The present invention discloses a catheter instrument comprising a needle tip shielding device. The needle tip shielding device 100 is comprising a body with a rear side 106, a front side 107, an outer surface 108 connecting the rear side 106 and the front side 107, a hole 102 extending from the rear side 106 to the front side 107, a resilient arm 103 extending at an attachment point 105 from the front side 107 of the body, and a longitudinal arm 112. The resilient arm 103 has a resting state, from which it may be forced to yield free passage through the hole 102 in an axial direction of the body. The resilient arm 103 is adapted for protecting a needle tip 304 of a hollow needle 303 extending through the hole 102 in a direction from the rear side 106 to the front side 07, when the resilient arm 103 is in the resting state. The resilient arm 103 has one external point of contact, the point of contact being a contact with the hollow needle 303 when the hollow needle 303 is in a forward position. Any straight imaginary line extending longitudinally through the hole 102 in the axial direction of the body coincides with the resilient arm 103, when the resilient arm 103 is in the resting state.
NEEDLE TIP SHIELDING DEVICE

TECHNICAL FIELD

The present invention relates to a catheter instrument comprising a plastic needle tip shielding device for the automatic safety shielding of a needle after its employment for introduction of a catheter tube.

BACKGROUND

The clinical utilization of a pointed hollow needle mounted inside a flexible catheter tube is well known in the medical art for the introduction of a catheter. In such a medical instrument, the catheter tube is positioned tightly around the needle in such a way as to allow the needle to slide and telescope along the length of the catheter tube. Before use, the tip of the needle is protruding slightly through the opening of the catheter tube to allow facile penetration through the skin. Upon puncturing of the skin and introduction of the needle, the distal end of the catheter tube is simultaneously brought into place inside the desired target body cavity of the patient, such as the inside of a blood vessel, for example a vein. The needle has then done its duty in assisting the introduction of the catheter and is withdrawn by being pulled backwards through the catheter. Upon release of the needle, the catheter is set in its intended working mode extending over a lengthier period of time and including, for example, periodical administration or infusion of fluids or medications in liquid form, the collection of blood samples and the like.

An unprotected released needle constitutes, however, a serious health hazard due to the fact that it may be contaminated with e.g. infectious agents originating from the patient's blood or other body fluids, in combination with the needle tip's inherent ability to easily penetrate skin. Hence, the medical personnel who are handling the released needle may acquire the corresponding disease, e.g. HIV or hepatitis, if by accident contacting it with their skin. In order to circumvent or alleviate the health hazards associated with such a released needle amongst other things, there has been much effort devoted to the development of various kinds of needle tip protectors with a special focus on automatic variants of a type which may be referred to as being "foolproof.

US66 16630 Bl, by B. Braun Melsungen A.G. discloses a safety IV catheter comprising a resilient spring clip normally positioned in the catheter hub. The needle of
the safety IV catheter passes through a hole in the spring clip which allows axial movement of the needle. When the needle is in the forward position, i.e. when the safety IV catheter is ready for use, the presence of the needle forces parts of the spring clip into a position where these parts locks to the inside of the catheter hub, whereby movement of the spring clip relative the catheter hub is prevented. As the needle is withdrawn to a point where the tip passes these parts, the spring clip snaps into a position in which it is blocking access to the to the tip of the needle. Simultaneously, the part of the spring clip that previously locked to the inside of the catheter hub snap out of this position, whereby movement of the spring clip relative the catheter hub may occur.

As the needle is further withdrawn, means are provided, e.g. a slot or a crimp on the needle, to lock the spring clip to the needle, whereby the spring clip is ejected from the catheter hub together with, and positioned on, the needle.

For various reasons, including e.g. practical, economical and technical reasons, the above described spring clips, and similar marketed variants, are today by necessity made of metal and catheter hubs of a plastic material. Disadvantages of the combination of these materials in this application include the release of e.g. microscopic plastic chips and metallic particles by the scraping of the metal spring clip against the inside of the plastic catheter hub when the former is ejected from the latter upon withdrawal of the needle. These chips and particles may easily be flushed into the bloodstream of a patient upon normal use of the corresponding catheter, and thus represent a serious health hazard to the same.

Spring clips, like the type described above and similar marketed variants, and needles, are today both by necessity made of metal. One disadvantage of the spring clip of this and similar safety IV catheters is the scraping vibration generated as the needle slides through and on the spring clip as it is withdrawn. This scraping vibration, which is due to metal sliding over metal and which can be clearly heard and felt, is highly uncomfortable and worrisome to the patient, who already is in an uncomfortable and exposed situation and may be very anxious.

Furthermore, spring clips, like the type disclosed above, provide poor protection per se against drops of blood or body fluid that may move outwards from the interior of the catheter hub as the needle is removed. Such drops may, for example, spread infectious diseases.

GB2451 153(A) by Poly Medicure Ltd discloses a needle safety device for an intravenous catheter apparatus that includes a base capable of receiving a needle between opposing jaws attached to the base and capable of being influenced by the
needle. The jaws have a link connecting the jaws arranged a distance from the base. The jaws may move between an expanded position in which they interact with an obstruction within a wing housing of the intravenous catheter apparatus. The jaws permit relative movement of the needle with the base when expanded, close around a needle tip as it passes the jaws, and prevent relative movement of the needle with the base when the jaws are collapsed.

However, when collapsed, each and one of the jaws do not extend further than maximally to the center axis of the needle. The particular jaw, onto which the tip of the needle is pointing, may thus relatively easy reveal the needle tip if it happens to be bent. In addition, the jaws need to be forced together with a link. This link represents an additional part of the device, which increases cost and complicates production of the same.

EP657184(A1) by the BOC Group pic discloses a medical device, for example, an IV cannula or a syringe which has a hollow needle with a sharp distal end for piercing the skin of a patient and includes means for protecting the sharp end of the needle after use to minimize the possibility of accidental needle stick. The means includes a rod mounted for movement through the needle between a needle end protection position and a retracted position within the hollow needle, and means for maintaining the rod towards the needle end protection position.

However, since the needle tip is not protected in the protection position there is a risk that the needle may cause dermal wounds if the needle engages the skin close to parallel or at a minor angle towards the skin. Hence, an improved device for automatic shielding of the needle tip of a needle after its employment for introduction of a catheter tube is desired.

SUMMARY

It is an object of the present invention, considering the disadvantages mentioned above, to provide a safety catheter instrument and needle tip shielding device which is devoid of scraping vibrations, or where these vibrations are reduced, as the needle is withdrawn.

It is another object of the present invention to provide a needle tip shielding device with an improved protection per se against drops of blood or body fluid that may move outwards from the interior of the catheter hub as the needle is withdrawn from a safety catheter instrument.
It is yet another object of the present invention to provide a needle tip shielding device which may be withdrawn from a catheter hub with a minimized risk for the generation of internal scratches on the interior surface of the latter.

It is yet another object of the present invention to provide a needle tip shielding device which may be withdrawn from a catheter hub with a minimized risk for the generation of loose particles, such as particles of plastic or metal.

It is yet another object of the present invention to provide a needle tip shielding device with improved safety with regard to the shielding of the needle tip.

It is yet another object of the present invention to provide a needle tip shielding device which may be easily manufactured at a low cost.

These and other objects, which will appear from the following description, have now been achieved by a device according to one aspect of the present invention which comprises a plastic needle tip shielding device comprising: a body with a rear side, a front side, an outer surface connecting the rear side and the front side, a hole extending from the rear side to the front side, a resilient arm extending at an attachment point from the front side of the body, and a longitudinal arm; wherein the resilient arm has a resting state, from which it may be forced to yield free passage through the hole in an axial direction of the body, the resilient arm being adapted for protecting or clamping a needle tip of a hollow needle extending through the hole in a direction from the rear side to the front side, when being in the resting state; and wherein any straight imaginary line extending longitudinally through the hole in the axial direction of the body coincides with the resilient arm, when the resilient arm is in the resting state.

According to another embodiment, when the resilient arm is in the resting state, the resilient arm having one external point of contact, the point of contact being a contact with the hollow needle when the hollow needle is in a forward position; wherein the longitudinal arm has one external contact point, the contact point being a contact with the hollow needle when the hollow needle is in a forward position.

