Title: SYSTEM AND METHOD FOR BUFFERED WIRELESS DEVICE ENROLLMENT IN A SECURITY SYSTEM

(57) Abstract: A system and method are disclosed for enrolling wireless security system devices (alarms, detectors, lights) in a security system. A controller is provided and is capable of exchanging wireless signals with the devices. The system has an enroll mode where the wireless devices transmit enroll signals to the controller. The enroll signals contain an identifier associated with each device. An installer uses a keypad or other interface device to review each of the devices that have sent a signal, and to accept them for enrollment or ignore them. After review, the controller sends a signal to the devices instructing them to cease transmitting enroll signals to the controller. If the power of an enrolled device is cycled (battery replacement), another enroll command is sent to the controller. The controller determines whether the device was already enrolled, and if it has the controller sends a signal to the device to stop sending the enroll command.

FIG. 3
Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
SYSTEM AND METHOD FOR BUFFERED
WIRELESS DEVICE ENROLLMENT IN A SECURITY SYSTEM

FIELD OF THE INVENTION

[0001] Embodiments of the invention relate to the field of wireless security systems. More particularly, embodiments of the invention relate to a system and method for automatic enrollment of wireless security system devices.

DISCUSSION OF RELATED ART

[0002] Typical building alarm systems often include a number of sensors positioned throughout a building to alert occupants of fire and non-fire emergencies. These sensors may include smoke detectors, fire alarms, security alarms, emergency lighting, strobe lighting, door contacts, motion detectors, and the like. The sensors are usually connected to a system controller that contains specific information regarding each sensor, so that when a signal is received from a sensor, the controller immediately knows what area of the building is affected and what type of condition is occurring (e.g., open window, smoke, fire). In addition, for systems employing wireless sensors in a zoned configuration, the controller must know which sensors are part of that controller's zone so that only the sensors in that zone will be acted upon.

[0003] To provide the controller with the necessary sensor information, during system installation it is necessary to "enroll" the sensors with the controller. Enrolling the sensors can require extensive manual input of at least the serial number for each sensor in the system. This technique, aside from being arduous, is subject to
errors since the installer often must read the serial number from a plate on the sensor and then must correctly type that serial number into a keypad associated with the controller.

[0004] Automated systems for enrolling wireless sensors may be similarly cumbersome in that they often require the individual sensors to be operated in a unique manner (e.g., reducing sensor power to a predetermined level), or they require the sensors to be passed very close to the controller in order for the controller to read the serial number, or they require the sensors to be enrolled in a specific predetermined sequence.

[0005] There is a need for an improved system for efficiently enrolling wireless sensors in security systems. The system should minimize the total amount of manual action required, should eliminate errors associated with current manual input techniques, and should provide a simplified automated enrollment process for systems employing a plurality of wireless sensors.

SUMMARY OF THE INVENTION

[0006] The disclosed system and method increase the efficiency of enrolling wireless security system devices by reducing the amount of manual intervention required with prior systems. Specifically, the disclosed system and method use an enroll command to buffer the serial numbers and/or other information relating to un-enrolled wireless (RF) devices.
[0007] A method for enrolling wireless devices in a security system is disclosed. The method may comprise receiving, at a controller, a wireless signal from each of a plurality of wireless devices, the wireless signal from each wireless device containing an enroll command and a unique identifier associated with that wireless device; storing the unique identifiers in memory associated with the controller; manually confirming enrollment of at least one of the plurality of wireless devices; and sending an enroll confirmation command from the controller to each manually confirmed wireless device to instruct each said device to stop sending enroll commands.

[0008] A system is disclosed for enrolling wireless devices in a security system. The system may comprise a controller having a processor and a memory, a plurality of wireless devices, and a machine-readable storage medium encoded with a computer program code such that, when the computer program code is executed by a processor, the processor performs a method comprising: receiving a wireless signal from each of the plurality of wireless devices by the controller, the wireless signal from each wireless device containing an enroll command and a unique identifier associated with that wireless device; storing the unique identifiers in the memory; requesting manual confirmation of enrollment of at least one of the plurality of wireless devices; and sending an enroll confirmation command from the controller to each manually confirmed wireless device to instruct each said device to stop sending enroll commands.
BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The details of the invention, both as to its structure and operation, may be obtained by a review of the accompanying drawings, in which like reference numerals refer to like parts, and in which:

5 [0010] FIG. 1 is a schematic diagram of the disclosed system;

[0011] FIG. 2 is a schematic diagram of an exemplary controller of the system of FIG. 1; and

[0012] FIG. 3 is a flowchart describing an exemplary method of operating the system of FIG. 1.

