20147025676 A1 |1 0100 0 010 OO0 00

S
=

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

13 February 2014 (13.02.2014)

WIPOIPCT

(10) International Publication Number

WO 2014/025676 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6F 13/16 (2006.01) GO6F 11/10 (2006.01)

International Application Number:
PCT/US2013/053596

International Filing Date:

5 August 2013 (05.08.2013)
Filing Language: English
Publication Language: English
Priority Data:
13/567,945 6 August 2012 (06.08.2012) Us
Applicant: ADVANCED MICRO DEVICES, INC.

[US/US]; One AMD Place, Sunnyvale, California 94088
(US).

Inventors: LOH, Gabriel H.; 15115 NE 12th Street, Bel-
levue, Washington 98007 (US). O'CONNOR, James Mi-
chael; 10520 Medinah Greens Dr., Austin, Texas 78717
(US). BECKMANN, Bradford M.; 7828 134th Ave. NE,
Redmond, Washington 98052 (US). IGNATOWSKI, Mi-
chael; 510 Harris Drive, Austin, Texas 78737 (US).

Agent: DAVIDSON, Ryan; Davidson Shechan LLP, 1501
West Avenue, Suite B, Austin, Texas 78701 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: STACKED MEMORY DEVICE WITH METADATA MANAGEMENT

B
2
e R

MEMORY L/

T

MEMORY LAYER 120
AP

EXTERNAL PROCESSOR DEVICE

LOGIC LA

150~

LOGIC LAYER 122

STACKED MEMORY DEVICE

(57) Abstract: A processing system (100) comprises one or more processor devices (104) and other system components coupled to a
stacked memory device (102) having a set of stacked memory layers (120) and a set of one or more logic layers (122). The set of lo -
gic layers implements a metadata manager (134) that offloads metadata management from the other system components. The set of
logic layers also includes a memory interface (130) coupled to memory cell circuitry (126) implemented in the set of stacked
memory layers and coupleable to the devices external to the stacked memory device. The memory interface operates to perform
memory accesses for the external devices and for the metadata manager. By virtue of the metadata manager's tight integration with
the stacked memory layers, the metadata manager may perform certain memory-intensive metadata management operations more ef-
ficiently than could be performed by the external devices.

10

15

20

25

WO 2014/025676 PCT/US2013/053596

STACKED MEMORY DEVICE WITH METADATA MANAGEMENT

BACKGROUND
Field of the Disclosure

[0001] The present disclosure generally relates to memory devices, and more particularly, to stacked memory

devices.
Description of the Related Art

[0002] Memory bandwidth and latency are significant performance bottlenecks in many processing systems.
These performance factors may be improved to a degree through the use of stacked, or three-dimensional (3D),
memory, which provides increased bandwidth and reduced intra-device latency through the use of through-silicon
vias (TSVs) to interconnect multiple stacked layers of memory. However, system memory and other large-scale
memory typically are implemented as separate from the other components of the system. A system implementing
3D stacked memory therefore can continue to be bandwidth-limited due to the bandwidth of the interconnect
connecting the 3D stacked memory to the other components and latency-limited due to the propagation delay of the
signaling traversing the relatively-long interconnect and the handshaking process needed to conduct such signaling.
The inter-device bandwidth and inter-device latency have a particular impact on processing efficiency and power
consumption of the system when a performed task requires multiple accesses to the 3D stacked memory as each
access requires a back-and-forth communication between the 3D stacked memory and thus the inter-device

bandwidth and latency penalties are incurred twice for each access.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The present disclosure may be better understood, and its numerous features and advantages made apparent

to those skilled in the art by referencing the accompanying drawings.

[0004] FIG. 1 is a diagram illustrating an exploded perspective view of a processing system employing a metadata

manager in a vertical-stack configuration in accordance with at least one embodiment of the present disclosure.

[0005] FIG. 2 is a diagram illustrating a cross-section view of an alternative implementation of the processing

system of FIG. 1 in a side-split configuration in accordance with at least one embodiment of the present disclosure.

[0006] FIG. 3 is a block diagram illustrating the processing system of FIG. 1 in greater detail in accordance with at

least one embodiment of the present disclosure.

[0007] FIG. 4 is a flow diagram illustrating an example method of performing a metadata management operation

in response to a memory access request in accordance with at least one embodiment of the present disclosure.

10

15

20

25

30

WO 2014/025676 PCT/US2013/053596

[0008] FIG. 5 is a flow diagram illustrating an example method of performing a metadata operation in response to

a metadata command in accordance with at least one embodiment of the present disclosure.

[0009] FIG. 6 is a flow diagram illustrating an example method of providing metadata from a stacked memory

device in accordance with at least one embodiment of the present disclosure.

[0010] FIG. 7 is a diagram illustrating an example metadata management operation for performing a virtual-to-

physical address translation in accordance with at least one embodiment of the present disclosure.

[0011] FIG. 8 is a diagram illustrating an example metadata management operation for memory utilization

monitoring in accordance with at least one embodiment of the present disclosure.

[0012] FIG. 9 is a diagram illustrating an example metadata management operation for memory logging in

accordance with at least one embodiment of the present disclosure.

[0013] FIG. 10 is a diagram illustrating an example metadata management operation for error detection value

calculation in accordance with at least one embodiment of the present disclosure.

[0014] FIG. 11 is a diagram illustrating an example metadata management operation for error detection value

validation in accordance with at least one embodiment of the present disclosure.

[0015] FIG. 12 is a diagram illustrating an example metadata management operation for a garbage collection mark

process in accordance with at least one embodiment of the present disclosure.

[0016] FIG. 13 is a diagram illustrating an example metadata management operation for another garbage collection

mark process in accordance with at least one embodiment of the present disclosure.

[0017] FIG. 14 is a flow diagram illustrating a method for designing and fabricating an integrated circuit (IC)
device implementing a stacked memory and a metadata manager in accordance with at least one embodiment of the

present disclosure.

[0018] The use of the same reference symbols in different drawings indicates similar or identical items.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0019] FIGs. 1-14 illustrate example techniques for improved processing efficiency and decreased power
consumption in a processing system through the use of a stacked memory device implementing an integrated
metadata manager to offload metadata management for operational data stored in memory cell circuitry of the
stacked memory device. The stacked memory device includes a set of stacked memory layers and a set of one or
more logic layers, wherein the one or more logic layers implement the metadata manager and a memory interface.
The memory interface is coupled to the memory cell circuitry and is coupleable to one or more devices external to
the stacked memory device. The memory interface operates to perform memory accesses in response to memory
access requests from both the metadata manager and the one or more external devices. The metadata manager

comprises logic to perform one or more metadata management operations for metadata stored at the stacked memory

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596

device in association with the stored operational data. Examples of such metadata management operations include,
but are not limited to, address translation operations, data security or data integrity operations (e.g., checksum or
error correcting code calculation or validation), garbage collection operations, memory utilization profiling, memory
logging, and the like. Due to the metadata manager’s tight integration with the memory layers, the metadata
manager can access metadata stored in the memory layers with higher bandwidth and lower latency and power
consumption compared to the external devices. Moreover, the offloading of metadata management to the stacked
memory device permits the external devices to perform other tasks focusing on the operational data, thereby

increasing the overall processing throughput of the system.

[0020] The term “operational data,” as used herein, refers to data used by a device of the system in the
performance of an operation on behalf of an operating system, hypervisor, or software application. The term
“metadata,” as used herein, refers to data that describes a characteristic, identifier, or representation of a system use
of corresponding operational data. Examples of operational data include instruction data and operand data.
Examples of metadata include data integrity/security information, such as parity bits, checksums, and error
correcting codes (ECCs), address translation information (e.g., page table entries and translation lookaside buffer
entries), status indicators (e.g., dirty bits, valid bits, reachable bits), and the like. More generally, operational data is
data provided to the stacked memory device for storage, and metadata is data used by the stacked memory device to

access, characterize, or modify the stored operational data.