According to another aspect of the present invention, the needle tip shielding device may be shaped as a circular or distorted cut cone or cylinder.

According to yet another aspect, the distance in a longitudinal direction from the front side to the one external point of contact may be longer or shorter than the distance in a longitudinal direction from the front side to the one external contact point.

According to yet another aspect, the longitudinal arm may have a resting state, from which it may be forced to yield free passage through the hole in an axial direction of the body, any straight imaginary line extending longitudinally through the hole in the
axial direction of the body may coincide with the longitudinal arm, when the longitudinal arm is in the resting state.

According to yet another aspect, the longitudinal arm may be separated from the resilient arm when one or both of the longitudinal arm and the resilient arm are in their respective resting state, or when the longitudinal arm and the resilient arm are both forced to yield free passage through the hole in an axial direction of the body.

According to yet another aspect of the present invention, the needle tip shielding device may be provided with a back-hooking elongation, the resilient arm together with the back-hooking elongation thereof may have an L-shaped form; wherein the any straight imaginary line coincides with a point on the surface of the resilient arm in between the attachment point and an inner corner in the L-shaped form of the resilient arm, when the resilient arm is in the resting state; and wherein the any straight imaginary line coincides with a point on the surface of the back-hooking elongation, or with a point on the surface in between the attachment point and the corner, when the resilient arm is clamping the needle tip in cooperation with the back-hooking elongation.

According to yet another aspect of the present invention, the resilient arm of the needle tip shielding device, or any elongation thereof, may have a maximum of one external point of contact, the point of contact being a contact with any part of the hollow needle, when used.

According to yet another aspect of the present invention, the inner diameter of the hole may be equal to or slightly larger than the outer diameter of the shaft of the hollow needle to provide a sliding and directing engagement between the shaft and the needle tip shielding device.

According to another aspect of the present invention, the needle tip shielding device may comprise a body shaped as a circular or distorted cut cone or cylinder with a rear side, a front side, an outer surface connecting the rear side and the front side, a hole extending from the rear side to the front side, and a resilient arm extending at an attachment point from the front side of the body; wherein the resilient arm has a resting state from which it may be forced to yield free passage through the hole in an axial direction of the body, the resilient arm together with a back-hooking elongation thereof
having an L-shaped form for clamping a needle tip of a hollow needle extending through the hole in a direction from the rear side to the front side; wherein any straight imaginary line extending longitudinally through the hole in the axial direction of the body coincides with a point on the surface of the resilient arm in between the attachment point and an inner corner in the L-shaped form of the resilient arm, when the resilient arm is in the resting state; wherein any of the before mentioned straight imaginary lines coincides with a point on the surface of the back-hooking elongation, or with a point on the surface in between the attachment point and the corner, when the resilient arm is clamping and thus protecting the needle tip in cooperation with the back-hooking elongation; and wherein the resilient arm or the back-hooking elongation has a maximum of one external point of contact, the point of contact being a contact with any part of the hollow needle, when used.

According to another aspect of the present invention, the needle tip shielding device may be made of a molded plastic material. In this respect, the needle tip shielding device may be molded, such as for example injection molded, into one homogenous piece and/or one integral unit, without interfaces in between the different parts thereof.

According to yet another aspect, the outer surface may be provided with at least one protuberance.

According to yet another aspect, the rear side may be provided with a cone-shaped elevation through which the hole is extending.

According to yet another aspect, the rear side may be larger than the front side to form an inclination of the outer surface within the range from 0° to 10°.

According to yet another aspect, the length of the back-hooking elongation, measured from the corner to the most protruding part, may be 0.5 to 6 times the diameter of the hole.

According to yet another aspect, the angle inside the corner may be within the range from 60° to 110°.

According to yet another aspect, the body may be elliptic.

According to yet another aspect, the resilient arm of the needle tip shielding device may be provided with a back-dragging preventing elongation for prevention of
unintentional movement of the needle tip shielding device in the direction from the front side to the rear side, when the needle tip shielding device is mounted in a catheter instrument.

According to yet another aspect of the present invention, there is provided a catheter instrument comprising the needle tip shielding device, a catheter hub and a needle unit; wherein the needle unit is provided with connecting means for connection to the catheter hub, with connecting means for connection to an external device, and is fixed around the rear end of the hollow needle; and wherein the catheter hub is connected to a catheter extending longitudinally in the same direction as the hollow needle when the needle unit is connected by the connecting means to the catheter hub.

Further features of the invention and its embodiments are set forth in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects, features and advantages of which the invention is capable will be apparent and elucidated from the following description of non-limiting embodiments of the present invention, reference being made to the accompanying drawings, in which

Fig. 1 is a cross section view from the side of a catheter instrument according to one embodiment in the ready mode, i.e. before its use for the introduction of a catheter tube, comprising a needle tip shielding device according to one embodiment, a catheter hub and a needle unit, according to an embodiment of the present invention;

Fig. 2 is a cross section view from the side of a needle tip shielding device withdrawn to the point where an expansion region reaches a contact point of a resilient arm, according to an embodiment of the present invention;

Fig. 3 is a cross section view from the side of a needle tip shielding device withdrawn to the point where an expansion region reaches a hole, whereby further backwards movement of the hollow needle relative the catheter hub is prevented without disconnection of the needle tip shielding device from the catheter hub, according to an embodiment of the present invention;

Fig. 4 is a cross section view from the side of a needle tip shielding device disconnected from the catheter hub, with a hollow needle
pushed forward with the rear end of an expansion region a distance D1 from the most forward edge of a hole, whereby a needle tip coincidences with a corner, according to an embodiment of the present invention;

Fig. 5 is a perspective view of a needle tip shielding device according to one embodiment comprising a body with a circular rear side, a circular front side, an outer surface connecting the circular rear side and the circular front side, the circular hole extending from the circular rear side to the circular front side, and a resilient arm extending from the front side of the body, according to an embodiment of the present invention;

Fig. 6 is a partial cross section view from the side of a needle tip shielding device according to one embodiment, mounted in a catheter hub at a region where the tilt angle is practically 0° and wherein a resilient arm is provided with a back-dragging preventing elongation and wherein a catheter hub is provided with a catheter hub bump, according to an embodiment of the present invention;

Fig. 7 is a perspective view of one embodiment of a needle tip shielding device comprising a front side provided with a cone shaped elevation, an outer surface provided with four (two of these not visible in the figure) evenly spread protuberances and a longitudinal arm extending from the front side, according to an embodiment of the invention;

Fig 8 is a perspective view of one embodiment of a needle tip shielding device comprising a front side provided with a cone shaped elevation, an outer surface provided with four (two of these not visible in the figure) evenly spread protuberances, a resilient arm in its resting state and a longer resilient longitudinal arm in its resting state with an inwards bend at its distal end extending from the front side, with a hollow needle withdrawn to the point where an expansion region reaches the hole, according to an embodiment of the invention; and

Fig 9 is a perspective view according to one embodiment, of the needle tip shielding device of Fig. 8 with the hollow needle in a forward position, whereby the resilient arm and the longitudinal arm are forced out of their normal resting states and together contacting the needle shaft with two opposite points of contact at different longitudinal distances from the front side.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Embodiments of the present invention will be described in more detail below with reference to the accompanying drawings in order for those skilled in the art to be
able to carry out the invention. The invention may, however, be embodied in many
different forms and should not be construed as limited to the embodiments set forth
herein. Rather, these embodiments are provided so that this disclosure will be thorough
and complete, and will fully convey the scope of the invention to those skilled in the art.

The embodiments do not limit the invention, but the invention is only limited by the
appended patent claims. Furthermore, the terminology used in the detailed description
of the particular embodiments illustrated in the accompanying drawings is not intended
to be limiting of the invention.

Embodiments of the present invention will now be described below with
reference to Figs. 1 to 9.