DESCRIPTION OF EMBODIMENTS

[0013] The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. It will be appreciated, however, that the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like numbers refer to like elements throughout.

[0014] Referring to FIG. 1, a security system 1 for a commercial or residential building 2 may include a plurality of wireless devices 4 positioned throughout the building or a portion of the building, and a system controller 6 configured to receive
signals from the devices 4. A non-limiting exemplary list of such wireless devices 4 includes, heat, smoke, fire and toxic gas detectors, fire alarms, security alarms, emergency lighting, strobe lighting, door contact detectors, motion detectors, and the like. The wireless devices 4 may be capable of sending wireless signals to the controller 6 indicative of one or more alarm or status conditions. Communications between the devices 4 and the controller 6 may be via one or more wireless (e.g., RF, infrared, laser) communications links.

[0015] The wireless devices 4 may be battery powered, and may be configured to transmit a signal representative of the status of the devices (e.g., alarm condition or other status). The devices 4 may also be configured to transmit an identification signal that enables the system controller 6 to recognize the particular device, or the type of device (e.g., door contact, motion detector) being enrolled. In one embodiment, the identification signal represents a unique serial number or other unique identifier associated with the device 4. In another embodiment, the identification signal include information regarding wireless signal strength of the device, and/or the type of device being enrolled.

[0016] Referring to FIG. 2, the controller 6 may have a processor 8 and local memory 10 (e.g., a buffer) for storing a variety of information relating to the system 1 and the devices 4. The controller 6 may have separate zones for different devices 4 being monitored. In one exemplary embodiment, the controller may have a first zone that includes a burglar alarm sensor, and a second zone that includes a fire sensor. Often a single wireless zone has a single detection device, such that that zone has a
specific functionality (e.g., entry/exit door, smoke detector). It will be appreciated, however, that a single wireless zone may also be configured to support multiple device types.

[0017] The processor may further have a keypad 12 or other user interface device associated therewith to enable a user to manipulate the controller 6. The keypad 12 and/or controller 6 may have a display 14 for communicating system status or other information regarding the controller 6 or one or more of the devices 4 to the user.

[0018] The security system 1 may have local and/or remote alarm outputs. Local alarms may include indoor and/or outdoor bells or sirens and/or lights/strobes, which may be used to signal an evacuation notice or to scare off an intruder. Where a remote alarm feature is provided, the controller 6 may be housed in a security system panel 16 associated with the monitored building 2, and the panel 16 may be in communication with a central monitoring facility 18 that monitors the status of the security system 1 and initiates appropriate action (e.g., alert building personnel, alert appropriate local authorities) when an alarm condition exists, as indicated by one or more of the devices 4. Often, the central monitoring system 18 is geographically remote from the building 2 being monitored, and in practical application the central monitoring facility 18 will often simultaneously monitor a plurality of different buildings.

[0019] During installation, a technician may mount the system panel 16, controller 6, and wireless devices 4 at desired locations throughout the monitored
building 2. In one embodiment, the security system 1 is split into at least first and second zones 20, 22, with a first plurality of devices 4 associated with the first zone 20, and a second plurality of devices 4 associated with the second zone 22. In the illustrated embodiment (FIG. 1), first and second zones 20, 22 are identified with different sets of rooms in the building 2. It will be appreciated, however, that the system 1 may have any of a variety (i.e., number, arrangement) of zones as desired for the particular application.

[0020] The controller 6 may have a variety of operating modes, including an enroll mode which is used to enroll the devices 4, by zone, in the security system 1. The controller 6 may also have a monitoring or operating mode for receiving a plurality of signals from the enrolled devices 4 indicative of their status. The signals transmitted from the devices 4 to the controller 6 may inform the controller 6 of the status of the particular device 4, including alarm conditions, low power conditions, power cycling conditions, enrollment requests, and the like.