[0021] FIG. 1 illustrates a processing system 100 in accordance with at least one embodiment of the present
disclosure. The processing system 100 can comprise any of a variety of computing systems, including a notebook or
tablet computer, a desktop computer, a server, a network router, switch, or hub, a computing-enabled cellular phone,
a personal digital assistant, and the like. In the depicted example, the processing system 100 includes a stacked
memory device 102 and at least one external device 104 coupled via an inter-device interconnect 106. The
processing system 100 also can include a variety of other components not illustrated in FIG. 1, such as one or more
display components, storage devices, input devices (e.g., a mouse or keyboard), and the like. While the processing
system 100 can include multiple external devices 104 coupled to the stacked memory device 102 via the inter-device
interconnect 106, an example implementation with a single external device 104 is described herein for ease of
illustration. In one embodiment, the external device 104 is implemented as an integrated circuit (IC) package 103
and the stacked memory device 102 is implemented as an IC package 105 separate from the I1C package 103
implementing the external device 104. In another embodiment, the external device 104 and the stacked memory
device 102 are implemented as separate sets of dies connected via an interposer in the same IC package. In either

instance, the external device 104 is “external” with reference to the stacked memory device 102.

[0022] In the illustrated example, the external device 104 is a processing device, although an external device 104
can be other types of devices. In this example, the external device comprises one or more processor cores, such as
processor cores 108 and 110, a northbridge 112, and peripheral components 114. The processor cores 108 and 110
can include any of a variety of processor cores and combinations thereof, such as a central processing unit (CPU)
core a graphics processing unit (GPU), a digital signal processor (DSP), and the like. The peripheral components
114 can include, for example, an integrated southbridge or input/output controller, one or more level 3 (L3) caches,
and the like. The northbridge 112 includes, or is associated with, a memory controller interface 116 comprising a

physical interface (PHY) connected to the conductors of the inter-device interconnect 106.

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596

[0023] The inter-device interconnect 106 can be implemented in accordance with any of a variety of conventional
interconnect or bus architectures, such as a Peripheral Component Interconnect — Express (PCI-E) architecture, a
HyperTransport architecture, a QuickPath Interconnect (QPI) architecture, and the like. Alternatively, the inter-
device interconnect 106 can be implemented in accordance with a proprietary bus architecture. The inter-device
interconnect 106 includes a plurality of conductors coupling transmit/receive circuitry of the memory interface 116
of the external device 104 with the transmit/receive circuitry of the memory interface 130 of the stacked memory
device 102. The conductors can include electrical conductors, such as printed circuit board (PCB) traces or cable

wires, optical conductors, such as optical fiber, or a combination thereof.

[0024] The stacked memory device 102 may implement any of a variety of memory cell architectures, including,
but not limited to, volatile memory architectures such as dynamic random access memory (DRAM) and static
random access memory (SRAM), or non-volatile memory architectures, such as read-only memory (ROM), flash
memory, ferroelectric RAM (F-RAM), magnetoresistive RAM, and the like. For ease of illustration, the example
implementations of the stacked memory device 102 are described herein in the example, non-limiting context of a

DRAM architecture.

[0025] As illustrated by the exploded perspective view, the stacked memory device 102 comprises a set of stacked
memory layers 120 and a set of one or more logic layers 122. Fach memory layer 120 comprises memory cell
circuitry 126 implementing bitcells in accordance with the memory architecture of the stacked memory device 102
and the peripheral logic circuitry 128 implements the logic and other circuitry to support access and maintenance of
the bitcells in accordance with this memory architecture. To illustrate, DRAM typically is composed of a number of
ranks, each rank comprising a plurality of banks, and each bank comprising a matrix of bitcells set out in rows and
columns. Accordingly, in one embodiment, each memory layer 120 may implement one rank (and thus the banks of
bitcells for the corresponding rank). In another embodiment, the DRAM ranks each may be implemented across
multiple memory layers 120. For example, the stacked memory device 102 may implement four ranks, each rank
implemented at a corresponding quadrant of each of the memory layers 120. In either implementation, to support
the access and maintenance of the DRAM bit cells, the peripheral logic circuitry 128 may include, for example, line
drivers, bitline/wordline precharging circuitry, refresh circuitry, row decoders, column select logic, row buffers,

sense amplifiers, and the like.

[0026] The one or more logic layers 122 implement logic to facilitate access to the memory of the stacked memory
device 102. This logic includes, for example, the memory interface 130, built-in self test (BIST) logic 131, and the
like. The memory interface 130 can include, for example, receivers and line drivers, memory request buffers,
scheduling logic, row/column decode logic, refresh logic, data-in and data-out buffers, clock generators, and the
like. Although the illustrated embodiment depicts a memory controller 116 implemented at the external device 104,
in other embodiments, a memory controller instead may be implemented at the memory interface 130. The memory
interface 130 further comprises a bus interface 132 comprising a PHY coupleable to the conductors of the inter-

device interconnect 106, and thus coupleable to the external device 104.

[0027] In addition to implementing logic to facilitate access to the memory implemented by the memory layers
120, one or more logic layers 122 implement a metadata manager 134 to perform metadata management operations

on metadata maintained at the stacked memory device 102 in association with operational data stored at the stacked

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596

memory device 102 for the benefit of the external device 104 or other external component of the processing system
102. The metadata manager 134 is coupled to the memory interface 130 and comprises logic to perform one or
more metadata management operations on metadata stored at the stacked memory device 102 in association with
operational data stored at the stacked memory device 102. The metadata manager 134 may include storage elements
(e.g., registers, caches, or content addressable memories) located at one or more of the logic layers 122 to store the
metadata, the memory cell circuitry 126 may store the metadata, or some portions of the metadata may be stored in
the storage elements of the logic layers 122 while other portions are stored in the memory cell circuitry 126. For
metadata stored at the memory cell circuitry 126, some metadata may be stored with the corresponding operational
data (e.g., in certain instances, checksum data may be stored in the same memory location as used to store the
corresponding operational data), whereas in other instances the metadata is stored separately from the corresponding
operational data (e.g., ECC data may be stored in an ECC array separate from the memory locations storing the
corresponding operational data). Further, in one embodiment, the metadata manager134 can employ a non-volatile
memory (NVM), such as flash memory, at a logic layer 122 or in a memory layer 120, to retain certain metadata

after a power-down event.

[0028] In the illustrated example, the metadata manager 134 and the memory interface 130 are implemented on the
same logic layer 122. In other embodiments, the memory interface 130 and the metadata manager 134 may be
implemented on different logic layers. For example, the memory interface 130 may be implemented at one logic
layer 122 and the metadata manager 134 may be implemented at another logic layer 122. In yet another
embodiment, one or both of the memory interface 130 and the metadata manager 134 may be implemented across
multiple logic layers. To illustrate, the memory interface 130 and the logic circuitry of the metadata manager 134
may be implemented at one logic layer 122 and certain storage elements of the metadata manager 134 (e.g., a cache

or content addressable memory) may be implemented at another logic layer 122.

[0029] In the depicted implementation of FIG. 1, the stacked memory device 102 is implemented in a vertical
stacking arrangement whereby power and signaling are transmitted between the logic layers 122 and the memory
layers 120 using dense through silicon vias (TSVs) 150 or other vertical interconnects. Although FIG. 1 depicts the
TSVs 150 in a set of centralized rows, the TSVs 150 instead may be more dispersed across the floorplans of the
layers. Note that FIG. 1 provides an exploded-view representation of the layers 120 and 122 to permit illustration of
the TSVs 150 and the components of the layers 120 and 122. In implementation, each of the layers overlies and is
in contact with the preceding layer. In one embodiment, the metadata manager 134 accesses with the memory
implemented at the memory layers 120 directly via the TSVs 150 (that is, the metadata manager 134 implements its
own memory controller). In another embodiment, the memory interface 130 controls access to the TSVs 150 and

thus the metadata manager 134 accesses the memory layers 120 through the memory interface 130.

