part of an interview by
preceding the STARTINTERVIEW command with the SETSTUDY command.

The SETSTUDY command has two formats. One format allows a study file to
be loaded into Precision Choice. This format is a tag with only attributes. The other
format allows the study XML document to be defined and loaded directly in the
SETSTUDY command. This format defines the SETSTUDY command with two
attributes and one element that contains the study definition.

Format 1 of the SETSTUDY Command:

<SETSTUDY CID="1" NAME="computerfinder">

<study name="computerfinder" version="1.0">

<attribute desc="Brand" unit="text">

<level>Compaq</level>

<level>Dell</level>

<level>Gateway</level>

<level>HP</level>

<level>IBM</level>

</attribute>

<attribute

desc="Price"

unit="currency"

interpolate="yes"

apriori="yes">

<level>1800</level>

<level>2600</level>

<level>3400</level>

<level>4200</level>

<level>5000</level>

</attribute>

</study>

</SETSTUDY>

WO 00/45319 PCT/US00/02249

10

15

20

25

30

129

Elements of Format 1 of the SETSTUDY Command

Note: XML is case-sensitive.

SETSTUDY: Tag containing the study definition.

CID: The command identification returned with the response to this command.
This value can be used to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use the value,
but returns it in the response to the command.

NAME: The name the STARTINTERVIEW command uses to reference the
study that you are loading. It is alphanumeric and required.

study Definition

The study definition is used to define a study in Precision Choice. The study
provides information Precision Choice needs to perform interviews with users. A study
defines features of a particular product that are used to determine end-user preferences.
For example, if the product were a laptop computer, attributes might include price,
brand, CPU, and hard drive size. Only features that impact end-users’ decision-making
processes should be defined in the study. The study definition is never sent directly to
Precision Choice.

Format of the study Definition

<study name="notebookcomputers" version="1.0">

<attribute desc="Brand" unit="text">

<level>Compaq</level>

<level>Dell</level>

<level>Gateway</level>

<level>HP</level>

<level>IBM</level>

</attribute>

<attribute

desc="Price"

unit="currency"

interpolate="yes"

apriori="yes">

WO 00/45319 PCT/US00/02249

10

15

20

25

30

130

<level>1800</level>

<level>2600</level>

<level>3400</level>

<level>4200</level>

<level>5000</level>

</attribute>

<defaultquestions>

<defaultquestion

type="rating">Please, rate these attributes

</defaultquestion>

<defaultquestion

type="pairs">Please, choose a sample.

</defaultquestion>

</defaultquestions>

</study>

Elements of the study Definition

Note: XML is case-sensitive.

study: Tag containing elements that define a study.

name: The study’s name. This name is for the study administrator’s purposes
only. Precision Choice does not use it. This is not the same as the NAME element of
the SETSTUDY command.

version: The study’s version. The version is for the study administrator’s
purposes only. Precision Choice does not use it.

attribute: Defines an attribute of the study. An attribute is a feature that users
would find important about the product. There must be at least three attributes defined
in a study.

desc: A textual description of an attribute. This information becomes part of the
questions Precision Choice generates and is required for each attribute. A desc is
alphanumeric and can contain multiple words.

units: Defines how to display the attribute’s levels. The units must be defined in

the units.xml file and are required.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

131

interpolate: Tells Precision Choice whether values of the levels can be
interpolated. Typically, attributes such as “Brand" are not interpolated; attributes such
as "Price" are interpolated. This element is not required. The elements can be either
"Yes" or "No." If it is not present, the value is assumed to be "no."

apriori: If the attribute’s levels have an assumed choice, the value should be
"Yes." An example of this element is "Price." When provided a choice, almost
everyone wants the lowest price. The order in which levels are defined in the XML
document determines the best and worst values. The first level defined is assumed to be
the best choice, and the last level defined is assumed to be the least desirable choice.
This element is not required, and the default value is "No."

level: Defines some possible values for an attribute. At least two levels per
attribute are required.

defaultquestions: This tag contains the default questions for this study.

defaultquestion: This tag defines a default question to use for each question type
that Precision Choice supports: rating, importance, pairs, and calibration. This element
is not required. Default questions are returned with the response to
GETNEXTQUESTIONSET. The application can decide whether to use the text.

type: This is the value for the type of question: rating, importance, pairs, or
calibration.

Format 2 of the SETSTUDY Command

<SETSTUDY

CIb="1"

NAME="computerfinder"

URL="http://www.onlineinsight.com/study.xml" />

Elements of Format 2 of the SETSTUDY Command

Note: XML is case-sensitive.

SETSTUDY: Command tag for setting the study. In this case, it does not
contain additional attributes.

CID: The command identification returned with the response to this command.

This value is used to associate the Precision Choice response with the command that

WO 00/45319 PCT/US00/02249

10

15

20

25

30

132

caused it. It is alphanumeric and required. Precision Choice does not use the value, but
returns it in the response to the command.

NAME: The name the STARTINTERVIEW command uses to reference the
study that you are loading. It is alphanumeric and required.

URL: The address of an XML document that defines a study. The document
must validate successfully against the study.dtd file (for details, see Appendix A) and
must be a valid Universal Resource Locator (URL) value. The machine where
Precision Choice is running must have access to this URL and privileges to read the
document this address indicates. The XML document that this URL points to must
conform to the study definition.

Response Format 1 (Successful)

<CMDRESPONSE CID="1" STATUS="0K"/>

Elements of Response Format 1

Note: XML is case-sensitive.

CMDRESPONSE: This tag contains the Precision Choice response to a
command.

CID: The command identification defined in the command that generated this
response. This value can be used to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value is "OK".

Response Format 2 (Error)

<CMDRESPONSE CID="878" STATUS="ERR">

<MESSAGE ID="234">Duplicate study.</MESSAGE>

</CMDRESPONSE>

Elements of Response Format 2

Note: XML is case-sensitive.

CMDRESPONSE: Tag containing the error message.

CID: The command identification defined in the command that generated the
response. This value can be used to associate the response with the command that
caused the response.

STATUS: If the command was unsuccessful, the value is "ERR".

WO 00/45319 PCT/US00/02249

10

15

20

25

30

133

MESSAGE: Tag containing the error message.

ID: The error’s ID number. This ID can be used to perform an action or to
convert the error message into text customized for your application.

SETCATALOG Command

Use the SETCATALOG command to load a catalog into Precision Choice.
Interviews are based upon studies and catalogs that must be loaded into Precision
Choice before an interview can reference them. Although defined catalogs are normally
loaded when Precision Choice is started, a catalog can be loaded as part of an interview
by preceding the STARTINTERVIEW command with the SETCATALOG command.

The SETCATALOG command has two formats. One format allows a catalog
file to be loaded into Precision Choice. This format is a tag with only attributes. The
other format allows the catalog file to be defined and loaded directly in the
SETCATALOG command. This format defines the SETCATALOG command with
two attributes and one element that contains the catalog definition.

Format 1 of the SETCATALOG Command

<SETCATALOG CID="1 NAME="computerproducts">

<catalog name="computerproducts "version="1.0">

<product

id="1"

name="Compaq Presario 1900">

<attribute id="Brand">Compaq</attribute>

<attribute id="Price">2950</attribute>

<attribute id="RAM">128</attribute>

<attribute id="Speed">366</attribute>

<attribute id ="Processor">Pentium I</attribute>

<references>

<reference type="image">someimage.jpg</reference>

<reference

type="details">inspiron7000.html</reference>

<references>

</product>

WO 00/45319 PCT/US00/02249

10

15

20

25

30

134

</catalog>

</SETCATALOG>

Elements of Format 1 of the SETCATALOG Command

Note: XML is case-sensitive.

SETCATALOG: Tag containing the catalog definition.

CID: The command identification returned with the response to this command.
This value is used to associate the Precision Choice response with the command that
caused it. It is alphanumeric and required. Precision Choice does not use the value but
returns it in the response to the command.

NAME: The name the STARTINTERVIEW command uses to reference the
catalog you are loading. It is alphanumeric and required.

The catalog Definition

The catalog definition defines the products available for an interview. At the
end of an interview, Precision Choice recommends products that meet an end-user’s
criteria. This command defines available products to search through. There must be at
least one value for every attribute defined in the study for each product in the catalog.
The catalog can define attributes that are not in the study. All attributes of a product are
returned in the product recommendations. The catalog definition is never sent directly
to Precision Choice. The reference tag is provided to store other types of data with the
product. The references are returned with the GETRECOMMENDATIONS command,
and the application can use them.

Format of the catalog Definition

<catalog name="computerproducts" version="1.0">

<product

id="1"

name="Compaq Presario 1900">

<attribute id="Brand">Compaq</attribute>

<attribute id="Price">2950 </attribute>

<attribute id="RAM">128 </attribute>

<attribute id="Speed">366 </attribute>

<attribute id = "Processor">Pentium II</attribute>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

135

<references>

<reference

type="image">someimage.jpg</reference>

<reference

type="details">inspiron7000.html</reference>

</references>

</product>

<product

id="2"

name="Compaq Prosignia 150">

<attribute id="Brand">Compaq </attribute>

<attribute id="Price">1800 </attribute>

<attribute id="RAM">32 </attribute>

<attribute id="Speed">350 </attribute>

<attribute id = "Processor">K-6</attribute>

</product>

</catalog>

Elements of the catalog Definition

Note: XML is case-sensitive.

catalog: Contains all products for a catalog.

name (for the catalog tag): Catalog’s name. This name is for your purposes
only. Precision Choice does not use it. This is not the same as the NAME element in
the SETCATALOG command.

version: Defines the catalog’s version. It is for your purposes only. Precision
Choice does not use it.

product: Tag that defines a product. All attributes and references for a product
are defined in this element, as well as a text name of the product. This value is intended
to be displayed to the end-user.

id (for the product tag): The product key. The value must be unique in the
catalog. This element is required and alphanumeric. Precision Choice uses this value as

a unique identifier for each product in the catalog.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

136

name (for the product tag): Product name. This element is required and
alphanumeric. It can be displayed to the user.

attribute: Defines an attribute of the product. An attribute is a product feature
that end-users may find important. A product must have a product attribute that
corresponds with each attribute defined in the study, though it may have additional
attributes not defined in the study. The value of the product attribute is defined in this
clement.

id (for the attribute tag): If this attribute provides information for an attribute
defined in the study, the value should match the desc of the attribute defined in a study.
It is required.

references: Tag that contains all references for a product. It is not required.

reference: Tag that defines a product reference: it could be an HTML page, jpeg
file, or anything associated with the product. This tag is optional and can only be
contained in a references tag. Precision Choice does not use this information, but
simply returns it in the response to the GETRECOMMENDATIONS command.

type: Defines the type of reference. Precision Choice does not use this, but it is
available for an application to base processing on. This value is returned in the response
to the GETRECOMMENDATIONS command.

Format 2 of the SETCATALOG Command

<SETCATALOG

CID="2"

NAME="computerproducts"

URL="http://www.onlineinsight.com/products.xml" />

Elements of Format 2 of the SETCATALOG Command

Note: XML is case-sensitive.

SETCATALOG: Command tag for setting the catalog. In this case, it does not
contain additional attributes.

CID: The command identification returned with the response to this command.
This value can be used to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use this value

but returns it in the response to the command.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

137

NAME: The name the STARTINTERVIEW command uses to reference the
catalog you are loading. It is alphanumeric and required.

URL: The address of an XML document that defines a study. The document
must validate successfully against the catalog.dtd file (for details, see Appendix A) and
must be a valid Universal Resource Locator (URL) value. The machine where
Precision Choice is running must have access to this URL and privileges to read the
document this address indicates. The XML document that this URL points to must
conform to the catalog definition.

Response Format 1(Successful)

<CMDRESPONSE CID="1" STATUS="OK"/>

Elements of Response Format 1

Note: XML is case-sensitive.

CMDRESPONSE: This tag contains the Precision Choice response to a
command.

CID: The command identification defined in the command that generated the
response. This value can be used to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value is "OK".

Response Format 2 (Error)

<CMDRESPONSE CID="878" STATUS="ERR">

<MESSAGE ID="234">Duplicate catalog.</MESSAGE>

</CMDRESPONSE>

Elements of Response Format 2

Note: XML is case-sensitive.

CMDRESPONSE: Tag containing the error message.

CID: The command identification defined in the command that generated the
response. This value can be used to associate the response with the command that
caused the response.

STATUS: If the command was unsuccessful, the value is "ERR".

MESSAGE: This tag contains the error message.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

138

ID: The error’s ID number. This ID can be used to perform an action or to
convert the error message into text customized for your application.

GETSTATUS Command

Use the GETSTATUS command to obtain statistics on a cluster of Precision
Choice engines. You can see how many active interviews are in progress and how
much memory is free in the cluster.

Format of the GETSTATUS Command

<GETSTATUS CID="5"/>

Elements of the GETSTATUS Command

Note: XML is case-sensitive.

GETSTATUS: Tag containing the command that obtains statistics on a cluster
of Precision Choice engines.

CID: The command identification returned with the response to this command.
You can use this value to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use the value
but returns it in the response to the command.

Response Format 1(Successful)

<CMDRESPONSE CID="5" STATUS="0OK" >

<NUMINTERVIEWS>27</NUMINTERVIEWS>

<FREEMEMORY>1000000</FREEMEMORY>

</CMDRESPONSE>

Elements of Response Format 1

Note: XML is case-sensitive.

CMDRESPONSE: Tag containing statistics for a cluster of Precision Choice
engines.

CID: The command identification defined in the command that generated the
response. This value can be used to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value is "OK".

NUMINTERVIEWS: Tag returning the number of active interviews for a

particular cluster of Precision Choice engines.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

139

FREEMEMORY: Tag returning the amount of free memory available in the
cluster of Precision Choice engines.

Response Format 2 (Error)

<CMDRESPONSE CID="5" STATUS="ERR">

<MESSAGE ID="100">Precision Choice not responding.

</MESSAGE>

</CMDRESPONSE>

Elements of Response Format 2

CMDRESPONSE: Tag containing the error message.

CID: The command identification defined in the command that generated the
response. This value can be used to associate the response with the command that
caused the response.

STATUS: If the command was unsuccessful, the value is "ERR".

MESSAGE: Tag containing the error message.

ID: The error’s ID number. This ID can be used to perform an action or to
convert the error message into text customized for your application.

Interview Commands

Use interview commands to conduct an interview with Precision Choice. All the
interview commands are grouped inside a batch tag. Herein, the commands are listed
separately, but they can be combined inside a BATCH tag and sent all at once.

STARTINTERVIEW

GETNEXTQUESTIONSET

SETRESPONSES

GETSCORES

GETRECOMMENDATIONS

ENDINTERVIEW

The BATCH Tag

All Interview commands must be located inside a BATCH element. There may
be one or more than one Interview commands included in each BATCH element. There
are three elements in the BATCH tag.

Elements of the BATCH Tag

10

15

20

25

30

WO 00/45319 PCT/US00/02249

140

BATCH: Tag containing a batch of commands. It must be provided for any
batch command.

UID: User identification the application provides. Precision Choice associates
interview results with this User ID. It is alphanumeric and required.

INTERVIEWID: This element associates commands with a particular
interview. It is not needed for the batch with a STARTINTERVIEW command but is
required for all subsequent batches. If the INTERVIEWID is not defined in the batch
tag, Precision Choice assumes that the batch is a new interview. Precision Choice
generates a unique ID and assigns it to the INTERVIEWID. It is returned in the batch
response. All future batches for the interview must contain the returned
INTERVIEWID, or the batch is rejected.

STARTINTERVIEW Command

Use the STARTINTERVIEW command to begin an interview: it must precede
any other Interview commands. You tell Precision Choice which previously loaded
study and catalog to use in this interview.

User-specific attributes can also be defined for this interview. User-specific
attributes can be dynamically loaded at interview time and can apply only to the
specific interview. For example, if there is an attribute of a product called "Cost of
Ownership" that differs for types of end-users, you can use a user-specific attribute to
model this.

The attribute and value for each product for a specific type of user can be
loaded during the STARTINTERVIEW command. Precision Choice calculates the
levels of a USERATTR.

In this version of Precision Choice, the values of a USERATTR must be able to
be interpolated and numeric. Precision Choice calculates four levels for the
USERATTR: the lowest value, the highest value, and two equidistant values of the
product values provided in this tag. There must be a value for every product in the
catalog. The RANKORDER tag determines the order of the levels.

Format of the STARTINTERVIEW Command

<BATCH UID="678" >

<STARTINTERVIEW

WO 00/45319 PCT/US00/02249

10

15

20

25

30

141

CID="3"

STUDY="noteboookstudy"

CATALOG="notebookproducts">

<USERATTR

NAME="Cost of Ownership"

UNIT="currency"

INTERPOLATE="yes"

APRIORI="yes"

EXCLUDEFROMPAIRS="no"

RANKORDER="ascending">

<PRODKEY ID="5" VALUE="2500.00"/>

<PRODKEY ID="8" VALUE="1000.00"/>

</USERATTR>

</STARTINTERVIEW>

</BATCH>

Elements of the STARTINTERVIEW Command

Note: XML is case-sensitive.

STARTINTERVIEW: Tag specifying the study and catalog to use in this
interview. This tag may contain any user-specific attributes.

CID: The command identification returned with the response to this command.
You can use this value to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use the value,
but returns it in the response to the command.

STUDY: Name of the study to use for this interview. This name must match the
name in the SETSTUDY command used to load the study. It is required.

CATALOG: Name of the catalog to use for this interview. This name must
match the name in the SETCATALOG command used to load the catalog. It is
required.

USERATTR: Tag defining an attribute for this interview, used only for this
interview. This allows your application dynamically to develop an attribute and its

levels for a particular user. These attributes are not visible to any other interview.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

142

NAME: Text description of the attribute. This information becomes part of the
questions Precision Choice generates. It is required for each attribute. It is
alphanumeric and can contain multiple words.

UNIT: Defines how to display the attribute’s levels. The unit must be defined in
the units.xml file and is required.

INTERPOLATE: Value telling Precision Choice whether values of the levels
can be interpolated. Typically, attributes such as "Brand" are not interpolated; attributes
such as "Price" are interpolated. It is not required. It can be either "Yes" or "No." If it is
not present, Precision Choice assumes that the value is "No."

APRIORI: If the levels of an attribute have an assumed choice, this value
should be "Yes." An example is "Price": if provided a choice, virtually everyone wants
the lowest price. It is not required, and the default value is "No." If this tag’s value is
"Yes," RANKORDER must be specified in the USERATTR tag.

EXCLUDEFROMPAIRS: Tag telling Precision Choice whether to exclude this
attribute in the pairs questions. Value can be either "Yes" or "No." It is not required,
and the default value is "No."

RANKORDER: Value is used in conjunction with the APRIORI switch. If
APRIORI is "Yes," RANKORDER is required. RANKORDER tells Precision Choice
how to order the levels of the user attribute: values are "ascending” and "descending."
If the value is "ascending," Precision Choice orders the levels in ascending order, and
the best value is the lowest. If the value is "descending," Precision Choice orders the
levels in descending order, and the best value is the highest.

PRODKEY: Each product in the catalog must have a unique value defined for
this attribute. You define a value for each product with this tag.

ID: The key of the product. It must be unique in the catalog. This element is
required and alphanumeric. It must match the ID defined in the catalog definition.

VALUE: The value for the attribute of this product. It is required.

Response Format 1 (Successful)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="3" STATUS="0OK"/>

</BATCHRESPONSE>

WO 00/45319 PCT/US00/02249

10

15

20

25

30

143

Elements of Response Format 1

Note: XML is case-sensitive.

BATCHRESPONSE: The response to a batch command. A
BATCHRESPONSE contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: This tag contains the Precision Choice response to a
command.

CID: The command identification defined in the command that generated the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value is "OK".

Response Format 2 (Error) -

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="878" STATUS="ERR">

<MESSAGE ID="412">STUDY not found.</MESSAGE>

</CMDRESPONSE>

<BATCHRESPONSE>

Elements of Response Format 2

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag. »

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the error message.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

144

CID: The command identification defined in the command that generated the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was unsuccessful, the value is "ERR".

MESSAGE: Tag containing the error message.

ID: The error’s ID number. This ID can be used to perform an action or to
convert the error message into text customized for your application.

GETNEXTQUESTIONSET Command

Use the GETNEXTQUESTIONSET command to get questions from Precision
Choice. Precision Choice can generate four types of questions:

ratings

importance

pairs

calibration

Questions are generated in the order listed above. A question must be generated
before a SETREPONSE for the question can be sent to Precision Choice. All ratings
and Importance questions must be generated and answered before the GETSCORES
command can be sent to Precision Choice.

<BATCH UID="678" INTERVIEWID="123">

<GETNEXTQUESTIONSET CID="3" MAX="5"/>

</BATCH>

Elements of the GETNEXTQUESTIONSET

Command

Note: XML is case-sensitive.

GETNEXTQUESTIONSET: Tag that causes Precision Choice to generate and
return interview questions. If the interview is complete, an empty question set is
returned.

CID: The command identification returned with the response to this command.
This value can be used to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use the value

but returns it in the response to the command.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

145

MAX: Specifies the maximum number of questions to return with this attribute.
Precision Choice generates questions and returns up to the maximum number you
specify with this element. Precision Choice can generate up to a certain amount of
questions for each section. For ratings questions, the maximum number of questions
thaf Precision Choice can generate equals the number of attributes in the study minus
the number of a priori attributes in the study.