Referring to Figure 1, there is provided a catheter instrument 1000 comprising
a needle tip shielding device 100, a catheter hub 200 and a needle unit 300. The needle
unit 300 is provided with connecting means 301 for connection to the catheter hub 200,
and with connecting means 302 for connection to an external device, for example a
syringe or the like. It is mechanically and hermetically fixed as known in the art, such as
molded or glued, around the rear end of a hollow needle 303, whereby liquid passage is
allowed in both directions, from the rear end of the needle unit 300 to and through a
needle tip 304 of the hollow needle 303. The hollow needle 303 may be made of metal
and of a type commonly used and well known in the medical art to penetrate the skin of
a patient. The hollow needle 303 is normally hollow, but it may also be of a solid type
which is not hollow, as known in the art.

The needle tip shielding device 100 is fitted inside the catheter hub 200 so that
the outer surface of the former is contacting the inner surface of the latter, via a catheter
hub contact area. Movement of the needle tip shielding device 100, relative the catheter
hub 200, may be restricted by means of at least one protuberance 101, comprising the
catheter hub contact area, located on the outer surface 108 of the needle tip shielding
device 100. Protuberance 101 is making a corresponding imprint in, and where it
contacts, the inner surface of the catheter hub 200. The hollow needle 303 is
longitudinally movable through a hole 102 in the needle tip shielding device 100. The
hole 102 has a diameter adapted for the hollow needle 303 to be able to slide therein.
The diameter of the hole 102 may, for example, be slightly larger that the outer diameter
of the hollow needle 303, or the same. The hollow needle 303 is provided with an
expansion region 305 near the needle tip 304. The expansion region 305 is a region on
the hollow needle 303 where the effective diameter is larger than elsewhere on the
needle in the direction towards the rear hollow needle 303. An increase in the effective
diameter of the hollow needle 303 by expansion region 305 has the effect that this
region is not movable through the hole 102.

The needle tip shielding device 100 is provided with a resilient arm 103, which
is held out of its three dimensional equilibrium state, i.e. its normal resting position or
resting state, by the outer surface of the hollow needle 303. The hollow needle 303 is,
despite its contact with the resilient arm 103, longitudinally movable as it is arranged to
slide on the same. The catheter hub 200 is connected to a catheter 201, which extends
longitudinally in the same direction as the hollow needle 303. The catheter 201 is
preferable flexible and of a type commonly used and well known in the medical art. The
inner diameter of the catheter 201 may be slightly larger than the outer diameter of the
hollow needle 303 and arranged so that the latter, as well as expansion region 305, may
slide inside the former.

In the ready mode, i.e. before its use for the introduction of a catheter tube, the
following characteristics of catheter instrument 1000 are valid: (i) Needle unit 300 is
connected by connecting means 301 to the catheter hub 200. (ii) The hollow needle 303
is extending through the hole 102 of the needle tip shielding device 100, which is fitted
inside the catheter hub 200, whereby movement of the needle tip shielding device 100
relative the catheter hub 200 is restricted. The hollow needle 303 is contacting the
resilient arm 103 whereby this is forced out of its normal resting position, (iii) The
hollow needle 303 is in a forward position further extending through catheter 201 so
that the needle tip 304 is protruding slightly past the opening of the catheter 201 in
order to facilitate penetration of the skin of a patient.

When in ready mode, the catheter instrument 1000 may be used by a user, such
as a nurse or other medical personnel, for the introduction of a catheter tube, such as
catheter 201, in accordance with the following sequential steps: (i) Penetration of the
skin of a patient by means of needle tip 304, followed by insertion of the catheter 201 so
that its opening is located in the desired body cavity, such as the inside of a vein, (ii)
Fastening of the catheter hub 200 on the skin of the patient by means well known in the
art, such as with medical tape or the like, (iii) Disconnection of connecting means 301,
followed by withdrawal of the hollow needle 303 by holding onto and pulling the
needle unit 300 backwards until the needle tip shielding device 100 is disconnected,
whereby the resilient arm 103 of the needle tip shielding device 100 is protecting the
needle tip 304 so that it cannot penetrate skin by accident.
With reference to Figures 2, 3 and 4, below follows a detailed description of the various events that occur upon withdrawal of the hollow needle 303 according to (iii) above:

When the hollow needle 303 has been withdrawn to the point where expansion region 305 reaches the contact point of the resilient arm 103, the latter may bend away slightly to allow easy passage of the former upon a slight increase in the force of withdrawal (Figure 2). If the expansion region 305 is of a particular type and located on the hollow needle 303 such that the resilient arm does not come in contact with any area with increased effective diameter, the resilient arm does not have to bend away slightly.

Examples of such an expansion region 305 include a protruding bump, e.g. a butt weld, which is facing away from the contact point of the resilient arm 103 on the hollow needle 303. Examples of other possible expansion regions 305 include a crimp or any other protruding distortion as well known in the art.

Further withdrawal of the hollow needle 303, to the point where the needle tip 304 passes the contact point of the resilient arm 103, results in that the former is no longer in a forward position and that the latter strives toward its normal resting position, which is such that a part of the resilient arm 103, or an extension thereof, is in front of the needle tip 304 (Figure 3). The resting position of the resilient arm 103 is such that the needle tip 304 may, preferably, always project, in the longitudinal direction of the hollow needle 303, onto a point of the surface of the resilient arm 103 which is positioned between a corner 104 and an attachment point 105 of the resilient arm 103 independent of the degree of rotation of the hollow needle 303 around its longitudinal axis. The needle tip 103 is thus clamped and protected by the resilient arm 103. The attachment point 105 is positioned radially outwardly from the hole 102.

When drawn backwards beyond this point, the hollow needle 303 may not be pushed in the forward direction again without being hindered by the resilient arm 103, or an extension thereof. Hence, if a user tries to push the hollow needle 303 forwards, the needle tip 304 may penetrate slightly into the resilient arm 103. Preferably the resilient arm 103 is arranged so that this penetration occurs in the corner 104 (Figure 4).

Even further withdrawal of the hollow needle 303, to the point where the expansion region 305 reaches the hole 102, results in that the hollow needle 303 engages with, i.e. gets stuck in, the needle tip shielding device 100 (Figure 3). Additional increase in the force of withdrawal of the hollow needle 303 results in that the needle tip shielding device 100 disconnects from the catheter hub 200. The hollow needle 303 is thereby released from the catheter hub 200 together with the needle tip.
shielding device 100, which is effectively clamping the needle tip 304 and protecting a user from accidental contact with the same. The force needed to disconnect the needle tip shielding device 100 from the catheter hub 200 is, amongst other factors, depending on the angle between an imaginary line L1, which is equivalent with the extension of the hollow needle 303 and the center of the hole 102, and an imaginary line L2, which is a straight line extending in the same plane as L1 that coincides with two points on the surface of the needle tip shielding device 100 being in contact with the inner surface of the catheter hub 200, the points being located outside the surface of the protuberance 101 (Figure 3). Preferably this angle is such that the needle tip shielding device 100 is not disconnected from the catheter hub when the hollow needle 303 is withdrawn until the expansion region 305 reaches the hole 102. The needle tip shielding device 100 is, however, preferably easily disconnected when the expansion region 305 reaches the hole 102, such as with, for example, a gentle jerk backwards. When the hollow needle 303 and the needle tip shielding device 100 have been released from the catheter hub 200, or when the needle tip shielding device 100 is fitted inside the catheter hub 200 and the needle tip 304 is clamped by the resilient arm 103, or an extension thereof, the hollow needle 303 might be pushed forward so that the rear end of the expansion region 305 is moved forward a distance D1 from the most forward edge of the hole 102, during which the needle tip 304 may slide on the surface of the resilient arm 103 until it coincides with the corner 104 (Figure 4).

The catheter instrument 1000

Connecting means 301 and 302 may independently be selected from various connection types allowing a user to connect and disconnect the needle unit 300 from the catheter hub 200, and the needle unit 300 from the external device, respectively, as desired. Examples of such connection types include Luer-Lok®, Luer-Slip®, and various types of bayonet sockets or the like, as well known in the art. Preferably, connecting means 301 and 302, in particular connecting means 302, are air tight so that no gas or liquid, such as blood or any other body liquid, may pass.