[0030] The stacked memory device 102 may be fabricated using any of a variety of 3D integrated circuit
fabrication processes. In one approach, the layers 120 and 122 each are implemented as a separate substrate (e.g.,
bulk silicon) with active devices and one or more metal routing layers formed at an active surface (that is, each layer
comprises a separate die or “chip™). This approach can include a wafer-on-wafer process whereby a wafer
comprising a matrix of dice is fabricated and thinned, and TSVs are etched through the bulk silicon. Multiple
wafers are then stacked to achieve the illustrated layer configuration (e.g., a stack of four wafers comprising

memory circuitry dies for the four memory layers 120 and a wafer comprising the logic die for the logic layer 122),

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596

aligned, and then joined via thermocompression. The resulting stacked wafer set is singulated to separate the
individual 3D IC devices, which are then packaged. In a die-on-die process, the wafer implementing each
corresponding layer is first singulated, and then the dies are separately stacked and joined to fabricate the 3D IC
devices. In a die-on-wafer approach, wafers for one or more layers are singulated to generate the dice for one or
more layers, and these dice are then aligned and bonded to the corresponding die areas of another wafer, which is
then singulated to produce the individual 3D IC devices. One benefit of fabricating the layers 120 and 122 as dice
on separate wafers is that a different fabrication process can be used to fabricate the logic layers 122 than that used
to fabricate the memory layers 120. Thus, a fabrication process that provides improved performance and lower
power consumption may be used to fabricate the logic layers 122 (and thus provide faster and lower-power interface
logic and circuitry for the metadata manager 134), whereas a fabrication process that provides improved cell density
and improved leakage control may be used to fabricate the memory layers 120 (and thus provide more dense, lower-

leakage bitcells for the stacked memory).

[0031] In another approach, the layers 120 and 122 are fabricated using a monolithic 3D fabrication process
whereby a single substrate is used and each layer is formed on a preceding layer using a layer transfer process, such
as an ion-cut process. The stacked memory device 102 also may be fabricated using a combination of techniques.
For example, the logic layers 120 may be fabricated using a monolithic 3D technique, the memory layers may be
fabricated using a die-on-die or wafer-on-wafer technique, or vice versa, and the resulting logic layer stack and

memory layer stack then may be bonded to form the 3D IC device for the stacked memory device 102.

[0032] FIG. 2 illustrates a cross-section view of an alternative implementation of the stacked memory device 102
in accordance with another embodiment of the present disclosure. Rather than implement a vertical stack
implementation as shown in FIG. 1 whereby the one or more logic layers 122 are vertically aligned with the memory
layers 120, the stacked memory device 102 instead may implement the side-split arrangement of FIG. 2 whereby the
stacked memory layers 120 are implemented as an IC device 202 and the one or more logic layers 122 are
implemented as a separate IC device 204, and the IC devices 202 and 204 (and thus the logic layers 122 and the
memory layers 120) are connected via an interposer 206. The interposer can comprise, for example, one or more
levels of silicon interposers, a printed circuit board (PCB), or a combination thereof. Although FIG. 2 illustrates the
stacked memory layers 120 together implemented as a single IC device 202, the stacked memory layers 120 instead
may be implemented as multiple IC devices 202, with each IC device 202 comprising one or more memory layers
120. Likewise, the logic layers 122 may be implemented as a single IC device 204 or as multiple IC devices 204.
The one or more IC devices 202, the one or more IC devices 204, and the unifying substrate 206 are packaged as an

1C package 205 representing the stacked memory device 102.

[0033] FIG. 3 illustrates the processing system 100 in block diagram form and FIGs. 4-6 illustrate various example
methods of operation of the processing system 100 with respect to the block diagram depiction of FIG. 3 in
accordance with at least one embodiment of the present disclosure. As noted above, the processing system 100
includes one or more external devices 104 and the stacked memory device 102 coupled via an inter-device
interconnect 106, whereby the stacked memory device 102 implements a stacked memory 300 represented by
multiple stacked layers of memory cell circuitry 126 and implements a metadata manager 134 to perform one or
more metadata management operations with respect to metadata 301 stored at the stacked memory device 102. The

metadata 301 may be stored at the stacked memory 300, at a register file, CAM, cache, or other storage element at a

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596

logic layer 122 (FIG. 1 and 2), in a non-volatile memory 304, or a combination thereof. The metadata manager 134
comprises management logic 302 having access to the stored metadata 301 and which is configured to perform
metadata management operations with respect to the stored metadata 301. The stacked memory device 102 further
includes the memory interface 130 to perform memory accesses in response to memory access requests from both

the external device 104 and the metadata manager 134.

[0034] In operation, the stacked memory device 102 functions as a conventional system memory for storing
operational data on behalf of other system components. In a conventional memory access operation, the external
device 104 (or other system component) issues a memory access request 306 by manipulating the PHY of its
memory interface 116 to transmit address signaling and, if the requested memory access is a write access, data
signaling via the inter-device interconnect 106 to the stacked memory device 102. The PHY of the memory
interface 130 receives the signaling, buffers the memory access request represented by the signaling, and then
accesses the memory cell circuitry 126 to fulfill the requested memory access. In the event that the memory access
request 306 is a write access, the memory interface 130 stores the signaled operational data to the location of the
memory 300 indicated by the signaled address. In the event that the memory access request 306 is a read request,
the memory interface 130 accesses the requested operational data from the location of the memory 300
corresponding to the signaled address and manipulates the PHY of the memory interface 130 to transmit signaling

representative of the accessed operational data 308 to the external device 104 via the inter-device interconnect 106.

[0035] Moreover, the stacked memory device 102 also functions to offload the task of managing metadata for the
stored operational data from the external devices 102 of the processing system 100. In one embodiment, the
metadata manager 134 of the stacked memory device 102 performs metadata management operations associated
with certain operational data responsive to memory accesses to the certain operational data by the external device
104. For example, in response to a read access request, the management logic 302 can access the stored checksum
(one embodiment of metadata) or other error detection code for the read data, recalculate the checksum from the
read data, and compare the stored checksum with the recalculated checksum to verify the integrity of the stored data

before the memory interface 130 outputs the read data to the external device 104.

[0036] The metadata manager 134 also can perform metadata management operations in response to a metadata
command 310 from the external device 104. For example, the management logic 302 may be configured to support
a mark-and-sweep function for a garbage collection process, and the external device 104 can direct the stacked
memory device 102 to mark an object at address X as reachable by issuing a metadata command 310 in the form of
a “MARK(X)” command, in response to which the management logic 302 writes a specified value (e.g., a“1”)to a
reachable status bit (one embodiment of metadata) associated with the operational data stored at address X. The
metadata manager 134 can provide a response 312 to the metadata command 310 issued by the external device 104,
whereby the response 312 can include, for example, a confirmation that the metadata command 310 has been
received and carried out, or a result of the performance of the metadata management operation represented by the

metadata command 310.

[0037] The metadata manager 134 further can perform metadata management operations independent of memory
access requests, metadata commands, or other signaling from the external device 104. Certain metadata

management operations may be software-invisible or background operations run independent of the external device

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596

104. To illustrate, the management logic 302 may be configured to periodically scan through the operational data
and the corresponding ECC values to identify and correct operational data that was corrupted due to a soft error or a

malfunction of the memory cell circuitry 126.