Precision Choice can generate ratings questions for all non-a priori attributes
defined in the study. When an end-user has answered all ratings questions, Precision
Choice can generate importance questions for all attributes defined in the study. Pairs
questions are created individually; each pairs question is based upon an end-user’s
answers to previous questions. Once all pairs questions have been generated and
answered, Precision Choice can create calibration questions. The number of calibration
questions that Precision Choice can generate is defined in PrecisionChoice.properties.

By default, Precision Choice generates pairs questions in the following way.
Precision Choice asks seven total pairs questions. The first three pairs questions
compare sample products with two attributes each. The next three questions compare
sample products with three attributes each. The last question compares two products
with four attributes each. By default, Precision Choice does not ask calibration
questions.

Response Format 1(Ratings question)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="3" STATUS="0K">

<QUESTIONSET>

<RATINGQUESITON ID="12" >

<ATTRIBUTE ID="134" NAME="CPU" >

<LEVEL ID="845" VALUE="PII 233" />

<LEVEL ID="846" VALUE="P III 360" />

<LEVEL ID="847" VALUE="P III 450" />

<LEVEL ID="848" VALUE="PPC 360" />

<LEVEL ID="849" VALUE= "Sparc Ultra 350" />

</ATTRIBUTE>

WO 00/45319 PCT/US00/02249

10

15

20

25

30

146

<DEFAULTQUESTION>Rate these attributes.

</DEFAULTQUESTION>

</RATINGQUESITON>

</QUESTIONSET>

</CMDRESPONSE>

</BATCHRESPONSE>

Elements of Response Format 1

Note: XML is case-sensitive.

BATCHRESPONSE: The response to a batch command. A
BATCHRESPONSE contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the questions Precision Choice generates.

CID: The command identification defined in the command that generated the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value is "OK".

QUESTIONSET: Tag containing the questions.

RATINGSQUESTION: Tag identifying a Ratings question, i.e., a question that
asks a user to identify how much he or she prefers the different levels of an attribute.

ID (for RATINGSQUESTION tag): The question’s ID. In the SETRESPONSE
command, this identifies the question being answered. This ID can be used to answer
this question any time during the interview, and the end-user can answer the question
more than once. For example, Precision Choice may generate question 1 and then
receive an answer, and then do the same for questions 2 and 3. After this, Precision
Choice generates question 4.

Imagine that before the end-user sends the answer to this question, he or she

moves back to question 2 and re-answers it. Precision Choice over-writes the previous

WO 00/45319 PCT/US00/02249

10

15

20

25

30

147

answer for question 2 and then removes the generated questions 3 and 4. The next
GETRECOMMENDATIONSET command causes Precision Choice to generate a new
question 3, and the interview proceeds from that point.

ATTRIBUTE: Tag containing the levels to display to your user when Precision
Choice asks a ratings question.

ID (for ATTRIBUTE tag): The attribute’s ID that Precision Choice returns. You
should use this ID in the SETRESPONSE command to reference this attribute.

NAME: Description of the attribute defined in the study and displayed to the
end-user.

LEVEL: Tags returning the attribute’s levels defined in the study.

ID (for LEVEL tag): The level’s ID that Precision Choice returns. It should be
used in the SETRESPONSE command to reference this level.

VALUE: The level’s value defined in the study. It should be displayed to the
user when Precision Choice presents this question.

DEFAULTQUESTION: The default question defined in the study that may be
displayed to the end-user.

Response Format 2 (Importance question)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="3" STATUS="0OK">

<QUESTIONSET>

<IMPORTANCEQUESTION ID="13" >

<ATTRIBUTE

ID="134"

NAME="Processor"

BEST="Sparc Ultra 350"

WORST="P II 233" />

<ATTRIBUTE

ID="135"

NAME="Hard drive"

BEST="50"

WORST="3" />

WO 00/45319 PCT/US00/02249

10

15

20

25

30

148

<DEFAULTQUESTION>

Rank the importance of these attributes.

</DEFAULTQUESTION>

</IMPORTANCEQUESTION>

</QUESTIONSET>

</CMDRESPONSE>

</BATCHRESPONSE>

Elements of Response Format 2

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the questions Precision Choice generates.

CID: The command identification defined in the command that generates the
response. This value can be used to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value 1s "OK".

QUESTIONSET: Tag containing the questions.

IMPORTANCEQUESTION: Tag identifying an importance question, i.e., a
question that asks an end-user to quantify how important a particular attribute is in his
or her decision-making process.

ID (for IMPORTANCEQUESTION tag): The question’s ID. In the
SETRESPONSE command, this identifies the question being answered. This ID can be
used to answer this question any time during the interview, and the end-user can answer
the question more than once. For example, Precision Choice may generate question 1
and then receive an answer, and then do the same for questions 2 and 3. After this,

Precision Choice generates question 4.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

149

Imagine that before the end-user sends the answer to this question, he or she
moves back to question 2 and re-answers it. Precision Choice over-writes the previous
answer for question 2 and then removes the generated questions 3 and 4. The next
GETRECOMMENDATIONSET command causes Precision Choice to generate a new
question 3, and the interview proceeds from that point.

ATTRIBUTE: Tag defining an attribute used in an Importance question.

ID (for ATTRIBUTE tag): The attribute’s ID that Precision Choice returns. You
should use it in the SETRESPONSE command to reference this attribute.

NAME: Description of the attribute defined in the study and displayed to the
end-user.

BEST: The best level of the attribute. This value can be displayed to the end-
user to help him or her determine how important this attribute is in the decision-making
process.

WORST: The worst level of the attribute. This value can be displayed to the
end-user to help him or her determine how important this attribute is in the decision-
making process.

DEFAULTQUESTION: The default question defined in the study that may be
displayed to the end-user.

Response Format 3 (Pairs question)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="3" STATUS="OK">

<QUESTIONSET>

<PAIRSQUESTION ID="14">

<SAMPLE SIDE="low">

<ATTRIBUTE ID="134" NAME="Processor" >

<LEVEL VALUE="P II 300"/>

</ATTRIBUTE>

<ATTRIBUTE ID="135" NAME="Hard drive" >

<LEVEL VALUE="10.2"/>

</ATTRIBUTE>

</SAMPLE>

10

15

20

25

30

WO 00/45319 PCT/US00/02249

150

<SAMPLE SIDE="high">

<ATTRIBUTE ID="134" NAME="Processor">

<LEVEL VALUE="P II 450"/>

</ATTRIBUTE>

<ATTRIBUTE ID="135" NAME="Hard drive" >

<LEVEL VALUE="5.2"/>

</ATTRIBUTE>

</SAMPLE>

<DEFAULTQUESTION>Which pair is better?

</DEFAULTQUESTION>

</PAIRSQUESTION>

</QUESTIONSET>

</CMDRESPONSE>

</BATCHRESPONSE>

Elements of Response Format 3

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the questions Precision Choice generates.

CID: The command identification defined in the command that generates the
response. You can use this value to associate the response with the command that
causes the response.

STATUS: If the command was successful, the value is "OK".

QUESTIONSET: Tag containing the questions.

PAIRSQUESTION: Tag identifying a pairs question, i.e., a question that shows

two sample products and asks an end-user to rate his or her user preference between the

WO 00/45319 PCT/US00/02249

10

15

20

25

30

151

two sample products on a scale of 1 to 9. The samples are identified by "low" and
"high." The greater the user prefers the "low" sample, the closer to 1 his or her response
should be. The greater the user prefers the "high" sample, the closer to 9 his or her
response should be. If the user has no preference between the two products, the answer
should be five. This is required and must be a whole number.

ID (for PAIRSQUESTION tag): The question’s ID. In the SETRESPONSE
command, this identifies the question being answered. This ID can be used to answer
this question any time during the interview, and the end-user can answer the question
more than once. For example, Precision Choice may generate question 1 and then
receive an answer, and then do the same for questions 2 and 3. After this, Precision
Choice generates question 4.

Imagine that before the end-user sends the answer to this question, he or she
moves back to question 2 and re-answers it. Precision Choice over-writes the previous
answer for question 2 and then removes the generated questions 3 and 4. The next
GETRECOMMENDATIONSET command causes Precision Choice to generate a new
question 3, and the interview proceeds from that point.

SAMPLE: Tag identifying the sample product.

SIDE: Values can be "low" or "high."

ATTRIBUTE: Tag defining an attribute of the sample product.

ID (for ATTRIBUTE tag): The attribute’s ID.

NAME: Description of the attribute defined in the study and displayed to the

user.
LEVEL: Tag defining the attribute’s level in this sample product.
VALUE: Value of the level displayed to the user.
DEFAULTQUESTION: Default question defined in the study that may be
displayed to the user.

Response Format 4 (Calibration question)
<BATCHRESPONSE UID="678" INTERVIEWID="123">
<CMDRESPONSE CID="3" STATUS="0OK">
<QUESTIONSET>

<CALIBRATIONQUESTION ID="12">

WO 00/45319 PCT/US00/02249

10

15

20

25

30

152

<SAMPLE>

<ATTRIBUTE

ID="12"

NAME="BRAND"

VALUE="Sony" />

<ATTRIBUTE

ID="13"

NAME="Hard Drive"

VALUE="10" />

</SAMPLE>

<DEFAULTQUESTION>Would you buy this?

</DEFAULTQUESTION>

</CALIBRATIONQUESTION>

</QUESTIONSET>

</CMDRESPONSE>

</BATCHRESPONSE>

Elements of Response Format 4

Note: XML is case-sensitive.

BATCHRESPONSE: The response to a batch command. A
BATCHRESPONSE contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the questions Precision Choice generates.

CID: The command identification defined in the command that generates the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value is "OK".

QUESTIONSET: Tag containing the questions.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

153

CALIBRATIONQUESTION: Tag identifying a calibration question, i.¢., a
question used to determine how valid an end-user's responses are. Precision Choice
presents sample products, and asks the end-user to specify how likely it is that he or she
would purchase the product on a scale of 0 to 100.

ID (for CALIBRATIONQUESTION tag): The question’s ID. In the
SETRESPONSE command, this identifies the question being answered. This ID can be
used to answer this question any time during the interview, and the end-user can answer
the question more than once. For example, Precision Choice may generate question 1
and then receive an answer, and then do the same for questions 2 and 3. After this,
Precision Choice generates question 4.

Imagine that before the end-user sends the answer to this question, he or she
moves back to question 2 and re-answers it. Precision Choice over-writes the previous
answer for question 2 and then removes the generated questions 3 and 4. The next
GETRECOMMENDATIONSET command causes Precision Choice to generate a new
question 3, and the interview proceeds from that point.

SAMPLE: Tag identifying the sample product.

ATTRIBUTE: Tag defining an attribute of the sample product.

ID (for ATTRIBUTE tag): The attribute’s ID. |

NAME: Description of the attribute defined in the study and displayed to the
end-user.

VALUE: Value of the attribute displayed to the user.

DEFAULTQUESTION: Default question defined in the study that may be
displayed to the user.

Response Format 5 (Empty question)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="3" STATUS="0OK">

<QUESTIONSET/>

</CMDRESPONSE>

</BATCHRESPONSE>

Elements of Response Format 5

Note: XML is case-sensitive.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

154

BATCHRESPONSE: The response to a batch command. A
BATCHRESPONSE contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the questions Precision Choices generates.

CID: The command identification defined in the command that generates the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value i1s "OK".

QUESTIONSET: Tag indicating that there are no more questions to ask in the
interview.

Response Format 6 (Error)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="878" STATUS="ERR">

<MESSAGE ID="412">Study not found.</MESSAGE>

</CMDRESPONSE>

<BATCHRESPONSE>

Elements of Response Format 6

Note: XML is case-sensitive.

BATCHRESPONSE: The response to a batch command. A
BATCHRESPONSE contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the questions Precision Choice generates.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

155

CID: The command identification defined in the command that generates the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was unsuccessful, the value is "ERR".

MESSAGE: Tag containing the error message.

ID: The error’s ID number. This ID can be used to perform an action or to
convert the error message into text customized for your application

SETRESPONSES Command

Use the SETRESPONSES command to provide answers to questions that
Precision Choice generates.There are four types of questions in Precision Choice:
ratings, importance, pairs, and calibration. There are four corresponding responses:
ratings response, importance response, pairs response, and calibration response. An ID
for each question is returned in the response to GETNEXTQUESTIONSET. The value
of that ID must be part of the SETRESPONSES command.

The ID tells Precision Choice which question that you are providing an answer
for. You can also use this ID to change the answer to the question. Precision Choice
restarts the interview from that point.

Precision Choice uses the answers to questions to understand the end-user's
preferences about the product. You can request scores and product recommendations
any time in the interview after the rating and importance questions have been generated
and answered. However, the more questions the end-user answers, the better the
product recommendations are. The SETRESPONSES command must be inside a
BATCH. The INTERVIEWID must match the INTERVIEWID returned in the
response to the STARTINTERVIEW command. Multiple SETRESPONSES can be
included in one batch if all the responses are for one interview. This is useful for
collecting a group of questions from multiple GETNEXTQUESTIONSETS commands,
presenting all the questions at once to the end-user, and sending all of the end-user's
answers at one time to Precision Choice.

Format 1 (Answer a Ratings Question)

<BATCH UID="678" INTERVIEWID="123">

<SETRESPONSES CID="15">

10

15

20

25

30

WO 00/45319 PCT/US00/02249

156

<RATINGRESPONSE ID="12" >

<LEVEL ID="845" RATING="2"/>

<LEVEL ID="846" RATING="2"/>

<LEVEL ID="847" RATING="2"/>

<LEVEL ID="848" RATING="2"/>

<LEVEL ID="849" RATING="2"/>

</RATINGRESPONSE>

</SETRESPONSES>

</BATCH>

Elements of Format 1

Note: XML is case-sensitive.

SETRESPONSES: Element containing an answer to a question.

CID: The command identification returned with the response to this command.
You can use this value to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use this value
but simply returns it in the response to the command.

RATINGRESPONSE: Identifies the question you are answering and contains
the answer for the question.

ID (for the RATINGRESPONSE tag): The question’s ID. You should use this
value in the SETRESPONSE command to identify the question being answered. This
value is provided in the response to the GETNEXTQUESTIONSET command. It is
required.

LEVEL: Empty tags identifying the levels of the attribute and the value the end-
user assigned to each. They are defined in the study and provided in the response to the
GETNEXTQUESTIONSET command. You should have one LEVEL element for each
level returned from the GETNEXTQUESTIONSET command.

ID (for the LEVEL tag): The Level’s ID. This identifies the level to Precision
Choice and is provided in the response to the GETNEXTQUESTIONSET command.

RATING: Rating the user assigned to this level. The value should be a whole
number between 1 and 5, inclusive: 1 is the worst rating, and 5 is the best rating. This

value is required.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

157

Format 2: Answer an Importance Question

<BATCH UID="678" INTERVIEWID="123">

<SETRESPONSES CID="15">

<IMPORTANCERESPONSE ID="12" >

<ATTRIBUTE ID="134" NAME="Brand" RATING="2" />

</IMPORTANCERESPONSE>

</SETRESPONSES>

</BATCH>

Elements of Format 2

Note: XML is case-sensitive.

SETRESPONSES: Contains an answer to a question.

CID: The command identification returned with the response to this command.
You can use this value to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use the value,
but returns it in the response to the command.

IMPORTANCERESPONSE: Command identifying which question is being
answered and containing the answer for the question.

ID (for the IMPORTANCERESPONSE tag): The question’s ID. You should
use this value in the SETRESPONSE command to tell Precision Choice which question
you are answering. This value is provided in the response to the
GETNEXTQUESTIONSET command. It is required.

ATTRIBUTE: Tag identifying the attribute and the value the end-user assigned
to it. It is required.

ID (for the ATTRIBUTE tag): The attribute’s ID. This ID identifies the level to
Precision Choice. This element is provided in the response to the
GETNEXTQUESTIONSET command. It is required.

NAME: The attribute’s name provided in the response to the
GETNEXTQUESTIONSET command. It is required.

RATING: Rating that the user assigns to this level. The value should be a whole
number between 1 and 4, inclusive: 1 represents the least importance and 4 represents

the most importance. This value is required.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

158

Format 3 (Answer a Pairs Question)

<BATCH UID="678" INTERVIEWID="123">

<SETRESPONSES CID="15">

<PAIRSRESPONSE ID="14" RATING ="2"/>

</SETRESPONSES>

</BATCH>

Elements of Format 3

Note: XML is case-sensitive.

SETRESPONSES: Contains an answer to a question.

CID: The command identification returned with the response to this command.
You can use this value to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use the value
but returns it in the response to the command.

PARISRESPONSE: Tag identifying which question is being answered and
containing the answer for the question.

ID: The question’s ID. You should use this value in the SETRESPONSE
command to tell Precision Choice which question you are answering. This value is
provided in the response to the GETNEXTQUESTIONSET command. It is required.

RATING: The rating the end-user assigns to this level. The value should be a
whole number between 1 and 9, inclusive. The pairs question asks the end-user to chose
between two sample products. The more the end-user prefers the "low" product, the
closer the rating should be to 1. The more the end-user prefers the "high" product, the
closer the rating should be to 9. If the end-user has no preference between the two
products, the rating should be 5.

Format 4 (Answer a Calibration Question)

<BATCH UID="678" INTERVIEWID="123">

<SETRESPONSES CID="15">

<CALIBRATIONRESPONSE ID="14" RATING ="50"/>

</SETRESPONSES>

</BATCH>

Elements of Format 4

WO 00/45319 PCT/US00/02249

10

15

20

25

30

159

Note: XML is case-sensitive.

SETRESPONSES: Contains an answer to a question.

CID: The command identification returned with the response to this command.
You can use this value to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use the value
but simply returns it in the response to the command.

CALIBRATIONRESPONSE: Tag identifying which question you are
answering and containing the answer for the question.

ID: The question’s ID. You should use this value in the SETRESPONSE
command to identify the question you are answering. This value is provided in the
response to the GETNEXTQUESTIONSET command and is required.

RATING: Rating the end-user assigned to this level. The value should be a
whole number between 0 and 100, inclusive. The calibration question presents a sample
product with attributes based upon the end-user's interview and is used to determine
how valid the end-user's answers are in the interview.

Response Format 1 (Successful)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="3" STATUS="OK"/>

</BATCHRESPONSE>

Elements of Response Format 1

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: This tag contains the Precision Choice response to a

command.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

160

CID: The command identification defined in the command that generated the

response. You can use this value to associate the response with the command that

caused the response.

STATUS: If the command was successful, the value is "OK".

Response Format 2 (Error)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="878" STATUS="ERR">

<MESSAGE ID="415">Invalid answer.</MESSAGE>

</CMDRESPONSE>

<BATCHRESPONSE>

Elements of Response Format 2

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the error message.

CID: The command identification defined in the command that generated the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was unsuccessful, the value is "ERR".

MESSAGE: Tag containing the error message.

ID: The error’s ID number. This ID can be used to perform some action or to
convert the error message into text that is customized for your application.

GETSCORES Command

Use the GETSCORES command to get current results of the interview. Each
attribute is scored according to the end-user's preferences. Precision Choice uses

answers to the questions to determine these scores. The GETSCORES command can be

10

15

20

25

30

WO 00/45319 PCT/US00/02249

161

sent to Precision Choice any time after the rating and importance questions have been
generated and answered. The more questions that the end-user answers, the more
precise the scores are. The GETSCORES command must be contained inside of a
BATCH tag.

Format

<BATCH UID="678" INTERVIEWID="123">

<GETSCORES CID="878"/>

</BATCH>

Elements of the GETSCORES Command

Note: XML is case-sensitive.

GETSCORES: Tag causing Precision Choice to generate and return user
preference scores. A value for each attribute and level in the study is returned.

CID: The command identification returned with the response to this command.
You can use this value to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use the value,
but returns in the response to the command.

Response Format 1 (Successful)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="878" STATUS="OK">

<SCORES>

<ATTRIBUTE

NAME="cpu"

RELATIVEIMPORTANCE=".5017654">

<LEVEL NAME="PII">

<UTILITY

NAME="FinalScaledUtilities"

VALUE="48">

</LEVEL>

</ATTRIBUTE>

</SCORES>

</CMDRESPONSE>

WO 00/45319 PCT/US00/02249

10

15

20

25

30

162

</BATCHRESPONSE>

Elements of Response Format 1

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UiD submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: This tag contains the Precision Choice response to a
command.

CID: The command identification defined in the command that generated the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value is "OK".

SCORES: Tag containing the current scores of the end-user’s preferences.

ATTRIBUTE: Tag identifying the attribute and its relative importance to the
end-user. There is one ATTRIBUTE tag for every attribute defined in the study.

NAME (for the ATTRIBUTE tag): The attribute’s name defined in the study.

RELATIVEIMPORTANCE: Rates how important this attribute is to the end-
user. The importance is a decimal number expressed in a scale between 0 and 1,
inclusive.

LEVEL: Identifies an attribute’s level. It contains the utility score of the level,
and there is one LEVEL tag for each level defined in the study.

NAME (for the LEVEL tag): The level’s name defined in the study.

UTILITY: Tag identifying the type of the utility and the value. This version of
Precision Choice returns only the final scaled utility value.

NAME (for the Utility tag): The utility’s name. Currently, the only value is
"FinalScaledUtilities."