[0021] Referring now to FIG. 3, in one exemplary embodiment of the disclosed method, an installer (i.e., technician or other user) may place the controller 6 into an enroll mode at step 100. At step 200, the installer may power up and mount a plurality of wireless devices 4 to be enrolled. At step 300, each device 4 may send a wireless signal containing an enroll command to the controller 6.

[0022] It will be appreciated that when using multiple RF devices there is a risk of signal interference between devices. To minimize interference the devices 4 may be configured so that they do not all transmit their enroll commands simultaneously,
and instead the devices 4 may employ a staggered timing pattern between RF
"rounds." Thus, in one embodiment, each RF device may send a set of enroll
commands every "x" seconds (e.g., 30 seconds, 40 seconds, 60 seconds), such that
every "x" seconds the device 4 may send the enroll command "y" times (e.g., 5 times,
10 times, 15 times). The number "y" and time delay "x" between the individual
rounds of RF data (i.e., the enroll command) may be staggered as desired to achieve
the objective of minimizing interference.

[0023] In one embodiment, each device 4 is configured to automatically send the
enroll command upon power-up (e.g., battery replacement). It will be appreciated
that other techniques can be used to initiate sending of the enroll command, such as
pressing the tamper switch, etc., but that power cycling is contemplated as the most
controlled and practical way of enrolling a device 4. The enroll command may be
sent intermittently and/or continuously until the device 4 is instructed by the
controller 6 to cease transmission.

[0024] In an alternative embodiment, a timeout feature may be provided so that if
the device 4 does not receive an enroll confirmation command from the controller 6
(described below), it will not continue to transmit the enroll command indefinitely. A
timeout feature may be used in applications where the installer mounts all of the devices
4 on one day, then enrolls them in the system on the second day. The timeout feature
would reduce the drain on the device battery that would result from sending the enroll
command all night long.
Alternatively, in lieu of (or in addition to) a timeout feature, one or more of the devices 4 may comprise a local error/timeout display to alert a user that the device 4 has not received an enroll confirmation command from the controller 6 within a predetermined time period. Where the device 4 has an LED and/or LCD display, an error message or flash pattern could be provided to indicate an error condition such as a timeout.

The enroll command may contain the serial number or other unique identifier for the device 4 or the type of device being enrolled. The controller 6 may buffer device information for each enroll command detected in local memory at step 400. The installer may return to the keypad 12 (or other user input device) at step 500 and manually assign zone slots and/or device definitions, etc., for each device 4 being enrolled. At step 600, the installer may ignore or deselect any devices 4 that are not part of the zone being enrolled. This can occur where multiple wireless security systems or zones are being installed at the same time in close proximity to each other such that some errant signals are received from wireless devices that are not intended to be part of the system being installed.

Once zone number(s)/slot assignment(s) have been made for the devices 4, at step 700 the controller 6 may send a wireless signal containing an enroll confirmation command back to the devices 4 to stop the devices 4 from sending further enroll commands. In the absence of this enroll confirmation command, the devices 4 would continue to send their individual enroll commands to the controller 6 (unless a timeout feature is used, as previously described). Thus, prompt
transmission of the enroll confirmation command will conserve power in the
individual devices 4. The enroll confirmation command may also instruct the devices
to begin and/or resume normal operations (e.g., motion detectors look for motion,
smoke detectors start to monitor for smoke).

5 [0028] Subsequent to enrollment, if the power of an enrolled device 4 is cycled
(e.g., due to a battery change), then at step 800 the device 4 may again send a wireless
signal containing an enroll command to the controller 6. At step 900, the controller 6
will determine whether the device is already enrolled. If the device has been
previously enrolled, the controller will send a wireless signal containing an enroll
confirmation command back to the device 4 at step 1000 to stop the enrollment
process. This confirmation command may also instruct the device to resume normal
operations. At step 1100, the controller 6 is taken out of enrollment mode, and placed
into operating mode in which it is configured to receive operational (e.g., alarm)
signals from the devices 4.