[0038] Method 400 of FIG. 4 illustrates, in the context of the block diagram of FIG. 3, an example operation of the
stacked memory device 102 for performing metadata management operations responsive to memory accesses by the
external device 104. The method 400 initiates at block 402, whereupon the external device 104 issues a memory
access request 306 (FIG. 3) to the stacked memory device 102. The memory access request 306 can comprise a read
access request to read operational data stored at the stacked memory device 102 or a write access request to write

operational data to the stacked memory device 102.

[0039] At block 404, the memory interface 130 of the stacked memory device 102 processes the memory access
request 306 either by storing the operational data (for a write access) to the memory cell circuitry 126 or by
accessing the operational data (for a read access) from the memory cell circuitry 126 and providing the accessed
operational data to the external device 104. Concurrently, at block 406 the metadata manager 134 performs one or
more metadata management operations responsive to the memory access request 306 and which are associated with
the memory access request 306. For example, the metadata manager 134 can be configured to perform a memory
utilization profiling operation and the metadata management operations performed at block 406 in conjunction with
the memory access can include, for example, updating or otherwise modifying memory utilization profiling
information, such as a utilization metric, (embodiments of metadata) associated with the memory address or
memory address range accessed by the memory access. As another example, the metadata manager 134 can be
configured to perform memory tracing or other memory logging operations and the metadata management
operations performed at block 406 can include logging the memory address accessed by the memory access in a
memory log (embodiments of metadata). As yet another example, the metadata manager 134 can be configured to
provide data integrity, security, or reliability functionality with respect to the operational data stored at the stacked
memory device 102, and thus the metadata management operations performed at block 406 can include, for
example, computing or validating error detection values associated with stored operational data, where the error
detection values can include one or more of a checksum, ECC value, or parity bit for the operational data associated

with the memory access.

[0040] Method 500 of FIG. 5 illustrates, in the context of the block diagram of FIG. 3, an example operation of the
stacked memory device 102 for performing metadata management operations responsive to metadata commands
from the external device 104. The method 500 initiates at block 502, whereupon the external device 104 issues a
metadata command 310 (FIG. 3) to the stacked memory device 102. The metadata command 310 represents an
explicit instruction or other command to the metadata manager 134 to perform one or more metadata management
operations. In response to the metadata command 310, at block 504 the metadata manager 134 performs one or
more metadata management operations represented by the metadata command 310. These metadata management
operations can include, for example, operations to generate metadata, operations to output specified metadata,

operations to modify specified metadata, and the like.

[0041] To illustrate, in one embodiment the metadata manager 134 provides address translation support for the

external device 104 so as to avoid multiple successive memory accesses by the external device 104 that would

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596

otherwise be necessary for the external device 104 to perform a page table walk to determine the appropriate
physical address for a corresponding virtual address. In this implementation, the external device 104 could instead
issue an address translate command to the metadata manager 134, which could then page walk through the locally
stored page tables or other address translation information (one embodiment of metadata) to determine and return to
the external device 104 the physical address corresponding to the virtual address supplied with the address
translation command. In instances whereby the metadata manager 134 provides memory utilization profiling, the
metadata command can include, for example, a command to set the parameters for a desired profiling operation,
such as resetting the profiling metrics for a given profiling operation, setting the memory address or memory address
range to be profiled, setting the type of profiling (e.g., usage counting, frequency of access, etc.), and the like. The
metadata command also could include a command to output to the external device 104 either the profiling metrics
(one embodiment of metadata) for a memory utilization profiling operation, or a memory address pointing to the
profiling metrics. As another illustration, the metadata command 310 can include a command pertaining to a
memory logging operation performed by the metadata manager 134. In this context, the metadata command 310 can
include, for example, a command to set the criteria for the memory logging operation, a command to output memory
log information for a logging operation or a memory address pointing to the location of such information, and the
like. The metadata command 310 also may include a command to modify the metadata itself. For example, in
instances whereby the metadata manager 134 supports garbage collection for the operational data stored at the
stacked memory 300 (FIG. 3), the metadata command 310 can include a command to modify garbage collection
attributes, such as a “MARK(X)” command to set the “reachable” bit of a corresponding object stored at address X

in the stacked memory 300.

[0042] Method 600 of FIG. 6 illustrates, in the context of the block diagram of FIG. 3, an example operation of
the stacked memory device 102 for providing metadata to the external device 104. The method 600 initiates at
block 602, whereupon the external device 104 issues a request for specified metadata to the stacked memory device
102. Inresponse, at block 604 the metadata manager 134 accesses the specified metadata and provides the accessed
metadata to the external device 104. Any of a variety of types of metadata can provided to the external device 104.
As noted above, the provided metadata can include memory utilization/performance metrics, memory logs/traces,

address translation information, data security/integrity information, and the like.

[0043] In one embodiment, the request specifies the metadata to be provided via an identifier, and the metadata
manager 134 determines the location at which the metadata is stored based on the identifier, accesses the metadata
from this location, and then outputs the accessed metadata. In another embodiment, the request specifies the
memory address at which the metadata is stored, and the metadata manager 134 accesses and outputs the metadata
from the specified location. In this instance, the metadata manager 134 could have previously supplied the memory
address of the metadata to the external device 104, either in response to a metadata command 310 (FIG. 3) for the
memory address, or as a confirmation in response to a metadata command 310 setting up the context for the
metadata. For example, in response to a metadata command 310 (FIG. 3) directing the metadata manager 134 to set
up a memory utilization profiling operation for a specified memory address range, the metadata manager 134 could
send a response 312 (FIG. 3) confirming that the memory utilization profiling operation has been set up, with the
response also including the starting memory address at which the utilization profiling metrics for the profiling

operation are to be stored.

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596
10

[0044] FIGS. 7-13 illustrate examples of metadata management operations performed by the stacked memory
device 102 in order to take advantage of the low-latency, high-bandwidth connection between the metadata manager
134 and the stacked memory 300 or to otherwise offload metadata management operations from other components

of the processing system 100.

[0045] FIG. 7 depicts an example use of the metadata manager 134 to perform address translation operations on
behalf of the external device 104. Many computer architectures, including x86 architectures, use virtual-to-physical
address mapping to translate virtual addresses used by a processor device to physical addresses used by system
memory and memory-mapped peripheral devices. Oftentimes, the processor device caches a translation lookaside
buffer (TLB) that buffers recent virtual-to-physical address translations. However, in the event of a TLB miss, the
processor device conventionally was required to traverse one or more page tables stored in memory to obtain the
proper virtual-to-physical address translation. Current x86 architectures use up to four page tables, and thus a
conventional page table walk can require up to four memory accesses (one access per page table entry per page table
level) by the processor device. However, as the metadata manager 134 is tightly coupled with the stacked memory
300, the metadata manager 134 can be used to offload the memory address translation operation so that the external
device 104 need initiate only one metadata command to obtain the translation in place of multiple separate memory
accesses that would otherwise be required to perform a conventional page table walk. Further, under this approach
it may not be necessary for the external device 104 to implement its own page table walker logic, and thus page
table walker logic could be eliminated from the design of the external device 104 in reliance on the metadata

manager 134 of the stacked memory device 102, thus saving area and cost in implementing the external device 104.