VALUE: The utility’s value expressed as a decimal number.

10

15

20

25

30

WO 00/45319 . PCT/US00/02249

163

Response Format 2 (Error)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="878" STATUS="ERR">

<MESSAGE ID="415">No scores calculated. </MESSAGE>

</CMDRESPONSE>

<BATCHRESPONSE>

Elements of Response Format 2

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the pfevious corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the error message.

CID: The command identification defined in the command that generates the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was unsuccessful, the value is "ERR".

MESSAGE: Tag containing the error message.

ID: The error’s ID number. This ID can be used to perform an action or to
convert the error message into text customized for your application.

GETRECOMMENDATIONS Command

Use the GETRECOMMENDATIONS command to get the product
recommendations from Precision Choice. Precision Choice’s product recommendations
are based upon the current scores of the interview. Before sending this command, the
GETSCORES command must have been sent previously to Precision Choice for this
interview. The recommendations are based upon the last scores generated for this

interview. If you call GETSCORES and the end-user then answers more questions, the

WO 00/45319 PCT/US00/02249

10

15

20

25

30

164

new answers do not effect the product recommendations. For new answers to be
considered, GETSCORES would have to be resent.

Executing this command also causes Precision Choice to store the current user
preferences for later data analysis. You can specify how many products to return to
your application. Repeatedly calling the GETRECOMMENDATIONS command
causes Precision Choice to page through the catalog and return the next set of products.
For example, assume that there are one hundred products in a catalog. If you send a
GETRECOMMENDATIONS command specifying five products, Precision Choice
returns the top five products. If you send another GETRECOMMENDATIONS
command specifying five products, Precision Choice returns the next five products.
You cannot move back up the list, so your application must remember any previous
products that were returned, if your application requires that type of functionality. The
product recommendations include all information associated with the product in the
catalog. If a product contains attributes not defined in the study, the value for each of
those attributes is -1.

Format of the GETRECOMMENDATIONS

Command

<BATCH UID="678" INTERVIEWID="123">

<GETRECOMENDATIONS CID="878" MAX="5"/>

</BATCH>

Elements of the GETRECOMMENDATIONS Command

Note: XML is case-sensitive.

GETRECOMMENDATIONS: Tag that causes Precision Choice to generate and
return product recommendations.

CID: The command identification returned with the response to this command.
You can use this value to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice returns the value in the
response to the command.

MAX: Allows you to specify the maximum number of products to return.
Precision Choice returns up to this number of products.

Response Format 1 (Successful)

WO 00/45319 PCT/US00/02249

165

<BATCHRESPONSE UID="678" INTERVIEWID="123">
<CMDRESPONSE CID="878" STATUS="0OK">
<MAXPRODUCTS VALUE="500"/>

10

15

20

25

30

<PRODUCTS>

<PRODUCT

ID="1"

NAME="Compaq Presario 1900"
FIT="77"

RANK="4" >

<ATTRIBUTE

ID="Brand"

VALUE="Compaq"

FIT="55
RELATIVEIMPORTANCE="60"/>
<ATTRIBUTE

ID="Price"

VALUE="2950"

FIT="55
RELATIVEIMPORTANCE="60"/>
<ATTRIBUTE

ID="RAM"

VALUE="128"

FIT="55
RELATIVEIMPORTANCE="60"/>
<ATTRIBUTE

ID="Speed"

VALUE="366"

FIT="55
RELATIVEIMPORTANCE="60"/>
<ATTRIBUTE

ID ="Processor"

WO 00/45319 PCT/US00/02249

10

15

20

25

30

166

VALUE="Pentium II"

FIT="55

RELATIVEIMPORTANCE="60"/>

<REFERENCES>

<REFERENCE

TYPE="image">someimage.jpg</REFERENCE>

<REFERENCE

TYPE="details">inspiron7000.htmI</REFERENCE>

</REFERENCES>

</PRODUCT>

</PRODUCTS>

</CMDRESPONSE>

</BATCHRESPONSE>

Elements of Response Format 1

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing product recommendations for the interview.

CID: The command identification defined in the command that generates the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value is "OK".

MAXPRODUCTS: Tag containing the total number of products in the catalog.

VALUE (for the MAXPRODUCTS tag): Total number of products in the
catalog.

PRODUCTS: Tag containing the set of recommended products.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

167

PRODUCT: Tag defining a product. All attributes and references for one
product are defined in this element, as well as a text name of the product. This value
can be displayed to the end-user.

ID (for the PRODUCT tag): The product’s key. It is defined in the catalog and
must be unique.

NAME: The product’s name defined in the catalog.

FIT: Value expressing how closely the product matches the user's preferences,
expressed as a decimal number. The larger the number, the better the fit. The range of
values is 0 to 100, inclusive.

RANK: Tag defining the rank of the product, compared to all other products in
the catalog. It is expressed on a scale of 1 to the maximum number of products in the
database: 1 is the highest-ranked product.

ATTRIBUTE: A defined attribute of the product. This is also defined in the
catalog definition.

ID (for the ATTRIBUTE tag): Defines an attribute of the product. The value is
the attribute’s name.

VALUE (for the ATTRIBUTE tag): Returns the value of the attribute for this
product.

FIT: Value expresses as a decimal number how close this attribute of this
product matches the user's preferences. The larger the number, the better the fit. The
range of values is 0 to 100, inclusive. If this attribute is not defined in the study, the
value is -1. |

RELATIVEIMPORTANCE: Rates how important this attribute of a product is
to the user, expressed in a scale between 0 and 100, inclusive.

REFERENCES: Optional tag containing all references for a product.

REFERENCE: Optional tag defining a reference for a product: an HTML page,
a JPEG file, or anything else you would like to associate with this product. You can
only use this tag can in a REFERENCES tag. Precision Choice does not use this
information, but returns it in the response to the GETRECOMMENDATIONS

command.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

168

TYPE: Defines the type of reference. Precision Choice does not use it, but it is
available for your application to base processing on.

Response Format 2 (Error)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="878" STATUS="ERR">

<MESSAGE ID="415">Invalid answer.</MESSAGE>

</CMDRESPONSE>

<BATCHRESPONSE>

Elements of Response Format 2

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the error message.

CID: The command identification defined in the command that generated the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was unsuccessful, the value is "ERR".

MESSAGE: Tag containing the error message.

ID: The error’s ID number. This ID can be used to perform some action or to
convert the error message into text customized for your application.

ENDINTERVIEW Command

Use the ENDINTERVIEW command to instruct Precision Choice to end the
interview. All resources this interview uses are released. If this command is not sent,
resources are not be recovered until the time-out value becomes active.

Format
<BATCH UID="678" INTERVIEWID="123">

10

15

20

25

30

WO 00/45319 PCT/US00/02249

169

<ENDINTERVIEW CID="555"/>

</BATCH>

Elements

ENDINTERVIEW: Tag that causes Precision Choice to end the interview and
recover all resources this interview consumed.

CID: The command identification returned with the response to this command.
You can use this value to associate the Precision Choice response with the command
that caused it. It is alphanumeric and required. Precision Choice does not use the value,
but returns it in the response to the command.

Response Format 1 (Successful)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="3" STATUS="0K"/>

</BATCHRESPONSE>

Elements of Response Format 1

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: This tag contains the Precision Choice response to a
command.

CID: The command identification defined in the command that generated the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was successful, the value is "OK".

Response Format 2 (Error)

<BATCHRESPONSE UID="678" INTERVIEWID="123">

<CMDRESPONSE CID="878" STATUS="ERR">

10

15

20

25

30

WO 00/45319 PCT/US00/02249

170

<MESSAGE ID="412">Interview not found.</MESSAGE>

</CMDRESPONSE>

<BATCHRESPONSE>

Elements of Response Format 2

Note: XML is case-sensitive.

BATCHRESPONSE: Response to a batch command. A BATCHRESPONSE
contains a CMDRESPONSE for each command in the batch.

UID: Value matching the UID submitted in the previous corresponding batch
tag.

INTERVIEWID: Value matching the INTERVIEWID submitted in the previous
corresponding batch tag. If no INTERVIEWID is specified on the batch tag, Precision
Choice generates a unique ID and sends it back through this element.

CMDRESPONSE: Tag containing the error message.

CID: The command identification defined in the command that generated the
response. You can use this value to associate the response with the command that
caused the response.

STATUS: If the command was unsuccessful, the value is "ERR".

MESSAGE: Tag containing the error message.

ID: The error’s id number. This ID can be used to perform an action or to
convert the error message into text customized for your application.

Precision Choice Adaptor and Load Balancing

High-Level View of Precision Choice’s Engine

Precision Choice’s engine is the piece of the Precision Choice solution that
processes the interview:

e Generates questions

e Analyzes responses

e Calculates consumer profile data

e Generates product recommendations

As FIG. 21 shows, multiple Precision Choice engines 2110 are grouped into
what are referred to as clusters 2105a, 2105b. Essentially, a cluster is a group of

Precision Choice engines. Also, each cluster has an adaptor 2120a, 2120b that serves as

10

15

20

25

30

WO 00/45319 PCT/US00/02249

171

the entry point, i.e., gateway, into the cluster for merchants’ external systems 2130a,
2130b, 2130c. A cluster 21052, 2105b is a group of Precision Choice engines 2110 that
share an adaptor 2120a, 2120b as the entry point. There may be many clusters, each
with its own set of Precision Choice engines and its own unique adaptor.

There are three additional points about clusters worth noting:

Each cluster may itself be distributed across process and machine boundaries,
i.e., there is no limitation on the physical location of the Precision Choice engines or
the adaptor with respect to each other. They may be collocated on the same machine or
on separate machines that are networked together. This capability to harness the
computing power and resources of multiple physical machines allows Precision Choice
to achieve a high level of scalability.

Each engine in the cluster can handle multiple interviews simultaneously.

Each client may have multiple connections with the adaptor. Each connection
represents a separate thread of execution, which allows a single client efficiently to
conduct multiple simultaneous interviews. Although multiple connections are not
required for a client to be able to conduct multiple interviews, using a single connection
would probably degrade response time.

The following sections provide details about cluster architecture, beginning with
a detailed discussion of the adaptor. There is a discussion of its purpose, its internal
architecture, and implementation details for an adaptor, including a case study
implementation of an adaptor. Using this knowledge there is a final discussion on the
intricacies of load balancing and the cluster concept as they apply to the Precision
Choice system.

What is an Adaptor 2120a, 2120b?

An adaptor is a software application that helps customers integrate their system
with the Precision Choice engine. Although it is part of the Precision Choice solution,
the adaptor is not a part of the core Precision Choice engine. The Precision Choice
adaptor serves the following purposes:

1. Acts as a coupling agent when there is a communications protocol mismatch

between the client system and Precision Choice's engine.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

172

2. Provides load balancing for multiple Precision Choice engines. This is the
minimal function any customer needs from an adaptor, even when there is
no protocol mismatch. As detailed below, Precision Choice implements load
balancing through clustering.

3. Serves as the gateway to a cluster.

Detailed Structure of the Adaptor

Two Sides of the Adaptor

Conceptually, the adaptor 2210 may be seen as consisting of two sides, as

shown in FIG. 22: a Client side 2230 and a Precision Choice side 2240.

Precision Choice uses RMI as its communications protocol. Client systems
2220 may or may not use RMI. For example, client systems may be CORBA-based or
Microsoft DCOM-based. Regardless of the protocol the client system uses, it needs to
be able to communicate with Precision Choice.

Precision Choice enables this communication through use of the adaptor 2210.
The adaptor allows Precision Choice to be client-neutral and provides maximum
integration flexibility. The design of the Client side varies, depending on the protocol
the client uses. The Client side of the adaptor is custom-developed and, depending upon
the client system, can vary from very straightforward to extremely complex. The
Precision Choice side of the adaptor is fixed, i.e., is the same for all merchants.
Internally, the Client side and the Precision Choice side may communicate via any
appropriate method.

The Client side of the adaptor receives interview data from the client system,
transforms the data into the appropriate format, and sends it to the Precision Choice
side of the adaptor. The Precision Choice side of the adaptor sends the interview data to
the Precision Choice engine. The engine processes the interview data and sends results
back to the adaptor, which are then sent back to the client making the call. This is a
synchronous operation, i.e., the client thread sending interview data to the adaptor is
blocked until the adaptor returns the results. A sample scenario follows the discussion
of how the commands that a client system sends are routed to the appropriate engine for
processing.

The Adaptor’s Routing of Commands

10

15

20

25

30

WO 00/45319 PCT/US00/02249

173

As stated above, the adaptor routes commands that contain interview data to the
Precision Choice engine. As FIG. 21 illustrates, there may be many engines linked to a
single adaptor, and the adaptor must determine, with minimal decoding, which engine
should receive the command.

As discussed above, there are two broad categories of commands: batch and
non-batch. Based on the type of command and with minimal decoding, the adaptor
decides where to send the command.

Routing Non-Batch Commands

GETSTATUS Command

The GETSTATUS command is sent to every engine registered with the adaptor.
The adaptor assimilates responses from all engines into one response and sends the
response out to the client system.

For example, assume that two Precision Choice engines are registered with the
adaptor, i.e. the cluster has two Precision Choice engines. When the adaptor receives a
GETSTATUS command, it sends it to both Precision Choice engines.

Assume that one Precision Choice engine sent the following response:

<CMDRESPONSE cid="100" status="OK">

<FREEMEMORY value="556789"/>

<TOTALINTERVIEWS value="120"/>

</CMDRESPONSE>

Assume that the other Precision Choice engine sent the following response:

<CMDRESPONSE cid="100" status="OK">

<FREEMEMORY value="234845"/>

<TOTALINTERVIEWS value="122"/>

</CMDRESPONSE>

The adaptor would send the following response to the client system:

<CMDRESPONSE cid="100" status="OK">

<FREEMEMORY value="791634"/>

<TOTALINTERVIEWS value="242"/>

</CMDRESPONSE>

WO 00/45319 PCT/US00/02249

10

15

20

25

30

174

The adaptor sums the free memory and the total interviews from each engine
and sends a combined response for that cluster back to the client system.

SETSTUDY Command

This command is sent to any available engine registered with the adaptor.

SETCATALOG Command

This command is sent to any available engine registered with the adaptor.

Routing Batch Commands

For batch commands, there are two cases to consider, based on whether the
batch contains an INTERVIEWID.

Case 1: Batch does not have an INTERVIEWID

A batch with no INTERVIEWID is a batch for a new interview. The adaptor
detects this and creates a new INTERVIEWID. This

INTERVIEWID is based on the UID the client supplies as part of the. The
INTERVIEWID must be unique. Examples of creating a unique INTERVIEWID based
on the UID include the following:

UID + timestamp

UID + Globally Unique Identifier

After creating this INTERVIEWID, the adaptor uses its internal load balancing
algorithm 2250 to select an available engine and sends the batch to this engine. The
adaptor also "remembers" where it sent this interview and sends all subsequent batches
for this interview to the same engine. The adaptor returns this INTERVIEWID as part
of the response to the batch as described more fully above. The client is responsible for
saving this

INTERVIEWID and including it in every subsequent batch submitted for that
interview.

Case 2: Batch has an INTERVIEWID

As discussed above, based on the INTERVIEWID, the adaptor sends the
interview to the appropriate Precision Choice engine. The adaptor tracks which engine
received the batch the first time. Each new batch with the same INTERVIEWID is

routed to the same engine because the engine maintains a state for each interview. This

10

15

20

25

30

WO 00/45319 PCT/US00/02249

175

means that each Precision Choice engine is a "sticky server," and the client must send
an interview to the same adaptor each time.
An Example of the Data Flow Sequence

FIG. 23 shows two client systems, a cluster with three engines, and an adaptor.
FIG. 24 shows Client System 1 starting a new interview by sending a
STARTINTERVIEW command. Since this is a new interview, the batch does not have
an INTERVIEWID. The adaptor creates an INTERVIEWID for this interview and
assigns this interview to Precision Choice Engine 1. The adaptor uses its internal load
balancing algorithm to select this engine.

FIG. 25 shows Client System 2 starting a new interview by sending a
STARTINTERVIEW command. Since this is a new interview, the batch does not have
an INTERVIEWID. The adaptor creates an INTERVIEWID for this interview and
assigns the interview to Precision Choice Engine 2. The adaptor uses its internal load
balancing algorithm to select this engine.

FIG. 26 shows client Client System 2 sending a GETNEXTQUESTIONSET
command to the adaptor. This command is sent in a batch with the INTERVIEWID the
adaptor generates and returns as part of starting the interview. The adaptor recognizes
the INTERVIEWID and forwards the command to Precision Choice Engine 2, based on
this INTERVIEWID.

FIG. 27 shows Client System 1 sending a GETNEXTQUESTIONSET
command to the adaptor. This command is sent in a batch with the INTERVIEWID
generated and returned by the adaptor as part of starting the interview. The adaptor
recognizes the INTERVIEWID and forwards the command to Precision Choice Engine
1, based on this INTERVIEWID.

FIG. 28 shows Client System 1 sending an ENDINTERVIEW command to the
adaptor. This command is sent in a batch with the INTERVIEWID generated and
returned by the adaptor as part of starting the interview. The adaptor recognizes the
INTERVIEWID and forwards the command to Precision Choice Engine 1, based on
this INTERVIEWID. As a result of this command, the engine removes all state for this

interview and informs the adaptor of the interview’s end through the fire method of the

10

15

20

25

30

WO 00/45319 PCT/US00/02249

176

CPEvents interface. The adaptor no longer recognizes any interviews with this
INTERVIEWID.

FIG. 29 shows Client System 2 sending an ENDINTERVIEW command to the
adaptor. This command is sent in a batch with the INTERVIEWID the adaptor
generatés and returns as part of starting the interview. The adaptor recognizes the
INTERVIEWID and forwards the command to Precision Choice Engine 2, based on
this INTERVIEWID. As a result of this command, the engine removes all state for this
interview and informs the adaptor of the interview’s end through the fire method of the
CPEvents interface. The adaptor no longer recognizes any interviews with this
INTERVIEWID.

Implementing an Adaptor

There are two components of an adaptor. These are represented as the Client
side 2230 and the Precision Choice side 2240 in FIG. 22. The Client side illustrates the
connection to the merchant’s system; this part of the adaptor varies by project and
merchant. The Precision Choice side of the adaptor illustrates the connection to
Precision Choice: this part of the adaptor is fixed. Online Insight Client Services
personnel should be able to copy the code for the Precision Choice side and use it
without any changes.

The Precision Choice Side 2240

This side of the adaptor is fixed since the Precision Choice engine protocol is
fixed and should not require any implementation changes from what is already
provided. It is useful to know what it would take to implement the Precision Choice
side to understand the Precision Choice solution fully.

There are two interfaces that must be implemented for the Precision Choice side
of the adaptor:

CommandProcessRegister

CPEvents

CommandProcessRegister Interface

The CommandProcessRegister interface has two methods. The interface
definition is included below for reference.

package com.onlineinsight.intercomponent.adaptor;

10

15

20

25

30

WO 00/45319

177

import com.onlineinsight.intercomponent.CommandProcessor.*;

import java.rmi.RemoteException;

import java.rmi.Remote

/**

* The CommandProcessorRegister interface is used by the
* CommandProcessor to register with an Adaptor when it
* gtarts and to unregister when it shuts down.

*/

public interface CommandProcessorRegister extends Remote {

/**

* The register method is used to register Command Processors
* with the Adaptor. The Adaptor is responsible for load

* balancing between the Command Processors. Each Command
* Processor is responsible for finding and registering with

* the proper Adaptor.

* @param cmdProcessor - the processor that is registering

* with the adaptor @exception AdaptorException,

* RemoteException

*/

public void register(CommandProcessor cmdProcessor) throws

AdaptorException,RemoteException;

/**
* The unregister method is used to unregister 2 Command

* Processor.

PCT/US00/02249

* @param cmdProcessor - the processor that is unregistering * with the adaptor

@exception AdaptorException,

WO 00/45319 PCT/US00/02249

10

15

20

25

30

178

* RemoteException
*/
public void unregister(CommandProcessor cmdProcessor) throws

AdaptorException,RemoteException;

}
Register Method

An engine can register with the adaptor by calling the Register method. An
engine should only register with one adaptor. Every adaptor resides on a single machine
with a unique host name, and on that machine each adaptor has a unique name and port.
The adaptor namespace has the following form:

Adaptor namespace = machine name + port (for a machine) + adaptor name

This namespace allows an engine to find/identify the adaptor uniquely in a
distributed system.

Unregister Method

The Unregister method allows an engine to remove itself from a cluster.

CPEvents Interface

The CPEvents interface has one method. The interface definition is included
below for reference.

package com.onlineinsight.intercomponent. CommandProcessor;

import java.rmi.Remote;

import java.rmi.RemoteException,;

public interface CPEvents extends Remote

{

public void fire(CommandProcessorEvent ¢) throws
RemoteException;

}
Fire Method

WO 00/45319 PCT/US00/02249

10

15

20

25

30

179

An engine calls the fire method to inform systems external to the engine, such
as the adaptor, of events that these external systems express "interest” in. For example,
the adaptor is interested in knowing when an interview ends. An interview can end
voluntarily or as the result of a time-out. The adaptor needs to know when an interview
ends because it maintains state for each interview. When an interview ends, this state
needs to be removed. If this state is not removed, it would lead to excessive state
buildup over time, ultimately dominating all server resources and bringing the server
"down." During startup, the engine automatically registers the adaptor to receive "End
Interview" events.