With reference to Fig. 4, according to one embodiment, the location of the expansion region 305 on the hollow needle 303 is selected such that the distance D1 is minimized while still allowing the resilient arm 103, or an extension thereof, to clamp the needle tip 304 when the hollow needle 303 is withdrawn.

According to one embodiment, the catheter hub 200 may be provided with additional devices and the like to facilitate its placement and optimize its use, as well
known in the art. For example, it may be provided with valves, gaskets, fastening devices, means for drying blood residues of the needle, and the like.

The needle tip shielding device 100

With reference to Figure 5, according to one embodiment of the invention, the needle tip shielding device 100 comprises a body with a rear side 106, a front side 107, an outer surface 108 connecting the rear side 106 and the front side 107, a hole 102, preferably being circular, extending from the rear side 106 to the front side 107, and a resilient arm 103 extending from the front side 107 of the body. The rear side 106 and the front side 107 may be essentially flat and may be essentially parallel to each other. The hole 102 may extend essentially perpendicular to the plane of the rear side 106, and to the plane of the front side 107. The hole 102 is preferably positioned essentially at the center of the rear side 106, and at the center of the front side 107. The straight imaginary line L2 is coinciding with a point P1 at the edge between the rear side 106 and the outer surface 108, and with a point P2 at the shortest possible distance from point P1 at the edge between the front side 107 and the outer surface 108. At any pair of points P1 and P2, the part of line L2 extending from P1 to P2 preferably essentially coincides with the outer surface 108. The straight imaginary line L1 extending longitudinally through the center of the hole 102 is preferably essentially coinciding with the plane of any line L2. Any imaginary straight line, which is parallel with L1 and extending longitudinally through the hole 102, coincides with a point at the surface in between the attachment point 105 (not shown in Fig. 5) and the corner 104 of the resilient arm 103, when the resilient arm is in its resting state. The attachment point 105 is the edge which defines the transition between the front side 107 and the side of the resilient arm 103 which is closest to the hole 102. The corner 104 defines a sudden bend of the resilient arm 103 towards the plane of the front side 107, when the resilient arm 103 is in its resting state. Thus, the resilient arm 103 attains an L-shaped form, where the horizontal line of the L corresponds to a back-hooking elongation 110 of the resilient arm 103. The shape of the needle tip shielding device 100 according to the present invention has, in comparison to corresponding devices of the prior art, the advantage that it will act as a shield at the moment it disconnects from the catheter hub 200. Thereby it provides excellent protection *per se* against drops of blood or body fluid that may move outwards from the interior of the catheter hub 200 as the hollow needle 303 is removed.
Preferably, the resilient arm 103 may be dimensioned, and attached at a position on the front side 107, such that it or the back-hooking elongation 110 runs free inside the catheter hub 200 independent of the position of the hollow needle 303, unless designed to do otherwise for a specific purpose, such as e.g. for aid in holding the needle tip shielding device 100 at place within the catheter hub 200. When the resilient arm 103 runs free from contact with the inside of the catheter hub 200, the positioning of the needle tip shielding device 100 may be facilitated.

Preferably, the area of the back-hooking elongation 110 is fully covering the projecting area of the hole 102 when the needle tip 304 is clamped in the corner 104, i.e. protected, while the resilient arm 103 is maximally forced out of its resting state (as dependant on the rotation of the hollow needle 303 whereby the needle tip 304 attains different coordinates). This minimizes the risk of uncovering the needle tip 304 on the event that the resilient arm 103 gets bent by e.g. a sideways applied external force. Such a setup is not possible for shielding devices of the prior-art comprising more that one arm or jaw, corresponding to the resilient arm 103 and used in collaboration, as they counteract each other in this regard.

According to one embodiment, the needle tip shielding device 100 has a circular shape, such that the rear side 106 and the front side 107 projects a circle from a view along the direction of the hollow needle 303.

According to one embodiment, the needle tip shielding device 100 has an elliptic shape, such that the rear side 106 and the front side 107 projects an ellipse from a view along the direction of the hollow needle 303.

According to one embodiment, the hole 102 is centered in the rear side 106 and in the front side 107.

According to one embodiment, the rear side 106 has a diameter in the range of 3 to 6 mm, preferably 3.9 to 4.3 mm, and even more preferred 4.1 to 4.15 mm.

According to one embodiment, the rear side 106 is provided with a cone-shaped elevation 109 through which the hole 102 is extending. The effective length of the hole 102 is thereby increased which, for example, allows a better guidance of the hollow needle 303 without having to increase the area of the outer surface 108 by increasing the distance between P1 and P2. Furthermore, the cone-shaped area might be provided with means known in the art, such as a circular scraper, which cleans off residues of e.g. blood from the hollow needle 303 as this is withdrawn.

According to one embodiment, the inner diameter of the hole 102 may be equal to or slightly larger than the outer diameter of the shaft of the hollow needle 303 to
provide a sliding and directing engagement between the shaft and the needle tip shielding device 100. The inner surface of the hole 102 serves as a needle shaft contact area, in contrast to a needle shaft contact line in the metal clips according to known art, for contact with the outer surface of the shaft of the hollow needle 303, i.e. a sliding and directing engagement. This contact area may be maintained, while minimizing product material, i.e. product volume, by arranging the contact area fully or partly on the inside of the cone shaped elevation 109. The needle shaft contact area does not necessarily have to be a contact surface in the entire contact area, as long as the contact area substantially prevents a needle shaft positioned through the needle tip shielding device from swaying/wobbling in such way that the needle tip departs from the central axis of the hole 102. Preferably, the contact area is arranged such that a maximal contact with needle shaft is achieved without preventing the sliding of the hollow needle 303 through the needle tip shielding device 100. The needle shaft contact area may be an area of the needle tip shielding device 100 that surrounds and contacts the needle shaft, i.e. a hole 102 through which the hollow needle 303 runs. The inside surface of the hole 102, i.e. the needle shaft contact area, may be smooth, rough or provided with suitable shapes that contact the needle shaft. In general, the prevention of swaying/wobbling of the hollow needle 303 is better the longer the needle shaft contact area extends in the direction of the hollow needle 303. The extension of the needle shaft contact area, i.e. the longitudinal extension of the hole 102, is preferably as long as possible without adventuring any other intended functions of the needle tip shielding device. For example, the needle shaft contact area may preferably not be extended to such a degree that a simultaneous increase in the contact area with the inside of the catheter hub 200 results in that the needle tip shielding device 100 becomes unacceptable difficult to withdraw from the same, if such withdrawal is desired. In this case, it is instead preferred to increase the extension of the cone shaped elevation 109. The cone shaped elevation 109 may, when positioned on the front side, not be extended to such a degree that the intended function of the resilient arm 103 is adventured. The extension of the needle shaft contact area may, for example, be 1 mm to 10 mm. Preferably, the relationship between the outer diameter of the shaft of the hollow needle 303 and the inner diameter of the hole 102 is such that the hollow needle 303 may easily slide therein when it is withdrawn or pushed forward, yet with a minimal difference between these diameters so that there is a minimal gap. Such a minimal difference, i.e. gap, will provide an adequate and optimal guidance of the hollow needle 303, and thus prevent undesired movement of the hollow needle 303 and the needle tip 304 in a direction
perpendicular to the longitudinal direction of the hole 102 as the hollow needle 303 is pushed forwards or withdrawn.

According to one embodiment, the front side 107 may be provided with the cone-shaped elevation 109 (Fig. 7). The cone shaped elevation 109 then extends forward towards the needle tip, when the needle tip shielding device is arranged on a needle shaft. It is also possible to arrange the cone shaped elevation on the rear side 106, such as disclosed in Fig. 1. The arrangement, e.g. positioning and dimensions, of the resilient arm 103 and the cone shaped elevation may preferably be such that the intended function of the resilient arm 103 is not adventured. Thus, the resting position of the resilient arm 103 may be such that the needle tip 304 will always project, in the longitudinal direction of the hollow needle 303 positioned in the hole 102, onto a point of the surface of the resilient arm 103 which is positioned between a corner 104 and the attachment point 105 of the resilient arm 103 independent of the degree of rotation of the hollow needle 303 around its longitudinal axis. When the cone-shaped elevation 109 is positioned on the front side 107, the rear side 106 is preferably essentially flat. This allows for facile assembly of the needle tip shielding device 100 in the catheter hub 200 by e.g. pressing it into the same by employment of a tool which is in contact with essentially the entire surface of the rear side 106.