[0046] In the depicted example, the external device 104 issues an address translation command 702 (one
embodiment of a metadata command) for a virtual address X to the stacked memory device 102. The address
translation command 702 further may include other information used to perform the address translation, such as the
value of the CR3 register in an x86 implementation so as to identify the location of the page directory for the page
tables to be used in the address translation. The metadata manager 134 maintains state related to the management of
the page tables (e.g., base pointers to the page tables 704 stored in the stacked memory 300). In response to the
address translation command 702, the metadata manager 134 uses this maintained state and the information
provided with the address translation command 702 to perform a page table walk by accessing one or more page
table entries (the page table entry accesses identified as PTEQ, PTEL, ... PTEX in FIG. 7) of one or more levels of
page tables 704 to obtain the requested address translation, and then provide the requested address translation
information as a response 706 to the external device 104. Moreover, the page table management logic may
implement or have access to a cache or other storage element that caches previously-performed address translations
or caches entries from intermediate page table levels to accelerate the address translation process. While this process
is underway, the external device 104 may continue execution of other operations in anticipation of receipt of the

address translation information.

[0047] The page table management logic implemented at the metadata manager 134 can support other translation-
related operations. For example, when the external device 104 initiates a write access request to a corresponding
page of the stacked memory 300, the page table management logic can mark the corresponding page table entry as
dirty so that an operating system of the external device 104 can determine that the page’s contents may eventually

need to be written out to disk or other non-volatile storage. To implement this process, the metadata manager 134

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596
11

can support a metadata command “MARKDIRTY(X)” issued by the external device 104, in response to which the
metadata manager 134 walks the page tables 704 to obtain the page table entry corresponding to virtual address X,
and then sets the corresponding dirty bit for the page table entry. Similar metadata commands can be supported for
marking the access bit, checking/setting permissions, invalidating or resetting a page table entry, allocating or

installing a page table entry, and the like.

[0048] FIG. 8 depicts an example use of the metadata manager 134 to provide support for dynamic memory
performance/utilization profiling in accordance with one embodiment of the present disclosure. To support this
functionality, profiling logic of the metadata manager 134 implements one or more profiling operations, each
profiling operation specified by a stored profile state 802 and one or more corresponding profile metrics 804. The
profile state 802 comprises information that represents the parameters of the corresponding profiling operation. For
example, the profile state 802 may specify one or more memory addresses of interest or one or more continuous or
discontinuous memory address ranges of interest, and the like. The some or all of the parameters of the profile state
802 may be supplied by the external device 104, such as via a metadata command that sets up the profiling
operation. The profile metrics 804 comprise metrics maintained by the metadata manager 134 in accordance with
the parameters of the corresponding profile state. The profile metrics can include, for example, a number of reads or
writes to a specified memory address or memory address range, the frequency at which a specified memory address
or memory address range is accessed or not accessed (as measured with respect to the total number of memory
accesses received or with respect to absolute time/clock cycles), the number of unique memory locations accessed
within a specified range, and the like. Thus, the profile metrics 804 may be implemented using, for example,
counters, which may be either stored in the stacked memory 130 or implemented at a logic layer 122 (FIG. 1) as, for

example, a register-mapped counter.

[0049] The profile metrics 804 for a profiling operation may be supplied to the external device 104 via, for
example, a read access by the external device 104 to a memory location at which the profile metrics 804 are stored,
or in response to a request for the profile metrics 804 in the manner described above with respect to FIG. 6.
Although various examples of profile operations and corresponding profiling metrics are described above, the
present disclosure is not limited to these examples, but instead may include profiling of any of a variety of memory

utilization or performance metrics.

[0050] To implement a profiling operation specified by a stored profile state 802, the metadata manager 134
snoops the address bus ADDR between the memory interface 130 and the stacked memory 300. Thus, a memory
access request 806 to address Y from the external device 104 triggers the generation of address signaling for the
address Y on the address bus, which is snooped by the metadata manager 134. The metadata manager 134 compares
the address Y with the memory addresses or memory address ranges specified by the profile states 302, and in the
event of a hit, updates the corresponding profile metric 804. For example, if the profiling operation is to count the
number of read and write accesses to a memory address range, if the address Y falls within this range, the metadata
manager 134 increments a usage counter to reflect the access. Similarly, if the profiling operation is to count the
number of unique locations accessed within a memory access range, if the address Y falls within the specified range,
the metadata manager 134 can access a data structure storing a list previously-accessed addresses within the range,

and if address Y is not in this list, increment a corresponding usage counter and add the address Y to the list.

10

15

20

25

30

35

40

WO 2014/025676 PCT/US2013/053596
12

[0051] FIG. 9 depicts an example use of the metadata manager 134 to provide support for memory logging in
accordance with one embodiment of the present disclosure. To support this functionality, trace logic of the metadata
manager 134 implements at least one access log 902 for storing memory trace or log information regarding accesses
to the stacked memory 300. The access log 902 can be implemented as a storage element (e.g., cache) at one of the
logic layers 122 (FIG. 1) or at a region of the stacked memory 300 reserved for memory logging. The external
device 104 can issue a metadata command to initiate the logging operation, terminate the logging operation, as well
as to access the log information of the access log 902. As with the profiling example described above with reference
to FIG. 8, to implement memory logging the metadata manager 134 snoops the address bus ADDR between the
memory interface 130 and the stacked memory 300. Accordingly, a memory access request 906 issued by the
external device 104 triggers the signaling of the corresponding address on the address buss ADDR, which in turn is
snooped by the metadata manager 134 and logged in the access log 902. This approach can significantly reduce
traffic between the external device 104 and the stacked memory 104. Under a conventional approach, the external
device 104 or other device on the inter-device interconnect 106 (FIG. 1) would have to monitor the address bus of
the inter-device interconnect 106 for memory accesses and then generate a separate write access request for
processing by the memory interface 130 to update a log stored at the stacked memory 300. In contrast, the
technique described above does not require the additional traffic between the external device and the stacked
memory device 102 because the monitoring and log updating occur completely within the stacked memory device

102.

[0052] FIGs. 10 and 11 depict an example use of the metadata manager 134 to provide support for data
security/integrity/reliability metadata management in accordance with one embodiment of the present disclosure.
Parity bits, checksums, and cyclic redundancy checksums (CRCs) often are used for stored data to verify the
integrity of the data, either by providing confidence in the correctness of computations or to detect malicious,
unauthorized, or unintended modifications to stored data. Error correcting codes (ECC), like checksums and other
error detecting metadata, facilitate the detection of errors in operational data, while also enabling a certain number of
errors to be corrected. To facilitate management of such error detection/correction metadata, the metadata manager
134 can include logic that generates or validates such error detection values associated with stored operational data.
In the example of FIG. 10, the metadata manager 134 includes logic to generate a checksum for operational data to
be stored at a memory location X of the stacked memory 300. When a write request 1002 is issued by the external
device 104 to store operational data at memory location X, the metadata manager 134 receives the write data 1004
associated with the write request (e.g., by snooping the data bus between the memory interface 130 and the stacked
memory 300) and accesses the remainder of the unmodified operational data at memory location X (in the event that
the memory location X is larger than the size of the write data 1004). The logic of the metadata manager 134 then
computes a checksum 1006 for the operational data (including the write data 1004) to be stored at memory location
X the write data 1004 and provides the checksum 1006 for storage at the stacked memory 300 in association with
the memory location X. The checksum 1006 may be stored with the operational data at the memory location X, or

in a separate checksum array in the stacked memory 300.

[0053] Inthe example of FIG. 11, the metadata manager 134 includes logic to validate the checksum for
operational data stored at a memory location X of the stacked memory 300. When a read request 1102 is issued by
the external device 104 to output read data 1104 from memory location X, the metadata manager 134 receives the

operational data 1105 (including the read data 1104) stored at the memory location 1104 (e.g., by snooping the data

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596
13

bus between the memory interface 130 and the stacked memory 300) and receives the checksum 1106 for the
operational data 1105. The logic of the metadata manager 134 then recomputes the checksum for the operational
data 105 and compares the recomputed checksum with the accessed checksum 1106. In the event of a match, the
metadata manager 134 asserts a checksum valid signal 1108 to indicate that the original checksum appears valid and
thus the operational data 105 does not appear to be tampered with or otherwise corrupted. The memory interface
130 then may output the read data 1104 in response to the assertion of the checksum valid signal 1108. In the event
that the recomputed checksum and the accessed checksum 1106 do not match, the metadata manager 134 may, for
example, issue an exception or fault to the external device 104 to indicate that the operational data 1105 has been

corrupted.