When an interview ends (voluntarily or because of a time-out), the engine calls
the Fire method to notify the adaptor that the interview ended. As a parameter, this
method gets an event that contains the INTERVIEWID of the interview that has ended.
Based on this knowledge, the adaptor may perform all necessary cleanup pertaining to
that interview.

A Case Study of A Sample Adaptor

A merchant is a leader in e-commerce web-based applications targeted towards
selling to the end consumer (B2C). They have an extensive array of products and
services that they offer to other potential customers. Due to the complex nature of these
products and services, consumers find it difficult to buy these products and services off
the Web. Realizing this, the merchant decided to invest heavily in a Precision Choice-
centric solution.

The merchant has a CORBA-based architectural framework in which they have
invested a lot of time, money, and energy. Online Insight developed a solution that
leverages their existing infrastructure by means of our adaptor architecture.

The Adaptor Design

The merchant uses CORBA, specifically Inprise's Visibroker ORB. They have
two interfaces that all third parties interfacing with their system must implement. They
provided those interface definitions.

The merchant sent all commands in the XML format Precision Choice requires.

The merchant requires the ability to shutdown an entire cluster on-demand.

The merchant requires the ability to add engines to a cluster dynamically.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

180

The merchant requires a robust load balancing solution.

We met items 4 and 5 with the nature of the Precision Choice solution. The
sections on Clusters and Load Balancing above provide details. We support items 1 and
3 through the adaptor. If the merchant had not sent all commands in the XML format
Precision Choice requires (item 2), Online Insight would have had to translate whatever
format they provided into the corréct XML format for the Precision Choice engine.

The IDL the merchant provided as part of item 1 is shown below:

module com

{
module ACME

{
exception InvalidCommandSequence
{
35

interface User
{
string submit(in string commandXML) raises

(InvalidCommandSequence),

s

interface Manager

{

string submit(in string commandXML) raises

(InvalidCommandSequence);

35

15

35

As a result of item 1, in this case the Client side of the adaptor becomes a
CORBA server with at least two CORBA objects; one object implements each

interface. Since Online Insight does not care which interface the merchant uses to send

WO 00/45319 PCT/US00/02249

10

15

20

25

30

181

us the XML commands, we simply funnel all XML commands from either object to the
Precision Choice side of the adaptor. Since the command XML we receive is already in
the proper format for the engine, no intermediate processing is required.

To satisfy item 3, we implemented another CORBA object with a new CORBA
interface. This interface is shown in the IDL code below:

module com

{

module onlineinsight

{

module adaptor

{

interface ClusterController

{

void shutdown();

I8

IR

3

3

The client calls the shutdown method of the object implementing this interface
to shutdown the cluster.

The following points about this adaptor solution are noteworthy:

The client is able to bind to the CORBA objects with Visibroker's proprietary
"bind" method. The merchant is already comfortable with our solution. The adaptor
supports configuration through a properties file or command line parameters to set up
names for the two CORBA objects implementing their required interfaces and to set up
the name for the CORBA object implementing the shutdown interface. Due to
Visibroker requirements, the names for these CORBA objects must be unique within
the merchant’s domain.

The client is notified of errors in actual command sequences by the use of

CORBA user exceptions, as the merchant requires. Any errors in processing allowed

WO 00/45319 PCT/US00/02249

10

15

20

25

30

182

command sequences are communicated through the XML responses for each command
itself.

FIG. 30 illustrates the process described above.

Overview of Load Balancing
. The Problem of Load Balancing

Enterprise applications have to worry about the ratio of clients to server
resources in a way that traditional desktop applications never did. Typical desktop
applications were limited to the number of clients that used them simultaneously. The
advent of the Web broke all these boundaries and has resulted in a new class of Web
applications subject to hundreds of thousands, even millions, of clients simultaneously.
Just think of how many people make stock trades at E¥XTRADE on a busy day.
Although tricky and complex, solving load balancing problems is not impossible.

Any system, no matter how well-designed, has a maximum amount of "load"
that it can handle while maintaining adequate performance. Load refers to work the
system is being asked to perform; adequate performance refers to a user-tolerable
response time. Systems that are not well-designed may fail under maximum or near-
maximum load levels. No matter how well-designed a system is, there is always a
maximum load that it can handle. Being able to "balance the load" across multiple
similar systems has become increasingly important.

The simplest solution to the load balancing problem is "static" load balancing: a
fixed number of "servers," i.e., systems or web-applications, handle incoming requests
from clients. Such systems traditionally suffer from a number of problems: limited
scalability, uneven load distribution resulting in wasted computing bandwidth, and
unacceptable fault-tolerance. Online Insight is familiar with these problems and has not
developed such an implementation. We have adopted a much more flexible and robust
approach, namely a dynamic and configurable load-balancing approach, for our
Precision Choice solution.

A need exists for Web-enabled, enterprise applications to handle a substantial
load without experiencing a noticeable degradation of performance. We incorporated

several key load balancing features into the design of the Precision Choice solution.

WO 00/45319 PCT/US00/02249

10

15

20

25

30

183

As explained above, load balancing in the Precision Choice solution revolves
around the concept of a cluster.

What is a Cluster?

A cluster is the smallest divisible unit for load balancing. Online Insight’s
clusters are not the same as clusters described in some operating systems/middleware
systems such as COM+. The clusters referred to in this document apply only to the
Precision Choice solution.

A cluster consists of one adaptor, the gateway to the cluster, and any number of
Precision Choice engines. The client controls the number of Precision Choice engines
joining a cluster by configuring a Precision Choice engine to register with a particular
adaptor (see details above). Adaptors never reject requests from Precision Choice
engines to join a cluster, and an engine may unregister any time by calling the
unregister method of the CommandProcessorRegister interface, as discussed in the
Adaptor section (above).

A client creates a new cluster by starting a new adaptor and then starting
engines that register with the adaptor: an empty cluster with one adaptor and no engines
would serve no useful purpose. Precision Choice allows an unlimited number of
clusters. Clients may control load balancing only between clusters, i.e. clients cannot
influence any decisions within a cluster as to which engine the system may use. This
decision is at the sole discretion of the adaptor, which makes it by using the load
balancing algorithm implemented within the adaptor. The following section discusses
the loads balancing algorithm in more detail.

There is no standard way to control a cluster, such as shutting it down. The
method of control is client-specific. For example, in the case study discussed earlier,
Online Insight implemented a CORBA object with a cluster control interface that has a
shutdown method. The client used the shutdown method of the cluster control interface
to shutdown a cluster. Online Insight provided no way to shutdown individual engines
in a cluster, only the entire cluster. The client has the capability of adding new engines
to the cluster (a standard feature discussed above), but no control over an individual
engine after it is added to a cluster. The only control the client has is to shutdown the

entire cluster.

WO 00/45319 PCT/US00/02249

10

15

20

25

184

The Load Balancing Algorithm

As discussed above, the adaptor retains a map of the INTERVIEWID and the
Precision Choice engine processing the interview corresponding to that
INTERVIEWID. The Precision Choice solution is based on a sticky server
implementation: once an engine is used for an interview, the same engine must be used
for the life of that interview. Each engine maintains state corresponding to each
interview being conducted using that engine. When a new interview starts, the adaptor
must select an engine to process that interview. The adaptor uses the load balancing
algorithm to select an engine.

This default load balancing algorithm implements round robin scheduling.
Through customization, this algorithm could be replaced with one that evaluates the
state of the engines and sends an interview to the most appropriate engine.

Assume that there is a cluster with three engines (A, B, and C) and three active
interviews (1, 2, and 3):

Using round-robin scheduling, the adaptor sends interview 1 to Engine A. It
then sends interview 2 to Engine B and interview 3 to Engine C. To understand how
the load-balancing algorithm works, assume that interview 3 is aborted (see the Table
below). The round robin algorithm does not account for this and continues to assign
interviews to the engines sequentially. When a new interview (interview 4) needs to be
assigned, the adaptor sends it to Engine A, the next engine in the sequence. The adaptor
does not evaluate the load on the engines before making the assignment. In the Round
Robin column in the Table below, Engine A has interviews 1 and 4, while Engine 3 has
no interviews.

Another algorithm could evaluate the system before assigning the interview.
When the algorithm finds that Engine C has no interview, it would assign the new
interview there, i.c., to the engine with the lightest load. In the Alternate column in the
Table below, the algorithm assigns interview 4 to Engine C.

The following Table summarizes these approaches for assigning interviews to

engines:

Engine Interview 3 Aborted | Round Robin Alternate

WO 00/45319 PCT/US00/02249

10

15

20

25

185
A 1 1and 4 1
B 2 2 2
C None None 4

Recommendations for Load Balancing

Although Online Insight has effectively balanced the engines within a cluster,
the adaptor for each cluster is not load balanced in that cluster itself. Stated differently,
no matter how many engines there are in a cluster, there is only one adaptor in that
cluster, serving as the sole entry point for that cluster. It is possible that the adaptor
itself may become a bottleneck under high-load situations.

The processing an adaptor does is extremely small when compared to the
processing each engine does during the course of an interview. The possibility of the
adaptor actually becoming a bottleneck is smaller than that of an individual engine
becoming the bottleneck. When a cluster contains a large number of engines, all of
which are used fairly heavily, the processing the adaptor does may become noticeable.
There should not be too many engines in a cluster. Online Insight will determine the
ideal number of engines for a cluster based on experience.

Precision Choice Configuration

The foregoing discussion covers the settings or properties that you can
configure for the Precision Choice engine. These properties are considered static since
the engine does not recognize the changes at runtime, i.e., these properties are read in
when the engine (or components of the engine) starts and used until the engine is
shutdown.

The components of the engine are the CommandProcessor, Datastore,
Interviewer, ConjointEngine, and an Adaptor. These components form the Precision
Choice engine. These components rely on configuration information contained in
properties files and XML files.

Definitions

Port

A port refers to a TCP/IP port number. The TCP/IP protocol uses these numbers
as endpoints in a communication link between (in this case) components. The numbers

range between 0 and 65536. Ports between 0 and 1023 are reserved as Well-Known

WO 00/45319 PCT/US00/02249

10

15

20

25

30

186

Port Numbers: these ports are reserved and should not be used by any Precision Choice
component. See RFC 1700 for more details on Well-Known Port Numbers.

Absolute File Name

An Absolute File Name is the name of file that includes the path to the name.
For example, /pc/conf/precisionchoice.properties is an absolute file name since it
includes the path to the file. By cohtrast, precisionchoice.properties is a relative file
name since it does not include the path to the file.

#

The pound sign (#) is present at the beginning of any line in a properties file that
is a comment. The component using the file does not process the comment.
CommandProcessor Properties

General Properties

CommandPort

Description The unique TCP port a given Commahd Processor uses. Each
Command Processor should have a unique command port.

Valid Values An unused port number on the machine the Command Processor
runs on. Ports between 0 and 1023 are reserved as Well-Known Port Numbers: these
ports are reserved and should not be used by any Precision Choice component. See
RFC 1700 for more details on Well-Known Port Numbers.

Example CommandPort = 2000

PCpropertiesFile
Description
The full path of the precisionchoice.properties file that contains

information specific to the Precision Choice recommendation engine, such as license
keys, units, and other configuration information. Paths must use the Unix style forward
slash (/).

Valid Values The absolute file name of the Precision Choice properties file.

Example PCpropertiesFile = C:/pc/conf/precisionchoice.

properties

WO 00/45319 PCT/US00/02249

187

ErrorLog
Description
The full path of a file used to log the Command Processor's system
errors. If this property is blank, error logging is dumped on the screen. Paths must use
5 the Unix style forward slash (/).
Valid Values The absolute file name of the desired error log file.

Example ErrorLog = c:/pc/log/error.log

Internal Components of the Command Processor
10 Components
Description A comma-delimited list of internal Command Processor
components that require bootstrapping as RMI servers.

Example Components = StatusManager, EventManager,Commander

15 Communicator
Description A fully qualified Java class name of the Command Processor's
internal Communicator component
Valid Values com.onlineinsight. CommandProcessor.Communicator.
Communicator
20 Example Communicator = com.onlineinsight. CommandProcessor.

Communicator.Communicator

Commander
Description A fully qualified Java class name of the Command Processor's
25 internal Commander component
Valid Values com.onlineinsight. CommandProcessor.Commander.
CommanderImpl
Example Commander = com.onlineinsight. CommandProcessor.
Commander.CommanderImpl
30

StateManager

10

15

20

25

30

WO 00/45319 PCT/US00/02249

188

Description A fully qualified Java class name of the Command Processor's
internal State Manager component

Valid Values com.onlineinsight.CommandProcessor.StateManager.

StateManager

Example StateManager = com.onlineinsight. CommandProcessor.

StateManager.StateManager

StatusManager

Description A fully qualified Java class name of the Command Processor's
internal Status Manager component

Valid Values com.onlineinsight. CommandProcessor.StatusManager.

StatusManagermpl

Example StatusManager = com.onlineinsight. CommandProcessor.

StatusManager.StatusManagerImpl

EventManager

Description A fully qualified Java class name of the Command Processor's
internal Event Manager component

Valid Values com.onlineinsight.CommandProcessor.EventManager.

EventManager

Example EventManager = com.onlineinsight. CommandProcessor.

EventManager.EventManager

State Manager Properties

StateTimeout

Description ~ The number of minutes between interactions that causes the State
Manager to timeout an interview. When an interview is timed out, the State Manager
removes it, and it is no longer valid.

Valid Values A number greater than or equal to 1.

Example StateTimeout = 20

10

15

20

25

30

WO 00/45319 PCT/US00/02249

189

GarbageCollectionFreq

Description ~ The frequency in minutes that the State Manager's garbage
collector thread is invoked to remove timed-out interviews from the State Manager.
This garbage collector is not related to the JVM garbage collector or Java's garbage
collection scheme. The State Manager's garbage collector is used to removed timed-out
interviews.

Valid Values A number greater than or equal to 1.

Example GarbageCollectionFreq = 10

Commander Properties

XML ClassMapping

Description The full path of the Commander.properties file, containing a
mapping between valid XML tag names and the corresponding fully qualified Java
class names of the Command Objects that perform appropriate actions. Paths must use
the Unix style forward slash

.

Valid Values The absolute file name to a file that contains the Commander
properties.

Example XMLClassMapping = E:/pc/conf/Commander.properties

XMLParser

Description The Commander uses a standard XML parser to parse and
process commands. The XML for these commands have a DTD that defines the correct
form for the commands. The Commander can be set up to use either a validating parser
or a non-validating parser. If the validating parser is used, any XML command that
does not conform to the DTD is not processed. Otherwise, the Commander attempts to
process the command, even though it may not be well-formed. This setting affects the
speed at which the Commander can process commands. If a validating parser is used,
parsing of the command is slower and, therefore, the processing and execution of the
command is slower. It is good to use the validating parser when the system is first setup

to test that well-formed commands are being sent to the system. Once it has been

10

15

20

25

30

WO 00/45319 PCT/US00/02249

190

established that the Commander is consistently receiving well-formed commands, it
makes sense to use the non-validating parser.
Valid.Values com.sun.xml.parser.Parser
com.sun.xml.parser.ValidatingParser

Example XMLParser = com.sun.xml.parser.Parser

Adaptor Properties

AdaptorName

Description Adaptor with which the Command Processor registers.
Valid Values A string containing the Adaptor’s name.

Example AdaptorName = adaptor

AdaptorHost

Description ~ The name or IP address of the machine running the Adaptor.

Example AdaptorHost = 10.1.1.24

AdaptorPort

Description The port though which the Adaptor and a given Command
Processor communicate.

Valid Values An unused port number on the machine running the Adaptor.
Ports between 0 and 1023 are reserved as Well-Known Port Numbers: these ports are
reserved and should not be used by any Precision Choice component. See RFC 1700
for more details on Well-Known Port Numbers.

Example AdaptorPort = 9999

Datastore Properties

DatastoreName

Description The name of the Datastore that a given Command Processor
queries for study and catalog (product) information.

Valid Values A string containing the Datastore’s name.

Example DatastoreName = PC2

10

15

20

25

30

WO 00/45319 PCT/US00/02249

191

DatastoreHost

Description ~ The name or IP address of the machine running the Datastore.

Example DatastoreHost = 10.1.1.100

DatastorePort
Description The port through which the Datastore and a given Command

Processor communicate

Valid Values An unused port number on the machine running the Datastore.
Ports between 0 and 1023 are reserved as Well-Known Port Numbers: these ports are
reserved and should not be used by any Precision Choice component. See RFC 1700
for more details on Well-Known Port Numbers.

Example DatastorePort = 1299

Precision Choice Properties

The Precision Choice property file contains settings or properties for two
internal components of the Precision Choice engine: the Interviewer and the
ConjointEngine components. The Interviewer component is responsible for generating
questions and processing the responses to the questions. The ConjointEngine is
responsible for calculating conjoint utilities during the interview. The name of this
property file is specified in the CommandProcessor.properties file with the key of
PCpropertiesFile.

Interviewer Properties

LicenseKeyl, LicenseKey2

Description These properties are license codes that Online Insight's licensing
program generates. These codes are used, along with other keys embedded in the
software, to verify at runtime that a licensed edition of the software is running.

Valid Values Generated values from Online Insight's license program.

Example LicenseKey1=472780325

LicenseKey2=976597200000

10

15

20

25

30

WO 00/45319 PCT/US00/02249

192

com.onlineinsight.study.unit.xmlfile
Description This setting points to the unit file. The unit file details the
measurement units and display formats for the interview. Paths must use the UNIX
style forward slash (/).
" Valid Values The XML file’s name of the unit with absolute path, i.e.,

/pc/conf/units.xml

Example com.onlineinsight.study.unit.xmlfile=c:/pc/conf/units.xml

com.onlineinsight.interviewer.xmlifile

Description ~ This property sets the XML file that the engine uses to setup the
interview. Paths must use the UNIX style forward slash (/).

Valid Values The name of the unit XML file with absolute path, i.e.,

/pc/conf/interview.xml

Example com.onlineinsight.interviewer.xmlfile =

c:/pc/conf/interview.xml

com.onlineinsight.interviewer.

validator

Description This property tells the interviewer which validator to use. A
validator ensures that the study and catalog are valid to use together in an interview.

Valid Values A fully qualified name of a class that implements the
com.onlineinsight.interviewer.Interview Validator interface. Any class used to validate
the study and catalog must be visible to the interviewer component. The safest way to
ensure that the class is visible is to make it public in whatever package it is
implemented. Currently, there are two implementations of this interface. The first
implementation is the com.

onlineinsight.interviewer. AttributeSubsetValidator class. This class ensures that
the attributes of the study are a subset of the attributes of the product attributes in the
catalog. The second implementation is the com.onlineinsight.interviewer.NullValidator
class that performs no validation and assumes that the study and the catalog can be used

together.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

193

Example com.onlineinsight.interviewer.validator=
com.onlineinsight.interviewer.validator.

AttributeSubsetValidator

level creation_strategy

Description This property sets the name of the class that creates levels for
user-specific attributes. User-specific attributes are unique to each user taking an
interview. Typically, they are passed in to the engine at the start of the interview. The
engine needs to generate levels for each attribute and a class that implements the
com.onlineinsight.interviewer.study.LevelCreationStrategy interface.

Valid Values The fully qualified name of a class that implements the
com.onlineinsight.interviewer.study.LevelCreationStrategy interface.

Example level_creation_strategy=com.onlineinsight.

interviewer.study.FourEqualLevelStrategy

ConjointEngine Properties

com.onlineinsight.conjointengine.

adaptive. ACAStateImpl.

maxNumberOfAttrsForPairs

Description This property sets the maximum number of attributes to be used
in the Pairs section of the interview. Although this property sets the maximum number
that the Pairs section uses, there can be many attributes in a study. The engine uses
several techniques to limit the attributes used in the Pairs section.

Valid Values Any number greater than 0.

Example com.onlineinsight.conjointengine.adaptive.

ACAStateImpl.maxNumberOfAttrsForPairs =5

com.onlineinsight.conjointengine.
adaptive. ACAStatelmpl.

maxNumberOfLevelsForPairs

WO 00/45319 PCT/US00/02249

194

Description This property sets the maximum number of levels per attribute to
be used in the Pairs section of the interview.

Valid Values 35 is the default setting, but any non-negative integer value can be
used.

}Example com.onlineinsight.conjointengine.adaptive.

ACAStateImpl.maxNumberOfLevelsForPairs = 5

com.onlineinsight.conjointengine.

adaptive. ACAStateImpl.

minNumberOfLevelsPerAttr

Description This property sets the minimum number of levels per attribute.

Valid Values 2 is the default setting and also the minimum value for this
property, but any non-negative integer value can be used.

Example com.onlineinsight.conjointengine.adaptive.

ACAStateImpl.minNumberOfLevelsPerAttr = 2

com.onlineinsight.conjointengine.

adaptive. ACAStateImpl.

minNumberOfAttrsPerStudy

Description This property sets the minimum number of attributes in a study
that must be present to conduct the interview. This value is normally set to 2 but can be
set to require any number of attributes.

Valid Values This property can be set to any number greater than 2.

Example com.onlineinsight.conjointengine.adaptive.