15 [0029] If the controller 6 is not in the device enrollment mode, it may still
receive and reply to enroll commands sent from devices 4 that were previously
enrolled. In this way the user can change a battery in an enrolled device 4 without
having to reconfigure the controller into enrollment mode. Any “new” devices (i.e.,
devices not previously enrolled in the system) that send an enrollment command,
however, will be ignored by the controller 6 when the controller 6 is in operating
mode. Thus, if a completely new device 4 is added to the system the user needs to
place the controller 6 in the device enrollment mode to enable the new device 4 to be enrolled.

[0030] The device enrollment process can be performed for a plurality of different zones and systems using the aforementioned method.

[0031] While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
CLAIMS

What is claimed is:

1. A method for enrolling wireless devices in a security system, comprising:

 receiving, at a controller, a wireless signal from each of a plurality of wireless
 devices, the wireless signal from each wireless device containing an enroll command
 and a unique identifier associated with that wireless device;
 storing the unique identifiers in memory associated with the controller;
 manually confirming enrollment of at least one of the plurality of wireless
 devices; and

 sending an enroll confirmation command from the controller to each
 manually confirmed wireless device to instruct each said device to stop sending enroll
 commands.

2. The method of claim 1, wherein the step of sending an enroll confirmation
 command further comprises instructing at least one of the devices to begin or resume
 normal device operation.

3. The method of claim 1, wherein the unique identifier comprises at least one of a
 device serial number, a device type and wireless signal strength.

4. The method of claim 1, wherein the step of manually confirming enrollment
 further comprises entering a device definition for the at least one of the plurality of
 wireless devices.
5. The method of claim 1, wherein the step of manually confirming enrollment further comprises entering zone or device definition information into a keypad associated with the controller.

6. The method of claim 1, wherein the step of manually confirming enrollment further comprises deselecting at least one of the plurality of wireless devices such that the deselected device is not enrolled in the system.

7. The method of claim 1, further comprising resending an enroll command from at least one of the plurality of wireless devices to the controller after the power of the at least one wireless device has been cycled.

8. The method of claim 7, wherein in response to the resent enroll command, the controller determines whether the at least one wireless device is already enrolled and sends an enroll confirmation command to the at least one wireless device to stop resending the enroll command.

9. The method of claim 1, wherein at least one of the plurality of wireless devices is selected from the list consisting of a fire alarm, a smoke alarm, a security alarm, an emergency light, a strobe light, and a window break detector.

10. The method of claim 1, wherein the step of manually confirming enrollment comprises reviewing the unique identifier for each of the plurality of wireless devices, selecting a first one of the plurality of devices for enrollment in a zone of a building being monitored by the system.
11. The method of claim 10, wherein the step of manually confirming enrollment further comprises selecting a second one of the plurality of devices for enrollment in the zone of the building being monitored by the system.

12. A system for enrolling wireless devices in a security system, comprising a controller having a processor and a memory, a plurality of wireless devices, and a machine-readable storage medium encoded with a computer program code such that, when the computer program code is executed by a processor, the processor performs a method comprising:

- receiving a wireless signal from each of the plurality of wireless devices by the controller, the wireless signal from each wireless device containing an enroll command and a unique identifier associated with that wireless device;
- storing the unique identifiers in the memory;
- requesting manual confirmation of enrollment of at least one of the plurality of wireless devices; and
- sending an enroll confirmation command from the controller to each manually confirmed wireless device to instruct each said device to stop sending enroll commands.

13. The method of claim 12, wherein the step of sending an enroll confirmation command further comprises instructing at least one of the devices to begin or resume normal device operation.

14. The method of claim 12, wherein the unique identifier comprises at least one of a device serial number, a device type and wireless signal strength.
15. The system of claim 11, wherein the step of requesting manual confirmation of enrollment further comprises receiving a device definition for the at least one of the plurality of wireless devices.

16. The system of claim 11, wherein the step of requesting manual confirmation of enrollment further comprises receiving zone or device definition information from a keypad associated with the controller.