In one embodiment the back side 106 is provided with a recess. Then the mouth of the hole 102 is provided at the bottom of the recess. The recess then preferably has slanting surfaces, such as forming a cone-shaped recess. The recess of this kind on the back side 106 may guide the needle through the hole 102 during mounting of the needle tip shielding device on the needle.

According to one embodiment, the needle tip shielding device 100 is provided with the aforementioned protuberance 101 located on the outer surface 108. The protuberance 101 will make an imprint in the surrounding material of the catheter hub 200 when the needle tip shielding device 100 is positioned therein. The mechanical interaction between the protuberance 101 and the catheter hub 200, and the corresponding imprint caused by the former, will reduce the risks of unintentional disconnection of the needle tip shielding device 100 from the catheter hub 200.

According to one embodiment, the protuberance 101 is an annular protuberance extending in a continuous loop around the outer surface 108.

According to one embodiment, the protuberance 101 is an annular protuberance extending in a continuous loop around the outer surface 108, and being located in a plane perpendicular to L1.
According to another embodiment, the protuberance 101 may be a singularity or a plurality of protuberances independently selected from the group consisting of dots, straight elongated shapes, curved elongated shapes, V-shapes, and any other shape known in the art to make an imprint in an object in order to prevent relative movement versus this, such as the shapes on the surface of a tire optimized for use on soft ground.

According to one embodiment, the protuberance 101 may be made of a material with a hardness which is greater that the hardness of the inner surface of the catheter hub 200, in order to effectively accomplish an imprint in the latter. Preferably, the protuberance 101 is made of the same material as the rest of the needle tip shielding device 100, in order to allow for a facile and economically advantageous production of the same.

According to one embodiment, the type, multiplicity and dimension of protuberance 101 is selected such that no unintentional disconnection of the needle tip shielding device 100 from the catheter hub 200 may occur, yet allowing facile intentional disconnection when the hollow needle 303 is withdrawn. For example, the protuberance 101 may be an annular protuberance extending in a continuous loop around the outer surface 108 with a height in the range of 0.05 to 0.3 mm from the same.

According to one embodiment, the protuberance 101 may be a plurality of protuberances on the outer surface 108 (Figs. 7 to 9). These may begin at, or close to, the corner between the rear side 106 and the outer surface 108 and extend in a plane essentially perpendicular to the plane of the rear side 106 and/or the front side 107, toward the front side 107. Preferably, they are evenly spread along the extension of the outer surface 108. Their extension along the outer surface 108 may be 10 to 95 % of the distance between the rear side 106 and the front side 107 along the outer surface 108. Preferably, the endings being closest to the front side 107 consists of a smooth slope to allow facile insertion in a catheter hub 200. The plurality of protuberances on the outer surface 108 may have a height in the range of 0.01 to 0.3 mm, preferably 0.03 to 0.1 mm, and more preferred 0.04 to 0.06 mm, from the same. The plurality of protuberances on the outer surface 108 may consist of 1 to 20 individual protuberances, preferably 2 to 12, which may be of the same or of different lengths and/or heights. Preferably, they are of equal length and height.

According to one embodiment, the inclination of the outer surface 108 of the needle tip shielding device 100, i.e. the angle between lines LI and L2, is within in the range from 0° to 10°, preferably in the range from 4° to 8°, and even more preferred 6°.
Preferably, the inclination of the outer surface 108 is essentially the same as the inclination of the catheter hub 200 where the needle tip shielding device 100 is mounted when the catheter instrument 1000 is in the ready mode. This maximizes the contact surface between the outer surface 108 and the inside of the catheter hub 200, whereby accidental detachment of the needle tip shielding device 100 from the catheter hub 200 is hindered.

According to one embodiment, the inclination of the outer surface 108 of the needle tip shielding device 100, i.e. the angle between lines L1 and L2, is the same as the angle used in well known or standardized detachable conical fittings, such as fittings used for syringes, e.g. the Luer slip or Luer lock.

According to one embodiment, the needle tip shielding device 100 is made of a plastic material. Preferably, the plastic material has a suitable combination, for its intended purpose, of tenacity, rigidity, fatigue resistance, elasticity, and creep deformation resistance. The selection of a suitable plastic material may easily be made by the one skilled in the art. The one skilled in the art may also perform standard experiments in order to screen a range of plastic materials, whereby a suitable plastic material may be selected on the basis of the results of such experiments. A suitable plastic material has a high creep deformation resistance, i.e. it has a low tendency to slowly move or deform permanently under the influence of an applied external pressure.

Hence, a catheter instrument, such as the catheter instrument 1000 of the present invention, comprising a needle tip shielding device 100 with protuberance 101, may be stored in the assembled ready mode for a prolonged time without extensive creep deformation of protuberance 101, which would otherwise make the needle tip shielding device 100 more prone to involuntary disconnection from the catheter hub 200. A suitable plastic material has, furthermore, a suitable elasticity and high three-dimensional memory to allow for the resilient arm 103 to retain its resting state and clamp the needle tip 304 even after prolonged storage, during which the resilient arm 103 has been forced out of this state. In addition, the tenacity of the plastic material is preferably such that the needle tip 304 may penetrate slightly into, but not through the same. The needle tip shielding device 100 may be made of a molded plastic material. Due to the specific configuration of the different parts of the needle tip shielding device 100 according to the embodiments of the present invention, the needle tip shielding device 100 may be molded, such as injection molded, into one homogenous piece and/or one integral unit, without interfaces in between the different parts thereof. Thus, advantageously, after production by any suitable molding procedure as known in the art,
such as injection molding, all necessary parts of the needle tip shielding device 100 of the invention are already integrated without the need for costly and time consuming assembly of different separate parts.

An advantage of the use of a plastic material for the construction of the needle tip shielding device 100, in comparison to e.g. metal, is the greater freedom of variation of various details of the same. For example, a plastic needle tip shielding device 100 according to the invention may be more conveniently molded than the corresponding metallic article. Another advantage includes the possibility to colour-code a plastic needle tip shielding device 100 according to the invention, for example according to the needle size. Yet another advantage of a plastic needle tip shielding device 100 according to the invention is the fact that the needle tip 304 may penetrate slightly into the corner 104 of the resilient arm 103. This represents an "active" and safer shielding principle, in comparison to "passive" shielding of the prior art, whereby the resilient arm 103 is even further locked onto the needle tip 304 and hence additionally restricted from movement out of the safe position. Yet another advantage of a plastic needle tip shielding device 100 according to the invention is the fact that a metallic needle sliding through the hole 102, and on the resilient arm 103, does not give rise to a scraping vibration and sound of the uncomfortable type related to a metal needle sliding on and/or through a metal clip. Yet another advantage of a plastic needle tip shielding device 100 according to the invention is the higher chemical inertness and/or resistance, in comparison to metal, towards e.g. corrosion and reaction with chemicals that might leak from the plastic surrounding constituted by a catheter hub and comprising silicon gaskets and the like.

Yet another advantage of a needle tip shielding device 100, like a plastic needle tip shielding device 100, according to the invention, is that it may be molded and produced in one functional piece, i.e. it does not have to be assembled by the combination of more than one separate article like other corresponding devices of the prior art. Hence, a reduction in the cost of production is resulting. Yet another advantage of a plastic needle tip shielding device 100 according to the invention is the highly reduced tendency, in comparison to metal, of release of e.g. microscopic plastic chips by the scraping of the plastic catheter hub when the needle tip shielding device 100, or a corresponding device, is ejected from the former upon withdrawal of the needle. Accordingly, the tendency for formation of scrape marks, which may result in leakage through the affected connector, is greatly reduced.