ACAStateImpl.minNumberOfAttrsPerStudy = 2

com.onlineinsight.conjointengine.

adaptive. ACATypedInputHandlers.

handlerclasses

Description ~ The ConjointEngine component uses typed handlers to process

input into the component. This property lists these handlers. These values can be

10

15

20

25

30

WO 00/45319 PCT/US00/02249

195

changed to modify how the conjoint engine handles input or when a new type of input
is added.

Valid Values A comma-delimited list of fully qualified class names. This list
can span multiple lines by adding "\' to the end of each line. Each class enumerated in
this Hst must implement the com.

onlineinsight.conjointengine.InputHandler interface.

Example com.onlineinsight.conjointengine.adaptive.

ACATypedInputHandlers.handlerclasses =\

com.onlineinsight.conjointengine.adaptive.

ACAStudySettingsHandler, \

com.onlineinsight.conjointengine.adaptive.

ACARankingAttributeSettingsHandler, \

com.onlineinsight.conjointengine.adaptive.

ACARatingAttributeSettingsHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAAPrioriAttributeSettingsHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAAttributesToExcludeFromPairsHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAAttributeImportanceSettingsHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAOmittedLevelsSettingsHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAUnacceptableLevelsSettingsHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAPairQuestionResponseHandler, \

com.onlineinsight.conjointengine.adaptive.

ACACalibrationQuestionResponseHandler

com.onlineinsight.conjointengine.

adaptive. ACATypedOutputHandlers.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

196

handlerclasses

Description ~ The ConjointEngine component uses typed handlers to process
and return output to the class that uses the component. These should be changed if the
component changes how data is returned to classes that use the ConjointEngine.

Valid Values A comma-delimited list of fully qualified class names. This list
can span multiple lines by adding '\' to the end of each line. Each class enumerated in
this list must implement the com.

onlineinsight.conjointengine.OutputHandler interface.

Example com.onlineinsight.conjointengine.adaptive.

ACATypedOutputHandlers.handlerclasses =\

com.onlineinsight.conjointengine.adaptive.

ACANewStateHandler, \

com.onlineinsight.conjointengine.adaptive.

ACANewPairsQuestionChooserHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAPriorsUtilitiesHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAPriorsUtilitiesForPairsHandler, \

com.onlineinsight.conjointengine.adaptivé.

ACAPairsUtilitiesHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAEqualWeightedUtilitiesHandler, \

com.onlineinsight.conjointengine.adaptive.

ACANewCalibrationQuestionChooserHandler, \

com.onlineinsight.conjointengine.adaptive.

ACAFinalWeightedUtilitiesHandler, \

com.onlineinsight.conjointengine.adaptive.

ACACalibrationWeightsHandler, \

com.onlineinsight.conjointengine.adaptive.

ACACalibrationRSquareHandler, \

com.onlineinsight.conjointengine.adaptive.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

197

ACARelativeImportanceHandler, \
com.onlineinsight.conjointengine.adaptive.

ACAFinalScaledUtilitiesHandler

com.onlineinsight.conjointengine.

pairsquestionchooserimplclass

Description This property sets the class that determines how pair questions
are generated. Essentially, there are three ways to generate pair questions: flex, default,

- and static. The flex method dynamically selects the attributes and levels for the each

pair question. The default method statically selects attributes and dynamically chooses
the levels to use within the attributes. The static method statically selects attributes and
statically selects the levels within the attributes.

The attributes this method uses are specified in a Pair Attributes Setting XML
file specified by the com.

onlineinsight.conjointengine.adaptive.

ACADefaultPairsQuestionChooserImpl.

pairsattributesettingsxml property.

Valid Values com.onlineinsight.conjointengine.adaptive.

ACAFlexNumberPairsQuestionChooserlmpl

com.onlineinsight.conjointengine.adaptive.

ACADefaultPairsQuestionChooserImpl

com.onlineinsight.conjointengine.adaptive.

ACAStaticPairsQuestionChooserImpl

or a fully qualified name of a class that implements the
com.onlineinsight.intercomponent.conjointengine.

PairsQuestionChooser interface.

Example com.onlineinsight.conjointengine.

pairsquestionchooserimplclass =

com.onlineinsight.conjointengine.adaptive.

ACADefaultPairsQuestionChooserImpl

WO 00/45319 PCT/US00/02249

198

com.onlineinsight.conjointengine.
adaptive. ACADefaultPairsQuestion
ChooserImpl.maxNumberOfPairs
| Description This property is not currently used. The number of pairs
questions is set to 7.
Example com.onlineinsight.conjointengine.adaptive.

ACADefaultPairsQuestionChooserImpl.maxNumberOfPairs = 7

com.onlineinsight.conjointengine.

adaptive. ACADefaultPairsQuestion

ChooserImpl.

pairsattributesettingsxml

Description ~ This property is used with the default method for pair question
generation. It specifies the name of the XML file that contains attribute settings for
question generation.

Valid Values The absolute file name of the attribute-setting XML file used
during pairs generation, if the default way of of generating pairs questions is used.

Example com.onlineinsight.conjointengine.adaptive.

ACADefaultPairsQuestionChooserImpl.

pairsattributesettingsxml =

c:/pc/conf/pairsattributesettings.xml

com.onlineinsight.conjointengine.

adaptive. ACAFlexNumberPairs

QuestionChooserImpl.

attrNumberSettings

Description This property is used if the flex method of generating pairs
questions is used. It specifies the number of attributes to use for each pair question.
This is a comma-separated list of the number of attributes to use for each question. That

is, the first number specifies how many attributes to use in the first question, the second

10

15

20

25

30

WO 00/45319 _ PCT/US00/02249

199

number specifies the number of attributes to use in the second question, and so on.
There should be a list of 7 numbers since there are a total of 7 pairs questions.

Valid Values A list of numbers that range from 2 to N, where N is the number
of attributes in the study. There need to be 7 numbers in the list, 1 for each pair
question to be asked.

Example com.onlineinsight.conjointengine.adaptive.

ACAFlexNumberPairsQuestionChooserImpl.

attrNumberSettings = 2,3,3,3,3,3,4

com.onlineinsight.conjointengine.

calibrationquestionchooserimplclass

Description ~ This property specifies the name of the class used to generate
calibration questions.

Valid Values com.onlineinsight.conjointengine.adaptive.

ACABestWorstCalibrationQuestionChooserImpl

or a fully qualified name of a class that implements the
com.onlineinsight.intercomponent.conjointengine.

CalibrationQuestionChooser interface.

Example com.onlineinsight.conjointengine.

calibrationquestionchooserimplclass =

com.onlineinsight.conjointengine.adaptive.

ACABestWorstCalibrationQuestionChooserImpl

com.onlineinsight.conjointengine.

adaptive. ACACalibrationQuestion

ChooserBaseImpl.numberofproducts

Description This property sets the number of calibration questions asked per
interview.

Valid Values A number greater than 0.

Example com.onlineinsight.conjointengine.adaptive.

ACACalibrationQuestionChooserBaselmpl.numberofproducts = 4

10

15

20

25

30

WO 00/45319 PCT/US00/02249

200

Datastore Properties

The Datastore depends on an external JDBC-compliant database to operate.
Therefore, many of the values of properties in this file depend on the database. For
example, the user _name property must be set to the value that the database depends on,
and the valid value cannot be specified in this document

server_name

Description The Datastore’s name. This name is used to register with the
RMI registry. For the CommandProcessor that uses the data, this name should be the
same as the DatastoreName in the CommandProcessor properties file.

Valid Values The RMI name of the server. This can be any value that RMI
accepts.

Example server_name= PC2

host

Description ~ The name or IP address of the host that the Datastore is running.

Example host =10.1.1.100

port

Description The port number that the Datastore component uses.

Valid Values A valid port number. Ports between 0 and 1023 are reserved as
Well-Known Port Numbers: these ports are reserved and should not be used by any
Precision Choice component. See RFC 1700 for more details on Well-Known Port
Numbers.

Example port = 1299

max_database_connections

Description The maximum number of database connections to use at one

time.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

201

Valid Values A number between 0 and N, where N is the maximum number of

connections that the database vendor supports.

Example max_database_connections=5

max_threads

Description The storage of interview results is asynchronous, i.e., the
Datastore saves the interview results without having the client of the Datastore wait for
the save to occur. To save the interview results asynchronously, the Datastore creates a
pool of threads to save the results. max_threads sets the number of threads in the thread
pool. This maximum can be set to any number greater than 0. Note that there is
overhead associated with creating and using threads so take care when setting this
value. Setting this value very high does not necessarily mean that the Datastore saves
results faster.

Valid Values A number greater than 0.

Example max_threads=3

errorlog

Description This property contains the name of the file used to log errors.

Valid Values Any filename (does not need to be an absolute file name). If this
is not set to an absolute file name, the log file is created in the directory from which the
Datastore is started.

Example errorlog=datastore.err

database_name

Description ~ The Datastore connects to a database to store and retrieve
information. This property sets the name of the database. The Datastore passes this
value directly to the database via the database driver specified in database_driver
property.

Valid Values The valid value for this property is vendor-specific, i.e., this
property needs to be set to a value that the vendor database can use.

Example database_name=PC

10

15

20

25

30

WO 00/45319 PCT/US00/02249

202

user_name

Description This is the user name, as specified by the vendor database. See
the database vendor's documentation for instructions on how to set this value. The
Datastore passes this value directly to the database via the database driver specified in
database_driver property.

Valid Values The valid values for this property depend on the

database vendor.user_name

Example user_name=pc

password

Description This is the database vendor's password for the user whose
username is specified by user_name. The Datastore passes this value directly to the
database via the database driver specified in database_driver property.

Valid Values The valid values for this property depend on the database vendor.

Example password=pc

database url

Description This property sets the URL for the database. The Datastore
passes this value directly to the database via the database driver specified in
database_driver property.

Valid Values The valid values for this property depend on the database vendor.

Example database_url=jdbc:oracle:oci8:@pcl

database driver

Description This property sets the database driver the Datastore uses to
connect to a third-party database. The Datastore uses JDBC to communicate with the
database, so this must be the fully qualified class name of the vendor's JDBC driver.
The driver class specified in this property must be in the classpath of the machine

running the Datastore.

WO 00/45319 PCT/US00/02249

203

Valid Values A fully qualified JDBC driver class name.

Example database driver=oracle.jdbc.driver.OracleDriver

Interview XML File

The Interview XML file contains an XML document that describes how the
Interviewer conducts an interview. The file actually describes the sections contained
within the interview. Each section represents a type of question asked during the
interview.

DTD:

<!ELEMENT interview (section+) >

<!ELEMENT section EMPTY >

<!ATTLIST section class NMTOKEN #REQUIRED >

interview

Description This element describes which sections are in the interview and is
the root node for this document. This element contains all sections to be used in the

interview.

Example of interview Element

<?xml version="1.0" encoding="UTF-8"?>
<interview>

<section class="com.onlineinsight.interviewer.
sections.conjoint.ratings.Ratings">

</section>

<section class="com.onlineinsight.interviewer.
sections.conjoint.importance.Importance">
</section>

<section class="com.onlineinsight.interviewer.
sections.conjoint.pairs.Pairs">

</section>

<section class="com.onlineinsight.interviewer.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

204

sections.conjoint.calibration.Calibration">
</section>

</interview>

section

Description This element of the XML document describes a section of the
interview. The class attribute contains the fully qualified name of the class that
represents the section. Each section represents a type of question to ask during the
interview. Typically, each section generates a set of questions that the Interviewer
component asks. For example, if a pairs section is present in the interview, the class
named in that section generates several pair questions. Sections need not generate
conjoint questions. They can be used to ask any type of question. The only requirement
for a section is that the class that represents it needs to extend

com.onlineinsight.interviewer.Section.

There is one predefined section subtype. It is the conjoint section, and it extends

com.onlineinsight.interviewer.Section. To create a new Conjoint section, the
new section would need to extend
com.onlineinsight.interviewer.conjoint.ConjointSection.

Valid Values com.onlineinsight.interviewer.sections.conjoint.

ratings.Ratings

com.onlineinsight.interviewer.sections.conjoint.

importance.Importance

com.onlineinsight.interviewer.sections.

conjoint.pairs.Pairs

com.onlineinsight.interviewer.sections.conjoint.

calibration.Calibration

or any class that extends

com.onlineinsight.interviewer.Section

Example <section class="com.onlineinsight.interviewer.

sections.conjoint.calibration.Calibration">

</section>

5

10

15

20

25

30

WO 00/45319 PCT/US00/02249

205

Units XML File

This file is speciﬁéd in precisionchoice.properties file for specifying the display

format for values of attributes in the study. These units are only used for formatting

types of number or currency. Text is handled as a default type or unit.

DTD:

<!-- This xml document defines the units -->

<!-- for Precision Choice and how to display -->

<!-- values associated with a unit. -->

<!IDOCTYPE DOCUMENT [

<!-- Root node for document -->

<!ELEMENT units (unit+) >

<!-- Defines a unit for Precision Choice -->
<!ELEMENT unit (display) >

<!-- Name of unit -->

<!-- Examples: currency, inches, pounds -->
<IATTLIST unit name NMTOKEN #REQUIRED >
<!-- Defines how to display a value of this unit -->
<!ELEMENT display EMPTY >

<!-- Can be either "currency” or "format" -->
<!ATTLIST display format NMTOKEN #REQUIRED >
<!-- See java.text.DecimalFormat for description of format -->
<!-- characters. Example: "#.# Ibs" -->

<!ATTLIST display pattern CDATA #REQUIRED >
>

units

Description This is the root node for the document. It contains all unit

descriptions.

Example of units Element

<?xml version="1.0" encoding="UTF-8"7>

10

15

20

25

30

WO 00/45319

unit.

206

<units>

<!-- formats: currency, number -->

<!-- pattern: see java.text.DecimalFormat -->

<unit name="currency">

<display format="currency"></display>

</unit>

<unit name="inches">

<display format="number" pattern="#.# in"></display>
</unit>

<unit name="megabytes">

<display format="number" pattern="#.# MB"></display>
</unit>

<unit name="gigabytes">

<display format="number" pattern="#.# GB"></display>
</unit>

<unit name="pounds">

<display format="number" pattern="#.# lbs"></display>
</unit>

<unit name="megahertz">

<display format="number" pattern="#.# MHz"></display>
</unit>

</units>

unit

PCT/US00/02249

Description ~ The name by which the Interviewer component references the

Example <unit name="megahertz">
<display format="number" pattern="#.# MHz"></display>

</unit>

display

10

15

20

25

30

WO 00/45319 PCT/US00/02249

207

Description ~ The display element is used to format the value of an level (in an
attribute) to a string. The format is set to either to number or currency. The pattern
specifies how to display the particular unit, using

java.text. NumberFormatter to format the value to text.

Example <display format="number" pattern="#.# MHz"></display>

Pair Attribute Settings XML File

This XML file, identified in the precisionchoice.properties file, specifies the
default attribute pairs presented to the client, if default attribute pairs is chosen as the
question chooser (in the precisionchoice.properties file). The specification for default
pairs depends on the total number of attributes included in the pair questions and the
number of pair questions asked. The default method of pair question generation uses
this file.

The following example shows how this file is used. Consider this segment of an
actual Pair Attributes Setting file:

<attributesetting totalattributes="2">

<pairs totalpairs="1">

<pair order="1">

<attribute order="1">

</attribute>

<attribute order="2">

</attribute>

</pair>

</pairs>

In this example, the pair questions only use two attributes and only one pair
question is asked. When the first (and only) pair question is generated, the engine looks
in this file for an attributesetting whose

totalattributes equals 2. Then, it looks in that attributesetting for a pairs element
whose totalpairs is equal to 1, and then it looks for a pair element whose order is 1.

When the engine generates pair questions, it looks for an attributesetting equal

to the number of attributes to be used in the pair questions. Within that attributesetting

10

15

20

25

30

WO 00/45319 PCT/US00/02249

208

it looks for a pairs element whose totalpairs is equal to the number of pair questions to
be asked. Finally, it looks within the pairs element, for a pair element whose order is
equal to the current pair question. In this case, it looks for the pair element whose order
is equal to 1 because there is only one pair question to be asked, and the current pair
question is the first question. Within the pair element, the attributes to be used are listed
by order of the attributes in the study. In this example, the pair question that is
generated contains levels from the first and second attributes in the study.

Fortunately, the version of this file that comes with the Precision Choice engine
is complete: it contains information for generating pair questions for up to five
attributes, the maximum currently allowed for pair questions.

DTD:

Document Type Declaration for pairattributesettings.xml is as follows:

<!IDOCTYPE DOCUMENT [

<!ELEMENT attributesettings (attributesetting+) >

<!ELEMENT attributesetting (pairs+) >

<IATTLIST attributesetting totalattributes CDATA #REQUIRED >

<!ELEMENT pairs (pair+) >

<!ATTLIST pairs totalpairs CDATA #REQUIRED >

<!ELEMENT pair (attribute+) >

<!ATTLIST pair order CDATA #REQUIRED >

<IELEMENT attribute EMPTY >

<!ATTLIST attribute order CDATA #REQUIRED >

>

attributesettings

Description The root node for the XML document.

attributesettting

Description ~ There is one of these elements for each possible number of
attributes to be used in pair questions. For instance, the maximum number of attributes
that can be used in pair questions is 5. So the file contains attributesetting whose

totalattributes equals 2, 3, 4, and 5.

10

15

20

25

30

WO 00/45319 PCT/US00/02249

209

pairs

Description ~ This element refers to the total number of pairs to be used in an
interview. The totalpairs is set to the number of pair questions to be asked in a
particﬁlar interview. For example, if 5 pair questions are to be asked, then the engine
uses the pairs element (within the proper attributesetting element) whose totalpairs is

equal to 5.

pair

Description For each pair question that can be asked, there is a pair section.
The order refers to the order of the question in the interview. For the third question in
an interview, the engine uses the pair element (within the proper pairs element) whose

order is equal to 3.

attribute

Description This is a study attribute used in the pair questions. The order
refers to the index of the attribute in the list of attributes to be used in the pair
questions. For example, an attribute whose order is 4 is the fourth attribute in the list of
available study attributes.
Understanding and Using Precision Choice Preference Profiles

Overview

Precision Choice has the ability to produce a precise profile for each end-user
who participates in an interview. This preference profile is a concise capsule of
information that describes how that individual end-user makes a purchasing decision.
The profile can be used in many ways, one of which is to rank products from a product
database.

Scores and Utilities

While the Precision Choice engine conducts an interview, it collects and
calculates utilities for each attribute and level in the study. A utility is a score for the
level, and this score reflects the end-user's preference for that level. Most utilities are

intermediate values that are used to calculate the final set of utilities. The ultimate goal

10

WO 00/45319 PCT/US00/02249

210

of the engine is to produce two sets of scores: Final Scaled Utilities and Relative
Importance. These scores make up Precision Choice’s preference profile. The profile is
retrieved from the engine using the GETSCORES command.

Final Scaled Utilities

The Final Scaled Utilities are the most important scores the engine produces
because they express the end-user's preferences for levels in the study. These numerical
scores indicate how appealing each level of the study is to the user. The higher the
score, the higher that level’s appeal is to the end-user.

As an example, consider the Final Scaled Utilities for the example study used
throughout this manual. Precision Choice’s engine calculated these scores as the end-

user responded to the questions that Precision Choice asked.

Attribute Level Final Scaled Utility
Category Aggressive Growth 60
Growth 26
Small Company 18
International Stock 22
Balanced 12
Equity Income 18
Corporate Bond 19
Municipal Bond 0
Morningstar Rating 5 37
4 33
3 22
2 18
1 0
Morningstar Risk 0.5 40
0.75 24
1.0 15
1.25 9

10

15

WO 00/45319 PCT/US00/02249

211

1.5 0
Three-Year Return 30 28
20 25
10 19
0 0
Load 0 32
2 23
4 17
6 0

For each level, the Final Scaled Utility indicates how desirable the end-user
finds that level. For example, a Load of “2” has a “utility score” of 23.” A load of “0” is
more appealing, having a “utility score” of 32. A Final Scaled Utility is a “utility score”
for a level.

Note that the Final Scaled Utility for each level can be compared to the other
levels. This allows for analysis within each attribute and across the study. For an
interesting example of analysis within an attribute, look at the Category attribute in the
Table above. Based on these scores, the end-user prefers Aggressive Growth first,
followed by Growth, and then International Stock. Also, note that the scores can be
analyzed for the study as a whole. For instance, the Aggressive Growth level in the
attribute Category scored higher than any other level in the study; this end-user finds
Aggressive Growth mutual funds most appealing. In fact, this user would prefer to buy
an Aggressive Growth fund over a fund with a Morningstar Rating of 5. These scores
are additive, i.e., you can calculate a total utility score for a product by summing the

utility for each level in the product.

Fund Category Mstar Mstar Risk | 3-Year Load
Rating Return

Big Bank Aggressive |5 0.5 20 2

Fund Growth

Big Corporate 2 0.5 10 0

10

15

20

25

WO 00/45319 PCT/US00/02249

212

Company Bond
Bond

Both products are hypothetical and are used to demonstrate how final scaled
utilities are additive. To score each product, the scores for each level are summed.
Using the Final Scaled Utilities above, the Big Bank Fund would score 185:

60 for “Aggressive Growth”

37 for “Morningstar Rating of 5”

40 for “Morningstar Risk of 0.5”

25 for “Three-Year Return of 20”

23 for “Load of 2”

Big Company Bond would score 128:

19 for “Corporate Bond”

18 for “Morningstar Rating of 2”

40 for Morningstar Risk of 0.5”

19 for Three-Year Return of 10”

32 for “Load of 0”

This end-user would find the Big Bank Fund more appealing than the Big
Company Bond. The complete method for scoring actual products is discussed below.