[0054] The processes similar to those described above may be implemented for other types of error detection or
error-correcting metadata. For example, the metadata manager 134 can include logic to process ECC metadata to
update, check, and repair errors in operational data stored in the stacked memory 300. The ECC management
operations can be performed in response to memory access requests as described above. For example, ECC
generation may be performed in response to a write access, and ECC validation (and error correction) may be
performed in response to a read access. Furthermore, ECC management operations may be performed by the
metadata manager 134 in the background. For example, the metadata manager 134 may operate to periodically or
continually walk the operational data and ECC values stored in the stacked memory 300 to identify and correct
errors in the operational data. The ECC management operations are, in certain implementations, distinguished from
parity and checksum management operations in that ECC state typically is architecturally invisible to software.
Accordingly, the memory controller at the external device 104 can be simplified by removing is support for ECC
management in reliance on the ECC management provided by the metadata manager 134 of the stacked memory

device 102.

[0055] While the data security/integrity/reliability metadata management operations are described above in the
context of error correcting codes, other forms of error detection and correction may be supported by the metadata
manager 134. To illustrate, the stacked memory 300 could implement redundant array of independent discs
(RAID)-like functionality whereby additional parity bits (one embodiment of metadata) are computed and stored
either interleaved across multiple regions of the stacked memory 300 or in a separate region of the stacked memory
300.

[0056] FIGs. 12 and 13 depict an example use of the metadata manager 134 to provide support for garbage
collection management in accordance with one embodiment of the present disclosure. Many computer systems
implement a garbage collection process to reclaim memory locations occupied by operational data no longer in use
by an application or operating system. Typically, the garbage collection process implements a mark-and-sweep
approach. The garbage collector scans the memory to identify those objects that are “reachable”, that is, is either
directly or indirectly referenced by live program state. Those objects identified as reachable are so-identified (the
“mark” part of “mark-and-sweep”), and the garbage collector then scans through the memory and invalidates those
objects not marked as “reachable” (the “sweep” part of “mark-and-sweep”), thereby freeing up the memory
locations storing the invalidated objects. The metadata manager 134 can include logic to implement such garbage

collection operations for the stacked memory 300.

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596
14

[0057] To illustrate, FIG. 12 depicts an example whereby the metadata manager 134 supports a metadata
command 1202, “MARK(X)”, in response to which the metadata manager 134 sets a reachable status bit 1204
associated with operational data 1206 at memory location X to a “reachable” state. Conversely, the metadata
manager 134 can support a metadata command “CLEAR(X), in response to which the metadata manager 134 clears
the reachable status bit 1204. In a conventional system, a processor device would need to read the reachable state
from memory, modify the reachable state to reachable, and write the reachable state back to memory. In contrast,
the above-described approach requires only a single command issued between the external device 104 and the

stacked memory 102.

[0058] The metadata manager 134 also may implement a more sophisticated mark process. To illustrate, FIG. 13
depicts an example whereby the metadata manager 134 supports a metadata command 1302, “MARKALL(X)”, in
response to which the metadata manager 134 sets the reachable status bit 1204 associated with the operational data
1206 at memory location X to an reachable state, and then recursively visit any other objects (e.g., object 1306)
referenced by the operational data 1206 (via, ¢.g., a pointer 1204 or other referenced address) and set the reachable
status bits (e.g., reachable status bit 1304) of those objects as well. Similarly, the metadata manager 134 also may
implement a metadata command “CLEARALL(X)” to clear the reachable status bit of the object and all recursively
referenced objects. This approach would make use of a predetermined format for the layout of objects in memory,
and in particular, a method to determine the size of an object and which fields contain pointers. Moreover, this
approach typically would require the virtual-to-physical address translation support described above with reference

to FIG. 7.

[0059] In at least one embodiment, the apparatus and techniques described above are implemented in a system
comprising one or more integrated circuit (IC) devices (also referred to as integrated circuit packages or
microchips), such as the stacked memory device 102 of FIGs. 1-13. Electronic design automation (EDA) and
computer aided design (CAD) software tools may be used in the design and fabrication of these IC devices. These
design tools typically are represented as one or more software programs. The one or more software programs
comprise code executable by a computer system to manipulate the computer system to operate on code
representative of circuitry of one or more IC devices so as to perform at least a portion of a process to design or
adapt a manufacturing system to fabricate the circuitry. This code can include instructions, data, or a combination of
instructions and data. The software instructions representing a design tool or fabrication tool typically are stored in a
computer readable storage medium accessible to the computing system. Likewise, the code representative of one or
more phases of the design or fabrication of an IC device may be stored in and accessed from the same computer

readable storage medium or a different computer readable storage medium.

[0060] A computer readable storage medium may include any storage medium, or combination of storage media,
accessible by a computer system during use to provide instructions and/or data to the computer system. Such storage
media can include, but is not limited to, optical media (e.g., compact disc (CD), digital versatile disc (DVD), Blu-
Ray disc), magnetic media (e.g., floppy disc , magnetic tape, or magnetic hard drive), volatile memory (e.g., random
access memory (RAM) or cache), non-volatile memory (e.g., read-only memory (ROM) or Flash memory), or
microelectromechanical systems (MEMS)-based storage media. The computer readable storage medium may be
embedded in the computing system (e.g., system RAM or ROM), fixedly attached to the computing system (e.g., a

magnetic hard drive), removably attached to the computing system (e.g., an optical disc or Universal Serial Bus

10

15

20

25

30

35

WO 2014/025676 PCT/US2013/053596
15

(USB)-based Flash memory), or coupled to the computer system via a wired or wireless network (e.g., network

accessible storage (NAS)).

[0061] FIG. 14 is a flow diagram illustrating an example method 1400 for the design and fabrication of an IC
device implementing one or more aspects of the present invention in accordance with at least one embodiment of the
present disclosure. As noted above, the code generated for each of the following processes is stored or otherwise
embodied in computer readable storage media for access and use by the corresponding design tool or fabrication

tool.

[0062] Atblock 1402 a functional specification for the IC device is generated. The functional specification (often
referred to as a micro architecture specification (MAS)) may be represented by any of a variety of programming

languages or modeling languages, including C, C++, SystemC, Simulink, or MATLAB.

[0063] At block 1404, the functional specification is used to generate hardware description code representative of
the hardware of the IC device. In at least one embodiment, the hardware description code is represented using at
least one Hardware Description Language (HDL), which comprises any of a variety of computer languages,
specification languages, or modeling languages for the formal description and design of the circuits of the IC device.
The generated HDL code typically represents the operation of the circuits of the IC device, the design and
organization of the circuits, and tests to verify correct operation of the IC device through simulation. Examples of
HDL include Analog HDL (AHDL), Verilog HDL, SystemVerilog HDL, and VHDL. For IC devices implementing
synchronized digital circuits, the hardware descriptor code may include register transfer level (RTL) code to provide
an abstract representation of the operations of the synchronous digital circuits. For other types of circuitry, the
hardware descriptor code may include behavior-level code to provide an abstract representation of the circuitry’s
operation. The HDL model represented by the hardware description code typically is subjected to one or more

rounds of simulation and debugging to pass design verification.