According to one embodiment, the needle tip shielding device 100 is made of a thermoplastic polymer comprising crystalline and amorphous alternating regions. When
the needle tip shielding device is made of a thermoplastic polymer comprising crystalline and amorphous alternating regions, the needle tip shielding device will have enhanced storing capacity, due to the excellent structure memory of these polymers. The amorphous regions contribute elasticity and the crystalline regions contribute strength and rigidity, which will render the needle tip shielding device excellent for being stored in a strained position, and the snap over the needle tip when transforming into a resting state.

According to one embodiment, the needle tip shielding device 100 is made of a plastic material selected from the group comprising of POM, PBTP, PMMA, ABS, SAN, ASA, PS, SB, LCP, PA, PSU, PEI, PC, PPO, and/or PPO/SB. These polymers have specifically the advantages according to above, without necessarily being thermoplastic polymers with crystalline and amorphous alternating regions.

According to one embodiment, the needle tip shielding device 100 is made of a thermoplastic elastomer selected from the group comprising of a styrenic block copolymer, a polyolefinic mixture, an elastomeric alloy, a thermoplastic polyurethane, a thermoplastic copolyester, and/or a thermoplastic polyamide. Also these polymers have specifically the advantages according to above.

According to one embodiment, the needle tip shielding device 100 is made of a plastic material selected from the group comprising of Styroflex®, Kraton®, Pellethane®, Pebax®, Arnitel®, Hytrel®, Dryflex®, Santoprene®, Geolast®, Sarlink®, Forprene®, Alcryn®, and/or Evoprene®, for the same reasons as above.

According to one embodiment, the needle tip shielding device 100 is made of a plastic material selected from the group comprising of medical grade liquid crystal polymer, for example Vectra® LCP, polyethylene, and/or ultra high molecular weight polyethylene, for the same reasons as above.

According to one embodiment, the needle tip shielding device 100 is made of polysulfon or polyoxymetyle.

Also, it may be beneficial to manufacture the needle tip shielding device in one, or a combination of several of these. Specifically, it may be beneficial to select one or several polymers with good clarity characteristics, or good coloring characteristics, depending on if the nurse wants to use a transparent needle tip shielding device, for accurately visualizing the tip of the needle, or a colored needle tip shielding device, for easily identifying if the needle tip shielding device is in a shielding position.
According to one embodiment, the angle inside the corner 104 is within the range from 60° to 110°, preferably 80° to 100°, more preferred 85° to 95°, and most preferred 90°.

According to one embodiment, the length of the back-hooking elongation 110, measured in its elongation from the corner 104 to the most protruding part, is at least 0.5 times the diameter of the hole 102, such as 0.5 to 6 times the diameter of the hole 102. It is preferably dimensioned such that no part of the resilient arm 103 is brought in contact with the inner surface of the catheter hub 200 at any location of the hollow needle 303 when the needle tip shielding device 100 is mounted in the catheter hub 200.

According to one embodiment, the back-hooking elongation 110 may comprise a groove with a partial circular shape, as well known in the art, provided and dimensioned to guide and allow the hollow needle 303 to slide thereon when withdrawn.

According to one embodiment, the resilient arm 103 may be dimensioned such that its most protruding part when being forced out of its resting position by the hollow needle 303 is in the range of 0.3 to 3 times the diameter of the front side 107, as measured from the attachment point 105.

According to one embodiment, the width and placement of the resilient arm 103 is such that no part of the resilient arm 103, or the back-hooking elongation 110, is brought in contact with the inner surface of the catheter hub 200 at any location of the hollow needle 303.

According to one embodiment, the width of the resilient arm 103 is in the range of 0.2 to 0.9 times the diameter of the front side 107 and selected such that it cannot be bent aside to expose the needle tip 304 under normal circumstances.

According to one embodiment, the thickness and the material of the resilient arm 103 are selected such that the hollow needle 303 may never penetrate through the resilient arm 103 by a user under normal circumstances.

With reference to Fig. 6, according one embodiment, the resilient arm 103 may be provided with a back-dragging preventing elongation 111, extending in a direction being within an angle of 0° to 45° opposite the direction of the back-hooking elongation 110. Preferably, the needle tip shielding device 100, when provided with the back-dragging preventing elongation 111, is mounted in the catheter hub 200 at a region 203 where the tilt angle is practically 0°, i.e. the angle between the line L1 and the line L2, in combination with the same inclination of the outer surface 108. The outer surface 108 may be provided with a protuberance 101, but this is not necessary at a low tilt angle,
such as 0°. At such a low tilt angle, such as 0°, the needle tip shielding device may be held in place in the catheter hub 200 entirely by the friction between the outer surface 108 and the inner surface of the catheter hub 200. Furthermore, the material, of which the needle tip shielding device 100 is constructed, may be selected from a greater variety of materials since an imprint in the catheter hub 200 does not have to be made, as compared to the case with the existence of a protuberance 101. Preferably, the tilt angle of the catheter hub 200 is greater than 0°, such as 6°, in the region immediately behind, i.e. corresponding to the angle between L1 and L3 and being in the direction towards the rear end of the hollow needle 303, respectively, in order for the needle tip shielding device 100 to be easily removed from the catheter hub 200 when desired. The catheter hub 200 may be provided with an annular catheter hub bump 202, extending around the inner surface of the catheter hub 200 in between the placement of the needle tip shielding device 100 and the back-dragging preventing elongation 111. When the hollow needle 303 is positioned in a forward direction, the back-dragging preventing elongation 111 is forced into a position so that the most extended part of the same is coinciding with point on an imaginary line L5, which is parallel with L1. L5 is coinciding with a point located on the catheter hub bump 202. In this state, the needle tip shielding device 100 is prevented from backwards unintentional movement as the back-dragging preventing elongation 111 would engage with, and get stuck on, the catheter hub bump 202. When the needle tip 304 has been withdrawn to the point where it is clamped by the back-hooking elongation 110 and/or the resilient arm 103, L5 is not coinciding with any point located on the catheter hub bump 202, hence, the needle tip shielding device 100 may be removed from the catheter hub 200. The back-dragging preventing elongation 111 and the catheter hub bump 202 have the function of a safety system which prevents the needle tip shielding device 100 from coming out of the catheter hub 200 in the case of an unintentional disconnection of the former from the inner wall of the latter.

With reference to Fig. 7, according to one embodiment, the front side 107 may be provided with a longitudinal arm 112 for additional protective shielding of the needle tip 304 or the hollow needle 303. Advantages of the longitudinal arm 112 include, for example, additional reduction of the risk for unintentional contact with e.g. the shaft of the hollow needle 303, which may be contaminated with e.g. blood, after disconnection of the needle tip shielding device 100 from the catheter hub 200. The longitudinal arm 112 is preferably arranged on the front side 107 such that it faces the resilient arm 103. The longitudinal arm 112 may be shaped, as known in the art, such that it maximizes
the shielding of the exposed area of the needle shaft of the hollow needle 303 in front of the front side 107. It may, for example, be box-shaped with the broader side facing the hollow needle 303. The longitudinal arm 112 is preferably resilient. The longitudinal arm 112 may be arranged to be out of contact with the resilient arm 103 irrespective of the state of the latter. When the longitudinal arm 112 is free from contact with the resilient arm 103 in the resting position of both, the arrangement of the arms and the body allows for injection molding of the needle tip shielding device 100 as one homogenous piece comprising the arms and the body, thus minimizing the number of unit interfaces and unwanted stress in said interfaces as well as simplified manufacturing method. The risk of adventuring the intended function of the resilient arm 103, i.e. its needle tip protective function, is thus minimized. The longitudinal arm 112 may or may not contact the inside of the catheter hub 200.