Relative Importance

Another use of Final Scaled Utilities is to calculate Relative Importance.
Relative Importance measures the relative weight every attribute in the study has on the
user's purchasing decision. This score is based on an analysis of the spread of final
scaled utilities within an attribute, i.e., an analysis of the difference between the highest
final scaled utility and the lowest final scaled utility for each attribute. The relative
importance for each attribute is expressed as a decimal value from 0 to 1, inclusive, that
reflects how much each attribute contributes to the end-user's buying decision.

For an example of how Precision Choice calculates Relative Importance scores,
consider the table below. It is based on the Final Scaled Utilities example presented

herein.

10

WO 00/45319 PCT/US00/02249
213
Attribute Highest Level Lowest Level Spread
Category 60 (Aggressive 0 (Municipal Bond) | 60
Growth)
Morningstar Rating | 37 (5) 0(D) 37
Morningstar Risk 40 (0.5) 0(1.5) 40
Three-Year Return | 28 (30) 0(0) 28
Load 32 (0) 0 (6) 32

To calculate the Relative Importance of each attribute, sum all spreads and then

divide the spread for each attribute by the sum. In this example, the sum of the spreads

is 197 (60+37+40+28+32). To calculate the relative importance for each attribute,

divide the spread by the sum. The table below presents the Relative Importance scores

for the example used herein.

Attribute Spread Relative Relative
Importance Importance
Calculation (Expressed as a

Pércentage)

Category 60 60/197 = 0.304569 | 30.5%

Morningstar Rating | 37 37/197 = 0.152284 | 15.2%

Morningstar Risk 40 40/197 =0.203046 | 20.3%

Three-Year Return | 28 28/197=0.142132 | 14.2%

Load 32 32/197=0.162437 | 16.2%

In this example, the Category attribute contributed most to the end-user's

preference, Morningstar Risk was next, and so on.

Product Scoring

The Final Scaled Utilities are used to score products in the Precision Choice

engine. After the scores are retrieved, the engine can score the products in the database

and return a set of product recommendations via the GETRECOMMENDATIONS

10

15

20

25

30

WO 00/45319 V PCT/US00/02249

214

command. The Precision Choice engine uses a scoring algorithm to score each product
and to rank the products. If a client wants another algorithm, Online Insight would need
to develop a custom algorithm based on the information returned from the
GETSCORES command.

Precision Choice Scoring Algorithm

The default scoring algorithm is called Best Match Scoring and is based on the
overall fit of a product to the end-user's final scaled utilities. In this algorithm, the
Precision Choice engine sums the final scaled utility values for each level thaf makes
up the product, and this sum is the score for that product. After all products are scored,
the products receive a ranking based on the percentage of the best score.

For example, if the best product has an overall utility score of 185 and the
second best has a score of 128, the best product would receive a rating of 100%, and
the second would receive a rating of 69%, since 185/185 is 100% and 128/185 is 69%.
The total fit of the best product is 100%. The engine also calculates the fit of each level
in the product for the end-user. The fit for each level indicates how well that level
meets the end-user’s wishes. This is a percentage of the best final scaled utility. For
example, if the product level for Three-Year Return is 10, the fit for this product level
would be 68% since the score for 10 in three-year return is 19, and the best score for
three-year return is 28 (19/28=0.678 or 68%).

Scoring Interpolated Attributes

Before Precision Choice’s scoring algorithm can be fully examined, you need to
understand how the system handles interpolated values. In the study, attributes can be
marked as interpolated, i.e., the levels presented in the study for an interpolated
attributes are manufactured so that the levels are equidistant from each other. This
produces a range of values, and the product levels fall within this range. For example,
in the Mutual Fund example (presented throughout this manual) the Load attribute is
interpolated and has the levels of 0, 2, 4, and 6. In the product database, the actual
levels for Load fall within the range of 0 to 6 and may not equal any of the levels in the
study. Some actual levels for Load are 0.0, 4.5, 5.5 and so on. As mentioned earlier, the
final scaled utilities for each product level are summed together to score the product.

The problem with interpolated values is that the actual product level may not have been

10

15

20

25

30

WO 00/45319

PCT/US00/02249

215

included in the study, so the actual level may not have a score. To handle this situation,

Precision Choice uses an algorithm to calculate a score for interpolated values.

The score for a product level that has an interpolated attribute in the study is

proportional to the final scaled utilities of the levels in the study that it falls between. If

the product level is greater than the highest study level, the score is the same as the

highest study level. If the product level is less than the lowest study level, the product

level is the same score as the lowest study level. For example, look at the product called

“Fund C” in the Table below. It has a Three-Year Return of 24.3. Since no level in the

Three-Year Return attribute equals 24.3, its score must be calculated so that it is

proportional to the two levels that it is between (20 and 30). To calculate the score,

perform the following steps:

1.

6.

Find the absolute difference between the product level and the lowest scored
level that the product level is between. In this case, that would be 24.3 - 20.0
=4.3.

Find the difference of the final scaled utility scores of the two study levels,
in this case 28 - 25 = 3.

Multiply these two differences, which would result in 12.9 (4.3 * 3).

Divide this number by the difference in the two study levels (20 - 10 = 10).
This results in 1.29 or 1 after truncating to the nearest whole number.

Add 1 (the value from Step 4) to the lowest of the two final scaled utility
values (25 in this case) = 26

The score for the Three-Year Return level in this product is 26.

Another way to express this calculation is with a mathematical formula. The

Precision Choice engine uses the formula below to calculate a score for an interpolated

value:

(LP-L1|/|IL2 - L1]) * [U2 - U1| + Ul

LP is the level of the product

L1 and L2 are study levels: LP is between L1 and L2

L1 is the lowest scored study level in the pair L1 and L2
L2 is the highest scored study level in the pair L1 and L2
Ul is the final scaled utility for L1

10

15

WO 00/45319

216

e U2 is the final scaled utility for L2
e LI<LP<L2.

Product Scoring Example

This is a step-by-step example of product scoring. To score the product

PCT/US00/02249

database, the engine steps through each product one at a time and calculates the score

of the product by summing the final scaled utilities for each level in the product, taking

into account interpolated attributes. In the table below, there are five products chosen

from the sample product database. For this example, this table is the complete product

database.

Fund Categor | Mstar Mstar 1-Year |3-Year | Load Min
y Rating | Risk Return | Return Invest

Fund A | Aggressi | 5 1.2 66.5 39.0 0.0 2500
ve
Growth

Fund B | Aggressi | 5 14 47.4 28.1 5.0 0
ve
Growth

Fund C | Balance |4 0.5 28.2 243 0.0 2500
d

Fund D | Corporat | 4 0.9 11.4 10.0 3.8 2000
e Bond

Fund E | Municip | 4 1.1 83 0.3 4.5 1000
al Bond

To score the products, the engine goes through each product, one at a time, and

calculates the total of the final scaled utilities or the Total Utility for the product. To

demonstrate the algorithm, the example below scores the first product. Note that

product levels which were not a part of the study (Minimum Investment and 1-Year

Return) receive a score of 0.

WO 00/45319 PCT/US00/02249

217
Features Value Utility Fit
Category Aggressive Growth | 60 100% 60/60 =
100%
Morningstar Rating | 5 37 100% 37/37 =
100%
Morningstar Risk 1.2 10 25% 10/40 =25%
1-Year Return 66.5 0 N/A
3-Year Return 39.0 28 100% 28/28 =
1 100%
Load 0 32 100% 32/32 =
100%
Minimum 2500 0 N/A
Investment
Total Product 167
Utility

For the first product, the total utility is 167. The utility scores for Morningstar
Risk, Three-Year Return, and Load are calculated using the algorithm listed in the
Scoring Interpolated Attributes section above. Note that the engine calculated the fit per
level or feature of the product. The following table presents the scores for all products

in this example.

Fund Total Utility

Fund A 167 (60+37+10+0+28+32+0)
Fund B 137 (60+37+4+0+27+9+0)
Fund C 143 (12+33+40+0+26+32+0)
Fund D 108 (19+33+19+0+19+18+0)
Fund E 60 (0+33+13+0+1+13+0)

10

15

20

25

WO 00/45319

PCT/US00/02249

218

Once the engine has scored all products, it calculates the rating for each

product. The rating is calculated by dividing the total utility for each product by the

total utility for the best product. The Table below demonstrates that calculation. The

best product in this database is Fund A with a total utility of 167, so 167 is used to

calculate all the products’ ratings.

Fund Rating

Fund A 100% (167/167 = 100%)
Fund B 82% (137/167 = 82%)
Fund C 86% (143/167 = 86%)
Fund D 65% (108/167 = 65%)
Fund E 36% (60/167 = 36%)

To conclude this example, the XML is presented for partial responses to the

GETSCORES and GETRECOMMENDATIONS commands for this example. First, a

part of the response to a GETSCORES command is presented. In this example, only the

scores for the attribute Category are present. Normally, all attributes and their levels are

returned. Each study attribute has an ATTRIBUTE tag in the XML that contains the

attribute name and its relative importance. Within each ATTRIBUTE, there are the

levels that make up that attribute. Each LEVEL contains its Final Scaled Utility.

<SCORES>
<ATTRIBUTE

NAME="Category"
RELATIVEIMPORTANCE=".304569">

<LEVEL

ID="0"

NAME="Aggressive Growth"
VALUE="Aggressive Growth">

<UTILITY NAME="FinalScaledUtilities" VALUE="60" />

</LEVEL>
<LEVEL

10

15

20

25

30

WO 00/45319

219

ID="1"

NAME="Growth"

VALUE="Growth">

<UTILITY NAME="FinalScaledUtilities" VALUE="26" />
</LEVEL>

<LEVEL

ID="2"

NAME="Small Company"

VALUE="Small Company">

<UTILITY NAME="FinalScaledUtilities" VALUE="18" />
</LEVEL>

<LEVEL

ID="3"

NAME="International Stock"

VALUE="International Stock">

<UTILITY NAME="FinalScaledUtilities" VALUE="22" />
</LEVEL>

<LEVEL

ID="4"

NAME="Balanced"

VALUE="Balanced">

<UTILITY NAME="FinalScaledUtilities" VALUE="12" />
</LEVEL>

<LEVEL

ID="5"

NAME="Equity Income"

VALUE="Equity Income">

<UTILITY NAME="FinalScaledUtilities" VALUE="18" />
</LEVEL>

<LEVEL

ID="6"

PCT/US00/02249

10

15

20

25

30

WO 00/45319 PCT/US00/02249

220

NAME="Corporate Bond"

VALUE="Corporate Bond">

<UTILITY NAME="FinalScaledUtilities" VALUE="19" />

</LEVEL>

<LEVEL

D="7"

NAME=" Municipal Bond"

VALUE=" Municipal Bond">

<UTILITY NAME="FinalScaledUtilities" VALUE="0" />

</LEVEL>

</ATTRIBUTE>

</SCORES>

The XML for a response to the GETRECOMMENDATIONS command is
shown below. The MAXPRODUCTS tag refers to the total number of products in the
database. This is used with RANK so that the end-user can tell how far into the ranked
products he or she is. For example, a presentation layer could display that the end-user
is viewing product 1 of 5. The levels of the product and which attribute the level is
associated with are identified inside each PRODUCT tag. Each product has a fit in this
XML, which is the rating score calculated earlier. Each product level is presented in an
ATTRIBUTE tag, and the VALUE refers to the level’s name. In the first product for
the ATTRIBUTE Category, the product level is Aggressive Growth.

Additionally, two scores are sent with each recommendation. The first is the fit
of the level to the user's need. In the first product, the attributes Category, Morningstar
Rating, Three Year Return, and Load meet 100% of the end-user's needs. The attribute
Morningstar Risk only met 25% of the user's needs. The fit can be used with the
RELATIVEIMPORTANCE score to determine that the first product meets 100% of the
user's needs in this category, which is the most important attribute. Attributes not
included in the study receive a fit of -1. The GETRECOMENDATIONS command
response provides information to display to the end-user to inform him or her how each
product received its recommendation.

<MAXPRODUCTS VALUE="5"/>

10

15

20

25

30

WO 00/45319

221

<PRODUCTS>

<PRODUCT ID="1" NAME="A" FIT="100" RANK="1" >
<ATTRIBUTE

NAME="Category"
VALUE="Aggressive Growth"
FIT="100.0"
RELATIVEIMPORTANCE="30.5"/>
<ATTRIBUTE

NAME="Morningstar Rating"
VALUE="5"

FIT="100.0"
RELATIVEIMPORTANCE="15.2"/>
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="1.2"

FIT="25.0"
RELATIVEIMPORTANCE="20.3"/>
<ATTRIBUTE

NAME="0One Year Return"
VALUE="66.5"

FIT="-1.0"
RELATIVEIMPORTANCE="0"/>
<ATTRIBUTE

NAME="Three Year Return"
VALUE="39.0"

FIT="100.0"
RELATIVEIMPORTANCE="14.2"/>
<ATTRIBUTE

NAME="Load"

VALUE="0.0"

FIT="100.0"

PCT/US00/02249

10

15

20

25

30

WO 00/45319

222

RELATIVEIMPORTANCE="16.2"/>
<ATTRIBUTE

NAME="Minimum Investment"
VALUE="2500"

FIT="-1.0"
RELATIVEIMPORTANCE="0"/>
</PRODUCT>

<PRODUCT

D="3"

NAME="C"

FIT="86.0"

RANK="2">

<ATTRIBUTE

NAME="Category"
VALUE="Balanced"

FIT="20.0"
RELATIVEIMPORTANCE="30.5"/>
<ATTRIBUTE

NAME="Morningstar Rating"
VALUE="4"

FIT="89.0"
RELATIVEIMPORTANCE="15.2"/>
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="0.5"

FIT="100.0"
RELATIVEIMPORTANCE="20.3"/>
<ATTRIBUTE

NAME="0One Year Return"
VALUE="28.2"

FIT="-1.0"

PCT/US00/02249

10

15

20

25

30

WO 00/45319

223

RELATIVEIMPORTANCE="0"/>
<ATTRIBUTE

NAME="Three Year Return"
VALUE="24.3"

FIT="93.0"
RELATIVEIMPORTANCE="14.2"/>
<ATTRIBUTE

NAME="Load"

VALUE="0.0"

FIT="100.0"
RELATIVEIMPORTANCE="16.2"/>
<ATTRIBUTE
NAME="Minimum Investment"
VALUE="2500"

FIT="-1.0"
RELATIVEIMPORTANCE="0"/>
</PRODUCT>

<PRODUCT

ID="2"

NAME="B"

FIT="82.0"

RANK="3">

<ATTRIBUTE
NAME="Category"
VALUE="Aggressive Growth"
FIT="100.0"
RELATIVEIMPORTANCE="30.5"/>
<ATTRIBUTE
NAME="Morningstar Rating"
VALUE="5"

FIT="100.0"

PCT/US00/02249

10

15

20

25

30

WO 00/45319

224

RELATIVEIMPORTANCE="15.2"/>
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="1.4"

FIT="10.0"
RELATIVEIMPORTANCE="20.3"/>
<ATTRIBUTE

NAME="0One Year Return"
VALUE="47.4"

FIT="-1.0"
RELATIVEIMPORTANCE="0"/>
<ATTRIBUTE

NAME="Three Year Return"
VALUE="28.1"

FIT="100.0"
RELATIVEIMPORTANCE="14.2"/>
<ATTRIBUTE

NAME="Load"

VALUE="5.0"

FIT="28.0"
RELATIVEIMPORTANCE="16.2"/>
<ATTRIBUTE

NAME="Minimum Investment"
VALUE="0"

FIT="-1.0"
RELATIVEIMPORTANCE="0"/>
</PRODUCT>

<PRODUCT

ID="4"

NAME="D"

FIT="65.0"

PCT/US00/02249

10

15

20

25

30

WO 00/45319

225

RANK="4">

<ATTRIBUTE

NAME="Category"
VALUE="Corporate Bond"
FIT="32.0"
RELATIVEIMPORTANCE="30.5"/>
<ATTRIBUTE

NAME="Momingstar Rating"
VALUE="4"

FIT="89.0"
RELATIVEIMPORTANCE="15.2"/>
<ATTRIBUTE

NAME="Morningstar Risk"
VALUE="0.9"

FIT="48.0"
RELATIVEIMPORTANCE="20.3"/>
<ATTRIBUTE

NAME="0One Year Return"
VALUE="11.4"

FIT="-1.0"
RELATIVEIMPORTANCE="0"/>
<ATTRIBUTE

NAME="Three Year Return"
VALUE="10.0"

FIT="68.0"
RELATIVEIMPORTANCE="14.2"/>
<ATTRIBUTE

NAME="Load"

VALUE="3.8"

FIT="56.0"
RELATIVEIMPORTANCE="16.2"/>

PCT/US00/02249

10

15

20

25

30

WO 00/45319

226

<ATTRIBUTE
NAME="Minimum Investment"
VALUE="2000"

FIT="-1.0"
RELATIVEIMPORTANCE="0"/>
</PRODUCT>

<PRODUCT

ID="5"

NAME="E"

FIT="36.0"

RANK="5">

<ATTRIBUTE
NAME="Category"
VALUE="Municipal Bond"
FIT="0.0"
RELATIVEIMPORTANCE="30.5"/>
<ATTRIBUTE
NAME="Morningstar Rating"
VALUE="4"

FIT="89.0"
RELATIVEIMPORTANCE="15.2"/>
<ATTRIBUTE
NAME="Morningstar Risk"
VALUE="1.1"

FIT="33.0"
RELATIVEIMPORTANCE="20.3"/>
<ATTRIBUTE

NAME="0One Year Return"
VALUE="8.3"

FIT="-1.0"
RELATIVEIMPORTANCE="0"/>

PCT/US00/02249

10

15

20

25

30

WO 00/45319 PCT/US00/02249

227

<ATTRIBUTE

NAME="Three Year Return"

VALUE="0.3"

FIT="4.0"

RELATIVEIMPORTANCE="14.2"/>

<ATTRIBUTE

NAME="Load"

VALUE="4.5"

FIT="41.0"

RELATIVEIMPORTANCE="16.2"/>

<ATTRIBUTE

NAME="Minimum Investment"

VALUE="1000"

FIT="-1.0"

RELATIVEIMPORTANCE="0"/>

</PRODUCT>

</PRODUCTS>
Uses for Preference Data

The above discussion demonstrated how preference data can be used to score
products for recommendation. There are also other ways the data can be used to
provide valuable information to end-users and to vendors. This section describes other
scenarios that demonstrate some uses and value of the preference data.

Notify Consumers of New Products that Meet Their Preferences

Preference data can be used to rank the appeal of new products. Imagine that an
end-user completed an entire interview but did not purchase a product. Imagine further
that a company introduced a new mutual fund a week later. The same preference profile
could be used to determine the total utility score for the new fund. If it is above a
certain threshold, the end-user could be notified that a new fund fitting his or her needs
had just become available. This notification could occur in many ways, .g., through

email or a popup window on the end-user's browser the next time he or she logs in to

the system.

WO 00/45319 PCT/US00/02249

228

Aggregated Preference Data

Finally, preference data can be aggregated, i.e., compiled for many consumers
and then analyzed for new product development. The concept is to take the preference
data for many users in a market and analyze it to determine which feature mix most

5 meets the consumers’ need and maximizes vendors’ profit.

The embodiments described above are given as illustrative examples only. It
will be readily appreciated that many deviations may be made from the specific
embodiment disclosed in this specification without departing from the invention.
Accordingly, the scope of the invention is to be determined by the claims below rather

10 than being limited to the specifically described embodiment above.

WO 00/45319 PCT/US00/02249

229

What is claimed is:

1. A method for providing a purchaser with purchase decision support with respect to
a product type, the method comprising the steps of:
a) conducting a configurable interview individualized to the purchaser with respect

to the product type;

b) generating individually-valid, statistics-based user preferences corresponding to
the product type that are specific to the purchaser in conjunction with the
interview of the purchaser; and

¢) presenting the purchaser with a purchase recommendation for products within

the product type based upon the generated user preferences.

2. The method of claim 1, and further comprising the step of receiving interview

configuration constraints from a configuration source.

3. The method of claim 2, wherein the configuration source is the purchaser.

4. The method of claim 2, wherein the configuration source is an internal

configuration file.

5. The method of claim 2, wherein the configuration source is an external application.

6. The method of claim 5, wherein the external application provides interview

configuration constraints as an XML stream.

7. The method of claim 5, wherein the external application provides interview

configuration constraints as a profile of information associated with the purchaser.

8. The method of claim 2, wherein the configuration source is the generated user

preferences.

WO 00/45319 PCT/US00/02249

10.

11.

12.

13.

14.

15.

230

The method of claim 1, and further comprising the step of defining attributes
associated with the product type and corresponding levels of the attributes of

specific relevance to the purchaser.

The method of claim 9, wherein the step of defining attributes comprises the step of
providing the purchaser with individually tailored educational material relevant to

the attributes associated with the product type.