[0064] After verifying the design represented by the hardware description code, at block 1406 a synthesis tool is
used to synthesize the hardware description code to generate code representing or defining an initial physical
implementation of the circuitry of the IC device. In one embodiment, the synthesis tool generates one or more
netlists comprising circuit device instances (e.g., gates, transistors, resistors, capacitors, inductors, diodes, etc.) and
the nets, or connections, between the circuit device instances. Alternatively, all or a portion of a netlist can be
generated manually without the use of a synthesis tool. As with the hardware description code, the netlists may be

subjected to one or more test and verification processes before a final set of one or more netlists is generated.

[0065] Alternatively, a schematic editor tool can be used to draft a schematic of circuitry of the IC device and a
schematic capture tool then may be used to capture the resulting circuit diagram and to generate one or more netlists
(stored on a computer readable media) representing the components and connectivity of the circuit diagram. The

captured circuit diagram may then be subjected to one or more rounds of simulation for testing and verification.

[0066] At block 1408, one or more EDA tools use the netlists produced at block 1406 to generate code
representing the physical layout of the circuitry of the IC device. This process can include, for example, a placement
tool using the netlists to determine or fix the location of each element of the circuitry of the IC device. Further, a

routing tool builds on the placement process to add and route the wires needed to connect the circuit elements in

10

15

20

WO 2014/025676 PCT/US2013/053596
16

accordance with the netlist(s). The resulting code represents a three-dimensional model of the IC device. The code
may be represented in a database file format, such as, for example, the Graphic Database System II (GDSII) format.
Data in this format typically represents geometric shapes, text labels, and other information about the circuit layout

in hierarchical form.

[0067] At block 1410, the physical layout code (e.g., GDSII code) is provided to a manufacturing facility, which
uses the physical layout code to configure or otherwise adapt fabrication tools of the manufacturing facility (e.g.,
through mask works) to fabricate the IC device. That is, the physical layout code may be programmed into one or
more computer systems, which may then control, in whole or part, the operation of the tools of the manufacturing

facility or the manufacturing operations performed therein.

[0068] Note that not all of the activities or elements described above in the general description are required, that a
portion of a specific activity or device may not be required, and that one or more further activities may be
performed, or elements included, in addition to those described. Still further, the order in which activities are listed

are not necessarily the order in which they are performed.

[0069] Also, the concepts have been described with reference to specific embodiments. However, one of ordinary
skill in the art appreciates that various modifications and changes can be made without departing from the scope of
the present disclosure as set forth in the claims below. Accordingly, the specification and figures are to be regarded
in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the

scope of the present disclosure.

[0070] Benefits, other advantages, and solutions to problems have been described above with regard to specific
embodiments. However, the benefits, advantages, solutions to problems, and any feature(s) that may cause any
benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or

essential feature of any or all the claims.

WO 2014/025676 PCT/US2013/053596
17

WHAT IS CLAIMED IS:

1. An integrated circuit (IC) package (105) comprising:
memory cell circuitry (126); and
a set of one or more logic layers (122) electrically coupled to the memory cell circuitry, the set of one or
more logic layers comprising a metadata manager (134) and a memory interface (130), the
5 memory interface coupled to the metadata manager and coupleable to a device (104) external to
the IC package, and the metadata manager to manage metadata stored at the IC package and which

is associated with operational data stored at the memory cell circuitry for the device.

2. The IC package of claim 1, further comprising a set of stacked memory layers (120) implementing the memory

cell circuitry.

10 3. The IC package of claim 2, wherein the metadata manager is to perform at least one metadata management

operation in response to a memory access request (306) from the device.

4. The IC package of claim 3, wherein:
the metadata comprises a memory utilization metric (804) associated with a specified memory address
range; and
15 the at least one metadata management operation comprises updating the memory utilization metric
responsive to a match between the specified memory address range and a memory address

identified by the memory access request.

5. The IC package of claim 2, wherein the metadata manager is to perform at least one metadata management

operation in response to a metadata command (310) from the device.

20 6. The IC package of claim 2, wherein:
the metadata is stored at the memory cell circuitry; and
the memory interface is to access the metadata from the memory cell circuitry and provide the accessed

metadata to the device in response to a request from the device.

7. The IC package of claim 6, wherein:
25 the metadata manager is to provide to the device a memory address of the memory cell circuitry at which
the metadata is stored; and

the request includes the memory address.

8. The IC package of claim 2, wherein the metadata is stored in at least one storage element (304) in the set of one

or more logic layers.

WO 2014/025676 PCT/US2013/053596
18

9. The IC package of claim 2, wherein the metadata manager is to perform at least one metadata management

operation independent of signaling from the device.

10. A method comprising:
providing an integrated circuit (IC) (105) comprising a set of stacked memory layers (120) comprising

5 memory cell circuitry (126) and comprising a set of one or more logic layers (122) electrically
coupled to the set of stacked memory layers, the set of one or more logic layers comprising a
metadata manager (134) coupled to the memory cell circuitry of the set of one or more stacked
memory layers and comprising a memory interface (130) coupled to the metadata manager and
coupled to a device (104) external to the IC;

10 operating the memory interface to perform memory accesses for the device; and

the metadata manager managing metadata stored at the IC.

11. The method of claim 10, wherein the IC comprises a set of stacked memory layers implementing the memory

cell circuitry.

12. The method of claim 11, wherein managing metadata comprises performing at least one metadata management

15 operation in response to a memory access request (306) from the device.

13. The method of claim 12, wherein the at least one metadata management operation comprises at least one of:
updating a memory utilization metric (804) stored at the IC responsive to a match between a specified
memory address range and a memory address identified by the memory access request;
updating memory log information (902) stored at the IC with a memory address identified by the memory
20 access request; and
at least one of computing and validating an error detection value (1006, 1106) associated with operational
data (1004, 1105) stored at a memory address identified by the memory access request, the error

detection value comprising at least one of a parity value, a checksum, and an error correcting code.

14. The method of claim 11, wherein managing metadata comprises performing at least one metadata management

25 operation in response to a metadata command (310) from the device.

15. The method of claim 14, wherein the at least one metadata management operation comprises at least one of:

accessing address translation information (704) stored at the IC to translate a virtual address identified by
the metadata command to a physical address;

configuring at least one parameter of a memory utilization profiling operation to be performed by the

30 metadata manager;

resetting at least one profile metric (804) of a memory utilization profiling operation to be performed by the
metadata manager;

configuring at least one parameter (802) of a memory logging operation to be performed by the metadata
manager;

35 accessing memory log information (902) stored at the IC for output to the device; and

WO 2014/025676 PCT/US2013/053596
19

modifying at least one garbage collection attribute associated with operational data.

16. A system comprising:
a stacked memory device (102) comprising:
a set of stacked memory layers (120) comprising memory cell circuitry (126); and
5 a set of one or more logic layers (122) electrically coupled to the set of stacked memory layers, the
set of one or more logic layers comprising a metadata manager (134) and a memory
interface (130), the metadata manager to manage metadata stored at the stacked memory
device; and
a processor device (104) coupled to the stacked memory device via the memory interface, the processor
10 device to provide operational data (1004, 1105) for storage at the set of stacked memory and to
issue a metadata command (310) to the stacked memory device to initiate a performance of at least
one metadata management operation by the metadata manager for metadata associated with the

operational data.