According to one embodiment, the longitudinal arm 112 may be contacting the needle shaft of the hollow needle 303. Preferably, such a contact may be of a kind which allows the hollow needle 303 to be drawn backwards with minimal restriction, for example, by a point of contact. Such a contact may advantageously help in directing the hollow needle 303 to minimize movement in a direction perpendicular to its extension. The point of contact of the longitudinal arm 112 with the needle shaft of the hollow needle 303 may preferably be arranged at a point on the shaft essentially 180° opposite the point of contact of the resilient arm 103, as shown in Fig. 9. Such an arrangement provides two symmetrically arranged points of contact, whereby the resulting force on the hollow needle 303 in the direction perpendicular to its extension advantageously is minimized. Minimization of such a resulting force may be of special concern when using the needle tip shielding device 100 in combination with needles with relatively large diameter as this may force the resilient arm 103 further from its resting state in comparison to the case when it is used with needles with relatively small diameter. These two points of contact may, preferably, be arranged at different distances from the front side 107 in the longitudinal direction along the needle shaft. The longitudinal arm 112 and the resilient arm 103, and/or the back-hooking elongation 110 thereof, may thereby, each at the same time, be fully or partly overlapping with the longitudinal projection of the hole 102 when the hollow needle 303 is in a withdrawn position, for example, such as illustrated in Fig. 8. Advantageously, this arrangement minimizes the risk of accidently uncovering the shielded needle tip 304, such as by approach in a direction perpendicular to the hollow needle 303 from the side opposite the resilient arm 103. This is made possible due to the fact that the needle tip shielding
device 100 is interacting and stabilizing itself in the hub by the base body, and not by
the resilient arm(s).

With reference to Figs. 8 and 9, according to one embodiment, the longitudinal
arm 112 may be provided with an inwards bend at its distal end and extending longer
from the front side 107 than the resilient arm 103. It may simultaneously be resilient so
that it provides a guiding point of contact with the shaft when the hollow needle 303 is
in a forward position (Fig. 9), and so that it provides maximal and overlapping coverage
of the resilient arm 103, and/or the back-hooking elongation 110 thereof, when the
hollow needle 303 is in a retracted and thus protected position (Fig. 8).

According to one embodiment, the longitudinal arm 112 may be resilient and
thus have a resting state. It may be forced from this resting state by e.g. the shaft of the
hollow needle 303, to yield free passage through the hole 102. When in the resting state,
the longitudinal arm 112 may completely cover the projection of the hole 102. It may,
furthermore, be provided with an inwards pointing extension at its distal end. Such an
extension may be arranged to protect, fully or partly, the needle tip 304 and/or the
resilient arm 103 from external contact when the hollow needle 303 is in a withdrawn
position and both arms are in their respective resting states. Such an arrangement
provides additional security against accidental contacts with the hollow needle 303 or
the needle tip 304.

According to one embodiment, the longitudinal arm 112 may be separated
from the resilient arm 103 when both arms are in their respective resting state. Hence,
the arms may be out of contact with each other. Such an arrangement allows for e.g.
injection molding of the needle tip shielding device 100 in one piece.

According to one embodiment, the longitudinal arm 112 may be designed and
featured in the same way as the resilient arm 103, as described in other embodiments
herein.

According to one embodiment, the distance between the point of contact of the
longitudinal arm 112 with the shaft of the hollow needle 303 and the front side 107, and
the distance between the point of contact of the resilient arm 103 with the shaft of the
hollow needle 303 and the front side 107, may be different. Hence, the distance between
the point of contact of the longitudinal arm 112 with the shaft of the hollow needle 303
and the front side 107 may be longer or shorter than the distance between the point of
contact of the resilient arm 103 with the shaft of the hollow needle 303 and the front
side 107. Such longitudinally asymmetrically arranged points of contacts
advantageously allows both arms to flex inwards to attain their respective resting state,
when the hollow needle 303 is drawn backwards to the position where the needle tip 304 is protected, without contacting each other. Each of the arms may thus be arranged to fully cover the projection of the hole 102, which provides increased safety against accidental contact with e.g. the needle tip 304 in comparison to devices of the prior art.

In the claims, the term "comprises/comprising" does not exclude the presence of other elements or steps. Furthermore, although individually listed, a plurality of means, elements or method steps may be implemented by e.g. a single unit or processor. Additionally, although individual features may be included in different claims, these may possibly advantageously be combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. In addition, singular references do not exclude a plurality. The terms "a", "an", "first", "second" etc do not preclude a plurality. Reference signs in the claims are provided merely as a clarifying example and shall not be construed as limiting the scope of the claims in any way.
CLAIMS

1. A plastic needle tip shielding device (100) comprising:
 a body with a rear side (106), a front side (107), an outer surface (108) connecting said
 rear side (106) and said front side (107), a hole (102) extending from said rear side
 (106) to said front side (107), a resilient arm (103) extending at an attachment point
 (105) from said front side (107) of said body, and a longitudinal arm (112);
 wherein said resilient arm (103) has a resting state, from which it may be
 forced to yield free passage through said hole (102) in an axial direction of said body,
 said resilient arm (103) being adapted for protecting or clamping a needle tip (304) of a
 needle (303) extending through said hole (102),
 wherein said attachment point (105) is positioned radially outwardly from said
 hole (102); and
 wherein any straight imaginary line extending longitudinally through said hole
 (102) in the axial direction of said body coincides with said resilient arm (103), when
 said resilient arm (103) is in said resting state.

2. The needle tip shielding device (100) according to claim 1, wherein said
 body is shaped as a circular or distorted cut cone or cylinder.

3. The needle tip shielding device (100) according to any of the preceding
 claims, wherein said resilient arm (103) is longer or shorter than said longitudinal arm
 (112).

4. The needle tip shielding device (100) according to any of the preceding
 claims, wherein said longitudinal arm (112) is resilient and has a resting state, from
 which it may be forced to yield free passage through said hole (102) in an axial
 direction of said body, and any straight imaginary line extending longitudinally through
 said hole (102) in the axial direction of said body coincides with said longitudinal arm
 (112), when said longitudinal arm (112) is in said resting state.
5. The needle tip shielding device (100) according to any of the preceding claims, wherein said longitudinal arm (112) is separated from said resilient arm (103) when one or both of said longitudinal arm (112) and said resilient arm (103) are in their respective resting state, or when said longitudinal arm (112) and said resilient arm (103) are both forced to yield free passage through said hole (102) in an axial direction of said body.

6. The needle tip shielding device (100) according to any one of the preceding claims, wherein said resilient arm (103) comprises a back-hooking elongation (110), said resilient arm (103) together with said back-hooking elongation (110) thereof having an L-shaped form;

 wherein said any straight imaginary line coincides with a point on the surface of said resilient arm (103) in between said attachment point (105) and an inner corner (104) in said L-shaped form of said resilient arm (103), when said resilient arm (103) is in said resting state; and

 wherein said any straight imaginary line coincides with said back-hooking elongation (110), or with a point on the surface in between said attachment point (105) and said corner (104), when said resilient arm (103) is clamping said needle tip (304) in cooperation with said back-hooking elongation (110).

7. The needle tip shielding device (100) according to any one of the preceding claims, wherein the inner diameter of said hole (102) is equal to or slightly larger than the outer diameter of the shaft of said hollow needle (303) to provide a sliding and directing engagement between said shaft and said needle tip shielding device (100).

8. A needle tip shielding device (100) according to any one of the preceding claims, wherein the needle tip shielding device (100) is comprising a body shaped as a circular or distorted cut cone or cylinder with said rear side (106), said front side (107), said outer surface (108) connecting said rear side (106) and said front side (107), said hole (102) extending from said rear side (106) to said front side (107), and said resilient
arm (103) extending at said attachment point (105) from said front side (107) of said body;
wherein said resilient arm (103) has a resting state from which it may be forced to yield free passage through said hole (102) in an axial direction of said body, said resilient arm (103) together with said back-hooking elongation (110) thereof having an L-shaped form for clamping said needle tip (304) of said hollow needle (303) extending through said hole (102) in a direction from said rear side (106) to said front side (107);
wherein any straight imaginary line extending longitudinally through said hole (102) in the axial direction of said body coincides with a point on the surface of said resilient arm (103) in between said attachment point (105) and said inner corner (104) in said L-shaped form of said resilient arm (103), when said resilient arm (103) is in said resting state;
wherein said any straight imaginary line coincides with a point on the surface of said back-hooking elongation (110), or with a point on the surface in between said attachment point (105) and said corner (104), when said resilient arm (103) is clamping said needle tip (304) in cooperation with said back-hooking elongation (110); and
wherein said resilient arm (103) or said back-hooking elongation (110) has a maximum of one external point of contact, said point of contact being a contact with any part of said hollow needle (303), when used.