The method of claim 1, and further comprising the step of providing the purchaser

with individually tailored educational material relevant to the product type.

The method of claim 1, wherein the step of generating statistics-based user
preferences comprises the step of generating conjoint analysis utilities
corresponding to the product type that are specific to the purchaser through the

conducted interview.

The method of claim 12, wherein the step of generating conjoint analysis utilities
comprises the step of generating priors utilities corresponding to the product type

that are specific to the purchaser through the conducted interview.

The method of claim 13, wherein the step of generating priors utilities comprises

the steps of:
1) ranking levels within attributes associated with the product type with
respect to the purchaser; and

i) calculating priors utilities.

The method of claim 14, wherein the step of generating priors utilities further
comprises the step of rating of the attributes importance with respect to the

purchaser.

WO 00/45319 PCT/US00/02249

231

16. The method of claim 15, wherein the step of generating priors utilities further

comprises the step of setting attribute constraints.

17. The method of claim 14, wherein the step of generating priors utilities further

comprises the step of setting attribute constraints.

18. The method of claim 13, wherein the step of generating priors utilities comprises

the steps of:
i) rating levels within attributes associated with the product type with

respect to the purchaser; and

i) calculating priors utilities.

19. The method of claim 18, wherein the step of generating priors utilities further
comprises the step of rating of the attributes importance with respect to the

purchaser.

20. The method of claim 19, wherein the step of generating priors utilities further

comprises the step of setting attribute constraints.

21. The method of claim 18, wherein the step of generating priors utilities further

comprises the step of setting attribute constraints.

22. The method of claim 13, wherein the step of generating priors utilities comprises

the steps of:

1) rating of the attributes importance with respect to the purchaser; and

ii) calculating priors utilities.

23. The method of claim 22, wherein the step of generating priors utilities further

comprises the step of setting attribute constraints.

WO 00/45319 PCT/US00/02249

232

24. The method of claim 13, wherein the step of generating priors utilities comprises

the steps of:
1) setting attribute constraints; and
i1) calculating priors utilities.

25. The method of claim 12, wherein the step of generating conjoint analysis utilities
comprises the step of generating pairs utilities corresponding to the product type

that are specific to the purchaser through the conducted interview.

26. The method of claim 25, wherein the step of generating pairs utilities comprises the

steps of:
1) determining a number of pairs questions to ask;
1) choosing each of the determined number of pairs questions;

1i1) configuring the interview with the chosen pairs questions; and

1v) calculating pairs utilities.

27. The method of claim 26, wherein the step of choosing each of the determined

number of pairs questions further comprises the step of generating prohibited pairs.

28. The method of claim 12, wherein the step of generating conjoint analysis utilities
comprises the steps of:
1) generating priors utilities corresponding to the product type that are
specific to the purchaser through the conducted interview;
it) generating pairs utilities corresponding to the product type that are
specific to the purchaser through the conducted interview; and

ili) generating final utilities.

29. The method of claim 28, wherein the step of generating final utilities comprises

weighting the priors utilities and the pairs utilities equally.

WO 00/45319 PCT/US00/02249

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

233

The method of claim 28, wherein the step of generating final utilities comprises

weighting the priors utilities and the pairs utilities optimally.

The method of claim 30, wherein the step of generating conjoint analysis utilities

further comprises the step of calibrating the final utilities.

The method of claim 1, wherein the step of presenting the purchaser with a
purchase recommendation for products within the product type based upon the
generated user preferences comprises the step of providing the purchaser with an

explanation of the purchase recommendation.

The method of claim 1, and further comprising the step of calibrating the generated

user preferences.

The method of claim 1, and further comprising the step of storing the generated

user preferences in a data store.

The method of claim 34, and further comprising the step of analyzing the generated

user preferences in the data store.

The method of claim 35, and further comprising the step of outputting the analyzed

user preferences.

The method of claim 35, and further comprising the step of storing the analyzed

user preferences in the data store.

The method of claim 1, and further comprising the step of outputting the generated

user preferences.

The method of claim 1, wherein the step of presenting the purchaser with a

purchase recommendation for products within the product type based upon the

WO 00/45319 PCT/US00/02249

40.

41.

42.

43.

44.

45.

234

generated user preferences comprises the step formatting the purchase

recommendation as an XML stream.

The method of claim 1, wherein the step of presenting the purchaser with a
purchase recommendation for products within the product type based upon the
generated user preferences comprises the step of formatting the purchase

recommendation as an HTML stream.

A purchase decision support system providing a purchaser with purchase decision
support with respect to a product with a product type, the system comprising:
a) a data store for storing purchaser preferences and product data; and

b) a server in communication with the data store for performing the steps of:

1) conducting a configurable interview with the purchaser with respect to
the product type;
i1) generating statistics-based user preferences corresponding to the product

type that are specific to the purchaser in conjunction with the interview of

the purchaser; and
1ii) presenting the purchaser with a purchase recommendation for products

within the product type based upon the conjoint analysis utilities.

The system of claim 41, and further comprising a display in communication with

the processor for displaying the purchase recommendation.

The system of claim 41, wherein the server performs the further step comprising of

receiving interview configuration constraints from a configuration source.

The system of claim 43, wherein the configuration source is the purchaser.

The system of claim 43, wherein the configuration source is an internal

configuration file.

WO 00/45319 PCT/US00/02249

46.

47.

48.

49.

50.

51.

52.

53.

54.

235

The system of claim 43, wherein the configuration source is an external application.

The system of claim 46, wherein the external application provides interview

configuration constraints as an XML stream.

The system of claim 46, wherein the external application provides interview

configuration constraints as a profile of information associated with the purchaser.

The system of claim 43, wherein the configuration source is the generated user

preferences.

The system of claim 41, wherein the server performs the further step comprising of
defining attributes associated with the product type and corresponding levels of the

attributes of specific relevance to the purchaser.

The system of claim 50, wherein server performs the step of defining attributes by
performing the step comprising of providing the purchaser with individually

tailored educational material relevant to the attributes associated with the product

type.

The system of claim 41, wherein the server performs the further step comprising of
providing the purchaser with individually tailored educational material relevant to

the product type.

The system of claim 41, wherein server performs the step of generating statistics-
based user preferences by performing the step comprising of generating conjoint
analysis utilities corresponding to the product type that are specific to the purchaser

through the conducted interview.

The system of claim 53, wherein server performs the step of generating conjoint

analysis utilities by performing the step comprising of generating priors utilities

WO 00/45319 PCT/US00/02249

236

corresponding to the product type that are specific to the purchaser through the

conducted interview.

55. The system of claim 54, wherein server performs the step of generating priors
uﬁlities by performing the steps comprising of:
(1) ranking levels within attributes associated with the product type with
respect to the purchaser; and

(2) calculating priors utilities.

56. The system of claim 55, wherein server performs the step of generating priors
utilities by performing the further step comprising of rating of the attributes

importance with respect to the purchaser.

57. The system of claim 56, wherein server performs the step of generating priors
utilities by performing the further step comprising of the step of setting attribute

constraints.

58. The system of claim 55, wherein server performs the step of generating priors

utilities by performing the further step comprising of setting attribute constraints.

59. The system of claim 54, wherein server performs the step of generating priors
utilities by performing the steps comprising of:
(1) rating levels within attributes associated with the product type with
respect to the purchaser; and

(2) calculating priors utilities.

60. The system of claim 59, wherein server performs the step of generating priors
utilities by performing the further step comprising of rating of the attributes

importance with respect to the purchaser.

WO 00/45319 PCT/US00/02249

61.

62.

63.

64.

65.

66.

67.

237

The system of claim 60, wherein server performs the step of generating priors

utilities by performing the further step comprising of setting attribute constraints.

The system of claim 59, wherein server performs the step of generating priors

utilities by performing the further step comprising of setting attribute constraints.

The system of claim 54, wherein server performs the step of generating priors
utilities by performing the steps comprising of:
(1) rating of the attributes importance with respect to the purchaser; and

(2) calculating priors utilities.

The system of claim 63, wherein server performs the step of generating priors

utilities by performing the further step comprising of setting attribute constraints.

The system of claim 54, wherein server performs the step of generating priors
utilities by performing the steps comprising of:
(1) setting attribute constraints; and

(2) calculating priors utilities.

The system of claim 53, wherein server performs the step of generating conjoint
analysis utilities by performing the step comprising of generating pairs utilities
corresponding to the product type that are specific to the purchaser through the

conducted interview.

The system of claim 66, wherein server performs the step of generating pairs
utilities by performing the steps comprising of:

(1) determining a number of pairs questions to ask;

(2) choosing each of the determined number of pairs questions;

(3) configuring the interview with the chosen pairs questions; and

(4) calculating pairs utilities.

WO 00/45319 PCT/US00/02249

68.

69.

70.

71.

72.

73.

74.

238

The system of claim 67, wherein server performs the step of choosing each of the
determined number of pairs questions by performing the further step comprising of

generating prohibited pairs.

The system of claim 53, wherein server performs the step of generating conjoint
analysis utilities by performing the steps comprising of:
(1) generating priors utilities corresponding to the product type that are
specific to the purchaser through the conducted interview;
(2) generating pairs utilities corresponding to the product type that are
specific to the purchaser through the conducted interview; and

(3) generating final utilities.

The system of claim 69, wherein server performs the step of generating final
utilities by performing the step comprising of weighting the priors utilities and the

pairs utilities equally.

The system of claim 69, wherein server performs the step of generating final
utilities by performing the step comprising of weighting the priors utilities and the

pairs utilities optimally.

The system of claim 71, wherein server performs the step of generating conjoint
analysis utilities by performing the further step comprising of calibrating the final

utilities.

The system of claim 41, wherein server performs the step of presenting the
purchaser with a purchase recommendation for products within the product type
based upon the generated user preferences by performing the step comprising of

providing the purchaser with an explanation of the purchase recommendation.

The system of claim 41, wherein server performs the further step comprising of

calibrating the generated user preferences.

WO 00/45319 PCT/US00/02249

239

75. The system of claim 41, wherein server performs the further step comprising of

storing the generated user preferences in a data store.

76. The system of claim 75, wherein server performs the further step comprising of

analyzing the generated user preferences in the data store.

77. The system of claim 76, wherein server performs the further step comprising of

outputting the analyzed user preferences.

78. The system of claim 76, wherein server performs the further step comprising of

storing the analyzed user preferences in the data store.

79. The system of claim 41, wherein server performs the further step comprising of

outputting the generated user preferences.

80. The system of claim 41, wherein server performs the step of presenting the
purchaser with a purchase recommendation for products within the product type
based upon the generated user preferences by performing the step comprising of

formatting the purchase recommendation as an XML stream.

81. The system of claim 41, wherein server performs the step of presenting the
purchaser with a purchase recommendation for products within the product type
based upon the generated user preferences by performing the step comprising of

formatting the purchase recommendation as an HTML stream.

82. A computer-readable digital storage device containing instructions that upon
execution by a processor cause the processor to perform the steps of:
a) conducting a configurable interview individualized to the purchaser with respect

to the product type;

WO 00/45319 PCT/US00/02249

240

b) generating individually-valid, statistics-based user preferences corresponding to
the product type that are specific to the purchasef in conjunction with the
interview of the purchaser; and

¢) presenting the purchaser with a purchase recommendation for products within

the product type based upon the generated user preferences.

83. The digital storage device of claim 82, and containing further instructions that, upon
execution by a processor, cause the processor to perform the step of generating
users preferences by performing the step comprising of generating conjoint analysis
utilities corresponding to the product type that are specific to the purchaser through

the conducted interview.

84. A purchase decision support system providing a purchaser with purchase decision
support with respect to a product with a product type, the system comprising:

a) means for conducting a configurable interview individualized to the purchaser
with respect to the product type;

b) means for generating individually-valid, statistics-based user preferences
corresponding to the product type that are specific to the purchaser in
conjunction with the interview of the purchaser; and

¢) means for presenting the purchaser with a purchase recommendation for

products within the product type based upon the generated user preferences.

85. The method of claim 84, wherein the means for generating statistics-based user
preferences comprises means for generating conjoint analysis utilities
corresponding to the product type that are specific to the purchaser through the

conducted interview.

PCT/US00/02249

WO 00/45319

CTTTTTTTTT T g 0 | 914

_
I f==== = = |
_ s =l et L~ ,GC1
| ! |
POLI 20L} q0Ll |] snpopuy |
S S S — | | [siaIRs Yonpoid |
A - S Sump” Eg 4!
_ 1] m _
0zl | _ _ = _ _ _ _ _
L
1 slsmm IIIIII Jawuoiny |
Tl Joddng 3soyaing

1]
M—_Ea C D) _m 31 001

ocl

4

(spioniag qa 9GG1

s [TTT] ggg I
N _ J] _lj]
G0l m m

Slacg! m

DGS1
aomaq burouojog poo

Sump
(111

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

2/27

%G¢

¢9l4

%0¢ %5¢ %0¢ A %01 %5 %0

]] | | | |

%0¢

saun)pa4 doydo] jo aoupjodw SAIDJRY

aj7 Aayog

Ayoodoy aauQ pIoH

WvY

901

pupig

paadS 10SS320.1d

SUBSTITUTE SHEET (RULE 26)

WO 00/45319 PCT/US00/02249

3/27
300
\ . 310
Define Attributes ,
and Levels
r
Calculate Prior ,\520
Process
r
Calculate Pairs /_\530
Process
l
, 340
Calculate Combined | —/
Utilities
Calibrate ,\550
Utilities
|
360
Calculate Final | —/
Utilities
r
370
Make P
Recommendation

FIG.3

SUBSTITUTE SHEET (RULE 26)

WO 00/45319 PCT/US00/02249

4/27
320
410
Rank or Rate |/
Levels
v
420
Rate
Mtributes [
|
430
Set Attributes |~/
Constraints

440

Calculate Priors |~/
Utilities

FIG.4

SUBSTITUTE SHEET (RULE 26)

WO 00/45319

PCT/US00/02249
5/27
330
. 510
Determine Number
of Question ~
(Pairs)
|
Prohibit /\/5 20
Pairs
w
530
Choose L~
Pairs
540
Calculate Pairs |~
Utilities

FIG.S

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

6/27

aulbuj
UOI}DPUSWIWIOIAY
3210y) UOISIdald

9°914

_/
SUOI}DPUAILLIOJAY
XS dajg _\
sasuodsay
N4 dayg
suonsan(v
Jno4 da)g
asuodsay
saly| deys
suonsan(v
om| dajg
UORIUI]_1oNpoid
uoniuieq Apms
auQ d9)s

« 19407
uoljojuasald
9010y) UoISIoald

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

7/27

ARk

‘paniasal S)ybu |y au) ‘Wybisu 3uju) ‘6661 @ Jubukdoy

(k< daig poN)(poog >>)

puog jodiaunyy

puog 3jo10d107)

awoou| Aynbj

paouo|og

Y0015 [DUOOUI)Y|

fuodwoy |owg

NLOY]

®|l®|lo|ololololo
olol®|o|o|o|o]|O
ololo|o|olololo

ololo|0o|®|e®|0]e:

0O|0|0|®|0|0|®|0

ypMo1q anssaibby

palajald ISON

paLIgjald 1sDa]

K10bay0)

"s30uasajeid Inok ajo) 0}

#ojoq pub ay) as))

‘puny jomaw 0 Buisooyd uaym Ki0B3j0d yo0a aj0s nok oy Jo oapt o 13D Hou || 3

1aputy puny [N

7

S SaRy] W |
PO}«
I3y 103}, 991] «
U}y 103} Q-
Yo IOJSOUITIO} »
DY J0JSDUION «
YUETAE
O TR

\

A10sS0|9 Y2103 |

~

_
nok o) |
1ybis s joyn ssaidxa
0) saaudyd jo Auayd
anoy (| noj “sbunos
anof jo ans £)aoxa Jou
a1nofk i Auow | uog

N

sdi])

J

$n204 bajo)S ‘oIS U}

p

4

LHINSN L DNTNS

FOIOHD)
E@@@@@

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

8/27

80l

‘panasal SJYPU 1y “au) “Jubisuy duiug ‘G661 @ Jybuddo)

(& da)S zazumv_uom >>)

O 0i®O %0 %9 poo]

@000 %0e %0 uInjoy 103, 331y

O0®O G0 ¢l yory Jojsbuluiop

ONONONO, | buijoy Jojsbutusop

O®O00 ¢>¢MM,M%@< _E%M_m%_ Huoba}o)

1SON — 15097 1594 1SI0M 2In)03
3ounyoduy sainypa4 jo abuoy

;punj [ONjAW (D3PI 3y} J0 UONIA[3S Jnok ur unjoaj 43 St Judjiodur Moy
Japul4 pung jpmnp

—

B3] WA |
PO}«
(TINjay 103}, 9aJy] »
{inay 03} au(
Y5 ID]SOUION «

OJU] 013U«

AiDss0[9 Y2.03S |

J/

_
nok 10}
14bu s Joym ssaidxa
0] saoudyd jo Auayd
a0y || oy, “bunjuos
inok o ains Aok jou
ainok i Kuiow } uog

—

sdij |

1204 209j0AS ‘VOISY| JoUIB)Yf kE@:MZD\ﬂ FNITNE
V

@=@£©
uolsioeid

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

9/27

67014

‘panasa Sjybu [y “uj ubisy dupu) ‘6661 @ Jubukdo)

(<< da18 “xmzuo_oom v@

g, puny Y. puny
12ja)4 Abuosg pnaN 13j31q Abuosg
Cr 1T 1T 17 17 TT T 1 1T 1L 1T [[|

poo] A %0 P00
unjay]] unjay
103}, 331y 408 40¢ 103, 391y
-—m: w> =<=

"puny jonjnw 0 Joj 03[l
13bu0s)s 0 Moys 0) Joq ay) Jo U By} SPIONO} [0S Ay} Y1) “Jajaid nok punj yyM
3)00IpUl 0] JDQ JOMSUD 3y} SN LAY} ‘SN OM} AU} JO 4ID3 JO SAIN|D3J 3Y) AUILIDX]

‘SpUNy (DNjRW 3wos 310dwod o} nok YSD MOU [iM 3K ‘I0j 0S SiMSUD N0k UO Pasg
Japulj pung oMKy

~

~N

TUSUI|SORU] U o

poo]e

UInjay 103}, 9o1]]»
W3y Iba) 3up)-
o JOJSDUITIOY -
U0y J0JSOUNII0R »
fobapy «

JNUEERE

_

A10ss0[9 Y2403 |

|

s

ok 10j Jubis S1 Joun |

mc_s_%c smg =8
ok ‘qouasajaid buons
o bunojs Ag (joanau)
appIw 3y} 0] S0 00)
SIOMSUD PIOAD 0] AJ|

sdij |

J

4
sn204 263joAS VoIS UL} AHIISN £ SNITNE

*(

B9 OHS)

@@@@@b@

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

10/27

01914

‘paniasal S)ybu [y “uj ‘ubisy uiu) ‘G661 @ Jubukdo)

(k< d3)S xeN)(po0g >>)

A, puny
3214 Kbuong

[pAjnay

S, puny
1pyg Abuosg

I o 77! [1 I N N N N N N A

bunoy buoy

1)sbusop { r 10jsbuiuo

fi0ba)0) yjHosg awoou) Aymb3 | Kiobajpy)
poa] %0 %9 poo]

umjay . . unjy

103}, 381y 40 w0 103}, 31y]

-nmn— m> =<=

‘punj jomaw D Joj 0udsajaId
5abuoxjs D AoyS 0] J0Q 3y} JO PU3 Ay} SPIONO A|02S Ay}) “Jdjaid nok puny Yy
3)DJIpUI 0] JOQ JOKSUD 3y} 3SN U3Y) ‘SpUnj OR} 3y} O 4ID3 JO SAINJO) BY) BuIWOX]

"SpUNy [ONJIW 3wos /000D 0] Nok YSD MOU [3k “Joj 0S SJNSUD Jnok uo pasog

7

JUSW]SaAY| E:E_Ez.)
qud.
I3y 103} 99y} -
TInjay Toa) au()e
Y51y JDJSOUUION «
UT|0Y ID}SDUIUIOf »
fiobaje)«
OJU] [0J3U3G

1apui4 punj [pnjnp

\

A1DSS0[9 42403 |

s

)
ok Joj Jybu 1 Joym
UIWRJSP) om u0d
oM ‘QJuakfaId buols
0 bunoys Ag ~(joanau)

appiw 3y} 0] S0P 00}
SIamsup pioao 0} |

SUBSTITUTE SHEET (RULE 26)

sdi |

J

sna04 2bajos)§ VoIS JaUIB)Y

4
LHSNSH LS INTNGS
14

ZOIOHD)
@Q@@@b@

PCT/US00/02249

WO 00/45319

11/27

117014

‘paniasai Sybu |y uj ‘ubisuy aupu ‘6661 @ ybukdo)

(k< dag onzuhxuom >>)
(¢ SR E paps) (& J93[3S) asoying 0] fjpyn Juansag
SInoy / SINOH Gy SINOH ¢ a)7 Aiayog
89 ¢l 8 0% 8 +9 9AL(Q PIDH
PGl sy yl owswgpy SO WS
Goc/i IR o0z iy g/ iy 105599014
112Q fomajog bodwo?) pupJg
667%$ 667°C % 6667 § 92ld
D. Npoid g, Pnpold v, 1dOnpold $aINQUY

(32135 3y} JO WOJJ0q 3Y) 1D SIX0Q 3y} JO YID3 WOJj ANIDA D JO3AS 3SDA])

;M0jdq papiojap sdojdoj ay) jo yooa Anq o} aq nok pinom Ajaxy Moy

buikng Japisuod

fjjon)20 pnom nok Joy) S}oNPosd pusWWIOIds M IS aYDW SN djay suosanb
asay| “sbuuayjo doydoj joryuajod awos sjonjpaa o) nok ¥so 0} buioh 210 am Moy

3|7 Asjjog TG
“NI] PIOH «
S3IN03] U9aIGe
amlwvlg.
pupig.

e

\.