WO 2014/025676

-105

o0

~

=n

126

©

b

g [y, iy

MORY LAYER 1

ME

“MORY LAYER 120

-
o

i

O\

1/8

Sy
S g

*E\\\“&\\\X\\ el

<l
O\
o
ul
>
<L
—
4>
X
Q

=
~
=4

i

METADATA

—
i \E\E*\\«\I\i\

MANAGER

[

\\\
e
\\&:\1\ o R

ol'
QG [\
i]
o i
il o
E '
5 =
> oo ¢
o7 [} |8]
=3 Rt G
= 1
[}
<X
i
L8
]
=
=
\
N\
|
&
&S

108

EXTERNAL PROCESSOR DEVICE

~t

~

PCT/US2013/053596

N

~

[MEMORY DEVICE
0

_LOGICLAYERTZZ

STACK:

foed

et

¢CL ZOUTYL D

PCT/US2013/053596

FEL HEOYNYIN VYOV LN

o w . ¢ D1

2/8

ViYavViIN 1907 INTNIOVNYI
%,
oLe A%
m M (
} LISTHNOUVAMIANGD ©
C % o =
e ONYWAOD VivOviIW |
i3 gZr 01 m e ST N OGTT |
AN AALINOHIO THD ANOWIW £}] JABONIN Povm e e me e A PR %% B
m YivE GRa00Y i
- N SEIODY AHONIN d
808 808

WO 2014/025676

No“\

S10.

G037 ¥aSCd3 N
OIS IN1I0I0I0ININI0ISISININIeIN]S) b

OCt d2AYT AHONIAN

Z T2T WAV AN
0

TZT 43AVT AHONAN
TZT 43AVT AHONAN

4
Vi

&0¢

z07-" 7
20—

WO 2014/025676
3/8

4 RECEIVE MEMORY ACCESS REQUEST

PCT/US2013/053596

FOR OPERATIONAL DATA FROM
EXTERNAL DEVICE

[UTEL!Z.

TION/PERFORMANCE
PROFILING

404
i

x t_

PROCESS MEMORY ACCESS

DEVICE REQUEST

PERFORM METADATA OPERATION
REQUEST AT STACKED MEMORY RESPONSIVE TO MEMORY ACCESS

MEMORY TRACINGALOGGING

™~

FIG. 4

RELIABILITY

[: DATA INTEGRITY/SECURITY/

UTILIZATION PROFILING
PARAMETER COMMAND

LOG PARAMETER COMMAND

802 /
\

ADDRESS TRANSLATION
UPDATE COMMAND

RECEIVE METADATA MANAGEMENT
COMMAND FROM EXTERNAL DEVICE

GARBAGE COLLECTION
COMMAND

504
X %‘
PERFORM METADATA MANAGEMENT
OPERATION AT STACKED MEMORY
DEVICE

FIG. 5

ko]
L]
<

WO 2014/025676

ADDRESS LOG METADATA

4/8

UTILIZATION PROFILING
METADATA

RECEIVE REQUEST FOR METADATA
FROM EXTERNAL DEVICE

PCT/US2013/053596

ADDRESS TRANSLATION
METADATA

604
800
¥
FIG. 6 PROVIDE METADATA FROM STACKED
AT MEMORY DEVICE
:
i
;
MEMORY CELL CIRCUITRY
: 128
FG. 7 | paceTABLES T |
2 Pl
& F 2
READ | READ / ... READ
PTEC; PTE: PTEX
TRANSLATION | s
EXTERNAL CONMAND T N STACKED
DEVICE M ETADr\T,!"\ E]ANnGE?\ MEMORY
104 TRANSLATION 14 DEVICE
- T RESULT 102
706

WO 2014/025676

FIG. 8

EXTERNAL
DEVICE

FIG. 9

EXTERNAL
DEVICE

104

PCT/US2013/053596
5/8
. STACKED
i MEMORY
DEVICE
MEMORY CELL CIRCUITRY e
300
ADDR DATA SNOOP
806 AT ¥
ACCESS
(; BEGUEST MEMORY { PROFILE STATE }-{ PROFILE METRIC }
. INTERFACE
o READWRITE § 130 { PROFILE STATE }-#{ PROFILE METRIC }
BRTA] 134
: (
802 804
. STACKED
; MEMORY
/f‘
MEMORY CELL CIRCUITRY DEVICE
126 oz
[sccEssiocon Jeid
300
UPDATE
o 103
ADDRDATA oo I
906 P ¥
S ACCESS ||
REQUEST MEMORY METADATA MANAGER
INTERFACE 124
READWRITE | 420 L
BT -

WO 2014/025676

FIG. 10

EXTERNAL
DEVICE

PCT/US2013/053596

FiG. 11

EXTERNAL
DEVICE
104

6/8
o STACKED
g MEMORY
MEMORY CELL CIRGUITRY DEVICE
126 1z
{ oatanse avs)
300
WPiTE 1006
ADDP ,\AT
1002 A \JHFC}\\UV
WRITE 1
i MEMORY | - _
REQUEST ,NTER(;;\R(;E WRITE, | METADATA MANAGER
WRITE 130 DATA™ 13
TBRTETY
1604 1004
o STACKED
; MEMORY
EVICE
MEMORY CELL CIRCUITRY mEVICE
1’5_7-6- AL
[patauos [iue]
RECALCULATE
1 Qpig“{‘”% CHECKSUM
DR
oo 3 D*EA 1106 1105
4 {
% - [oper Y.
. i\h.”-\&a N N ‘3 BRTA
REGUEST AHORT LICHECKSUM, | METADATA MANAGER
R B | cneoksuy =
DATA - < 2l
(0 “TVALD
1104 /

1108

WO 2014/025676 PCT/US2013/053596
7/8

i
MEMORY CELL CIRCUITRY

FIG. 12 e BEACH

360
I-—SET----
et o STACKED
pAhie MARK(X, || METADATA MANAGER VEMORY
S g 134 DEVICE
- 1200 102

R
x:{ OBJECT 1208 E 2

BN o
‘g REACH. PTR

Y:[OBJECT 4306 ihsmi j

E-Y ‘L
SET: v

FIG. 13

EXTERNAL e _ STACKED
pliSh ARG || METADATA MAAGER CEMORY
104 14 DEVICE

1302 102

WO 2014/025676

FIG. 14

PCT/US2013/053596

8/8
‘/,/—- 1400
1400~~_) GENERATE FUNCTIONAL
SPECIFICATION
¥
1404~ OENERATE HARDWARE
DESCRIPTION CODE
¥
1406~ GENERATE NETLISTS
¥
1408—_| GENERATE PHYSICAL LAYOUT
CODE
¥
1410~ FABRICATE IC DEVICE

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/053596

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F13/16 GO6F11/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 20127623376 Al (JEDDELOH [US]) 1-3,5,
26 January 2012 (2012-01-26) 9-12,14,
15
Y paragraph [0039] - paragraph [0071] 4,6-8,
figures 1,2 13,16
X US 2006/164882 AL (NORMAN [US]) 1-3,5,
27 July 2006 (2006-07-27) 9-12,14,
15
Y paragraph [0021] - paragraph [0037] 4,6-8,
figures 1-7 13,16
Y US 20117231739 ALl (KIM [CA]) 4,6-8,
22 September 2011 (2011-09-22) 13,16
paragraph [0004] - paragraph [0006]
paragraph [0082] - paragraph [0094]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 November 2013

Date of mailing of the international search report

09/12/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

McDonagh, Fintan

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/053596
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2012023376 Al 26-01-2012 CN 102272737 A 07-12-2011
EP 2386084 A2 16-11-2011
JP 2012515381 A 05-07-2012
KR 20110110799 A 07-10-2011
TW 2016030515 A 16-08-2010
UuS 2010180150 Al 15-07-2010
US 2012023376 Al 26-01-2012
US 2012297241 Al 22-11-2012
WO 2010081157 A2 15-07-2010

US 2006164882 Al 27-07-2006 NONE

US 2011231739 Al 22-09-2011 CA 2791931 Al 29-09-2011
CN 102812519 A 05-12-2012
EP 2550661 Al 30-01-2013
JP 2013522779 A 13-06-2013
KR 20120137416 A 20-12-2012
W 201201008 A 01-01-2012
US 2011231739 Al 22-09-2011
WO 2011116454 Al 29-09-2011

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report