9. The needle tip shielding device (100) according to any one of the preceding claims, wherein said needle tip shielding device (100) is a homogenous injection molded needle tip shielding device (100) made of a molded plastic material.

10. The needle tip shielding device according to any one of the preceding claims, wherein said plastic material is a thermoplastic polymer comprising crystalline and amorphous alternating regions.

11. The needle tip shielding device according to any one of the preceding claims, wherein said plastic material is selected from the group consisting of POM, PBTP, PMMA, ABS, SAN, ASA, PS, SB, LCP, PA, PSU, PEI, PC, PPO, and PPO/SB.
12. The needle tip shielding device according to any one of the preceding claims, wherein said plastic material is made of a thermoplastic elastomer selected from the group consisting of a styrenic block copolymer, a polyolefinic mixture, an elastomeric alloy, a thermoplastic polyurethane, a thermoplastic copolyester, and a thermoplastic polyamide.

13. The needle tip shielding device according to any one of the preceding claims, wherein said plastic material is selected from the group consisting of Styroflex®, Kraton®, Pellethane®, Pebax®, Arnel®, Hytrel®, Dryflex®, Santoprene®, Geolast®, Sarlink®, Forprene®, Alcryn®, and Evoprene®.

14. The needle tip shielding device according to any one of the preceding claims, wherein said plastic material is selected from the group consisting of medical grade liquid crystal polymer, such as Vectra® LCP, polyethylene, and ultra high molecular weight polyethylene.

15. The needle tip shielding device according to any one of the preceding claims, wherein said plastic material is selected from the group consisting of polysulfon or polyoxymetylen.

16. The needle tip shielding device (100) according to any one of the preceding claims, wherein said outer surface (108) is provided with at least one protuberance (101).

17. The needle tip shielding device according to claim 16, wherein said outer surface (108) is provided with at least two protuberances (101).

18. The needle tip shielding device according to claim 17, wherein said outer surface (108) is provided with at least three protuberances (101).

19. The needle tip shielding device (100) according to any one of the preceding claims, wherein said rear side (106) is provided with a cone-shaped elevation (109) through which said hole (102) is extending.
20. The needle tip shielding device (100) according to any one of the preceding claims, wherein said rear side (106) is larger than said front side (107) to form an inclination of said outer surface (108) within the range from 0° to 10°.

21. The needle tip shielding device (100) according to any one of claims 6 to 19, wherein the length of said back-hooking elongation (110), measured from said corner (104) to the most protruding part, is 0.5 to 6 times the diameter of said hole (102).

22. The needle tip shielding device (100) according to any one of claims 6 to 19, wherein the angle inside said corner (104) is within the range from 60° to 110°.

23. The needle tip shielding device (100) according to any one of the preceding claims, wherein said body is elliptic.

24. The needle tip shielding device (100) according to any one of the preceding claims, wherein said resilient arm (103) of said needle tip shielding device (100) is provided with a back-dragging preventing elongation (111) for prevention of unintentional movement of said needle tip shielding device (100) in the direction from said front side (108) to said rear side (106), when said needle tip shielding device (100) is mounted in a catheter instrument.

25. A catheter instrument (1000) comprising a needle tip shielding device (100) according to any of the preceding claims, a catheter hub (200) and a needle unit (300); wherein said needle unit (300) is provided with connecting means (301) for connection to said catheter hub (200), with connecting means (302) for connection to an external device, and is fixed around the rear end of a hollow needle (303); and wherein said catheter hub (200) is connected to a catheter (201) extending longitudinally in the same direction as said hollow needle (303) when said needle unit (300) is connected by said connecting means (301) to said catheter hub (200).
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

International application No.
PCT/SE201 1/051 40

A. CLASSIFICATION OF SUBJECT MATTER

IPC: see extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: A61 M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, PAJ, WPI data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 20040225260 A1 (VILLA DANILO ET AL), 11 November 2004 (2004-1 1-11); paragraphs [0066]-[0088]; figures 7-1 2</td>
<td>1-25</td>
</tr>
<tr>
<td>X</td>
<td>WO 2006079766 A1 (ID TECH LTD ET AL), 3 August 2006 (2006-08-03); whole document</td>
<td>1-24</td>
</tr>
<tr>
<td>X</td>
<td>US 505301 7 A (CHAMUEL STEVEN Fi), 1 October 1991 (1991 - 10-01); whole document</td>
<td>1-24</td>
</tr>
<tr>
<td>X</td>
<td>JP 2002085558 A (TERUMO CORP), 26 March 2002 (2002-03-26); whole document</td>
<td>1-24</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claims or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search 19-1-2-201 1

Date of mailing of the international search report 21-1-2011

Name and mailing address of the ISA/SE
Patent och registreringsverket
Box 5055
S-102 42 STOCKHOLM

Facsimile No. + 46 8 666 02 86

Authorized officer
Lisa Sellgren

Telephone No. + 46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 2009)
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>WO 2011019316 A1 (VIGMED AB ET AL), 17 February 2011 (2011-02-17); whole document</td>
<td>1-25</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 2009)
Continuation of: second sheet

International Patent Classification (IPC)

A61M 5/32 (2006.01)
A61M 25/06 (2006.01)

Download your patent documents at www.prv.se
The cited patent documents can be downloaded:
• From "Cited documents" found under our online services at www.prv.se
 (English version)
• From "Anforda dokument" found under "e-tjanster" at www.prv.se
 (Swedish version)

Use the application number as username. The password is FVYLKZHYGA.

Paper copies can be ordered at a cost of 50 SEK per copy from PRV InterPat (telephone number 08-782 28 85).

Cited literature, if any, will be enclosed in paper form.
<table>
<thead>
<tr>
<th>Country</th>
<th>Application No.</th>
<th>Date</th>
<th>Patent Family Annex</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>100371036</td>
<td>27/02/2008</td>
<td>CN 1547493 A 17/1/2004</td>
</tr>
<tr>
<td>DE</td>
<td>60216467 T2</td>
<td>27/09/2007</td>
<td>DK 1412006 T3 02/04/2007</td>
</tr>
<tr>
<td>ES</td>
<td>2276954 T3</td>
<td>01/07/2007</td>
<td></td>
</tr>
<tr>
<td>HK</td>
<td>1067321 A1</td>
<td>24/08/2007</td>
<td></td>
</tr>
<tr>
<td>IT</td>
<td>BO2001 0497 A1</td>
<td>31/01/2003</td>
<td></td>
</tr>
<tr>
<td>JP</td>
<td>2004535905 A</td>
<td>02/1/2004</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>368457 A1</td>
<td>21/03/2005</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>204005 B1</td>
<td>31/1/2009</td>
<td></td>
</tr>
<tr>
<td>RU</td>
<td>2004105941 A</td>
<td>27/03/2005</td>
<td></td>
</tr>
<tr>
<td>RU</td>
<td>2276611 C2</td>
<td>20/05/2006</td>
<td></td>
</tr>
<tr>
<td>US</td>
<td>7530965 B2</td>
<td>12/05/2009</td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>03011381 A1</td>
<td>13/02/2003</td>
<td></td>
</tr>
<tr>
<td>WO</td>
<td>2006079766 A1</td>
<td>03/08/2006</td>
<td>NONE</td>
</tr>
<tr>
<td>US</td>
<td>5053017 A</td>
<td>01/10/1991</td>
<td>NONE</td>
</tr>
<tr>
<td>JP</td>
<td>2002085558 A</td>
<td>26/03/2002</td>
<td>NONE</td>
</tr>
<tr>
<td>WO</td>
<td>2011019316 A1</td>
<td>17/02/2011</td>
<td>SE 534021 C2 05/04/2011</td>
</tr>
<tr>
<td>SE</td>
<td>0950587 A1</td>
<td>14/02/2011</td>
<td></td>
</tr>
</tbody>
</table>