17. The system of claim 11, wherein the step of requesting manual confirmation of enrollment further comprises deselecting at least one of the plurality of wireless devices such that the deselected device is not enrolled in the system.

18. The system of claim 11, further comprising receiving an enroll command from at least one of the plurality of wireless devices to the controller after the power of the wireless device has been cycled.

19. The method of claim 17, wherein in response to the resent enroll command, the processor further performs the steps comprising determining whether the at least one wireless device is already enrolled and sending an enroll confirmation command to the at least one wireless device to stop resending the enroll command.

20. The system of claim 12, at least one of the plurality of wireless devices is selected from the list consisting of a fire alarm, a smoke alarm, a security alarm, an emergency light, a strobe light, and a window break detector.
21. The system of claim 12, wherein the step of manually confirming enrollment comprises reviewing the unique identifier for each of the plurality of wireless devices, selecting a first portion of the plurality of devices for enrollment in a zone of a building being monitored by the system.

22. The system of claim 21, wherein the step of manually confirming enrollment further comprises selecting a second portion of the plurality of devices for enrollment in the zone of the building being monitored by the system.
Place Controller in Enroll Mode

- 100

Power Up and Mount Devices

- 200

Devices Send Enroll Command

- 300

Controller Buffers Device Information

- 400

Assign Zone Slots

- 500

Deselect/Ignore Devices

- 600

Send Enroll Confirmation Command

- 700

Resend Enroll Command at Device Power Up

- 800

Determine Enroll Status

- 900

Resend Enroll Confirmation Command

- 1000

Take Controller Out of Enroll Mode and Set to Normal Operation Mode

- 1100

FIG. 3
A. CLASSIFICATION OF SUBJECT MATTER
IPC: G08B 75/10 (2006.01)
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC (2006.01): G08B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)
Keywords: wireless, enrol*, security, alarm, identify*, manual*, memory, control*, confirm*, zone.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

[] Further documents are listed in the continuation of Box C. [X] See patent family annex.

Date of the actual completion of the international search
30 April 2010 (30-04-2010)

Date of mailing of the international search report
8 July 2010 (08-07-2010)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage 1, C114 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 031-819-953-2476

Authorized officer
Sajith Bandaranayake (819) 934-6754
<table>
<thead>
<tr>
<th>Patent Document Cited in Search Report</th>
<th>Publication Date</th>
<th>Patent Family Member(s)</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US6624750B1</td>
<td>23-09-2003</td>
<td>AT269527T</td>
<td>15-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU148400A</td>
<td>26-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2346838A1</td>
<td>13-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2346838C</td>
<td>20-01-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69914784D1</td>
<td>18-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69914784T2</td>
<td>23-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1119853A1</td>
<td>01-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1119857B1</td>
<td>11-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO0021053A1</td>
<td>13-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO0021053A9</td>
<td>16-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6888459B2</td>
<td>03-05-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US200212500A1</td>
<td>28-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7091858B2</td>
<td>28-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004212453A1</td>
<td>28-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7023341B2</td>
<td>04-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2002124434A1</td>
<td>28-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7042355B2</td>
<td>09-05-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004160524A1</td>
<td>19-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7053764B2</td>
<td>30-05-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004160322A1</td>
<td>19-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7057512B2</td>
<td>06-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2002124971A1</td>
<td>28-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004160523A1</td>
<td>19-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2002125031A1</td>
<td>28-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7084756B2</td>
<td>01-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004160309A1</td>
<td>19-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7091827B2</td>
<td>15-08-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2004160306A1</td>
<td>19-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7119658B2</td>
<td>10-10-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7202785B1</td>
<td>10-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2007090958A1</td>
<td>26-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2006145842A1</td>
<td>06-07-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7283048B2</td>
<td>16-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2006132303A1</td>
<td>22-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7495548B2</td>
<td>24-02-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2008001734A1</td>
<td>03-01-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7511614B2</td>
<td>31-03-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2006132301A1</td>
<td>22-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7629880B2</td>
<td>08-12-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2002415750A1</td>
<td>28-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2006132302A1</td>
<td>22-06-2006</td>
</tr>
</tbody>
</table>