K1DsS0[9 421095

s

1onpoid

009 MOj3q X0 Ay}
WoJj Jamsuo inok tm_mw
‘umoys doydoj 3)qisso

4203 mwaea 0} 3q pjno

nok Ajsy #oy 3)onjoA3

10 ¢ :da)g

JapurJ Jayndwo) NIV

-

ma;

$n204 2163)01)S OIS oIS}

4
LHSNENI L INITNES
4

©=@E
uoisioJid

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

12/27

AN

‘pnasal Syybu (v 2| ‘Yubisuy auuQ ‘6661 @ Mubukdoy

(< a5 pan) (CRog >>)

[oI WA |
g ...W Ua_O
O O O O ¥ puog jodiouny o L
O O O 0o @ puog ajoiodio) @njoy 109, 300«
Yo JOJSDUITIO} »
O O O ® O 2oy Aynb3 0y JOJS0UTIO}
O O O] O O paduojog fiobapy)
O ® O O O ¥90]S [DUOTOULA|Y] OJuf {oi3u3]
® O O O O fuodwo?) [jows _ MDSS0j9 y2J03s |
O ©® O O O LU ~ | ok)
® O O O O ymosq awssaibby Jybu s joym ssaidxa
paLIajaid JSON pallajald 1S0a £10b3)09 0} sy Jo Auad
a0y || nog “sburjos
'saauasajard Jnok ajoi o) mopRq pub ay) asp | ok jo ains Ajooxa jou
-puny jomaw 0 buisooyd uays A10B3)0d ya0a 3j0s nok oy jo 0api uD 13b Mou || 3 a1nok |t Auow | uog
Japur4 pung jpmnpN { sd 1]
4 @=@E©
$n204 2ba0AS “UOISY| JouIB)Uf LHSNSN £ NN UQl @:@@b
v

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

13/27

1914

‘pansasal s)ybu fy “auj ‘Jubisu 3upu ‘6g61 @ Jubuddo)

(k< dars xaN) (o0 >>)

0i®0 O A% %9 poo]

@000 %0¢ %0 U3y 103} dA|

O0®O G0 ¢l yory Jojsbution

@000 | buoy Jojsbuisop

O®@00 g_m_mw%z %ﬁ%g Huobayo)

1SON — 15031 1599 110 EYOLEN
3ounjoduw| sainjoa4 Jo abuny

£puny [ON)W (03pi 3y} O UOIIARS JnoK ur AImjoa) 4903 St Juolodun KoY

r~

|USW]SaAU} E:EEE.)
poc]e
T3y 03}, oM«

TN}y 103}, du)e

Yoy JOJSOUIUIOY «
UN0Y J0JSDUIUION »
f1003)0] »
OJuj 0J3UB)«

Japui4 pun{ [pniny

A10ss0}9 Y2.03S |

_
‘nok Joj |

Jybu s Joym ssaudxd

0] saoudy) jo Auayd
MDY || 3» “sburyuo
oA Jo auns Ajjooxa jou
ainok i Auow }uog

—

ma__(

$n20{ 210304 UOISY UL

4

LHSNSNI S INITNGS

4

@:@%
uolsio@id

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

14/27

71914

‘paniasal S)ybu [y duj ‘Wbisul augug ‘6661 @ Jubudo)

(<< days xaN)(Ho0g >>)

g, punj v, puny
33j14 Abuong N3N 13fasg Abuosg
I I I I 2 77 1 I I A I I I I I O O
N
e) - ey
sﬁ%eﬁ %0 %0 ws» By
o i
E&sson ’ S 0j8 ,wwsoz
:m: m> =<=

"pun) [omjaw 0 Joj A3l

10buos)s 0 Moys 0} 1oq 3y} Jo pud 3y} SPIOMO) 3j03S Ay} XY “Jajad nok puny Yok
3J02IpUI 0} J0Q J3MSUD 3y} 3SN LAY} ‘SPUN) OM} Y} JO YI0I JO SAINJD3J 3y} AUILDX]
"Spunj onAw dwos 210dwod o) nok YSO MOU M Ak ‘o) 0S SiaMsuD nok Lo pasog
Jopul{ pung jomnp

YUBWI)SaAU] CIMUIUIR
po0]

(IMjay 103}, dal] »
uinjag 103} du()
Yoy IDJSOUIIO «

OJU] [0I3U3Y «

~

A1DSS0|9) Y21D3S |

_

2

o Joy Jubu St Jou |

QUIIRP J3})Pq UDD
om ‘3ouasajeid buoss
0 buojs Ag -(jonau)
appw 3y} 0} 3sop 00}
SIoMSUD pioao 0} K|

sdi] |

J

sn204 263j0.1)G ‘UOISY| LI AHSNSN £ INTNE

“O-

SIOH

g
(vorsio=s

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

15/27

G1'ol4

‘panasal S)ybu jiy “ou) ‘yybisuy aupu ‘6661 @ Jubukdo)

(<< da)s xaN)(pPog >>)

g, puny J, puny
1pyg Abuosg joJjnay 13jaid Abuosg
e 21T 1T T 1 1T i1t 17 1 & 1 11
N oy %0 W | poo
Aunduwo 4)Hox)
faobajn) __8_% anssabby fi0ba)0)
——m? w> =<=

"punj [onjnw 0 10j dudsapRd
sabuoxs D Moys 0} J0q 3y} Jo Pud ay) SPIOKO} 3PIS Ay} XY Jagaid nok puny Yy
3JDJIpUI 0} IDQ JSMSUD 3y) 3N UAY) ‘SPUN) OM} AU} JO YID3 JO SAINJ03) Ay} SUIWDX]

‘Spuny [ONJW 3wos 310dwio o) nok SO HOU M 3K ‘IDJ 0S SIaMSuD Inok o pasog
Japulj pung DMK

a N
JUaU|SaAU] UINUNUIR

pO0 |«

UImjay 103}, 99J] »
mmay 103) au)e
Yoy JO]SOUIO «

T RUETERE

| A10ss09 42.0ag |

)
ok 10j Jubu st Joym
AULLIB)3P J2)}3q UDI
am ‘aouasepid Buoss
b buyoys Ag {josynau)

appIW 3y} 0} S0P 00)
SIaMSUD pioAo 0] M|

~

sdi) |

J

sn204 2163)04)S ‘UOISI JSUIS)U LHSNSRN0 ININS

“O-

FOIOHD)
@Q@@@&@

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

16/27

91914

'paNasal Sybu [y “uj ‘Wbisuy duju) ‘6661 @ Jubukdoy

(k< days xaN)(oog >>)

g, punj J, punj
13j314 Aibuoss |pjnay 13j334 Abuong
Crrrrvva 1T 1 1 1 1 [1 | [|
By) P
injsbuoy 80 | A0)SBUILION
fuodwo yjMos
obayo) __cswu anssaiby | 1B
Sl 0 \ MR
103} ms_m 1S %01 103), 331y
:m: m> =<=

“puny onjnw 0 Joj 3ouas3pd
13bu0x)S D MOUS 0} J0q 3y} JO Pua 3y} SPIDKO} S Ay} Y ajaid nok puny YoM
200IpUl O} IDG JOMSUD 9U} 3SN U3y} ‘SPUnj OA} Y] JO 403 JO SAINJ03j Y BUIWODX]

‘SpUN) [oNjw 3W0S 3i0dwod 0} No SO WOU [3k ‘iDj 05 Siamsup Jnok uo pasog

W

ORSaA] W |
po07»
Tmyay 09}, 38I] «
TNy 103}, 3]«
Yoy ID[SOUNLIO «

OJU] [0JoURY «

Japuiy puny oy

N

A1DSS0[9 Y203 |

_

7~

ok Joj Jubu i Joun |

m____Eg% a%m __8
am ‘aoudsajaid buosis
0 bunoys A9 (josynau)
appIw 3y} 0} 3S0p 00}
SIaMSUD pioao 0} A

sdi] |

J

sna0{ bajos)S VoIS UL

4
LHSNSND @ INIINGS

FOIOHD)
@@@@m@@b@

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

17/27

ANIE

‘pansasay Sjybu |1y 2uy ‘ubisuy aupuo ‘6661 @ ybukdo)

(< days aN)(roog >>)

N

g, punj Y, punj
1j3)4 Kbuong WILEN 19j314 Abuoag
I I I T T [T U v d 1T 1 1]
LN : e
Jojsbuniop 50 _ sojsbuuiop
poo] V4] %l poo]
burjoy bujoy
J0jsbutuo v { 10)sbuujop
—-muu m> =<=

“puny jonjnw o 10§ duasa}eud

3abuoxs D Moys 0} J0g 3y} Jo pud duj SpIono} 3jpas ayj Yy “Jajaid nok puny Y
3)02IpUI 0} JOQ JAMSUD 3y} 3SN U3y} ‘Spunj OM} Ay} JO YI03 JO SAINJ03) Ay} BUIWIDX]

‘Spunj jomnw awos 2i0dwod 0] nok YSD KO [k 3K ‘Joj 05 SiamsuD Jnok uo pasog

r

B3R WU |
po0]e
UInjoy 103}, 991y] »
dimay J0a}, au)e
[0y JDJSOUILIO} «
fwba).-
OU} [DI3U39 «

Japui{ pun4 |onMnpy

N

A10SS019 42103 |

-

J
ok 1o} Jybu S joym
auwLIA}ep _mw_mm U0
M ‘9)ualajaId Duos)s
0 buyoys A9 (joyynou)

appiw ay) 0} 3sop 00}
SJoMsuD pioao 0] A

sdi) |

J

snoo4 2i0aj0nS oISy JauIdU)

4
LHINSNI S SNITNGS
14

39O
uolsioeid)

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

18/27

817914

‘paniasay Sjybu |1y u| ‘ubisuy auju ‘6661 @ 1ybukdo)

(k< 3)5 N)(poog >>)

g, puny J, puny
13p31q Abuoxg ALY 12j14 Abuong
N I I T I N I 77 77 M A I
¥y : : ¥
10)sbuiusop 50 Cl 10)sbuiusop
poo] 4l %3 poo]
umjay \ . uInay
109 331 40 w0t 103, da1y)
—.m: m> =<=

‘SpUn) jomw awos i0dwod o} nok YSO KO [k 3K “I0j 0S SJaMSUD Inok Yo Pasog

"punj [omjaw 0 Joj aduasapaId

5abuons o Moys 0) Jog ay) jo pud Ay} SpIoMO} 3|03S Ay} Y1) “Jajaid noA puny yiyw
3)00IpUI 0] JOQ J3MSUD By} 3SN UAY} ‘SpUNJ OK) 3y} JO 4203 JO SAINID3) 3y} AUILIDK]

N\

TEMETRTT
po0]«
(Ifay 103}, daM] »
UInjay 10}, au)e
FS” JOJSOUIION »

JITNUETERE

Japuty punj [pnyniy

N

A1DSS0|9 42103 |

_

7

nok Joj Jybu s 0y |
AUIWISP J3})3q U0
am *3uasejeid buoss
0 bunoys Ag -{joxnau)
appIL 3y} 0] 3509 00)
SIGMSUD PI0AD 0] M|

sdi] |

_J

sna0, 2bajosS ‘UOISY| JaUIB)U

4
LHENSHI £ INTNES
14

FONOHO)
ﬁ@@m@m@@b@

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

19/27

61°9l4

‘pansasal Sybu |ty “au) ‘yybisuj dujug ‘6661 @ Jubuddoy

(k< days panN)(wog >>)

g, puny
13j)4 Abuong

J, puny
[pjnay 5p1g Abuosg

L I I P

_

N AN N U N I N Y

By : : sy
sojsbuwiop 50 80 10)sbuiop
kiobajoy yjHo19 m>”ﬁh%< fi0bajoy
burjoy . buo
1jsbutuso S ¢ s_m@w___soz
[} m: m> =<:

"punj jonjnw 0 Joj ddudsaJAId

5abu0A)S 0 MOYS 0} J0g 3y} Jo PUI 3y} SPIDKO} 3[D3S Ay} YaI) “Jajed nok punj Yy
30JIpUL 0) JOQ JOMSUD 3y} 9SN U3} ‘Spunj OM} 3y} JO 4I03 JO SAMD3) 3y} dulwox]

‘Spuny [onynu awos 3i0dwod 0) Nok 4SO MOU (I 3K ‘10j 05 Siaksup unok uo pasog

N

TRUS3A] W« |
t'C:QJ L J

JIfoy 109%, 99l
mmay 103% aug)
7S JO]SOUMTION »

O]U] [DIaUa9

Japul{ pung |omny

\.

A10sS019 Y2103

r

ok 10} 16 SI Yoy |

auIWId)3P J3JJq U0
ok ‘30uasajaud buos)s
0 bunoys A9 {joynau)
3PPl ay) 0} S 00)
SJamsun pioro o) A}

sdij |

J

sn204 2163jp1)S VoIS U]

4
LHSNSN S INITNS
2

NORS)
olsIo®Id

=

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

20/27

0¢9l4

‘pansasal SJybu [y -uj ‘ubisul duju ‘6661 @ Jybukdo)

(<< 0318 ;mzumv_ocm >>)

g, iy N Y. puny
53j314 Abuosg pJjnaN 13jayd Abuosg
I I I _ | 77 777 1
poo] VA 40 poo}
TA)
fuobajpy | paduojog nssabby fobajn)
unpy . . unpy
103), 331y Al %01 103), 331y
buoy burpoy
10jsbuujop 5 ¢ ijsButuiopy
a.m: m> =<=

‘SpUn) oMW awo$ 3I0duwod o) nok YO Mou M 3k ‘Ioj 0 SaMsuD Inok uo pasog

"pun) [onjnw 0 10) 3oudsafaId
1abuons O Moys 0} Jog ay) Jo Pud 3y} SpiOK0} 3j0as ayj YY) Jajaid nok puny Yy
3)02puI 0} IDQ J3WSUD 3U) SN UBY) ‘SPunj OM} 3y} JO YI03 JO SAINJD3) By} UNLDX]

~

TAUSaT] WA~ |
P00«
IINjay J0a), 991} »
dinay 103}, au()«
Y1y IDJSOUITION «

O]U] [oRUY e

Japutj puny [onjny

_

A10SS0]9 42403 |

ﬁ

ok 10} Jubu 1 Joun)
aUIW3)8p Ja))3q U0
oM ‘30uaspaid buoss
0 Bunoys Ag (jonau)
appIW 3y} 0] S0P 00}
SIGNSUD PIoAD 0] AIj

ma:k

J

sna0{ 2ibaj05)S ‘oIS JaUIB)Yf

LHSISRND

SNIUNE

"O-

FOIOHD)
EQ@@@@&@

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

21/27

YARIE

OM| J3)sn|)

30104
U0ISIJa1g

2210y)
U0ISI23lg

auibu}

3010Y)
UoISIJal

UoISIzAg aubuj
01047

U0ISIzalg

auQ Jaysn)) b0

221049
U0ISIdalg

auibu3
2010Y)
U0ISI3lg

0G0 ¢

auibu]
010y
U0ISIDAlY

\

\

Swajshs jual)

NC1L

q0€tL¢

00¢1e

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

22/27

autbu3
32104

JAANIE

06¢¢
(J0)dopy

UOISIdAI4 INY

1374

Wyjuiobyy
buiouojog
poo]

0t
3pIS 3010 UOISINaI]

0522

3pIS Juang

Kiojaudoyy
K30
vay0d

1

01¢d

waskS Juat)

0cce

SUBSTITUTE SHEET (RULE 26)

WO 00/45319 PCT/US00/02249

23/27

Client System One

Precision

Choice
Engine One

Precision
Choice
Engine Two

Adaptor

Client System Two One

Precision
Choice
Engine Three

FIG.23

Client System One

Precision
Choice
Engine One

Precision
Choice
Engine Two

Adaptor
One

Client System Two

Precision
Choice
Engine Three

FI1G.24

SUBSTITUTE SHEET (RULE 26)

WO 00/45319 PCT/US00/02249

24/27

Client System One —
Precision
Choice

Engine One

Precision
Choice
Engine Two

Adaptor

Client System Two One

Precision
Choice
Engine Three

FI1G.25

Client System One —
Precision
Choice
Engine One

Precision
Choice
Engine Two

Client System Two Ad(()lplor
ne

Precision
Choice
Engine Three

FI1G.26

SUBSTITUTE SHEET (RULE 26)

WO 00/45319 PCT/US00/02249

25/27

Client System One

Precision
Choice
Engine One

Precision
Choice
Engine Two

Adaptor

Client System Two : One

Precision
Choice
Enqine Three

FIG.27

Client System One

Precision
Choice
Engine One

Precision
Choice
Engine Two

Client System Two

Precision
Choice
Engine Three

FI1G.28

SUBSTITUTE SHEET (RULE 26)

WO 00/45319 PCT/US00/02249

26/27

Client System One

Precision
Choice
Engine One

Precision
Choice
Engine Two

Client System Two

Precision
Choice
Engine Three

F1G.29

SUBSTITUTE SHEET (RULE 26)

PCT/US00/02249

WO 00/45319

27/27

3203y
O<_ spang

~
~
~
~

Spubwwo) Ew T~

O)-220H3)

0€°9l4

—_—

~
P
-
~
~

O spuowwoy Ty
99D13)y]

~~

10S$3014 PUDWILIOY

walgg \ | _ _
~ vay09 33043)y| O SpUDWWIOY)
1~ abos X
o) (o)
f/_f A 300}13)u| SPUDLIWOY
- U] 183sn) THX
[~ palgg \ |
vay0J 3304I3)y| SpUDWWOY)
1aboJop WX
3PS
90104 UOIsIddld 3PIS Jualfy
10)dopy

(s)wayshs juan)

AN

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No
PCT/US00/02249

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 17/60
US CL :705/10, 26, 27
According to International Patent Classification (IPC) or to both national classification and 1IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 705/10, 26, 27

Documentation scarched other than minimum documentation to the extent that such documents arc included inthe Lields scarched

NONE

Electronic data base consulted during the international scarch (name of data base and, where practicable, search lerms used)

WEST, DIALOG

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 4,992,940 A (DWORKIN) 12 February 1991, col. 3, line 47| 1-85
thru col. 10, line 53.

X US 4,996,642 A (HEY) 26 February 1991, col. 3, line 63 thru col. 1-85
7, line 57. '

X US 5,717,865 A (STRATMANN) 10 February 1998, col. 3, line 35| 1-85
thru col. §, line 25.

X US 5,749,081 A (WHITEIS) 05 May 1998, col. 3, line 10 thru col. | 1-85
9, line 25.

X US 5,790,426 A (ROBINSON) 04 AUGUST 1998, col. 6, line 56| 1-85
thru col. 32, line 56.

X SAATY. THOMAS L. Decision Making for Leaders, University of | 1-85
Pittsburg, RWS publications. 1988.

Further documents are listed in the continuation of Box C. D See patent family annex.

Special categories of cited documents - Jater document published alier the internanonal filhng date or privry
date and not mconflict with the appheation but ened 1o amderstand

A document defining the general state of the art which 1s nat consudered the principle ar theory underlying the mvention

to be of particular relevance

“X* document of panculan televance. the clamed mvention cannol be

e carher document published on or after the witernational filmg date
considered novel ar cannot be consulered oy olve anun entive step
"L document which may throw doubts on priofity claims o1 which s when the document i taken alone
aited to establish the pubhcation date of another ciation or uther .
special reason (as specified) "y document ol particular relevance, the clauned mvennon cannot be
considered 10 nvolve an mventve step when the document s
el document referrmg to an oral disclosure. use. extubition or other combined with one or more other such documents. such combmation
means bemg obvious to a person skilled m the art
"p” document published prior to the wternational filing date but later than v g» document member of the same patent fanly
the priority date claimed
Date of the actual completion of the international scarch Date of mailing of the international scarch report
07 APRIL 2000 0 2 MAY LUGU
Name and mailing address of the ISA/US Authorized offieer

Commissioner of Patents and Trademarks

Box PCT ﬁ M)
Washington. D.C. 20231 ALLEN MACDONW . MU
08-9708

Facsimile No. (703) 305-3230 Telephone No. (703)

Form PCT/ISA/210 (second sheet) (July 1998)«

- INTERNATIONAL SEARCH REPORT

Inwernational application No.

PCT/US00/02249

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X, P US 5,884,282 A (ROBINSON) 16 March 1999, col. 6, line 56 thru | 1-85
col. 32, line 56.
A US 5,124.911 A (SACK) 23 JUNE 1992, entire document. 1-85
A US 5,041,972 A (FROST) 20 August 1991, entire document. 1-85
A US 5,734,890 A (CASE et al) 31 March 1998, entire document. 1-85

Form PCT/ISA/210 (continuation of second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

